Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Peter Korcsok

Minimal Counterexamples to Flow Conjectures

Computer Science Institute of Charles University

Supervisor of the master thesis: Mgr. Robert Šámal, Ph.D.

Study programme: Computer Science
Specialization: Discrete Models and Algorithms

Firstly, I would like to thank my supervisor, Mgr. Robert Šámal, Ph.D., for his valuable advices and ideas and for his time spent on our consultations.

Secondly, I want to thank all the Professors, Associate Professors and other teachers of Faculty of Mathematics and Physics of Charles University in Prague, especially those of Department of Applied Mathematics and Computer Science Institute of Charles University in Prague, for their lectures, where they showed me the beauty of mathematics and computer science.

I declare that I carried out this master thesis independently, and only with the cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact the Charles University in Prague has the right to conclude a licence agreement on the use of this work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act.

Název práce: Minimální protipříklady na hypotézy o tocích
Autor: Peter Korcsok
Ústav: Informatický ústav Univerzity Karlovy
Vedoucí bakalăřské práce: Mgr. Robert Šámal, Ph.D.
Abstrakt: Říkáme, že graf má nikde-nulový k-tok, pokud umíme každé hraně přiradit její směr a přirozené číslo $(<k)$ jako tok tak, aby pro každý vrchol v byl celkový přítok a odtok stejný. Tutte vyslovil v roce 1954 hypotézi, že každý graf bez mostů má nikde-nulový 5 -tok, a tato hypotéza je stále otevřená. Kochol v nedávné práci představil výpočetní metodu na dokázání, že minimální protipříklad nemůže obsahovat krátkou kružnici (až do délky 10). V této práci poskytujeme ucelený přehled této metody a protože Kochol nezveřejnil svou implementaci (a pro nezávislé ověrení metody), doplňujeme náš zdrojový kód, ktorý potvrzuje Kocholovy výsledky a rozšiřuje je: dokázali jsme, že minimální protipříklad neobsahuje kružnici kratší než 12.

Kličová slova: nenulové toky, minimální protipříklad

Title: Minimal Counterexamples to Flow Conjectures
Author: Peter Korcsok
Institute: Computer Science Institute of Charles University
Supervisor: Mgr. Robert Šámal, Ph.D.
Abstract: We say that a graph admits a nowhere-zero k-flow if we can assign a direction and a positive integer $(<k)$ as a flow to each edge so that total in-flow into v and total out-flow from v are equal for each vertex v. In 1954, Tutte conjectured that every bridgeless graph admits a nowhere-zero 5 -flow and the conjecture is still open. Kochol in his recent papers introduces a computational method how to prove that a minimal counterexample cannot contain short circuits (up to length 10). In this Thesis, we provide a comprehensive view on this method. Moreover, since Kochol does not share his implementation and in order to independently verify the method, we provide our source code that validates Kochol's results and extend them: we prove that any minimal counterexample to the conjecture does not contain any circuit of length less than 12 .

Keywords: nowhere zero flows, minimal counterexample

Contents

Introduction 1
1 The Basics 2
1.1 Flows and Colorings 2
1.2 Historical Notes 4
2 Restrictions on Counterexamples to the 5-Flow Conjecture 6
2.1 Kochol's Approach 7
2.1.1 Forbidden Networks 9
2.1.2 The Computations 12
2.2 Modifications of the Approach 16
Conclusion 19
Bibliography 20
Lists of Figures, Tables and Code Snippets 22
List of Figures 22
List of Tables 22
List of Code Snippets 22
List of Notation 23
Appendices 24
A Source Code of the Programs 25
A. 1 Kochol's Basic Method 25
A. 2 Kochol's Advanced Method 28
A. 3 Modificated Advanced Method 33

Introduction

The concept of a flow on a graph was introduced by Tutte [12] who noticed the connection between the flows and the colorings of graphs. Since 1954 when he stated his 5-Flow Conjecture, it is still an open problem. There were several attempts to prove the conjecture and many of them were formulated as studying some aspects of a hypothetical minimal counterexample.

Recently, Kochol [7, 8] has introduced a method using so-called forbidden networks, i.e. graphs that cannot be a subgraph of any such counterexample. He has proved that any minimal counterexample does not contain a circuit shorter than 11.

The aim of this thesis is to provide systematic and comprehensive view on Kochol's method. Moreover, since some part of the method requires computers and Kochol has not shared his implementation, we have created a program that validates Kochol's results and we have also improved the now-known best result using this program, see Theorem 2.10.

The Structure of the Thesis

In Chapter 1, we provide some introduction to the definitions needed to understand the problem of a nowhere-zero 5 -flow. In the end of the chapter, we also provide some historical notes to illustrate how the knowledge of flows changed through the time.

The most important part of the thesis is Chapter 2. The reader can find there the motivational proof that short circuits (of length 3 and 4) cannot be subgraphs of any minimal counterexample to the 5 -Flow Conjecture. Later, in Section 2.1, we provide the description and the proofs of the most important or interesting parts of Kochol's method.

In Subsection 2.1.2, some tricks how to reduce the size of computations are showed. And finally, in Section 2.2, we discuss possible modifications of this method and some results we obtained so far.

Source code used to validate Kochol's results can be found in Appendix A or on author's website http://kam.mff.cuni.cz/~korcsok/masterthesis/.

Chapter 1

The Basics

In graph theory, a graph G is considered as a pair of sets - a set of vertices denoted by V_{G} and a multiset of edges denoted by E_{G} where each edge $e \in E_{G}$ is a set of one or two vertices - usually called ends of the edge e. An edge where both ends are the same vertex is called a loop. In the following text, we will assume that all graphs are non-empty, i.e. $V_{G} \neq \emptyset$, and finite, i.e. $\left|V_{G}\right|<\infty$.

A graph H is a subgraph of G if $V_{H} \subseteq V_{G}$ and $E_{H} \subseteq E_{G}$. Given vertex set $W \subseteq V_{G}$, we denote by $G[W]$ the subgraph H of G where $V_{H}=W$ and edge $e \in E_{G}$ is element of E_{H} if and only if both its ends are elements of W. Subgraph $G[W]$ is also called the subgraph induced by vertices W.

Given a graph G, a walk of length k in G connecting vertices v_{0} and v_{k} is a sequence $v_{0}, e_{0}, v_{1}, \ldots, e_{k-1}, v_{k}$ where $v_{0}, v_{1}, \ldots, v_{k} \in V_{G}, e_{0}, \ldots, e_{k-1} \in E_{G}$ and for each $i=0, \ldots, k-1$ edge e_{i} has ends v_{i} and v_{i+1}. A walk where all vertices are distinct from each other is called a path and denoted P_{k}. Furthermore, a walk with all vertices pairwise distinct except that $v_{0}=v_{k}$ is called a circuit and denoted by C_{k}.

We say that two vertices $u, v \in V_{G}$ are connected if there exists a walk in G connecting u and v. Clearly, the relation of "being connected" is an equivalence. Therefore, we can partition all vertices into disjoint subsets V_{1}, \ldots, V_{k} such that two vertices are connected if and only if they are elements of the same set V_{i}.

The subgraphs $G\left[V_{i}\right]$ are called the components of graph G. Again, it is not difficult to see that there is no edge of G having its ends in distinct components. We a call a graph connected if it contains exactly one component.

Let $G-e$ be the graph obtained from G by deleting edge e. A bridge in a graph G is an edge $e \in E_{G}$ such that $G-e$ contains more components than G. Clearly, an edge e is a bridge in G if and only if there exist such two vertices $u, v \in$ V_{G} that every path in G connecting u and v contains the edge e. Alternatively, a bridge can be defined as the edge that is not contained in any circuit.

We call a graph k-connected if we can delete any $k-1$ edges without obtaining a graph with at least two components. Furthermore, we call a graph cyclically k-connected if deleting any $k-1$ edges cannot create a graph with at least two components containing a circuit.

1.1 Flows and Colorings

The graph as was defined in the previous section is sometimes called undirected because each edge connects its ends in both ways. A digraph (or directed graph) D is defined similarly to a graph with set of arcs instead of edges. An $\operatorname{arc} \vec{e} \in E_{D}$ is a pair of two (not necessary distinct) vertices where the first one is called a tail and the second one a head of the arc. An arc where both tail and head are the same vertex is again called a loop.

By an orientation \vec{G} of an undirected graph G we understand a digraph where we assign a direction to each edge, i.e. for an edge we choose one end as a tail and the second as a head. Let \vec{G} be some orientation of a graph G. For a vertex v we denote by $E_{\vec{G}}^{+}(v)$ (or $\left.E_{\vec{G}}^{-}(v)\right)$ the set of all arcs in $E_{\vec{G}}$ with tails (or heads, respectively) in the vertex v. If it is clear from context, we can omit the subscript.

Let Γ be an Abelian group and $f: E_{\vec{G}} \rightarrow \Gamma$ for some orientation \vec{G} of a graph G. We define functions $f^{+}, f^{-}: V_{G} \rightarrow \Gamma$ as following:

$$
f^{+}(v)=\sum_{\vec{e} \in E^{+}(v)} f(\vec{e}), \quad f^{-}(v)=\sum_{\vec{e} \in E^{-}(v)} f(\vec{e}) .
$$

Definition 1.1. A Γ-flow on a graph G where Γ is an Abelian group is a mapping $f: E_{\vec{G}} \rightarrow \Gamma$ for some orientation \vec{G} of graph G such that $f^{+}(v)=f^{-}(v)$ holds for every vertex v. A Γ-flow where $\Gamma=\mathbb{Z}_{k}$ is also called a k-flow. Moreover, a flow f is called nowhere-zero if $f(\vec{e}) \neq 0$ holds for each arc \vec{e}.

Observation 1.2. Let \vec{G} and \vec{G}^{\prime} be two different orientations of a graph G and let Γ be an Abelian group. Then there exists a flow $f: E_{\vec{G}} \rightarrow \Gamma$ if and only if there exists a flow $f^{\prime}: E_{\vec{G}} \rightarrow \Gamma$. Moreover, flow f is nowhere-zero if and only if flow f^{\prime} $i s$.

As a corollary, we can choose and fix an orientation \vec{G} of G with no change of existence of a flow on G. We will use this fact later in the proof of Theorem 2.1 and in Section 2.1.

By a k-coloring of a graph G we understand a mapping $c: V_{G} \rightarrow\{1, \ldots, k\}$ such that $c(u) \neq c(v)$ holds whenever vertices u and v are ends of the same edge.

The connection between nowhere-zero flows and colorings can be observed considering the duality of planar graphs. Therefore, we need to introduce two additional definitions.

We call a graph G planar if it can be drawn on a plane without crossing edges. More specifically, each vertex v is drawn as a point p_{v} and each edge e is drawn as a plane curve c_{e} such that points representing different vertices are distinct, the ends of c_{e} for $e=\{u, v\}$ are p_{u} and p_{v} and any two curves can intersect each other only in points representing their common vertices. The graph together with such drawing is called plane graph. The curves representing the edges of a plane graph G divide the plane into some areas, which we call faces of G.

Figure 1.1: An example of a pair of dual graphs.

Given a plane graph G, a dual graph G^{*} is a graph that contains a vertex v_{F}^{*} for each face F of G and an edge e_{e}^{*} for each edge $e \in E_{G}$ connecting the vertices corresponding the faces of G lying on both sides of the edge e, see Figure 1.1. Clearly, e_{e}^{*} is a loop if and only if e is a bridge and vice versa.

Observation 1.3. A planar graph G admits a nowhere-zero k-flow if and only if its dual graph G^{*} has a k-coloring.

Proof. Let G^{\prime} be some plane drawing of a graph G and G^{*} be its dual graph. By the definition of a dual graph, a k-coloring $c: V_{G^{*}} \rightarrow\{1, \ldots, k\}$ naturally corresponds to a coloring of faces of G^{\prime} using colors $1, \ldots, k$ where no adjacent faces have the same color.

Using this face-coloring, we define an orientation \vec{G} of G where each edge is oriented such that the face with larger color number lies on its right side. Furthermore, we define a mapping $f: E_{\vec{G}} \rightarrow\{1, \ldots, k-1\}$ as a (positive) difference between color numbers of the faces on both sides of the edge, see Figure 1.2.

Figure 1.2: The definition of an orientation \vec{G} and a mapping f according to face-coloring.

We show that f is a nowhere-zero k-flow on G. Clearly, it is sufficient to show that f is a flow. Let v be a vertex of G^{\prime}. When we look at the colors of faces in a clockwise direction once around the vertex v starting and ending on the same face we get a sequence of numbers $1, \ldots, k$ where the first and the last numbers are the same. By the definition, $f^{+}(v)$ equals the sum of all increases in this sequence whereas $f^{-}(v)$ is the sum of all decreases. Therefore, $f^{+}(v)=f^{-}(v)$ must hold for any vertex v.

For the other implication, it suffices to find an arc with a maximal flow and color the face on its left side by color 1 . All the other faces get the color in process inverse to the one displayed on Figure 1.2.

Similarly to the fist part of this proof, we can show that this process assigns to each face exactly one color and no two adjacent faces share the same one.

1.2 Historical Notes

In 1939, Robbins [9] studied strong orientations of graphs, i.e. such orientations that there exists a path from each vertex to each other respecting the directions of arcs. He also proved that a graph can be strongly oriented if and only if it does not contain any bridge. Using a little modification of his proof, the following theorem can be proved.

Theorem 1.4. For every bridgeless graph G there exists a natural number k such that G admits a nowhere-zero k-flow.

In 1952, Tutte [12] studied some polynomials counting the numbers of various colorings of graphs and formulated the following conjectures.

Conjecture 1.5. There exists a natural number k such that each bridgeless graph admits a nowhere-zero k-flow.

Conjecture 1.6 (5-Flow Conjecture). Each bridgeless graph admits a nowherezero 5-flow.

In 1976, Appel and Haken [1-3] proved the famous 4-Color Theorem saying that every planar graph with no loop has a 4 -coloring. Therefore and from Observation 1.3, every bridgeless planar graph admits a nowhere-zero 4-flow.

Conjecture 1.5 was proved in 1976 by Jaeger and later, in 1980, improved by Seymour.

Theorem 1.7 (Jaeger [5]). Each bridgeless graph admits a nowhere-zero 8-flow.
Theorem 1.8 (Seymour [10]). Each bridgeless graph admits a nowhere-zero 6 -flow.

Chapter 2

Restrictions on Counterexamples to the 5-Flow Conjecture

One possible approach to prove the 5-Flow Conjecture is to look at a hypothetical counterexample and prove some facts that must hold, e.g. Seymour [10] proved that a minimal counterexample to the 5 -Flow Conjecture is cubic, i.e. each vertex has degree exactly 3 , and 3 -connected. Celmins in his Ph.D. thesis [4] proved that such minimal counterexample is cyclically 5 -connected and does not contain any circuit of length less then 7 .

As a simple introduction to this technique, we present the following theorem.
Theorem 2.1. Neither C_{3} nor C_{4} can be a subgraph of a minimal counterexample to the 5-Flow Conjecture.

Proof. For a contradiction, let G be some minimal counterexample to the 5-Flow Conjecture containing C_{3} as a subgraph and denote the vertices of this subgraph by v_{1}, v_{2} and v_{3}. As mentioned, G is cubic.

Let G^{\prime} be the graph obtained from G by contracting all three edges of C_{3}, i.e. by removing edges $\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}$ and $\left\{v_{3}, v_{1}\right\}$ and identifying all three vertices into new vertex v, see Figure 2.1.

Figure 2.1: A contraction of C_{3}.
Clearly, G^{\prime} is a smaller bridgeless graph, therefore, there exists a nowherezero 5 -flow f^{\prime} on G^{\prime}. According to Observation 1.2, we can assume f^{\prime} uses an orientation $\overrightarrow{G^{\prime}}$ where no arc has its tail in v. Therefore, $E_{\overrightarrow{G^{\prime}}}^{+}(v)=\emptyset$ and $f^{\prime-}(v)=$ $a+b+c=0$.

Let \vec{G} be an orientation of G where each edge e satisfying $\left|e \cap\left\{v_{1}, v_{2}, v_{3}\right\}\right| \leq 1$ has the same direction in \vec{G} as in \vec{G}^{\prime} and edges $\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}$ and $\left\{v_{3}, v_{1}\right\}$ are oriented into arcs $\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right)$ and $\left(v_{3}, v_{1}\right)$, respectively, see Figure 2.2.

We can expand the flow f^{\prime} into a 5-flow f on graph G such that $f(\vec{e})=$ $f^{\prime}(\vec{e})$ for each edge $e \in E_{G^{\prime}}$. Let $f\left(\left(v_{1}, v_{2}\right)\right)=x$, then $f\left(\left(v_{2}, v_{3}\right)\right)=x+a$ and $f\left(\left(v_{3}, v_{1}\right)\right)=x+a+b$ where a and b are values of the flow f^{\prime} on two arcs with head in v, see Figure 2.2. The flow f^{\prime} is nowhere-zero and, therefore, values x,

Figure 2.2: Flow in the neighborhood of C_{3} before and after decontraction.
$x+a$ and $x+a+b$ are pairwise different. Therefore, there are two possible choices of x in \mathbb{Z}_{5} such that all $x, x+a$ and $x+a+b$ are non-zero.

Both these choices lead to a nowhere-zero 5 -flow on G and, therefore, G is not a counterexample to the 5-Flow Conjecture.

Similarly, we can expand some nowhere-zero 5 -flow on G whenever it contains C_{4} as a subgraph.

Kochol [6-8] has also chosen this approach and he has shown that any circuit in any minimal counterexample to 5 -FC has length at least eleven. The purpose of Section 2.1 is to provide a simple overview of Kochol's methods and the proofs of their correctness.

In Section 2.2, we provide some modifications of this approach we have studied and results we obtained.

2.1 Kochol's Approach

In 2006, Kochol [7] has introduced a computational method to prove that a certain graph cannot be a subgraph of a minimal counterexample to the 5-Flow Conjecture.

A network is a pair (G, U) where G is a graph and $U=\left\{u_{1}, \ldots, u_{n}\right\}$ is an ordered set of pairwise distinct vertices of G, the vertices U are also called terminals of network (G, U). Without loss of generality, we can assume that no two terminals are connected by an edge; in the other case we can subdivide the edge with a new non-terminal vertex. Later, we will split a graph into two networks, which will make it easier to analyze existence of flows.

Similarly to the definition of a nowhere-zero 5 -flow on a graph, a nowhere-zero 5-flow (or shortly a flow) on a network (G, U) is a mapping $f: E_{\vec{G}} \rightarrow \mathbb{Z}_{5} \backslash\{0\}$ for some orientation \vec{G} of G where $f^{+}(v)=f^{-}(v)$ holds for each vertex except of the terminals. Clearly, a mapping f is a flow on (G, \emptyset) if and only if it is a nowhere-zero 5 -flow on G.

A network (G, U) where all terminals $U=\left\{u_{1}, \ldots, u_{n}\right\}$ have degree 1 is called simple. We fix an orientation \vec{G} of G such that there is no arc with a head in any terminal. We can do this without loss of generality according to Observation 1.2. Let f be a flow on (G, U), then we denote by $f^{+}(U)$ the n-tuple $\left(f^{+}\left(u_{1}\right), \ldots, f^{+}\left(u_{n}\right)\right)$.

Lemma 2.2. Let (G, U) be a simple network and f a flow on (G, U), then

$$
\sum_{u \in U} f^{+}(u)=0 .
$$

Proof. By simple counting, we get

$$
\begin{aligned}
\sum_{u \in U} f^{+}(u) & =\sum_{v \in V_{G} \backslash U} f^{-}(v)-\sum_{v \in V_{G} \backslash U} f^{+}(v) \\
& =\sum_{v \in V_{G} \backslash U}\left(f^{-}(v)-f^{+}(v)\right)=0 .
\end{aligned}
$$

The first equality is from the fact that there is no arc having head in any terminal, the latter from the definition of a flow on a network.

Furthermore, $f^{+}(u) \neq 0$ for each terminal u, therefore, $f^{+}(U)$ belongs to set

$$
S_{n}=\left\{\left(s_{1}, \ldots, s_{n}\right): s_{1}, \ldots, s_{n} \in \mathbb{Z}_{5} \backslash\{0\}, s_{1}+\cdots+s_{n}=0\right\} .
$$

For each $s \in S_{n}$, let $F_{G, U}(s)$ be the number of flows on (G, U) such that $f^{+}(U)=s$.
Let $P=\left\{Q_{1}, \ldots, Q_{r}\right\}$ be a partition of the set $\{1, \ldots, n\}$. We call P proper if each of Q_{1}, \ldots, Q_{r} contains at least two elements and we denote the set of all proper partitions of $\{1, \ldots, n\}$ by $\mathcal{P}_{n}=\left\{P_{1}, \ldots, P_{p_{n}}\right\}$.

For $s=\left(s_{1}, \ldots, s_{n}\right) \in S_{n}$ and $P=\left\{Q_{1}, \ldots, Q_{r}\right\} \in \mathcal{P}_{n}$, we define a compatibility of s and P as

$$
\chi(s, P)= \begin{cases}1 & \text { if } \sum_{i \in Q_{j}} s_{i}=0 \text { for each } j \in\{1, \ldots, r\}, \\ 0 & \text { otherwise }\end{cases}
$$

Furthermore, for $s \in S_{n}$, let $\chi_{n}(s)=\left(\chi\left(s, P_{1}\right), \ldots, \chi\left(s, P_{p_{n}}\right)\right)$.
Using Tutte's contraction/deletion formula [12], the following lemma can be proved. For more details see [6].

Lemma 2.3. Let (G, U) be a simple network with n terminals. Then there exist integers $x_{1}, \ldots, x_{p_{n}}$ such that $F_{G, U}(s)=\sum_{i=1}^{p_{n}} x_{i} \chi\left(s, P_{i}\right)$ for every $s \in S_{n}$.
Example 2.4. Let C_{n} be a cycle with vertices $\left\{v_{1}, \ldots, v_{n}\right\}$. Denote by $\widetilde{C_{n}}$ the graph obtained from C_{n} by adding a new vertex u_{i} and a new edge $\left\{v_{i}, u_{i}\right\}$ for each $i=1, \ldots, n$, see Figure 2.3. Clearly, $\left(\widetilde{C_{n}}, U\right)$ where $U=\left\{u_{1}, \ldots, u_{n}\right\}$ is a simple network. The graph $\widetilde{C_{n}}$ is sometimes called n-sunlet.

Figure 2.3: Examples of sunlets: $\widetilde{C_{3}}$ and $\widetilde{C_{4}}$.
For $n=3$, there is only one proper partition, namely $P=\{\{1,2,3\}\}$, therefore by Lemma 2.3, there exists such x that $F_{\widetilde{C_{3}}, U}(s)=x$ for each $s \in S_{3}$. In the proof of Theorem 2.1, we showed $x=2$.

For $n=4$, there are four proper partitions

$$
\begin{array}{ll}
P_{1}=\{\{1,2,3,4\}\}, & P_{2}=\{\{1,2\},\{3,4\}\}, \\
P_{3} & =\{\{1,3\},\{2,4\}\},
\end{array} P_{4}=\{\{1,4\},\{2,3\}\},
$$

and the integers from Lemma 2.3 are $x_{1}=1, x_{2}=1, x_{3}=0$ and $x_{4}=1$.
Table 2.1 contains all "types" of $s \in S_{4}$, their compatibilities with these partitions $\chi_{4}(s)$ and the numbers of flows $F_{\widetilde{C_{4}}, U}(s)$ that can be easily determined directly. Other vectors from S_{4} give the same results as some displayed in the table since there is no $s \in S_{4}$ compatible with all four proper partitions.

s	$\chi\left(s, P_{1}\right)$	$\chi\left(s, P_{2}\right)$	$\chi\left(s, P_{3}\right)$	$\chi\left(s, P_{4}\right)$	$F_{\widetilde{C_{4}}, U}(s)$
$(1,4,4,1)$	1	1	1	0	2
$(1,4,1,4)$	1	1	0	1	3
$(1,4,2,3)$	1	1	0	0	2
$(1,1,4,4)$	1	0	1	1	2
$(1,2,4,3)$	1	0	1	0	1
$(1,2,3,4)$	1	0	0	1	2
$(1,1,1,2)$	1	0	0	0	1

Table 2.1: Examples of $s \in S_{4}$ and corresponding $\chi_{4}(s)$ and $F_{\widetilde{C_{4}}, U}(s)$.

2.1.1 Forbidden Networks

First method. Let H be a graph such that $V=\left\{v_{1}, \ldots, v_{n}\right\}$ is the set of all vertices of degree 2 and all the other vertices have degree 3 . Let \widetilde{H} be a graph obtained from H by adding new vertices $U=\left\{u_{1}, \ldots, u_{n}\right\}$ and edges $\left\{u_{i}, v_{i}\right\}$ for each $i=1, \ldots, n$. Clearly, the network (\widetilde{H}, U) is simple.

Let $S_{H}=\left\{s \in S_{n}: F_{\widetilde{H}, U}(s)>0\right\}$. Denote by V_{n} and V_{H} the linear hulls of $\left\{\chi_{n}(s): s \in S_{n}\right\}$ and $\left\{\chi_{n}(s): s \in S_{H}\right\}$, respectively, both in $\mathbb{Q}^{p_{n}}$. As $S_{H} \subseteq S_{n}$, $V_{H} \subseteq V_{n}$.

Theorem 2.5 (Kochol 2006 [7]). If $V_{H}=V_{n}$ then H cannot be a subgraph of any minimal counterexample to the 5-Flow Conjecture.

Proof. Let G_{m} be some minimal counterexample to the 5 -Flow Conjecture. As we already mentioned, G_{m} is a 3 -connected, cubic graph. Let H be a subgraph of G_{m} having minimum degree 2 and $V=\left\{v_{1}, \ldots, v_{n}\right\}, U=\left\{u_{1}, \ldots, u_{n}\right\}$ and \widetilde{H} be as defined above.

In case there is some edge $e \in E_{G_{m}} \backslash E_{H}$ with both ends in V, we subdivide the edge by a new vertex of degree 2 and denote by G the graph obtained after subdividing all such edges. Therefore, there exists a unique edge $e_{i}=\left\{v_{i}, v_{i}^{\prime}\right\} \in$ $E_{G} \backslash E_{H}$ in G for each $i=1, \ldots, n$. Note that the edges e_{1}, \ldots, e_{n} are pairwise different whereas the vertices $v_{1}^{\prime}, \ldots, v_{n}^{\prime}$ do not need to be such. Let $I=G\left[V_{G} \backslash V_{H}\right]$ and \widetilde{I} be the graph obtained from I by adding new pairwise different vertices $W=\left\{w_{1}, \ldots, w_{n}\right\}$ and edges $\left\{v_{i}^{\prime}, w_{i}\right\}$ for each $i=1, \ldots, n$, see Figure 2.4.

Clearly, if there exists $s \in S_{n}$ such that both $F_{\widetilde{H}, U}(s)$ and $F_{\widetilde{I}, W}(s)$ are positive, i.e. there exist some flows f_{H} and f_{I} on simple networks (\widetilde{H}, U) and (\widetilde{I}, W),

Figure 2.4: Graphs \widetilde{H} and \widetilde{I} obtained from a graph G.
respectively, such that $f_{H}^{+}(U)=f_{I}^{+}(W)=s$, then there exists a nowhere-zero 5 -flow f_{G} on graph G obtained by "merging" flows f_{H} and $-f_{I}$. This flow can be easily transformed into a nowhere-zero 5 -flow on graph G_{m} and, therefore, we get a contradiction. Thus, $F_{\widetilde{H}, U}(s) \cdot F_{\widetilde{I}, W}(s)=0$ for each $s \in S_{n}$ and $F_{\widetilde{I}, W}(s)=0$ for each $s \in S_{H}$.

As we know from Lemma 2.3, there exist integers $x_{1}, \ldots, x_{p_{n}}$ such that the formula $F_{\widetilde{I}, W}(s)=\sum_{i=1}^{p_{n}} x_{i} \chi\left(s, P_{i}\right)$ holds for each $s \in S_{n}$. Let $t_{1}, \ldots, t_{r} \in S_{H}$ be such that $\chi_{n}\left(t_{1}\right), \ldots, \chi_{n}\left(t_{r}\right)$ form a basis of vector space $V_{H}=V_{n}$. Then for each $s \in S_{n}$, there exist numbers y_{1}, \ldots, y_{r} such that $\chi\left(s, P_{i}\right)=\sum_{j=1}^{r} y_{j} \chi\left(t_{j}, P_{i}\right)$ for each $i=1, \ldots, p_{n}$ and

$$
\begin{aligned}
F_{\widetilde{I}, W}(s)=\sum_{i=1}^{p_{n}} x_{i} \chi\left(s, P_{i}\right)= & \sum_{i=1}^{p_{n}} x_{i}\left(\sum_{j=1}^{r} y_{j} \chi\left(t_{j}, P_{i}\right)\right)= \\
& =\sum_{j=1}^{r} y_{j}\left(\sum_{i=1}^{p_{n}} x_{i} \chi\left(t_{j}, P_{i}\right)\right)=\sum_{j=1}^{r} y_{j} F_{\widetilde{I}, W}\left(t_{j}\right)=0
\end{aligned}
$$

where the last equality holds because $t_{1}, \ldots, t_{r} \in S_{H}$.
Let G_{m} / H be the graph obtained from G_{m} by contracting the whole subgraph H into one vertex. Clearly, G_{m} / H is smaller than G_{m} and bridgeless, therefore, G_{m} / H admits a nowhere-zero 5 -flow. This flow can be transformed into a flow on (\widetilde{I}, W) and, therefore, there exists $s \in S_{n}$ such that $F_{\widetilde{I}, W}(s)>0$.

As this is a contradiction, H cannot be a subgraph of a minimal counterexample to the 5-Flow Conjecture.

Second method. In 2010, Kochol [8] has introduced two modifications to this method - firstly, he replaced a network (\widetilde{H}, U) by a smaller one to show that H cannot be a subgraph of any minimal counterexample to the 5 -Flow Conjecture, and secondly, he introduced the use of a permutation group to reduce the size of computations. We discuss this second part later in Subsection 2.1.2.

Let $H, V=\left\{v_{1}, \ldots, v_{n}\right\}, \widetilde{H}$ and $U=\left\{u_{1}, \ldots, u_{n}\right\}$ be as mentioned in the first method. Further let H^{\prime} be a graph and $V^{\prime}=\left\{v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right\}$ set (possibly multiset) of its vertices. We denote by $\widetilde{H^{\prime}}$ the graph obtained from H^{\prime} by adding vertices $U^{\prime}=\left\{u_{1}^{\prime}, \ldots, u_{n}^{\prime}\right\}$ and edges $\left\{u_{i}^{\prime}, v_{i}^{\prime}\right\}$ where $i=1, \ldots, n$. Similarly to S_{H} and V_{H}, let $S_{H^{\prime}}=\left\{s \in S_{n}: F_{\widetilde{H^{\prime}}, U}(s)>0\right\}$ and $V_{H^{\prime}}$ be the linear hull of $\left\{\chi_{n}(s): s \in S_{H^{\prime}}\right\}$ in $\mathbb{Q}^{p_{n}}$.

Let G be a cubic graph such that H is its subgraph and let $\left\{v_{i}, v_{i}^{\prime \prime}\right\}$ be the unique edge of $E_{G} \backslash E_{H}$ with an end in vertex v_{i} for each $i=1, \ldots, n$. Then we say that a graph G^{\prime} is obtained from G by replacing H by H^{\prime} if it arises from graphs $G\left[V_{G} \backslash V_{H}\right]$ and $\widetilde{H^{\prime}}$ by identifying vertices $v_{i}^{\prime \prime}$ and u_{i}^{\prime}, see Figure 2.5.

Figure 2.5: Graph G^{\prime} obtained from G by replacing H by H^{\prime}.
We say that H is replaceable by H^{\prime} in a class \mathcal{C} of graphs if the graph obtained from G by replacing H by H^{\prime} is bridgeless for each graph G of \mathcal{C}.

Theorem 2.6 (Kochol 2010 [8]). If there exists some graph H^{\prime} smaller than H such that H is replaceable by H^{\prime} in the class of cyclically 6 -connected graphs and $V_{H^{\prime}} \subseteq V_{H}$ then H cannot be a subgraph of any minimal counterexample to the 5-Flow Conjecture.

Proof. Suppose that G_{m} is a minimal counterexample to the 5-Flow Conjecture and H is its subgraph such that its minimum degree is 2 . Then let $V=$ $\left\{v_{1}, \ldots, v_{n}\right\}, U=\left\{u_{1}, \ldots, u_{n}\right\}$ and \widetilde{H} be as mentioned in the proof of Theorem 2.5. Similarly, let H^{\prime} be as assumed and $V^{\prime}=\left\{v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right\}, U^{\prime}=\left\{u_{1}^{\prime}, \ldots, u_{n}^{\prime}\right\}$ and $\widetilde{H^{\prime}}$ as described above. As Kochol [6] proved, G_{m} is cyclically 6 -connected.

Let G be a graph obtained from G_{m} by subdividing all edges of $E_{G_{m}} \backslash E_{H}$ with both ends in V. Finally, let I be the "rest" of the graph G after removing subgraph H and (\widetilde{I}, W) be the network obtained from I by adding n new vertices and edges, see the proof of Theorem 2.5 and Figure 2.4.

If there exists such $s \in S_{n}$ that $F_{\widetilde{H}, U}(s), F_{\widetilde{I}, W}(s)>0$ then there exist flows f_{H} and f_{I} on networks (\widetilde{H}, U) and (\widetilde{I}, W), respectively, where $f_{H}^{+}(U)=f_{I}^{+}(W)=s$. Therefore, the flow obtained by "merging" flows f_{H} and $-f_{I}$ is a nowhere-zero 5 -flow on graph G, which is a contradiction. Therefore, at least one of $F_{\widetilde{H}, U}(s)$ and $F_{\widetilde{I}, W}(s)$ must be 0 for each $s \in S_{n}$ and $F_{\widetilde{I}, W}(s)=0$ for each $s \in S_{H}$.

As stated in Lemma 2.3, there exist integers $x_{1}, \ldots, x_{p_{n}}$ such that formula $F_{\widetilde{I}, W}(s)=\sum_{i=1}^{p_{n}} x_{i} \chi\left(s, P_{i}\right)$ holds for each $s \in S_{n}$. Let $\chi_{n}\left(t_{1}\right), \ldots, \chi_{n}\left(t_{r}\right)$ for some $t_{1}, \ldots, t_{r} \in S_{H}$ be a basis of vector space V_{H}. As already mentioned, $F_{\widetilde{I}, W}\left(t_{j}\right)=0$ for each $j=1, \ldots, r$.

Since $V_{H^{\prime}} \subseteq V_{H}$, there exist some numbers y_{1}, \ldots, y_{r} for each $s \in S_{H^{\prime}}$ such
that $\chi\left(s, P_{i}\right)=\sum_{j=1}^{r} y_{j} \chi\left(t_{j}, P_{i}\right)$ holds for each $i=1, \ldots, p_{n}$ and

$$
\begin{aligned}
F_{\tilde{I}, W}(s)=\sum_{i=1}^{p_{n}} x_{i} \chi\left(s, P_{i}\right)= & \sum_{i=1}^{p_{n}} x_{i}\left(\sum_{j=1}^{r} y_{j} \chi\left(t_{j}, P_{i}\right)\right)= \\
& =\sum_{j=1}^{r} y_{j}\left(\sum_{i=1}^{p_{n}} x_{i} \chi\left(t_{j}, P_{i}\right)\right)=\sum_{j=1}^{r} y_{j} F_{\widetilde{I}, W}\left(t_{j}\right)=0 .
\end{aligned}
$$

Let G^{\prime} be the graph obtained from G by replacing H by H^{\prime}. By an assumption that H^{\prime} is smaller than H and H is replaceable by H^{\prime} in the class of cyclically 6 -connected graphs, G^{\prime} is smaller than G and still bridgeless. Thus, there exists a nowhere-zero 5 -flow on G^{\prime} and $s \in S_{H^{\prime}}$ such that $F_{\widetilde{I}, W}(s)>0$.

Therefore, we get a contradiction and H cannot be a subgraph of any minimal counterexample to the 5-Flow Conjecture.

The comparison of these two methods. Note that Theorem 2.5 is a special case of Theorem 2.6 for H^{\prime} consisting of only one vertex, since $V_{n}=V_{H^{\prime}}$ holds for such H^{\prime}.

The main advantage of the method presented in Theorem 2.6 is that we can select the graph H^{\prime} such that there do not exist many flows on the network $\left(\widetilde{H^{\prime}}, U^{\prime}\right)$. As a consequence of such choice, the dimension of the vector space $V_{H^{\prime}}$ would be small and it would be easier to verify that $V_{H^{\prime}} \subseteq V_{H}$.

2.1.2 The Computations

We can formulate the problem of determining whether $V_{H}=V_{n}$ in Theorem 2.5 in terms of matrices: Let M_{n} and M_{H} be the matrices where rows are exactly $\chi_{n}(s)$ for $s \in S_{n}$ and $s \in S_{H}$, respectively. Then $V_{H}=V_{n}$ if and only if the ranks of M_{H} and M_{n} are equal.

Let \mathcal{A} be the automorphism group of \mathbb{Z}_{5}, i.e. its elements are

$$
\begin{array}{ll}
\alpha_{1}=\mathrm{id}, & \alpha_{2}=(1,2,4,3) \\
\alpha_{3}=(1,3,4,2), & \alpha_{4}=(1,4)(2,3)
\end{array}
$$

We can note that $\alpha_{i}(x)=x \cdot i$ in \mathbb{Z}_{5}.
For $s=\left(s_{1}, \ldots, s_{n}\right) \in S_{n}$ and $\alpha \in \mathcal{A}$, let $\alpha(s)=\left(\alpha\left(s_{1}\right), \ldots, \alpha\left(s_{n}\right)\right)$. Clearly, $F_{G, U}(s)=F_{G, U}(\alpha(s))$ for any simple network (G, U) and $\chi_{n}(s)=\chi_{n}(\alpha(s))$. Therefore, we can divide all elements of S_{n} into classes

$$
\Sigma_{n}=\left\{\left\{\alpha_{1}(s), \alpha_{2}(s), \alpha_{3}(s), \alpha_{4}(s)\right\}: s \in S_{n}\right\}
$$

such that if $\sigma \in \Sigma_{n}$ then $\chi_{n}(s)$ is used as a row in matrix M_{n} or M_{H} either for all $s \in \sigma$ or for none of them. Moreover, in the first case, it would be the same row used four times.

Therefore, it is sufficient to use only one representative of each $\sigma \in \Sigma_{n}$, without loss of generality the one with $s_{1}=1$. By this operation, we can reduce the numbers of rows in both matrices to one quarter of their original numbers.

Kochol [7] used the method described in Theorem 2.5 with C_{5}, C_{6}, C_{7} and C_{8} in the role of H and computed the ranks of the matrices using computer, see

H	size of M_{n}	size of M_{H}	$\operatorname{rank} M_{n}$	rank M_{H}	Note
C_{5}	51×11	45×11	11	11	$[7]$
C_{6}	205×41	151×41	40	40	$[7]$
C_{7}	819×162	483×162	147	147	$[7]$
C_{8}	3277×715	1513×715	568	568	$[7]$
C_{9}	13107×3425	4665×3425	2227	2227	

Table 2.2: The sizes and ranks of some matrices M_{n} and M_{H} from Theorem 2.5.

Table 2.2. Since he has not provided the source code he used and also to verify the result independently, we have created a new program in Sage [11] that uses the same method and has validated Kochol's results. Moreover, it has computed the rank for the case of $H=C_{9}$, see Table 2.2.

We can use the method of counting ranks of matrices also to verify the condition $V_{H^{\prime}} \subseteq V_{H}$ in Theorem 2.6. In this case, it would be M_{H} and $M_{H^{\prime}}$ containing $\chi_{n}(s)$ as a row if and only if $s \in S_{H}$ and $s \in S_{H} \cup S_{H^{\prime}}$, respectively. Again, it is possible to use the automorphism group \mathcal{A} and the assumption that $s_{1}=1$ for all used $s=\left(s_{1}, \ldots, s_{n}\right) \in S_{n}$.

Kochol [8] used this method with C_{9} and C_{10} as a graph H together with shorter cycles C_{7} and C_{8}, respectively, and one isolated edge as a graph H^{\prime}, see Figure 2.6.

Figure 2.6: Example of H and H^{\prime} from Theorem 2.6 used by Kochol [8].

The reduction of the size of matrices using a permutation group. In 2010, Kochol [8] also provided a method using a permutation group to reduce the size of computed matrices.

Let us remind (page 8) that

$$
S_{n}=\left\{\left(s_{1}, \ldots, s_{n}\right): s_{1}, \ldots, s_{n} \in \mathbb{Z}_{5} \backslash\{0\}, s_{1}+\cdots+s_{n}=0\right\},
$$

\mathcal{P}_{n} is the set of all proper partitions of $\{1, \ldots, n\}$, i.e. partitions $P=\left\{Q_{1}, \ldots, Q_{r}\right\}$ where each $Q \in P$ contains at least two elements,

$$
\chi(s, P)= \begin{cases}1 & \text { if } \sum_{i \in Q} s_{i}=0 \text { for each } Q \in P \\ 0 & \text { otherwise }\end{cases}
$$

and $\chi_{n}(s)=\left(\chi\left(s, P_{1}\right), \ldots, \chi\left(s, P_{p_{n}}\right)\right)$.

Let Γ be a permutation group on $\{1, \ldots, n\}$, i.e. a subgroup of the group of all permutations of elements $1, \ldots, n$. For $\gamma \in \Gamma$ and $Q \subseteq\{1, \ldots, n\}$, let $\gamma(Q)=\{\gamma(q): q \in Q\}$, and similarly, $\gamma(P)=\{\gamma(Q): Q \in P\}$ for any $P \in \mathcal{P}_{n}$.

Denote by \mathcal{P}_{n} the partition of \mathcal{P}_{n} into classes

$$
\boldsymbol{\mathcal { P }}_{n}=\left\{\boldsymbol{P}_{1}, \ldots, \boldsymbol{P}_{\boldsymbol{p}_{n}}\right\}=\left\{\{\gamma(P): \gamma \in \Gamma\}: P \in \mathcal{P}_{n}\right\} .
$$

Then for each $\boldsymbol{P} \in \mathcal{P}_{n}$ and $s \in S_{n}$, denote $\boldsymbol{\chi}(s, \boldsymbol{P})=\sum_{P \in \boldsymbol{P}} \chi(s, P)$ and $\boldsymbol{\chi}_{n}(s)=\left(\boldsymbol{\chi}\left(s, \boldsymbol{P}_{1}\right), \ldots, \boldsymbol{\chi}\left(s, \boldsymbol{P}_{\boldsymbol{p}_{n}}\right)\right)$.

Let $\gamma \in \Gamma$ and $s=\left(s_{1}, \ldots, s_{n}\right) \in S_{n}$, then we define $\gamma(s)=\left(s_{\gamma(1)}, \ldots, s_{\gamma(n)}\right)$. Since $\chi(s, P)=\chi\left(\gamma(s), \gamma^{-1}(P)\right)$ for each $P \in \mathcal{P}_{n}$ and $\gamma \in \Gamma$, the formula $\boldsymbol{\chi}(s, \boldsymbol{P})=\boldsymbol{\chi}(\gamma(s), \boldsymbol{P})$ holds for each $\boldsymbol{P} \in \mathcal{P}_{n}$.

Therefore, $\boldsymbol{\chi}_{n}(s)=\boldsymbol{\chi}_{n}(\gamma(s))$ for each $s \in S_{n}$ and $\gamma \in \Gamma$ and we can divide the set S_{n} into the classes

$$
\boldsymbol{S}_{n}=\left\{\{\gamma(s): \gamma \in \Gamma\}: s \in S_{n}\right\} .
$$

For $\boldsymbol{s} \in \boldsymbol{S}_{n}$ and $\boldsymbol{P} \in \mathcal{P}_{n}$, we define $\boldsymbol{\chi}(\boldsymbol{s}, \boldsymbol{P})=\boldsymbol{\chi}(s, \boldsymbol{P})$ and $\boldsymbol{\chi}_{n}(s)=\boldsymbol{\chi}_{n}(s)$ where $s \in s$ is arbitrary.

Finally for each $\boldsymbol{s} \in \boldsymbol{S}_{n}$, we define $\boldsymbol{F}_{G, U}(\boldsymbol{s})=\sum_{\gamma \in \Gamma} F_{G, U}(\gamma(s))$ where $s \in \boldsymbol{s}$ is again arbitrary.

Let us formulate the following Lemma similar to Lemma 2.3. It can be proved by a straightforward computation and using the definitions above, see [8].

Lemma 2.7. Let (G, U) be a simple network with n terminals and Γ be a permutation group on $\{1, \ldots, n\}$. Then there exist integers $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\boldsymbol{p}_{n}}$ such that $\boldsymbol{F}_{G, U}(\boldsymbol{s})=\sum_{i=1}^{\boldsymbol{p}_{n}} \boldsymbol{x}_{i} \boldsymbol{\chi}\left(\boldsymbol{s}, \boldsymbol{P}_{i}\right)$ for every $\boldsymbol{s} \in \boldsymbol{S}_{n}$.

Let (\widetilde{H}, U) and $\left(\widetilde{H^{\prime}}, U^{\prime}\right)$ be simple networks with n terminals and Γ be a permutation group on $\{1, \ldots, n\}$, denote by

$$
\boldsymbol{S}_{H}=\left\{s \in \boldsymbol{S}_{n}: \boldsymbol{F}_{\widetilde{H}, U}(s)>0\right\}, \quad \boldsymbol{S}_{H^{\prime}}=\left\{s \in \boldsymbol{S}_{n}: \boldsymbol{F}_{\widetilde{H^{\prime}, U}}(s)>0\right\}
$$

and by \boldsymbol{V}_{H} and $\boldsymbol{V}_{H^{\prime}}$ the linear hulls of $\left\{\boldsymbol{\chi}_{n}(\boldsymbol{s}): s \in \boldsymbol{S}_{H}\right\}$ and $\left\{\boldsymbol{\chi}_{n}(\boldsymbol{s}): s \in \boldsymbol{S}_{H^{\prime}}\right\}$, respectively, both in $\mathbb{Q}^{\boldsymbol{p}_{n}}$.

We say that Γ acts regularly on a simple network (G, U) with $U=\left\{u_{1}, \ldots, u_{n}\right\}$ if for each $\gamma \in \Gamma$, there exists an automorphism φ of G such that $\varphi\left(u_{i}\right)=u_{\gamma(i)}$ for each $i=1, \ldots, n$.

Lemma 2.8. Let (G, U) be a simple network with n terminals and Γ be a permutation group that acts regularly on (G, U). Then $F_{G, U}(s)=F_{G, U}(\gamma(s))$ for each $s \in S_{n}$ and $\gamma \in \Gamma$.

Again, the proof is quite straightforward and can be found in [8].
Now, we can formulate a result similar to Theorem 2.6 extended by using a permutation group Γ.

Theorem 2.9 (Kochol 2010 [8]). Let Γ be a permutation group on $\{1, \ldots, n\}$ that acts regularly on (\widetilde{H}, U). If there exists some graph H^{\prime} smaller than H such that H is replaceable by H^{\prime} in the class of cyclically 6-connected graphs and $V_{H^{\prime}} \subseteq$ V_{H}, then H cannot be a subgraph of any minimal counterexample to the 5-Flow Conjecture.

Proof. The proof begins exactly the same way as the proof of Theorem 2.6. Let graphs G_{m}, G, H, H^{\prime} and I and networks $(\widetilde{H}, U),\left(\widetilde{H^{\prime}}, U^{\prime}\right)$ and (\widetilde{I}, W) be as defined in the proof of Theorem 2.6. Therefore, $F_{\widetilde{H}, U}(s) F_{\widetilde{I}, W}(s)=0$ for each $s \in S_{n}$.

By Lemma 2.8, $F_{\widetilde{H}, U}(s)=F_{\widetilde{H}, U}(\gamma(s))$ for each $s \in S_{n}$ and $\gamma \in \Gamma$. Therefore, $s \in \boldsymbol{S}_{H}$ if and only if $F_{\widetilde{H}, U}(s)>0$ holds for every $s \in s$. Consequently, $F_{\widetilde{I}, W}(s)=0$ for every $s \in s \in \boldsymbol{S}_{H}$ and $\boldsymbol{F}_{\widetilde{I}, W}(\boldsymbol{s})=0$ for each $\boldsymbol{s} \in \boldsymbol{S}_{H}$.

We already know from Lemma 2.7 that there exist such integers $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\boldsymbol{p}_{n}}$ that $\boldsymbol{F}_{G, U}(\boldsymbol{s})=\sum_{i=1}^{\boldsymbol{p}_{n}} \boldsymbol{x}_{i} \boldsymbol{\chi}\left(\boldsymbol{s}, \boldsymbol{P}_{i}\right)$ holds for every $\boldsymbol{s} \in \boldsymbol{S}_{n}$. Let $\boldsymbol{\chi}_{1}, \ldots, \boldsymbol{\chi}_{r} \in \boldsymbol{S}_{H}$ such that $\boldsymbol{\chi}_{n}\left(\boldsymbol{t}_{1}\right), \ldots, \boldsymbol{\chi}_{n}\left(\boldsymbol{t}_{n}\right)$ is a basis of the vector space \boldsymbol{V}_{H}.

By assumption, $\boldsymbol{V}_{H^{\prime}} \subseteq \boldsymbol{V}_{H}$, and therefore, there exist some numbers $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{r}$ for every $\boldsymbol{s} \in \boldsymbol{S}_{H^{\prime}}$ such that $\boldsymbol{\chi}\left(\boldsymbol{s}, \boldsymbol{P}_{i}\right)=\sum_{j=1}^{r} \boldsymbol{y}_{j} \boldsymbol{\chi}\left(\boldsymbol{t}_{j}, \boldsymbol{P}_{i}\right)$ for each $i=1, \ldots, \boldsymbol{p}_{n}$ and

$$
\begin{aligned}
\boldsymbol{F}_{\widetilde{I}, W}(s)=\sum_{i=1}^{\boldsymbol{p}_{n}} \boldsymbol{x}_{i} \boldsymbol{\chi}\left(\boldsymbol{s}, \boldsymbol{P}_{i}\right) & =\sum_{i=1}^{\boldsymbol{p}_{n}} \boldsymbol{x}_{i}\left(\sum_{j=1}^{r} \boldsymbol{y}_{j} \boldsymbol{\chi}\left(\boldsymbol{t}_{j}, \boldsymbol{P}_{i}\right)\right)= \\
& =\sum_{j=1}^{r} \boldsymbol{y}_{j}\left(\sum_{i=1}^{\boldsymbol{p}_{n}} \boldsymbol{x}_{i} \boldsymbol{\chi}\left(\boldsymbol{t}_{j}, \boldsymbol{P}_{i}\right)\right)=\sum_{j=1}^{r} \boldsymbol{y}_{j} \boldsymbol{F}_{\widetilde{I}, W}\left(\boldsymbol{t}_{j}\right)=0 .
\end{aligned}
$$

Denote by G^{\prime} the graph obtained from G by replacing H by H^{\prime}. Since H is replaceable by a smaller H^{\prime}, G^{\prime} is smaller than G and bridgeless and, therefore, there exists a nowhere-zero flow on G^{\prime} and $s \in S_{H^{\prime}}$ such that $F_{\widetilde{I}, W}(s)>0$. Then there exists $\boldsymbol{s} \in \boldsymbol{S}_{H^{\prime}}$ such that $s \in \boldsymbol{s}$ and $\boldsymbol{F}_{\widetilde{I}, W}(\boldsymbol{s})>0$, which is a contradiction.

Therefore H cannot be a subgraph of any minimal counterexample to the 5-Flow Conjecture.

As already mentioned, Kochol [8] tried the method from Theorem 2.6 using C_{9} and C_{10} as graph H. At the same time, he also applied this reduction of the sizes of the matrices. As a permutation group Γ, he used dihedral groups D_{9} and D_{10}, respectively, i.e. the groups of all symmetries of the circuits. Table 2.3 presents the sizes and ranks of matrices computed by Kochol and validated by our program and one more row for our new result for $H=C_{11}$. The computation time for this result was about 5 days.

H	size of M_{H}	size of $M_{H^{\prime}}$	$\operatorname{rank} M_{H}$	$\operatorname{rank} M_{H^{\prime}}$	Note
C_{8}	122×81	176×81	62	62	
C_{9}	262×238	430×238	151	151	$[8]$
C_{10}	792×1079	1415×1079	539	539	$[8]$
C_{11}	1972×4752	3937×4752	1699	1699	

Table 2.3: The sizes and ranks of some matrices M_{H} and $M_{H^{\prime}}$ from Theorem 2.6.
Since ranks of $M_{C_{11}}$ and $M_{C_{11}^{\prime}}$ are equal and from Theorem 2.6, this proves the following Theorem.

Theorem 2.10. Any minimal counterexample to the 5-Flow Conjecture does not contain any circuit of length less than 12.

Some remarks on implementation issues. There are many possible ways how to implement the test whether some vector space is a subspace of another. Sage provides class VectorSpace where we can for each vector check whether it is or is not part of the space. This method is quite inefficient as there is no way how to add new vector into an existing vector space, therefore, new instance of VectorSpace must be created in order to extent the vector space.

On the other hand, Sage also provides class Matrix that can be used to compute the ranks as mentioned above. Its function rank() is quite fast even used on rather large matrices. However, there must be the whole matrix in the memory, therefore, for even larger matrices, we provide computing of the rank using "buffered" matrix: if the number of rows exceed upper limit, LU decomposition of the matrix is calculated and only pivoting rows are stored for determining the rank, see Code snippet 2.1.

```
if rn >= Buffer:
    M = Matrix (QQ,Mn)
    rn = M.rank()
    P, L, U = M.LU()
    Mn=[ U[i].list() for i in range(rn) ]
```

Code snippet 2.1: LU decomposition after matrix buffer overflow.

Furthermore, in order to optimize the run of the program, it is necessary to organize the code in such way that there are not repeatedly computed the same structures, e.g. both Code snippet 2.2 and Code snippet 2.3 are generating the same list of all n-tuples in the same order. In the first case, each $(n-1)$-tuple is generated once and extended four times, whereas in the second case, each $(n-1)$ tuple is generated every time we want to extend it, i.e. four times. We tried a few tests to compare the time of executing these snippets and in most of the cases the first one was slightly faster.

```
for t in NTuples(n-1):
    for i in [1, 2, 3, 4]:
        yield t + [i]
```

Code snippet 2.2: First way of generating n-tuples.

```
for i in [1, 2, 3, 4]:
    for t in NTuples(n-1):
        yield [i] + t
```

Code snippet 2.3: Second way of generating n-tuples.

2.2 Modifications of the Approach

We have further studied the cases where an even circuit $H=C_{2 k}$ is replaced by a non-crossing perfect matching of its vertices as a graph H^{\prime}, see Figure 2.7.

We have to be more careful because there might not be one universal matching H^{\prime} such that H can be replaced by H^{\prime} in an arbitrary 3-connected cubic graph without creating a bridge.

Figure 2.7: One example of possible non-crossing perfect matching used as graph H^{\prime}.

Definition 2.11 ([13, Definition A.5.1, page 296]). Let G be a graph and v be a vertex of G and $F \subset E_{G}(v)$. The graph $G_{[v ; F]}$ is obtained from G by splitting the edges of F away from v, i.e. adding a new vertex v^{\prime} and changing the end v of the edges of F to be v^{\prime}.
Theorem 2.12 (Vertex Splitting Lemma [13, Theorem A.5.2, page 296]). Let G be a connected bridgeless graph, $v \in V_{G}($ with $d(v) \geq 4)$, and $e_{0}, e_{1}, e_{2} \in E_{G}(v)$. Then either $G_{\left[v ;\left\{e_{0}, e_{1}\right\}\right]}$ or $G_{\left[v ;\left\{e_{0}, e_{2}\right\}\right]}$ is connected and bridgeless unless $G_{\left[v ;\left\{e_{0}, e_{1}, e_{2}\right\}\right]}$ is not connected, i.e. $\left\{e_{0}, e_{1}, e_{2}\right\}$ is edge-cut.
Theorem 2.13. Let G be a 3-connected cubic graph containing $H=C_{2 k}$ ($k>1$) as a subgraph. Then there exists some non-crossing perfect matching H^{\prime} such that replacing H by H^{\prime} in a graph G does not create any bridge.
Proof. We will proceed by induction.
For $k=2$, let $e_{1}, e_{2}, e_{3}, e_{4}$ be the edges of G neighboring $H=C_{4}$ in clockwise direction and G / H be the graph obtained from G by contracting all edges of H into new vertex v. If $G / H_{\left[v ;\left\{e_{1}, e_{2}, e_{4}\right\}\right]}$ is not connected then e_{3} is a bridge in G / H and also in G, which is a contradiction. Therefore by Theorem 2.12, either $G / H_{\left[v ;\left\{e_{1}, e_{2}\right\}\right]}$ or $G / H_{\left[v ;\left\{e_{1}, e_{4}\right\}\right]}$ is connected and bridgeless. In both cases, decontraction of corresponding edges of H obtains non-crossing perfect matching.

For $k>2$, let $e_{1}, \ldots, e_{2 k}$ be the edges of G around H in clockwise direction, v_{i} be the end of e_{i} in H for $i=1, \ldots, 2 k$ and G / H be the graph obtained by contracting H into vertex v. In case that $G / H_{\left[v ;\left\{e_{1}, e_{2}, e_{2 k}\right\}\right]}$ is not connected, the graph obtained from G by deleting the edges $\left\{v_{2}, v_{3}\right\}$ and $\left\{v_{2 k-1}, v_{2 k}\right\}$ is not connected, which is a contradiction as G is 3 -connected.

Therefore by Theorem 2.12, either $G / H_{\left[v ;\left\{e_{1}, e_{2}\right\}\right]}$ or $G / H_{\left[v ;\left\{e_{1}, e_{2 k}\right\}\right]}$ is connected and bridgeless. In the first case, we decontract all edges of H except of $\left\{v_{2}, v_{3}\right\}$ and $\left\{v_{2 k}, v_{1}\right\}$ and add a new edge $\left\{v_{2 k}, v_{3}\right\}$ to obtain a graph G^{\prime}. In the second case, we decontract all edges except of $\left\{v_{1}, v_{2}\right\}$ and $\left\{v_{2 k-1}, v_{2 k}\right\}$ and add a new edge $\left\{v_{2 k-1}, v_{2}\right\}$ to obtain G^{\prime}. In both case, G^{\prime} can be easily transformed to a 3connected graph where vertices $v_{3}, \ldots, v_{2 k-1}$ together with either $v_{2 k}$ or v_{2} form a circuit of length $2(k-1)$. From the induction assumption, there exists noncrossing perfect matching $H^{\prime \prime}$ such that the replacement does not create a bridge. This graph together with either $\left\{e_{1}, e_{2}\right\}$ or $\left\{e_{2 k}, e_{1}\right\}$ obtains graph H^{\prime}.

As a corollary, we have to verify that H can be replaced by any non-crossing perfect matching. This can be done in similar way as in Subsection 2.1.2: $\chi(s)$ (or $\chi(s)$) is a row of $M_{H^{\prime}}$ if and only if there exists non-crossing perfect matching compatible with s (or $s \in s$, respectively).

Table 2.4 provides the comparison of the sizes of $M_{H^{\prime}}$ for our selection of H^{\prime} (marked as "pairs", see Figure 2.7) and the one selected by Kochol where one edge is isolated (marked as "1 edge", see Figure 2.6). The program for C_{8} run less than a minute, whereas it was about five hours for C_{10}.

H	H^{\prime}	size of M_{H}	size of $M_{H^{\prime}}$	$\operatorname{rank} M_{H}$	$\operatorname{rank} M_{H^{\prime}}$
C_{8}	pairs	122×81	149×81	62	62
C_{8}	1 edge	122×81	176×81	62	62
C_{10}	pairs	792×1079	1129×1079	539	539
C_{10}	1 edge	792×1079	1415×1079	539	539

Table 2.4: The comparison of sizes of the matrices for two possible graphs H^{\prime}.
In case of an odd circuit as H, we can end up with a non-crossing matching and a triangle. We have not studied this case yet.

Conclusion

In this Thesis, we have presented a comprehensive view on the method introduced by Kochol in 2006 and improved in 2010 [7, 8].

Since Kochol did not share his implementation, we have also created program that has validated his results. Moreover, we have proved that any minimal counterexample to the 5 -Flow Conjecture does not contain any circuit of length less than 12. This extends Kochol's result by excluding C_{11}. The source code of the program is provided.

The Future Work

Further work in this area can take some of the following directions:

- optimizing the source code and possibly using a combination of other programming languages to compute even larger matrices,
- studying more possible graphs in the role of H or H^{\prime} in order to exclude some families of graphs from minimal counterexamples,
- studying some other ways to reduce the size of computed matrices,
- using the method on other open problems, e.g. other Tutte's conjectures.

Bibliography

[1] Appel, K. I. and Haken, W. Every planar map is four colorable. Bulletin of the American Mathematical Society, 82 (5), 711-712, 1976. doi:10.1090/S0002-9904-1976-14122-5.
[2] Appel, K. I. and Haken, W. Every planar map is four colorable. Part I: Discharging. Illinois Journal of Mathematics, 21 (3), 429-490, 1977. Available from: http://projecteuclid.org/euclid.ijm/1256049011.
[3] Appel, K. I., Haken, W., and Koch, J. Every planar map is four colorable. Part II: Reducibility. Illinois Journal of Mathematics, 21 (3), 491-567, 1977. Available from: http://projecteuclid.org/euclid.ijm/ 1256049012.
[4] Celmins, U. A. On cubic graphs that do not have an edge 3-coloring. Ph.D. thesis, Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada, 1984.
[5] Jaeger, F. Flows and generalized coloring theorems in graphs. Journal of Combinatorial Theory, Series B, 26 (2), 205-216, 1979. doi:10.1016/0095-8956(79)90057-1.
[6] Kochol, M. Reduction of the 5 -flow conjecture to cyclically 6-edgeconnected snarks. Journal of Combinatorial Theory, Series B, 90 (1), 139145, 2004. doi:10.1016/s0095-8956(03)00080-7.
[7] Kochol, M. Restrictions on smallest counterexamples to the 5-flow conjecture. Combinatorica, 26 (1), 83-89, 2006. doi:10.1007/s00493-006-0006-1.
[8] Kochol, M. Smallest counterexample to the 5 -flow conjecture has girth at least eleven. Journal of Combinatorial Theory, Series B, 100 (4), 381-389, 2010. doi:10.1016/j.jctb.2009.12.001.
[9] Robbins, H. E. A theorem on graphs, with an application to a problem of traffic control. The American Mathematical Monthly, 46 (5), 281-283, 1939. doi:10.2307/2303897.
[10] Seymour, P. D. Nowhere-zero 6-flows. Journal of Combinatorial Theory, Series B, 30 (2), 130-135, 1981. doi:10.1016/0095-8956(81) 90058-7.
[11] Stein, W. A. et al. Sage Mathematics Software (Version 5.9). The Sage Development Team, 2013. Available from: http://www.sagemath.org.
[12] Tutte, W. T. A contribution to the theory of chromatic polynomials. Canadian Journal of Mathematics, 6 (1), 80-91, 1954. doi:10.4153/cjm-1954-010-9.
[13] Zhang, C.-Q. Integer Flows and Cycle Covers of Graphs. No. 205 in Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York, 1997. ISBN 0-8247-9790-6.

Lists of Figures, Tables and Code Snippets

List of Figures

1.1 An example of a pair of dual graphs. 3
1.2 The definition of an orientation \vec{G} and a mapping f. 4
2.1 A contraction of C_{3}. 6
2.2 Flow in the neighborhood of C_{3} before and after decontraction 7
2.3 Examples of sunlets: $\widetilde{C_{3}}$ and $\widetilde{C_{4}}$ 8
2.4 Graphs \widetilde{H} and \widetilde{I} obtained from a graph G. 10
2.5 Graph G^{\prime} obtained from G by replacing H by H^{\prime}. 11
2.6 Example of H and H^{\prime} from Theorem 2.6 used by Kochol. 13
2.7 One example of possible non-crossing perfect matching. 17
List of Tables
2.1 Examples of $s \in S_{4}$ and corresponding $\chi_{4}(s)$ and $F_{\widetilde{C_{4}}, U}(s)$. 9
2.2 The sizes and ranks of some matrices M_{n} and M_{H}. 13
2.3 The sizes and ranks of some matrices M_{H} and M_{H} 15
2.4 The comparison of sizes of the matrices for two possible graphs H^{\prime}. 18
List of Code Snippets
2.1 LU decomposition after matrix buffer overflow. 16
2.2 First way of generating n-tuples 16
2.3 Second way of generating n-tuples. 16

List of Notation

$C_{n} \quad$ circuit with n vertices
$d_{G}(v) \quad$ degree of vertex v in graph G
$E_{G} \quad$ set of the edges of the graph G
$E_{G}(v) \quad$ set of the edges of the graph G with some end in v
$E_{\vec{G}}^{+}(v) \quad$ set of the arcs of the graph \vec{G} with tails in v
$E_{\vec{G}}^{-}(v) \quad$ set of the arcs of the graph \vec{G} with heads in v
$F_{G, U}(s)$ number of flows on (G, U) with flow s on terminals; see page 8
$\boldsymbol{F}_{G, U}(\boldsymbol{s})$ number of flows on (G, U) with flow $s \in \boldsymbol{s}$ on terminals; see page 14
$f^{+}(v) \quad$ sum of all flow leaving vertex v
$f^{-}(v) \quad$ sum of all flow entering vertex v
$G-e \quad$ graph obtained from G by deleting edge e
$G / H \quad$ graph obtained from G by contracting all edges of H into a new vertex
$G[V] \quad$ subgraph of graph G induced by vertices V
$\widetilde{G} \quad$ graph obtained from G by adding a distinct edge and vertex to each vertex of degree 2 ; see page 9
$(G, U) \quad$ network with graph G and terminals U
$\mathcal{P}_{n} \quad$ set of all proper partitions of $\{1, \ldots, n\}$; see page 8
$\mathcal{P}_{n} \quad$ set of all classes of proper partitions of $\{1, \ldots, n\}$ according to permutation group Γ; see page 14
$S_{n} \quad$ set of all $\left(\mathbb{Z}_{5} \backslash\{0\}\right)^{n}$ vectors with sum 0 ; see page 8
$\boldsymbol{S}_{n} \quad$ set of all classes of $\left(\mathbb{Z}_{5} \backslash\{0\}\right)^{n}$ vectors with sum 0 according to permutation group Γ; see page 14
$V_{G} \quad$ set of the vertices of the graph G
$\mathbb{Z}_{5} \quad$ Abelian group on $\{0,1,2,3,4\}$
$\chi(s, P) \quad$ compatibility of vector s and partition P; see page 8
$\boldsymbol{\chi}(\boldsymbol{s}, \boldsymbol{P}) \quad$ compatibility of class \boldsymbol{s} and class \boldsymbol{P}; see page 14
$\chi_{n}(s) \quad$ compatibility vector of vector s; see page 8
$\boldsymbol{\chi}_{n}(\boldsymbol{s}) \quad$ compatibility vector of class \boldsymbol{s}; see page 14

APPENDICES

Appendix A

Source Code of the Programs

The source code that we provide here is the minimal working code. The full source code is available online on author's website http://kam.mff.cuni.cz/ ~korcsok/masterthesis/. The full code also provide special functions, such as:

- program prints progress messages on console,
- the matrices are automatically saved on disk and
- there is possibility to compute only one of the matrices (for the case of large matrices).

A. 1 Kochol's Basic Method

This method uses only Theorem 2.5 with $H=C_{n}$.

```
def Partitions(List):
    |||
        Generates all proper partitions of List.
    " ""
    if len(List)==0:
        return [ [] ]
    if len(List)==1:
        return [ ]
    Res = []
    for A in Subsets( List[:-1] ):
        if len (A)>0:
            M= List[:-1]
            for a in A:
                    M.remove(a)
            AA = A.list() + [List[ - 1]]
            Res }+=[r+[AA ] for r in Partitions(M) ] [
    return Res
    Partitions
def NTuples(n):
    " " "
        Generates all n-tuples of {1, 2, 3, 4}`n.
    " " ""
    if n==0:
```

```
        yield []
        return
    for t in NTuples(n-1):
    for i in [1, 2, 3, 4]:
        yield t + [i]
# NTuples
def TerminalValues(n):
    " " "
        Generates all values of n terminals with
        - first item = 1,
        - sum of all items=0.
        " " " "
        if n}<=1\mathrm{ :
            yield []
            return
    for t in NTuples(n-2):
            T}=[1]+\textrm{t
            s = Integers(5)(0)
            for i in T:
                s += i
            if s!=0:
                yield T + [-s]
# TerminalValues
def Compatibility(Partition, TerminalValues):
        " " "
            Returns 1 if the partition is compatible with
            vales on terminals.
        " ""
    for Class in Partition:
            s = Integers(5)(0)
            for Index in Class:
                    s += TerminalValues[Index]
            if s!=0:
                return 0
    return 1
# Compatibility
def Chi(Partitions, TerminalValues):
        " " " "
            Returns the vector of compatibility.
        " " "
    return [Compatibility(P, TerminalValues) for P in Partitions]
# Chi
```

```
80
81
82
83
84
85
86
87
88
89
90
def IsFlow(TerminalValues):
    | | |
            Returns True if there exists a flow
            with given values on terminals.
        " " " "
        val = [ Integers(5)(i) for i in range(1,5) ]
        for Val in TerminalValues:
            val = [ v + Val for v in val if v + Val > 0 ]
        return len(val) > 0
    IsFlow
def Generate(n, Buffer):
    " " "
            Generates the matrices M_n and M_{ {C_n} and
            counts their ranks.
            If some matrix is too long the rank is computed
            by parts with matrix buffer of given size.
        " " "
    Parts = Partitions(range(n))
    Vals = TerminalValues(n)
    Mn = []
    MCn = []
    rn}=
    rCn = 0
    for V in Vals:
        X = Chi(Parts, V)
        Mn +=[ X ]
        rn +=1
        if rn >= Buffer:
            M= Matrix(QQ,Mn)
            rn = M.rank()
            P},\quad\textrm{L},\textrm{U}=\textrm{M}.\textrm{LU}(
            Mn=[ U[i].list() for i in range(rn) ]
            if IsFlow(V):
            MCn +=[ X ]
            rCn += 1
            if rCn >= Buffer:
                M = Matrix(QQ, MCn)
                rCn = M. rank()
                P, L, U = M.LU()
                MCn = [ U[i].list() for i in range(rCn) ]
    Mn = Matrix(Mn)
    MCn = Matrix (MCn)
    rn = Mn.rank()
```

```
131 rCn = MCn.rank()
132
133 return [ n, rn, rCn ]
1 3 4 ~ \# ~ G e n e r a t e
```


A. 2 Kochol's Advanced Method

This method uses Theorem 2.9 with $H=C_{n}, H^{\prime}$ as displayed on Figure 2.6 and $\Gamma=D_{n}$.

```
def Partitions(List):
```

 " ॥ ॥
 Generates all proper partitions of List.
 || " |"
 if \(\operatorname{len}(\) List \()==0\) :
 yield []
 return
 if \(\operatorname{len}(\) List \()==1\) :
 return
 for A in Subsets (List[:-1]):
 if len \((A)>0\) :
 \(\mathrm{M}=\operatorname{List}[:-1]\)
 for a in A:
 M. remove (a)
 \(\mathrm{AA}=\mathrm{A} . \operatorname{list}()+[\) List \([-1]]\)
 for \(r\) in Partitions (M):
 yield r + [AA]
 \# Partitions
def Classes(Partition):
" " "
Returns a list determining the class
where the partition belongs.
" " "
$m=\max ([\max (\mathrm{p})$ for p in Partition])
Res $=\operatorname{range}(\mathrm{m}+1)$
for P in Partition:
$m=\min (P)$
for p in P :
$\operatorname{Res}[\mathrm{p}]=\mathrm{m}$
return Res
\# Classes
def IsMinPartition(Part, Gamma):
"" "
Returns True if given partition is

```
            lexicographically minimal in its class.
        " ""
        X = Classes(Part)
    for r in [GammaPartition(g, Part) for g in Gamma]:
        x = Classes(r)
        if x}<\textrm{X}
        return False
    return True
# IsMinPartition
def GammaPartition(Gamma, Partition):
    " " " "
        Applies permutation Gamma on Partition.
    " "" "
    Res = Set([])
    for P in Partition:
        P_}=\operatorname{Set}([Gamma[r]-1 for r in P]),
            Res = Res.union(Set ([P_]))
    return Res
# GammaPartition
def PartitionClasses(Partitions, Gamma):
    " "" "
            Returns list of classes of partitions.
    " " "
    Res = []
    for Partition in Partitions:
            if IsMinPartition(Partition, Gamma):
                Res }+=[\mathrm{ Set([ GammaPartition(g, Partition) for g in
                    Gamma ]) ]
    return Res
# PartitionClasses
def NTuples(n):
    " ""
        Generates all n-tuples of {1, 2, 3, 4}^n.
    " " "
    if n==0:
        yield []
        return
    for t in NTuples(n-1):
            for i in [1, 2, 3, 4]:
```

```
yield t + [i]
# NTuples
def TerminalValues(n):
    | " "
            Generates all values of n terminals with
            - first item = 1,
            - sum of all items = 0.
        " " "
        if n<=1:
            yield []
            return
        for t in NTuples(n-2):
            h}=[1]+\textrm{t
            s = Integers(5)(0)
            for i in h:
                s += i
            if s!=0:
                yield h + [-s]
# TerminalValues
def Compatibility(Partition, TerminalValues):
        " " "
            Returns 1 if the partition is compatible with
            vales on terminals.
        " " "
        for Class in Partition:
            s = Integers(5)(0)
            for Index in Class:
            s += TerminalValues[Index]
            if s!=0:
            return 0
    return 1
# Compatibility
def Chi(PartitionClasses, TerminalValues):
        """
            Returns the vector of compatibility.
        """
    return [sum(Compatibility(P, TerminalValues) for P in Part)
            for Part in PartitionClasses]
# Chi
def IsFlow(TerminalValues):
        " ""
```

```
            Returns True if there exists a flow
```

 Returns True if there exists a flow
 with given values on terminals.
 with given values on terminals.
 | | |
 | | |
 val=[Integers(5)(i) for i in range(1,5)]
 val=[Integers(5)(i) for i in range(1,5)]
 for Val in TerminalValues:
 for Val in TerminalValues:
 val =[v + Val for v in val if v + Val > 0]
 val =[v + Val for v in val if v + Val > 0]
 return len(val) > 0
 return len(val) > 0

IsFlow

IsFlow

def EncodeTerminalValues (Values):
def EncodeTerminalValues (Values):
" " "
" " "
Encodes values on terminals into one number.
Encodes values on terminals into one number.
" " "
" " "
if len(Values) = 1:
if len(Values) = 1:
return Integer(Values[-1] - 1)
return Integer(Values[-1] - 1)
return 4 * EncodeTerminalValues(Values [:-1]) + Integer(Values
return 4 * EncodeTerminalValues(Values [:-1]) + Integer(Values
[-1]-1)
[-1]-1)

EncodeTerminalValues

EncodeTerminalValues

def GammaValues(Values, Gamma):
def GammaValues(Values, Gamma):
" " "
" " "
Applies permutation Gamma on Values.
Applies permutation Gamma on Values.
" ""
" ""
Res = []
Res = []
for i in range(len(Values)):
for i in range(len(Values)):
Res }+=[\mathrm{ Values[Gamma[i] - 1]]
Res }+=[\mathrm{ Values[Gamma[i] - 1]]
s}=1/Integers(5)(Res[0]
s}=1/Integers(5)(Res[0]
if s != 1:
if s != 1:
return [i * s for i in Res]
return [i * s for i in Res]
return Res
return Res

GammaValues

GammaValues

def Generate(n, Buffer):
def Generate(n, Buffer):
" " " "
" " " "
Generates the matrices M_n and M'_n and
Generates the matrices M_n and M'_n and
counts their ranks.
counts their ranks.
If some matrix is too long the rank is computed
If some matrix is too long the rank is computed
by parts with matrix buffer of given size.
by parts with matrix buffer of given size.
" """
" """
G = DihedralGroup (n)
G = DihedralGroup (n)
Gamma = [g.tuple() for g in G]
Gamma = [g.tuple() for g in G]
PartCls = PartitionClasses(Partitions(range(n)), Gamma)
PartCls = PartitionClasses(Partitions(range(n)), Gamma)
PartSml = [range(n-2), [n-2, n-1]]

```
        PartSml = [ range(n-2), [ n-2, n-1 ] ]
```

```
Vals \(=\) TerminalValues ( n )
Used \(=\) []
for \(i\) in range \(\left(4^{\wedge}(n-1)\right)\) :
    Used \(+=\) [ False ]
\(\mathrm{Mn}=[]\)
\(\mathrm{MMn}=[]\)
\(\mathrm{rn}=0\)
rrn \(=0\)
for \(H\) in Vals:
    if Used[EncodeTerminalValues (H)]:
        continue
```

 Used [EncodeTerminalValues (H)] = True
 \(\mathrm{X}=\mathrm{Chi}(\) PartCls, H\()\)
 if IsFlow (H):
 for \(G\) in Gamma:
 Used [EncodeTerminalValues (GammaValues (H, G))] = True
 \(\mathrm{Mn}+=[\mathrm{X}]\)
 rn \(+=1\)
 if \(\mathrm{rn}>=\) Buffer:
 \(M=\operatorname{Matrix}(\mathrm{QQ}, \mathrm{Mn})\)
 rn \(=\) M. rank ()
 \(\mathrm{P}, \mathrm{L}, \mathrm{U}=\mathrm{M} . \mathrm{LU}()\)
 \(M n=[U[i] . l i s t()\) for \(i\) in range(rn) \(]\)
 \(\mathrm{MMn}+=[\mathrm{X}]\)
 rrn \(+=1\)
 if \(\operatorname{rrn}>=\) Buffer:
 \(\mathrm{M}=\operatorname{Matrix}(\mathrm{QQ}, \mathrm{MMn})\)
 \(\operatorname{rrn}=\mathrm{M} \cdot \operatorname{rank}()\)
 \(\mathrm{P}, \mathrm{L}, \mathrm{U}=\mathrm{M} . \mathrm{LU}()\)
 \(\mathrm{MMn}=[\mathrm{U}[\mathrm{i}] . \operatorname{list}()\) for i in range(rrn)]
 continue
 if (Compatibility \((\) PartSml, H\()=1)\) and IsFlow \((\mathrm{H}[:-2])\) :
 for \(G\) in Gamma:
 Used [EncodeTerminalValues (GammaValues(H, G))] = True
 \(\mathrm{MMn}+=[\mathrm{X}]\)
 rrn \(+=1\)
 if \(\mathrm{rrn}>=\) Buffer:
 \(\mathrm{M}=\operatorname{Matrix}(\mathrm{QQ}, \mathrm{MMn})\)
 rrn \(=\) M. rank ()
 \(\mathrm{P}, \mathrm{L}, \mathrm{U}=\mathrm{M} . \mathrm{LU}()\)
 \(M M n=[\mathrm{U}[\mathrm{i}] . \operatorname{list}()\) for i in range(rrn)]
 \(\mathrm{Mn}=\) Matrix (Mn)
 \(\mathrm{MMn}=\) Matrix \((\mathrm{MMn})\)
 \(\mathrm{rn}=\mathrm{Mn} . \operatorname{rank}()\)
 \(\operatorname{rrn}=\mathrm{MMn} . \operatorname{rank}()\)
 return [\(\mathrm{n}, \mathrm{rn}, \mathrm{rrn}\)]
 Generate

A. 3 Modificated Advanced Method

This is the modification discussed in Section 2.2 and it also uses Theorem 2.9 with $\Gamma=D_{n}$.

First 179 lines are the same as in Section A.2.

```
def IsMatching(TerminalValues):
    " " "
        Returns True if there exists a perfect matching
        with given values on terminals.
    " " "
    l = len(TerminalValues)
    if l=0:
        return True
    if l=1.
        return False
    x = Integers(5)(0)
    for i in range(l-1):
        if x + TerminalValues[i] + TerminalValues[i+1] = 0:
            H}=\mathrm{ TerminalValues[:i] + TerminalValues[i+2:]
            return IsMatching(H)
    if x + TerminalValues[0] + TerminalValues[l-1] = 0:
        return IsMatching(TerminalValues[1:l-2])
    return False
# IsMatching
def Generate(n, Buffer):
    " " "
        Generates the matrices M_n and M'_n and
        counts their ranks.
        If some matrix is too long the rank is computed
        by parts with matrix buffer of given size.
    " " "
    G = DihedralGroup(n)
    Gamma = [ g.tuple() for g in G ]
    PartCls = PartitionClasses(Partitions(range(n)), Gamma)
    Vals = TerminalValues(n)
```

```
Used = []
for i in range(4^}(n-1))
    Used }+=[\mathrm{ False ]
Mn = []
MMn = []
rn = 0
rrn = 0
for H in Vals:
    if Used[EncodeTerminalValues (H)]:
        continue
    Used[EncodeTerminalValues (H)] = True
    X = Chi(PartCls, H)
    if IsFlow(H):
        for G in Gamma:
                    Used[EncodeTerminalValues (GammaValues(H,G))] = True
        Mn +=[ X ]
        rn += 1
        if rn >= Buffer:
                M= Matrix(QQ, Mn)
                    rn = M.rank()
            P, L, U = M.LU()
            Mn=[ U[i].list() for i in range(rn) ]
        MMn += [ X ]
        rrn += 1
        if rrn >= Buffer:
            M= Matrix(QQ,MMn)
                rrn = M.rank()
                P}, L, U = M.LU(
                MMn=[ U[i].list() for i in range(rrn) ]
            continue
    if IsMatching(H):
        for G in Gamma:
            Used[EncodeTerminalValues (GammaValues(H,G))] = True
        MMn += [ X ]
        rrn += 1
        if rrn >= Buffer:
            M= Matrix(QQ,MMn)
            rrn = M.rank()
            P, L, U = M.LU()
            MMn=[ U[i].list() for i in range(rrn) ]
```

```
\(266 \quad \mathrm{Mn}=\) Matrix (Mn)
\({ }_{267} \quad \mathrm{MMn}=\) Matrix \((\mathrm{MMn})\)
\(268 \quad \mathrm{rn}=\mathrm{Mn} \cdot \operatorname{rank}()\)
\(269 \quad \mathrm{rrn}=\mathrm{MMn} . \operatorname{rank}()\)
270
271 return [ \(\mathrm{n}, \mathrm{rn}, \operatorname{rrn}\) ]
272 \# Generate
```

