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Introduction

The concept of a flow on a graph was introduced by Tutte [12] who noticed
the connection between the flows and the colorings of graphs. Since 1954 when
he stated his 5-Flow Conjecture, it is still an open problem. There were several
attempts to prove the conjecture and many of them were formulated as studying
some aspects of a hypothetical minimal counterexample.

Recently, Kochol [7, 8] has introduced a method using so-called forbidden
networks, i.e. graphs that cannot be a subgraph of any such counterexample. He
has proved that any minimal counterexample does not contain a circuit shorter
than 11.

The aim of this thesis is to provide systematic and comprehensive view on
Kochol’s method. Moreover, since some part of the method requires computers
and Kochol has not shared his implementation, we have created a program that
validates Kochol’s results and we have also improved the now-known best result
using this program, see Theorem 2.10.

The Structure of the Thesis

In Chapter 1, we provide some introduction to the definitions needed to under-
stand the problem of a nowhere-zero 5-flow. In the end of the chapter, we also
provide some historical notes to illustrate how the knowledge of flows changed
through the time.

The most important part of the thesis is Chapter 2. The reader can find there
the motivational proof that short circuits (of length 3 and 4) cannot be subgraphs
of any minimal counterexample to the 5-Flow Conjecture. Later, in Section 2.1,
we provide the description and the proofs of the most important or interesting
parts of Kochol’s method.

In Subsection 2.1.2, some tricks how to reduce the size of computations are
showed. And finally, in Section 2.2, we discuss possible modifications of this
method and some results we obtained so far.

Source code used to validate Kochol’s results can be found in Appendix A or
on author’s website http://kam.mff.cuni.cz/~korcsok/masterthesis/.
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Chapter 1

The Basics

In graph theory, a graph G is considered as a pair of sets – a set of vertices denoted
by VG and a multiset of edges denoted by EG where each edge e ∈ EG is a set of
one or two vertices – usually called ends of the edge e. An edge where both ends
are the same vertex is called a loop. In the following text, we will assume that all
graphs are non-empty, i.e. VG 6= ∅, and finite, i.e. |VG| < ∞.

A graph H is a subgraph of G if VH ⊆ VG and EH ⊆ EG. Given vertex set
W ⊆ VG, we denote by G[W ] the subgraph H of G where VH = W and edge
e ∈ EG is element of EH if and only if both its ends are elements of W . Subgraph
G[W ] is also called the subgraph induced by vertices W .

Given a graph G, a walk of length k in G connecting vertices v0 and vk is
a sequence v0, e0, v1, . . . , ek−1, vk where v0, v1, . . . , vk ∈ VG, e0, . . . , ek−1 ∈ EG and
for each i = 0, . . . , k−1 edge ei has ends vi and vi+1. A walk where all vertices are
distinct from each other is called a path and denoted Pk. Furthermore, a walk with
all vertices pairwise distinct except that v0 = vk is called a circuit and denoted
by Ck.

We say that two vertices u, v ∈ VG are connected if there exists a walk in G
connecting u and v. Clearly, the relation of “being connected” is an equivalence.
Therefore, we can partition all vertices into disjoint subsets V1, . . . , Vk such that
two vertices are connected if and only if they are elements of the same set Vi.

The subgraphs G[Vi] are called the components of graph G. Again, it is not
difficult to see that there is no edge of G having its ends in distinct components.
We a call a graph connected if it contains exactly one component.

Let G − e be the graph obtained from G by deleting edge e. A bridge in
a graph G is an edge e ∈ EG such that G− e contains more components than G.
Clearly, an edge e is a bridge in G if and only if there exist such two vertices u, v ∈
VG that every path in G connecting u and v contains the edge e. Alternatively,
a bridge can be defined as the edge that is not contained in any circuit.

We call a graph k-connected if we can delete any k−1 edges without obtaining
a graph with at least two components. Furthermore, we call a graph cyclically
k-connected if deleting any k − 1 edges cannot create a graph with at least two
components containing a circuit.

1.1 Flows and Colorings

The graph as was defined in the previous section is sometimes called undirected
because each edge connects its ends in both ways. A digraph (or directed graph) D
is defined similarly to a graph with set of arcs instead of edges. An arc ~e ∈ ED is
a pair of two (not necessary distinct) vertices where the first one is called a tail
and the second one a head of the arc. An arc where both tail and head are the
same vertex is again called a loop.
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By an orientation ~G of an undirected graph G we understand a digraph where
we assign a direction to each edge, i.e. for an edge we choose one end as a tail
and the second as a head. Let ~G be some orientation of a graph G. For a vertex v
we denote by E+

~G
(v) (or E−

~G
(v)) the set of all arcs in E ~G with tails (or heads,

respectively) in the vertex v. If it is clear from context, we can omit the subscript.
Let Γ be an Abelian group and f : E ~G → Γ for some orientation ~G of a graph

G. We define functions f+, f− : VG → Γ as following:

f+(v) =
∑

~e∈E+(v)

f(~e), f−(v) =
∑

~e∈E−(v)

f(~e).

Definition 1.1. A Γ-flow on a graph G where Γ is an Abelian group is a mapping
f : E ~G → Γ for some orientation ~G of graph G such that f+(v) = f−(v) holds for
every vertex v. A Γ-flow where Γ = Zk is also called a k-flow. Moreover, a flow f
is called nowhere-zero if f(~e) 6= 0 holds for each arc ~e.

Observation 1.2. Let ~G and ~G′ be two different orientations of a graph G and
let Γ be an Abelian group. Then there exists a flow f : E ~G → Γ if and only if there
exists a flow f ′ : E ~G → Γ. Moreover, flow f is nowhere-zero if and only if flow f ′

is.

As a corollary, we can choose and fix an orientation ~G of G with no change of
existence of a flow on G. We will use this fact later in the proof of Theorem 2.1
and in Section 2.1.

By a k-coloring of a graph G we understand a mapping c : VG → {1, . . . , k}
such that c(u) 6= c(v) holds whenever vertices u and v are ends of the same edge.

The connection between nowhere-zero flows and colorings can be observed
considering the duality of planar graphs. Therefore, we need to introduce two
additional definitions.

We call a graph G planar if it can be drawn on a plane without crossing edges.
More specifically, each vertex v is drawn as a point pv and each edge e is drawn
as a plane curve ce such that points representing different vertices are distinct,
the ends of ce for e = {u, v} are pu and pv and any two curves can intersect each
other only in points representing their common vertices. The graph together with
such drawing is called plane graph. The curves representing the edges of a plane
graph G divide the plane into some areas, which we call faces of G.

G
G∗

Figure 1.1: An example of a pair of dual graphs.
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Given a plane graph G, a dual graph G∗ is a graph that contains a vertex v∗F
for each face F of G and an edge e∗e for each edge e ∈ EG connecting the vertices
corresponding the faces of G lying on both sides of the edge e, see Figure 1.1.
Clearly, e∗e is a loop if and only if e is a bridge and vice versa.

Observation 1.3. A planar graph G admits a nowhere-zero k-flow if and only if
its dual graph G∗ has a k-coloring.

Proof. Let G′ be some plane drawing of a graph G and G∗ be its dual graph.
By the definition of a dual graph, a k-coloring c : VG∗ → {1, . . . , k} naturally
corresponds to a coloring of faces of G′ using colors 1, . . . , k where no adjacent
faces have the same color.

Using this face-coloring, we define an orientation ~G of G where each edge is
oriented such that the face with larger color number lies on its right side. Fur-
thermore, we define a mapping f : E ~G → {1, . . . , k − 1} as a (positive) difference
between color numbers of the faces on both sides of the edge, see Figure 1.2.

1

24

1

5

4

4

1

2
3

Figure 1.2: The definition of an orientation ~G and a mapping f according to
face-coloring.

We show that f is a nowhere-zero k-flow on G. Clearly, it is sufficient to show
that f is a flow. Let v be a vertex of G′. When we look at the colors of faces in
a clockwise direction once around the vertex v starting and ending on the same
face we get a sequence of numbers 1, . . . , k where the first and the last numbers
are the same. By the definition, f+(v) equals the sum of all increases in this
sequence whereas f−(v) is the sum of all decreases. Therefore, f+(v) = f−(v)
must hold for any vertex v.

For the other implication, it suffices to find an arc with a maximal flow and
color the face on its left side by color 1. All the other faces get the color in process
inverse to the one displayed on Figure 1.2.

Similarly to the fist part of this proof, we can show that this process assigns
to each face exactly one color and no two adjacent faces share the same one.

1.2 Historical Notes

In 1939, Robbins [9] studied strong orientations of graphs, i.e. such orientations
that there exists a path from each vertex to each other respecting the directions
of arcs. He also proved that a graph can be strongly oriented if and only if it
does not contain any bridge. Using a little modification of his proof, the following
theorem can be proved.
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Theorem 1.4. For every bridgeless graph G there exists a natural number k such
that G admits a nowhere-zero k-flow.

In 1952, Tutte [12] studied some polynomials counting the numbers of various
colorings of graphs and formulated the following conjectures.

Conjecture 1.5. There exists a natural number k such that each bridgeless graph
admits a nowhere-zero k-flow.

Conjecture 1.6 (5-Flow Conjecture). Each bridgeless graph admits a nowhere-
zero 5-flow.

In 1976, Appel and Haken [1–3] proved the famous 4-Color Theorem say-
ing that every planar graph with no loop has a 4-coloring. Therefore and from
Observation 1.3, every bridgeless planar graph admits a nowhere-zero 4-flow.

Conjecture 1.5 was proved in 1976 by Jaeger and later, in 1980, improved by
Seymour.

Theorem 1.7 (Jaeger [5]). Each bridgeless graph admits a nowhere-zero 8-flow.

Theorem 1.8 (Seymour [10]). Each bridgeless graph admits a nowhere-zero
6-flow.
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Chapter 2

Restrictions on Counterexamples

to the 5-Flow Conjecture

One possible approach to prove the 5-Flow Conjecture is to look at a hypothetical
counterexample and prove some facts that must hold, e.g. Seymour [10] proved
that a minimal counterexample to the 5-Flow Conjecture is cubic, i.e. each vertex
has degree exactly 3, and 3-connected. Celmins in his Ph.D. thesis [4] proved that
such minimal counterexample is cyclically 5-connected and does not contain any
circuit of length less then 7.

As a simple introduction to this technique, we present the following theorem.

Theorem 2.1. Neither C3 nor C4 can be a subgraph of a minimal counterexample
to the 5-Flow Conjecture.

Proof. For a contradiction, let G be some minimal counterexample to the 5-Flow
Conjecture containing C3 as a subgraph and denote the vertices of this subgraph
by v1, v2 and v3. As mentioned, G is cubic.

Let G′ be the graph obtained from G by contracting all three edges of C3, i.e.
by removing edges {v1, v2}, {v2, v3} and {v3, v1} and identifying all three vertices
into new vertex v, see Figure 2.1.

G G′

v1

v2

v3

v

Figure 2.1: A contraction of C3.

Clearly, G′ is a smaller bridgeless graph, therefore, there exists a nowhere-
zero 5-flow f ′ on G′. According to Observation 1.2, we can assume f ′ uses an
orientation ~G′ where no arc has its tail in v. Therefore, E+

~G′
(v) = ∅ and f ′−(v) =

a + b+ c = 0.
Let ~G be an orientation of G where each edge e satisfying |e∩{v1, v2, v3}| ≤ 1

has the same direction in ~G as in ~G′ and edges {v1, v2}, {v2, v3} and {v3, v1} are
oriented into arcs (v1, v2), (v2, v3) and (v3, v1), respectively, see Figure 2.2.

We can expand the flow f ′ into a 5-flow f on graph G such that f(~e) =
f ′(~e) for each edge e ∈ EG′ . Let f((v1, v2)) = x, then f((v2, v3)) = x + a and
f((v3, v1)) = x + a + b where a and b are values of the flow f ′ on two arcs with
head in v, see Figure 2.2. The flow f ′ is nowhere-zero and, therefore, values x,
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a

b

c
x

x+ ax+ a+ b

a

b

c

~G′ ~G

Figure 2.2: Flow in the neighborhood of C3 before and after decontraction.

x+a and x+a+b are pairwise different. Therefore, there are two possible choices
of x in Z5 such that all x, x+ a and x+ a+ b are non-zero.

Both these choices lead to a nowhere-zero 5-flow on G and, therefore, G is not
a counterexample to the 5-Flow Conjecture.

Similarly, we can expand some nowhere-zero 5-flow on G whenever it contains
C4 as a subgraph.

Kochol [6–8] has also chosen this approach and he has shown that any circuit
in any minimal counterexample to 5-FC has length at least eleven. The purpose
of Section 2.1 is to provide a simple overview of Kochol’s methods and the proofs
of their correctness.

In Section 2.2, we provide some modifications of this approach we have studied
and results we obtained.

2.1 Kochol’s Approach

In 2006, Kochol [7] has introduced a computational method to prove that a cer-
tain graph cannot be a subgraph of a minimal counterexample to the 5-Flow
Conjecture.

A network is a pair (G,U) where G is a graph and U = {u1, . . . , un} is
an ordered set of pairwise distinct vertices of G, the vertices U are also called
terminals of network (G,U). Without loss of generality, we can assume that no
two terminals are connected by an edge; in the other case we can subdivide
the edge with a new non-terminal vertex. Later, we will split a graph into two
networks, which will make it easier to analyze existence of flows.

Similarly to the definition of a nowhere-zero 5-flow on a graph, a nowhere-zero
5-flow (or shortly a flow) on a network (G,U) is a mapping f : E ~G → Z5 r {0}

for some orientation ~G of G where f+(v) = f−(v) holds for each vertex except
of the terminals. Clearly, a mapping f is a flow on (G, ∅) if and only if it is
a nowhere-zero 5-flow on G.

A network (G,U) where all terminals U = {u1, . . . , un} have degree 1 is
called simple. We fix an orientation ~G of G such that there is no arc with
a head in any terminal. We can do this without loss of generality according to
Observation 1.2. Let f be a flow on (G,U), then we denote by f+(U) the n-tuple
(f+(u1), . . . , f

+(un)).
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Lemma 2.2. Let (G,U) be a simple network and f a flow on (G,U), then
∑

u∈U

f+(u) = 0.

Proof. By simple counting, we get
∑

u∈U

f+(u) =
∑

v∈VGrU

f−(v)−
∑

v∈VGrU

f+(v)

=
∑

v∈VGrU

(
f−(v)− f+(v)

)
= 0.

The first equality is from the fact that there is no arc having head in any
terminal, the latter from the definition of a flow on a network.

Furthermore, f+(u) 6= 0 for each terminal u, therefore, f+(U) belongs to set

Sn = {(s1, . . . , sn) : s1, . . . , sn ∈ Z5 r {0}, s1 + · · ·+ sn = 0} .

For each s ∈ Sn, let FG,U(s) be the number of flows on (G,U) such that f+(U) = s.
Let P = {Q1, . . . , Qr} be a partition of the set {1, . . . , n}. We call P proper

if each of Q1, . . . , Qr contains at least two elements and we denote the set of all
proper partitions of {1, . . . , n} by Pn = {P1, . . . , Ppn}.

For s = (s1, . . . , sn) ∈ Sn and P = {Q1, . . . , Qr} ∈ Pn, we define a compati-
bility of s and P as

χ(s, P ) =

{
1 if

∑
i∈Qj

si = 0 for each j ∈ {1, . . . , r},

0 otherwise.

Furthermore, for s ∈ Sn, let χn(s) =
(
χ(s, P1), . . . , χ(s, Ppn)

)
.

Using Tutte’s contraction/deletion formula [12], the following lemma can be
proved. For more details see [6].

Lemma 2.3. Let (G,U) be a simple network with n terminals. Then there exist
integers x1, . . . , xpn such that FG,U(s) =

∑pn
i=1 xiχ(s, Pi) for every s ∈ Sn.

Example 2.4. Let Cn be a cycle with vertices {v1, . . . , vn}. Denote by C̃n the
graph obtained from Cn by adding a new vertex ui and a new edge {vi, ui} for
each i = 1, . . . , n, see Figure 2.3. Clearly, (C̃n, U) where U = {u1, . . . , un} is
a simple network. The graph C̃n is sometimes called n-sunlet.

C̃3 C̃4

Figure 2.3: Examples of sunlets: C̃3 and C̃4.

For n = 3, there is only one proper partition, namely P =
{
{1, 2, 3}

}
, there-

fore by Lemma 2.3, there exists such x that F
C̃3,U

(s) = x for each s ∈ S3. In the
proof of Theorem 2.1, we showed x = 2.
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For n = 4, there are four proper partitions

P1 =
{
{1, 2, 3, 4}

}
, P2 =

{
{1, 2}, {3, 4}

}
,

P3 =
{
{1, 3}, {2, 4}

}
, P4 =

{
{1, 4}, {2, 3}

}

and the integers from Lemma 2.3 are x1 = 1, x2 = 1, x3 = 0 and x4 = 1.
Table 2.1 contains all “types” of s ∈ S4, their compatibilities with these par-

titions χ4(s) and the numbers of flows F
C̃4,U

(s) that can be easily determined
directly. Other vectors from S4 give the same results as some displayed in the
table since there is no s ∈ S4 compatible with all four proper partitions.

s χ(s, P1) χ(s, P2) χ(s, P3) χ(s, P4) F
C̃4,U

(s)

(1, 4, 4, 1) 1 1 1 0 2
(1, 4, 1, 4) 1 1 0 1 3
(1, 4, 2, 3) 1 1 0 0 2
(1, 1, 4, 4) 1 0 1 1 2
(1, 2, 4, 3) 1 0 1 0 1
(1, 2, 3, 4) 1 0 0 1 2
(1, 1, 1, 2) 1 0 0 0 1

Table 2.1: Examples of s ∈ S4 and corresponding χ4(s) and F
C̃4,U

(s).

2.1.1 Forbidden Networks

First method. Let H be a graph such that V = {v1, . . . , vn} is the set of all
vertices of degree 2 and all the other vertices have degree 3. Let H̃ be a graph
obtained from H by adding new vertices U = {u1, . . . , un} and edges {ui, vi} for
each i = 1, . . . , n. Clearly, the network (H̃, U) is simple.

Let SH =
{
s ∈ Sn : FH̃,U

(s) > 0
}

. Denote by Vn and VH the linear hulls of
{χn(s) : s ∈ Sn} and {χn(s) : s ∈ SH}, respectively, both in Qpn . As SH ⊆ Sn,
VH ⊆ Vn.

Theorem 2.5 (Kochol 2006 [7]). If VH = Vn then H cannot be a subgraph of any
minimal counterexample to the 5-Flow Conjecture.

Proof. Let Gm be some minimal counterexample to the 5-Flow Conjecture. As
we already mentioned, Gm is a 3-connected, cubic graph. Let H be a subgraph
of Gm having minimum degree 2 and V = {v1, . . . , vn}, U = {u1, . . . , un} and H̃
be as defined above.

In case there is some edge e ∈ EGm
r EH with both ends in V , we subdivide

the edge by a new vertex of degree 2 and denote by G the graph obtained after
subdividing all such edges. Therefore, there exists a unique edge ei = {vi, v

′
i} ∈

EG r EH in G for each i = 1, . . . , n. Note that the edges e1, . . . , en are pairwise
different whereas the vertices v′1, . . . , v

′
n do not need to be such. Let I = G[VGrVH ]

and Ĩ be the graph obtained from I by adding new pairwise different vertices
W = {w1, . . . , wn} and edges {v′i, wi} for each i = 1, . . . , n, see Figure 2.4.

Clearly, if there exists s ∈ Sn such that both FH̃,U(s) and FĨ ,W (s) are positive,

i.e. there exist some flows fH and fI on simple networks (H̃, U) and (Ĩ ,W ),
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H̃

H

v1
v2

v3v4

v5

Ĩ

I

w1

w2

w3
w4

w5

v′
1

v′
2

v′
3
= v′

4

v′
5

G

I

H

v1
v2

v3v4

v5

v′
1

v′
2

v′
3
= v′

4

v′
5

u4 u3

u5

u1

u2

Figure 2.4: Graphs H̃ and Ĩ obtained from a graph G.

respectively, such that f+
H (U) = f+

I (W ) = s, then there exists a nowhere-zero
5-flow fG on graph G obtained by “merging” flows fH and −fI . This flow can be
easily transformed into a nowhere-zero 5-flow on graph Gm and, therefore, we get
a contradiction. Thus, F

H̃,U
(s) · F

Ĩ ,W
(s) = 0 for each s ∈ Sn and F

Ĩ ,W
(s) = 0 for

each s ∈ SH .
As we know from Lemma 2.3, there exist integers x1, . . . , xpn such that the

formula F
Ĩ ,W

(s) =
∑pn

i=1 xiχ(s, Pi) holds for each s ∈ Sn. Let t1, . . . , tr ∈ SH be
such that χn(t1), . . . , χn(tr) form a basis of vector space VH = Vn. Then for each
s ∈ Sn, there exist numbers y1, . . . , yr such that χ(s, Pi) =

∑r
j=1 yjχ(tj , Pi) for

each i = 1, . . . , pn and

F
Ĩ ,W

(s) =

pn∑

i=1

xiχ(s, Pi) =

pn∑

i=1

xi

(
r∑

j=1

yjχ(tj, Pi)

)
=

=

r∑

j=1

yj

(
pn∑

i=1

xiχ(tj, Pi)

)
=

r∑

j=1

yjFĨ ,W (tj) = 0,

where the last equality holds because t1, . . . , tr ∈ SH .
Let Gm/H be the graph obtained from Gm by contracting the whole subgraph

H into one vertex. Clearly, Gm/H is smaller than Gm and bridgeless, therefore,
Gm/H admits a nowhere-zero 5-flow. This flow can be transformed into a flow on
(Ĩ ,W ) and, therefore, there exists s ∈ Sn such that F

Ĩ ,W
(s) > 0.

As this is a contradiction, H cannot be a subgraph of a minimal counterex-
ample to the 5-Flow Conjecture.

Second method. In 2010, Kochol [8] has introduced two modifications to this
method – firstly, he replaced a network (H̃, U) by a smaller one to show that H
cannot be a subgraph of any minimal counterexample to the 5-Flow Conjecture,
and secondly, he introduced the use of a permutation group to reduce the size of
computations. We discuss this second part later in Subsection 2.1.2.

Let H , V = {v1, . . . , vn}, H̃ and U = {u1, . . . , un} be as mentioned in the first
method. Further let H ′ be a graph and V ′ = {v′1, . . . , v

′
n} set (possibly multiset)

of its vertices. We denote by H̃ ′ the graph obtained from H ′ by adding vertices
U ′ = {u′

1, . . . , u
′
n} and edges {u′

i, v
′
i} where i = 1, . . . , n. Similarly to SH and VH ,

let SH′ =
{
s ∈ Sn : FH̃′,U

(s) > 0
}

and VH′ be the linear hull of {χn(s) : s ∈ SH′}

in Qpn .
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Let G be a cubic graph such that H is its subgraph and let {vi, v
′′
i } be the

unique edge of EG r EH with an end in vertex vi for each i = 1, . . . , n. Then we
say that a graph G′ is obtained from G by replacing H by H ′ if it arises from
graphs G[VG r VH ] and H̃ ′ by identifying vertices v′′i and u′

i, see Figure 2.5.

H̃ ′

H ′

v′
1
v′
2

v′
3

v′
4

v′
5

G′

v′′
1

v′′
2

v′′
3
= v′′

4

v′′
5

G

H

v1
v2

v3v4

v5

v′′
1

v′′
2

v′′
3
= v′′

4

v′′
5

u′

4

u′

3

u′

5

u′

1

u′

2

H ′

v′
1
v′
2

v′
3

v′
4

v′
5

Figure 2.5: Graph G′ obtained from G by replacing H by H ′.

We say that H is replaceable by H ′ in a class C of graphs if the graph obtained
from G by replacing H by H ′ is bridgeless for each graph G of C.

Theorem 2.6 (Kochol 2010 [8]). If there exists some graph H ′ smaller than H
such that H is replaceable by H ′ in the class of cyclically 6-connected graphs and
VH′ ⊆ VH then H cannot be a subgraph of any minimal counterexample to the
5-Flow Conjecture.

Proof. Suppose that Gm is a minimal counterexample to the 5-Flow Conjec-
ture and H is its subgraph such that its minimum degree is 2. Then let V =
{v1, . . . , vn}, U = {u1, . . . , un} and H̃ be as mentioned in the proof of Theorem 2.5.
Similarly, let H ′ be as assumed and V ′ = {v′1, . . . , v

′
n}, U

′ = {u′
1, . . . , u

′
n} and H̃ ′

as described above. As Kochol [6] proved, Gm is cyclically 6-connected.
Let G be a graph obtained from Gm by subdividing all edges of EGm

r EH

with both ends in V . Finally, let I be the “rest” of the graph G after removing
subgraph H and (Ĩ ,W ) be the network obtained from I by adding n new vertices
and edges, see the proof of Theorem 2.5 and Figure 2.4.

If there exists such s ∈ Sn that FH̃,U(s), FĨ,W (s) > 0 then there exist flows fH
and fI on networks (H̃, U) and (Ĩ ,W ), respectively, where f+

H (U) = f+
I (W ) = s.

Therefore, the flow obtained by “merging” flows fH and −fI is a nowhere-zero
5-flow on graph G, which is a contradiction. Therefore, at least one of F

H̃,U
(s)

and FĨ ,W (s) must be 0 for each s ∈ Sn and FĨ ,W (s) = 0 for each s ∈ SH .
As stated in Lemma 2.3, there exist integers x1, . . . , xpn such that formula

FĨ ,W (s) =
∑pn

i=1 xiχ(s, Pi) holds for each s ∈ Sn. Let χn(t1), . . . , χn(tr) for some
t1, . . . , tr ∈ SH be a basis of vector space VH . As already mentioned, FĨ ,W (tj) = 0
for each j = 1, . . . , r.

Since VH′ ⊆ VH , there exist some numbers y1, . . . , yr for each s ∈ SH′ such
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that χ(s, Pi) =
∑r

j=1 yjχ(tj , Pi) holds for each i = 1, . . . , pn and

F
Ĩ ,W

(s) =

pn∑

i=1

xiχ(s, Pi) =

pn∑

i=1

xi

(
r∑

j=1

yjχ(tj, Pi)

)
=

=

r∑

j=1

yj

(
pn∑

i=1

xiχ(tj, Pi)

)
=

r∑

j=1

yjFĨ ,W (tj) = 0.

Let G′ be the graph obtained from G by replacing H by H ′. By an assumption
that H ′ is smaller than H and H is replaceable by H ′ in the class of cyclically
6-connected graphs, G′ is smaller than G and still bridgeless. Thus, there exists
a nowhere-zero 5-flow on G′ and s ∈ SH′ such that FĨ ,W (s) > 0.

Therefore, we get a contradiction and H cannot be a subgraph of any minimal
counterexample to the 5-Flow Conjecture.

The comparison of these two methods. Note that Theorem 2.5 is a special
case of Theorem 2.6 for H ′ consisting of only one vertex, since Vn = VH′ holds
for such H ′.

The main advantage of the method presented in Theorem 2.6 is that we can
select the graph H ′ such that there do not exist many flows on the network
(H̃ ′, U ′). As a consequence of such choice, the dimension of the vector space VH′

would be small and it would be easier to verify that VH′ ⊆ VH .

2.1.2 The Computations

We can formulate the problem of determining whether VH = Vn in Theorem 2.5
in terms of matrices: Let Mn and MH be the matrices where rows are exactly
χn(s) for s ∈ Sn and s ∈ SH , respectively. Then VH = Vn if and only if the ranks
of MH and Mn are equal.

Let A be the automorphism group of Z5, i.e. its elements are

α1 = id, α2 = (1, 2, 4, 3),

α3 = (1, 3, 4, 2), α4 = (1, 4)(2, 3).

We can note that αi(x) = x · i in Z5.
For s = (s1, . . . , sn) ∈ Sn and α ∈ A, let α(s) = (α(s1), . . . , α(sn)). Clear-

ly, FG,U(s) = FG,U(α(s)) for any simple network (G,U) and χn(s) = χn(α(s)).
Therefore, we can divide all elements of Sn into classes

Σn =
{
{α1(s), α2(s), α3(s), α4(s)} : s ∈ Sn

}

such that if σ ∈ Σn then χn(s) is used as a row in matrix Mn or MH either for
all s ∈ σ or for none of them. Moreover, in the first case, it would be the same
row used four times.

Therefore, it is sufficient to use only one representative of each σ ∈ Σn, without
loss of generality the one with s1 = 1. By this operation, we can reduce the
numbers of rows in both matrices to one quarter of their original numbers.

Kochol [7] used the method described in Theorem 2.5 with C5, C6, C7 and
C8 in the role of H and computed the ranks of the matrices using computer, see

12



H size of Mn size of MH rankMn rankMH Note

C5 51× 11 45× 11 11 11 [7]
C6 205× 41 151× 41 40 40 [7]
C7 819× 162 483× 162 147 147 [7]
C8 3 277× 715 1 513× 715 568 568 [7]
C9 13 107× 3 425 4 665× 3 425 2 227 2 227

Table 2.2: The sizes and ranks of some matrices Mn and MH from Theorem 2.5.

Table 2.2. Since he has not provided the source code he used and also to verify
the result independently, we have created a new program in Sage [11] that uses
the same method and has validated Kochol’s results. Moreover, it has computed
the rank for the case of H = C9, see Table 2.2.

We can use the method of counting ranks of matrices also to verify the condi-
tion VH′ ⊆ VH in Theorem 2.6. In this case, it would be MH and MH′ containing
χn(s) as a row if and only if s ∈ SH and s ∈ SH ∪ SH′, respectively. Again, it is
possible to use the automorphism group A and the assumption that s1 = 1 for
all used s = (s1, . . . , sn) ∈ Sn.

Kochol [8] used this method with C9 and C10 as a graph H together with
shorter cycles C7 and C8, respectively, and one isolated edge as a graph H ′, see
Figure 2.6.

H = C10 H ′
= C8 + e

v1

v2

v3
v4

v5

v6

v7
v8

v9

v10

v′
1

v′
2

v′
3

v′
4

v′
5

v′
6

v′
7v′

8
v′
9

v′
10

Figure 2.6: Example of H and H ′ from Theorem 2.6 used by Kochol [8].

The reduction of the size of matrices using a permutation group. In
2010, Kochol [8] also provided a method using a permutation group to reduce the
size of computed matrices.

Let us remind (page 8) that

Sn = {(s1, . . . , sn) : s1, . . . , sn ∈ Z5 r {0}, s1 + · · ·+ sn = 0} ,

Pn is the set of all proper partitions of {1, . . . , n}, i.e. partitions P = {Q1, . . . , Qr}
where each Q ∈ P contains at least two elements,

χ(s, P ) =

{
1 if

∑
i∈Q si = 0 for each Q ∈ P,

0 otherwise,

and χn(s) =
(
χ(s, P1), . . . , χ(s, Ppn)

)
.
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Let Γ be a permutation group on {1, . . . , n}, i.e. a subgroup of the group
of all permutations of elements 1, . . . , n. For γ ∈ Γ and Q ⊆ {1, . . . , n}, let
γ(Q) = {γ(q) : q ∈ Q}, and similarly, γ(P ) = {γ(Q) : Q ∈ P} for any P ∈ Pn.

Denote by Pn the partition of Pn into classes

Pn =
{
P 1, . . . ,P pn

}
=
{
{γ(P ) : γ ∈ Γ} : P ∈ Pn

}
.

Then for each P ∈ Pn and s ∈ Sn, denote χ(s,P ) =
∑

P∈P χ(s, P ) and
χn(s) =

(
χ(s,P 1), . . . ,χ(s,P pn

)
)
.

Let γ ∈ Γ and s = (s1, . . . , sn) ∈ Sn, then we define γ(s) = (sγ(1), . . . , sγ(n)).
Since χ(s, P ) = χ(γ(s), γ−1(P )) for each P ∈ Pn and γ ∈ Γ, the formula
χ(s,P ) = χ(γ(s),P ) holds for each P ∈ Pn.

Therefore, χn(s) = χn(γ(s)) for each s ∈ Sn and γ ∈ Γ and we can divide the
set Sn into the classes

Sn =
{
{γ(s) : γ ∈ Γ} : s ∈ Sn

}
.

For s ∈ Sn and P ∈ Pn, we define χ(s,P ) = χ(s,P ) and χn(s) = χn(s) where
s ∈ s is arbitrary.

Finally for each s ∈ Sn, we define FG,U(s) =
∑

γ∈Γ FG,U(γ(s)) where s ∈ s is
again arbitrary.

Let us formulate the following Lemma similar to Lemma 2.3. It can be proved
by a straightforward computation and using the definitions above, see [8].

Lemma 2.7. Let (G,U) be a simple network with n terminals and Γ be a per-
mutation group on {1, . . . , n}. Then there exist integers x1, . . . ,xpn

such that
FG,U(s) =

∑pn

i=1 xiχ(s,P i) for every s ∈ Sn.

Let (H̃, U) and (H̃ ′, U ′) be simple networks with n terminals and Γ be a per-
mutation group on {1, . . . , n}, denote by

SH =
{
s ∈ Sn : F H̃,U(s) > 0

}
, SH′ =

{
s ∈ Sn : F H̃′,U

(s) > 0
}

and by V H and V H′ the linear hulls of {χn(s) : s ∈ SH} and {χn(s) : s ∈ SH′},
respectively, both in Qpn .

We say that Γ acts regularly on a simple network (G,U) with U = {u1, . . . , un}
if for each γ ∈ Γ, there exists an automorphism ϕ of G such that ϕ(ui) = uγ(i)

for each i = 1, . . . , n.

Lemma 2.8. Let (G,U) be a simple network with n terminals and Γ be a permu-
tation group that acts regularly on (G,U). Then FG,U(s) = FG,U(γ(s)) for each
s ∈ Sn and γ ∈ Γ.

Again, the proof is quite straightforward and can be found in [8].
Now, we can formulate a result similar to Theorem 2.6 extended by using

a permutation group Γ.

Theorem 2.9 (Kochol 2010 [8]). Let Γ be a permutation group on {1, . . . , n} that

acts regularly on (H̃, U). If there exists some graph H ′ smaller than H such that
H is replaceable by H ′ in the class of cyclically 6-connected graphs and VH′ ⊆
VH , then H cannot be a subgraph of any minimal counterexample to the 5-Flow
Conjecture.
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Proof. The proof begins exactly the same way as the proof of Theorem 2.6. Let
graphs Gm, G, H , H ′ and I and networks (H̃, U), (H̃ ′, U ′) and (Ĩ ,W ) be as defined
in the proof of Theorem 2.6. Therefore, F

H̃,U
(s)F

Ĩ ,W
(s) = 0 for each s ∈ Sn.

By Lemma 2.8, FH̃,U(s) = FH̃,U(γ(s)) for each s ∈ Sn and γ ∈ Γ. Therefore,
s ∈ SH if and only if F

H̃,U
(s) > 0 holds for every s ∈ s. Consequently, F

Ĩ ,W
(s) = 0

for every s ∈ s ∈ SH and F Ĩ ,W (s) = 0 for each s ∈ SH .
We already know from Lemma 2.7 that there exist such integers x1, . . . ,xpn

that FG,U(s) =
∑pn

i=1 xiχ(s,P i) holds for every s ∈ Sn. Let χ1, . . . ,χr ∈ SH

such that χn(t1), . . . ,χn(tn) is a basis of the vector space V H .
By assumption, V H′ ⊆ V H , and therefore, there exist some numbers y1, . . . ,yr

for every s ∈ SH′ such that χ(s,P i) =
∑r

j=1 yjχ(tj ,P i) for each i = 1, . . . ,pn

and

F Ĩ ,W (s) =

pn∑

i=1

xiχ(s,P i) =

pn∑

i=1

xi

(
r∑

j=1

yjχ(tj,P i)

)
=

=

r∑

j=1

yj

(
pn∑

i=1

xiχ(tj ,P i)

)
=

r∑

j=1

yjF Ĩ ,W (tj) = 0.

Denote by G′ the graph obtained from G by replacing H by H ′. Since H is
replaceable by a smaller H ′, G′ is smaller than G and bridgeless and, therefore,
there exists a nowhere-zero flow on G′ and s ∈ SH′ such that FĨ ,W (s) > 0. Then
there exists s ∈ SH′ such that s ∈ s and F

Ĩ,W
(s) > 0, which is a contradiction.

Therefore H cannot be a subgraph of any minimal counterexample to the
5-Flow Conjecture.

As already mentioned, Kochol [8] tried the method from Theorem 2.6 using
C9 and C10 as graph H . At the same time, he also applied this reduction of the
sizes of the matrices. As a permutation group Γ, he used dihedral groups D9

and D10, respectively, i.e. the groups of all symmetries of the circuits. Table 2.3
presents the sizes and ranks of matrices computed by Kochol and validated by
our program and one more row for our new result for H = C11. The computation
time for this result was about 5 days.

H size of MH size of MH′ rankMH rankMH′ Note

C8 122× 81 176× 81 62 62
C9 262× 238 430× 238 151 151 [8]
C10 792× 1 079 1 415× 1 079 539 539 [8]
C11 1 972× 4 752 3 937× 4 752 1 699 1 699

Table 2.3: The sizes and ranks of some matrices MH and MH′ from Theorem 2.6.

Since ranks of MC11
and MC′

11
are equal and from Theorem 2.6, this proves

the following Theorem.

Theorem 2.10. Any minimal counterexample to the 5-Flow Conjecture does not
contain any circuit of length less than 12.
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Some remarks on implementation issues. There are many possible ways
how to implement the test whether some vector space is a subspace of another.
Sage provides class VectorSpace where we can for each vector check whether it
is or is not part of the space. This method is quite inefficient as there is no way
how to add new vector into an existing vector space, therefore, new instance of
VectorSpace must be created in order to extent the vector space.

On the other hand, Sage also provides class Matrix that can be used to com-
pute the ranks as mentioned above. Its function rank() is quite fast even used
on rather large matrices. However, there must be the whole matrix in the mem-
ory, therefore, for even larger matrices, we provide computing of the rank using
“buffered” matrix: if the number of rows exceed upper limit, LU decomposition
of the matrix is calculated and only pivoting rows are stored for determining the
rank, see Code snippet 2.1.

1 i f rn >= Buf f e r :
2 M = Matrix (QQ, Mn)
3 rn = M. rank ( )
4 P, L , U = M.LU( )
5 Mn = [ U[ i ] . l i s t ( ) for i in range ( rn ) ]

Code snippet 2.1: LU decomposition after matrix buffer overflow.

Furthermore, in order to optimize the run of the program, it is necessary to
organize the code in such way that there are not repeatedly computed the same
structures, e.g. both Code snippet 2.2 and Code snippet 2.3 are generating the
same list of all n-tuples in the same order. In the first case, each (n− 1)-tuple is
generated once and extended four times, whereas in the second case, each (n−1)-
tuple is generated every time we want to extend it, i.e. four times. We tried a few
tests to compare the time of executing these snippets and in most of the cases
the first one was slightly faster.

1 for t in NTuples (n−1) :
2 for i in [ 1 , 2 , 3 , 4 ] :
3 yield t + [ i ]

Code snippet 2.2: First way of generating n-tuples.

1 for i in [ 1 , 2 , 3 , 4 ] :
2 for t in NTuples (n−1) :
3 yield [ i ] + t

Code snippet 2.3: Second way of generating n-tuples.

2.2 Modifications of the Approach

We have further studied the cases where an even circuit H = C2k is replaced
by a non-crossing perfect matching of its vertices as a graph H ′, see Figure 2.7.
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We have to be more careful because there might not be one universal matching
H ′ such that H can be replaced by H ′ in an arbitrary 3-connected cubic graph
without creating a bridge.

H = C10 H ′
= 5× e
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Figure 2.7: One example of possible non-crossing perfect matching used as
graph H ′.

Definition 2.11 ([13, Definition A.5.1, page 296]). Let G be a graph and v be
a vertex of G and F ⊂ EG(v). The graph G[v;F ] is obtained from G by splitting
the edges of F away from v, i.e. adding a new vertex v′ and changing the end v
of the edges of F to be v′.

Theorem 2.12 (Vertex Splitting Lemma [13, Theorem A.5.2, page 296]). Let G
be a connected bridgeless graph, v ∈ VG (with d(v) ≥ 4), and e0, e1, e2 ∈ EG(v).
Then either G[v;{e0,e1}] or G[v;{e0,e2}] is connected and bridgeless unless G[v;{e0,e1,e2}]

is not connected, i.e. {e0, e1, e2} is edge-cut.

Theorem 2.13. Let G be a 3-connected cubic graph containing H = C2k (k > 1)
as a subgraph. Then there exists some non-crossing perfect matching H ′ such that
replacing H by H ′ in a graph G does not create any bridge.

Proof. We will proceed by induction.
For k = 2, let e1, e2, e3, e4 be the edges of G neighboring H = C4 in clockwise

direction and G/H be the graph obtained from G by contracting all edges of
H into new vertex v. If G/H[v;{e1,e2,e4}] is not connected then e3 is a bridge in
G/H and also in G, which is a contradiction. Therefore by Theorem 2.12, either
G/H[v;{e1,e2}] or G/H[v;{e1,e4}] is connected and bridgeless. In both cases, decon-
traction of corresponding edges of H obtains non-crossing perfect matching.

For k > 2, let e1, . . . , e2k be the edges of G around H in clockwise direction,
vi be the end of ei in H for i = 1, . . . , 2k and G/H be the graph obtained by
contracting H into vertex v. In case that G/H[v;{e1,e2,e2k}] is not connected, the
graph obtained from G by deleting the edges {v2, v3} and {v2k−1, v2k} is not
connected, which is a contradiction as G is 3-connected.

Therefore by Theorem 2.12, either G/H[v;{e1,e2}] or G/H[v;{e1,e2k}] is connected
and bridgeless. In the first case, we decontract all edges of H except of {v2, v3}
and {v2k, v1} and add a new edge {v2k, v3} to obtain a graph G′. In the second
case, we decontract all edges except of {v1, v2} and {v2k−1, v2k} and add a new
edge {v2k−1, v2} to obtain G′. In both case, G′ can be easily transformed to a 3-
connected graph where vertices v3, . . . , v2k−1 together with either v2k or v2 form
a circuit of length 2(k − 1). From the induction assumption, there exists non-
crossing perfect matching H ′′ such that the replacement does not create a bridge.
This graph together with either {e1, e2} or {e2k, e1} obtains graph H ′.
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As a corollary, we have to verify that H can be replaced by any non-crossing
perfect matching. This can be done in similar way as in Subsection 2.1.2: χ(s)
(or χ(s)) is a row of MH′ if and only if there exists non-crossing perfect matching
compatible with s (or s ∈ s, respectively).

Table 2.4 provides the comparison of the sizes of MH′ for our selection of H ′

(marked as “pairs”, see Figure 2.7) and the one selected by Kochol where one edge
is isolated (marked as “1 edge”, see Figure 2.6). The program for C8 run less than
a minute, whereas it was about five hours for C10.

H H ′ size of MH size of MH′ rankMH rankMH′

C8 pairs 122× 81 149× 81 62 62
C8 1 edge 122× 81 176× 81 62 62

C10 pairs 792× 1 079 1 129× 1 079 539 539
C10 1 edge 792× 1 079 1 415× 1 079 539 539

Table 2.4: The comparison of sizes of the matrices for two possible graphs H ′.

In case of an odd circuit as H , we can end up with a non-crossing matching
and a triangle. We have not studied this case yet.
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Conclusion

In this Thesis, we have presented a comprehensive view on the method introduced
by Kochol in 2006 and improved in 2010 [7, 8].

Since Kochol did not share his implementation, we have also created program
that has validated his results. Moreover, we have proved that any minimal coun-
terexample to the 5-Flow Conjecture does not contain any circuit of length less
than 12. This extends Kochol’s result by excluding C11. The source code of the
program is provided.

The Future Work

Further work in this area can take some of the following directions:

• optimizing the source code and possibly using a combination of other pro-
gramming languages to compute even larger matrices,

• studying more possible graphs in the role of H or H ′ in order to exclude
some families of graphs from minimal counterexamples,

• studying some other ways to reduce the size of computed matrices,

• using the method on other open problems, e.g. other Tutte’s conjectures.
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χn(s) compatibility vector of vector s; see page 8
χn(s) compatibility vector of class s; see page 14

23



APPENDICES



Appendix A

Source Code of the Programs

The source code that we provide here is the minimal working code. The full
source code is available online on author’s website http://kam.mff.cuni.cz/

~korcsok/masterthesis/. The full code also provide special functions, such as:

• program prints progress messages on console,

• the matrices are automatically saved on disk and

• there is possibility to compute only one of the matrices (for the case of large
matrices).

A.1 Kochol’s Basic Method

This method uses only Theorem 2.5 with H = Cn.

1 def Pa r t i t i o n s ( L i s t ) :
2 """
3 Generates a l l proper p a r t i t i o n s o f L i s t .
4 """
5 i f len ( L i s t )==0:
6 return [ [ ] ]
7 i f len ( L i s t )==1:
8 return [ ]
9

10 Res = [ ]
11

12 for A in Subsets ( L i s t [ : −1 ] ) :
13 i f len (A) >0:
14 M = Li s t [ : −1 ]
15 for a in A:
16 M. remove ( a )
17 AA = A. l i s t ( ) + [ L i s t [ −1 ] ]
18 Res += [ r + [ AA ] for r in Pa r t i t i o n s (M) ]
19

20 return Res
21 # Par t i t i on s
22

23

24 def NTuples (n ) :
25 """
26 Generates a l l n−t u p l e s o f {1 , 2 , 3 , 4}^n .
27 """
28 i f n==0:
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29 yield [ ]
30 return

31

32 for t in NTuples (n−1) :
33 for i in [ 1 , 2 , 3 , 4 ] :
34 yield t + [ i ]
35 # NTuples
36

37

38 def TerminalValues (n) :
39 """
40 Generates a l l v a l u e s o f n t ermina l s wi th
41 − f i r s t i tem = 1 ,
42 − sum of a l l i tems = 0.
43 """
44 i f n<=1:
45 yield [ ]
46 return

47

48 for t in NTuples (n−2) :
49 T = [ 1 ] + t
50 s = In t eg e r s (5 ) (0 )
51 for i in T:
52 s += i
53 i f s !=0:
54 yield T + [− s ]
55 # TerminalValues
56

57

58 def Compat ib i l i ty ( Par t i t i on , TerminalValues ) :
59 """
60 Returns 1 i f the p a r t i t i o n i s compat i b l e wi th
61 v a l e s on t ermina l s .
62 """
63 for Class in Par t i t i on :
64 s = In t eg e r s (5 ) (0 )
65 for Index in Class :
66 s += TerminalValues [ Index ]
67 i f s !=0:
68 return 0
69

70 return 1
71 # Compa t i b i l i t y
72

73

74 def Chi ( Par t i t i ons , TerminalValues ) :
75 """
76 Returns the vec to r o f c ompa t i b i l i t y .
77 """
78 return [ Compat ib i l i ty (P, TerminalValues ) for P in Pa r t i t i o n s ]
79 # Chi
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80

81

82 def IsFlow ( TerminalValues ) :
83 """
84 Returns True i f t here e x i s t s a f l ow
85 wi th g iven va l u e s on t ermina l s .
86 """
87 va l = [ I n t e g e r s (5 ) ( i ) for i in range (1 , 5 ) ]
88 for Val in TerminalValues :
89 va l = [ v + Val for v in va l i f v + Val > 0 ]
90

91 return len ( va l ) > 0
92 # IsFlow
93

94

95 def Generate (n , Bu f f e r ) :
96 """
97 Generates the matr i ces M_n and M_{C_n} and
98 counts t h e i r ranks .
99 I f some matrix i s too long the rank i s computed

100 by par t s wi th matrix b u f f e r o f g i ven s i z e .
101 """
102 Parts = Pa r t i t i o n s ( range (n) )
103 Vals = TerminalValues (n)
104

105 Mn = [ ]
106 MCn = [ ]
107 rn = 0
108 rCn = 0
109

110 for V in Vals :
111 X = Chi ( Parts , V)
112 Mn += [ X ]
113 rn += 1
114 i f rn >= Buf f e r :
115 M = Matrix (QQ, Mn)
116 rn = M. rank ( )
117 P, L , U = M.LU( )
118 Mn = [ U[ i ] . l i s t ( ) for i in range ( rn ) ]
119 i f IsFlow (V) :
120 MCn += [ X ]
121 rCn += 1
122 i f rCn >= Buf f e r :
123 M = Matrix (QQ, MCn)
124 rCn = M. rank ( )
125 P, L , U = M.LU( )
126 MCn = [ U[ i ] . l i s t ( ) for i in range ( rCn) ]
127

128 Mn = Matrix (Mn)
129 MCn = Matrix (MCn)
130 rn = Mn. rank ( )
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131 rCn = MCn. rank ( )
132

133 return [ n , rn , rCn ]
134 # Generate

A.2 Kochol’s Advanced Method

This method uses Theorem 2.9 with H = Cn, H ′ as displayed on Figure 2.6 and
Γ = Dn.

1 def Pa r t i t i o n s ( L i s t ) :
2 """
3 Generates a l l proper p a r t i t i o n s o f L i s t .
4 """
5 i f len ( L i s t )==0:
6 yield [ ]
7 return

8 i f len ( L i s t )==1:
9 return

10

11 for A in Subsets ( L i s t [ : −1 ] ) :
12 i f len (A) > 0 :
13 M = Li s t [ : −1 ]
14 for a in A:
15 M. remove ( a )
16 AA = A. l i s t ( ) + [ L i s t [ −1 ] ]
17 for r in Pa r t i t i o n s (M) :
18 yield r + [ AA ]
19 # Par t i t i on s
20

21

22 def Clas s e s ( Pa r t i t i on ) :
23 """
24 Returns a l i s t determin ing the c l a s s
25 where the p a r t i t i o n be l ongs .
26 """
27 m = max( [ max(p ) for p in Par t i t i on ] )
28 Res = range (m + 1)
29

30 for P in Par t i t i on :
31 m = min(P)
32 for p in P:
33 Res [ p ] = m
34

35 return Res
36 # Clas s es
37

38

39 def I sMinPar t i t i on ( Part , Gamma) :
40 """
41 Returns True i f g i ven p a r t i t i o n i s
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42 l e x i c o g r a p h i c a l l y minimal in i t s c l a s s .
43 """
44 X = Clas s e s ( Part )
45

46 for r in [ GammaPartition ( g , Part ) for g in Gamma ] :
47 x = Clas s e s ( r )
48 i f x < X:
49 return False
50

51 return True
52 # IsMinPart i t i on
53

54

55 def GammaPartition (Gamma, Pa r t i t i on ) :
56 """
57 Appl i es permutat ion Gamma on Par t i t i on .
58 """
59 Res = Set ( [ ] )
60

61 for P in Par t i t i on :
62 P_ = Set ( [Gamma[ r ]−1 for r in P] )
63 Res = Res . union ( Set ( [P_] ) )
64

65 return Res
66 # GammaPartition
67

68

69 def Par t i t i onC l a s s e s ( Par t i t i ons , Gamma) :
70 """
71 Returns l i s t o f c l a s s e s o f p a r t i t i o n s .
72 """
73 Res = [ ]
74 for Par t i t i on in Pa r t i t i o n s :
75 i f I sMinPar t i t i on ( Par t i t i on , Gamma) :
76 Res += [ Set ( [ GammaPartition ( g , Pa r t i t i on ) for g in

Gamma ] ) ]
77

78 return Res
79 # Par t i t i onC l a s s e s
80

81

82 def NTuples (n ) :
83 """
84 Generates a l l n−t u p l e s o f {1 , 2 , 3 , 4}^n .
85 """
86 i f n==0:
87 yield [ ]
88 return

89

90 for t in NTuples (n−1) :
91 for i in [ 1 , 2 , 3 , 4 ] :
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92 yield t + [ i ]
93 # NTuples
94

95

96 def TerminalValues (n) :
97 """
98 Generates a l l v a l u e s o f n t ermina l s wi th
99 − f i r s t i tem = 1 ,

100 − sum of a l l i tems = 0.
101 """
102 i f n<=1:
103 yield [ ]
104 return

105

106 for t in NTuples (n−2) :
107 h = [ 1 ] + t
108 s = In t eg e r s (5 ) (0 )
109 for i in h :
110 s += i
111 i f s !=0:
112 yield h + [− s ]
113 # TerminalValues
114

115

116 def Compat ib i l i ty ( Par t i t i on , TerminalValues ) :
117 """
118 Returns 1 i f the p a r t i t i o n i s compat i b l e wi th
119 v a l e s on t ermina l s .
120 """
121 for Class in Par t i t i on :
122 s = In t eg e r s (5 ) (0 )
123 for Index in Class :
124 s += TerminalValues [ Index ]
125 i f s !=0:
126 return 0
127

128 return 1
129 # Compa t i b i l i t y
130

131

132 def Chi ( Pa r t i t i onC l a s s e s , TerminalValues ) :
133 """
134 Returns the vec to r o f c ompa t i b i l i t y .
135 """
136 return [sum( Compat ib i l i ty (P, TerminalValues ) for P in Part )

for Part in Par t i t i onC l a s s e s ]
137 # Chi
138

139

140 def IsFlow ( TerminalValues ) :
141 """
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142 Returns True i f t here e x i s t s a f l ow
143 wi th g iven va l u e s on t ermina l s .
144 """
145 va l = [ I n t e g e r s (5 ) ( i ) for i in range (1 , 5 ) ]
146 for Val in TerminalValues :
147 va l = [ v + Val for v in va l i f v + Val > 0 ]
148

149 return len ( va l ) > 0
150 # IsFlow
151

152

153 def EncodeTerminalValues ( Values ) :
154 """
155 Encodes va l u e s on t ermina l s i n t o one number .
156 """
157 i f len ( Values ) == 1 :
158 return I n t e g e r ( Values [−1] − 1)
159

160 return 4 ∗ EncodeTerminalValues ( Values [ : −1 ] ) + In t eg e r ( Values
[−1] − 1)

161 # EncodeTerminalValues
162

163

164 def GammaValues( Values , Gamma) :
165 """
166 Appl i es permutat ion Gamma on Values .
167 """
168 Res = [ ]
169 for i in range ( len ( Values ) ) :
170 Res += [ Values [Gamma[ i ] − 1 ] ]
171

172 s = 1/ In t e g e r s (5 ) (Res [ 0 ] )
173 i f s != 1 :
174 return [ i ∗ s for i in Res ]
175

176 return Res
177 # GammaValues
178

179

180 def Generate (n , Bu f f e r ) :
181 """
182 Generates the matr i ces M_n and M’_n and
183 counts t h e i r ranks .
184 I f some matrix i s too long the rank i s computed
185 by par t s wi th matrix b u f f e r o f g i ven s i z e .
186 """
187 G = DihedralGroup (n)
188 Gamma = [ g . tuple ( ) for g in G ]
189

190 PartCls = Par t i t i onC l a s s e s ( Pa r t i t i o n s ( range (n ) ) , Gamma)
191 PartSml = [ range (n−2) , [ n−2, n−1 ] ]
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192

193 Vals = TerminalValues (n)
194

195 Used = [ ]
196 for i in range (4^(n−1) ) :
197 Used += [ Fal se ]
198

199 Mn = [ ]
200 MMn = [ ]
201 rn = 0
202 r rn = 0
203

204 for H in Vals :
205 i f Used [ EncodeTerminalValues (H) ] :
206 continue

207

208 Used [ EncodeTerminalValues (H) ] = True
209 X = Chi ( PartCls , H)
210

211 i f IsFlow (H) :
212 for G in Gamma:
213 Used [ EncodeTerminalValues (GammaValues(H, G) ) ] = True
214

215 Mn += [ X ]
216 rn += 1
217 i f rn >= Buf f e r :
218 M = Matrix (QQ, Mn)
219 rn = M. rank ( )
220 P, L , U = M.LU( )
221 Mn = [ U[ i ] . l i s t ( ) for i in range ( rn ) ]
222

223 MMn += [ X ]
224 r rn += 1
225 i f r rn >= Buf f e r :
226 M = Matrix (QQ, MMn)
227 r rn = M. rank ( )
228 P, L , U = M.LU( )
229 MMn = [ U[ i ] . l i s t ( ) for i in range ( r rn ) ]
230

231 continue

232

233 i f ( Compat ib i l i ty ( PartSml , H) == 1) and IsFlow (H[ : −2 ] ) :
234 for G in Gamma:
235 Used [ EncodeTerminalValues (GammaValues(H, G) ) ] = True
236

237 MMn += [ X ]
238 r rn += 1
239 i f r rn >= Buf f e r :
240 M = Matrix (QQ, MMn)
241 r rn = M. rank ( )
242 P, L , U = M.LU( )
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243 MMn = [ U[ i ] . l i s t ( ) for i in range ( r rn ) ]
244

245 Mn = Matrix (Mn)
246 MMn = Matrix (MMn)
247 rn = Mn. rank ( )
248 r rn = MMn. rank ( )
249

250 return [ n , rn , r rn ]
251 # Generate

A.3 Modificated Advanced Method

This is the modification discussed in Section 2.2 and it also uses Theorem 2.9
with Γ = Dn.

First 179 lines are the same as in Section A.2.

180 def IsMatching ( TerminalValues ) :
181 """
182 Returns True i f t here e x i s t s a p e r f e c t matching
183 wi th g iven va l u e s on t ermina l s .
184 """
185 l = len ( TerminalValues )
186 i f l == 0 :
187 return True
188 i f l == 1 :
189 return False
190

191 x = In t eg e r s (5 ) (0 )
192 for i in range ( l −1) :
193 i f x + TerminalValues [ i ] + TerminalValues [ i +1] == 0 :
194 H = TerminalValues [ : i ] + TerminalValues [ i +2: ]
195 return IsMatching (H)
196 i f x + TerminalValues [ 0 ] + TerminalValues [ l −1] == 0 :
197 return IsMatching ( TerminalValues [ 1 : l −2])
198 return False
199 # IsMatching
200

201

202 def Generate (n , Bu f f e r ) :
203 """
204 Generates the matr i ces M_n and M’_n and
205 counts t h e i r ranks .
206 I f some matrix i s too long the rank i s computed
207 by par t s wi th matrix b u f f e r o f g i ven s i z e .
208 """
209 G = DihedralGroup (n)
210 Gamma = [ g . tuple ( ) for g in G ]
211

212 PartCls = Par t i t i onC l a s s e s ( Pa r t i t i o n s ( range (n ) ) , Gamma)
213

214 Vals = TerminalValues (n)
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215

216 Used = [ ]
217 for i in range (4^(n−1) ) :
218 Used += [ Fal se ]
219

220 Mn = [ ]
221 MMn = [ ]
222 rn = 0
223 r rn = 0
224

225 for H in Vals :
226 i f Used [ EncodeTerminalValues (H) ] :
227 continue

228

229 Used [ EncodeTerminalValues (H) ] = True
230 X = Chi ( PartCls , H)
231

232 i f IsFlow (H) :
233 for G in Gamma:
234 Used [ EncodeTerminalValues (GammaValues(H, G) ) ] = True
235

236 Mn += [ X ]
237 rn += 1
238 i f rn >= Buf f e r :
239 M = Matrix (QQ, Mn)
240 rn = M. rank ( )
241 P, L , U = M.LU( )
242 Mn = [ U[ i ] . l i s t ( ) for i in range ( rn ) ]
243

244 MMn += [ X ]
245 r rn += 1
246 i f r rn >= Buf f e r :
247 M = Matrix (QQ, MMn)
248 r rn = M. rank ( )
249 P, L , U = M.LU( )
250 MMn = [ U[ i ] . l i s t ( ) for i in range ( r rn ) ]
251

252 continue

253

254 i f IsMatching (H) :
255 for G in Gamma:
256 Used [ EncodeTerminalValues (GammaValues(H, G) ) ] = True
257

258 MMn += [ X ]
259 r rn += 1
260 i f r rn >= Buf f e r :
261 M = Matrix (QQ, MMn)
262 r rn = M. rank ( )
263 P, L , U = M.LU( )
264 MMn = [ U[ i ] . l i s t ( ) for i in range ( r rn ) ]
265
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266 Mn = Matrix (Mn)
267 MMn = Matrix (MMn)
268 rn = Mn. rank ( )
269 r rn = MMn. rank ( )
270

271 return [ n , rn , r rn ]
272 # Generate
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