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Chapter 1IntrodutionThe priniple of spontaneous symmetry breaking underlies muh of our urrent under-standing of the world around us. Although it has been introdued and developed in fullgenerality in partile physis, its appliations also over a large part of ondensed matterphysis, inluding suh fasinating phenomena as superondutivity, superuidity, andBose{Einstein ondensation.Ever sine the very birth of siene, philosophers, and later physiists, admired the beautyof the laws of nature, one of their most appealing features always being the symmetry.Indeed, it was symmetry onsiderations that lead Einstein to the reation of his theory ofgravity, the general relativity, and it is symmetry that is the basi building blok of themodern theories of the other fundamental interations as well as all attempts to reonilethem with Einstein's theory.Symmetry is not only aestheti, it is also pratial. It provides an invaluable guideto onstruting physial theories and one applied, imposes severe onstraints on theirstruture. This philosophy has, in partiular, lead to the development of methods thatallow us to exploit the symmetry ontent of the system even if we atually annot solvethe equations of motion. The theory of groups and their representations was �rst appliedin quantum mehanis to the problem of atomi and moleular spetra, and later inquantum �eld theory, starting from the quark model and urrent algebra and evolving tothe ontemporary gauge theories of strong and eletroweak interations, and the modernonept of e�etive �eld theory.There are many physial systems that, at �rst sight, display asymmetri behavior, yetthere is a reasonable hope that they are desribed by symmetri equations of motion. Suha belief may be based, for instane, on the existene of a normal, symmetri phase, like inthe ase of superondutors and superuids. Another nie example was provided by thehistorial development of the standard model of eletroweak interations. By the sixties,it was known that the only renormalizable quantum �eld theories inluding vetor bosonswere of the Yang{Mills type. It was, however, not lear how to marry the non-Abeliangauge invariane of the Yang{Mills theory with the requirement enfored by experiment,that the vetor bosons be massive.All these issues are resolved by the ingenious onept of a spontaneously broken symmetry.The atual behavior of the physial system is determined by the solution of the equationsof motion, whih may violate the symmetry even though the ation itself is symmetri.4



Introdution 5The internal beauty of the theory is thus preserved and, moreover, one is able to desribesimultaneously the normal phase and the symmetry-breaking one. Just hoose the solutionwhih is energetially more favorable under the spei�ed external onditions.This thesis presents a modest ontribution to the physis of spontaneous symmetry break-ing within the standard framework for the strong and eletroweak interations and slightlybeyond. The ore of the thesis is formed by the researh papers whose opies are attahedat the end. Throughout the text, these artiles are referred to by apital roman numbersin square brakets, while the work of others is quoted by arabi numbers. The alulationsperformed in the published papers are not repeated. We merely summarize the resultsand provide a guide for reading these artiles and, to some extent, their omplement.The thesis is a olletion of works on diverse topis, ranging from dynamial eletroweaksymmetry breaking to olor superondutivity of dense quark matter and Goldstone bosonounting in dense relativisti systems. Rather than giving an exhaustive review of eah ofthem, we try to keep lear the unifying onept of spontaneous symmetry breaking andemphasize the similarity of methods used to desribe suh vastly di�erent phenomena.Of ourse, suh a text annot (and is not aimed to) be self-ontained, and the bibliographyannot over all original literature as well. In most ases, only those soures are quotedthat were diretly used in the ourse of writing. For sake of ompleteness we quote severalreview papers where the original referenes an also be found. The less experiened reader,e.g. a student or a non-expert in the �eld, is provided with a ouple of referenes to leturenotes on the topis overed.The thesis is organized as follows. The next hapter ontains an introdution to thephysis of spontaneous symmetry breaking. We try to be as general as possible to overboth relativisti and nonrelativisti systems. The following three hapters are devoted tothe three topis investigated during the PhD study. Chapter 3 elaborates on the generalproblem of the ounting of Goldstone bosons, in partiular in relativisti systems at �nitedensity. The eletroweak interations are onsidered in Chapter 4 and an alternativeway of dynamial eletroweak symmetry breaking is suggested. Finally, in Chapter 5 westudy dense matter onsisting of quarks of a single avor and propose a novel mehanismfor quark pairing, leading to an unonventional olor-superonduting phase. After thesummary and onluding remarks, the full list of author's publiations as well as otherreferenes are given. The reprints of the researh papers published in peer-reviewedjournals, forming an essential and inseparable part of the thesis, are attahed at the end.



Chapter 2Spontaneous symmetry breakingIn this hapter we review the basi properties of spontaneously broken symmetries. Firstwe disuss the general features, from both the physial and the mathematial point ofview. To illustrate the rather subtle tehnial issues assoiated with the implementationof the broken symmetry on the Hilbert spae of states, a simple example is worked out insome detail { the Heisenberg ferromagnet.After the general introdution we turn our attention to the methods of desription of spon-taneously broken symmetries. We start with a short disussion of the model-independentapproah of the e�etive �eld theory, and then reall two partiular models that we takeup in the following hapters { the linear sigma model and the Nambu{Jona-Lasinio model.An extensive review of the physis of spontaneous symmetry breaking is given in Ref.[1℄. A pedagogial introdution with emphasis on the e�etive-�eld-theory desription ofGoldstone bosons may be found in the leture notes [2, 3, 4, 5℄.2.1 General featuresWe shall be onerned with spontaneously broken ontinuous internal symmetries, thatone meets in physis most often. The reason for suh a restrition is twofold. First, thisis exatly the sort of symmetries we shall deal with in the partiular appliations to thestrong and eletroweak interations. Seond, on the general ground, spontaneous breakingof disrete symmetries does not give rise to the most interesting existene of Goldstonebosons, while spaetime symmetries are more subtle, see Ref. [6℄.As already noted in the Introdution, a symmetry is said to be spontaneously broken, ifit is respeted by the dynamial equations of motion (or, equivalently, the ation fun-tional), but is violated by their partiular solution.1 In quantum theory we use, however,operators and their expetation values rather than solutions to the lassial equations ofmotion. Sine virtually all information about a quantum system may be obtained withthe knowledge of its ground state, it is only neessary to de�ne spontaneous breaking ofa symmetry in the ground state or, the vauum [9℄.1For a nie introdutory aount as well as several lassial examples see Refs. [7, 8℄.6



Spontaneous symmetry breaking 72.1.1 Realization of broken symmetryConsider the group of symmetry transformations generated by the harge Q. If thesymmetry were a true, unbroken one, it would be realized on the Hilbert spae of statesby a set of unitary operators. In suh a ase, their existene is guaranteed by the Wignertheorem [10℄ and we speak of the Wigner{Weyl realization of the symmetry. The vauumis assumed to be a disrete, nondegenerate eigenstate of the Hamiltonian. Consequently,it bears a one-dimensional representation of the symmetry group, and therefore also isan eigenstate of the harge Q. The exited states are organized into multiplets of thesymmetry, whih may be higher-dimensional provided the symmetry group is non-Abelian.By this heuristi argument we have arrived at the de�nition of a spontaneously brokensymmetry: A symmetry is said to be spontaneously broken if the ground state is not aneigenstate of its generator Q. A very lean physial example is provided by the ferro-magnet. Below the Curie temperature, the eletron spins align to produe spontaneousmagnetization. While the Hamiltonian of the ferromagnet is invariant under the SU(2)group of spin rotations (not to be mixed up with spatial rotations { see Setion 2.2 formore details), this alignment learly breaks all rotations exept those about the diretionof the magnetization.Note that as a neessary ondition for symmetry breaking it is usual to demand just thatthe generator Q does not annihilate the vauum. Suh a riterion, however, does not ruleout the possibility that the ground state is an eigenstate of Q with nonzero eigenvalue.On the other hand, the vauum harge an always be set to zero by a onvenient shift ofthe harge operator.A distinguishing feature of broken symmetry is that the vauum is in�nitely degenerate.In the ase of the ferromagnet, the degeneray orresponds to the hoie of the diretion ofthe magnetization. In general, the ground states are labeled by the values of a symmetry-breaking order parameter. Formally, the various ground states are onneted by thebroken-symmetry transformations.With this intuitive piture in mind a natural question arises, whether a physial systematually hooses as its ground state one of those with a de�nite value of the order pa-rameter, or their superposition. To �nd the answer, we go to �nite volume and swithon a weak external perturbation (suh as a magneti �eld). The degeneray is now liftedand there is a unique state with the lowest energy. This mehanism is alled vauumalignment.After we perform the in�nite volume limit and let the perturbation go to zero (in thisorder), we obtain the appropriate ground state. In order for this argument to be onsistent,however, the resulting set of physially aeptable vaua should not depend on the hoieof perturbation. Indeed, it follows from the general priniples of ausality and lusterdeomposition that there is a basis in the spae of states with the lowest energy suh thatall observables beome diagonal operators in the in�nite volume limit [11℄.We have thus ome to the onlusion that the orret ground state is one in whih theorder parameter has a de�nite value. The superpositions of suh states do not survivethe in�nite volume limit and therefore are not physial. Moreover, transitions betweenindividual vaua are not possible. This means that rather than being a set of ompetingground states within a single Hilbert spae, eah of them onstitutes a basis of a Hilbert



Spontaneous symmetry breaking 8spae of its own, all bearing inequivalent representations of the broken symmetry. This isalled the Nambu{Goldstone realization of the symmetry.To summarize, when a symmetry is spontaneously broken, the vauum is in�nitely de-generate. The individual ground states are labeled by the values of an order parameter.In the in�nite volume limit they give rise to physially inequivalent representations of thebroken symmetry. Transitions between di�erent spaes are only possible upon swithingon an external perturbation. This lifts the degeneray and by varying it smoothly, onean adiabatially hange the order parameter.This proedure an again be exempli�ed on the ase of the ferromagnet. To hangethe diretion of the magnetization, one �rst imposes an external magneti �eld in theoriginal diretion of the magnetization. The magneti �eld is next rotated, driving themagnetization to the desired diretion, and afterwards swithed o�.The issue of inequivalent realizations of the broken symmetry has rather subtle mathe-matial onsequenes [1℄, whih we now shortly disuss and later, in Setion 2.2, demon-strate expliitly on the ase of the ferromagnet. As already mentioned, the Hilbert spaeswith di�erent values of the order parameter are onneted by broken-symmetry trans-formations. The reason why they are alled inequivalent is that these broken-symmetrytransformations are not represented by unitary operators. They merely provide formalmappings between the various Hilbert spaes. By the same token, the generator Q is nota well de�ned operator in the in�nite volume limit. What is well de�ned is just its om-mutators with other operators, whih generate in�nitesimal symmetry transformations.Sine the broken symmetry is not realized by unitary operators, it is also not manifestedin the multiplet struture of the spetrum. This is determined by the unbroken part ofthe symmetry group. Let us, however, stress the fat that the broken symmetry is by nomeans similar to an approximate, but spontaneously unbroken one. Even though it doesnot generate multiplets in the spetrum, it still yields exat onstraints whih must besatis�ed by, e.g., the Green's funtions of the theory.2.1.2 Goldstone theoremOne of the most striking onsequenes of spontaneous symmetry breaking is the existeneof soft modes in the spetrum, ensured by the elebrated Goldstone theorem [12, 13℄.In its most general setting appliable to relativisti as well as nonrelativisti theories, itan be formulated as follows: If a symmetry is spontaneously broken, there must be anexitation mode in the spetrum of the theory whose energy vanishes in the limit of zeromomentum. In the ontext of relativisti �eld theory this, of ourse, means that theso-alled Goldstone boson is a massless partile.Several remarks to the Goldstone theorem are in order. First, in the general ase it doesnot tell us how many Goldstone modes there are. Anyone who learned �eld theory inthe framework of partile physis knows that in Lorentz-invariant theories, the numberof Goldstone bosons is equal to the number of broken-symmetry generators [11℄. Inthe nonrelativisti ase, however, the situation is more omplex and there is in fat noompletely general ounting rule that would tell us the exat number of the Goldstonemodes. This issue will be disussed in muh more detail in Chapter 3.



Spontaneous symmetry breaking 9
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Figure 2.1: Dispersion relations of the Goldstone bosons in four physially distint systems,onveniently normalized to have the same slope at the origin. 1. The Goldstone bosonin a relativisti �eld theory. 2. The aousti phonon in a solid. 3. The phonon-rotonexitation in the superuid helium. 4. The phonon in the relativisti linear sigma model at�nite hemial potential (see Chapter 3).Seond, there are tehnial assumptions whih, in some physially interesting ases, maybe avoided, thus invalidating the onlusions of the Goldstone theorem. A suÆientondition for the theorem to hold is the ausality whih is inherent in relativisti �eldtheories. The nonrelativisti ase is, again, more ompliated. In general, the Goldstonetheorem applies if the potential involved in the problem dereases fast enough towardsthe spatial in�nity. An example in whih this ondition is not satis�ed is provided bythe superondutors where the long-range Coulomb interation lifts the energy of thelow-momentum would-be Goldstone mode, produing a nonzero gap [14℄.Third, the Goldstone theorem gives us information about the low-momentum behavior ofthe dispersion relation of the Goldstone boson. In the absene of other gapless exitations,the long-distane physis is governed by the Goldstone bosons and an be onvenientlydesribed by an e�etive �eld theory. This does not tell us, however, anything about thehigh-energy properties of the Goldstone bosons. At high energy, the dispersion relationof the Goldstone mode is strongly a�eted by the details of the short-distane physis.It is thus not as simple and universal as the low-energy limit, but at the same time notuninteresting, as doumented by Fig. 2.1.Let us now briey reall the proof of the Goldstone theorem. The starting assumptionis the existene of a onserved urrent, j�(x). From its temporal omponent, the hargeoperator generating the symmetry is formed,Q(t) = Z d3x j0(x; t):The domain of integration is not indiated in this expression. The harge operator itselfis well de�ned only in �nite volume, but as long as its ommutators with other operatorsare onsidered, the integration may be safely extended to the whole spae [1℄.Now the broken-symmetry assumption about the ground state j0i is that a (possibly



Spontaneous symmetry breaking 10omposite) operator � exists suh thath0j[Q;�℄j0i 6= 0: (2.1)Note that this immediately yields our previous intuitive de�nition of broken symmetry:The vauum annot be an eigenstate of the harge Q. This vauum expetation value ispreisely what we alled an order parameter before.Inserting a omplete set of intermediate states into Eq. (2.1) and assuming the translationinvariane of the vauum, one arrives at the representationh0j[Q;�℄j0i =Xn (2�)3Æ(kn) �e�iE(kn)th0jj0(0)jnihnj�j0i � eiE(kn)th0j�jnihnjj0(0)j0i� :(2.2)Using the urrent onservation one an show that the Goldstone ommutator in Eq. (2.1)is time-independent provided the surfae term whih omes from the integral,Z d3x [r � j;�℄;vanishes. This is the entral tehnial assumption whih underlies the requirements ofausality or fast derease of the potential mentioned above.One this ondition is satis�ed, the time independene of the Goldstone ommutatorfores the right-hand side of Eq. (2.2) to be time-independent as well. This is, however,not possible unless there is a mode in the spetrum suh that limk!0E(k) = 0, whih isthe desired Goldstone boson.2.2 Toy example: Heisenberg ferromagnetThe general statements about spontaneous symmetry breaking will now be demonstratedon the Heisenberg ferromagnet. Consider a ubi lattie with a spin-12 partile at eahsite. The dynamis of the spins is governed by the HamiltonianH = �JXpairs si � sj; (2.3)whih is invariant under simultaneous rotations of all the spins, that form the groupSU(2).For simpliity we hoose the nearest-neighbor interation so that the sum in Eq. (2.3)runs only over the pairs of neighboring sites. The oupling onstant J is assumed positiveso that the interation favors parallel alignment of the spins. In �nite volume we shalltake up the periodi boundary ondition in order to preserve the (disrete) translationinvariane of the Hamiltonian (2.3).2.2.1 Ground stateThe salar produt of two neighboring spin operators may be simpli�ed tosi � sj = 12 �(si + sj)2 � (s2i + s2j)� = 12(si + sj)2 � 34 :



Spontaneous symmetry breaking 11It is now lear that the state with the lowest energy will be one in whih all pairs of spinswill be arranged to have total spin one. The salar produt si � sj then redues to 14 . Ina three-dimensional ubi lattie with N sites in total, there are altogether 3N suh pairsso that the ground-state energy of the ferromagnet isE0 = �34NJ:As we learned in the ourse of our general disussion of broken symmetries, the groundstate is in�nitely degenerate. The individual states may be labeled by the diretion ofthe magnetization, a unit vetor n. All spins are aligned to point in this diretion, whihmeans that the ground state vetor j
(n)i is a diret produt of one-partile states, theeigenvetors of the operators n � si with eigenvalue one half,j
(n)i = NYi=1 ji;ni; where (n � si)ji;ni = 12 ji;ni:The one-partile states may be expressed expliitly in terms of the two spherial angles�; ' in the basis of eigenstates of the third omponent of the spin operator,jni = � os �2ei' sin �2 � : (2.4)The two vetors ji;ni and ji;�ni form an orthonormal basis of the one-partile Hilbertspae Hi. The produts of these vetors then onstitute a basis of the full Hilbert spaeof the ferromagnet, H =NNi=1Hi.In �nite volume N , states with all possible diretions n an be aommodated withina single Hilbert spae. Two one-partile bases fjn1i; j � n1ig and fjn2i; j � n2ig are, asusual, onneted by the unitary transformation orresponding to the rotation that bringsthe vetor n1 to the vetor n2. Likewise, the two orresponding produt bases of the fullHilbert spae H are onneted by the indued unitary rotation on this produt spae.Let us now alulate the salar produt of the ground states assigned to two diretionsn1 and n2. By exploiting the rotational invariane of the system, we may rotate one ofthe vetors, say n1, to the z-axis. The expliit expression for the eigenvetors (2.4) thenyields hn1jn2i = os �n1;n22 , where �n1;n2 is the angle between the two unit vetors.The salar produt of the two ground-state vetors is then given byh
(n1)j
(n2)i = �os �n1;n22 �Nand it apparently goes to zero as N !1 unless n1 and n2 are (anti)parallel.Using a slightly di�erent formalism we shall now onstrut the whole Hilbert spae H(n)above the ground state j
(n)i and show that, in fat, any two vetors, one from H(n1)and the other from H(n2), are orthogonal in the limit N !1.Reall that the two-dimensional spae of spin 12 may be viewed as the Fok spae of thefermioni osillator. One de�nes an annihilation operator a(n) and a reation operatoray(n) so that a(n)jni = 0 and fa(n); ay(n)g = 1:



Spontaneous symmetry breaking 12These are atually nothing else than the lowering and raising operators familiar from thetheory of angular momentum. In addition to the identities above, they satisfy[a(n); ay(n)℄ = 2n � s; so that n � s = �ay(n)a(n) + 12 :When n = (0; 0; 1), these operators are just a = sx+ isy, ay = sx� isy, and in the generalase they an be found expliitly by the appropriate unitary rotation.The Hilbert spae H(n) is set up as a Fok spae above the vauum j
(n)i. In theground state all spins point in the diretion n, while the exited states are obtained bythe ation of the reation operators ayi(n) that ip the spin at the i-th lattie site tothe opposite diretion.2 The basis of the spae H(n) ontains all vetors of the formayi1(n)ayi2(n) � � � j
(n)i where a �nite number of spins are ipped.It is now obvious that in the in�nite-volume limit, all basis vetors from the spae H(n1)are orthogonal to all basis vetors from the spae H(n2) that is, these two spaes areompletely orthogonal.To put it in yet another way, at �niteN any vetor from the spaeH(n1) may be expressedas a linear ombination of the basis vetors of the spae H(n2), and thus these two spaesmay be identi�ed. This is, however, no longer true as N !1, for the linear ombinationin question then ontains an in�nite number of terms, and is divergent. There is no otherway out than treating the spaes H(n1) and H(n2) as distint, orthogonal ones.To summarize, in the limitN !1 one has a ontinuum of mutually orthogonal separableHilbert spaes H(n) labeled by the diretion of the magnetization n. In the absene ofexpliit symmetry breaking no transition between di�erent spaes is possible and one hasto hoose the vetor n one for all and work within the spaeH(n). Operators representingthe observables are then onstruted from the annihilation and reation operators ai(n)and ayi (n).The symmetry transformations are formally generated by the operator of the total spin,S =Pi si. It is now evident that those transformations that hange the diretion of themagnetization n, i.e. the spontaneously broken ones, are not realized by unitary operatorssine they do not operate on the Hilbert spae H(n). The only operator that does is theprojetion of the total spin on the diretion of the magnetization, n �S. This generates theunbroken subgroup. (Yet, this operator is unbound for N !1, but it an be normalizedby dividing by N to yield the spin density, whih is already �nite.)It is worth emphasizing, however, that physially all diretions n are equivalent. Measur-able e�ets an only arise from the hange of the diretion of n.2.2.2 Goldstone bosonOne may now ask where is the Goldstone boson assoiated with the spontaneous break-down of the SU(2) symmetry of the Hamiltonian (2.3). In the general disussion of theGoldstone theorem we assumed full translation invariane, while this lattie system hasonly a disrete one. Fortunately, this is not a problem in the in�nite-volume limit, where2Note that, in this setting, annihilation and reation operators at di�erent lattie sites ommute ratherthan antiommute as usual. The hange of sign indued by the interhange of two distinguishable fermionsis, however, merely a onvention.



Spontaneous symmetry breaking 13there is still a ontinuous momentum variable k to label one-partile states. The onlydi�erene is that only a �nite domain of momentum, the Brillouin zone, should be used.We shall therefore assume that ��=` � kx; ky; kz � +�=`, where ` is the lattie spaing.As we emphasized above, all diretions of n are physially equivalent, so we shall fromnow on set n = (0; 0; 1). The salar produt of two neighboring spins may be rewrittenin terms of the annihilation and reation operators,si � sj = 14(ai + ayi)(aj + ayj)� 14(ai � ayi )(aj � ayj) + (�ayiai + 12)(�ayjaj + 12) == �12(ayi � ayj)(ai � aj) + ayiaiayjaj + 14 : (2.5)Note that the Hamiltonian preserves the `partile number' that is, the number of ippedspins generated by the operator Pi ayiai. This is of ourse, up to irrelevant onstants,nothing but the third omponent of the total spin, whih is not spontaneously brokenand thus an be used to label physial states. We shall restrit our attention to the`one-partile' spae, spanned on the basis jii = ayi j
(n)i. The physial reason behind thisrestrition is that the sought Goldstone boson turns out to be the spin wave { a travelingperturbation indued by ipping a single spin.On the one-partile spae, the seond term on the right hand side of Eq. (2.5) gives zerowhile the onstant 14 may be dropped. The one-partile Hamiltonian thus readsH1P = J2 Xpairs(ayi � ayj)(ai � aj);and ats on the basis states as3H1Pjii = �J2 �ji+ 1i � 2jii+ ji� 1i�: (2.6)The disrete translation invariane is apparently not broken in the ground state. Thatmeans that the stationary states are simultaneously the eigenstates of the shift operator,T : jii ! ji + 1i. The eigenvalues of the shift operator are of the form eik`. Eq. (2.6)implies that the one-partile Hamiltonian is diagonalized in the basis of eigenstates of T .The orresponding energies areE(k) = J2 �2� eik` � e�ik`� = 2J sin2 k2̀ ; (2.7)and in three dimensions we would analogously �nd E(k) = 2J�sin2 kx`2 +sin2 ky`2 +sin2 kz`2 �.We have thus found our Goldstone boson, in the ase of the ferromagnet it is alled themagnon. We stress the fat that we used no approximation, so Eq. (2.7) is the exatdispersion relation of the magnon, and the eigenstate Pj eijk`jji is the exat eigenstateof the full Hamiltonian (2.3).Note also that there is just one Goldstone mode even though two symmetry generators,Sx and Sy, are spontaneously broken. This may be intuitively understood by ating3As the low-energy dynamis of the Goldstone boson is isotropi, we work without lak of generalityin one spae dimension. The index i now refers to the linear ordering of the spin hain.



Spontaneous symmetry breaking 14with either broken generator on the vauum j
(n)i. We �nd Sxj
(n)i = 12Pj jji andSyj
(n)i = i2Pj jji that is, both operators reate the same state, whih formally orre-sponds to the zero-momentum magnon. This fat appears to be tightly onneted to thedispersion relation of the magnon, whih is quadrati at low momentum. The phenomenonis quite general and its detailed disussion is deferred to Chapter 3.Having found the exat dispersion relation, it is suitable to omment on the issue of �nitevs. in�nite volume. Stritly speaking, there is no spontaneous symmetry breaking in �nitevolume. All the e�ets suh as the unitarily inequivalent implementations of the symmetryand the existene of a gapless exitation appear only in the limit of in�nite volume. Realphysial systems are, on the other hand, always �nite-sized. They are, however, largeenough ompared to the intrinsi mirosopi sale (here the lattie spaing `) of thetheory so that the in�nite-volume limit is both meaningful and pratial.In partiular, when the ferromagnet lattie is of �nite size N , the periodi boundaryondition requires the momentum k to be quantized, the minimum nonzero value beingkmin` = 2�=N . The energy gap in the magnon spetrum is then Emin � 2�2J=N2, whihis small enough for any marosopi system to be to set to zero.2.3 Desription of spontaneous symmetry breakingSo far we have been disussing the very general features of spontaneously broken symme-tries. To investigate a physial system in more detail, one next has to �x the Lagrangian.Before going into partiular models we shall make an aside and mention the very impor-tant onept of e�etive �eld theory.The method of e�etive �eld theory relies on the fat that, in the absene of other gaplessexitations, the long-distane physis of a spontaneously broken symmetry is governed bythe Goldstone bosons.4 One then onstruts the most general e�etive Lagrangian for theGoldstone degrees of freedom, ompatible with the underlying symmetry [11℄.The hief advantage of this approah is that it provides a model-independent desriptionof the broken symmetry. The point is that by exploiting the underlying symmetry, itessentially yields the most general parametrization of the observables in terms of a set oflow-energy oupling onstants.From the physial point of view, a disadvantage of e�etive �eld theory is that it tells usnothing about the origin of symmetry breaking { one simply has to assume a partiularform of the symmetry-breaking pattern.To show that the symmetry is broken at all and to speify the symmetry-breaking pattern,one has to �nd an appropriate order parameter. It is therefore not surprising that the issueof �nding a suitable order parameter is of key importane, and onsiderable diÆulty, forthe desription of spontaneous symmetry breaking.In the following, we reall two partiular models of spontaneous symmetry breaking. Theoperator whose vauum expetation value provides the order parameter is an elementary4Quite generally, the e�etive �eld theory approah may be applied whenever there are two or moreenergy sales in the system whih an be treated separately. It is thus not speial only to spontaneoussymmetry breaking. This philosophy is emphasized in the leture notes by Kaplan [3℄ and Manohar [4℄.
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Figure 2.2: The Mexian-hat potential in the everyday life { the Italian pasta sombreroni.�eld in the �rst ase, and a omposite objet in the seond one. In both ases, anapproximation is made suh that the quantum utuations of the order parameter arenegleted.2.3.1 Linear sigma modelPerhaps the most popular and universal approah to spontaneous symmetry breaking isto onstrut the Lagrangian so that it already ontains the order parameter. This is verymuh analogous to the Ginzburg{Landau theory of seond-order phase transitions. Oneintrodues a salar �eld5 and adjusts the potential so that it has a nontrivial minimum.The result is the paradigmati Mexian hat, see Fig. 2.2.The great virtue of this method is that the order parameter is provided by the vauumexpetation value of an elementary salar �eld, whih may be hosen onveniently toahieve the desired symmetry-breaking pattern. As a partiular example we shall nowreview the simplest model with Abelian symmetry.Starting with a pure salar theory, we de�ne the Lagrangian for a omplex salar �eld �as L� = ���y���+M2�y�� �(�y�)2: (2.8)This Lagrangian is invariant under the phase transformations � ! �ei� that form theAbelian group U(1). At tree level, the ground state is determined by the minimum ofthe stati part of the Lagrangian, whih is found at �y� = v2=2 = M2=2� so that thesymmetry is spontaneously broken. As explained in Setion 2.1.1, there is a ontinuumof solutions to this ondition (distinguished by their omplex phases) and the physialvauum may be hosen as any one of them, but not their superposition. This is the reasonwhy the following lassial analysis atually works.It is ustomary to hoose the order parameter real and positive i.e., we set h�i = v=p2.The salar �eld is next shifted to the minimum and parametrized as � = (v+H+i�)=p2.Upon this substitution the Lagrangian beomesL� = 12(��H)2 + 12(���)2 + 14M2v2 �M2H2 � �vH3� 14�H4 � 12�H�2 � 14�H2�2 � 14��4:The �rst three terms represent the kineti terms forH and � and minus the vauum energy5The order parameter has to be a salar unless one wants to break the spae-time symmetry [15℄.



Spontaneous symmetry breaking 16density, respetively. There is also the mass term for H, while the �eld � is massless {this is the Goldstone boson.It is instrutive to evaluate the U(1) Noether urrent in terms of the new �elds,j� = i(�y���� ���y�) = �v��� + (���H �H���): (2.9)We an see that the Goldstone boson is annihilated by the broken-symmetry urrent,as predited by the Goldstone theorem. The orresponding matrix element is given byh0jj�(0)j�(k)i / vk�, the onstant of proportionality depending on the normalization ofthe one-partile states.In the standard model of eletroweak interations, the salar �eld is in fat added justfor the purpose of breaking the gauge and global symmetries of the fermion setor. Thesame may be done in our toy model. We start with a free massless Dira �eld whoseLagrangian, L = � i=� , is invariant under the U(1)V � U(1)A hiral group. The massterm of the fermion violates the axial part of the symmetry and thus an be introduedonly after this is broken.To that end, we add the salar �eld Lagrangian L� and an interation term L� =y( � L R�+ � R L�y). The full Lagrangian, L = L +L�+L� , remains hirally invariantprovided the salar � is assigned a proper axial harge. The nontrivial minimum ofthe potential in Eq. (2.8) now breaks the axial symmetry spontaneously and, upon thereparametrization of the salar �eld, the fermion aquires the mass m = vy=p2.2.3.2 Nambu{Jona-Lasinio modelIn ontrast to the phenomenologial linear sigma model stands the idea of dynamialspontaneous symmetry breaking. Here, one does not introdue any arti�ial degrees offreedom in order to break the symmetry by hand but rather tries to �nd a symmetry-breaking solution to the quantum equations of motion.Physially, this is the most aeptable and ambitious approah. Unfortunately, it is alsomuh more diÆult than the previous one. The reason is that one often has to deal withstrongly oupled theories and, moreover, the alulations always have to be nonperturba-tive. As a rule, it is usually simply assumed that a symmetry-breaking solution exists andafter it is found, it is heked to be energetially more favorable than the perturbativevauum.By this sort of a variational argument, one is able to prove that the symmetri perturbativevauum is not the true ground state. On the other hand, it does not follow that the foundsolution is, whih might be a problem in omplex systems where several qualitativelydi�erent andidates for the ground state exist [16℄.As an example, we shall briey sketh the model for dynamial breaking of hiral sym-metry invented by Nambu and Jona-Lasinio [17, 18, 19℄. As the same model will be usedin Chapter 5 to desribe a olor superondutor [20℄, we shall take up this opportunity tointrodue the mean-�eld approximation that we later employ.The Lagrangian of the original Abelian NJL model readsL = � i=� +G �( �  )2 � ( � 5 )2� : (2.10)



Spontaneous symmetry breaking 17Its invariane under the Abelian hiral group U(1)V � U(1)A is most easily seen whenthe interation is rewritten in terms of the hiral omponents of the Dira �eld, L =� i=� + 4Gj � R Lj2.Following the original method due to Nambu and Jona-Lasinio, we antiipate spontaneousgeneration of the fermion mass by the interation and split the Lagrangian into themassivefree part and an interation, L = Lfree + Lint, whereLfree = � (i=� �m) ; Lint = m �  +G �( �  )2 � ( � 5 )2� :At this stage already, we are making the hoie of the ground state by introduing themass term and requiring that m be real and positive. The general parametrization of themass term would be � (m1 + im25) with real m1; m2. The physial mass of the fermionwould then be pm21 +m22.The atual value of the mass m is determined by the ondition of self-onsisteny, that itreeives no one-loop radiative orretions. This gives rise to the gap equation1 = 8iG Z d4k(2�)4 1k2 �m2 : (2.11)The same result may be obtained with a method due to Hubbard and Stratonovih, whihkeeps the symmetry of the Lagrangian manifest at all stages of the alulation. One addsto the Lagrangian a term�j��4G � R Lj2=4G. In the path integral language, this amountsto an additional Gaussian integration over � that merely ontributes an overall numerialfator. Eq. (2.10) then beomesL = � i=� � 14G(�21 + �22) + � (�1 + i�25) ; (2.12)the �1; �2 being the real and imaginary parts of �, respetively.The Lagrangian is now bilinear in the Dira �eld so that this may be integrated out,yielding an e�etive ation for the salar order parameter �,Se� = � 14G Z d4x (�21 + �22)� i log det �i=� + (�1 + i�25)� (2.13)With this e�etive ation one an evaluate the partition funtion, or the thermodynamipotential, in the saddle-point approximation. This means that we have to replae thedynamial �eld � with a onstant determined as a solution to the stationary-point ondi-tion, ÆSe�Æ�1 = ÆSe�Æ�2 = 0:Looking bak at Eq. (2.12) we see that the onstant mean �eld � yields preisely thee�etive mass of the fermion, and the stationary-point ondition,1 = 8iG Z d4k(2�)4 1k2 � �y�;is idential to the gap equation (2.11).In the Nambu{Jona-Lasinio model, the Goldstone boson required by the Goldstone the-orem is a bound state of the elementary fermions. In the simple ase of the Lagrangian(2.10) it is a pseudosalar and may be revealed as a pole in the two-point Green's funtionof the omposite operator � 5 [17℄.



Chapter 3Goldstone boson ounting in nonrelativistisystemsThis hapter is devoted to a detailed disussion of the issue raised in Setion 2.1.2: Howmany Goldstone bosons are there, given the pattern of spontaneous symmetry breaking?As already mentioned, in Lorentz-invariant theories the situation is very simple: Thenumber of Goldstone bosons is equal to the number of the broken-symmetry generators.In nonrelativisti systems, however, these two numbers may di�er.We have already met an example where this happens { the ferromagnet. Historially,this was perhaps the �rst ase in whih the `abnormal' number of Goldstone bosons wasreported, and it still remains the only textbook one. Nevertheless, the same phenomenonhas reently been studied in some relativisti systems at �nite density [21, 22, 23, 24℄ aswell as in the Bose{Einstein ondensed atomi gases [25, 26℄, and it is therefore desirableto analyze the problem of the Goldstone boson ounting on a general ground.We start with a review of the general ounting rule by Nielsen and Chadha [27℄ and someother partial results. The main body of this hapter then onsists of the disussion of theGoldstone boson ounting in the framework of the relativisti linear sigma model at �nitehemial potential. The presented results are based on the paper [III℄, where the detailsof the alulations may be found.3.1 Review of known results3.1.1 Nielsen{Chadha ounting ruleFollowing losely the treatment of Nielsen and Chadha [27℄, we onsider a ontinuous sym-metry, some of whose generators, Qa, are spontaneously broken. The broken-symmetryassumption (2.1) now generalizes todeth0j[Qa;�i℄j0i 6= 0; a; i = 1; : : : ;# of broken generators:In addition, it is assumed that the translation invariane is not entirely broken and thatfor any two loal operators A(x) and B(x) a onstant � > 0 exists suh thatjh0j[A(x; t); B(0)℄j0ij ! e�� jxj as jxj ! 1: (3.1)18



Goldstone boson ounting in nonrelativisti systems 19It is then asserted that there are two types of Goldstone bosons { type-I, for whih theenergy is proportional to an odd power of momentum, and type-II, for whih the energy isproportional to an even power of momentum in the long-wavelength limit. The number ofGoldstone bosons of the �rst type plus twie the number of Goldstone bosons of the seondtype is always greater or equal to the number of broken generators.The di�erene between the two types of Goldstone bosons is niely demonstrated on theontrast between the ferromagnet and the antiferromagnet. In the ferromagnet, there isa single Goldstone boson (the magnon). The Nielsen{Chadha ounting rule then enforesthat it must be of type II and indeed, its dispersion relation is quadrati at low momentum,see Setion 2.2.2. In the antiferromagnet, on the other hand, there are two distintmagnons with di�erent polarizations. Their dispersion relation is linear.Note that the result of Nielsen and Chadha does not restrit in any way the power ofmomentum to whih the energy is proportional. As far as the ounting of the Goldstonebosons is onerned, it only matters whether this power is an odd or an even number. Itseems, however, that there are in fat no systems of physial interest where the power isgreater than two.It is also worthwhile to mention that the Nielsen{Chadha ounting rule is formulatedas an inequality, in most ases of physial interest this inequality is, however, saturated.This happens not only for the ferromagnet and the antiferromagnet. To the best of theauthor's knowledge, all exeptions where a sharp inequality ours, happen at a phaseboundary of the theory [22, 28℄. Later in this hapter we shall see a generi lass of suhexeptions: The phase transition to the Bose{Einstein ondensed phase of the theory, atwhih the phase veloity of the superuid phonon vanishes and the phonon thus beomesa type-II Goldstone boson.It is natural to ask what is the di�erene between the ferromagnet and the antiferromagnetthat auses suh a dramati disrepany in their behavior. The answer lies in the nonzeronet magnetization of the ferromagnet. In general, it is nonzero vauum expetation valuesof some of the harge operators that distinguish the type-II Goldstone bosons from thetype-I ones. At a very elementary level, one an say that nonzero harge densities breaktime reversal invariane and thus allow for the presene of odd powers of energy in thee�etive Lagrangian for the Goldstone bosons [2℄. The issue of harge densities, however,deserves more attention beause they are usually easier to determine than the Goldstoneboson dispersion relations.3.1.2 Other partial resultsAs we have just shown, the issue of Goldstone boson ounting is tightly onneted todensities of onserved harges. We thus deal with three distint features of spontaneouslybroken symmetries that are related to eah other: The Goldstone boson ounting, theharge densities in the ground state, and the dispersion relations of the Goldstone bosons.The onnetion between the Goldstone boson ounting and the dispersion relations isenlightened by the Nielsen{Chadha ounting rule. In general, little is known about thediret relation of the Goldstone boson ounting and the harge densities. There is a partial(in fat, only negative) result of Shaefer et al. [22℄ who proved that the number ofGoldstone bosons is usual i.e., equal to the number of broken generators, provided the



Goldstone boson ounting in nonrelativisti systems 20ommutators of all pairs of broken generators have zero density in the ground state.A neessary ondition for an abnormal number of Goldstone bosons is thus a nonvanishingvauum expetation value of a ommutator of two broken generators. The value of thisresult is that it shows that the pattern of symmetry breaking must involve the non-Abelianstruture of the symmetry group. For instane, the Goldstone boson ounting is usual inall olor-superonduting phases of QCD in whih only the net baryon number density isnonzero. The reason is that the baryon number orresponds to a U(1) fator of the globalsymmetry group and therefore does not give rise to an order parameter for spontaneoussymmetry breaking.Intuitively, the neessity to modify the ounting of the Goldstone bosons in the preseneof harge densities an be understood as follows [III℄. Assume that the ommutator of theharges Qa and Qb develops nonzero ground-state expetation value. We may then in Eq.(2.2) set Q = Qa and take the harge density j0b (x) in plae of the interpolating �eld forthe Goldstone boson, �. We �ndifabh0jj0 (0)j0i = h0j[Qa; j0b (x)℄j0i = 2i ImXn (2�)3Æ(kn)h0jj0a(0)jnihnjj0b (0)j0i; (3.2)where fab are the set of struture onstants of the symmetry group. Two points heredeserve a omment. First, it is again lear that a non-Abelian symmetry group is needed.Only then may the vauum harge density be treated as an order parameter for sponta-neous symmetry breaking. Seond, it follows from the right hand side of Eq. (3.2) thata single Goldstone boson ouples to two broken urrents, j�a and j�b . We have already seenin Setion 2.2 that this happens in the ase of the ferromagnet. This suggests the wayhow the ounting rule for the Goldstone bosons should be modi�ed one nonzero densityof a non-Abelian harge is involved. Nevertheless, it still remains to turn this heuristiargument into a more rigorous derivation of the proper ounting rule.Finally, the onnetion between the harge densities and the Goldstone boson dispersionrelations was provided by the work of Leutwyler [29℄. Leutwyler analyzed spontaneoussymmetry breaking in nonrelativisti translationally and rotationally invariant systems.He determined the leading-order low-energy e�etive Lagrangian for the Goldstone bosonsas the most general solution to the Ward identities of the symmetry. His results showthat when a non-Abelian generator develops nonzero ground-state density, a term witha single time derivative appears in the e�etive Lagrangian. The time reversal invarianeis then broken and the leading-order Lagrangian is of the Shr�odinger type, resulting in thequadrati dispersion relation of the Goldstone boson. It should perhaps be stressed thatwhen this happens, the e�etive Lagrangian is invariant with respet to the presribedsymmetry only up to a total derivative.We shall now give a simple argument, also due to Leutwyler, explaining how suh a single-time-derivative term in the Lagrangian a�ets the Goldstone boson ounting. The e�etiveLagrangian is onstruted on the oset spae of the broken symmetry. Consequently, thenumber of independent real �elds appearing in the Lagrangian is always equal to thenumber of broken generators.Now if the single-time-derivative term is absent in the Lagrangian, the Goldstone bosondispersion relation is linear and omes, at tree level, in the form E2 / k2. This equationhas both positive and negative energy solutions whih may be ombined into a single



Goldstone boson ounting in nonrelativisti systems 21real salar �eld (similar to the Klein{Gordon �eld). There is therefore a one-to-oneorrespondene between the Goldstone bosons and the �elds in the Lagrangian.On the other hand, if there is a term with a single time derivative in the Lagrangian, theGoldstone boson dispersion relation is quadrati and appears as E / k2. This equationhas, of ourse, only positive energy solutions, very muh like the Shr�odinger equation.As a result, the type-II Goldstone boson is to be desribed with a omplex �eld or,equivalently, with a pair of real �elds. This shows why the type-II Goldstone bosons haveto be ounted twie, when omparing their number to the number of broken generators.Now and again, this intuitive piture easily aommodates only the Goldstone bosonswith linear or quadrati dispersion. The question of the existene of Goldstone bosonswith energy proportional to higher powers of momentum remains open as well as thepossibility of their desription in terms of a low-energy e�etive Lagrangian. Note thatto ahieve the appropriate power of momentum in the dispersion law, one would have toget rid of the standard bilinear kineti term in the Lagrangian, whih would invalidatethe onventional perturbation expansion as well as the power-ounting sheme.3.2 Linear sigma model at �nite hemial potentialThe rest of this hapter is devoted to the study of a partiular lass of Lorentz-noninvariantsystems { relativisti theories at �nite density. The mirosopi dynamis of suh systemsis Lorentz-invariant, Lorentz symmetry being violated only at the marosopi level, bymedium e�ets. This suggests that muh more ould be said about the patterns of sym-metry breaking and properties of the Goldstone bosons than the Nielsen{Chadha theoremdoes, by exploiting the underlying Lorentz invariane.In the following, we shall stay in the framework of the relativisti linear sigma model andderive an exat orrespondene between the Goldstone boson ounting, harge densities,and the Goldstone boson dispersion laws. The disussion of the possible extension of theahieved results is postponed to the Conlusions.3.2.1 SU(2)� U(1) invariant sigma modelWe start with a simple example: The linear sigma model with an SU(2)�U(1) symmetry,whih has been used as a toy model for kaon ondensation in the Color-Flavor-Lokedphase of QCD [21, 22℄. All essential steps leading to the �nal ounting rule for the Gold-stone bosons will be �rst demonstrated within this model, then within a more ompliatedone with an SU(3)�U(1) symmetry, and afterwards generalized to the sigma model witharbitrary symmetry.The model is de�ned by the Lagrangian,L = D��yD���M2�y�� �(�y�)2; (3.3)where the salar � is a omplex doublet. Nonzero density of the U(1) harge is imple-mented in terms of the hemial potential �, whih enters the Lagrangian through theovariant derivative, D0� = (�0 � i�)�.



Goldstone boson ounting in nonrelativisti systems 22In the absene of the hemial potential, the Lagrangian (3.3) is invariant under theextended group SU(2)�SU(2) ' SO(4). The hemial potential breaks it expliitly downto SU(2)� U(1). In the ontext of the CFL phase with the kaon ondensate, the SU(2)group orresponds to the isospin and the U(1) to the strangeness. The �eld � is just the(harged or neutral) kaon doublet.The hemial potential ontributes a term �2�y� to the stati part of the Lagrangian.When � > M , the perturbative vauum � = 0 beomes unstable and a new, nontrivialminimum appears { the SU(2)�U(1) symmetry is spontaneously broken down to its U(1)subgroup. This is the relativisti Bose{Einstein ondensation.To reveal the physial ontent of the model in the spontaneously broken phase, we proeedin the standard manner i.e., alulate the minimum of the potential, shift the salar �eld,and expand the Lagrangian about the new ground state. The salar �eld is reparametrizedas � = 1p2ei�k�k=v � 0v +H � ; where v2 = �2 �M2� ;�k being the Pauli matries. The three `pion' �elds �k would, in the absene of the hemialpotential, orrespond to the three Goldstone bosons of the oset [SU(2)� U(1)℄=U(1).The exitation spetrum is determined by the bilinear part of the Lagrangian,Lbilin = 12(���k)2 + 12(��H)2 � v2�H2 + �(�1�0�2 � �2�0�1) + �(H�0�3 � �3�0H): (3.4)The presene of the hemial potential apparently leads to nontrivial mixing of the �eldswhih annot be removed by a global unitary transformation. To �nd the dispersion lawsof the four degrees of freedom, it is therefore more appropriate to look for the poles of thepropagators. It turns out [21, 22℄ that the mixing of �1 and �2 gives rise to one Goldstoneboson with the low-momentum dispersion law E(k) = k2=2�, while the other mode isgapped, E(k) = 2�+O(k2). On the other hand, the setor (�3; H) produes one gaplessexitation with E(k) = q �2�M23�2�M2 jkj + O(jkj3), and a massive radial mode with a gapp3�2 �M2.In onlusion, there are two Goldstone bosons, one with a linear dispersion law (thephonon) and one with a quadrati dispersion law. This is in aord with the Nielsen{Chadha ounting rule sine the vauum expetation value h�i arries nonzero isospin. Tosee in more detail how this fat a�ets the struture of the bilinear Lagrangian (3.4), notethat �(�1�0�2 � �2��1) = � �v2�k�0�l Im
[�k; �l℄�:In this form it is obvious how the nonzero density of the ommutator of two brokenharges (3.2) enters the Lagrangian and thus gives rise to the existene of a single type-IIGoldstone boson instead of two type-I ones.To understand more deeply the nature of the type-II Goldstone boson, we shall nowinvestigate the orresponding plane-wave solution of the lassial equation of motion.Note �rst that the unbroken U(1) group is generated by the matrix 12(1 + �3). In orderto keep this U(1) symmetry manifest, we ombine �1 and �2 into one omplex �eld, = 1p2(�2 + i�1). In fat,  is nothing but the upper omponent of the original doublet�, expanded to �rst order in �.



Goldstone boson ounting in nonrelativisti systems 23As far as the quadrati Goldstone boson is onerned, we may drop the �elds �3 and Hand rewrite the Lagrangian (3.4) in terms of  ,L = 2i� y�0 + �� y�� :The �eld  annihilates the type-II Goldstone and the orresponding lassial plane-wavesolution is given by  =  0e�ik�x, with the exat (tree-level) dispersion relationE(k) =qk2 + �2 � �:The SU(2)� U(1) symmetry gives rise to four onserved urrents whih, in terms of thedoublet �, readj�k = �2 Im�y�k���+ 2�Æ�0�y�k�; j� = �2 Im�y���+ 2�Æ�0�y�:For the quadrati Goldstone plane wave we �ndj�1 = +(k� + 2Æ�0�)vp2Re ; j�2 = �(k� + 2Æ�0�)vp2 Im :We an immediately see that the isospin density rotates in the isospin plane (1; 2) i.e.,the plane wave is irularly polarized. In this way, a single Goldstone boson exploits twobroken-symmetry generators, as suggested by the general form of the ommutator (3.2).It is notable that the plane wave with the opposite irular polarization orresponds tothe gapped exitation in the setor (�1; �2).The remaining two urrents are onveniently expressed in the rotated basis, expliitlyseparating the unbroken and broken generator,12(1 + �3) : j� = 2(k� + Æ�0�)j j2;12(1� �3) : j� = Æ�0�v2:It is seen that the isospin wave is assoiated with a uniform urrent of the unbrokensymmetry that is, the Goldstone boson arries the unbroken harge. This seems to bea generi feature of type-II Goldstone bosons.Finally, the broken generator 12(1 � �3) gives rise just to nonzero harge density and,moreover, is independent of the amplitude and momentum of the isospin wave. It istherefore to be interpreted as just a bakground on whih the isospin waves propagate.3.2.2 Linear sigma model for SU(3) sextetAs a nontrivial example of a spontaneously broken symmetry with nonzero harge densitiesthe linear sigma model for an SU(3) sextet salar �eld will now be investigated.The Lagrangian readsL = Tr(D��yD��)�M2 Tr�y�� aTr(�y�)2 � b(Tr�y�)2; (3.5)and is invariant under the global SU(3)�U(1) symmetry that transforms the salar �eld� as �! U�UT. A U(1) hemial potential is introdued so that the ovariant derivativeis D0� = (�0 � 2i�)�.
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a

b SO(3)SU(2)�U(1)
unstable potentialFigure 3.1: Phase diagram of the model de�ned by the Lagrangian (3.5). The orderedphases are labeled by the symmetry of the ground state. The `unstable potential' regionmarks a domain of parameters where the tree-level potential is not bounded from below.This model provides a phenomenologial desription of the olor-superonduting phaseof QCD with a olor-sextet pairing of quarks of a single avor, whih was proposed inRef. [I℄. The global SU(3) symmetry is what remains of the olor gauge invariane afterthe gluons have been `integrated out', while the U(1) orresponds to the baryon number.The salar �eld � is an e�etive omposite �eld for the quark Cooper pairs.It turns out that this theory has two di�erent ordered phases, with di�erent symmetry-breaking patterns and exitation spetra, see Fig. 3.1. The Bose{Einstein ondensationsets at � =M=2. All phase transitions, between the normal and an ordered phase as wellas between the ordered phases, are of seond order.In general, the exitations are grouped into multiplets of the unbroken symmetry. Thismeans that the more of the original SU(3) � U(1) symmetry is spontaneously broken,the more ompliated the struture of the spetrum is. Both phases will now be treatedseparately.The a > 0 phaseThe stati part of the Lagrangian (3.5) is minimized by a salar �eld proportional to theunit matrix i.e., � = �11. The SU(3) � U(1) symmetry is thus spontaneously broken toits SO(3) subgroup.With this symmetry-breaking pattern in mind, the salar �eld � is parametrized as�(x) = e2i�(x)V (x)[�11 + '(x)℄V T(x):Here � is the Goldstone boson of the spontaneously broken U(1) and V = ei�k�k , k =1; 3; 4; 6; 8, ontains the 5-plet of Goldstone bosons of the oset SU(3)=SO(3). The realsymmetri matrix ' represents six heavy `radial' modes.Using the notation � = �k�k, the exitation spetrum is determined by the bilinear
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Figure 3.2: Masses of the exitations as a funtion of the hemial potential in the SO(3)-symmetri phase. Degeneraies of the exitation branhes are indiated by the numbers.The numerial data were obtained with a = b = 1.Lagrangian,Lbilin = 12�2(���)2 + 4�2Tr(���)2 + Tr(��')2�� 4�2 �aTr'2 + b(Tr')2�� 16�� [�0�Tr'+ Tr('�0�)℄ :We �nd that there are six Goldstone bosons, all with linear dispersion relation. Sinethere are six broken generators as well, this result is in aord with the Nielsen{Chadhaounting rule. All exitations fall into irreduible representations of the unbroken SO(3)group. In partiular, there is a Goldstone singlet and a gapped singlet in the setor(�;Tr'). In addition, there are two 5-plets, a gapless and a gapped one, stemming frommixing of � with the traeless part of ', see Fig. 3.2.The a < 0 phaseIn this ase the minimum of the stati potential an be reast to the diagonal formwith a single nonzero entry, � = diag(0; 0;�). The symmetry-breaking pattern is nowSU(3)� U(1)! SU(2)� U(1). The salar sextet is onveniently parametrized as�(x) = ei�(x)� �(x) � +H(x) � ei�T(x):The matrix �eld � is again given by the linear ombination of the broken generators,� = �k�k, k = 4; 5; 6; 7; 8, � is a omplex symmetri 2� 2 matrix, and H is a real salar.The bilinear part of the Lagrangian isLbilin = Tr(���y���) + (��H)2 + 2�2(������)33 + 2�2(���33)2�� 4�2(a + b)H2 + 2�2aTr�y� � 16��H�0�33 � 4��2 Im[�; �0�℄33 � 4� ImTr �y�0�:The SU(2) singlets H and �8 mix, giving a Goldstone boson with linear dispersion lawand a massive `radial' mode. The �elds �4; �5; �6; �7 altogether form a omplex doublet of
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Figure 3.3: Masses of the exitations as a funtion of the hemial potential in the SU(2)�U(1) symmetri phase. Degeneraies of the exitation branhes are indiated by the numbers.The numerial data were obtained with a = �0:5 and b = 1.SU(2). They yield a doublet of gapped modes and a doublet of type-II Goldstone bosonswith a quadrati dispersion relation. Finally, the omplex matrix � ontains two realtriplets of massive partiles. For summary see Fig. 3.3.Note that there are now only three Goldstone bosons even though �ve generators arespontaneously broken. This is, however, again in agreement with the Nielsen{Chadharule sine two of the Goldstones are of the seond type. Their existene is onneted withthe fat that in this ase, the generator �8 develops nonzero ground-state density. Themodi�ed Goldstone boson ounting suggested by Eq. (3.2) thus applies.Phase boundaryAt the boundary between the two ordered phases the model displays quite remarkableproperties. The Lagrangian (3.5) is then invariant under an extended SU(6) � U(1)symmetry under whih � transforms as a fundamental sextet. The minima of the potentialorresponding to the two phases are now degenerate and both leave unbroken the SU(5)�U(1) subgroup meaning that there are altogether eleven broken generators.This enhaned symmetry must, of ourse, be reeted in the number and type of theGoldstone bosons [28℄. Indeed, by properly performing the limit a ! 0 it an be shownon both sides of the phase transition that there are six Goldstone bosons. One is anSU(5) singlet and has a linear dispersion law { this is the superuid phonon. The other�ve transform as the fundamental SU(5) 5-plet and all have a quadrati dispersion thatis, are type-II. The Nielsen{Chadha ounting is thus saturated as expeted.3.2.3 General analysisThe results ahieved so far by the study of linear sigma models with partiular symmetrieswill now be extended to the general ase. We start with the formulation and a shortdisussion of our main result: Nonzero vauum density of a ommutator of two broken



Goldstone boson ounting in nonrelativisti systems 27generators implies the existene of one type-II Goldstone boson with a quadrati dispersionlaw.The existene of a single Goldstone boson orresponding to two broken generators, whoseommutator has nonzero density, has been expeted on the basis of Eq. (3.2). Here weexpliitly prove the missing piee that is, the Goldstone boson is type-II as it must be inorder to satisfy the Nielsen{Chadha ounting rule. We shall also see that the statementformulated above holds stritly speaking only when a onvenient basis of broken generatorsis hosen.In a sense, this result is onverse to the theorem by Shaefer et al. [22℄. While theyprove that zero density of ommutators of broken harges implies usual ounting of theGoldstone bosons, here we show that nonzero densities, on the ontrary, lead to theexistene of type-II Goldstones and thus modi�ed ounting.Let us onsider the linear sigma model with hemial potential assigned to one or moregenerators of the internal symmetry group. In general, the hemial potential for a on-served harge Q is introdued by replaing the Hamiltonian H with H � �Q. The keyobservation is that, as far as exat symmetry is onerned, the hemial potential is al-ways assigned to a U(1) fator of the symmetry group that is, the harge Q ommuteswith all generators of the exat symmetry group. The reason is that even if the hargeQ is originally a part of some larger non-Abelian symmetry group, by adding it to theHamiltonian we expliitly break all generators that do not ommute with it.The Lagrangian for the general linear sigma model is de�ned asL = D��yD��� V (�): (3.6)The salar �eld � transforms under a given representation of the global symmetry group Gand V (�) is the most general G-invariant renormalizable potential. Finally the hemialpotential enters the Lagrangian through the ovariant derivative D�� = (��� iA�)� [30℄,A� being the onstant external gauge �eld whih is eventually set to A� = (�Q; 0; 0; 0) orthe sum of similar terms, when more hemial potentials are present.The presene of the hemial potential destabilizes the perturbative ground state, � = 0,and eventually leads to spontaneous symmetry breaking by the Bose{Einstein onden-sation. We assume that the new minimum �0 breaks the global symmetry group of theLagrangian, G, to its subgroup H. All generators, both broken and unbroken, are thenlassi�ed by irreduible representations of H.In the spontaneously broken phase the salar �eld is parametrized as�(x) = ei�(x) [�0 +H(x)℄ : (3.7)The matrix � is a linear ombination of the broken generators while H ontains the mas-sive (Higgs) �elds. Upon expanding the Lagrangian (3.6) in terms of the �eld omponents,its bilinear part beomesLbilin = ��Hy��H � Vbilin(H)� 2 ImHyA���H++ �y0�������0 � 4ReHyA�����0 � Im�y0A�[�; ���℄�0: (3.8)Here Vbilin is the bilinear part of the potential, whih involves only the `radial' �eld H,due to the used parametrization (3.7).



Goldstone boson ounting in nonrelativisti systems 28Eq. (3.8) is the main result whih ontains essentially all information about the spetrumof the sigma model. To understand better its onsequenes, we resort for a moment toa simple bilinear Lagrangian with just two salar �elds,Lbilin = 12(���)2 + 12(��h)2 � 12f 2(�)h2 � g(�)h�0�: (3.9)One of the �elds, h, possibly has a mass term and there is also a single-derivative mixingterm, both depending expliitly on the hemial potential. This is the generi form of thebilinear Lagrangian we met in the two partiular examples in the preeding setions.A simple alulation reveals that the Lagrangian (3.9) desribes a (massive) partile withdispersion relation E2(k) = f 2(�) + g2(�) +O(k2), and a gapless mode with dispersionE2(k) = f 2(�)f 2(�) + g2(�)k2 + g4(�)[f 2(�) + g2(�)℄3k4 +O(k6): (3.10)If f(�) = 0 that is, if both � and h are Goldstone �elds mixed by the single-derivativeterm, we arrive at one type-II Goldstone boson. The expansion of its energy in powersof momentum starts at the order k2. On the other hand, when jf(�)j > 0, the �eld hrepresents a massive mode. The mixing of h and � then results in a type-I Goldstoneboson with linear dispersion relation.We an now understand the ontent of Eq. (3.8). There are kineti terms for both theradial �elds H and the Goldstones �, and the mass term for H, essentially given by theurvature of the stati potential at the minimum �0. Finally, there are three mixing termswith a single derivative, proportional to the external �eld A�.The analysis of the model Lagrangian (3.9) tells us that mixing of a radial �eld witha Goldstone �eld gives rise to one type-I Goldstone boson. The mixing of two Goldstone�elds, on the other hand, produes one type-II Goldstone boson. A short glane at thelast term on the right hand side of Eq. (3.8) shows that the Goldstone{Goldstone mixingterm is, as expeted, proportional to the ground-state expetation value of a ommutatorof two broken generators. We have thus established the desired result that nonzero densityof a ommutator of two broken generators gives rise to a single type-II Goldstone boson.In order for the onlusions just reahed to be reliable, we have to show that the results ofthe analysis of the simple Lagrangian (3.9) are appliable to the muh more ompliatedase of Eq. (3.8). A detailed proof may be found in Ref. [III℄ and will not be repeatedhere. Instead, we limit our disussion to a simpli�ed version where, nevertheless, all theessential steps are provided.The ruial observation regarding the harge densities is that one may always hoosea basis of broken generators so that all generators with nonzero vauum expetationvalue mutually ommute. We give a simple proof of this statement for the ase of unitarysymmetries [31, 32℄. The set of vauum expetation values h0jQaj0i of the generators mayby regarded as a vetor va in the spae of the adjoint representation of the Lie algebra g ofthe group G. In the fundamental representation of the unitary group, the generators Qaare realized by Hermitian matries, say Ta. Now vaTa is also a Hermitian matrix and assuh an be diagonalized by a proper unitary transformation. After this transformationvaTa is a linear ombination of just the diagonal generators of the symmetry group thatall mutually ommute i.e., span the Cartan subalgebra of g.



Goldstone boson ounting in nonrelativisti systems 29We an now take up the generators that have nonzero density in the ground state andomplement them to the Cartan subalgebra of g. The rest of the generators is groupedaording to the standard root deomposition of Lie algebras [33℄. The point is that withinthis basis, for any generator there is a unique generator suh that their ommutator liesin the Cartan subalgebra. It is now proved that the broken generators partiipate in thelast term of Eq. (3.8) in pairs and the simple two-�eld analysis of Eq. (3.9) is thereforeappliable.It should, of ourse, also be proved that the same onlusion is true for the mixingof the Goldstone �elds with the radial ones, and of the radial ones with themselves.Omitting the details, we just note that this follows from the Wigner{Ekart theorem upona proper deomposition of the matrix �elds � and H into irreduible representations ofthe unbroken subgroup H.



Chapter 4Dynamial eletroweak symmetry breakingThe standard model of eletroweak interations has been one of the most suessfulahievements of modern physis. Within a simple and elegant framework, it perfetlydesribes essentially all experimental data olleted so far. It is, however, somewhat dis-turbing that its only ingredient that has not been experimentally veri�ed yet, the Higgsboson, is ruial for the mehanism of symmetry breaking of the SU(2)L � U(1)Y gaugeinvariane and thus also for the generation of the masses of the elementary partiles.Anyway, arguments based on the naturalness priniple suggest that the standard modelis just a low-energy limit of some more fundamental theory, and that new physis is mostlikely to be found at the energies aessible already to the upoming LHC mahine atCERN.In this Chapter we shall take a di�erent point of view of the standard model. In Setion2.3.1 we explained how a phenomenologial Lagrangian of the Ginzburg{Landau typemay be used to indue spontaneous symmetry breaking. We have, however, emphasizedthat suh an approah is physially unsatisfatory sine it does not give an answer to thebasi question about the origin of symmetry breaking.This happens exatly in the standard model, where the salar setor is introdued forsake of breaking the gauge symmetry. Attempts at replaing the onventional Higgsmehanism with a dynamial model of eletroweak symmetry breaking appeared soonafter the onstrution of the standard model itself [34, 35℄. The introdution to the ideaof dynamial eletroweak symmetry breaking may be found in the leture notes [36, 37℄,while a more detailed review is provided by Refs. [38, 39℄.The tehniolor senarios dispose with the elementary Higgs and, instead of its vauumexpetation value, generate the order parameter for symmetry breaking by a fermion{antifermion ondensate. This is bound together by a new strong gauge interation.Here we propose a di�erent idea for dynamial eletroweak symmetry breaking. Weretain the elementary salar, but with a positive mass squared so that the usual partileinterpretation is preserved even in the absene of interations. Our basi assumption isthe existene of a strong Yukawa interation between the salar and the massless fermions.We show that, provided the Yukawa oupling is large enough, the fermion masses may begenerated spontaneously as a self-onsistent solution of the Shwinger{Dyson equations.In other words, no strong gauge fore is needed. The strong Yukawa interation breaks30



Dynamial eletroweak symmetry breaking 31spontaneously the hiral symmetry, allowing for nonzero fermion masses. Only after then,the SU(2)L�U(1)Y gauge interation is swithed on perturbatively, resulting in the samesymmetry-breaking pattern as in the Higgs mehanism.In order to make the proposed mehanism more transparent, we �rst demonstrate it onthe dynamial breaking of a global Abelian hiral symmetry, following our paper [II℄. Theonluding setion is devoted to the disussion of the extension to the full SU(2)L�U(1)Ygauge symmetry [V℄. This model, as well as the Abelian one with the axial symmetrygauged, are, however, still being worked on.4.1 Toy model: Global Abelian hiral symmetryWe onsider a model of two Dira fermions and a omplex salar de�ned by the La-grangian,L = Xj=1;2 � � jLi=� jL + � jRi=� jR�+ ���y����M2�y�� �(�y�)2++ y1 � � 1L 1R�+ � 1R 1L�y�+ y2 � � 2R 2L�+ y2 � 2L 2R�y� : (4.1)The Yukawa ouplings y1; y2 are, without lak of generality, assumed to be real. Notethat this Lagrangian has a global U(1)V1�U(1)V2�U(1)A symmetry. The vetor U(1)'sorrespond to independent phase transformations of the two Dira spinors  1;  2. Theaxial U(1) onsists of simultaneous transformations of all the �elds onerned, 1 ! e+i�5 1;  2 ! e�i�5 2; �! e�2i��:Note that the salar �eld � arries the axial harge. It plays a ruial role in the proposedmehanism of hiral (or axial) symmetry breaking. Also, the axial harges of the fermionsare opposite in order to remove the anomaly in the axial urrent. It should be stressedthat, as far as global symmetry is onerned, the axial anomaly is nothing disastrous and,in fat, gives rise to physial e�ets suh as the �0 !  deay in QCD. However, havingin mind the future appliation to eletroweak interations where the symmetry is gauged,we hoose to remove the anomaly from the very beginning.4.1.1 Ward identities: generalThe �rst step in the investigation of the model (4.1) is the analysis of the symmetry. Inquantum �eld theory, this is enoded into a set of Ward identities for the Green's funtions.Sine the existene of a Goldstone boson is a robust predition of the Goldstone theorem,we show that the Ward identities alone provide a lot of information about the Goldstoneboson properties. We work them out without any further dynamial assumption so thatwe are later able to ompare dynamial symmetry breaking with the onventional Higgsmehanism as presented in Setion 2.3.1.The U(1)V1 �U(1)V2 �U(1)A symmetry of the Lagrangian implies the existene of threeonserved urrents, two vetor and one axial, given byj�V 1 = � 1� 1; j�V 2 = � 2� 2;j�A = � 1�5 1 � � 2�5 2 + 2i �(���)y�� �y���� : (4.2)



Dynamial eletroweak symmetry breaking 32Of all the orrelation funtions of these urrents, we shall onsider the three-point ones,with a single urrent and a pair of fermions or salars. The vetor urrents do notouple to the salar, so there are just two non-trivial Green's funtions, G�V 1(x; y; z) =h0jTfj�V 1(x) 1(y) � 1(z)gj0i and G�V 2(x; y; z) = h0jTfj�V 2(x) 2(y) � 2(z)gj0i. The orre-sponding proper vertex funtions ��V 1;2 satisfy the usual Ward identities,q���V 1;2(p+ q; p) = S�11;2(p + q)� S�11;2(p);S1;2 being the full fermion propagators.In ontrast to the vetor urrents, the axial urrent j�A ontains a ontribution from thesalar �. As will beome lear later, it is onvenient to onstrut a formal salar doublet,� = � ��y � ;and use it instead of the original salar �eld �. We now introdue three Green's funtions,G�A 1(x; y; z) = h0jTfj�A(x) 1(y) � 1(z)gj0i, G�A 2(x; y; z) = h0jTfj�A(x) 2(y) � 2(z)gj0i, andG�A�(x; y; z) = h0jTfj�A(x)�(y)�y(z)gj0i. The orresponding Ward identities readq���A 1(p+ q; p) = S�11 (p+ q)5 + 5S�11 (p);q���A 2(p+ q; p) = �S�12 (p+ q)5 � 5S�12 (p);q���A�(p+ q; p) = �2D�1(p+ q)� + 2�D�1(p): (4.3)Here iD(x� y) = h0jTf�(x)�y(y)gj0i is the matrix propagator of the salar doublet and� is the diagonal matrix in the salar doublet spae, � = diag(1;�1).Ward identities for the Higgs mehanismThe Ward identities (4.3) must hold whether the symmetry is spontaneously broken ornot. Also, they do not depend on the partiular dynamial way the symmetry is broken.As a warmup, we shall therefore show how they �t the tree-level analysis of the Higgsmehanism disussed in Setion 2.3.1 i.e., we assume for a moment that M2 < 0 in Eq.(4.1).Upon the expansion of the salar �eld, � = (v + H + i�)=p2, the Yukawa interationbeomesLYukawa = Xj=1;2�mj � j j + mjv � j jH� + iv �m1 � 15 1 �m2 � 25 2� �; (4.4)where m1;2 = vy1;2=p2 are the generated fermion masses.We shall exemplify the saturation of the axial Ward identity on the ase of a fermion, say 1. The right hand side of Eq. (4.3) then beomesS�11 (p+ q)5 + 5S�11 (p) = (=p+ =q +m1)5 + 5(=p +m1) = =q5 + 2m15: (4.5)The proper three-point vertex funtion onsists, at the tree level, of two ontributions {the bare oupling of the fermion to the axial urrent and a pion pole term, see Fig. 4.1.



Dynamial eletroweak symmetry breaking 33= +Figure 4.1: The axial three-point vertex funtion in the ase of the Higgs mehanism. Theseond Feynman graph on the right hand side ontains a pole due to the Goldstone boson.The diret oupling of the fermion to the axial urrent aounts for the =q5 term on theright hand side of Eq. (4.5). With the help of Eqs. (2.9) and (4.4) we see that the pionpole ontribution beomesq� ��m1v 5 � iq2 � (2ivq�)� = 2m15:Note that the last fator is 2ivq� instead of �ivq�, as Eq. (2.9) would suggest, beauseof a di�erent normalization of the salar ontribution to the axial urrent (4.2).We have thus veri�ed that the axial Ward identity (4.3) is indeed satis�ed. Moreover, itis now lear that, in order to ompensate for the symmetry-breaking (mass) term in Eq.(4.5), there must be a massless pole in the broken urrent orrelation funtion due to thepropagation of the Goldstone boson.This observation will be ruial for the analysis of our model of dynamial symmetrybreaking. While in the Higgs mehanism (where the Goldstone boson orresponds toan elementary �eld in the Lagrangian) the Ward identities serve merely as a hek ofonsisteny, here they will be used to predit the properties of the omposite Goldstoneboson.4.1.2 Spetrum of salarsFrom now on we shall assume that M2 > 0 in the Lagrangian (4.1), i.e., in the abseneof interations the salar �eld � annihilates a omplex partile of mass M . Our goal isto show that one a suÆiently strong Yukawa interation is introdued, the axial U(1)Asymmetry is spontaneously broken and fermion masses are generated.Our strategy will be as follows: We shall assume that fermion masses or more pre-isely, hirality-hanging self-energies, are somehow generated. Plugging them into theShwinger{Dyson equations for the Green's funtions of the theory we later show thata nontrivial solution atually does exist. This is a standard philosophy in dealing withdynamial symmetry breaking { one simply has to make a proper ansatz that inorporatesone's expetations as to the form of the solution.The fermions, however, interat with the salar �, so it is natural to ask, and investigateprior to any alulation, what is the impat of hiral symmetry breaking on the spetrumin the salar setor.The answer lies in the fat that the salar �eld arries nonzero axial harge. One theaxial U(1)A is spontaneously broken, the salar �eld arries no onserved quantum numberand nothing prevents the appearane of the `anomalous'1 Green's funtion h0jTf��gj0i.1The word `anomalous' has nothing to do with the axial anomaly. This terminology is taken over from



Dynamial eletroweak symmetry breaking 34 1R 1L 1R  1L� � +  2L 2R 2L  2R� �Figure 4.2: One-loop ontributions to the anomalous salar proper self-energy. The solidblobs denote the full hirality-hanging fermion self-energies.In the language of the Feynman graphs, this orresponds to diagrams with two externalsalar legs, both pointing outwards. Suh graphs may only arise in the presene of nonzerofermion masses, see Fig. 4.2. We an thus see that the breaking of the hiral symmetry inthe fermion setor (i.e., fermion masses) is tightly onneted to the breaking in the salarsetor.The e�et of the anomalous Green's funtion on the salar spetrum may be roughlyunderstood by assuming that it is momentum-independent, and negleting all other ra-diative orretions to the salar propagator. The salar spetrum is then determined bythe bilinear LagrangianL(0)salar = ���y����M2�y�� 12�2���� 12�2�y�y;the parameter �2 orresponding to the anomalous orrelation funtion in question. Itturns out that suh a Lagrangian desribes two real salar partiles with masses M21;2 =M2 � j�j2. The anomalous orrelation funtion thus amounts to the splitting of thespetrum in the salar setor.4.1.3 Ward identities for dynamially broken symmetryAs noted above, the vertex funtion of a broken urrent possesses a massless pole dueto the orresponding Goldstone boson. With our assumption that the axial symmetry isspontaneously broken, there must be suh a Goldstone boson oupled to the axial urrent.Unlike the Higgs mehanism, however, now it is a omposite partile i.e., a bound state ofthe elementary fermions and salars. It again gives rise to a pole in the vertex funtion,but now due to quantum loops, see Fig. 4.3.As the Goldstone boson is omposite, its interation verties annot be inferred diretlyfrom the Lagrangian. They an, however, be determined with the help of the Wardidentities (4.3), in terms of the fermion and salar propagators [40, 41℄. Denoting theproper vertex funtions as P 1 , P 2 , P� (quite analogously to the ��'s, just the axialurrent is replaed with the Goldstone boson), the resulting formulas readP 1(p + q; p) = 1N �S�11 (p+ q)5 + 5S�11 (p)� =q5� ;P 2(p + q; p) = � 1N �S�12 (p+ q)5 + 5S�12 (p)� =q5� ;P�(p + q; p) = � 2N �D�1(p+ q)�� �D�1(p)� q � (2p+ q)�� ; (4.6)ondensed-matter physis, where it is used e.g. for superondutors. There, the partile-number-violatingGreen's funtion appears beause of the Cooper pairing [14℄.



Dynamial eletroweak symmetry breaking 35��A 1,pole = 11 1; 2 + 11Figure 4.3: The pole part of the proper vertex funtion of the axial urrent and the fermionpair  1 � 1. The double solid line represents the Goldstone boson and the empty irlesits e�etive verties with the fermion and the salar, respetively. The double dashed linestands for the propagator of the doublet salar �. Both  1 and  2 an irulate in thelosed fermion loop. The graphs for the other two vertex funtions of the axial urrent areanalogous.the normalization fator N will be spei�ed later. Note that these e�etive verties areunambiguous only up to order O(q) sine only the pole parts of the axial urrent vertexfuntions were kept in the Ward identities [42℄.To determine the Goldstone interations more onretely, the knowledge of the full fermionand salar propagators is neessary. It is, however, obvious that the most important aretheir symmetry-breaking parts. In order to be able to write down analyti expressions forthe verties (4.6), we make the following simpli�ations.We neglet the symmetry-preserving renormalization of the fermion and salar propaga-tors and assume that the sheer e�et of quantum orretions is to generate the symmetrybreaking so that the propagators aquire the formS�11;2(p) = =p� �1;2(p); D�1(p) = � p2 �M2 ��(p)���(p) p2 �M2 � : (4.7)Here �1;2(p) are the hirality-hanging proper self-energies of the fermions while �(p) isthe anomalous proper self-energy of the salar �eld �.The e�etive verties (4.6) now beomeP 1(p+ q; p) = � 1N [�1(p+ q) + �1(p)℄ 5; P 2(p+ q; p) = 1N [�2(p+ q) + �2(p)℄ 5;P�(p+ q; p) = � 2N � 0 �(p + q) + �(p)���(p + q)� ��(p) 0 � : (4.8)The normalization fator N is given by N =pJ 1(0) + J 2(0) + J�(0), the loop integralsJ 1(q2), J 2(q2) and J�(q2) being de�ned as�iq�J 1;2(q2) = 8 Z d4k(2�)4 (k � q)��1;2;kk2 � �21;2;k �1;2;k + �1;2;k�q(k � q)2 � �21;2;k�q ;�iq�J�(q2) = 8 Z d4k(2�)4 (2k � q)�(k2 �M2)(k2 �M2)2 � j�kj2 Re ���k�q��k +�k�q���(k � q)2 �M2�2 � j�k�qj2 :4.1.4 Spetrum of fermionsSo far we have simply assumed that axial symmetry is spontaneously broken, giving riseto nonzero proper self-energies �1;2(p) and �(p). Now we have to lose the hain ofarguments by demonstrating that this is indeed the ase.
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== 1; 2 +Figure 4.4: The one-loop Shwinger{Dyson equations for the fermion and salar propagators.The �rst line applies equally to  1 and  2. The proper self-energies are denoted by thedashed blobs, while the full propagators are represented by the solid blobs.To that end, we onsider the Shwinger{Dyson equations for the Green's funtions of ourmodel. Having in mind that we are looking for spontaneous symmetry breaking in thepropagators, we neglet for simpliity all vertex orretions. The propagators are thenfound by a self-onsistent solution of the one-loop equations that are depited in Fig. 4.4.With the ansatz (4.7), we arrive at the set of three oupled integral equations,�1;p = iy21 Z d4k(2�)4 �1;kk2 � �21;k �k�p[(k � p)2 �M2℄2 � j�k�pj2 ;�2;p = iy22 Z d4k(2�)4 �2;kk2 � �22;k ��k�p[(k � p)2 �M2℄2 � j�k�pj2 ;�p = �Xj=1;2 2iy2j Z d4k(2�)4 �j;kk2 � �2j;k �j;k�p(k � p)2 � �2j;k�p + i� Z d4k(2�)4 �k(k2 �M2)2 � j�kj2 :(4.9)For sake of numerial solution of the Shwinger{Dyson equations (4.9), further simplifyingassumptions are made. First, sine the symmetry-preserving quantum orretions havebeen negleted, we also abandon the � interation in the last of Eqs. (4.9). The reason isthat it merely provides a ounterterm in the one-loop e�etive Lagrangian, whereas thespontaneous breaking itself is indued by the Yukawa interation.Seond, the Yukawa ouplings y1; y2 are set equal so that the set of equations (4.9) reduesto two equations for � = �1 = �2 and �. This onlusion is justi�ed as long as the salarself-energy � is real, sine the disrete symmetry of the Lagrangian,  1 $  2 and �$ �y,is then not spontaneously broken.The numerial results of the alulations in Eulidean spae are displayed in Fig. 4.5.It is notable that a nontrivial solution seems to exists only when the Yukawa interationis strong enough. A preliminary analysis shows that the ritial value for spontaneousbreaking of the hiral symmetry is yrit � 30.22Very reently, we have disovered an error in the original numerial ode. Our new omputations, tobe published, suggest that the ritial value of the Yukawa oupling might be signi�antly larger, about80. The qualitative behavior of the self-energies, however, does not hange.
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Figure 4.5: Numerial results for the fermion and salar proper self-energies � and �,respetively. The author is grateful to Petr Bene�s for doing the numerial omputation andproviding this �gure.4.2 Extension to SU(2)L � U(1)Y gauge symmetryHaving demonstrated how fermion masses may be generated dynamially by a strongYukawa interation, we now turn our attention to the ase of utmost physial importane,the spontaneous breaking of the eletroweak SU(2)L � U(1)Y gauge symmetry. Thisase has not been investigated in full detail yet, inluding the numerial solution of theShwinger{Dyson equations. Therefore, we just sketh the main idea as done in our paper[V℄. Further work on this model is in progress.The basi strategy is the same as in Setion 4.1. The only di�erene is that now allformulas are more ompliated beause of the isospin and avor struture of the standardmodel. The partile ontent is idential to that of the standard model with two exeptions.First, in the fermion setor, we introdue Nf neutrino right-handed isospin singlets �Rwith zero weak hyperharge in order to aount for the nonzero neutrino masses.Seond, in the salar setor, we introdue two omplex doublets, S = (S(+); S(0)) andN = (N (0); N (�)), with weak hyperharges YS = +1 and YN = �1 and di�erent ordinarymasses MS and MN , respetively. It will beome lear later that they serve to generatethe masses of the lower and upper omponents of the fermion isospin doublets.The Lagrangian of our model di�ers from that of the standard model by the presene oftwo salar quarti self-ouplings, �S and �N , and by the Yukawa interationLYukawa = �̀LyeeRS + �̀Ly��RN + �qLyddRS + �qLyuuRN +H..; (4.10)where the Yukawa ouplings ye; y�; yd; yu are to be treated as Nf �Nf omplex matriesin the avor spae.4.2.1 Partile spetrumAs in the simple Abelian model (4.1), the assumed fermion mass terms give rise to `anoma-lous' self-energies in the salar setor, mixing di�erent modes. At one-loop, the neutralomponents S(0) and N (0) develop nonzero two-point orrelation funtions breaking the



Dynamial eletroweak symmetry breaking 38eReLeR eLS(0) S(0) + dRdLdR dLS(0) S(0)Figure 4.6: One-loop ontributions to the anomalous proper self-energy of the neutral salarS(0). The solid blobs denote the hirality-hanging parts of the full fermion propagators.The same graphs apply to N (0) upon replaing e; d with �; u.�R�LeR eLS(+) N (�) + uRuLdR dLS(+) N (�)Figure 4.7: One-loop mixing of the harged salars indued by the dynamially generatedfermion masses.partile number, see Fig. 4.6. As a result, there are four real partiles, two with massessplit around MS, and the other two around MN . It should also be noted that at higherorders, all these four modes mix with one another sine there is no onserved quantumnumber that would prevent them from doing so. The harged omponents of the salardoublets also mix, as shown in Fig. 4.7. Due to the onservation of eletri harge, thereare now two harged salars, being the orthogonal mixtures of S(+) and N (�)y.Leaving aside the details of the alulations that may be found in the paper [V℄, we justnote that the fermion and salar self-energies are determined as a solution to the trunatedShwinger{Dyson equations, very muh analogous to Eqs. (4.9).The essential di�erene is that now the SU(2)L � U(1)Y hiral symmetry is gauged i.e.,the hiral urrents are oupled to dynamial vetor gauge �elds. As a onsequene, thethree Goldstone bosons of the oset [SU(2)L � U(1)Y℄=U(1)Q beome the longitudinalomponents of the three massive vetor bosons W�; Z. The Ward identities enable us toalulate the ouplings of the Goldstone modes to the gauge bosons. Due to the prop-agation of the intermediate Goldstone boson, the self-energy of the gauge �eld aquiresa massless pole. Upon negleting the �nite ontributions to the polarization tensor, thegauge boson mass squared is equal to the residue at this pole [42℄. The new feature ofthe proposed model is that the ouplings of the Goldstones to the gauge bosons, andhene also the gauge boson masses, are expressed through one-loop graphs ontaining thesymmetry-breaking self-energies of the fermions and salars. The gauge boson masses aretherefore tied to the masses of the other partiles by ertain sum rules [40℄.3Finally, let us note that we have so far not dealt with the Majorana masses of the neutrinos.It turns out that one a hard Majorana mass term is introdued for the right-handedneutrinos, the left-handed neutrino Majorana masses are generated as a one-loop e�et.Together, they also produe a new ontribution to the anomalous self-energy of N (0).In onlusion, it is perhaps more appropriate to treat all the masses, both Dira and3In fat, in the paper [V℄ we omitted the salar ontribution to the gauge boson masses. Now thatwe have gained some experiene by the study of the Abelian model of Setion 4.1, the appliation of theidea to the eletroweak symmetry breaking is being revised.



Dynamial eletroweak symmetry breaking 39Majorana, on the same footing that is, self-onsistently. The spetrum then ontains 2Nfmassive Majorana neutrinos, presumably with a seesaw-like hierarhy of masses.4.2.2 Phenomenologial onstraintsSeveral onstraints apart from reproduing the fermion and gauge boson mass spetrummust be met before our model may be aepted as an alternative to the standard model ofeletroweak interations. Sine we have not yet reahed the stage of solving the Shwinger{Dyson equations numerially, we shall disuss these onstraints only qualitatively.First, sine the Goldstone bosons of the spontaneously broken symmetry are bound statesof the elementary fermions and salars, all the elementary salars remain in the spetrumof physial states, unlike in the standard model. Consequently, the neutral ones mediateavor-hanging proesses, thus ontributing to the avor-hanging neutral urrents. Sinethese are highly suppressed in the standard model, the salar masses MS ;MN must belarge enough in order to avoid experimental bounds.Seond, it is well known that pair prodution of longitudinally polarized massive vetorbosons violates tree unitarity at high energies, rendering the theory nonrenormalizable[36℄. In order for the growth of the sattering amplitude to be ut o� at high energies, itis neessary that there be new partiles at the energy sale of order 1TeV.



Chapter 5Quantum hromodynamis at nonzero densityThe physis of hot and/or dense matter is desribed by the phase diagram of QCD. Whilethe region of low net baryon density and high temperature is being explored experimen-tally in heavy ion ollisions, the old and very dense nulear matter seems to exist onlyin the neutron stars.It has been known for a long time that at suÆiently high density quarks are no longeron�ned1 and may undergo the Cooper pairing very muh analogous to that in ordinarysuperondutors [43℄. However, only in the past deade has the phenomenon of olorsuperondutivity attrated onsiderable attention due to the disovery that it may appearalready at densities attainable in the neutron stars [44, 45℄.Sine then, the subjet has been investigated to great detail and several qualitativelydi�erent phases have been found. Extensive reviews are given in Refs. [16, 20, 46, 47℄.An introdution to the physis of old dense quark matter may be found in the leturenotes [48, 49℄.Despite the amount of energy devoted to the study of the QCD phase diagram, there isstill a ontroversy regarding the struture of the ground state at moderate baryon density.It seems that we are only on�dent that at very high densities the quark matter resides inthe Color-Flavor-Loked phase [50℄. This is supported by the weak-oupling alulationsfrom �rst priniples, whih are appliable due to the asymptoti freedom of QCD.On the other hand, the knowledge of the moderate-density region of the phase diagramis rather weak. Usually, either the weak-oupling results are diretly extrapolated justby running the QCD oupling, or the struture of the interation is taken over from thehigh-density regime and used as an input to the phenomenologial models suh as that ofNambu and Jona-Lasinio.This hapter onsists of two main parts. In the �rst one, we introdue an alternativemehanism for generating the e�etive four-quark interation and show that it leads toan unonventional pairing in the olor-sextet hannel. This is based on our paper [I℄.The seond part, based on the reent paper [IV℄, deals with a di�erent approah to theQCD phase diagram. Inasmuh as we annot attak the problem of the QCD phase1In fat, the term quark on�nement loses its sense one the mean distane between quarks is muhsmaller than the on�nement sale. The quarks then do not feel the long-distane strong attration andprovide the appropriate degrees of freedom to desribe the highly squeezed matter.40



Quantum hromodynamis at nonzero density 41diagram at moderate density diretly and urrent lattie tehniques fail in that region aswell, it is plausible to study theories similar to QCD whih are amenable to both analytialand lattie alulations. We desribe a simple ase of suh a theory { the two-olor QCDwith two quark avors { and provide a new setting for its low-energy desription in termsof the hiral perturbation theory.5.1 Single-avor olor superondutor with olor-sextet pairingIt is most ommon to desribe the quark matter at moderate baryon density within theNambu{Jona-Lasinio model [20℄. In this approah, the ruial point is the hoie of themodel interation. The olor and avor struture of the interation are usually takenover from the weak-oupling regime { either perturbative (the one-gluon exhange) ornonperturbative (the instanton-mediated interation). Both these interations share theommon feature that they are attrative in the olor-antisymmetri hannel and repulsivein the olor-symmetri one. It should, however, be stressed that the arguments based onthe weakly oupled QCD merely provide an evidene. There is no proof that the stronglyoupled QCD at moderate density inevitably leads to the same behavior. It is thereforeworth exploring the alternatives.In this setion we shall investigate the behavior of dense quark matter under the assump-tion that the quarks pair in the olor-symmetri (sextet) hannel. We shall for simpliityonsider a homogeneous phase of a single-avor quark matter. The physial reasoningbehind this assumption is the following. The olor, avor and spin strutures of theCooper pair are onneted by the requirement that the Pauli exlusion priniple be sat-is�ed. This means that, as long as the orbital momentum is zero, the total spin of theolor-sextet Cooper pair of quarks of a single avor must be zero. On the ontrary, in theolor-antitriplet hannel the Pauli priniple requires total spin one.The point is that the spin and orbital momentum e�ets dramatially redue the energygap i.e., the binding energy of the Cooper pair. Indeed, while { in the olor-antitriplethannel { the gap of the two-avor spin-zero superondutor at moderate density isroughly estimated as tens MeV, the gap of the one-avor spin-one superondutor isonly tens or a hundred keV [51℄. In the latter ase, the olor-sextet pairing might prevaileven if the pairing interation is quite weak.It is well known that while at very high density the CFL phase is the stable ground stateof the three-avor quark matter, at moderate density the CFL pairing is disfavored bythe strange quark mass and the resulting mismath of the Fermi momenta. The 2 + 1pairing sheme is more likely. The up and down avors are bound by the strong attrativeinteration in the olor-antitriplet hannel. The strange quarks then pair with themselvesand we suggest here that the pairing be in the olor-sextet spin-zero hannel rather thanthe olor-antitriplet spin-one hannel favored by the one-gluon exhange interation.We �rst assume the partiular form of the pairing and explore its impat on the symmetryof the theory. It is only later that we provide a physial motivation for the attration inthe olor-symmetri hannel and work out the desription within the Nambu{Jona-Lasiniomodel.



Quantum hromodynamis at nonzero density 425.1.1 Kinematis of olor-sextet ondensationSuppose that the superonduting phase is desribed by the order parameter � whihtransforms in the 6 representation of the olor SU(3) group. It is best represented bya omplex symmetri 3 � 3 matrix upon whih the SU(3)� U(1) transformations2 atas � ! U�UT. The assumption that the ordered phase be homogeneous translates tothe requirement that � be a spaetime-independent onstant. Note that in the Nambu{Jona-Lasinio model �ij will orrespond to the vauum expetation value of the bilinearoperator  �i(C5)�� �j, but for now this interpretation is not needed.The ruial observation is that any omplex symmetri matrix � may be brought bya suitable SU(3)� U(1) transformation to a speial form � whih is diagonal, real andpositive [52℄. We shall denote its diagonal entries as �1;�2;�3. These annot be hangedby a unitary transformation sine they are the eigenvalues of the positive Hermitian matrix(�y�)1=2, and thus represent three independent order parameters of the phase.The presene of three order parameters makes the phase struture of the olor-sextetsuperondutor quite rih. Depending on the relative values of the order parameters,several symmetry-breaking patterns may be distinguished:1. All �'s are di�erent and nonzero. This is the most general as well as intrigu-ing possibility. The ontinuous SU(3)� U(1) symmetry is ompletely broken, onlya disrete (Z2)3 is left.2. Two �'s are equal and nonzero. In this ase, there is a residual O(2) symmetry inthe orresponding 2� 2 blok of �.3. �1 = �2 = �3 6= 0. Quite similar to the previous ase, but now the enhanedsymmetry of the ground state is O(3).4. Some of the �'s are zero. Aording to the number of vanishing order parameters,there is a residual U(1) or U(2) invariane, simply meaning that the orrespondingolors do not partiipate in the pairing.It will turn out in the following that the possibility of most interest is the O(3)-symmetriphase. Sine this results in the same number of broken olor generators as the breakingSU(3)! SU(2) by the standard olor antitriplet, it is worthwhile to omment on thedi�erene between these two symmetry-breaking patterns.The struture of the spetrum is always determined by the unbroken subgroup. Now thebreaking SU(3)! SO(3) is isotropi so that all �ve broken generators fall into a single(5-plet) representation of SO(3). On the other hand, in the SU(3)! SU(2) ase four ofthe broken generators form a omplex SU(2) doublet while the remaining one is a singlet.5.1.2 Ginzburg{Landau desriptionTo determine whih of the possible symmetry-breaking patterns are atually realized,one has to employ a partiular model to alulate the order parameter �. Ignoring2Reall from Setion 3.2.2 that the U(1) here represents the baryon number.



Quantum hromodynamis at nonzero density 43for the moment the utuations of the order parameter(s), we have to write down themost general SU(3)� U(1) invariant potential, whose minimum determines the groundstate. Suh a potential an always be written in terms of a ertain set of algebraiallyindependent invariants. In our ase there are three of them, namely Tr�y�, det �y� andTr(�y�)2.Restriting to quarti polynomials of the Ginzburg{Landau type, the most general po-tential reads V (�) = �aTr�y� + bTr(�y�)2 + (Tr�y�)2:Suh a potential was already investigated in Setion 3.2.2. It was shown that the nature ofthe global minimum depends on the sign of the parameter b. When b > 0, the order param-eter � is proportional to the unit matrix so that the ground state has the SO(3) symmetry.When b < 0, the minimizing on�guration is suh that � has a single nonzero diagonalentry, orresponding to the symmetry breaking pattern SU(3)� U(1)! SU(2)� U(1).We stress the fat that the parameters a; b;  are unknown at this stage so that we annotdeide whih of the ordered phases is atually realized. It is, however, possible to derivethe Ginzburg{Landau funtional from the underlying mirosopi model, either QCD orNambu{Jona-Lasinio [53℄.To aount for the utuations of the order parameter �, the Ginzburg{Landau funtionalhas to be enrihed with derivative terms. The lowest-order Lagrangian readsL = �e Tr �0�y�0� + �m Tr �i�y�i�� V (�): (5.1)The oeÆients �e and �m are in general di�erent sine Lorentz invariane is broken bymedium e�ets. Note that the \kineti term" of � is not anonially normalized { this isbeause � represents a omposite objet, the Cooper pair of quarks [54, 55℄.Treating the dense quark matter at moderate baryon density as a BCS-type superondu-tor, one may next swith on the olored gauge �elds perturbatively. Within the e�etiveLagrangian (5.1), this amounts to replaing the ordinary derivatives with the ovariantones, ���! D�� = ���� igAa� �12�a� + �12�Ta � ;and adding the Yang{Mills kineti term for the gluons. As a result of the usual Higgsmehanism, both eletri and magneti gluons aquire nonzero masses { the Debye andthe Meissner ones, respetively. At zero temperature, the oeÆients are roughly �e;m ��2=�2 so that both Debye and Meissner masses are found to be of order g� (for detailedresults and their disussion see Ref. [I℄).However, as pointed out by Rishke [55℄, the gauged lowest-order Lagrangian (5.1) doesnot reprodue orretly the mass ratios of the gluons of di�erent adjoint olors. Thereason is the restrition to operators of dimension four or less we employed to onstrut theLagrangian (5.1). For a more proper treatment, higher-order operators like ��Tr(�yDi�)��2have to be inluded, whih also ontribute to the gluon masses.5.1.3 Nambu{Jona-Lasinio modelWe shall now develop the desription using the elementary quark �elds. Here we ome tothe point of the proper hoie of the four-fermion interation. As already mentioned above,



Quantum hromodynamis at nonzero density 44�! �!Figure 5.1: E�etive four-quark interation indued by the exhange of the salar olor-otet glueball.we do not take up any of the interations ommonly used in literature, but rather followa di�erent approah. Our motivation goes bak two deades to the paper by Hansson etal. [56℄. These authors investigated the possibility of the existene of the bound statesof two gluons and lassi�ed the strength of the QCD-indued fore by the total spin andolor ontent of the gluon pair.They disovered that apart from the olorless glueball, the most strongly bound state isthat of total spin zero whih transforms as a olor otet. Suh a state, of ourse, annotexist as an exitation of the QCD vauum. It might, however, be a well de�ned degree offreedom in the dense deon�ned phase. Now if it really exists, it ertainly interats withthe quarks and its exhange leads to the e�etive fermioni Lagrangian (see Fig. 5.1),L = � (i=� �m + �0) +G( � � )2; (5.2)with G > 0. (The olor and spin indies are suppressed.) The proposed interation isattrative in the olor-sextet hannel and provides the basis for the following analysis.We use the method outlined in Setion 2.3.2. Antiipating the olor-sextet ondensate,we split the full Lagrangian (5.2) in suh a way that the free part, whih determines thepropagator, readsLfree = � (i=� �m + �0) + 12 � �(C5) � T � 12 T�y(C5) :Here � stands for the diagonal matrix of the order parameters.This Lagrangian is onveniently diagonalized with the help of the Nambu{Gorkov nota-tion, 	 = �  � T � :We �nd, for eah olor i, two types of fermioni quasipartiles { a quark-like and anantiquark-like { whose dispersion relations areE2i�(k) = �pk2 +m2 � ��2 + j�ij2:In the mean-�eld approximation the gaps �i are determined by the requirement of theanelation of the one-loop orretions. We obtain three separate but idential gap equa-tions. Integrating over the frequeny and regulating the three-dimensional integral witha uto� � they read, at �nite temperature T ,1 = 23G Z � d3k(2�)3 � 1E+(k) tanh E+(k)2T + 1E�(k) tanh E�(k)2T � :



Quantum hromodynamis at nonzero density 45Several remarks to this result are in order. First, in its derivation we have not beenentirely self-onsistent. We ompared the terms of the same struture, � �(C5) � T, inthe free Lagrangian and the one-loop orretion. The presene of the hemial potentialindues, however, a similar term � �(C5)0 � T at one loop, and this has been negleted.Sine the full Lorentz invariane is broken by the hemial potential, it is natural thatsuh a term appears. To be fully self-onsistent, we would have to inlude suh operatorsinto our Lagrangian from the very beginning and solve a oupled set of gap equations fortheir oeÆients. Suh an analysis was done in Ref. [57℄.Seond, note that we derived three idential gap equations for the order parameters�1;�2;�3. Sine the integrands in the gap equation are monotoni in �, there is obvi-ously only one nonzero solution and thus all the gaps aquire the same value. This meansthat the four-quark interation we hose prefers the SO(3) symmetri phase disussedabove. This might, however, be just an artifat of the mean-�eld approximation. Indeed,the separation of the three olors ours only at the one-loop level. The physial pitureis suh that the quarks of any individual olor generate a mean �eld whih is in turn feltonly by the quarks of the same olor. It is then not surprising that all the three gapshave equal size. At two or more loops the olors start to mix and this might lead tolifting the degeneray and splitting of the gaps. As shown above, if this happens the olorSU(3) invariane is ompletely broken. A de�nite answer may be given only after a moresophistiated approximation is employed.5.2 Two-olor QCD: Chiral perturbation theoryWe have already mentioned that realisti QCD alulations from �rst priniples are notavailable at moderate baryon density beause of the large oupling onstant. The troubleis that neither are the lattie simulations. The reason is that the Eulidean Dira operator,D = �(�� � A�) +m� �0, is omplex at nonzero baryon hemial potential �.This gave rise to interest in QCD-like theories that do not have the sign problem [58℄.There are two distinguished lasses of suh theories { QCD with quarks in the adjointrepresentation of SU(3) and two-olor QCD [59℄. In the following, we shall onsider thelatter ase.It turns out that the determinant of the Eulidean Dira operator of two-olor QCD,de�ning the path-integral measure for the gauge bosons, is in general just real. In orderfor it to be positive, there must be an even number of quarks with the same quantumnumbers [60℄. Therefore, the ase of an even number of avors is usually studied.5.2.1 SymmetryThe key feature of the two-olor QCD is the pseudoreality of the gauge group generators,the Pauli matries, T �k = �T2TkT2. Assuming the quarks in the fundamental (doublet)representation of the gauge SU(2), the right-handed omponent of the Dira spinor,  R(olor and avor indies are suppressed), may be traded for the left-handed spinor ~ R =�2T2 �R, the Pauli matries �k ating in the Dira spae. The onjugate left-handed spinorhas the same transformation properties as  L and is used to replae the onventional Dira



Quantum hromodynamis at nonzero density 46spinor with 	 = �  L~ R � :The Eulidean Lagrangian of massive two-olor QCD at �nite hemial potential thusbeomes L = i	y��(D� � 
�)	�m �12	T�2T2M	 +H..� : (5.3)Now D� is the gauge-ovariant derivative and 
� is the onstant external �eld that a-ounts for the e�ets of the hemial potential. Finally, M is the blok matrix in the 	spae, M = � 0 1�1 0 � :Using the new spinor 	 it is easily seen that instead of the naively expeted hiralSU(Nf)L � SU(Nf)R symmetry, the Lagrangian (5.3) is, in the hiral limit m = 0 andat 
� = 0, invariant under an extended group SU(2Nf). At zero hemial potential, thissymmetry is broken by the standard hiral ondensate down to its Sp(2Nf) subgroup [59℄.In the 	 notation, the standard hiral transformations orrespond to independent unitaryrotations of the upper and lower omponents  L and ~ R, respetively. The new transfor-mations in the extended group SU(2Nf) mix these and thus break the baryon number. Interms of the order parameters, these transformations rotate the hiral ondensate h �  iinto the diquark ondensate h  i.It is therefore not surprising that the hemial potential term breaks the SU(2Nf) down tothe onventional hiral subgroup SU(Nf)L � SU(Nf)R � U(1)B. The reason is that it liftsthe degeneray between the partiles and antipartiles, and the transformations breakingthe baryon number U(1)B therefore no longer leave the Lagrangian invariant.Unlike the ase of the real, three-olor QCD, the two-olor QCD has the remarkableproperty that two quarks may form a olor-singlet state. This is again onneted to thepseudoreality of the fundamental representation of the gauge group. It follows that theordered phase with quarks Cooper-paired should not be alled olor-superonduting, butrather just superuid.On the tehnial level, this fat has the far-reahing onsequene that the superuidityof two-olor QCD3 may be investigated within the framework of the hiral perturbationtheory. The e�etive Lagrangian is onstruted on the oset spae SU(2Nf)=Sp(2Nf).This e�etive theory has been investigated to great detail, inluding both the loop [61℄and �nite temperature [62℄ e�ets.The Goldstone bosons are, as usual, generated from the ground state by spaetime-dependent symmetry transformations. In this ase, they are parametrized by an antisym-metri unimodular unitary matrix �. The leading-order low-energy e�etive Lagrangianreads Le� = F 22 Tr(r��r��y)�GReTr(J�); (5.4)3One should arefully distinguish the Bose{Einstein ondensation of Goldstone bosons with the quan-tum numbers of the diquark, from the Cooper pairing of quarks near the Fermi sea. Both e�ets resultin the baryon number superuidity, but while the former ours in the on�ned phase, the latter arisesfrom the pairing interation between deon�ned quarks. The nie feature of two-olor QCD is that thediquark ondensate may be used as an order parameter in both the on�ned and the deon�ned regime.



Quantum hromodynamis at nonzero density 47where the r's denote the ovariant derivatives,r�� = ���� (
�� + �
T� ); r��y = ���y + (�y
� + 
T� �y);and J is a soure �eld for �. When the quark mass is inluded, the Goldstone bosonsaquire nonzero mass m� whih is related to the quark mass m by the Gell-Mann{Oakes{Renner relation mG = F 2m2�:In the following we shall onentrate on the simplest ase Nf = 2. Here one an takeadvantage of the Lie algebra isomorphisms SU(4) ' SO(6) and Sp(4) ' SO(5). We shallargue that it is more onvenient to desribe the low-energy e�etive theory on the osetspae SO(6)=SO(5).5.2.2 Coset spaeThe oset SU(4)=Sp(4) is parametrized by the antisymmetri unimodular unitary matrix�, while the oset SO(6)=SO(5) orresponds to the unit sphere S5 i.e., it is desribed bya unit vetor n in the six-dimensional Eulidean spae. The mapping between these twoformalisms is provided by the relation � = ni�i;where �i are a set of six onveniently hosen matries, satisfying the identity �yi�j +�yj�i = 2Æij. One partiular realization of the basis matries is given by�1 = � 0 �11 0 � ; �2 = � �2 00 �2 � ; �3 = � 0 i�1�i�1 0 � ;�4 = � i�2 00 �i�2 � ; �5 = � 0 i�2i�2 0 � ; �6 = � 0 i�3�i�3 0 � :This partiular hoie of the basis is not aidental. The �rst three matries have beenused in literature to denote the hiral, diquark, and isospin ondensate, respetively [59,60℄. The physial nature of the individual matries is made more transparent by assigningto them quark bilinears, �! 12	T�2T2�	+H..;that provide the interpolating �elds for the Goldstone bosons orrespondingly.Conretely, we �nd that �2 and �4 are real and imaginary parts of an isospin singletwith baryon number +1, the diquark. Further, �3;�5;�6 form an isospin triplet with nobaryon harge { the pion. Finally, �1 orresponds to the isospin singlet with no baryonharge i.e., the � �eld,�2 ! �12 TC5T2�2 +H..; �4 ! �12 i TC5T2�2 +H..;�3 ! �i � �15 ; �5 ! i � �25 ; �6 ! �i � �35 ;�1 ! �  :



Quantum hromodynamis at nonzero density 485.2.3 E�etive LagrangianWe shall now rewrite the e�etive Lagrangian in terms of the unit vetor n. The baryonnumber hemial potential � is inorporated in terms of the external �eld 
� = Æ�0�B,where the baryon number generator is represented by the blok matrixB = 12 � 1 00 �1 � :Adjusting the soure J to reprodue the quark mass e�et, the leading-order Lagrangian(5.4) beomesLe� = 2F 2(��n)2 + 4iF 2�(n2�0n4 � n4�0n2)� 2F 2�2(n22 + n24)� 4F 2m2�n1: (5.5)To determine the spetrum of the theory for a partiular value of the hemial potential,one has to �nd the ground state by minimizing the stati part of the Lagrangian, andthen expand the Lagrangian about the minimum to seond order in the �elds.Normal phaseFor � < m� the stati Lagrangian is minimized by the onventional hiral ondensatei.e., n = (1; 0; 0; 0; 0; 0). The �ve independent degrees of freedom may be identi�ed withn2; : : : ; n6, and the resulting dispersion relations areE(k) =qk2 +m2� pion triplet n3; n5; n6;E(k) =qk2 +m2� � � diquark n2 + in4;E(k) =qk2 +m2� + � antidiquark n2 � in4:This result is exatly what we would expet. The pion triplet arries no baryon harge soits dispersion relation is not a�eted at all by the hemial potential. The dispersions ofthe diquark and antidiquark are split and the gap of the diquark is getting smaller untilit eventually vanishes at � = m�. At this point the Bose{Einstein ondensation sets,breaking the baryon number spontaneously. The diquark is the orresponding Goldstoneboson.Bose{Einstein ondensation phaseWhen � > m�, the vauum ondensate is given by n = (os�; sin�; 0; 0; 0; 0), whereos� = m2�=�2. In the exitation spetrum we again �nd the pion triplet, but now withthe dispersion E(k) = pk2 + �2. Finally, there are two exitations, the mixtures of the(anti)diquark and �, whose dispersion relations areE2�(k) = k2 + �22 (1 + 3 os2 �)� �2q�2(1 + 3 os2 �)2 + 16k2 os2 �:



Quantum hromodynamis at nonzero density 49Note that the gap of the `�' solution vanishes so that this is the Goldstone boson of thespontaneously broken symmetry. In aordane with the general disussion in Chapter 3,its dispersion relation is linear at low momentum.Our alulations on�rm the results ahieved previously in literature [59, 60℄. The notableadvantage of the SO(6)=SO(5) formalism presented here is that it allows a straightforwardphysial interpretation of the various modes, being the linear ombinations of n1; : : : ; n6whose quantum numbers are well known.In partiular, it turns out that the quantum numbers of the Goldstone boson in the Bose{Einstein ondensed phase hange as the hemial potential inreases. Just at the phasetransition point, it is the diquark, mathing ontinuously the diquark mode in the normalphase. On the other hand, in the extreme limit � � m�, it is just n4, the imaginarypart of the diquark. It is now the linear ombination of the diquark and the antidiquarkand thus arries no de�nite baryon number. This is, of ourse, hardly surprising sinethe baryon number is spontaneously broken and hene is not a good quantum numberanymore.



Chapter 6ConlusionsIn the preeding three hapters the results ahieved during the PhD study have beenpresented. Full details of the alulations may be found in the researh papers [I{IV℄ thatare attahed at the end of this thesis. Here we give a short summary and outline theprospets for future work.In Chapter 3 we investigated the e�ets of �nite hemial potential on the pattern ofsymmetry breaking in a Lorentz-invariant �eld theory. With the help of the Goldstoneommutator we suggested a onnetion between the vauum densities of non-Abelianharges and the ounting of the Goldstone bosons. In the framework of the linear sigmamodel, we were able to formulate, and prove, an exat ounting rule.It should be stressed, however, that we stayed all the time at the tree level. It wouldbe desirable to investigate whether all our onlusions survive when loop orretions aretaken into aount. In partiular, we expet that the leading power-like behavior of theGoldstone boson dispersion relations does not hange, up to a possible multipliativefator, so that the Nielsen{Chadha ounting rule is saturated.On the other hand, we reported that right at the phase transition the phase veloity ofthe linear Goldstones vanishes, hanging their type from I to II. We also emphasized thatthis is the only generi ase where the Nielsen{Chadha inequality is not saturated. Sinequantum orretions are expeted to be important in the viinity of the phase transition,this result alls for veri�ation at one loop.Moreover, the e�et of the quarti interation omes into play only after the quantumorretions are inluded sine at the tree level, the � term merely serves to stabilizethe stati Lagrangian. Finally, due to the nonlinear nature of the Goldstone dispersionrelations (even those of type I, beause of higher orders in the power expansion of theenergy), these are kinematially allowed to deay. It is again a matter of the one-loope�etive ation to determine the orresponding deay rates. We hope that all these issueswill be lari�ed soon by the one-loop alulations urrently being done.Chapter 4 was devoted to dynamial generation of fermion masses. We showed that a suf-�iently strong Yukawa interation with a omplex salar �eld may result in spontaneousbreaking of the hiral symmetry. This general mehanism may �nd a partiular applia-tion to the standard model of eletroweak interations { breaking of the hiral symmetryindues breaking of the eletroweak gauge invariane { and thus provide an alternative50



Conlusions 51to the onventional Higgs mehanism. The extension of the present Abelian model to theeletroweak SU(2)L � U(1)Y symmetry was skethed.However, for sake of numerial omputations, we used quite rude simpli�ations. Wenegleted all quantum orretions but the symmetry-breaking ones to the propagators.In partiular, we negleted all vertex orretions. Suh an approximation is not reallyonsistent with the assumed symmetry i.e., the Ward identities, beause the broken sym-metry implies that the Yukawa interation vertex has a pole due to the Goldstone boson.It would be perhaps more appropriate, for instane, to generate the Shwinger{Dysonequations from a symmetri e�etive ation for the full propagators, by the method ofCornwall, Jakiw, and Tomboulis [63℄.Our future program is �rst to gauge the simple Abelian model presented here. As anexerise we plan to work out signatures of the model that distinguish it from the Higgsmehanism. The last step is to promote the idea to the eletroweak symmetry breaking.Then we shall, of ourse, have to deal with the hallenges of the phenomenologial restri-tions. In order to make quantitative preditions to be ompared with experimental data,the approximation used here will have to be improved a lot. Even though this seems tobe far ahead, we believe that the mehanism we propose may provide a viable alternativeto the Higgs mehanism.The last topi of this thesis, the phase diagram of quantum hromodynamis, is disussedin Chapter 5. We �rst suggest an unonventional pairing of quarks of a single avor inthe olor-symmetri hannel. Sine the total spin of suh pairs is zero, they might providea rival to the olor-antisymmetri spin-one pairing pursued in literature. An evideneis provided that the pairing in the olor-sextet hannel may arise from the exhange ofa olor-otet salar �eld, a bound state of two gluons.The seond part of Chapter 5 is devoted to the two-olor QCD. We propose an alterna-tive low-energy desription of the two-olor QCD with two quarks avors, based on theSO(6)=SO(5) oset spae. We work out in detail the orrespondene with the SU(4)=Sp(4)formalism used in literature and verify the results obtained by other authors.
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We analyze color superconductivity of one massive flavor quark matter at moderate baryon density with a
spin-zero color-sextet condensate. The most general Higgs-type ground-state expectation value of the order
parameter implies complete breakdown of theSU(3)3U(1) symmetry. However, both the conventional
fourth-order polynomial effective bosonic description and the Nambu–Jona-Lasinio–type fermionic descrip-
tion in the mean-field approximation favor an enhancedSO(3) symmetry of the ground state. We ascribe this
finding to the failure of the mean-field approximation and propose that a more sophisticated technique is
needed.
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I. INTRODUCTION

Viewing the low-temperature deconfined QCD matter
moderate baryon densities as a BCS-type color super
ductor is based on good assumptions~see@1–3# for original
references and@4# for a recent review!. First, the only de-
grees of freedom relevant for the effective field theory d
scription of such a matter are the relativistic colored qu
fields with their appropriate Fermi surfaces. The color
gauge fields can be introduced perturbatively, and eventu
switched off in the lowest approximation. Second, the qua
interact with each other by an attractive interaction provid
for Cooper instability. It is natural to speak of the Higg
phases of QCD@5#.

Because of the mere fact that the quarks carry the Lore
index ~spin!, color and flavor, the ordered colored-qua
phases could be numerous. Which of them is energetic
most favorable depends solely upon the numerical value
the input parameters~chemical potentials, and the dimen
sionful couplings! in the underlying effective Lagrangian
Because there are no experimental data on the behavio
the cold deconfined quark matter available, all generica
different, theoretically safe@6# and interesting possibilities
should be phenomenologically analyzed. Moreover, o
should be prepared to accept the fact that one or both of
assumptions can be invalid. In any case there are the
temperature many-fermion systems which are not
Landau-Fermi liquids, and which become peculiar superc
ductors@7#.

Recently, all distinct forms of the quasiquark dispersi
laws corresponding to different sets of 16 matrices in
Lorentz index were systematically derived@8#. Those exhib-
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iting spontaneous breakdown of the rotational symme
manifested in the anisotropic form of the dispersion law
particularly interesting. Their possible nodes can yield i
portant physical consequences even if the correspon
gaps are numerically small@9#.

To have a complete list of different ordered quantu
phases of the quark matter it would be good to know wha
the pattern of spontaneous breakdown of the colorSU(3) if
an effective interaction prefers not the standard quark-qu
Cooper pairing in the antisymmetric color antitriplet, b
rather in the symmetric color sextet. Such a pairing wo
influence qualitatively not only the quark, but also the glu
spectrum.

Although the explicit analysis presented in this paper
strictly phenomenological, we describe here briefly a mec
nism which, within QCD and under plausible assumptio
can yield the desired color-sextet diquark condensate. In
bilities of the perturbative QCD in the two-gluon chann
discussed in@10# justify contemplating several types of e
fective colored excitations in the deconfined phase at m
erate densities with effective~but in practice theoretically
unknown! couplings to both quarks and gluons. According
@10#, there should be four types of two-gluon collective e
citations: spin-zero color-singlet, spin-zero color octet, sp
one color octet, and spin-two color 27-plet. It is easy to sh
that exchange of a massive color-octet scalar results
four-quark interaction

Lint5G~ c̄lW c!2, ~1!

with G.0, which is necessary for the color-sextet diqua
condensation. It is, however, not easy to show which of
exchanges, including the one-gluon one, is eventually
most important. In fact, exchange of the color-singlet sca
would also lead to an attractive interaction in the color-sex
©2003 The American Physical Society04-1
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quark-quark channel, but as we aim at a phenomenolog
analysis and do not attempt to evaluate the effective coup
G, we restrict ourselves in the following to the single inte
action term~1!.

We note that the argument leading to the conjectured
ored collective modes excited by two gluon operators is
same as that leading, in the quark sector, to the phenom
logically useful @11# color-antitriplet scalar field with the
quantum numbers of a diquark.

The possibility of diquark condensation in the colo
symmetric channel has already been investigated in var
contexts, for instance, within the color-flavor-locking sche
@12#, and as an admixture to the color-antitriplet condens
@13,14#. The algebraic structure of spontaneous symme
breaking due to anSU(3)-sextet condensate is, howeve
richer than so far discussed in literature, and it is the gen
characterization of this structure that we focus on here.

The outline of the paper is as follows. In Sec. II we d
scribe the color-sextet superconductivity phenomenolo
cally i.e., in terms of a scalar color-sextet Higgs field. We
not aware of any systematic treatment of the Higgs mec
nism with anSU(3) sextet in the literature and, therefore w
go quite into detail. In Sec. III we review main ideas of t
semi-microscopic approach i.e., a self-consistent BCS-t
approximation for a relativistic fermionic second-quantiz
quark field, and apply it to the case of color-sextet cond
sation. Section IV contains a summary and a brief discuss
of the obtained results and comparison of the two
proaches.

II. HIGGS MECHANISM WITH AN SU„3… SEXTET

Simplifying as much as possible we consider the rela
istic quark matter of one massive flavor~says-quark matter!
in the deconfined phase at moderate baryon density. We
sume that its ground state is characterized by the quark-q
Cooper-pair condensate in the antisymmetric spin-zero s
By Pauli principle this means the symmetric sextet state
SU(3) i.e.,

^0uca i~Cg5!abcb j u0&}^F i j &0 , ~2!

where we insert a dimensionful constant of proportionality
makeF a dimension-one operator. The constant of prop
tionality can be determined within the mean-field approxim
tion to be 3/2G, see Sec. III.

Treating theu andd quarks as nearly degenerate in ma
and both much lighter than thes quark, such a condensa
may provide a complement to the usual picture ofu and d
pairing in the color-antitriplet channel@15#.

In an effective Higgs descriptionF i j is a spin-zero color-
sextet order parameter which transforms under the c
SU(3) as a complex symmetric matrix,

F→UFUT.

The dynamics ofF is governed by the most general L
grangian invariant under globalSU(3)3U(1) and space-
time transformations. As the full Lorentz invariance is e
09400
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plicitly broken by the presence of a dense medium,
require that the Lagrangian be invariant under spatial ro
tions only.

Since we aim at an effective description of the superc
ducting phase, renormalizability is not an issue here, and
have to include all possible interactions built up from t
sextetF that respect the symmetry of the theory.

In accordance with our assumptions, the gauge interac
can be switched on perturbatively by gauging the glo
SU(3) color symmetry. Formally, we just replace the ord
nary derivative ofF with the covariant derivative

DmF5]mF2 igAm
a ~ 1

2 laF1F 1
2 la

T!, ~3!

whereAm
a is the colored gluon field. The effective Lagran

ian thus has the form

L5aetr~D0F!†D0F1amtr~DiF!†DiF2V~F!1 . . . ,
~4!

where V(F) is the most generalSU(3)3U(1)-invariant
polynomial in F and the ellipses stand for other possib
terms that involve covariant derivatives and/or gauge fi
strength tensorsFamn .

A. SU„3… invariants from a sextet

The ground-state expectation value^F&05f is at the tree
level given by the minimum of the scalar potentialV(F). To
proceed with our analysis, we have to specify its concr
form.

Note that the groupSU(3) has only three algebraicall
independent invariant tensors, namely,d j

i , « i jk , and« i jk , the
lower and upper indices transforming under the fundame
representation ofSU(3) and its complex conjugate, respe
tively ~see, for example, Ref.@16#!. As a consequence, th
most generalSU(3)3U(1) invariant built up from a single
sextet F can be constructed from products and sums
det(F†F) and tr(F†F)n, the symbols ‘‘det’’ and ‘‘tr’’ refer-
ring to determinant and trace in the color space, respectiv
@17#.

Of these polynomials, however, only three are algeb
ically independent. Indeed, express

trF†F5a1b1g,

tr~F†F!25a21b21g2,

detF†F5abg,

wherea,b,g are the eigenvalues ofF†F @18#, and define
the symmetric polynomials
4-2
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p15a1b1g,

p25ab1ag1bg

5 1
2 @2tr~F†F!21~ trF†F!2#,

p35abg.

Note that the values ofp1 ,p2 ,p3 determine those ofa,b,g
uniquely as the three roots of the cubic equationx32p1x2

1p2x2p350. Thus also the values of all tr(F†F)n5an

1bn1gn for n>3 are fixed. Moreover, they can be e
pressed directly in terms ofp1 ,p2 ,p3 as the Taylor coeffi-
cients of the generating function

f ~ t ![tr ln~11tF†F!5 ln det~11tF†F!,

which is readily rewritten as

f ~ t !5 ln~11p1t1p2t21p3t3!. ~5!

We have thus shown that the scalar potentialV(F) can
always be expressed as a function of the three indepen
invariants det(F†F), tr(F†F), and tr(F†F)2.

B. Symmetry-breaking patterns

We shall now turn to the structure of the ground state.
our effective Higgs approach, theSU(3)3U(1) symmetry
is spontaneously broken by the ground-state expecta
valuef of the fieldF, which is a constant due to the tran
lation invariance of the ground state. We can exploit the sy
metry to give thef as simple form as possible. In fact, a
shown by Schur@19#, any complex symmetric matrix ca
always be written as

f5UDUT,

whereU is an appropriate unitary matrix, andD is a real,
diagonal matrix with non-negative entries. In our case,
setD5diag(D1 ,D2 ,D3).

Consequently, there are several distinct patterns of sp
taneous symmetry breaking possible.

a. D1.D2.D3.0. This ordering can always b
achieved by the allowed appropriate real orthogonal trans
mations. The continuousSU(3)3U(1) symmetry is com-
pletely broken@only a discrete (Z2)3 symmetry is left#.

b. TwoD ’s are equal, sayD15D2ÞD3. This implies an
enhancedO(2) symmetry in the corresponding 232 block
of f.

c. D15D25D3Þ0. The vacuum remainsO(3) symmet-
ric.

d. Some ofD i50. Then there is a residualU(1) or U(2)
symmetry of the vacuum corresponding to the vanishing
try or entries ofD.

The concrete type of the symmetry breaking pattern
determined by the scalar potentialV(F). Note that, having
relaxed the renormalizability requirement, we can alwa
choose the potentialV(F) so that it yields as its minimum
any desired values ofD1 ,D2 ,D3, just take
09400
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V~F!5 1
2 a1@ trF†F2p1#21 1

2 a2@ tr~F†F!22p1
212p2#2

1 1
2 a3@detF†F2p3#2

with all a1 ,a2 ,a3 positive. Thep ’s here are to be interprete
as vacuum expectation values of the corresponding op
tors.

C. Higgs mechanism with a quartic potential

Up to now we have repeatedly stressed the fact that
are dealing with an effective theory and therefore we sho
include in our Lagrangian all possible interactions preserv
the SU(3)3U(1) symmetry.

Nevertheless, under some specific conditions it is pl
sible to start up with a renormalizable linear sigma mod
that is, take a general quartic potentialV(F) and neglect all
operators of dimension greater than 4. In Sec. IV we will s
that this rather restrictive choice is justified when the und
lying microscopic interaction is of four-fermion type.

We thus take up a general quartic potential@20#,

V~F!52a trF†F1b tr~F†F!21c~ trF†F!2, ~6!

where the minus sign beforea suggests spontaneous symm
try breaking at the tree level. Varying Eq.~6! with respect to
F†, we derive a necessary condition for the vacuum exp
tation valuef,

2af12bff†f12cftr~f†f!50. ~7!

A simple observation of Eq.~7! reveals that, should the ma
trix f be non-singular, we can divide by it and arrive at t
condition

2bf†f5a22ctr~f†f!.

Thus, unlessb50, f†f and hence alsoD must be propor-
tional to the identity matrix.

Moreover, even whenf is singular, it can be replace
with the real diagonal matrixD and we see from Eq.~7! that
all non-zero entriesD i satisfy the equation

2bD i
25a22ctrD2.

Thus all non-zeroD ’s develop the same value.
Which of the suggested solutions of Eq.~7! represents the

absolute minimum of the potential depends on the input
rametersa,b,c, which must be inferred from the underlyin
theory @23#. We therefore stop the Higgs-like analysis he
with the simple conclusion that under fairly general circu
stances the quartic potential can be minimized by a matriD
proportional to the unit matrix, thus leading to an interesti
symmetry-breaking pattern~see Secs. II Bc and II Dc).

D. Gluon mass spectrum

Let us now switch on the gauge interaction perturbative
Due to the spontaneous symmetry breaking some of the
ons acquire non-zero masses via the Higgs mechanism
4-3
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the lowest order of the power expansion in the effective theory, the mass matrix of the gluons follows from the sca
kinetic terms in Eq.~4! upon replacingF with f.

Now, recalling the particular form of the covariant derivative in Eq.~3!, we arrive at the following gluon mass square
matrix:

Me,m
2 5ae,mg233

~D11D2!2 0 0 0 0 0 0 0

0 ~D12D2!2 0 0 0 0 0 0

0 0 2~D1
21D2

2! 0 0 0 0
2

A3
~D1

22D2
2!

0 0 0 ~D11D3!2 0 0 0 0

0 0 0 0 ~D12D3!2 0 0 0

0 0 0 0 0 ~D21D3!2 0 0

0 0 0 0 0 0 ~D22D3!2 0

0 0
2

A3
~D1

22D2
2! 0 0 0 0

2

3
~D1

21D2
214D3

2!
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The subscriptse,m distinguish between the temporal~‘‘elec-
tric’’ ! and spatial~‘‘magnetic’’! components of the gluon
field.

Let us briefly comment on the above mentioned fo
types of symmetry breaking patterns.

a. D1.D2.D3.0. The SU(3)3U(1) symmetry is
completely broken; therefore there are nine massless Nam
Goldstone modes. Eight of them are eaten by the gluo
which thus acquire non-zero unequal masses@with an appro-
priate diagonalization in the (A3,A8) block#. There is one
physical Nambu-Goldstone boson corresponding to the
ken globalU(1) baryon number symmetry of the underlyin
theory. Going to the unitary gauge, we can transform aw
eight of the original twelve degrees of freedom and para
etrize the sextet fieldF as

F~x!5
1

A2
eiu(x)S D1~x! 0 0

0 D2~x! 0

0 0 D3~x!
D ,

the D ’s representing three massive radial modes andu the
Nambu-Goldstone mode.

b. D15D2ÞD3. One gluon is left massless, correspon
ing to the Gell-Mann matrixl2 which generates theSO(2)
symmetry of the ground state.

c. D15D25D3Þ0. There are three massless gluons c
responding to the generatorsl2 , l5 , l7 of the SO(3) sub-
group of SU(3). All other gluons receive equal masses
that the symmetry breakingSU(3)→SO(3) is isotropic.

d. Some ofD i50. There is always an unbroken glob
U(1) symmetry that arises from a combination of the ori
nal baryon numberU(1) and the diagonal generators
SU(3), hence all Nambu-Goldstone modes that stem fr
the symmetry breaking are absorbed into the gauge bos
09400
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E. Interpretation of the results

So far in this section, we have worked out the usual Hig
mechanism for the case that the scalar field driving the sp
taneous symmetry breaking transforms as a sextet unde
color SU(3). However, one must exercise some care wh
applying the results to the physical situation under consid
ation, that is, color superconductivity. In the very origin
possible problems lies the fact thatF is not an elementary
dynamical field but rather a composite order parameter.

Anyway, our analysis of symmetry breaking patterns s
holds as for this purpose one can regardF as simply a short-
hand notation for the condensate in Eq.~2!.

The most apparent deviation from the standard Hig
mechanism is the presence of non-trivial normalization c
stants at the kinetic terms in Eq.~4!. This is due to the com-
positeness of the fieldF @24,25#.

Further, the power expansion of the effective Lagrang
~4! can be reliable as long as the expansion paramete
sufficiently small. In the standard Ginzburg-Landau theo
this is only true near the critical temperature. It is, howev
plausible to think of a zero-temperature effective field theo
for the superconducting phase. We therefore understand
Lagrangian as such an effective expansion in terms of
Nambu-Goldstone modes@26,27# generalized by inclusion o
modes of the modulus of the order parameter@25,28#. In
ordinary superconductivity, the Nambu-Goldstone mode
the Bogolyubov-Anderson mode, and the modulus mode
the Abrahams-Tsuneto mode@29#.

Our last remark points to the above calculated masse
gluons generated by the Higgs mechanism. To specify
scale of the masses one would have to know the norma
tion coefficientsae,m . These are unknown parameters of t
effective theory and have to be determined from the mat
ing with the microscopic theory. At zero temperature, th
are roughly
4-4
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ae,m}m2/f2,

and as a result, both electric and magnetic masses are f
to be of ordergm, wherem is the baryon chemical potentia
Their physical origin is, however, very different. The elect
~Debye! mass is non-zero even in the normal state i.e., ab
the critical temperature, due to polarization effects in
quark medium. On the other hand, the magnetic~Meissner!
mass arises purely as a consequence of the spontaneous
metry breaking. It is thus zero at the critical point and
creases as the temperature is lowered, to become rou
equal in order of magnitude to the Debye mass atT50.

Unfortunately, this is not the end of the story. As point
out by Rischke who calculated the gluon masses microsc
cally for the two-flavor color superconductor@25#, the lowest
order kinetic term alone does not give correct ratios of glu
masses of different adjoint colors. It is therefore not of mu
help to just try to adjust the normalization of the kine
term. As a remedy to this problem, it is necessary to m
use of higher order contributions to the gluon masses.

In the two-flavor color superconductor with a colo
antitriplet condensate, there is only one generically differ
higher order contribution that can change the ratios of
gluon masses from those given by the lowest order kin
term„see Ref.@25#, Eq.~153!…. This reflects the symmetry o
the problem: the order parameter~conventionally chosen to
point in the direction of the third color! leaves unbroken an
SU(2) subgroup of the original colorSU(3). Under the un-
broken subgroup, the gluons of colors 4–7 transform a
complex doublet and thus have to receive equal masses,
sibly different from the mass of gluon 8. The most gene
gluon mass matrix is thus specified by two parameters.

In our case of a color-sextet condensate, theSU(3) sym-
metry can be completely broken and we thus expect
there are in general no relations among the eight gl
masses. We do not go into details here, but just list the
netic terms of order 4 in the fieldF, which give gluon mass
ratios different from the lowest order values:

utr~F†DiF!u2,

tr@~DiF!†~DiF!F†F#,

tr@F†~DiF!F†~DiF!#1H.c.,

and analogously the terms contributing to the electric glu
masses.

In our Lagrangian theSU(3)3U(1) symmetry is real-
ized linearly and these terms are found ‘‘by inspection.’’
would be appropriate to repeat the analysis using the n
linearly realized effective Lagrangian along the lines of@30#
analyzing the color-antitriplet case. The kinetic terms sho
follow from symmetry considerations, albeit again with the
retically undetermined coefficients.

Finally we note that as the Debye masses of all gluons
non-zero in the normal state, one might expect that in
superconducting phase they remain non-zero even for th
gluons which correspond to unbroken symmetries, in c
trast to the conclusions of the effective theory discuss
However, as shown by Rischke for the two-flavor color s
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perconductor, the ‘‘unbroken’’ electric gluons have, som
what surprisingly, zero Debye mass atT50. This is because
the quark colors they interact with are bound in the cond
sate and hence there are no low energy levels to be exc
by long-wavelength chromoelectric fields.

This line of reasoning can be easily carried over to o
case, since due to the diagonal nature of the matrixD, one
can immediately check which quark colors participate in
condensate. We thus conjecture that the naive expecta
that the Debye masses of the gluons of the unbroken s
metry are zero, is correct at zero temperature, as long as
colors that the gluon interacts with both have non-zero g
D i . This is the case, for instance, for the gluons of t
SO(2) andSO(3) ground state symmetries discussed bef
~see Secs. II Db and II Dc).

To provide a waterproof verification of this conjecture, o
should carry out a microscopic calculation similar to that
@25#.

III. FERMIONIC BCS-TYPE DESCRIPTION

In the previous section we used an effective Higgs-l
theory to treat the kinematics of color superconductivity w
a color-sextet condensate. The construction of the effec
Lagrangian is based solely on theSU(3)3U(1) symmetry.
Such an approach is thus pretty convenient to extrac
much information about the kinematics as possible, but f
to explain the very fact of Cooper pair formation. To unde
stand the dynamics of color superconductivity, we nee
microscopic description of the quark system.

As is well known from BCS theory of superconductivit
fermions~quarks in our case! will tend to form Cooper pairs
if there is an attractive effective two-body interaction b
tween them. As is usual in attempts to describe the beha
of deconfined QCD matter, we employ the Nambu–Jo
Lasinio ~NJL! model and look for the diquark condensate
a constant self-consistent solution to the equations of mot

Because the excitation spectrum of cold strongly coup
deconfined QCD matter at moderate baryon density is
known, the effective quark-quark interaction relevant f
color superconductivity can only be guessed. In any case
excitations of such a matter are of two sorts.

~1! Colored quasiparticles excited by the primary qua
tum fields with modified dispersion laws.

~2! Collective excitations, which can be in principle bo
colored and colorless, and are excited by the appropr
polynomials of the primary quantum fields.

We want to argue in favor of the possible existence
massive color-octet spin-zero collective modes excited
two gluon operators@10#, the exchange of which produce
the desired effective four-quark interaction attractive in t
color-sextet quark-quark channel. The~naive! point is that
the QCD-induced force between two gluons, which can
general be in any of

8^ 851% 8% 8% 10% 10% 27,

is attractive in the color-octet spin-zero configuration.
4-5
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Inspired by this argument, we choose for our analysi
four-quark interaction which mimics the exchange of an
termediate color-octet scalar particle. As we note bel
however, we could have as well included interactions w
Lorentz vectors or tensors. Nonetheless, the Lorentz st
ture of the interaction does not play almost any role in o
calculation, and we therefore restrict to the single interact
term ~1! suggested above.

Our effective Lagrangian for one massive quark flav
thus reads

L5c̄~ i ]”2m1mg0!c1G~ c̄lW c!2, ~8!

where the arrow over Gell-Mannl-matrices implies appro
priate summation over adjointSU(3) indices. Otherwise
Lorentz and color indices are suppressed.

We treat the model Lagrangian~8! in the mean-field ap-
proximation. As this is a standard way of dealing with NJ
type models, we sketch only the main steps. Detailed acc
of the techniques used can be found, for example, in
recent paper by Alfordet al. @8#.

To extract the color-sextet condensate, we split our
grangian into a free and an interacting partL08 and Lint8 ,
respectively,

L085c̄~ i ]”2m1mg0!c1 1
2 c̄D~Cg5!c̄T2 1

2 cTD†~Cg5!c,

Lint8 52 1
2 c̄D~Cg5!c̄T1 1

2 cTD†~Cg5!c1G~ c̄lW c!2,

whereD is the desired gap parameter which, as shown in
preceding section, can be sought in the form of a real d
onal non-negative matrix in the color space. We introdu
the standard Nambu-Gorkov doublet notation,

C~p!5S c~p!

c̄T~2p!
D ,

in which the calculation of the free propagator amounts
inverting a 232 matrix,

S21~p!5S p”2m1mg0 D~Cg5!

2D†~Cg5! ~p”1m2mg0!TD .

The explicit form of the propagator has been given by s
eral authors, see, for instance, Refs.@31,32#.

In the mean-field approximation,D is determined from a
single one-loop Feynman graph. Regulating the quadratic
vergence with a three-momentum cutoffL and evaluating
explicitly the Wick-rotated integral over the temporal com
ponent of the loop momentum, we finally arrive at the g
equation

15
2

3
GEL d3pW

~2p!3 S 1

E1
1

1

E2
D , ~9!

whereE6 represent the positive energies given by the d
persion relations of the quasiquark excitations,

E6
2 5~ApW 21m26m!21uDu2.
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A few remarks to the gap equation~9! are in order. First,
in the loop integral we have ignored a term proportional
mg0 which generates the operatorc̄(Cg5)g0c̄T that breaks
Lorentz invariance. In fact, we should have expected suc
term to appear, since Lorentz invariance is explicitly brok
by the presence of the chemical potential in Lagrangian~8!.
For our treatment of color superconductivity at non-ze
chemical potential to be fully consistent, we would have
include such operators into our Lagrangian from the v
beginning and solve a coupled set of gap equations for b
Lorentz invariant and non-invariant condensates@33#. Here,
for the sake of simplicity, we ignore this difficulty and ne
glect the secondary effects of Lorentz-invariance break
induced by the chemical potential.

Second, the gap equation~9! is understood as a matri
equation in the color space. Its matrix structure is, howev
trivial. In fact, we get three separated identical equations
the diagonal elementsD1 ,D2 ,D3 of the gap matrix. This
means that, at least at the level of the mean-field approxi
tion, our model favors an enhancedSO(3) symmetry of the
ground state—the gaps for all three colors are the same.
is apparently not a peculiar consequence of our partic
choice of interaction in Eq.~8!, but holds for any
SU(3)-invariant four-fermion interaction. The only effect o
adding also the Lorentz vector or tensor channel interactio
for example, would be in the modification of the effectiv
coupling constantG. The Lorentz structure of the interactio
does not play any role and the resulting form of the g
equation is a consequence of the identitylW DlW T54D/3,
which holds for any diagonal matrixD. We will return to the
discussion of this point in the next section where we w
comment on a correspondence between the bosonic and
mionic approaches.

Third, the extension of the gap equation to non-zero te
peratures is easy. We can either first calculate the thermo
namical potentialV and then minimize it with respect toD
or, alternatively, proceed in the same manner as before
derive a self-consistency condition for the thermal Gre
function @34#. Performing the sum over Matsubara freque
cies in the last step, the result is

15
2

3
GEL d3pW

~2p!3 S 1

E1
tanh

E1

2T
1

1

E2
tanh

E2

2T D .

This gap equation can be used for the study of tempera
dependence of the gap and, in particular, for finding the c
cal temperature at which theSU(3) symmetry is restored
@31#.

IV. SUMMARY AND DISCUSSION

Let us briefly summarize our results. First we develop
the Higgs mechanism for a color sextet and found out t
although the underlying symmetry allows for a comple
spontaneous breakdown, for a generic quartic scalar pote
the patternSU(3)→SO(3) is preferred.

Then we used the Nambu–Jona-Lasinio model to ca
late the gapsD1 ,D2 ,D3 self-consistently in the mean-fiel
4-6
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approximation and our result was in accord with the prec
ing Higgs-type analysis.

This is, of course, not only a coincidence, but follow
from a general correspondence between four-fermi
interaction models and linear sigma models provided by
Hubbard-Stratonovich transformation.

Let us sketch the main idea. In the path integral form
ism, one first introduces an auxiliary scalar integration va
able which has no kinetic term and couples to the ferm
via the Yukawa interaction. The action now becomes bilin
in the fermion variables and one can integrate them out
plicitly. The logarithm of the fermion determinant gives ris
to a kinetic term of the scalar field and the model hen
becomes equivalent to the linear sigma model, up to a ch
of the renormalization prescription@36#.

In terms of the NJL model the interpretation of the cor
spondence is a little bit different. Here one cannot carry
the usual renormalization program and the choice of an
traviolet regulator becomes physically significant. So in
effective scalar field action the operators with dimension 4
less are dominant since they are generated with diver
coefficients. The quadratic divergences cancel due to the
equation in the underlying NJL model but the logarithm
ones remain@37#.

One thus receives ana posteriori justification for the
choice of the linear sigma model as the starting point for
Higgs-type analysis in Sec. II C. On the other hand, o
should bear in mind that these conclusions are valid only
the mean-field approximation that we employed.

In terms of the effective scalar fieldF, the true vacuum is
determined by the absolute minimum of the full quantu
effective potential which is no longer restricted to conta
operators of dimension 4 or less.

In the NJL model, going beyond the mean-field appro
a

n,
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mation @38# could destroy the simple structure of the on
loop gap equation~9!. Generally, the resulting set of alge
braic equations forD1 ,D2 ,D3 must be permutation invarian
since permutations of diagonal elements of the matrixD be-
long to the symmetry groupSU(3) of the theory. For four-
fermion interactions theSU(3) structure of an arbitrary
Feynman graph can be investigated making use of the F
identities in the color space. One gets three coupled, but
rather simple, equations for the three gaps. It is then perh
a matter of numerical calculations to decide whether th
equations possess asymmetric solutions and whether the
more energetically favorable than those withD15D25D3.

We suspect that asymmetric solutions implying a co
plete breakdown of theSU(3)3U(1) symmetry can also be
obtained from interactions that mimic many-body forc
~six-fermion or more!. The correspondence with linear sigm
model via the Hubbard-Stratonovich transformation is th
lost and it could hopefully suffice to stay at the level of t
mean-field approximation, thus requiring much less man
work than in the previous case.

Investigations in the two directions mentioned above
already in progress.
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We consider a model with global Abelian chiral symmetry of two massless fermion fields interacting
with a complex massive scalar field. We argue that the Schwinger-Dyson equations for the fermion and
boson propagators admit ultraviolet-finite chiral-symmetry-breaking solutions provided the Yukawa
couplings are large enough. The fermions acquire masses and the elementary excitations of the complex
scalar field are the two real spin-zero particles with different masses. As a necessary consequence of the
dynamical chiral symmetry breakdown both in the fermion and scalar sectors, one massless pseudoscalar
Nambu-Goldstone boson appears in the spectrum as a collective excitation of both the fermion and the
boson fields. Its effective couplings to the fermion and boson fields are calculable.

DOI: 10.1103/PhysRevD.72.045007 PACS numbers: 11.30.Qc
I. INTRODUCTION

One of the major challenges to current high energy
physics is to understand the origin of particle masses [1].
All particle interactions except gravity are, up to energies
accessible in to-date experiments, successfully described
by the standard model. There is therefore no doubt that the
standard model is the correct effective theory of particle
interactions in the energy range so far explored.

It is well known that the detailed underlying physics
manifests itself in the effective theory through the effective
coupling constants so that when looking for new physics,
we should try to reveal the origin of the parameters in the
effective Lagrangian.

In the standard model, the part of the Lagrangian de-
scribing the particle interactions is beautifully constrained
by the gauge invariance principle. The matter part, how-
ever, seems rather ugly. The fermion masses cannot be
introduced directly as they are prohibited by the gauge
SU�2�L � U�1�Y symmetry, whose chiral structure is in
turn necessary to provide an explanation for parity viola-
tion in weak interactions.

The masses therefore have to be generated by means of
spontaneous symmetry breaking. This is achieved by in-
troducing the scalar Higgs field and properly adjusting its
potential so that it develops a nonzero vacuum expectation
value at tree level. However, the dynamical origin of the
‘‘wrong sign’’ of the Higgs mass squared, which is respon-
sible for the tree-level condensation, remains unclear.
Moreover, the fermion masses eventually stem from the
Yukawa interaction with the Higgs, and hence there are as
many different couplings as there are particle species. It
would certainly be desirable to understand the particle
masses as the consequence of some, yet unknown, quan-
tum dynamics.

We would like to argue that dynamical mass generation
is possible by means of the Yukawa interaction itself,
address: brauner@ujf.cas.cz

05=72(4)=045007(8)$23.00 045007
without ever having to change the sign of the Higgs mass
squared. This would open a new possibility of the existence
of an elementary massive scalar field in the standard model
Lagrangian. It should be heavy enough so that current
experimental bounds are met, and also due to naturalness
arguments, according to which its mass should be shifted
by radiative corrections up to the scale of new physics.

Our ambitions in the present paper are much more
modest than to cure the standard model from its disease.
We disregard the otherwise phenomenologically very im-
portant issues such as the hierarchy of particle families and
CP violation, and concentrate on a simple Abelian model
to show that spontaneous chiral symmetry breaking by the
Yukawa interaction is viable. We believe that the central
idea of the symmetry-breaking mechanism can thus be
displayed more transparently. The implementation of this
idea to the standard model phenomenology is deferred to
future work.

The plan of the paper is as follows. In the next section we
introduce our model and investigate, at a rather elementary
and pictorial level, the consequences of the assumed spon-
taneous generation of the fermion mass. We do so for the
reader’s convenience and to emphasize the robustness of
the main idea of the paper. In particular we show that the
fermion mass induces an anomalous symmetry-breaking
two-point Green’s function of the scalar. The spectrum of
the system then contains two real spinless particles coupled
to the original complex field, and with their masses split.

In the next part of the text, a matrix formalism is
developed which allows us to treat both the symmetry-
preserving and the symmetry-breaking Green’s functions
on the same footing. We write down the one-loop
Schwinger-Dyson equations and exploit the underlying
symmetry by means of the Ward identities. Still assuming
the spontaneous symmetry breaking to occur in the ground
state, we show how the Nambu-Goldstone boson arises and
examine its properties.

In the last part we demonstrate that, under reasonable
simplifying assumptions, a symmetry-breaking solution to
-1  2005 The American Physical Society
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the Schwinger-Dyson equations actually does exist, thus
establishing a firm ground for the preceding heuristic argu-
ments. We conclude the paper with a discussion of our
results and the future perspective.
+

FIG. 1. Mixing in scalar sector induced by the fermion mass
terms. The full blobs denote the chirality-changing part of the
complete fermion propagator.
II. PRELIMINARY CONSIDERATIONS

Our model is defined by the Lagrangian,

L �
X
j�1;2

� � jLi@6  jL � � jRi@6  jR� � @�
y@�

�M2y�
1

2
��y�2 � y1 � 1L 1R

� y1 � 1R 1L
y � y2 � 2R 2L� y2 � 2L 2R

y: (1)

The Yukawa couplings y1;2 are real without lack of gen-
erality. Another remark is in order here. In view of the
future application of our idea on the electroweak symmetry
breaking, it is necessary that the global symmetry to be
spontaneously broken is amenable to gauging. With just a
single fermion species there would be an axial anomaly
present. While anomaly cancellation is automatic in the
standard model due to its particle content, here we have to
introduce two fermions with opposite axial charges to
remove the anomaly in the Abelian axial current. It should
be clear, however, that this minor technical complication
does not alter at all the underlying idea.

The Lagrangian Eq. (1) enjoys a global Abelian
U�1�V1 � U�1�V2 � U�1�A symmetry. The two vector
U�1�’s are associated with separate conservation of the
numbers of fermions of the first and second type. The
corresponding Noether currents are the well known

j�V1 � � 1�� 1; j�V2 � � 2�� 2: (2)

The axial U�1� transformations of the fermions are tied
by the Yukawa coupling to the scalar field. For the
Lagrangian to be invariant, it is necessary that the fields
transform as

 1 ! e�i��5 1;  2 ! e�i��5 2; ! e�2i�:

(3)

The axial Noether current has the following form:

j�A � � 1�
��5 1 � � 2�

��5 2

� 2i
�@��y�y@��: (4)

Now the standard tree-level mechanism of spontaneous
symmetry breaking corresponds toM2 < 0 in Eq. (1). Then
the scalar field,  � 1��

2
p �1 � i2�, develops a nonzero

ground-state expectation value, which is conveniently
chosen to be real, v  h1i0 � ��2M2=��1=2. Con-
sequently, the fermions acquire the masses m1;2 �
1��
2

p vy1;2, 2 becomes the massless Nambu-Goldstone bo-

son, and 0
1 � 1 � v becomes a massive real scalar

particle with mass M1 �
��������������
�2M2

p
. The Goldstone boson
045007
2 interacts with the fermions by the Yukawa coupling
m1

v
� 1i�5 12 �

m2

v
� 2i�5 22.

From now on we set M2 > 0 and investigate the model
of Eq. (1) with respect to the possibility of spontaneous
symmetry breaking. The scalar field now possesses an
ordinary mass term, and there is therefore no condensation
and no symmetry breaking at tree level. Rather, if the
symmetry is broken in the ground state, it must be a result
of the quantum dynamics of the system.

As spontaneous symmetry breaking is a nonperturbative
phenomenon, it cannot be achieved at any finite order of
perturbation theory. The nonperturbative method we em-
ploy here is to look for self-consistent symmetry-breaking
solutions to the Schwinger-Dyson equations. We thus tem-
porarily assume that there is a solution for which the full
fermion propagators have nonvanishing chirality-changing
parts, which means nonzero masses of the fermions.

Now let us observe that such a solution induces mixing
of  and y or, in other words, nonzero correlation func-
tion hi, see Fig. 1. This could have been expected as the
field  couples to the axial part of the U�1�V1 � U�1�V2 �
U�1�A symmetry, and once this is broken nothing prevents
 and y from mixing.

The second observation is that the ‘‘anomalous’’ two-
point scalar Green’s function hi in turn enters the one-
loop Schwinger-Dyson equations for the fermion propaga-
tors, see Fig. 2. The set of Schwinger-Dyson equations for
the fermion and scalar propagators are thus intrinsically
coupled and must be solved simultaneously if a symmetry-
breaking solution is to be found.

Before we switch to a formal description to come in the
next section, we would like to give a more physical picture
of what is going on here. Let us for simplicity suppose that
the one-particle-irreducible part of the anomalous scalar
two-point function hi is momentum independent and
equal to �i�2. The spectrum in the scalar sector is then
determined by the quadratic part of the renormalized
Lagrangian,
L �0�
scalar � @�y@��M2y�

1

2
�2�

�
1

2
�2yy: (5)
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FIG. 3. One-loop SD equation for the fermion self-energy
expressed in terms of the physical fields ’1 and ’2.

=
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FIG. 2. Chirality changing fermion proper self-energies in-
duced by the scalar mixing.
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The nonderivative (mass) part of the Lagrangian is easily
diagonalized by a rotation in the �y space. The
spectrum then contains two real spin-0 particles with
masses

M2
1;2 � M2 � j�2j:

The corresponding real fields ’1 and ’2 are defined
through

 �
1���
2

p ei��’1 � i’2�;

where the ‘‘mixing angle’’ � is merely given by the phase
of the anomalous mass term, tan2� � Im�2=Re�2.
1We work in the chiral basis of the Dirac � matrices, in which �5
component Weyl spinors and the four-component Dirac spinors with
clear from the context which of these two spinors is actually used.

045007
Note also that the anomalous propagator hi is now
equal to 1

2 e
2i��h’1’1i � h’2’2i�; that is, the one-loop

graphs in Fig. 2 may be replaced with Fig. 3. The difference
of scalar propagators significantly improves the conver-
gence of the Schwinger-Dyson kernel.
III. FORMAL DEVELOPMENTS

A. The scalar Nambu doublet

We have seen in the previous section that once chiral
symmetry is spontaneously broken the scalar field  de-
velops a nonzero anomalous propagator mixing it withy.
For the sake of simplicity of the general formulas to come,
we introduce a doublet field,

� �

y

� �
;

and the matrix propagator which contains as its entries both
normal and anomalous two-point functions of the field ,
iD�x� y� � h0jTf��x��y�y�gj0i � h0jTf�x�y�y�gj0i h0jTf�x��y�gj0i
h0jTfy�x�y�y�gj0i h0jTfy�x��y�gj0i

� �
:

Note that this notation is similar to the Nambu formalism frequently used in the theory of superconductivity [2]. It is also
quite natural due to its analogy in the fermion sector. There, we could have well introduced two ‘‘normal‘‘ propagators for
the left- and right-handed chiral fields and treated the desired mass term connecting  L with  R as an anomalous part of the
propagator. Instead, we work with the Dirac field

 �
 L
 R

� �
;

which incorporates both chiral fields in a single four-component spinor. The chirality-changing part of the fermion
propagator is then given by the off-diagonal component of the full Dirac propagator,1

iS�x� y� � h0jTf �x� � �y�gj0i �
h0jTf L�x� � L�y�gj0i h0jTf L�x� � R�y�gj0i
h0jTf R�x� � L�y�gj0i h0jTf R�x� � R�y�gj0i

� �
:

is diagonal, and quite deliberately denote by  L;R both the two-
just the upper two or the lower two entries nonzero. It should be

-3
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FIG. 4. The diagrammatical representation of the one-loop
Schwinger-Dyson equations for the fermion and scalar self-
energies. The first line holds for both  1 and  2. The dashed
blobs stand for the proper self-energies, while the solid blobs
denote the full propagators. The double-dashed line is for the
Nambu � doublet.
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The propagators of  1 and  2 will be denoted as S1 and S2,
respectively.

B. The Schwinger-Dyson equations

As already stressed above, spontaneous symmetry
breaking cannot be revealed at any finite order of pertur-
bation theory. In order to deal with this nonperturbative
effect, we employ the technique of the Schwinger-Dyson
equations.

These constitute an infinite system of coupled equations
for the Green’s functions of the theory. To make them more
tractable, it is usual to close the system at a certain order by
assuming a convenient ansatz for the higher-point Green’s
functions. In order to achieve a simple gap equation we
neglect all but the two-point connected Green’s functions
[3]. We are thus left with a self-consistent set of equations
for the fermion and scalar propagators, which are depicted
diagrammatically in Fig. 4. The double-dashed line repre-
sents the Nambu doublet �. This symbolic notation is used
to stress the fact that the Schwinger-Dyson equations for
both the symmetry-preserving and the symmetry-breaking
parts of the propagators are represented by Feynman
graphs of the same topology and can thus be put in a
simple compact form as in Fig. 4.

We do not write down all the formulas that correspond to
the Feynman diagrams in Fig. 4. Instead, having in mind
our future simplification neglecting all symmetry-
preserving radiative corrections, we put explicitly just the
expressions for the symmetry-breaking proper self-
energies. The upper indices, L or R for the fermion propa-
gators and 1 or 2 for the scalar propagator, specify the
matrix elements of the two-by-two matrices for S and D
introduced above. The same matrix notation is used for the
proper self-energies � and �:

�LR
1 �p� � iy21

Z d4k

�2$�4
SRL1 �k�D12�k� p�;

�LR
2 �p� � iy22

Z d4k

�2$�4
SRL2 �k�D21�k� p�;

�12�p� � �iy21
Z d4k

�2$�4
Tr
SLR1 �k�SLR1 �k� p��

� iy22
Z d4k

�2$�4
Tr
SRL2 �k�SRL2 �k� p��

� i�
Z d4k

�2$�4
D12�k�:

(6)

Before concluding the discussion of the Schwinger-Dyson
equations, let us note that neglecting corrections to the
interaction vertices is not all that consistent with the envis-
aged spontaneous symmetry breaking. In Sec. III C we
explain that the coupling of both the fermions and the
scalar to the current of the broken symmetry (that is, the
axial current) develops a pole due to the intermediate
massless Nambu-Goldstone boson state. Now the same is
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also true for the (pseudo)scalar Yukawa coupling of the
fermion and scalar. As a result, the full � propagator
should possess a massless pole due to the Nambu-
Goldstone boson, with the residuum determined by the
factor h0jj$�q�i.

Neglecting the vertex corrections therefore means that
we are not going to reproduce correctly the whole analyti-
cal structure of the propagators. Our set of Schwinger-
Dyson equations amounts to resummation of a certain class
of Feynman diagrams which, however, is sufficient to
discover spontaneous symmetry breaking. In other words,
we are looking for spontaneous symmetry breaking in the
spectrum of the elementary excitations of the fields  1;2

and �. The discussion of the collective excitations, which
of course also manifest themselves in the full propagators,
is deferred to Sec. III C.

C. The Ward identities

We now exploit the symmetry properties of the theory.
At the classical level, the U�1�V1 � U�1�V2 � U�1�A invari-
ance of the Lagrangian II implies the existence of three
conserved Noether currents—two vector, see Eq. (2), and
one axial, see Eq. (4).

At the level of quantum field theory, the conservation of
the vector and axial currents is expressed in terms of the set
of Ward identities for the Green’s functions containing the
current operators. We investigate here the three-point func-
tions with the conserved current and a fermion or scalar
pair, respectively.

The vector currents couple only to the fermions, so there
is just one nontrivial Ward identity for each, for the vertex
functions G�

V1�x; y; z� � h0jTfj�V1�x� 1�y� � 1�z�gj0i and
G�
V2�x; y; z� � h0jTfj�V2�x� 2�y� � 2�z�gj0i, which have the

well-known form

q��
�
V1�p� q; p� � S�1

1 �p� q� � S�1
1 �p�;

q��
�
V2�p� q; p� � S�1

2 �p� q� � S�1
2 �p�:
-4



Γµ
A ψ1 ,bare(p + q, p) = = γ µγ5,

Γµ
A ψ2 ,bare(p + q, p) = = − γ µγ5,

Γµ
A φ ,bare(p + q, p) = = − 2(2p + q)µΞ.

FIG. 5. The bare parts of the proper vertex functions of the
axial current. The crosses indicate the axial current. The num-
bers at the solid lines distinguish between  1 and  2.

Γµ
A ψ1 ,pole = +

Γµ
A ψ2 ,pole = +

Γµ
A φ ,pole = +

FIG. 6. The pole parts of the proper vertex functions of the
axial current. The double solid line represents the Nambu-
Goldstone boson and the empty circles its effective vertices
with the fermions and the scalar, respectively. Both  1 and  2

can circulate in the closed fermion loops.
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The proper vertex functions ��V1;2 correspond to G�
V1;2 with

full fermion propagators of the external legs cut off.
The axial current, on the other hand, couples to both the

fermions and the scalar. There are hence altogether three
vertex functions, G�

A 1
�x;y;z� � h0jTfj�A �x� 1�y� � 1�z�gj0i,

G�
A 2

�x;y;z��h0jTfj�A �x� 2�y� � 2�z�gj0i, andG�
A�x;y;z��

h0jTfj�A �x���y��y�z�gj0i. The corresponding Ward identi-
ties read

q��
�
A 1

�p� q; p� � S�1
1 �p� q��5 � �5S�1

1 �p�;

q��
�
A 2

�p� q; p� � �S�1
2 �p� q��5 � �5S

�1
2 �p�;

q��
�
A�p� q; p� � �2D�1�p� q��� 2�D�1�p�:

(7)

The matrix �,

� �
1 0
0 �1

� �
;

operates in the �y space and is quite analogous to �5

in the fermion sector.
Before closing the general discussion of the Ward iden-

tities, let us remark that the identities of Eq. (7) must hold
whether the symmetry is spontaneously broken or not. In
both cases they strongly constrain the form of the vertex
functions but, particularly if the symmetry is broken, they
allow us to visualize the massless collective excitation
predicted by the Goldstone theorem, as we will now see.

D. The Nambu-Goldstone boson

Once chiral symmetry is broken, there must exist a
massless Nambu-Goldstone boson in the spectrum of the
theory, which couples to the Noether current of the broken
symmetry. It is the axial current which is broken in our case
and, as it couples to both the fermions and the scalar, the
Nambu-Goldstone boson must be a collective excitation of
both fermions and scalars.

General analytical properties of Green’s functions imply
the existence of a pole corresponding to an intermediate
particle, once the total momentum of a proper subset of
external legs approaches the mass shell of the particle [4].
This means that the Nambu-Goldstone boson can be seen
as a pole in the vertex functions of the axial current as q2 !
0. Its properties are then expressed in terms of the
symmetry-breaking self-energies of the fermions and the
scalar, which are obtained by solving the set of Schwinger-
Dyson equations stated in Sec. III B.

To proceed further, we approximate the proper vertex
functions ��A 1;2

and ��A by the sum of the bare vertex and
the pole contribution. We follow the analysis of Jackiw and
Johnson [5].

The bare vertices are determined by the usual rules of
perturbation theory. For the sake of later reference and to
show how the � notation works, we fix them down in
Fig. 5.
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The pole of the vertex functions arises from the propa-
gator of the intermediate Nambu-Goldstone boson, see
Fig. 6. The yet unknown effective vertices of the Nambu-
Goldstone boson with the fermions and the scalar, to be
extracted from the Ward identities (7), are denoted by
empty circles in the figures and by P 1;2

�p� q; p� and
P�p� q; p� in the formulas.

We can now write down the formulas for the pole con-
tributions,

��A 1;pole
� P 1

�p� q; p�
i

q2

I� 1

�q� � I� 2
�q� � I��q��;

��A 2;pole
� P 2

�p� q; p�
i

q2

I� 1

�q� � I� 2
�q� � I��q��;

��A;pole � P�p� q; p�
i

q2

I� 1

�q� � I� 2
�q� � I��q��;

(8)

where I� 1;2
�q� and I��q� represent the fermion and scalar
-5
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loops in Fig. 6. They are given by the equations

I� 1
�q� � �

Z d4k

�2$�4
Tr
���5iS1�k� q�

� P 1
�k� q; k�iS1�k��;

I� 2
�q� � �

Z d4k

�2$�4
Tr
����5iS2�k� q�

� P 2
�k� q; k�iS2�k��;

I��q� �
1

2

Z d4k

�2$�4
Tr
�2�2k� q���iD�k� q�

� P�k� q; k�iD�k��: (9)

The difference of the integral prefactors here arises from
the different nature of the degrees of freedom circulating in
the loops. The �1 is the standard fermion loop factor,
while the 1

2 follows from the fact that by introducing �
instead of  we have effectively doubled the number of
degrees of freedom, which must be compensated for when
calculating the trace over a closed loop.

As the loop integrals I� 1;2
�q� and I��q� depend only on a

single external momentum q, they are forced by Lorentz
covariance to have the form

I� 1;2
�q� � �iq�I 1;2

�q2�; I��q� � �iq�I�q2�:

Inserting this into Eq. (8) and the sum of the bare and the
pole contributions into the Ward identities (7), and going
onto the Nambu-Goldstone boson mass shell, q2 ! 0, we
arrive at the general formula for the effective vertices,

P 1
�p� q; p� �

1

N

S�1

1 �p� q��5 � �5S�1
1 �p� � q6 �5�;

P 2
�p� q; p� � �

1

N

S�1

2 �p� q��5 � �5S
�1
2 �p� � q6 �5�;

P�p� q; p� � �
2

N

D�1�p� q����D�1�p�

� q � �2p� q���; (10)

where the normalization factor N is given byN � I 1
�0� �

I 2
�0� � I�0�. As noted by Jackiw and Johnson [5], the
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effective vertices found this way are ambiguous at the
order O�q2�, since we have approximated the loop correc-
tions to the full proper vertex functions ��A 1;2

and ��A by
their pole parts, and completely neglected other finite
contributions.

To complete the calculation of the vertex functions, we
must now plug the expressions (10) back into Eq. (9) and
solve the resulting system of equations for I 1;2

�0� and
I�0�.
IV. MODEL RESULTS

A. Effective vertices and loop integrals

The results obtained above are fairly general as we have
used only very few and weak assumptions like the pole
term dominance in the proper vertex functions. On the
other hand, it is not easy to draw any concrete results
from formulas like Eqs. (9) and (10). To push our con-
clusions a little bit further, we now make a simplifying
assumption that will allow us to finish the calculation.

Since we are looking for spontaneous symmetry break-
ing, we shall neglect ordinary (symmetry-preserving) re-
normalization of the fermion and scalar propagators [6]
and retain just the symmetry-breaking self-energies. This
will enable us to proceed analytically as far as possible. Of
course, as soon as one pretends at phenomenological rele-
vance of the obtained results, all radiative corrections must
be included, but this is not the aim of the present paper.
Here we just wish to demonstrate that spontaneous sym-
metry breaking is possible in a model like Eq. (1).

We thus make the following ansatz for the fermion and
scalar propagators:
S�1
1;2 �p� � p6 ��1;2�p�;

D�1�p� �
p2 �M2 ���p�
����p� p2 �M2

� �
;

(11)
where �1;2�p� are the Lorentz-scalar chirality-changing
proper self-energies, and ��p� is the anomalous proper
self-energy of the scalar field.

With this assumption, the effective vertices (10) become
P 1
�p� q; p� � �

1

N

�1�p� q� ��1�p���5; P 2

�p� q; p� �
1

N

�2�p� q� ��2�p���5;

P�p� q; p� � �
2

N
0 ��p� q� ���p�

����p� q� ����p� 0

� �
:

(12)
We can now go on to evaluate the last missing piece, that is, the normalization factors I 1;2
�0� and I�0�. We substitute for

the propagators (11) and the effective vertices (12) in the loop integrals (9), which turn out to be parametrized in terms of
the integrals (for the sake of readability, we put the arguments of �1;2 and � to the lower index),
-6
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�iq�J 1
�q2� � 8

Z d4k

�2$�4
�k� q���1;k

k2 ��2
1;k

�1;k ��1;k�q

�k� q�2 � �2
1;k�q

;

�iq�J 2
�q2� � 8

Z d4k

�2$�4
�k� q���2;k

k2 ��2
2;k

�2;k ��2;k�q

�k� q�2 � �2
2;k�q

;

�iq�J�q2� � 8
Z d4k

�2$�4
�2k� q���k2 �M2�

�k2 �M2�2 � j�kj
2

Re
��
k�q��k ��k�q��


�k� q�2 �M2�2 � j�k�qj
2 :

(13)

With these definitions, the expressions for I 1;2
�q2� and I�q2� read

I 1;2
�q2� �

J 1;2
�q2�

N
; I�q2� �

J�q2�

N
;

where the overall normalization factor of the vertices in Eq. (12) is equal to

N �
��������������������������������������������������
J 1

�0� � J 2
�0� � J�0�

q
: (14)

Let us finally note that the ansatz (11) also allows us to simplify the Schwinger-Dyson equations (6), whose solution will
be the subject of the next section. With the same index notation as above in Eq. (13), Eqs. (6) become

�1;p � iy21
Z d4k

�2$�4
�1;k

k2 � �2
1;k

�k�p


�k� p�2 �M2�2 � j�k�pj
2 ;

�2;p � iy22
Z d4k

�2$�4
�2;k

k2 � �2
2;k

��
k�p


�k� p�2 �M2�2 � j�k�pj
2 ;

�p � �
X
j�1;2

2iy2j
Z d4k

�2$�4
�j;k

k2 ��2
j;k

�j;k�p

�k� p�2 � �2
j;k�p

� i�
Z d4k

�2$�4
�k

�k2 �M2�2 � j�kj
2 :

(15)
B. Solution to the Schwinger-Dyson equations

We now wish to demonstrate that the Schwinger-Dyson
equations (15) actually do have a nontrivial solution; that
is, our mechanism is capable of generating fermion masses
dynamically. To that end note that Eqs. (15) constitute a set
of coupled nonlinear integral equations for the unknown
functions �1;p, �2;p, and �p. This is still too complicated
to deal with, and we therefore introduce further simplifi-
cations. We keep in mind that we are just attempting to
break the chiral symmetry dynamically, and do not intend
to produce any phenomenological conclusions at this stage.

First, we abandon the �-term in the last of Eqs. (15).
Formally, the advantage of this step is in the fact that � is
then expressed exclusively in terms of the �’s. Physically,
the symmetry is broken by the strong dynamics of the
Yukawa interaction, while the scalar field quartic self-
interaction can be later switched on perturbatively. This
possibility is in marked contrast with the standard use of a
condensing scalar. The ��y� term in the Lagrangian
will become indispensable as a counterterm after including
ordinary, symmetry-preserving quantum corrections.

Second, we consider for simplicity just the special case
y1 � y2. The Lagrangian is then invariant under the dis-
crete symmetry  1 $  2, $ y. As far as the induced
anomalous scalar self-energy is real, we may assume that
045007
this discrete symmetry is not spontaneously broken and the
self-energies �1 and �2 are therefore equal. We are thus
left with two coupled equations for � and just one �.

The reduced set of equations may now in principle be
solved iteratively. We performed a numerical calculation to
estimate the order of magnitude of the generated fermion
mass. We used the Euclidean approximation, that is,
made a formal Wick rotation of the momenta in
Eqs. (15). We made use of the fact that, after canceling
the �-term, the right-hand side of the last of Eqs. (15)
depends just on the �’s.

We took an initial ansatz for the � and used it to
calculate the zeroth approximation for the �. After then,
we solved the two coupled equations iteratively. Our re-
sults are summarized by the graphs in Fig. 7.

We can see that the Eqs. (15) indeed possess a nontrivial
solution. As far as we were able to check, this solution is
unique in the sense that it is independent of the initial
ansatz for the �0s. The self-energies fall down rapidly
once the momentum exceeds the bare scalar mass M,
thus verifying our assumptions on the convergence of the
loop integrals.

It would be perhaps more appropriate to do all the
calculations in the Minkowski space as the physical mass
lies in the timelike region of momenta. Such a calculation
has been performed in Ref. [7].
-7
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FIG. 7. Results of the numerical computation of the self-
energies � and �.
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V. DISCUSSION AND CONCLUSION

Within simplifying assumptions stated in the text, we
have demonstrated that a strong chirally invariant Yukawa
interaction of massless fermions with a massive complex
scalar field can generate the fermion masses by genuinely
quantum (i.e. nonperturbative) loop effects. By the exis-
tence theorem this implies the massless pseudoscalar
Nambu-Goldstone boson in the spectrum. In this respect
our program is very much the same as that of the renown
Nambu–Jona-Lasinio (NJL) paper [8].

We believe that a certain appeal of our suggestion is in
the ultraviolet finiteness of nonperturbatively calculated
quantities. It can be traced to the necessity of a generic
coupling of the Schwinger-Dyson equations for the fer-
mion and the scalar field propagators. It is definitely more
subtle than the single Schwinger-Dyson equation for the
fermion propagator with chirality conserving vector inter-
actions. Technically the �y mixing results in the
difference of propagators of the scalar mass eigenstates
045007
and, consequently, in decent ultraviolet behavior of anoma-
lous (symmetry-breaking) loop integrals.

Vexing assumptions of the present exploratory stage of
the development of the model have to be replaced by better
ones. In particular, it is desirable to have approximate
analytic solutions ��p2� and ��p2� in Minkowski space.
The fermion massesm1;2 are determined by solvingm2

1;2 �

�2
1;2�p

2 � m2
1;2� and by the dimensional argument the so-

lution must have the form

m1;2 � Mf1;2�y1;2�: (16)

Preliminary numerical analysis in Euclidean space sug-
gests that �1;2 ! 0 for y1;2 approaching a (large) critical
value. Our numerical calculation gives a rough estimate
ycrit: � 35. The formula (16) is to be compared withm1;2 �
1��
2

p vy1;2 of the standard tree-level approach with a condens-

ing scalar.
Possible uses of our model, if harshly justified, are also

those of NJL in its contemporary interpretation:

(i) T
-8
he apparently non-BCS-like form of the
Schwinger-Dyson equations for the fermion propa-
gator (6) is suggestive for modeling fermionic
superfluidity with scalar effective degrees of
freedom.
(ii) N
on-Abelian generalization and gauging of the NJL
model resulted in the past in models of the dynami-
cal mass generation in SU�2�L � U�1�Y gauge-
invariant electroweak models [9,10]. With our way
of treating scalars we plan to follow the same path
[11].
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I. INTRODUCTION

Spontaneous symmetry breaking plays an important role
in many areas of physics and encounters a host of fascinat-
ing phenomena. The most distinguishing feature of sponta-
neous symmetry breaking is the presence of soft modes,
long-wavelength fluctuations of the order parameter(s),
guaranteed by the Goldstone theorem [1,2].

For low-energy properties of the spontaneously broken
symmetry it is important to know the number of the
Goldstone bosons (GBs). While for spontaneously broken
internal symmetry (space-time symmetries will not be
the subject of this paper; see e.g. Ref. [3]) in a Lorentz-
invariant field theory it is always equal to the number of
broken-symmetry generators, the original Goldstone theo-
rem predicts the existence of at least one GB. Indeed, there
are several examples in nonrelativistic physics where the
number of GBs is smaller than one would naively expect.
The most profound one is perhaps the ferromagnet where
the rotational SO(3) symmetry is spontaneously broken
down to SO(2), but only one GB (the magnon) exists.

The issue of GB counting in nonrelativistic field theories
was enlightened by Nielsen and Chadha [4]. They showed
that the defect in the number of GBs is related to the low-
momentum behavior of their dispersion relations. GBs
with energy proportional to an odd power of momentum
are classified as type I, and those with energy proportional
to an even power of momentum as type II. The improved
counting rule then states that the number of GBs of type I
plus twice the number of GBs of type II is greater or equal
to the number of broken generators.

It should be noted that the form of the dispersion law of
the lightest degrees of freedom has important phenomeno-
logical consequences, e.g. for the low-temperature thermo-
dynamics of the system. For instance, the heat capacity of a
gas of bosons with E / jpj falls down as T3 for T ! 0,
while for bosons with E / p2 it is only T3=2. If no massless
address: brauner@ujf.cas.cz
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particles are present, the heat capacity is suppressed by
factor e�m=kT , where m is the mass of the lightest particle.

The interest in the problem of GB counting has been
revived recently, mainly thanks to the progress in under-
standing the phase diagram of quantum chromodynamics.
At finite density Lorentz invariance is explicitly broken
and GBs with nonlinear (as a matter of fact, generally
quadratic) dispersion relations may appear even in a rela-
tivistic field theory as a medium effect [5,6]. Their pres-
ence turns out to be connected to the fact that some of the
broken Noether charges develop nonzero density in the
ground state, as has been observed in various color-
superconducting phases of QCD [7,8] or in a neutron
ferromagnet [9].

Schafer et al. [5] have proved the following theorem: if
the commutators of all pairs of broken generators have a
zero ground-state expectation value, then the number of
GBs is equal to the number of broken generators. It is
therefore clear that the nonzero charge density itself is
not sufficient for a quadratic GB to appear. Indeed, the
baryon number density does not cause any harm to the
usual linear GBs in the color superconductors. The corre-
sponding generator must rather be a part of a non-Abelian
symmetry group. Our main goal is to show that the oppo-
site to the theorem of Schafer et al. generally holds: non-
zero density of a commutator of two broken generators
implies one GB with quadratic dispersion law.

The paper is organized as follows. The following section
is devoted to preparatory considerations: we explain how
the quadratic GB is manifested in the Goldstone commu-
tator and sketch its realization in the linear sigma model. In
the next part, an example with an SU(3)-sextet condensa-
tion is investigated in detail. The general analysis is per-
formed in the last section.

II. PRELIMINARY CONSIDERATIONS

In this section we shall investigate how the quadratic
GBs come about, first at the rather general level of the
Goldstone commutator and later more explicitly within the
linear sigma model.
-1 © 2005 The American Physical Society
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A. Goldstone commutator

Let us briefly recall the proof of the Goldstone theorem.
Following Ref. [4], we assume there is a local (possibly
composite) field ��x� and a broken Noether charge Q such
that h0j���x�; Q�j0i � 0. Inserting the complete set of
intermediate states into the commutator, one arrives at
the representation

h0j���x�; Q�j0i �
Xl
n�1

�e�iEkth0j��0�jnkihnkjj0�0�j0i

� eiE�kth0jj0�0�jn�kihn�kj��0�j0i�

at k � 0; (1)

where the index n counts the GBs.
Now assume that we deal with a non-Abelian symmetry

group and some of its charges have nonzero density in the
ground state. Take as the GB field ��x� the zero component
of the Noether current itself, so that h0j�j0

a�x�; Qb�j0i �
ifabch0jj0

c�x�j0i, where fabc is the set of structure constants
of the symmetry group. Should this be nonzero, we infer
from Eq. (1) that both h0jj0

a�0�jni and hnjj0
b�0�j0i must be

nonzero for some Goldstone mode n.
The point of the above heuristic argument is that while in

Lorentz-invariant theories there is a one-to-one correspon-
dence between the GBs and the broken currents, here a
single GB couples to two Noether currents. This explains
(not proves, of course) at a very elementary level how the
GB counting rule is to be modified in the presence of
nonzero charge density.

One should perhaps note that the Nielsen-Chadha count-
ing rule is formulated in terms of the GB dispersion
relations rather than charge densities. The connection be-
tween these two was clarified by Leutwyler [10], who
showed by the analysis of the Ward identities for the
broken symmetry that nonzero density of a non-Abelian
charge induces a term in the low-energy effective
Lagrangian with a single time derivative. The leading order
effective Lagrangian is thus of the Schrödinger type and
the energy of the GB is proportional to momentum
squared.

B. Goldstone bosons within the linear sigma model

In order to elaborate more on the properties of the GBs,
we restrict ourselves from now on to the framework of the
linear sigma model, that is, a general scalar field theory
with quartic self-interaction.

To see how the Goldstone commutator emerges in this
language, recall the SU�2� � U�1� invariant model of
Schafer et al. [5] and Miransky and Shovkovy [6]. The
Lagrangian for the complex doublet field � of mass M in
Minkowski space reads

L � D��
yD���M2�y�� ���y��2:

Finite density of the statistical system is represented by the
076002
chemical potential�, which enters the Lagrangian in terms
of the covariant derivative [11], D�� � �@� � i�0����.
Upon expanding the covariant derivatives, the Lagrangian
becomes

L � @��y@��� 2� Im�y@0�� ��2 �M2��y�

� ���y��2: (2)

For �>M the static potential develops a nontrivial
minimum and the scalar field condenses. To find the spec-
trum of excitations at tree level we reparametrize it as

� �
1���
2
p ei�k�k=v

0
v� ’

� �
; v2 �

�2 �M2

�
;

and look at the bilinear part of the Lagrangian. The crucial
contribution comes from the term in Eq. (2) with one time
derivative. Upon expanding the exponentials it yields
among others the expression

�
1

2
� Im 0 1

� �
��k�k; @0�l�l�

0
1

� �

� ���1@0�2 � �2@0�1�:

As will be made clear in the next subsection, it is this
term that is responsible for the quadratic dispersion rela-
tion of one of the GBs. Its origin from the nonzero density
of a commutator of two generators is now made obvious.
This is the main idea to be remembered. The necessary
technical details will come in the next two sections.

C. Bilinear Lagrangians and dispersion laws

Bilinear Lagrangians with single-time-derivative terms
will frequently occur throughout the whole text. It is there-
fore worthwhile to fix once for all the corresponding
excitation spectrum.

The bilinear Lagrangians we will encounter will have
the generic form

L bilin �
1

2
�@���2 �

1

2
�@�H�2 �

1

2
f2���H2

� g���H@0�: (3)

The notation suggests that H is a massive (Higgs) mode
whose mass function f2��� depends on the chemical po-
tential, while � is the Goldstone mode. The excitation
spectrum is found from the poles of the two-point Green
functions or, equivalently, by solving the condition

det
E2 � p2 �iEg���
�iEg��� E2 � p2 � f2���

� �
� 0:

It turns out there is one massive mode, with dispersion
relation

E2 � f2��� � g2��� �O�p2�; (4)
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and one massless mode, with dispersion relation

E2 �
f2���

f2��� � g2���
p2 �

g4���

�f2��� � g2����3
p4 �O�p6�:

(5)

Now if f2���> 0, the Lagrangian (3) indeed describes a
massive particle and a GB, whose energy is linear in
momentum in the long-wavelength limit. On the other
hand, when f2��� � 0, that is, when both � and H would
correspond to linear GBs in the absence of the chemical
potential, the dispersion relation of the gapless mode re-
duces to E � p2=jg���j. This is the sought quadratic
Goldstone.

In conclusion, the term with a single time derivative, in
general, mixes the original fields in the Lagrangian.
Mixing of a massive mode with a massless one yields
one massive particle and one linear GB; mixing of two
massless modes results in a massive particle and a qua-
dratic GB [12].
III. LINEAR SIGMA MODEL FOR SU(3)-SEXTET
CONDENSATION

As a nontrivial demonstration of the general idea pro-
posed in the previous section, we shall now analyze in
detail a particular model of spontaneous symmetry
breaking. Consider a scalar field � that transforms as a
symmetric rank-two tensor under the group SU(3), �!
U�UT . Such a field describes a one-flavor diquark con-
densate in one of the superconducting phases of QCD [13].

In addition to the SU(3) group, � is subject to U(1)
transformations corresponding to quark number, �!
ei��ei� � e2i��. The most general SU�3� � U�1� invari-
ant Lagrangian has the form

L � tr�D��yD��� �M2 tr�y�� a tr��y��2

� b�tr�y��2: (6)

The quark-number U(1) has been assigned chemical po-
tential � so that D0� � �@0 � 2i���. The parameters
a; b are constrained by the requirement of boundedness
of the static potential [13]. It is necessary that either both
are non-negative (and at least one of them nonzero), or
a < 0 and b > jaj, or b < 0 and a > 3jbj.

A. Minimum of the static potential

We start our analysis with a careful inspection of the
static potential,

V��� � ��4�2 �M2�tr�y�� a tr��y��2

� b�tr�y��2: (7)

A potential of the same type has been analyzed by Iida and
Baym [14]. In their case, however, the global symmetry
was different, and we therefore provide full details.
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When 4�2 �M2 > 0, the stationary point � � 0 be-
comes unstable and a new, nontrivial minimum appears
[15]. The stationary-point condition reads

���4�2 �M2 � 2a�y�� 2b tr�y�� � 0: (8)

Before going into a detailed solution of this equation we
note that by multiplying Eq. (8) from the left by �y and
taking the trace, the stationary-point value of the potential
(7) is found to be

Vstat � �
1

2
�4�2 �M2�tr�y�:

Any nontrivial stationary point of the potential is thus
energetically more favorable than the perturbative vacuum
� � 0. We are, however, obliged to find a stable ground
state, that is, the absolute minimum of the potential.

We now make use of the fact that the field � can always
be brought by a suitable SU�3� � U�1� transformation to
the standard form, which is a real diagonal matrix with
non-negative entries [16]. Equation (8) then splits into
three conditions and it is easy to see that all nonzero
diagonal elements acquire the same value, denoted here
by �.

Let there be n of them, n � 1; 2; 3. Equation (8) implies

�2 �
1

2

4�2 �M2

a� bn
; Vstat � �

1

4

�4�2 �M2�2

b� a
n

:

To find the absolute minimum of the potential, it remains to
minimize this expression with respect to n.

For a > 0 the minimum occurs at n � 3, and � is
proportional to the unit matrix, � � �1, where

�2 �
1

2

4�2 �M2

a� 3b
:

The SU�3� � U�1� symmetry is broken down to SO(3).
For a < 0 the potential is minimized by n � 1, that is, �

is diagonal with a single nonzero entry and is convention-
ally chosen to be � � diag�0; 0;��, where now

�2 �
1

2

4�2 �M2

a� b
:

The unbroken subgroup is now SU�2� � U�1�.
For a � 0 the local minima corresponding to different n

are degenerate since in that case, the Lagrangian (6) is
invariant under an enhanced SU�6� � U�1� symmetry,
treating � as a fundamental sextet. A nonzero ground-state
expectation value of � breaks this symmetry to SU�5� �
U�1�. As we shall see, such an enhanced symmetry leads to
an increased number of GBs with a quadratic dispersion
relation [17].

B. Noether currents and charge densities

Having found the vacuum configuration of the scalar
field, we are ready to reparametrize it and find the excita-
tion spectrum from the bilinear part of the Lagrangian.
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Before doing that, we evaluate the ground-state densities of
the Noether charges in order to make a priori predictions
about the nature of the GBs.

The infinitesimal SU�3� � U�1� transformation of � has
the generic form �� � i�k��k����Tk �, where the �k
stands for the Gell-Mann matrices (k � 1; . . . ; 8) and the
unit matrix (k � 0), respectively. The corresponding
Noether currents are

j�k � �i tr�D��y��k����Tk � � H:c:�:

Taking a generic static field configuration to be � �
diag��1;�2;�3� results in the charge densities

j0
0 � 8���2

1 ��2
2 ��2

3�;

j0
3 � 8���2

1 � �2
2�;

j0
8 �

8���
3
p ���2

1 � �2
2 � 2�2

3�:

In the SO(3) symmetric phase (a > 0), all generators but
the U(1) quark number have zero density. As this is an
Abelian generator, we expect six linear GBs corresponding
to the six broken generators 1; �1; �3; �4; �6; �8. In the a <
0 case, the densities of �0 and �8 are nonzero. This means
that the commutators ��4; �5� and ��6; �7� have nonzero
ground-state density. With regard to the general discussion
above, we thus expect two quadratic GBs corresponding to
the pairs ��4; �5� and ��6; �7�, and one linear GB of the
generator �8.

C. The a > 0 case

We shall now proceed to the calculation of the mass
spectrum of the a > 0 phase. We could do well with just
shifting � by its vacuum expectation value �1, but this
would complicate the identification of the massless modes.
It is more convenient, and physical, to find such a parame-
trization that the GBs disappear from the static potential.

To that end, recall that the field ��x� (now coordinate
dependent) can be brought to the diagonal form by a
suitable SU�3� � U�1� transformation. In other words, it
may be written as

��x� � e2i��x�U�x�D�x�UT�x�;

where U�x� 2 SU�3� and D�x� is real, diagonal, and non-
negative. Now the unitary matrix U can be (at least in the
vicinity of unity) expressed as a product U � VO, O 2
SO�3� being an element of the unbroken subgroup and V
being built from the broken generators, V � ei�k�k , k �
1; 3; 4; 6; 8. A simple observation that O�x�D�x�OT�x� is
the general parametrization of a real symmetric matrix
leads to the final prescription,

��x� � e2i��x�V�x���1� ’�x��VT�x�:

The real symmetric matrix ’ contains six massive modes,
076002
while V contains five GBs. With � this is altogether 12
degrees of freedom, as it should for � is a complex
symmetric 3� 3 matrix.

It is now straightforward, though somewhat tedious, to
plug this parametrization into the Lagrangian (6) and ex-
pand to the second order in the fields. Omitting details of
the calculations, we just report on the results.

The full static potential (up to a constant term—the
vacuum energy density) becomes

V��� � 4�2�a tr’2 � b�tr’�2� � 4��a tr’3 � b tr’ tr’2�

� a tr’4 � b�tr’2�2:

The bilinear Lagrangian turns out to be (we use the nota-
tion V � ei�)

Lbilin � 12�2�@���2 � 4�2 tr�@���2 � tr�@�’�2

� 4�2�a tr’2 � b�tr’�2�

� 16���@0� tr’� tr�’@0���:

The kinetic terms are brought to the canonical form by a
simple rescaling of the fields, upon which the spectrum is
readily determined from Eqs. (4) and (5).

The excitations fall into irreducible multiplets of the
unbroken SO(3) group. There are two singlets, stemming
from the mixing of � and tr’,

massive mode E2 � 24�2 � 2M2 �O�p2�;

linear GB E2 �
4�2 �M2

12�2 �M2 p2 �O�p4�;

and two 5-plets, the mixtures of ��1; �3; �4; �6; �8� and
the traceless part of ’,

massive modes

E2 �
�24�2 � 2M2�a� 48�2b

a� 3b
�O�p2�;

linear GBs

E2 �
�4�2 �M2�a

�12�2 �M2�a� 24�2b
p2 �O�p4�:

It is easily seen from these formulas that the masses of the
massive singlet and the massive 5-plet are connected by

m2
1 � m2

5 � �4�
2 �M2�

6b
a� 3b

� m2
5 � 12�2b:

The singlet is heavier than the 5-plet for b > 0 and vice
versa.

The excitation spectrum is plotted in Fig. 1 for the case
M2 > 0. Below the phase transition to the Bose-Einstein-
condensed phase, the medium-modified dispersion rela-

tions are simply E �
�������������������
p2 �M2

p
	 2�. Right at the tran-

sition point, there are six modes with mass 2M and six
-4
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FIG. 1. Mass spectrum as a function of the chemical potential
for a > 0. The boldface-typed numbers denote the degeneracies
of the excitation branches. To obtain numerical results, particular
values a � b � 1 were chosen.
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massless ones with dispersion E � p2=4�. As the phase
transition is second order, the dispersion relations of all
excitation branches must be continuous functions of �,
that is, all GBs become quadratic at the transition point.
This is also easily checked on the broken-symmetry side of
the transition. As 2�! M� , the phase velocities of the
linear GBs tend to zero, and their dispersions become
quadratic.

Note that also for a � 0 the dispersion relation of the
GB 5-plet becomes quadratic, E � p2=4�. This is in ac-
cordance with the enhanced SU�6� � U�1� symmetry of the
Lagrangian. There are altogether 11 broken generators of
the coset SU(6)/SU(5), one linear GB and five quadratic
ones [forming now the 5-plet of the unbroken SU(5)], and
the Nielsen-Chadha counting rule is thus satisfied.

D. The a < 0 case

We use the same method for parametrization of � as in
the previous case. This time we write ��x� �
U�x�D�x�UT�x�, where U�x� 2 SU�3� � U�1�. Next we
perform the decomposition U � ei�U0, where � �
�k�k, k � 4; 5; 6; 7; 8, and U0 belongs to the unbroken
subgroup SU�2� � U�1�. Since U0�x�D�x�U0T�x� is block-
diagonal with a complex symmetric 2� 2 matrix in the
upper-left corner, we arrive at the parametrization

��x� � ei��x��diag�0; 0;�� � ��x��ei�
T �x�;

��x� �
��x�

H�x�

� �
:

Here H is a real field and � is a complex symmetric 2� 2
matrix. These two embody the massive modes that survive
in the static potential,
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V��� � 4�2�a� b�H2 � 2�2a tr�y�� 4��a� b�H3

� �a� b�H4 � 4�bH tr�y�� 2bH2 tr�y�

� a tr��y��2 � b�tr�y��2:

The bilinear part of the Lagrangian reads

L bilin � tr�@��y@��� � �@�H�2 � 2�2�@��@���33

� 2�2�@��33�
2 � 4�2�a� b�H2

� 2�2a tr�y�� 16��H@0�33

� 4��2 Im��; @0��33 � 4� Im tr�y@0�:

The excitations are again organized in multiplets of the
unbroken SU�2� � U�1�. H and �8 mix to form two sin-
glets,

massive mode E2 � 24�2 � 2M2 �O�p2�;

linear GB E2 �
4�2 �M2

12�2 �M2 p2 �O�p4�;

and the pairs ��4; �5� and ��6; �7� give rise to a doublet of
massive modes and a doublet of massless ones,

massive modes E2 � 16�2 �O�p2�;

quadratic GBs E2 �
p4

16�2 �O�p6�:

The matrix � represents two triplets of massive parti-
cles. The part of the bilinear Lagrangian containing � may
be rewritten as

L � � tr�D��yD��� � �4�2 � 2�2jaj�tr�y�;

which immediately implies the dispersion relations

E �
�����������������������������
4�2 � 2�2jaj

q
	 2��O�p2�:

The mass spectrum is shown in Fig. 2. The unbroken-
phase part of the spectrum is the same as in the a > 0 case,
since for 2�<M the tree-level masses of the particles do
not depend at all on the quartic potential, i.e. the parame-
ters a; b. Also, the same remark about the continuity of the
dispersion relations across the phase transition applies.

Again, in the limit a � 0, the lighter of the two triplets in
� becomes a triplet of quadratic GBs, and joins the other
two quadratic GBs to form the full SU�5� 5-plet.

To summarize our results, the theory described by the
Lagrangian (6) has two different ordered phases, both
occurring at 4�2 >M2, distinguished by the symmetry
of the ground state. The corresponding phase diagram in
the �a; b� plane is displayed in Fig. 3.

As the excitations above the ordered ground state are
grouped into irreducible multiplets of the unbroken sym-
metry, it is interesting to find out how the structure of these
multiplets changes across the phase transition from one
-5
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FIG. 2. Mass spectrum as a function of the chemical potential
for a < 0. The singlet and triplet lines are so close that they
almost coincide, but they are not degenerate. The spectrum is
plotted for a � �0:5 and b � 1.
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ordered phase to the other. In Fig. 4 we show the depen-
dence of the masses on the parameter a at constant chemi-
cal potential. The masses are continuous functions of a as
the transition is second order.

As a final remark we note that in the original application
of Ref. [13], the field � represented a diquark condensate
and the SU(3) was the color gauge group of QCD. One
might wonder whether the usual Higgs mechanism for
gauge boson masses survives when there are fewer GBs
than the number of broken generators, because of the
a

b SO (3)

SU (2) × U (1)

unstable p otent ial

FIG. 3. Phase diagram of the linear sigma model for SU(3)-
sextet condensation. The phases are labeled by the symmetry of
the ground state. The line of the second order phase transition at
a � 0; b > 0 has SU�5� � U�1� symmetry.
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presence of quadratic GBs. This question was answered
affirmatively by Gusynin et al. [18], and there is therefore
no need to worry about the fate of gluons.
IV. GENERAL ANALYSIS

In this section we shall collect experience gained by
solving particular examples and set out for a general analy-
sis. We will find out, with some effort, that the ideas
sketched in Sec. II and demonstrated in Sec.III have a
straightforward generalization to a whole class of theories.
It is understood, however, that we shall all the time stay in
the framework of the linear sigma model, and at the tree
level. The possibilities of further progress are discussed in
the conclusions.

A. Chemical potential and global symmetry

As the starting point we shall address the question, what
is the most general symmetry of a theory with nonzero
chemical potential.

Let the microscopic theory possess a global continuous
symmetry with the corresponding conserved Noether
charges. The physical meaning of the chemical potential
� is that we wish to fix the statistical average of a con-
served charge, say Q. This is technically achieved by
introducing the grand canonical ensemble and replacing
the microscopic Hamiltonian H with H ��Q.

It is now clear that by adding the chemical potential, we
break explicitly all Noether charges that do not commute
with Q. This is the technical realization of the physically
intuitive fact that we cannot keep the values of two non-
commuting operators (i.e. incompatible observables) si-
multaneously fixed.
-6
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This simple observation implies that, as far as exact
symmetry is concerned, chemical potential is always as-
signed to a generator that commutes with all others, that is,
to a U(1) factor of the exact global symmetry group.

Of course, when the symmetry of the microscopic theory
is non-Abelian, then adding of the chemical potential gen-
erally produces a number of approximately conserved
charges (at least for small �) that generate approximate
symmetries. These may also be spontaneously broken,
resulting in the corresponding set of pseudo-Goldstone
bosons. Throughout this paper we are, however, concerned
only with true GBs, and therefore only the exact global
symmetry will be considered.

It is also interesting to find out how the Abelian nature of
the charge equipped with chemical potential is manifested
in the Lagrangian formalism. There, as already mentioned,
chemical potential enters the Lagrangian in terms of the
covariant derivative of ‘‘matter’’ fields [11].

The Lagrangian can be made formally gauge invariant
by introducing an external gauge field A�. Provided the
matter fields � transform under the symmetry group line-
arly as �! U�, A� transforms as usual as A� !
UA�U�1 � iU@�U�1. Now the exact symmetry is such
that the Lagrangian is invariant under the global trans-
formation of the matter fields with A� fixed at A� �
��Q; 0; 0; 0�. This is possible only when A� � UA�U�1.
We thus again arrive at the conclusion that the generator
being assigned chemical potential must commute with all
others.

B. Linear sigma model

Now consider a general linear sigma model defined by
the Lagrangian

L � D��
yD��� V���: (9)

Here� denotes a set of complex [19] scalar fields that form
a (possibly reducible) multiplet of the exact global sym-
metry group G, i.e. span the target space of a (possibly
reducible) representation of G, say R. V��� is the most
general G-invariant static potential containing terms up to
the fourth power of �, and the covariant derivative is
given byD�� � �@� � iA���. A� is the constant external
field that incorporates chemical potential for one or more
U(1) factors of G, and is eventually set to A� �
�
P
i�iQiR; 0; 0; 0�, where the Qi’s are the U(1) generators,

the subscript R denoting the image in the representation
R.

Upon expanding the covariant derivatives Eq. (9) takes
the form

L � @��y@��� 2 Im�yA�@��� Veff���; (10)

the effective �-dependent potential being Veff��� �
V��� ��yA�A��.
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Spontaneous symmetry breaking occurs when Veff���
develops a nontrivial minimum at some � � �0. In order
to elucidate the physical content of such a theory, it is
necessary to conveniently parametrize the field �.

We stress the generality of the parametrization method
suggested and applied in Sec. III. One first writes ��x� �
UR�x��std�x�, where �std is a standard form to which the
field � can always be brought by a suitable transformation
U 2 G. Next UR is factorized as UR � ei�U0R, where �
is a linear combination of the broken generators (or more
precisely, their R images) and U0 belongs to the unbroken
subgroup H. The final step is to identify U0R�x��std�x� with
a certain representation of H and parametrize it linearly as
�0 �H�x�. H�x� is going to be the multiplet of massive
(Higgs) fields. We therefore invoke the parametrization

��x� � ei��x���0 �H�x��: (11)

In order to specify the transformation properties of H,
recall that the GBs transform linearly in the adjoint
representation of the unbroken subgroup [20], i.e. �!
U0R�U0�1

R for any U0 2 H. As a consequence, H �
e�i����0 transforms as H ! U0RH, since �0 is an H
singlet.

To summarize, H transforms in the representation R
truncated to the subgroup H, and the multiplets of the
massive modes are therefore found in the decomposition
of R into irreducible representations of H.

For instance, in our case a > 0 the symmetric rank-two
tensor representation of SU(3) splits under the SO(3) sub-
group into a traceless symmetric rank-two tensor and a
singlet. On the other hand, in the a < 0 case it yields a
symmetric rank-two tensor of SU(2) (the field �) plus a
singlet.

As an aside let us remark that the physical spectrum of
the theory of course does not depend on the parametriza-
tion chosen for the field�. What if we chose e.g. the linear
parametrization mentioned (and abandoned) above in
Sec. III C? Instead of Eq. (11), we would then have anal-
ogously

��x� � �0 �H�x� � i��x��0: (12)

It is easy to see that the bilinear terms in the Lagrangian
with one or two derivatives come out identical as for the
parametrization (11). The reason is that the only difference
stemming from the nonlinear structure of ei� could possi-
bly come in the form �y0A

�@��2�0, but this is real and
therefore it drops out of the Lagrangian (10).

The only difficulty with the linear parametrization (12)
is that the GBs do not disappear automatically from the
static potential. Instead, we have to use explicitly the G
invariance to show that � disappears from the bilinear
(mass) part of the potential.
-7
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Upon the field redefinition as in Eq. (11), the effective
potential Veff becomes (up to a constant term)

Veff��� � V��0 �H� � �HyA�A�H

� 2 ReHyA�A��0�:

As we are expanding the potential about its absolute mini-
mum, the additional term linear in H is right enough to
cancel a similar term coming from V��0 �H�. We are
interested in the bilinear part of the potential, Vbilin�H�,
which determines the mass term for H.

Now we analyze the first two terms of the Lagrangian
(10). The two-derivative term yields the bilinear contribu-
tion

@�Hy@�H ��
y
0@��@���0 � 2 Im�y0@��@�H: (13)

The first two terms in Eq. (13) are the expected kinetic
terms for the Higgs and Goldstone fields, respectively. The
GB term, however, asks for a check that it is
nondegenerate.

Let ��x� � �k�x�Tk, Tk being the set of broken
generators. The GB kinetic term becomes
@��k@

��l�
y
0TkTl�0 �

1
2@��k@

��l�
y
0 fTk; Tlg�0. The

matrix �y0 fTk; Tlg�0 is real and symmetric and may be
chosen, by taking an appropriate basis of broken genera-
tors, diagonal. It is obviously nondegenerate, as necessary
in order to have kinetic terms for all the GBs, since other-
wise �y0TkTk�0 � 0 for some Tk, implying that Tk is in
fact not broken.

The third term in Eq. (13) eventually turns out to be zero.
Nevertheless, as other terms of a similar structure will be
dealt with in the following, we shall analyze it in detail.
The crucial point is the way various fields transform under
the unbroken subgroup H. Virtually all information about
the structure of the bilinear Lagrangian may be obtained by
a proper decomposition of the representation R into irre-
ducible representations of H, and making repeated use of
the Wigner-Eckart theorem.

Now when H and � belong to different representations
of H, the Wigner-Eckart theorem immediately tells us that
the last term of Eq. (13) vanishes. There is, however, a
subtle exception to this argument. As R is a complex
representation, real representations of H are doubled in
its decomposition. The reason is that when the set of
vectors 	k constitute the basis of a real representation of
H, the vectors i	k form an independent basis of an equiva-
lent representation.

It may be that H and � (or ��0) are such doubles. This
happens, for instance, for the two 5-plets in Sec. III C. In
such a case, however, �y0@��@�H is real and, again, does
not contribute to Eq. (13).

The single-derivative term in Eq. (10) gives, after a short
manipulation, the bilinear terms
076002
�2 ImHyA�@�H � 4 ReHyA�@���0

� Im�y0A
���; @����0: (14)

Throughout the calculation we made use of the fact that A�

is a U(1) generator, and therefore commutes with �.
Putting together all the pieces of Eqs. (13) and (14), we

arrive at our main result—the bilinear Lagrangian for a
general linear sigma model,

L bilin � @�Hy@�H � Vbilin�H� � 2 ImHyA�@�H

��y0@��@���0 � 4 ReHyA�@���0

� Im�y0A
���; @����0: (15)

This formula contains all the information about the particle
spectrum of the theory, and the rest of the section is there-
fore devoted to its analysis.

C. Discussion of the results

There are altogether three terms with a single time
derivative in Eq. (15). The term ImHyA�@�H causes
splitting of the masses of the massive modes. The term
ReHyA�@���0 mixes massive and massless modes and,
according to Sec. II C, produces linear GBs. Finally, the
term Im�y0A

���; @����0 mixes the Goldstone fields and
gives rise to the quadratic Goldstones.

With the Wigner-Eckart theorem at hand it is easy to
check that each of the elementary fields appears in at most
one of the three single-derivative terms. This fact essen-
tially reduces the analysis of the Lagrangian (15) to the
model two-field problem discussed in Sec. II C.

To prove it, note that the mixing term ReHyA�@���0

can be nonzero only when H and � are the two copies of
the doubled real representation of H. Now the real multi-
plet H gives real HyA�@�H, and therefore does not con-
tribute to the mixing of the massive modes. The real
multiplet � analogously does not contribute to
Im�y0A

���; @����0 as a consequence of the analysis
that follows.

As the main concern of this paper is Goldstone boson
counting, we shall now concentrate on the last term of
Eq. (15), which produces the quadratic GBs.

First, it is clear that our suspicion about the connection
between the quadratic GBs and nonzero charge densities
was right. For by the very same method as in Sec. III B we
derive the Noether current corresponding to the conserved
charge T,

j�T � �i�D
��yT�� H:c:�;

and the ground-state density of T is

j0
T � 2�y0A

0T�0: (16)
-8
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The last term of Eq. (15) is therefore indeed proportional to
the ground-state density of the commutator of two
generators.

We may now, in the general case, proceed as in Sec. III,
that is, find the ground state, calculate the Noether charge
densities, and make a definite prediction for the particle
spectrum. We can, however, do even better, at least a bit.

We need not calculate the charge densities explicitly to
say which of the generators may produce quadratic GBs. It
is obvious from Eq. (16) that only such a generator T may
acquire nonzero density, which is a singlet of the unbroken
subgroup H. We therefore just have to decompose the
adjoint representation of G into irreducible representations
of H and look for spontaneously broken singlets.

As in the examples above, we next choose such a basis
that all the generators with nonzero density mutually com-
mute. This ensures that they can be completed to form the
Cartan subalgebra of the Lie algebra of G. Following the
standard root decomposition of Lie algebras (see e.g.
Ref. [21]), the rest of generators group into pairs whose
commutator lies in the Cartan subalgebra. They are the
lowering and raising operators or their Hermitian linear
combinations, and together with their commutator span an
SU(2) subalgebra of G.

The point of this procedure is that only pairs of
Goldstone fields are then mixed by the single-derivative
term Im�y0A

���; @����0 and the excitation spectrum
may be fully described with the help of the simple two-
field bilinear Lagrangian (3). Consequently, the quadratic
GBs count as one per each pair of generators whose
commutator develops nonzero ground-state density.

The feasibility of such a pairing also follows from group
theory and the Wigner-Eckart theorem. As the commutator
of the two generators is to be an H singlet, they must come
from the same irreducible representation of H.

To briefly conclude this section, we once again empha-
size the fact that almost all we need to know about the
excitation spectrum of the general linear sigma model (9)
may be extracted from the bilinear Lagrangian (15) by
simple group theory. We decompose the adjoint represen-
tation of G with respect to the unbroken subgroup H to
determine the multiplet structure of the Goldstones. The
remaining H multiplets in the decomposition of the repre-
sentation R of the scalar field � are the massive modes.

The quadratic GBs are discovered with the knowledge of
the ground-state densities of the broken generators.
Without further calculation, we can even determine their
dispersion relations. Making use of the continuity of the
dispersion relations across the phase transition and the
known dispersion relations in the unbroken phase, we
may assert that the quadratic GB dispersion relation is
generically of the form E � p2=2�Q, where Q is the
charge of the GB field under the U(1) subgroup equipped
with the chemical potential.
076002
V. CONCLUSIONS

We have analyzed spontaneous breaking of internal
symmetries in the framework of the relativistic linear
sigma model with finite chemical potential. Our prime
motivation was to establish a counting rule for Goldstone
bosons in view of the fact that explicit breaking of Lorentz
invariance by medium effects may cause the number of
GBs to differ from the number of broken-symmetry
generators.

Our results confirm the Nielsen-Chadha counting rule.
We show that the GBs have either a linear or quadratic
dispersion law at low momentum, and that the number of
the first plus twice the number of the second gives exactly
the number of broken generators.

In addition, we find a criterion which gives in a purely
algebraic way the number of quadratic GBs, the only
necessary input being the structure of the ground state.
There is one quadratic GB for each pair of generators,
whose commutator has nonzero ground-state density.

However, despite the generality of our results, many
open questions still remain. First, we stress the fact that
we work all the time at the tree level. It would be interest-
ing to know the effect of radiative corrections on the details
of the spectrum. On the other hand, it seems that at least the
dispersion relations of the quadratic GBs are rather generic
as they depend only on the chemical potential in a very
simple way. There might be a more robust, nonperturbative
method to determine them, which relies only on the broken
symmetry, and does not depend on the details of the
dynamics of symmetry breaking.

Second, we worked within the linear sigma model as it is
easy to manipulate perturbatively once the scalar field has
been properly shifted to its new ground state. It may
happen that our results are valid generally for relativistic
theories with chemical potential. At least the argument
presented in Sec. II A that clarifies the connection between
the charge densities and the GB counting suggests such a
possibility.

As adding chemical potential breaks Lorentz invariance
in a very particular way, it might be possible to strengthen
the Nielsen-Chadha counting rule at the cost of limiting its
validity to a smaller class of theories. Even such a theorem
would, however, find many applications on relativistic
many-particle systems. We hope that our future work will
help to find the answer to these questions.
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1. Introduction

The phase diagram of quantum chromodynamics (QCD) has attracted much at-

tention in recent years. The region of high baryon density and low temperature is

relevant for the description of deconfined quark matter, which can be found in the

centers of neutron stars. It is expected to exhibit a variety of color-superconducting

phases.1

Unfortunately, there is only very little firm knowledge concerning the behavior

of the cold and dense quark matter. At very high densities, asymptotic freedom

of QCD allows one to use weak-coupling methods to determine the structure of

the ground state. On the other hand, the phenomenologically interesting region

of densities corresponds to the strong-coupling regime where ab initio calculations

within QCD are not available.

At the same time, current techniques of lattice numerical computations are not

able to reach sufficiently high densities, due to the complexity of the fermionic Dirac

operator that occurs in the Euclidean path-integral measure. This gave rise to the

interest in QCD-like theories that are amenable to lattice simulations, in particular

the two-color QCD with fundamental quarks and three-color QCD with adjoint

quarks.2,3

It turns out that these theories may also be studied by means of a low-energy

effective field theory similar to the chiral perturbation theory of QCD, and non-
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trivial information about their phase diagram thus obtained. Within this approach,

the structure of the phase diagram has been investigated in detail, including the

effects of finite temperature.3–6 The model-independent predictions of the low-

energy effective field theory have been complemented by lattice computations7,8

and calculations within several models.9–12

The aim of this paper is to provide an alternative low-energy effective formu-

lation of the simplest of this class of theories — the two-color QCD with two

quark flavors.a While the general description of the whole class is based on the

extended SU(2Nf) chiral symmetry of the underlying Lagrangian with Nf quark

flavors, we construct the effective Lagrangian by exploiting the Lie algebra isomor-

phism SU(4) ' SO(6). We show that such a picture displays more transparently

the physical content of the theory and at the same time allows for an easy deter-

mination of the true ground state, which has been sought by a convenient ansatz

previously.

The paper is organized as follows. In Sec. 2 we summarize the basic features of

two-color QCD to set the stage for the following considerations. Next we work

out the mapping between the coset space SO(6)/SO(5) that we use, and the

SU(4)/Sp(4) used in the literature. The rest of the paper is devoted to the con-

struction of the effective Lagrangian and its detailed analysis.

2. Two-Color QCD

In this section we recall the basic properties of two-color QCD, following closely

the treatment of Kogut et al.3 The distinguishing feature of two-color QCD is the

pseudoreality of the gauge group generators, the Pauli matrices, T ∗
k = −T2TkT2.

Consider now a set of Nf quark flavors in the fundamental representation of the

gauge group. As an immediate consequence, we may trade the right-handed com-

ponent of the quark field, ψR (flavor and color indices are suppressed), for the

left-handed conjugate spinor ψ̃R = σ2T2ψ
∗
R (the Pauli matrices σk act in the Dirac

space).

Instead of the usual Dirac spinor, ψ = (ψL ψR )T, we now work with the left-

handed spinor, Ψ = (ψL ψ̃R )T, in terms of which the quark Euclidean Lagrangian

of the massive two-color QCD at finite chemical potential becomes

L = iΨ†σν(Dν − Ων)Ψ −m

[

1

2
ΨTσ2T2MΨ + h.c.

]

. (1)

Here Dν is the gauge-covariant derivative that includes the SU(2) gluon field.

Ων is the static uniform external U(1) gauge field that incorporates the chemical

potential.13 In the two-flavor case we shall deal with both the baryon number and

the isospin chemical potential, µB and µI , respectively, so that Ων will eventually

aThe determinant of the Dirac operator is always real in two-color QCD, it is, however, positive
only for an even number of flavors.
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be set to Ων = δν0(µBB + µII). Here,

B =
1

2

(

1 0

0 −1

)

, I =
1

2

(

τ3 0

0 −τ3

)

(2)

are the baryon number and isospin generators, respectively. (The Pauli matrices τk

act in the flavor space.) Finally,

M =

(

0 1

−1 0

)

denotes the mass matrix in the basis of the spinor Ψ and σν stands for the four-

vector of spin matrices, σν = (−i, σk).

In the chiral limit and the absence of the chemical potential, the Lagrangian

Eq. (1) is invariant under the extended global symmetry SU(2Nf), which includes

the naive chiral group SU(Nf)L × SU(Nf)R and additional symmetry transforma-

tions due to the pseudoreality of the gauge group generators. The global symmetry

is spontaneously broken by the standard chiral condensate down to its Sp(2Nf)

subgroup.

The low-energy effective field theory for the Goldstone bosons of the broken

symmetry is thus naturally constructed on the coset space SU(2Nf)/Sp(2Nf). This

is parametrized by an antisymmetric unimodular unitary matrix Σ, in terms of

which the leading-order effective Lagrangian reads

Leff =
F 2

2
Tr(∇νΣ∇νΣ†) −GRe Tr(JΣ) . (3)

The ∇’s denote the covariant derivatives,

∇νΣ = ∂νΣ − (ΩνΣ + ΣΩT
ν ) ,

∇νΣ† = ∂νΣ† + (Σ†Ων + ΩT
ν Σ†) ,

while J serves as a source field for Σ, and is eventually set to mM . The quark mass

m is connected to the Goldstone boson mass squared m2
π by the Gell-Mann–Oakes–

Renner relation

mG = F 2m2
π .

It is worth emphasizing that the incorporation of the chemical potential into the

effective theory involves no extra free parameters — the way the chemical potential

enters the Lagrangian is fixed by the form of the covariant derivatives.

3. The SO(6)/SO(5) Coset Space

From now on we shall restrict our attention to the case Nf = 2. In that case, note

the Lie algebra isomorphisms SU(4) ' SO(6) and Sp(4) ' SO(5). This allows us to

recast the low-energy effective field theory on the SO(6)/SO(5) coset.14 There are

altogether five degrees of freedom, or Goldstone bosons, corresponding to the five

independent entries of the antisymmetric unimodular unitary matrix Σ.
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3.1. Matrix basis

The mapping to the SO(6)/SO(5) coset space is now provided by the formula

Σ = niΣi , (4)

where n is a six-dimensional real unit vector and Σi is a convenient set of indepen-

dent antisymmetric 4 × 4 matrices. For Σ to be unitary, the basis matrices must

satisfy the constraint

Σ†
iΣj + Σ†

jΣi = 2δij . (5)

Such a relation is fulfilled for instance by the matrices

Σ1 =

(

0 −1

1 0

)

, Σ2 =

(

τ2 0

0 τ2

)

, Σ3 =

(

0 iτ1
−iτ1 0

)

,

Σ4 =

(

iτ2 0

0 −iτ2

)

, Σ5 =

(

0 iτ2
iτ2 0

)

, Σ6 =

(

0 iτ3
−iτ3 0

)

.

This particular set has been chosen to comply with existing literature. In fact,

Kogut et al.3 use the notation Σc and Σd for our Σ1 and Σ2, respectively, while

Splittorff et al.4 denote our Σ1, Σ2 and Σ3 by ΣM , ΣB and ΣI , respectively.

Let us in addition show a simple argument that suggests how to choose in general

a set of matrices satisfying Eq. (5). Recall that six independent antisymmetric

Hermitian 4 × 4 matrices generate the real Lie algebra SO(4) ' SO(3) × SO(3).

This means that we deal with two sets of three matrices, which can be shown to

fulfill the usual anticommutator of Pauli matrices, {τi, τj} = 2δij . By multiplying

the matrices from one of the sets by i, we arrive at three Hermitian matrices,

Hi = {Σ2,Σ3,Σ6}, and three anti-Hermitian ones, Ai = {Σ1,Σ4,Σ5}. These satisfy

the relations

{Hi, Hj} = 2δij , {Ai, Aj} = −2δij , [Hi, Aj ] = 0 ,

that are equivalent to Eq. (5).

3.2. Structure of the coset

It remains to prove that Eq. (4) provides a one-to-one parametrization of the coset

SU(4)/Sp(4). To that end, note that any antisymmetric 4 × 4 matrix U may be

expanded in the basis Σi, U = ziΣi, where zi are in general complex coefficients.

The unitarity of U constrains these coefficients as

1 = U †U =
∑

i

|zi|
2 + i

∑

i6=j

(xiyj − xjyi)Σ
†
i Σj ,

the xi and yi being the real and imaginary parts of zi, respectively.

It is now crucial to observe that the products iΣ†
iΣj for i 6= j span the set

of 15 linearly independent generators of SU(4) so that the unitarity of U requires

separately
∑

i |zi|
2 = 1 and xiyj = xjyi for all pairs of i, j.
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The latter condition means that the complex phases of all the zi’s must be

equal so that zi = nie
iϕ with real ni, while the former one requires

∑

i n
2
i = 1. It

is a matter of simple algebra to calculate the determinant of U ,

detU = e4iϕ

(

∑

i

n2
i

)2

= e4iϕ .

Since the elements of the coset SU(4)/Sp(4) are unimodular matrices, we are

left with two distinct possibilities, ϕ = 0 or ϕ = π/2. (The next solution, ϕ = π,

already corresponds to ϕ = 0 with just the sign of all the ni’s inverted.)

In conclusion, every antisymmetric unimodular unitary matrix Σ may be cast

in the form (4), where n is either real, or pure imaginary vector. However, in the

standard coset construction of the effective Lagrangian,15,16 the global symmetry

group is required to act transitively on the parameter space of the Goldstone fields

that is, the actual coset space must be connected. As the chiral condensate, above

which we build our effective theory, is described by the matrix Σ1 (note that M =

−Σ1), we have to choose the connected component with real n, as in Eq. (4).

3.3. Physical content of the basis matrices

It is instructive to look at the transformation properties of the matrix Σ. This

will allow us to classify the Goldstone modes by their baryon and isospin quantum

numbers.

Recall that Σ is an antisymmetric tensor under SU(4) that is, it transforms as

Σ → UΣUT for U ∈ SU(4). For an infinitesimal transformation generated by the

baryon number or the third component of the isospin we get

δεΣ = iε(QΣ + ΣQT) = iε{Q,Σ} , Q = B, I .

Let Σ be a general block matrix of the form
(

K L
M N

)

. Then

{B,Σ} =

(

K 0

0 −N

)

, {I,Σ} =











1

2
{τ3,K}

1

2
[τ3, L]

−
1

2
[τ3,M ] −

1

2
{τ3, N}











.

The quantum numbers of the particular components of Σ are summarized in Table 1.

Table 1. Quantum numbers of the components of the matrix
Σ in the expansion (4).

Σ2, Σ4 B = ±1; I = 0 diquark and antidiquark

Σ3,Σ5,Σ6 B = 0; I = ±1, 0 isospin triplet π

Σ1 B = 0; I = 0 singlet σ
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To gain more insight into the nature of the effective field Σ, let us assign to it

a composite field,

Σ →
1

2
ΨTσ2T2ΣΨ + h.c. ,

which corresponds to the form of the mass term in Eq. (1). Such a composite

operator may be regarded as an interpolating field for the Goldstone boson.

With the explicit knowledge of the matrices Σi it is now straightforward to find

the particle content of the corresponding interpolating fields, cf. also Table 1,

Σ2 → −
1

2
ψTCγ5T2τ2ψ + h.c. , Σ4 → −

1

2
iψTCγ5T2τ2ψ + h.c. ,

Σ3 → −iψ̄τ1γ5ψ , Σ5 → iψ̄τ2γ5ψ , Σ6 → −iψ̄τ3γ5ψ , Σ1 → ψ̄ψ .

4. Chiral Perturbation Theory

We are now ready to write down the leading-order effective Lagrangian and use it

to analyze the phase diagram of the theory. First, we have to minimize the static

part of the Lagrangian in order to determine the ground state at nonzero chemical

potential.

4.1. Global minimum of the static Lagrangian

From Eq. (3) we can immediately infer the static part,

Lstat = −
F 2

2
Tr[(ΩνΣ + ΣΩT

ν )(Σ†Ων + ΩT
ν Σ†)] −GRe Tr(JΣ) . (6)

We include the external source J in the general form

J = jiΣ
†
i ,

with real ji. Note that setting j1 = m, we reproduce the quark mass contribution

to the effective Lagrangian.

The other sources can be taken as infinitesimally small, since they essentially

serve to generate the ground-state condensates,

〈Σi〉 = −
∂Lstat

∂ji
.

From the orthogonality property, Tr(Σ†
i Σj) = 4δij , we find Re Tr(JΣ) = 4j · n so

that we have

〈Σ〉 = 4Gn .

It is obvious that the vacuum condensate rotates on a sphere in the six-

dimensional space, with coordinates corresponding to the six basis matrices Σi.

It remains to calculate the vector n minimizing the static Lagrangian (6).

Note first that in the absence of chemical potential, Ων = 0, the static La-

grangian is minimal when the condensate is aligned with the external source j.
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When baryon and isospin chemical potentials are switched on, we shall for sim-

plicity assume that only the sources j1, j2, j3 are present. It is sufficient to include

the quark mass effects and calculate both the diquark and the isospin (pion) con-

densate. Taking into account the explicit form of the charge matrices, Eq. (2), the

static Lagrangian becomes

Lstat = −2F 2[µ2
B(n2

2 + n2
4) + µ2

I(n
2
3 + n2

5)] − 4G(j1n1 + j2n2 + j3n3) .

The first term is invariant under SO(2) × SO(2) rotations in the planes (2, 4)

and (3, 5). In the absence of the external sources, this symmetry may be exploited

to set n4 = n5 = 0. The source J breaks the symmetry and, in fact, prefers the

solutions with n4 = n5 = 0. The problem of finding the ground state thus reduces

to minimizing the expression,

Lstat = −2F 2(µ2
Bn

2
2 + µ2

In
2
3) − 4G(j1n1 + j2n2 + j3n3) , (7)

on the sphere S5 : n2 = 1.

The Lagrangian now does not depend on n4, n5, n6 so that we are actually

looking for a minimum on the ball, n2
1 + n2

2 + n2
3 ≤ 1. It is clear that at the global

minimum, both terms on the right-hand side of Eq. (7) are negative (otherwise we

could lower the energy by the inversion, n → −n). By the same token, the global

minimum must lie on the surface of the ball, since if this were not the case, we

could lower the energy by scaling up the vector: n → tn, t > 1.

We have thus shown that in the global minimum, n2
1 + n2

2 + n2
3 = 1 and n4 =

n5 = n6 = 0, and the ground-state condensate is given by the linear combination

Σ = n1Σ1 + n2Σ2 + n3Σ3. We stress the simplicity of the proof of this fact within

the SO(6)/SO(5) coset formulation of the chiral perturbation theory. Indeed, using

the standard SU(4)/Sp(4) formalism, Splittorff et al.4 only assumed such a form of

Σ, and also did not prove that the minimum thus found was global.

To demonstrate the power of the formalism we have built so far, we shall next

rederive the results of Kogut et al.3 for the case of nonzero baryon chemical potential

µB . We shall thus set µI = 0 and ji = δi1m. Isospin chemical potential can be

introduced along the same lines and the results of Splittorff et al.4 would be easily

recovered.

With the assumptions made, the static Lagrangian becomes

Lstat = −2F 2m2
π(x2 sin2 α+ 2 cosα) ,

where x = µB/mπ and α parametrizes the minimum, Σ = Σ1 cosα+Σ2 sinα. (The

same argument as above tells us that when µI = 0 and j3 = 0, then n3 = 0 in the

global minimum.)

Now when x < 1, the minimum occurs at α = 0 — only the chiral condensate is

nonzero, this is the normal phase. When, on the other hand, x > 1, the Lagrangian

is minimized by cosα = 1/x2. In this case, the chiral condensate rotates into the

diquark condensate as the angle α increases. This is the Bose–Einstein condensation

phase.
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4.2. Excitation spectrum

The spectrum of excitations above the ground state is determined by the bilinear

part of the Lagrangian. Expanding Eq. (3) in terms of the components ni, it acquires

the form

Leff = 2F 2(∂νn)2 + 4iF 2µB(n2∂0n4 − n4∂0n2)

− 2F 2µ2
B(n2

2 + n2
4) − 4F 2m2

πn1 . (8)

To proceed, we have to deal separately with the two phases of the theory.

4.2.1. The normal phase

When x < 1, the ground state expectation values of n are n1 = 1 and all other

components zero. The independent excitations above the ground state may be iden-

tified with ni, i = 2, . . . , 6, while n1 is expressed in terms of them via the constraint

n2 = 1,

n1 =

√

√

√

√1 −

6
∑

i=2

n2
i = 1 −

1

2

6
∑

i=2

n2
i + higher order terms .

The bilinear part of the Lagrangian (8) becomes

Lbilin

2F 2
=

∑

i=3,5,6

(∂νni)
2 + (∂0N − µBN)(∂0N

† + µBN
†)

+∇N · ∇N † +m2
π

6
∑

i=2

n2
i ,

where we have introduced N = n2+in4, a complex field that carries baryon number

one. This field thus corresponds to the diquark, while N † describes the antidiquark.

We find the following dispersion relations,

E =
√

p2 +m2
π pion triplet n3, n5, n6 ,

E =
√

p2 +m2
π − µB diquark N ,

E =
√

p2 +m2
π + µB antidiquark N † .

4.2.2. The Bose–Einstein condensation phase

For x > 1, the chiral condensate alone is no longer the proper ground state and the

Bose–Einstein condensation sets. We therefore parametrize the field n as

n = (ρ cosϕ, ρ sinϕ, n3, n4, n5, n6) .

The ground state corresponds to ρ = 1, ϕ = α and n3 = n4 = n5 = n6 = 0.

We set ϕ = α + θ so that the five independent degrees of freedom are now θ and
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ni, i = 3, . . . , 6. The radial parameter ρ is given by

ρ =

√

√

√

√1 −

6
∑

i=3

n2
i = 1 −

1

2

6
∑

i=3

n2
i + higher order terms .

The bilinear Lagrangian reads in this case,

Lbilin

2F 2
=

6
∑

i=3

(∂νni)
2 + (∂νθ)

2 + 2iµB(θ∂0n4 − n4∂0θ) cosα

+µ2
B

(

∑

i=3,5,6

n2
i + θ2 sin2 α

)

.

Three of the degrees of freedom, n3, n5, n6, again represent the pion triplet, now

with the dispersion relation E =
√

p2 + µ2
B . The dispersions of the remaining two

excitations are obtained by a diagonalization of the inverse propagator in the (θ, n4)

sector. The result is

E2
± = p2 +

µ2
B

2
(1 + 3 cos2 α) ±

µB

2

√

µ2
B(1 + 3 cos2 α)2 + 16p2 cos2 α ,

in accord with previous work.3,4 The masses of these modes are given by

m2
+ = µ2

B(1 + 3 cos2 α) = µ2
B +

3m2
π

µ2
B

, m2
− = 0 .

In contrast to the normal phase, there is always one truly massless Goldstone

boson stemming from the exact baryon number U(1) symmetry, which is sponta-

neously broken by the diquark condensate Σ2.

It is, however, worth emphasizing that the nature of this Goldstone boson, as

well as of the massive mode, changes as the chemical potential increases. There are

two reasons — the rotation of the ground state in the (n1, n2) plane, and the balance

between the mass term in the bilinear Lagrangian and the term with a single time

derivative.

In the limit α → 0, the parameter θ is, to the lowest order, equal to n2 and the

parametrization of the case x < 1 is recovered. Here the Goldstone boson is the

diquark N = θ + in4.

As the angle α grows, the orientation of θ also changes in the (n1, n2) plane so

that it is always perpendicular to the direction of the condensate, see Fig. 1. In

the limit α → π/2, i.e. µB � mπ, the condensate is purely diquark and θ has the

quantum numbers of n1, i.e. the σ field. The Goldstone boson is now n4. Note also

that it is a linear combination of the diquark and the antidiquark so that it has no

definite baryon number. This is, of course, not surprising since the baryon number

is spontaneously broken and thus it cannot be used to label the physical states.
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Fig. 1. The orientation of θ is perpendicular to the direction of the ground-state condensate,
which is represented by the dotted line. The coordinates n1, n2 are labeled schematically by the
chiral and the diquark condensate, respectively.

5. Conclusions

We have constructed the chiral perturbation theory for two-color QCD with two

quark flavors on the SO(6)/SO(5) coset. We have provided an explicit mapping

between this formulation and that used previously in literature, based on the

SU(4)/Sp(4) coset space.

The virtue of the present approach is that the orthogonal rotations, in contrast

to the unitary symplectic transformations, can be easily visualized and the physical

content of the theory thus made manifest. We were also able to give a simple proof

of the fact that the condensate taken previously as an ansatz is indeed the true

ground state, and we thus justified the assumptions made in the older work.

Since the SO(N)-symmetric nonlinear sigma model is known in great detail,

the connection provided here can hopefully lead to the improvement in the under-

standing of the phase diagram of the two-color QCD at low energies, at least in the

two-flavor case.
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