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Preface

The thesis collects multiple original results in the theory of automata and formal languages.
Most of the results deal with synchronization and road coloring - research fields that are in-
troduced and surveyed in Chapter 1. Besides of that we present contributions to the study of
languages accepted by jumping finite automata and clearing restarting automata. The main
text is organized as follows:

e Chapter 2 deals with lower bounds of synchronization thresholds in multiple types of finite
automata:

— First, we give new lower bounds of the synchronization threshold in partial finite automata
and the subset synchronization threshold in deterministic finite automata, both restricted
to binary alphabets. Besides of the main proof we provide general formulations of auxiliary
facts and discuss consequences and reformulations of the result. The result, presented [103]
at the conference AFL 2014 (Szeged, Hungary), answers a question asked by Martyugin,
2013 [62]. An extended paper was submitted to a journal.

— Second, we present attempts to raise the known lower bound of the synchronization thresh-
old in deterministic automata with sink states. We give new isolated examples of automata
that exceed the currently best lower bound by Martyugin, 2008 [57] and formulate a hy-
pothesis that involves an infinite series of automata based on the examples.

o Chapter 3 consists of two results about a basic computational task (SYN) concerning syn-
chronization of deterministic finite automata:

— First, we prove that SYN does not have a polynomial kernel if parameterized by the
number of states unless polynomial hierarchy collapses. This fills the only remaining gap
in a research of Fernau, Heggernes, and Villanger, 2013 [34] (in the latest version of this
article [35], our result is already cited). A paper [105] containing the proof was published
in Discrete Mathematics and Theoretical Computer Science.

— Second, we prove NP-completeness of SYN restricted to Eulerian automata with binary
alphabets, as it was conjectured by Martyugin, 2011 [60]. The proof was presented [102]
at the conference LATA 2014 (Madrid, Spain). An extended paper was submitted to a
journal.

e Chapter 4 studies two related questions about road coloring. These results come partially
from a collaboration with Adam Roman (Jagiellonian University in Krakow, Poland):

— First, we give a multi-parameter analysis of the basic computational problem called SRCP.
This consists mainly of studying a scale of various restrictions and finishes a work that
was started by Roman and Drewienkowski [78, 79]. The results are contained in the
above-mentioned journal paper [105].

— Second, we give a similar analysis with respect to slightly different computational problem
called SRCW. The results are not complete - they leave much space for a further research.



They were presented [104] at the conference LATA 2015 (Nice, France). An extended
version was submitted to a journal.

o Chapter 5 quits the field of synchronization and studies the expressive power of two simple
models for discontinuous analysis of strings: jumping finite automata and clearing restarting
automata.

— First, we complete the initial study of jumping finite automata, which was started in a
former article of Meduna and Zemek [64, 65]. The open questions about basic closure
properties are solved. Besides of that, we correct erroneous results presented in [64, 65].
Finally, we point out important relations between jumping finite automata and other
models studied in the literature. An article presenting these results was submitted to a
journal.

— Second, we deal with clearing restarting automata, which is a class of contextual rewriting
systems. We construct a clearing restarting automaton with two-letter contexts that
accepts a language over a two-letter alphabet lying outside the class CFL, thus closing the
study raised by Cerno and Mréz, 2010 [25].

e In Chapter 6 we discuss further research in all the studied directions and formulate open
problems that are closely related to the results of the thesis.

In the following table we give a concise listing of our contributions to the state of art.
Diamonds mark sections that give closing answers to questions formulated in the literature:

Topic Ref. Publ.
Sec. 2.1 | Careful Synchronization threshold of binary PFA ¢ | [62] [103]
Sec. 2.2 | Synchronization thresholds of DFA with sinks [57] -
Sec. 3.1 | Polynomial Kernel of SYN ¢ | [34] [105]
Sec. 3.2 | NP-Completess of SYN restricted to Eulerian automata 4 | [60] [102]
Sec. 4.1 | Complexity of SRCP with fixed parameters ¢ | [78] [105]
Sec. 4.2 | Complexity of SRCW with singleton fixed set of words [78] [104]
Sec. 5.2 | Closure properties of the class GJFA ¢ | [69] -
Sec. 5.3 | A non-CFL binary language accepted by 2-cl-RA ¢ [25] -

Some of the results were presented at the workshop C’erny’s Conjecture and Optimization
Problems held in Opava, Czech Republic, 2014 and at a meeting of the Group of Computational
Complexity and Analysis of Algorithms at University of Wroclaw.

The research was supported by the Czech Science Foundation grant GA14-10799S and the
GAUK grant No. 52215. The collaborative work with Adam Roman was supported also by the
Polish Ministry of Science and Higher Education grant IP2012 052272.
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Chapter 1

A Survey of Synchronization and
Road Coloring

1.1 Motivation and History

The central idea of synchronization is very natural: For a given machine, we want to find an
input sequence that gets the machine to a unique state, no matter in which state the machine
initially was. Considering deterministic finite automata (DFA), we get a clear notion of reset
words. A machine that admits a reset word is said to be synchronizing. Reset words for DFA
have been studied since the early times of automata theory. First related studies considered
input sequences that do not necessarily leave the machine in a unique state, but it need to be
possible to infer the resulting state from the observed output [39, 66]. Reset words, as they are
informally defined above, were introduced in 1964 by éerny in [26]. In the 1960’s, the subject
was discussed also by Starke [87] and others, using various systems of terminology.

Most of the research of synchronization of DFA has concerned minimal length of reset words.
For a given synchronizing automaton, one is interested in its shortest reset words. Cerny [26]
presented a series of synchronizing n-state automata that required reset words of length at least
(n—1)°. In the same year the Cerny conjecture (that appeared in a subsequent article [27])
was formulated, saying that each synchronizing n-state automaton has a reset word of length at
most (n — 1)%. Since that, the research of the maximum length of shortest reset words, taken

over n-state DFA, has become a classical topic of automata theory and the éerny conjecture
’I’LS—TL

has become a notorious open problem. So far, the best upper bound of the threshold is "

[73].

However, the upper bound (n — 1)2 or lower has been confirmed for various special classes
of DFA, see Section 1.3.2. Some of the results consist of non-trivial application of advanced
tools from linear algebra and the theory of semigroups. Several generalizations of the éerny
conjecture have been studied, both for DFA and for more general settings, see Section 1.4. For
instance, in subset synchronization one looks for a word that puts a DFA to one particular
state, assuming that initially the DFA was in some state from a given subset of states. Here we
are interested in the worst cases taken over all DFA and all their subsets of states. Most syn-
chronization problems can be formulated as essential problems about transformation monoids
and matrix monoids.

Several fields of mathematics and engineering deal with synchronization:

¢ Classical applications include model-based testing [28] and equivalence checking [74] of
sequential circuits. Reset words are used to generate effective test patterns. It is char-
acteristic for these applications that the state space of the arising finite automata are
exponential in the number of components that form the hardware under test. Thus, basic
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computational tasks become hardly feasible and the way of representing the transition
function plays a key role (e.g., binary decision diagrams are used).

¢ In automated assembling, so-called part orienters are used. Such device consists typically
of a conveyor belt carrying parts that may lie in various positions. One needs to construct
a device that gets a particle to a well-defined position. However, the device should be as
simple and cheap as possible, preferably suitable stable obstacles should be used to push
the particle while it is carried by the conveyor belt. When such obstacles are designed,
one can see its effect on various positions as transitions. In fact, the resulting scheme
corresponds to a DFA and a reliable part orienter corresponds to a reset word. For
details, see e.g. [68].

e In design of control systems modeled by finite automata, one may take into account the
possibility of passing to a wrong state during reading a correct input. For synchronizing
automata, the noise-resistance, i.e. probability of getting back to the right state, is
essentially greater than in general automata and on random inputs it tends to 1 as the
input length goes to infinity [29].

e In information theory, a finite-state information source [96] corresponds formally to a
partial finite automaton, but the transition labels correspond to the output. Reset words,
if appropriately generalized to partial automata, are output sequences that uniquely de-
termine the current state of the information source, if observed.

o Reset words (also known as constants) play a role in studying non-classical representations
of formal languages. See [21] for such a study, motivated by biomolecular processes

Each DFA has a unique underlying graph, which is a directed multigraph where each vertex
has exactly |X| outgoing edges, ¥ denoting the alphabet of the DFA. On the other other hand,
directed multigraphs with constant out-degrees can be turned into DFA by coloring the edges
with letters. The research of such colorings was originally motivated by symbolic dynamic -
Adler, Goodwyn, and Weiss [1] pointed out in 1977 that certain properties of Markov shifts
depend on whether the edges of a corresponding directed multigraph can be colored such that
a synchronizing DFA arises (see also [14] for a modern survey). They raised the Road coloring
problem, a hypothesis claiming that a trivial necessary condition is also sufficient for a directed
multigraph to admit such a coloring. The hypothesis was confirmed in 2008 by Trahtman [91]
and is known as the Road coloring theorem, see Section 1.3.4.

In the reminder of Chapter 1 we give key definitions and present a survey of former results
in the field. For a more concise (but not fully up-to-date) overview, see [82] or [99].

1.2 Key Definitions

The symbol N denotes the set {0,1,2,...} of nonnegative integers. For sets A, B, by A x B we
denote the Cartesian product of A and B. By 2* we denote the set of subsets of A. If z is a
real number, |z| and [x] denote the largest integer not greater than x and the smallest integer
not less than x, respectively. If m,n are positive integers, n mod m denotes the remainder after
division of n by m.

1.2.1 Finite Automata, Graphs, and Finite Functions

Definition 1.1. A triple A = (Q, X, d), where @ is a finite set of states and ¥ is a finite alphabet,
is:

1. a deterministic finite automaton (DFA) if ¢ is a total function from @ x ¥ to @,
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2. a partial finite automaton (PFA) if ¢ is a partial function from @ x X to @,

3. a non-deterministic finite automaton (NFA) if § is a total function from Q x ¥ to 29 (i.e.
to the set of subsets of Q).

Clearly, each deterministic automaton is a partial automaton. Partial automata can be equiv-
alently seen as non-deterministic automata with |d(s,z)| <1 for each s € @ and € X. Note
that we consider machines without any form of output and without initial or final states.

We extend transition functions such that they operate also on sets of states and whole words
over the alphabet. We set

5(S,z) ={0(s,z) | s € S and 0(s,z) is defined}

in PFA and
5(57 ZE) = U 6(371.)

seS
in NFA for each S C Q,x € ¥. In both PFA and NFA we set

0(S,wx) = 6(6(S,w),x),
d(s,wz) = §(6(s,w),x),

for each S C Q,s € Q,w € LT,z € X. Moreover, having a PFA A = (Q,%,d), for each
SCQ,se€@and we X* we denote

sHS,w) = {req@|d(r,w)e S},
S ts,w) = {req@|é(r,w)=s}.

For a fixed automaton, a word w € ¥* is informally identified with the function §(_, w) : Q@ — Q.
Thus, we speak e.g. about words that are permutations or constants, about their ranges and
so on. We define some key notions about graphs, finite transformations, and automata:

Definition 1.2.
o A directed graph is a pair G = (V, E) where V, E are finite sets and E CV x V.

o A directed multigraph is a tuple G = (V, E,s,t) where V| E are finite sets and s,t are
functions from F to V.

e In a directed multigraph G = (V, E,s,t), s(e) and t(e) are the start and the target of
e € F, respectively.

e In a directed multigraph G = (V, E, s,t), the out-degree and the in-degree of v € V is
{e € E | s(e) =v}| and |{e € E | t(e) = v}| respectively.

e For a directed multigraph G = (V, E,s,t) and r,s € V, the termdg(r,s) denotes the
length of shortest directed paths from r to s in G.

Definition 1.3. The underlying graph of a DFA A = (Q, %, ) is the directed multigraph G4 =
(Q,Q x X,s,t), where

t(rz) = o(r,2)
for each (r,z) € Q x X.

Definition 1.4. Let @) be an n-element set and let f : Q — @ be a partial function.
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o The domain of f is dom(f) = {s € Q| f(s) is defined}.

o The range of f is rng(f) = {f(s) | s € dom(f)}.

e The rank of f is the size of rng(f).

o We say that f is idempotent if f(s) = s for each s € rng(f).

o The graph of f is the directed graph Gy = (Q, E) with E = {(s, f(s)) | s € dom(f)}.
o A cycle of f is the set of vertices of a strongly connected component in Gy.

o A cluster of f is the set of vertices of a weakly connected component in G.

o We say that f preserves a binary relation < on @ if s; < sy implies f(s1) = f(s2) for
each s1,s2 € Q.

Definition 1.5. Let us introduce some special classes of PFA and DFA together with corre-
sponding notation:

« A PFA A = (Q,X%,0) is strongly connected (s.c.)* if its underlying graph is strongly
connected. The class of strongly connected PFA is denoted by SC.

« APFA A= (Q,%,0) is incomplete if § is not total.

« APFA A= (Q,%,0) is circular if some x € ¥ is a total cyclic permutation. The class of
circular PFA is denoted by C).

« A DFA A = (Q,%,0) is one-cluster if some z € ¥ has exactly one cluster. The class of
one-cluster DFA is denoted by OC.

o« ADFA A=(Q,X,0) is aperiodic? if for each w € ¥* there is k > 0 such that 5(s7wk) =
5(5, wkH) for each s € Q). The class of aperiodic DFA is denoted by AP.

« ADFA A=(Q,X%,0) is monotonic if there is a linear order < on @ that is preserved by
each x € 3. The class of monotonic DFA is denoted by MO.

o ADFA A= (Q,%,9) has a sink state qo € @ (also known as a zero state) if (qgo, ) = qo
for each x € X.. The class of DFA having a sink state is denoted by Z.

o Astate s € Q ina PFA A= (Q,%,0) is a merging state if ’5_1(8,$)| > 2 for some = € X.

For each integer k > 1, by ALj, we denote the class of PFA with alphabets of size k. A PFA is
called unary or binary if it lies in ALy or ALy respectively.

1.2.2 Synchronization

There are several different interpretations of the concept of synchronization. In the case of
DFA and PFA, the classical variant says that we are given an automaton with known transition
function but unknown initial state. However, it may be known that the initial state lies in
certain subset of states, i.e. the initial uncertainty is specified. Then we should find an input
word that makes the automaton switch to a target state that is common for all possible initial
states - no uncertainty is left.

Here we introduce a system of notation, which comes from former literature and is compatible
with all the variants of synchronization we study. Thus the most classical notions are presented
as special cases of generalized notions.

LAlso known as transitive.
2Also known as counter-free.
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Definition 1.6. A word w € ¥* is a careful reset word of a PFA A = (Q,%,0) if there is r € Q
such that
o(s,w) =r

for each s € Q. If there is such w € ¥*, we say that A is carefully synchronizing. If A is a DFA,
we just say that such w is a reset word and A is synchronizing.

Definition 1.7. A word w € X* is a careful reset word of a subset S C @ in a PFA A = (Q, %, )
if there is r € @) such that
o(s,w)=r

for each s € S. If there is such w € ¥*, we say that the subset S is carefully synchronizable. If
A is a DFA, we just say that such w is a reset word of S and S is synchronizable.

Definition 1.8. For each PFA A = (Q, 3, 0) and each carefully synchronizable S C @ we denote:

car(A)
csub(4, S)

min {|w| | w is a careful reset word of A},

min {|w| | w is a careful reset word of S in A}.

If Ais a DFA, we write C(A) and sub(A4, S) instead of car(A4) and csub(4, S).

Let us define several functions that describe the worst cases of minimum lengths of reset words
depending on the number of states of an automaton. Such functions are informally called
synchronization thresholds. As we describe later, there is a rich research that aims to obtain
upper and lower bounds of these functions.

Definition 1.9. For each n > 1 we denote:

C, = max{C(A)| A is a DFA with at most n states},
sub, = max{sub(4,S)|A=(Q,%,J) is a DFA with at most n states and S C Q},
car, = max{car(A)| A is a PFA with at most n states},
csub, = max{csub(A4,9)|A=(Q,%,0) is a PFA with at most n states and S C Q}.

Thus, the values C,,, sub,, car,, and csub,, express the worst cases among all n-state automata
and subsets of their states. The values satisfy the following trivial inequalities, where — stands
for less or equal:

C, — car,

1 +

sub,, — csub,

The following definition formalizes the notation of synchronization thresholds with respect to
special classes of automata.

Definition 1.10. If M is a class of PFA and n > 1, we denote

cM max {C(A) | A € M is a DFA with at most n states},
subf}/1 max {sub(4,S) | A= (Q,%,d) € M is a DFA with at most n states, S C Q},
carM max {car(A4) | A € M is a PFA with at most n states},
csub™ max {csub(4,5) | A = (Q,%,d) € M is a PFA with at most n states, S C Q}.

In addition, if M is a class of pairs (A4, S) where A is a PFA and S is a subset of its states, we
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denote

sub™ = max {sub(4,9) | A is a DFA with at most n states and (A, S) € M},
csub2 = max {csub(4, S) | A is a PFA with at most n states and (A4,S) € M} .

1.2.3 Road Coloring

Road coloring refers to coloring edges of directed multigraph in order to obtain representations
of DFA. The study is motivated mainly by symbolic dynamics. It was initially pointed out in
[1] that a suitable coloring of a directed multigraph corresponds to an almost injective mapping
from a subshift of finite type to a full shift. See also [14] for a modern survey.

Definition 1.11. A DFA A = (Q, X, 9) is a coloring of a directed multigraph G if G isomorphic
to the underlying graph of A. We also say that the function § is a coloring of G.

Definition 1.12. A directed multigraph is:
1. an aperiodic graph if the lengths of its cycles do not have any nontrivial common divisor,
2. an admissible graph if it is aperiodic and all its out-degrees are equal,
3. a road colorable graph if it has a synchronizing coloring.

In [1] it was pointed out as an open problem (the Road Coloring Problem) whether each strongly
connected admissible graph is road colorable. It was solved positively by Trahtman [91, 95] in
2008, see Theorem 1.26.

1.3 Former Results

1.3.1 A Lower Bound for DFA
In the seminal paper [26], éerny presented the infinite series C,, of automata defined as C,, =

({o,...,n—1},{a,b},d), where

0(s,a) = (s+1)modn,
1 ifs=0
5(s,b) = { e

s otherwise,

for each s € @, see Figures 1.1 and 1.2. This series is used as a witness in the proof of the
following theorem, which is the higher known lower bound of both C,, and C,,

Theorem 1.13 ([26]). For each n > 1 it holds that C,, > (n —1)°.

Except for the series given by éerny, only isolated examples reaching the bound C(A4) = (n — 1)2
are known, see [77]. However, several infinite series that reach very high values were obtained
from matrices with large exponents, see e.g. [9].

In the paper [27], Theorem 1.13 was turned into the following well known hypothesis:

Conjecture 1.14 (The Cerny conjecture). For each n > 1 it holds that C,, = (n — 1)

1.3.2 Upper Bounds for DFA

The paper [26] presents only a trivial upper bound C,, < 2" —n —1, but it turned out soon that
it is not hard to establish cubic bounds (in [27], this is attributed to [86]). Since that, there
were several improvements of the cubic bound. The following theorem expresses the current
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Figure 1.1: The Cerny automaton Cj Figure 1.2: The Cerny automaton Cs

best one (an improved upper bound published by Trahtman [93] in 2011 has turned out to be
proved incorrectly [40]). The proof of the following theorem is based on a combinatorial result
of Frankl [37] (see [99] for a history of this result):

Theorem 1.15 (Pin, 1983 [73]). FEach n-state synchronizing automaton has a reset word of

nsfn

length at most
One of the key remarks dealing with synchronization of DFA is the following;:

Lemma 1.16 (éerny, 1964 [26]). A DFA A = (Q,X,0) is synchronizing if and only if for each
r,8 € Q there is w € ¥* such that 0(r,w) = §(s,w).

It turns out to be advantageous to think about synchronization also in a reversed way. We call
a set S C @ m-extendable if there is w € X* of length at most m such that [671(S, w)| > |S].
Many upper bounds for special classes of automata (see below) are based on the following

remark:

Lemma 1.17 (folklore). Let A = (Q, %, §) be a PFA with |Q| = n. Ifeach S C @ is m-extendable,
then C(A) < (n—2) -m+ 1.

Corollary 1.18 (folklore). Let A = (Q,X,6) be a PFA with |Q| = n. If each S C Q is n-
extendable, then C(A) < (n —1)%.

Studying inverse images of subsets is called the extension method. It turns out that Corollary
1.18 cannot be straightforwardly used to prove the éerny conjecture: for each n there is an
n-state synchronizing automaton having a subset that is not (2n — 4)-extandable [16].

Let us mention several groups of former results. In some of their proofs (mainly of the first
three groups) the approach of Lemma 1.17 and Corollary 1.18 is widely used:

e The classes of circular automata has been intensively studied since it turned out that the
Cerny’s series of circular automata (see [26]) provides the worst known case of n-state
DFA for each n. Using a clever linear-algebraic approach, it was proven by Pin [72]
that C%Y < (n—1)® whenever n is prime, Savicky and Vandéek [83] then shown that
C%Y < (n—1)% 4 (n—2)? for each n, and finally Dubuc [31] proved the upper bound
(n— 1)2 for the whole class C). Several directions of further generalization of this result
arose. First, Béal, Perrin, and Berlinkov [13] provided a quadratic upper bound for CSC.
Second, Steinberg [89] reached the upper bound (n —1)% of C9€ for prime n. Third,
Berlinkov [18] proved a quadratic upper bound for quasi-one-cluster automata, a strong
generalization of one-cluster automata. Let us mention also the papers [16] and [88],
which both present generalizing ideas concerning various results including most of the the
above-mentioned ones.
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o Kari [51] (see also [10]) verified Cerny conjecture for Eulerian automata, using linear-
algebraic methods as well. After that, the result was generalized to pseudo-Eulerian [88]
and quasi-Eulerian [17] automata by combining former methods with a kind of probabilis-
tic approach. As for lower bounds, there is a series [42] witnessing that Ciu > %
for n > 5.

e There is a spectrum of DFA classes that are defined by preserving relations on states. For
the (already defined) class of monotonic automata there is a tight upper bound C3'¢ <
n—1, which is a non-trivial result from [6]. In [100], a generalization to weakly monotonic

(n+1)

automata is introduced and the upper bound C(A) < VTJ is proved for each n-state

weakly monotonic automaton. For the class of oriented automata®, Eppstein [33] gives
a tight bound (n — 1)27 whose tightness is witnessed by the above-mentioned series of
éerny. Oriented automata are defined by preserving a cyclic order of states. See also
[101] for results about generalizations of oriented automata.

o Aperiodicity is a well-known and widely studied property of deterministic finite automata.
Let us note two classical publications: First, in 1965 Schiitzenberger [85] proves an equiv-
alence of two notions, both of them turns out to coincide with the notion of aperiodic
DFA. Second, a book of McNaughton and Papert [63] reveals that the notion is equivalent
to even more definitions coming from different branches of computer science and logic.
Trakhtman [94] proved that CA7 < w for each n > 1. In [100] it is pointed out that
each aperiodic DFA is weakly monotonic and thus Cﬁp < % . It is not hard to
show that each monotonic DFA is aperiodic. Lower bounds for aperiodic automata are
still linear, the best one is n+ [%| — 1, which follows from [5]

e Special attention is paid to the class of DFA that have a sink state, see Definition 1.5.
In Section 2.2 we inspect related techniques and former results, and provide new isolated
examples exceeding the best general lower bound concerning binary DFA.

Finally, the papers [8, 43] study classes of DFA based on the ranks of letters, while in [3, 4] and
other articles, the authors study synchronization thresholds with respect to certain classes of
DFA defined in terms of semigroup theory. All the results listed above may be seen as attempts
to obtain general upper bounds of C,, or even to prove the éerny conjecture.

1.3.3 Lower Bounds for PFA and Subsets in DFA

First results about subset synchronization appeared in 1970’s. The following is actually easy
to prove:

Theorem 1.19 ([23]). For each n > 2 and k < n — 2 there is ("_2)—Ietter DFA with a k-state

k-1
subset S such that sub(A, S) > (}73).

Corollary 1.20. sub(n) = Q(%) .

Proof. Set k = 4 and use the Stirling’s approximation to check that

I n 2 2"
im =4/=—=.
n—>00 % T \/ﬁ
O]

Subset synchronization was discussed also in [87], but an incorrect result is presented in this
book. The threshold car(n) has been initially studied in 1982 by Goralcik et al., together with

3 Also known as monotonic [33]
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several related problems. The authors show that for infinitely many n there is a permutation
of n states having order at least (¢/n)! and they use it to prove the following:

Theorem 1.21 ([41]). car(n) > (¥/n)!.

The construction can be easily (e.g. using our Lemma 2.1) modified to establish sub(n) > (¥/n)!
as well, as it was later re-discovered in the paper [54]. Though exceeded by Q(%), the later
lower bound of sub(n) remains interesting since the proof uses binary alphabets only.

In 2004, Ito and Shikishima-Tsuji revisited the topic and prove:

w3

Theorem 1.22 ([48]). car(n) > 2z.

This was subsequently improved by Martyugin:

w3

Theorem 1.23 ([59]). car(n) > 33.

Again, the construction can be applied to subsets, so we get sub(n) > 3%.
For subset synchronization there is only an easy upper bound:

Lemma 1.24. sub(n) < csub(n) < 2" —n — 1.

Proof. The first inequality is trivial. The second one follows from the fact that for a shortest
careful reset word 1 ...24 € X* of A = (Q,X,9), the d sets

Qa 6(@7 1‘1) 35(Q7 -Tl.fQ) 9ty 5(Qa Ty ... Id—l)
are pairwise distinct non-empty and non-singleton subsets of Q. O

Known upper bounds of careful synchronization come from bounds of the function dz(n), see
Section 1.4.2. Namely, Theorem 1.31 implies that

car= (’)(n2 -4%).

Chapter 2.1 presents new results concerning lower bounds of subset synchronization and careful
synchronization with respect to the alphabet size.

1.3.4 Road Coloring

Definitions related to road coloring were given in Section 1.2.3.
Lemma 1.25. Let G be a directed multigraph. If G is road colorable, then it is admissible.

Proof. The constant out-degree is clear. As for the cycles of G, let w be a reset word of a
coloring A = (@, X,0) of G, such that §(Q,w) = {r}. Choose some = € ¥ and consider the
cycles r % rand r % §(r,2) = r. Their lengths are |v] and |v| + 1, thus their greatest common
divisor is 1. O

Theorem 1.26 (Road Coloring Theorem [91, 95]). Let G be a strongly connected directed
multigraph. Then G is road colorable if and only if it is admissible.

What about directed multigraphs that are not strongly connected? We say that a strongly
connected component of a directed multigraph is the sink component if it is reachable from any
other component. Observe that:

1. If a sink component exists, then it is unique.

2. If G has constant out-degree k, the sink component also has constant out-degree k.

19



Corollary 1.27. Let G be a directed multigraph. Then G is road colorable if and only if it has
constant out-degree and its sink component is admissible.

Proof. For the forward implication, the constant out-degree is trivial. Then, fix a synchronizing
coloring of G and observe that the sink component corresponds to a subautomaton. Trivially, a
subautomaton of a synchronizing DFA is synchronizing, so the sink component is road colorable
and thus admissible due to Lemma 1.25. As for the backward implication - if the sink compo-
nent is admissible, we use Theorem 1.26 to find a synchronizing coloring. Then we extend it
arbitrarily to a coloring of G. Any such extension is synchronizing using a word that maps all
the states into the subautomaton, followed by a reset word of the subautomaton. O

Once the Road coloring problem was solved, generalizations appeared, see [22].

1.4 Modifications of the Concepts

1.4.1 Reducing Range Size

Say that k € N is the rank of a DFA A = (Q,%,0) if k is the minimum of ranks of the letters
z € ¥ (see Def. 1.4). Pin [71] formulated a generalization of the Cerny conjecture, saying
that each DFA of rank at most k has a word of rank at most k and length at most (n — k)>.
This conjecture was disproved by Kari [50]. In [56] another formulation was introduced: each
DFA of rank exactly k has a word of rank k and length at most (n — k)2. This claim remains
open since the counter-example from [50] has rank 1 (i.e. is synchronizing). In [7] the authors
introduce the class of generalized monotonic DFA and prove that each generalized monotonic
automaton of rank k has a word of rank k and length at most n — k. They also point out that
each generalized monotonic automaton is aperiodic.

1.4.2 Synchronization of NFA

In 1999, Imreh and Steinby [46] introduced three different synchronization thresholds concerning
general non-deterministic finite automata (NFA). The key definitions are the following

Definition 1.28. For an NFA A = (@, X,0), a word w € X* is:
o DIl-directing if there is r € @ such that §(s,w) = {r} for each s € Q,
o D2-directing if 0(s1,w) = §(s2,w) for each s1,s2 € Q,
o D3-directing if there is r € @ such that r € §(s,w) for each s € Q.
Definition 1.29.

1. By di(A4),d2(A),ds(A) we denote the length of shortest D1-, D2-, and D3-directing words
for A, or 0 if there is no such word.

2. By di(n),dz2(n),ds(n) we denote the maximum values of dy(A),ds(A),d3(A) taken over
all NFA A with at most n states.

Possible restrictions are marked by superscripts as usual.

It is clear that PFA are a special kind of NFA. Any careful reset word of a PFA A is D1-, D2-,
and D3-directing. On the other hand, any D1- or D3-directing word of a PFA is a careful reset

word. Thus, we get
&5 (n) < dF™ (n) = d5 (n) = car(n)

and
di(n) > car(n), ds(n)> car(n). (1.1)
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Note that each D2-directing word w of a PFA A is either a careful reset word of A or satisfies
that §({s},w) = 0 for each s € Q. PFA are of a special importance for the threshold d3(n) due
to the following key lemma:

Lemma 1.30 ([48]). For any n-state NFA A, there is a n-state PFA B such that d3(B) > d3(A).
Thus
ds(n) = d¥A(n) = car(n)

for each n.

It is known that di(n) = Q(2") [48] and d3(n) = Q(3%) [59] (for upper bounds and further
details see [38]).

Theorem 1.31 ([38]). It holds that:
1. di(n) = ©(2™),

2. da(n) = ©(27),
See [11] and its references for results concerning D2-directing words of unambiguous and local
automata. Certain variant of synchronization of PFA different from the careful synchronization
has been studied in [15, 96].

1.4.3 Composing Functions

It has been pointed out by Arto Salomaa [81] in 2001 that very little was known about the
minimum length of a composition needed to generate a function by a given set of generators. To
be more precise, let us adopt and slightly extend the notation. We denote by 7,, the semigroup
of all functions from {1,...,n} to itself. Given G C 7,,, we denote by (G) the subsemigroup
generated by G. Given F C T,,, we denote by D(G,F) the length k of a shortest sequence
g1, .-, gr of functions from G such that g; o--- o g, € F. Finally, denote

D, =max max D(G,F). (1.2)
n<n F,GCTx
FN(G)#0
From basic connections between automata and transformation semigroups it follows that various
synchronization thresholds can be defined alternatively by putting additional restrictions to the
space of considered sets G and F in the definition (1.2) of the threshold D,,:

1. For the basic synchronization threshold of DFA (may be denoted by carP™(n)), we
restrict F to be exactly the set of m-ary constant functions. Recall that a set G C Tx
corresponds to a DFA A = ({1,...7m},%,§): Each g € G just encodes the action of certain
z € ¥. Finding a reset word of A then equals composing transitions from G in order to
get a constant.

2. For the threshold sub(n), we restrict F to be some of the sets
Fs={feTa|(Vr,s€9)f(r)=[(s)}
for S C {1,...,7m}. Therefore it holds that D,, > sub(n).

3. For car(n), we should consider an alternative formalism for PFA, where the ,undefined”
transitions lead to a special error sink state. Let the largest number stand for the error
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state. A careful reset word should map all the states except for the error state to one
particular non-error state. So, here we restrict

F
G

{feTal(vrsef{l,.... n=1}) f(r) = f(s) # 7},
{9€Tnlgn)=n}.

N

However, in the canonical formalism such G C 7, corresponds to a (n — 1)-state PFA,
so we get D,, > car(n —1). Allowing suitable sets Fg for S C {1,...,m — 1}, we get
D,, > csub(n — 1) as well.

Arto Salomaa refers to a single nontrivial bound of D,,, namely D,, > (¥/n)!. In fact, he omits a
construction of Kozen [53, Theorem 3.2.7] from 1977, which deals with lengths of proofs rather
than compositions but witnesses easily that D,, = 29 (k7)) However, the lower bound of car(n)
from [49] revealed soon that D,, = 2%(™). Finally, in [70] the following tight bound was derived
from properties of finite groups (see also [45]):

D, = on . 6(1+o(1)),/% lnn.

In the above-mentioned article [41] the authors study an even more general concept: composing
binary relations. Such questions can be equivalently formulated as questions about NFA.

1.5 Computational Problems

1.5.1 Synchronization of DFA
Various basic computational problems arise from the study of DFA synchronization:

e Given an automaton, decide if it is synchronizing. A relatively simple algorithm, which
could be traced back to [26], works in polynomial time.

e Given a synchronizing automaton and a number d, decide if d is the length of shortest reset
words. This has been shown to be both NP-hard [33] and coNP-hard. More precisely, it
is DP-complete [69].

e Given a synchronizing automaton and a number d, decide if there exists a reset word of
length d. This is proven to be NP-complete [33]. It is also NP-complete to decide, whether
d is within a constant [19] or even logarithmic [15] factor from the length of shortest reset
words. Following the notation of [60], we call it SYN.

Assuming that M is a class of automata and membership in M is polynomially decidable, we
define the restricted problem:

SYN(M)
Input: Synchronizing automaton A = (Q,%,0) e M, d €N
Output: Does A have a reset word of length d?

Among the above-mentioned facts, the following are the most important for the present thesis.
Corollary 1.33 follows from Theorem 1.32 and Theorem 1.15.

Theorem 1.32 ([26]). There is a polynomial-time algorithm that decides whether a given au-
tomaton is synchronizing.

3
Corollary 1.33. SYN, if restricted to the instances with d > Lngl, is solvable in polynomial
time.
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Theorem 1.34 ([33]). SYN is NP-complete, even if restricted to automata with two-letter alpha-
bets.

In Section 3.2 we study the complexity of SYN with restrictions to certain special classes of
automata.

1.5.2 Synchronization of PFA and Subset Synchronization

The first natural problems in these directions are:

SUBSET SYNCHRONIZABILITY
Input: n-state DFA A = (Q,%,0), S C Q

Output: Is there some w € ¥* such that [6(S,w)| =17

CAREFUL SYNCHRONIZABILITY
Input: n-state PFA A = (Q, %, 9),

Output: Is there some w € ¥* such that
(Fre@)(VseQ)di(s,w) =r?

Both these problems, in contrast to the synchronizability of DFA, are known to be PSPACE-
complete, which is further discussed in Section :

Theorem 1.35 ([68, 82]). SUBSET SYNCHRONIZABILITY is a PSPACE-complete problem.
Theorem 1.36 ([61]). CAREFUL SYNCHRONIZABILITY is a PSPACE-complete problem.

There are also interesting results about an alternative (non-careful) variant of PFA synchro-
nization. In this case, it has been shown that the basic synchronizability problem is solvable
in polynomial time for strongly connected automata [96] but becomes PSPACE-complete if we
only require all the states to be reachable from one particular state [15].

1.5.3 Road Coloring

As the aperiodicity of a given directed multigraph can be tested in polynomial time, Theorem
1.26 and Corollary 1.27 imply that in polynomial time we can decide whether a graph is road
colorable. For finding an exact synchronizing coloring of a given graph, a cubic time algorithm
was developed by Trahtman [92] and improved to quadratic time by Béal and Perrin [12].

In the present thesis (Chapter 4) we study the following two problems, which deal with more
subtle properties of synchronizing colorings:

SRCP

Input: Alphabet ¥, admissible graph G = (Q, F) with out-degrees
|X|, d e N

Output: Is there a coloring ¢ such that [§(Q,w)| = 1 for some w € ¥*
of length at most d?

SRCW

Input: Alphabet X, graph G = (Q, E) with out-degrees |X|, W C ¥*

Output: Is there a coloring § such that |§(Q,w)| =1 for some w € W?
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Restrictions of these two problems are denoted by subscripts and superscripts. A term of the
form SRCP@W denotes the restriction of SRCP to instances with out-degrees |X|, number d,
and graphs from a class M. Similarly, a term of the form SRCW‘ASLW denotes the restriction
of SRCW to instances with out-degrees ||, set W of prescribed words, and graphs from a class
M. If a subscript or superscript is omitted, the corresponding parameter is not restricted.

1.5.4 Key Notions of Parameterized Complexity

In most of the paper, we do not need to work with any formal definition of a parameterized
problem. We see it as a classical decision problem where we consider some special numerical
property (parameter) of each input. Parameterized complexity is the study of the way in which
the hardness of an NP-complete problem relies on the parameter. A problem may remain NP-
hard even if restricted to instances with a particular value of the parameter or there may be a
polynomial-time algorithm for each such value. In the second case, if the algorithm is the same
for all the values (a uniform algorithm), the problem is said to lie in the class XP. Moreover, if
the time-bounding polynomials for different values are all of the same degree, we get into the
class FPT:

A parameterized problem is fixed-parameter tractable (FPT) if there is an algorithm that
decides it in time

f(P) - r(|z])

where z is the input string, P € N its parameter, r is an appropriate polynomial, and f is
any computable function. If there is more than one possible parameter for a problem, one may
consider combinations of the parameters. A problem is FPT with respect to parameters P, Q
if it is decidable in time

fP,Q) - r(lxl).

This is typically much less restrictive condition than the previous one, where f depends on P
only.

There is a hierarchy of problems (the W-hierarchy) lying in XP but possibly outside FPT. It
consists of the classes W[1],W[2],...:

FPT C W[1] C W[2] C --- C XP. (1.3)

Since it has been conjectured that all the inclusions are proper, it is common to use WIk]-
hardness (with respect to an appropriate type of reduction) as an evidence of lying outside
FPT. However, we do not need to define the W-hierarchy here since it is used only to formulate
the preceding results (see Table 3.1), not for the new ones. See the textbook [30] for the
definitions and many other great ideas of parameterized complexity.

A kernel of a parameterized problem is a polynomial-time procedure that transforms any input
x of the problem to another input y such that the length and the parameter of y are bounded
by some function f of the parameter associated with x. Having a kernel is equivalent to lying
in FPT. If the function f is a polynomial, we get a polynomial kernel.

For functions f,g : N — N, the term g = O*(f) means that for a suitable polynomial p and
each z € N we have g(z) < f(x) - p(x).
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Chapter 2

Lower Bounds of Synchronization
Thresholds

In this chapter we deal mostly with a new lower bound for subset synchronization in binary
DFA and careful synchronization in binary PFA. Specifically, we show that both the thresholds
are of the form 22" even if only strongly connected automata are considered. The results
were presented at the conference AFL 2014 [103] and submitted in an extended paper to a
journal.

Besides of that, we include Section 2.2, which deals with the classical synchronization threshold
of DFA, restricted to automata having a sink state - a state with no outgoing transitions except
for loops (also known as a zero state). We inspect former lower bounds and propose certain
generalizations. The proposed methods turn out to be useful - they lead to slightly improved
lower bounds for several small values of the number of states, using computationally verified
examples. Moreover, the examples belong to a simple infinite series of automata, so it seems
very likely that the entire series has the desired properties, which is a topic for further research.

2.1 Careful Synchronization and Subset Synchronization

In Section 1.2.2 we have defined the thresholds car,, and sub,,, while in Section 1.3.3 we have
pointed out that car(n) > 35 (Theorem 1.23). In fact, sub(n) > 35 holds as well, since the
proof of Theorem 1.23 can be easily modified in order to operate with subsets of states in DFA
(see Lemma 2.1). However, the proof uses very artificial series of automata to witness this lower
bound:

o In the series, the alphabet size grows linearly with the growing number of states - the result
relies on the convention of measuring the size of an automaton only by the number of
states, ignoring the alphabet size. The result says nothing about the thresholds sub £ (n)
or car A (n) for any fixed k > 2. In 2013, Martyugin [62] proves that

car*f2(n) > 30Tomn
carfr(n) > 3FTEn-in
for each k£ > 3, which applies in a similar form also to subset synchronization. However,

it remained unclear whether car£s(n) = 22 or sub*%*(n) = 22 for some k > 2.

Here we confirm this for k£ = 2, so for any greater k the claim follows easily.

e In the subset-synchronization form, the series consists of DFA with sink states, two of
them in each automaton. Use of sink states is a very strong tool for designing automata
having given properties, but in practice such automata seem very special. They represent
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unstable systems balancing between different deadlocks. The very opposite are strongly
connected automata. Does the threshold remain so high if we consider only strongly con-
nected DFA? Unfortunately, we show below that it does, even if we restrict the alphabet
size to a constant. We introduce swap congruences as an alternative to sink states.

Note that in the case of careful synchronization, any lower bound of car(n) applies eas-
ily to car(n) using a simple trick from Lemma 2.2. Moreover, for suitable series the
alphabet size is increased only by a constant.

In this chapter we prove that

SubA£2ﬁ5C (n) — QQ(n)7

car AL20SC () = 90,

which shows that the bounds remain high even if restricted to binary, strongly connected
automata. The new bounds are tight in the sense of car(n) = 29 and sub(n) = 2. This
result has the following consequences:

e The naturally related computational problems are SUBSET SYNCHRONIZABILITY and
CAREFUL SYNCHRONIZABILITY (see Section 1.5.2). Both these problems, in contrast
to the synchronizability of DFA, are known to be PSPACE-complete. Note that such
hardness is not a consequence of any lower bound of synchronization thresholds, because
an algorithm does not need to produce an explicit reset word. The proofs of both the
theorems above make use of a result of Kozen [53], which establishes that it is PSPACE-
complete to decide if given finite acceptors with a common alphabet accept a common
word. This problem is polynomially reduced to our problems using the idea of two sink
states. Is it possible to avoid the non-connectivity here? In Theorem 2.10 we give a
positive answer: for CAREFUL SYNCHRONIZABILITY it is in fact a trivial task, and in
the nontrivial case of SUBSET SYNCHRONIZABILITY the method of swap congruences is
general enough to perform a suitable reduction.

o It is known that di(n) = Q(2") [49] and d3(n) = Q(3%) [59] (for upper bounds and
further details see [38]). Due to the easy relationship similar to (1.1) in Section 1.4.2, our
strongly exponential lower bounds apply directly to the thresholds d;(n) and ds(n) with
the restriction to binary strongly connected NFA:

d.fl[lzﬁSC (ﬂ) — QQ(n), dsAﬁzﬁSC (TL) — 2Q(n)

o Like in the case of car(n) and sub(n), the notion of D,, does not concern the size of G,
thus providing a ground for artificial series of bad cases based on growing alphabets. Our
results show that actually the growing size of G is not necessary: a strongly exponential
lower bound of D,, holds even if we restrict G to any nontrivial fixed size.

First, in Sections 2.1.1 to 2.1.4 we prepare the ground for the proof of the results formulated
above by introducing basic principles and relationships concerning the studied thresholds. These
principles are not innovative, except for the method using swap congruences described in Section
2.1.2, dealing with strong connectivity in subset synchronization. The main proof is presented
in Sections 2.1.5 and 2.1.6.

As noted before, many of the lower bounds of car(n) and sub(n) found in the literature were
formulated for only one of the notions but used ideas applicable to the other as well. The key
method used in the present paper for the binary case is of this kind again. However, we are not
able to calculate any of the thresholds from the other exactly.
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2.1.1 Determinization by adding sink states

The following inequality is not a key tool of the present paper, we prove it in order to illustrate
that even careful subset synchronization is not much harder than subset synchronization itself.
Recall that trivially car(n) < csub(n) and sub(n) < csub(n) for each n.

Lemma 2.1. For each n > 1 it holds that
csub(n) < sub(n+2) — 1.

Proof. Take any PFA A = (Qa,%4,04) with a carefully synchronizable subset S4 C Q4
and choose a shortest careful reset word w € ¥* of S4 with da(s,w) = 1o for each s € Sy4.
We construct a DFA B = (Qp,X5,0p) and a synchronizable subset Sgp C Qp such that
sub(B, Sg) > |w| + 1. Let us set

b

D
D

QB = QA U {Daﬁ}v 5B(D7x)
XB:XAU{CU}7 (53(ﬁ,$)

for each x € X, and

da(s,xz) if defined D ifs=mrg
53(8,33) i 63(57(‘)) =\ =
D otherwise D otherwise

for each s € Q4,x € ¥ 4. Denote Sp = S4 U {D}. The word ww witnesses that the subset Sp
is synchronizable. On the other hand, let v be any reset word of Sg. Since D is a sink state
and D € Sg, we have dg(v,s) = D for each s € Sg. Thus:

o The state D is not active during the application of v.
e There need to be an occurrence of w in v.

Denote v = vowvy, where vy € Y% and v; € X5. If [05(Sp,v0) NQa| = 1, we are done
since vy maps all the states of S4 to a unique state using only the transitions defined in A,
so |v] > |w| + 1. Otherwise, there is some s € dp(Qp,vo) N Q4 such that s # 7o, but then
dp(w,s) = D, which is a contradiction.

O

2.1.2 Strong connectivity

First we show an easy reduction concerning careful synchronization of strongly connected PFA.
We use a simple trick: A letter that is defined only on a single state cannot appear in a shortest
careful reset word, so one can make a PFA strongly connected by adding such letters. The
number of new letters needed may be reduced by adding special states, but the simple variant
described by Lemma 2.2 is illustrative and strong enough for our purpose.

For each j > 0 we define the class C; of PFA as follows. A PFA A = (Q, X, ) belongs to C; if
there are j pairs (r1,q1),...,(r;,¢;) € @ x @ such that adding transitions of the form r; — ¢;
for each ¢ = 1,..., 7 makes the automaton strongly connected. Note that Cy = SC.

Lemma 2.2. For each n, k,j > 1 it holds that

car£x0C () < care+iNSC (n) |

Proof. Take any PFA A = (Q,X4,04) € AL NC; together with the pairs (r1,¢1),...,(rj,q;) €
Q x @ from the definition of C;. We construct a PFA B = (Q,Xp,0p) where ¥p = ¥4 U
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{1,...,¢;}, 0(s,2) =da(s,x) for z € ¥4 and s € Q, and

i ifSZ’I"Z'
6B (s,1i) = {q

undefined otherwise

fori =1...,,7 and s € Q. Now it is easy to check that B is strongly connected and that
car(B) = car(A). O

Second, we present an original method concerning subset synchronization of strongly connected
DFA. All the lower bounds applicable to sub(n) that we have found in the literature used
two sink states (deadlocks) to force application of particular letters during a synchronization
process. A common step in such proof looks like , The letter x cannot be applied since that
would make the sink state D active, while another sink state D is active all the time”. In
order to prove a lower bound of subS¢ (n), we have to develop an alternative mechanism. Our
mechanism relies on swap congruences:

Recall that, given a DFA A = (Q, %, ), an equivalence relation p C @ x @ is a congruence if
rps = 0(r,z) pd(s, )

for each x € 3. We say that a congruence p is a swap congruence of a DFA if, for each
equivalence class C' of p and each letter z € X, the restricted function 6 : C x {z} — @ is
injective. The key property of swap congruences is the following:

Lemma 2.3. Let A = (Q,%,0) be a DFA, let p C Q% be a swap congruence and take any S C Q.
If there are any r,s € S with r # s and rps, the set S is blind.

Proof. Because r and s lie in a common equivalence class of p, by the definition of a swap
congruence we have 6(r,w) # 6(s,w) for any w € X*. O

Thus, the alternative mechanism relies on arguments of the form ,, The letter x cannot be applied
since that would make both the states r, s active, while it holds that rps”. It turns out that our
results based on the method can be derived from more transparent but not strongly connected
constructions by the following reduction principle:

Lemma 2.4. For each n > 1 it holds that
sub(n) < sub®®(2n +2) — 1.
Moreover, for each n,k > 1 and j > 2 it holds that
subAr0% () < subAeE+iNSC (2 4 2) — 1.

Proof. The first claim follows easily from the second one. So, take any DFA A = (Q4,%X4,04) €
ALy NC; together with the pairs (r1,q1),...,(r;,¢;) € Qa X Q4 from the definition of C; and
let S C Q4 be synchronizable. We construct a strongly connected DFA B = (Qp,Xp5,05) and
a subset Sp C @p such that sub (B, Sg) > sub(A,S4) + 1. Let us set

Qp {s,5|s€Qa}U{E,E},
Xp = XaU{ty,...,9¥}.

We want the relation
p={(s,3)|s€QaU{E}),

where (...) denotes an equivalence closure, to be a swap congruence. Regarding this require-
ment, it is enough to define dp on @4 U {E}. The remaining transitions are forced by the
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injectivity on the equivalence classes. We set

6p(s,x) =da(s,z), dp(E,z)=E

for any s € Qa,x € X4, while the letters 11, ...,9; act as follows:
qr ifs=mnr;
53(571/)1): o ) 5B(E71/)I)ZQI»
qr otherwise
q ifs=m
53(37%‘) =\ = . ) (SB(ani) =E
E otherwise

for s € Q4 and i # I, where I is chosen such that for a reset word w of S, in A with
0a(s,w) = rp, the state r; is reachable from rq. It is easy to see that such I exists for any
ro € Sa. We set Sp =5y U{E}

« First, note that the set Sp is synchronizable in B by the word wui; where v € 3% such
that §4(ro,u) = 1.

¢ On the other hand, let v be a reset word of S in B. The word v necessarily contains
some 1; for i € {1,...,j}, so we can write v = voth;v1, where vy € X%, v1 € 5. If vy is a
reset word of S in A, |v| > sub(A4, S4) + 1 and we are done. Otherwise there is a state
s #r; in 05(S,vp) and we see that both ¢; and g; (if i = I) or both E and E (if i # I) lie
in d5(S, voth1), which is a contradiction with properties of the swap congruence p.

The automaton B is strongly connected since the transitions r; BN q; and T; i, q; for each
i =1,...,j make both the copies of A strongly connected and there are transitions E ﬂ> qr,
S&E,E&QE, and?&Eforsomei;éIands;ém.

O

2.1.3 A special case of subset synchronization

We are not aware of any general bad-case reduction from subset synchronization to careful
synchronization. Here we suggest a special class (denoted by Mp) of pairs automaton-subset
such that the instances from the class are in certain sense reducible to careful synchronization.
The main construction of the present paper (i.e. the proof of Lemma 2.7) yields instances of
subset synchronization that fit to this class. We use the following definitions:

e Given a PFA A = (Q,X%,9) and a carefully synchronizable subset S C @, the S-relevant
part of A is

Qas = |J dSw),

weWsg

where Wy is the set of prefixes of careful reset words of S in A. The S-relevant automaton
of A is RA,S = (QA,S, E,6A75), where

d(s, ) if 0(s,z) € Qas

undefined otherwise

0a5(s,) = {

for each s € Q4,5 and z € X.

e The class Mp is defined as follows. For any PFA A = (Q,%,d) and any carefully syn-
chronizable S C @, the pair (A, S) lies in Mp if there are subsets Pi, ..., Pg € @ such
that:
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— The sets Py, ..., Pg are disjoint and Ug1 Pi=Qas.

— For each v € ¥* such that d(s,u) € Qa,s for any prefix u of v and any s € S, it
holds that v is a careful reset word of S, or

[6(S,v)N Pl =1
for each ¢ = 1,...,|S|. In particular, the choice of empty v implies that
[SNPl=1
must hold for each i = 1,...,|S|.

e The class C]R for j > 0 is defined as follows. For any PFA A = (Q, %, ) and any carefully
synchronizable S C @, the pair (A4, 5) lies in CJR if Ras €C;j.

Lemma 2.5. For each n > 1 it holds that
csub™P (n) < car(n).
Moreover, for each n,k,j > 1 it holds that

csubALKNC M (n) < carfrx+1NC (n)

Proof. The first claim follows easily from the second. So, take any (A4,S) € Mp with A =
(Q,¥4,04) and S C Q, together with the sets Pi,..., Pjg from the definition of Mp. By
adding a letter o to the automaton R4 g, we construct a carefully synchronizing PFA B =
(Qa,5,XB,0p) with car(B) > csub(A4,S). Let X = X4 U {a}. For each s € Q4,5 we find the
1 such that s € P; and define
op(s, @) = qi,

where ¢; is the only state lying in SN P;, as guaranteed by the membership in Mp. The letters
of ¥4 act in B as they do in R4 s.

o It is easy to check that the automaton B is carefully synchronizing by aw for any w € 3%
that is a careful reset word of S in A.

¢ On the other hand, take a shortest careful reset word v of B. If a does not occur in v,
then v is a careful reset word of S in A, so |v| > csub (A, S). Otherwise, denote v = voav;
where vy € X% and v; € ¥%. By the membership in Mp we have [6(S,vo) N P;| =1 for
each i =1,...,]S| and thus 0p(S,voa) = S. It follows that v; is a careful reset word of
Sin A, so |v] > csub (4, 5).

2.1.4 Decreasing the alphabet size

The following method is quite simple and has been already used in the literature [19]. It modifies
an automaton in order to decrease the alphabet size while preserving high synchronization
thresholds.

Lemma 2.6. For each n,k > 1 it holds that
1. sub™?**(n) < sub?*2(k-n) and sub?**"5¢(n) < sub?*2"SC (k. n),

2. carfk (n) < car’2(k-n) and carAf+0SC(n) < carAf2NSC (k. n).
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Proof. Take a PFA A = (Qa,X4,04) with ¥4 = {ag,...,am}. We define a PFA B =
(@B,XB,0p) as follows: Qp = Q4 x X4, Xp = {«, 5}, and

0p((s,a;),a) =

(0a(s,a;),ag) if da(s,a;) is defined
undefined otherwise

d5((s,a;),B8) = {(S7ai+1) ifi<m

(s,am) ifi=m
for each 1 =0, ..., m. The construction of B applies to both the claims:

1. Let A be a DFA. We choose a synchronizable Sy C Q4 and denote Sp = S4 % {ag}. It
is not hard to see that reset words of Sp in B are in a one-to-one correspondence with
reset words of S4 in A. A word a;, ...a;, € ¥% corresponds to (8a) ... (B"a) € T5.

2. Let A be carefully synchronizing. We can suppose that d(s,a,,) is defined on each
s € Q4 since for a carefully synchronizing PFA there always exists such letter. For any
careful reset word a;, ...a;, of A, the word ™« (B a) ... (B%a) is a careful reset word
of B. On the other hand, any careful reset word of B is also a careful reset word of the
subset Q4 x {ap} € Qp, whose careful reset words are in a one-to-one correspondence
with careful reset words of A, like in the previous case.

Since 0p((s,am), ) is defined for each s € Sy, it is not hard to check that if A is strongly
connected, so is B.
O

2.1.5 The key construction

Let us present the central construction of this chapter. We build a series of DFA with a constant-
size alphabet and a constant structure of strongly connected components, together with subsets
that require strongly exponential reset words. Moreover, the pairs automaton-subset are of the
special kind represented by Mp, so a reduction to careful synchronization of PFA, as introduced
in Lemma 2.5, is possible.

Lemma 2.7. For infinitely many m > 1 it holds that
subAL4NC2NCNMe (5m +logm +3) > 2" - (logm + 1) + 1.

Proof. Suppose m = 2*. For each t € 0,...,m — 1 we denote by 7 = bin(t) the standard k-digit
binary representation of ¢, i.e. a word from {0,1}". By a classical result proved in [36] there
is a De Bruijn sequence § = &...&n—1 consisting of letters & € {0,1} such that each word
T € {0, 1}]C appears exactly once as a cyclic factor of £ (i.e. it is a factor or begins by a suffix
of £ and continues by a prefix of £). Let us fix such . By 7 (i) we denote the number ¢, whose
binary representation bin(t) starts by &; in £. Note that 7 is a permutation of {0,...,m — 1}.
Set

Q@ = ({0.....,m—1}x{0,0"1,1%,1"}) U {Co,...,Cs,D,D},
X = {0,1,k,w},
S = ({0,...,m—1} x {0})U{Cy,D}.

Figure 2.1 visually distinguishes main parts of A. The states D and D are sink states. Together
with D € S it implies that any reset word of S takes the states of S to D and that the state D
must not become active during its application. The states Cy, ..., Cy guarantee that any reset
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{0,...,m—1} x {1,141}

C()v"'ack

{0,...,m -1} x {0,0+}

b ¢

Figure 2.1: A connectivity pattern of the automaton A.

Figure 2.2: A part of A. All the outgoing transitions that are not depicted lead to D.

word of S lies in N
({07 1}* I{) wX*. (2.1)

Indeed, as defined by Figure 2.2, no other word takes Cy to D. Let the letter w act as follows:

{0,...,m—1} x {1},Co,D = D,
{0,....m—1} x {0,0",14,17} /Cy,...,Clogm, D - D.
We see that w maps each state to D or D. This implies that once w occurs in a reset word of

S, it must complete the synchronization. In order to map Cy to D, the letter w must occur, so
any shortest reset word of S is exactly of the form

w=(1T1K) ... (TqKr)w, (2.2)

where 7; € {0, 1}* for each j.
The two biggest parts depicted by Figure 2.1 are very similar to each other. The letters 0 and
1 act on them as follows:

(i+1,0) if&=0
0= {(z+1,0¢) ifg =1 = {

. 1 |D it =0
(Z’O)H{(i—kl,O) ifg =1 (1) = {

(i+1,1) if&§=0
(z—i—l 1) ifg =1
(i+1,1%) if& =0
((+1,1) if&g=1

and (i,b) o (i +1,b) for each b = 0%, 1+, 17, using the addition modulo m everywhere. For
example, Figure 2.3 depicts a part of A for m = 8 and for a particular De Bruijn sequence
&. Figure 2.4 defines the action of x on the states {i} x {0,0%1,1% 1"} for any i, so the
automaton A is completely defined.

Let w be a shortest reset word of S in A. It is necessarily of the form (2.2), so it makes sense
to denote v; = bin(¢) k and treat w as

W=y, ... Vp,w € {Vg, ..., Vm_1,w}". (2.3)

The action of each v; is depicted by Figure 2.5. It is a key step of the proof to confirm that
Figure 2.5 is correct. Indeed:

o Starting from a state (i,1), a word bin(¢) takes us through a kind of decision tree to one
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Figure 2.4: The action of the letter s, with Figure 2.5: The action of vg,...,v;,_1 on
subtraction modulo m. the i-th switch.

of the states (l + k, 1J') LA+ k1), (z + k, lT), depending on whether t is lesser, equal,
or greater than m(7), respectively. This is guaranteed by wiring the sequence £ into the
transition function, see Figure 2.3. The letter x then take us back to {i} x {...}, namely
to (i,0) or (i,1).

o Starting from a state (i,0), we proceed similarly, but in the case of ¢ > 7 (i) we fall into
D during the application of bin().

It follows that after applying any prefix vy, ...vs; of w, exactly one of the states (4,0), (i,1) is
active for each i. We say that the i-th switch is set to 0 or 1 at time j. Note that Q4\ {ﬁ} is
the S-relevant part of A and that the sets {i} x {O, 0%,1,1+, lT} for i =0,...,m— 1, together
with the sets {D} and {Cy, ..., Cy}, can play the role of Py,..., Py, 2 in the definition of Mp.
Observe that at time d all the switches are necessarily set to 1 because otherwise the state D
would become active by the application of w. On the other hand, at time 0 all the switches
are set to 0. We are going to show that in fact during the synchronization of S the switches
together perform a binary counting from 0 (all the switches set to 0) to 2™ — 1 (all the switches
set to 1). For each 4 the significance of the i-th switch is given by the value m(i). So the
7~1(m — 1)-th switch carries the most significant digit, the 7—1(0)-th switch carries the least
significant digit and so on. The number represented in this manner by the switches at time j
is denoted by b; € {0,...,2™ —1}. We claim that b; = j for each j. Indeed:

e At time 0, all the switches are set to 0, we have by = 0.
o Suppose that b;; = j" for each j' < j — 1. We denote
t; = min {n(4) | i-th switch is set to 0 at time j — 1} (2.4)

and claim that ¢; = ¢;. Note that ¢; is defined to be the least significance level at which
there occurs a 0 in the binary representation of b;_;. Suppose for a contradiction that
t; > t;. By the definition of 7; the state (77(Z;),0) lies in §(S, vy, ... vy, ,). But vy,
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takes this state to D, which is a contradiction. Now suppose that t; < t;. In such case
the application of v;; does not turn any switch from 0 to 1, so b; < b;_; and thus at
time j the configuration of switches is the same at it was at time b;. This contradicts the
assumption that w is a shortest reset word. We have proved that t; = t; and it remains
only to show that the application of v;; performs the addition of 1 and so makes the
switches represent the value b;_; + 1.

— Consider an i-th switch with 7(¢) < ¢;. By the definition of ¢;, it is set to 1 at time
J — 1 and the word v, sets it to 0 at time j. This is what we need because such

switches represent a continuous leading segment of 1s in the binary representation
of bjfl.

— The 7~ !(t;)-th switch is set from 0 to 1 by the word vy, .

— Consider an i-th switch with 7(¢) > t;. The switch represents a digit of b;j_; which
is more significant than the #;-th digit. As we expect, the word v, leaves such
switch unchanged.

Because bg = 2™, we deduce that d = 2™ and thus |w| = 2™ - (k + 1) + 1, assuming that a
shortest reset word w exists. But in fact we have also shown that there is only one possibility
for such w and that it is a true reset word for S. The unique w is of the form (2.3), where ¢;
is the position of the least significant O in the binary representation of j — 1.

The automaton A lies in Co N CY since the addition of D — Cy and D — (0,0) makes A
strongly connected, while the addition of D — Cp and Cy — (0,0) makes R4 g strongly
connected. O

2.1.6 The results

The following theorem presents the main results of the present paper:
Theorem 2.8. For infinitely many n > 1 it holds that
1. sub*2M5% () > 24
2. cart£205C(n) > 235
Proof. Lemma 2.7 says that
oM. (logm+1)+1 < subAFanCNCnMe (5, 4 loom + 3) (2.5)
for infinitely many m > 1. Now we apply some of the lemmas from the above sections:

1. Lemma 2.4 extends (2.5) with
sub?£47¢2 (5m 4 logm 4 3) < sub?*¢"5¢(10m + 2 - logm + 8) — 1
and Lemma 2.6 adds
sub?“e"5¢ (10m + 2 - logm + 8) — 1 < sub™***"9¢(60m + 12 - log m + 48) — 1.

We chain the three inequalities and deduce

sub 205 (60m + 12 - logm +48) > 2™ - (logm + 1) + 2,
subAe2"5C(61m) > 2™,
SubAﬁzﬁSC(n) Z 2%
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2. Lemma 2.5 extends (2.5) with

bAmeg‘nMp ( AL5NCa (

csu 5m + logm + 3) < car 5m + logm + 3),
while Lemma 2.2 adds
cart£37C2 (5m, + logm + 3) < car**""S¢(5m, + logm + 3)
and Lemma 2.6 adds
cart£705€ (5m 4 logm + 3) < car*2M9C(35m + 7 - logm + 21).

We chain the four inequalities and deduce:

cart205C (35m + 7 - logm +21) > 2™ . (logm +1) +1,
car?2N9C(36m) > 2™
carf25C () > 23

Note that there are more subtle results for less restricted classes of automata:

n n

Proposition 2.9. It holds that sub”*?(n) > 231, carf2(n) > 2%, sub®“(n) > 3%, and
arS¢(n) > 3% for infinitely many n > 1.

Proof. The first claim follows easily from Lemmas 2.7 and 2.6, the second one requires also
using Lemma 2.5 first. The third and the last claim follow from applying Lemmas 2.1 and 2.4
(or Lemma 2.2 respectively) to the construction from [59]. O

2.1.7 An Application to Computational Complexity
Theorem 2.10. The following problems are PSPACE-complete:
1. SUBSET SYNCHRONIZABILITY restricted to binary strongly connected DFA

2. CAREFUL SYNCHRONIZABILITY restricted to binary strongly connected PFA

Proof. There are polynomial reductions from the general problems SUBSET SYNCHRONIZABIL-
ITY and CAREFUL SYNCHRONIZABILITY: Perform the construction from Lemma 2.4 (or Lemma
2.2 respectively) and then the one from Lemma 2.6. O

2.2 Synchronization Thresholds of Automata with Sink States

In this short section we leave the field of subset synchronization and careful synchronization
and we inspect a more basic field - synchronization of DFA with a sink state!, see Definition
1.5. First, we formulate the following easy observations:

Lemma 2.11. Let A = (Q,X,0) € Z be a DFA with a sink state qo € Q.

1. If A is synchronizing, then qo is the only sink state and §(Q,w) = {qo} for each reset
word w.

2. A is synchronizing if and only if qg is reachable from each r € Q.

IThe questions can be equivalently expressed in terms of annulation of PFA, see e.g. [5].
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S\{an-1}  X\{an-1,an-2} X\{az,aa} 2\{az,a3} ¥\{a1,a2} X
S B o
a1
SERETONROER0S0
An—1 as a2
Figure 2.6: The automaton A,, from Theorem 2.12

Automata with sink states seem much easier to synchronize. Informally, once a state is mapped
to qo, it cannot be re-mapped anywhere else. However, it turns out that some questions about
lengths of shortest reset words remain hard, especially concerning alphabet size. For the whole
class Z the exact synchronization threshold has been already found by Rystsov:

Theorem 2.12 ([80]). For each n > 1 it holds that C,, = @

The proof uses a series of DFA with growing alphabet size. Specifically, for each n > 1 there is
the following automaton A,, = (@, %, J) with C(4) = w:

Q = {0,....,n—1},
Y = Aa,...,an-1},
s—1 if s >0 and x = as,
d(s,x) = s+1 ifs<n—1,8#0,and x = asy1,

s otherwise,

see also Figure 2.6.

On the other hand, in [57], Martyugin presents the lower bound W that holds also
with the restriction to binary DFA. Besides of that, he provided a single isolated example of a
10-state automaton that requires resets words of length 37, thus exceeding the bound above.

In the following we introduce an infinite series of automata admitting the Martyugin’s example
as an initial case. This consists of a series By, Bo,... of DFA with sink states, together with a
general construction of A(k,r), which informally append a tail of length k to a sink state of a
DFA A € Z, depending on a given non-sink state r of A. Using such notation, the Martyugin’s
10-state example is equal to B (3, q1), where ¢; is a particular state of Bj.

The following table lists the first six automata in our series. It was computationally verified

n%4+6n—16
4

that their synchronization threshold exceeds { —‘ , including the Martyugin’s one. As our

n? +6n—16
4

automata have even number of states, we write inQ + %n — 4 instead of { ] Software,

hardware, and assistance for the computations were kindly provided by Marek Szykuta.

automaton A number n of states %nQ + %n —4 synchronization
threshold of A
Bi(3,q1) 10 36 37
Ba(9,q1) 22 150 151
Bs(15,q1) 34 336 337
By(21,q1) 46 594 595
Bs (27, q1) 58 924 925
Bs(33,q1) 70 1326 1327
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The table suggests the following conjecture:

Conjecture 2.13. For each j > 1 it holds that C(B;{6j —3,¢1)) = in® 4+ 3n — 3, where n =
125 — 2.

Let us define all the notation mentioned above. First, we describe a general concept of adding
a tail of length k£ > 1 to an automaton with a sink state. Let A = (Q,{a,b},d) be a binary
DFA with a unique sink state go € . Then for each k£ > 0 and each r € @ the term A(k,r)
stands for the following automaton (@', {a, b} ,d’) with & additional states:

Q/ = Qu{t07t17"'7tk—1}7
d(s,a) if se€Q\{q}

tr—1  ifs=qo

8 (s,a) =
to if s = to,
ti_1 ifSE{th...,tk,l},
6(s,b) ifse ,
6/(87 b) — (S ) s Q\ {QO}
r otherwise,

for each s € Q. Observe that ty is the new unique sink state. The key property of such
transformation is the following:

Lemma 2.14. Let A = (Q,{a,b},0) be a synchronizing binary DFA with a sink state qy € Q
and k € N. Suppose that:

1. a is a permutation,
2. k > 1 is a common multiple of the lengths of cycles of a,
3. r € Q is the only non-sink state with 6(r,b) = qo,
4. b is a permutation of Q\ {r}.
Then C(A(k,r)) = C(A) + nk, where n = |Q).

Proof. First, we show that C(A(k,r)) < C(A)+nk. Let w be a reset word of A. For each d > 1
we denote by ug the shortest prefix u of w satisfying that |5’1({q0} , u)| > d, which means that
u maps at least d states to qg. Clearly, u; = € and u,, = w. Denote

W =1V2...0Uy,

where 1ug = vy...v4 for each 2 < d < n. Let w' = aFvoafvs3a® ... v,a”*. It is enough to show

that w’ synchronizes A(k,r), i.e. §'(s,w’) = tg for each s € Q. If s € {to,t1,...,tk—1}, we just
observe that (5’(3, ak) =tg. If s € Q, let d be the least integer such that §(s,uq) = go. Since
8(s,u’) # qo for each proper prefix u’ of ug, the definition of §’ implies that

61(57Ud) =d(s,uq) = qo-

As o’ (qo, ak) = tg, we are done.
Second, we show that C(A) + nk < C(A(k,r)). Let w’ be a reset word of A(k,r). For each
s € @', denote by u/, the shortest prefix u’ of w’ with §’(s,u") = to.

1. Observe that whenever s € @, the word u/, must be of the form u/, = v.a* for some v/,
with §'(s,v]) = qo. Moreover, as qo ¢ rng(a), each v/, ends by b or is empty.
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Figure 2.7: The automaton B; - solid marks a, dotted marks b

2. Next, we show that v, # v{ for each distinct p,s € Q. Otherwise, we have d(p,v") =
A

» = Us. As 1 is the only merging state in A(k,r) except for to,

0(s,v") = qo, where v/ = v
we have
5(p,v"b) = §(s,0"b) =1,

for some prefix v of v’ with d(p,v") # d(s,v”). Because
5(pa UN) 76(57vl/) S 5_1(T7 b) = {toa tl) e 7tk717q0} )

we can denote t; = d(p,v"”) and t; = 6(s,v”), where i,j € {0,...,k} and t; stands for go.
As p # s, we can suppose that p # qg (the case s # g is symmetrical). From t; = §(p,v")
it follows that v” ends with ba’. From t; = §(s,v") it follows that v” ends with ba’ or is

equal to a’. As i # j, we get a contradiction.

3. Together, each of the distinct prefixes v/, of w’ for s € Q ends by b and is followed by a*.
Thus, w’ contains at least n disjoint occurrences of the factor a*.

Let w be obtained from w’ by deleting these factors, so we have |w| < |w’| — nk. It remains to
show that w is a reset word of A. Choose s € ) and let w’, be the shortest prefix v’ of v’ with
0'(s,u') = qo. As qo ¢ rng(a), the word w!, ends by b or is empty. Thus we can consider the
prefix w, of w obtained by deleting the occurrences of a* from w’. As k is a common multiple
of the lengths of cycles of a, the word a* acts as identity on Q\ {qo} in both A(k,r) and A. We
conclude that

8(s,ws) = 0(s,wl) = 8§ (s,w)) = qo,

which implies easily that §(s, w) = qo.
O

Now we define the infinite series B; that, after adding tails, constitutes the new examples of
automata with high synchronization threshold.

For each j > 1, we fix an automaton B; = (Q, {a,b},d) with Q = {qo,¢1,...,¢s;j} according to
the following table, where each ¢; € @ is shortened to ¢:

s 01|23 [4]5] - |6i—1]6j
5(s,a) 023|156 | 6 |4
ss,b) lofo|3]4a|5]|6|- | 6 |2

The automaton is also depicted in Figure 2.7. The key idea of this chapter is to add a tail of
length 65 — 3 to each B;:
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Figure 2.9: The automaton B2(9, ¢1)

Lemma 2.15. For each j > 1 it holds that
C(B;{65 — 3,q1)) = C(B;) + 3652 — 12§ — 3.

Proof. We apply Lemma 2.14. The letter a is indeed a permutation and its cycles have lengths
3 and 65 —3, so we can use k = 65 —3. We also observe that » = g; meets the last two conditions
of the lemma. As B; has n = 6j + 1 states, it remains to verify that nk = (65 + 1) (65 — 3) =
3652 — 125 — 3. O

See Figures 2.8 and 2.9 that depict the automata B;(3,q1) and Bs(9,¢1). It was compu-
tationally verified that C(B;) = 18j — 2 for j = 1,2,3,4,5,6. Thus, due to Lemma 2.15,
C(B;j{6j —3,q1)) = 36j% + 6j — 5 for each such j. The automaton C(B;(6j —3,¢1)) has
n = 125 — 2 states, so we can compute that 3652465 — 5 = inz + %n — 3. Thus, the automata
B;(6j — 3,q1) prove Conjecture 2.13 for 1 < j < 6 and witness the following theorem:

Theorem 2.16. For each 1 < j <6 and n = 12§ — 6, it holds that C,, > %nQ + %n - 3.

Besides the five new computationally verified examples exceeding the bound {W—‘, the
main contribution of this section lies in pointing out that it seems very likely for the whole
series B;(6j — 3,q1) to exceed this bound.
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Chapter 3

Computing Synchronization
Thresholds in DFA

This chapter presents two results about the classical decision problem SYN introduced in Sec-
tion 1.5.1. First, we prove that unless polynomial hierarchy collapses, SYN does not have a
polynomial kernel if parameterized by the number of states. This concludes a research of Fer-
nau, Heggernes, and Villanger, 2013 [34] (in the latest version of this article [35], our result
is already cited). A paper [105] containing the proof was accepted for publishing in Discrete
Mathematics and Theoretical Computer Science.

Second, we confirm NP-completeness of SYN restricted to Eulerian automata with binary al-
phabets, as it was conjectured by Martyugin, 2011 [60]. The proof was presented [102] at the
conference LATA 2014 (Madrid, Spain), and an extended paper was submitted to a journal.

3.1 Parameterized Complexity of SYN

The result of this section and the former results of Fernau, Heggernes, and Villanger [34, 35]
are summarized by Table 3.1. We have filled the last remaining gap in the corresponding table
in [34, Sec. 3]. Thus, the multi-parameter analysis of SYN is complete in the sense that
NP-complete restrictions are identified and under several standard assumptions we know which
restrictions are FPT and which of them have polynomial kernels.

The following lemma, which is easy to prove using the construction of a power automaton, says
that SYN lies in FPT if parameterized by the number of states:

Parameterized Complexity .
P t
arameter of SYN Polynomial Kernel of SYN
d W{2]-hard [34] —
[ NP-complete for [33] —
| =2,3,...
d and |2| | FPT, running time OX|2|%)  [triv)] Not unless [34]
NP C coNP/poly
n=|Q FPT, running time O*(2")  [triv] Not unless PH collapses ¢

Table 3.1: Results of the complete multi-parameter analysis of SYN and SRCP. Diamonds mark
the results of the present paper
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Lemma 3.1 ([34, 82]). There exists an algorithm that solves SYN in time r(n,|X]|) - 2™ for an
appropriate polynomial r.

But does there exist a polynomial kernel? In this section we use methods developed by Bod-
laender et al. [20] to prove the following:

Theorem 3.2. If SYN parameterized by the number of states has a polynomial kernel, then
PH = ¥2.
P

By PH we denote the union of the entire polynomial hierarchy, so PH = Zf) means that
polynomial hierarchy collapses into the third level, which is widely assumed to be false. The
key proof method relies on composition algorithms. In order to use them immediately, we
introduce the formalization of our parameterized problem as a set of string-integer pairs:

Lsyn = {(z,n) | x € ¥* encodes an instance of SYN with n € N states},

where ¥ is an appropriate finite alphabet.

3.1.1 Composition Algorithms

An or-composition algorithm for a parameterized problem L C ¥* x N is an algorithm that

o receives as input a sequence ((z1,n),...,(xm,n)) with (z;,n) € * x NT for each 1 <
1 < m,

o uses time polynomial in Y ;" |z;| +n
« outputs (y,n') C ¥* x N* with
1. (y,n’) € L & there is some 1 < i < m with (z;,n) € L,
2. n is polynomial in n.
Let L C ¥* x N be a parameterized problem. Its unparameterized version is
L = {z#a" | (z,n) € L},
where # ¢ ¥ is a special symbol.

Theorem 3.3 ([20]). Let L be a parameterized problem having an or-composition algorithm.
Assume that its unparameterized version L is NP-complete. If L has a polynomial kernel, then
PH = x3.

P

The unparameterized version of Lgyn is computationally as hard as the classical SYN, so it is

NP-complete. It remains only to describe an or-composition algorithm for Lgyn, which is done
’I’L3 n

in the remainder of this section. For each n € N we denote z(n) = "5, which is the Pin’s
upper bound for lengths of shortest reset words, see Theorem 1.15.
3.1.2 Preprocessing
Let the or-composition algorithm receive an input
((Ala dl) ) n) P ((Aﬂ’udm) ;n)
consisting of n-state automata A, ..., A,,, each of them equipped with a number d;. Assume

that the following easy procedures have been already applied:
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e For each ¢ = 1,...,m such that d; > z(n), use the polynomial-time synchronizability
algorithm from Corollary 1.33 to decide whether ((A;,d;),n) € Lgyn. If so, return
a trivial true instance immediately. Otherwise just delete the i-th member from the
sequence.

e For each i = 1,...,m, add an additional letter x to the automaton A; such that k acts
as the identical mapping: d;(s, k) = s.

e For each i =1,...,m rename the states and letters of A; such that

A = (Qi 1, 6;),
Qi = {1,...,TL},

Ii = {K,ai717-"7ai,|1i|71}.

After that, our algorithm chooses one of the following procedures according to the length m of
the input sequence:

e If m > 2" wuse the exponential-time algorithm from Lemma 3.1: Denote D =
> 1(Ai di)| + n, where we add lengths of descriptions of the pairs. Note that
D > m > 2" and that D is the quantity used to restrict the running time of or-composition
algorithms. By the lemma, in time

r(n,|L|)-2" <m-r(D,D) 2" < D*.r(D, D)
i=1

we are able to analyze all the m automata and decide if some of them have a reset word
of the corresponding length. It remains just to output some appropriate trivial instance

(A% d),n).

o If m < 2" we denote ¢(m) = |log (m + 1)]. It follows that ¢(m) < n+ 2. On the output
of the or-composition algorithm we put ((4’,d"),n’), where A’ is the automaton described
in the following paragraphs and

d =z(n)+1

is our choice of the maximal length of reset words to be found in A’.

3.1.3 Construction of A’ and Its Ideas

Here we describe the automaton A’ that appears in the output of our or-composition algorithm.
We set

AI — (Q/7II76/),
Q = {l....n}Uu{DIU0,...,2(n)} x {0,...,q(m)} x {T,F}),

o= <U2i)U{a17~~'5QM}U{W1""’WTL}'
=1

On the states {1,...,n} the letters from (J!"; ¥; act simply:
ZTi,j
s — (SZ‘(S, xi,j)

foreachs=1,...,n,i=1,...,m,j=1,...,|%;|. In other words, we let all the letters from all
the automata Aq,..., A,, act on the states 1,...,n just as they did in the original automata.
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The additional letters act on {1,...,n} simply as well:

o _w, |D ifs=s
§—>s 5 —
5 otherwise.
for each s,5s =1,...,n,t=1,...,m. The state D is a sink state, which means that
D-%D

for each y € ¥/, Note that any reset word of A’ have to map all the states of Q' to D.
The remaining 2 - (z(n) + 1) - (¢(m) 4+ 1) states form what we call a guard table. Its purpose is
to guarantee that:

(C1) Any reset word of A’ has to be of length at least d’ = z(n) + 1.

(C2) Any reset word w of A’, having length exactly z(n) + 1, is of the form
w= ;Y ... ydinz(")flfdiws (3.1)

for some i € {1,...,m}, y1,...,yq, € 8;, and s € {1,...,n}, such that y; ...yq, is a reset
word of A;.

(C3) Any word w
o of length d' = z(n) + 1,
« of the form (3.1),
o and satisfying 0;(Qs,vy1 ... va,) = {s}
is a reset word of A’.

If the guard table manages to guarantee these three properties of A’, we are done: Is is easy to
check that they imply all the conditions given in the definition of a composition algorithm. So,
let us define the action of the letters from ¥/ on the states from {0, ...,z(n)} x{0,...,g(m)} x
{T,F}. After that the automaton A’ will be complete and we will check the properties C1, C2,
Cs.

The actions of the letters a, ..., a,, should meet the following two conditions:

e Any reset word w of length z(n) + 1 has to start by some «;.

o In such short reset word, right after the starting «;, there must occur at least z(n) — 1
consecutive letters from ;. Informally, by applying «; we choose the automaton A;.

How to do that? The number m may be quite large and each of ag, ..., a,, needs to have a
unique effect. The key tool is what we call activity patterns. Let us work with the set

which matches ,half of a row” of the guard table. Subsets of R correspond in a canonical

m)+1

way to binary representations of numbers 0, . . ., 24( — 1. We will actually represent only

the numbers 1,...,m. These does not include any of the extreme values corresponding to the
empty set and whole R, because we have m < 2¢9(™*1 _ 1. So let the mapping

b:{1,...,m} — 2%
assign the corresponding subset of R to a number. For instance, it holds that
b(11) ={0,1,3}
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Figure 3.1: Some transitions of the example automaton described in Section 3.1.4. Grey states
remain active after applying ag.
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because 11 = 29 4+ 21 4+ 23, For each i = 1,...,m we define specific pattern functions
i :R— R
such that

mgm = b(i),
mgm = R\b(i)

for each i. It is irrelevant how exactly are 7} and 7l defined. It is sure that they exist, because
the range is never expected to be empty. The action of the letters aq, ..., ay, is

(h,k,T) =5 (1,7 (k),T),
(h,k,F) =% (1,7} (k),F),

foreachi=1,...,m, h=0,...,2(n),and k =0,...,q(m).

Note that each a; maps the entire guard table, and in particular the entire row 0, into the row
1. In fact, all ,,downward” transitions within the guard table will lead only one row down, and
the only transitions escaping from the guard table will lead from the bottom row. Thus any
reset word will have length at least d' = z(n) + 1. Moreover, during its application, at time [
the rows 0,...,l — 1 will have to be all inactive. This is a key mechanism that the guard table
uses for enforcing necessary properties of short reset words.

Let us define how the letters z; ; act on the guard table. Choose any ¢ € {1,...,m}. The
action of x; ; within the guard table does not depend on j, all the letters coming from a single
automaton act identically here:

o for the rows h € {1,...,d;} we set

h+1,kT) ifkeb(i),

(hk,T) =4
0,k,T) otherwise,

(
(
(h+1,kF) ifk¢b(),
(

(h, k, F) 22
0,k,F) otherwise,

o for the remaining rows h € {0} U {d; +1,...,2(n)} we set

Recall that sending an activity marker along any transition ending in the row 0 is a ,suicide”.
A word that does this cannot be a short reset word. So, if we restrict ourselves to letters from
some YJ;, the transitions defined above imply that only at times 1,...,d; the forthcoming letter
can be some z; ;. In the following z(n) —d; — 1 steps the only letter from 3; that can be applied
is K.

The letter x maps all the states of the guard table simply one state down, except for the rows
0 and z(n). Set

(h,k, T) 5 (h+1,k,T),

(h,k,F) = (h +1,k,F)

45



foreach h=1,...,2z(n) — 1, and

It remains to describe actions of the letters wy,...,w, on the guard table. Set

for each k =0,...,q9(m), s=1,...,n, and

b 9 e (071{: b
k) 25 (0K, F

for each h = 0,...,2(n) — 1, k = 0,...,9(m), and s = 1,...,n. Now the automaton A’ is
complete.

3.1.4 An Example

Consider an input consisting of m = 12 automata Aj,..., Ay, each of them having n = 4
states. Because z(4) = 10 and ¢(12) = 3, the output automaton A’ has 93 states in total. In
Figure 3.1 all the states are depicted, together with some of the transitions. We focus on the
transitions corresponding to the automaton Ag, assuming that dg = 5.

The action of oy is determined by the fact that 6 = 2 4 22 and thus

mgmy = b(6)={1,2},
mgmy = R\b(6)={0,3}.
If the first letter of a reset word is «g, after its application only the states
(1,1,7),(1,2,T),(1,0,F), (1,3, F)

remain active within the guard table. Now we need to move their activity markers one row down
in each of the following z(n) — 1 = 9 steps. The only way to do this is to apply dg = 5 letters of
Y6 and then z(n) — 1 —dg = 4 occurrences of k. Then we are allowed to apply one of the letters
W1, .. .,wn. But before that time, there should remain only one active state s € {1,...,n}, so
that we could use ws. The letter x does not affect the activity within {1,...,n} so we need to
synchronize these states using dg = 5 letters from Xg.

So, any short reset word of A’ starting with ag has to contain a short reset word of Ag.

3.1.5 The Guard Table Works

It remains to use ideas informally outlined in Section 3.1.3 to prove that A’ has the properties
C1, C2, and C3 from Section 3.1.3.

C1. As it has been said, for each letter z € ¥’ and each state (h, k, Q), where Q € {T,F} and
h € {0,...,z(n) — 1}, it holds that

(h,k, Q) — (WK, Q),
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where b’ < h or h' = h+ 1. So the shortest paths from the row 0 to the state D have length at
least z(n) + 1. O

C2. We should prove that any reset word w, having length exactly z(n) + 1, is of the form
w =y ... ya k3T g,

such that, moreover, y;...yq, is a reset word of A;. The starting «; is necessary, because
i, ...,y are the only letters that map states from the row 0 to other rows. Denote the
remaining z(n) letters of w by y1,...,Y.(n)-

Once an «; is applied, there remain only |R| = g(m) + 1 active states in the guard table, all in
the row 1, depending on ¢. The active states are exactly from

{1} x b(i) x {T} and {1} x R\b(i) x {F},

because this is exactly the range of «; within the guard table. Let us continue by an induction.
We claim that for 0 < 7 < d; it holds what we have already proved for 7 = 0:

1. If 7 > 1, the letter y, lies in ¥;. Moreover, if 7 > d;, it holds that w, = k.

2. After the application of y, the active states within the guard table are exactly from

{T+1} xb(i) x {T} and {7+ 1} x R\b(z) x {F}.

For 7 = 0 both the claims hold. Take some 1 < 7 < d; and suppose that the claims hold for
7 — 1. Let us use the second claim for 7 — 1 to prove the first claim for 7. So all the states from

{r} x b(i) x {T} and {7} x R\b(i) x {F}

are active. Which of the letters could appear as y,? The letters wy,...,w, and ay,...,qn
would map all the active states to the rows 0 and 1, which is a contradiction. Consider any
letter zy, ; for k # . It holds that b(i) # b(k), so there is some ¢ € R lying in their symmetrical
difference. For such c it holds that

(1,¢,T) 24 (0,¢,T) if ¢ € b(3) \b(k)

or

(1,¢,F) 24 (0,¢,F) if ¢ € b(k)\b(i)

which necessarily activates some state in the row 0, which is a contradiction again. So, y, € %;.
Moreover, if 7 > d;, the letters from X;\ {x} map the entire row 7 into the row 0, so the only
possibility is y, = k.
The letter y, maps all the active states right down to the row 7 + 1, so the second claim for 7
holds as well.

O

C3. 1t is easy to verify that no ,suicidal” transitions within the guard table are used, so during
the application of

Y1 ydi/fz(”)*lfdi
the activity markers just flow down from the row 1 to the row z(n). Since y; ...yq, is a reset
word of A;, there also remains only one particular state s within {1,...,n}. Finally the letter
ws is applied which maps s and the entire row z(n) directly to D. O
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3.2 Complexity of SYN Restricted to Eulerian Binary Automata

An automaton A = (Q, X, ) is Eulerian if

Y HreQlira) =q) ==

TEY

for each ¢ € Q. Informally, there should be exactly |X| transitions incoming to each state. An
automaton is binary if |X| = 2. The class of Eulerian automata is denoted by EU.

Previous results about various restrictions of SYN can be found in [33, 58, 60]. Some of these
problems turned out to be polynomially solvable, others are NP-complete. In [60] Martyugin
conjectured that SYN(EU N AL2) is NP-complete. This conjecture is confirmed in the rest of
this section.

3.2.1 Proof Outline

We prove the NP-completeness of SYN(EU N.ALy) by a polynomial reduction from 3-SAT. So,
for arbitrary propositional formula ¢ in 3-CNF we construct an Eulerian binary automaton A
and a number d such that

¢ is satisfiable < A has a reset word of length d. (3.2)

For the rest of the paper we fix a formula

on n variables where each C; is a three-element set of literals, i.e. subset of
Ly={z1,...,2n,"@1,...,7Zn}.

We index the literals A € Lg by the following mapping «:

A T To . Ty -2 -y |...| —x,

K(A) 0 1 ol n—1 n n+1]...| 2n—1

Let A = (Q,%,0), ¥ = {a,b}. Because the structure of the automaton A will be very het-
erogeneous, we use an unusual method of description. The basic principles of the method
are:

e« We describe the automaton A via a labeled directed multigraph G, representing the
automaton in a standard way: edges of G are labeled by single letters a and b and carry
the structure of the function §. Paths in G are thus labeled by words from {a,b}".

e There is a collection of labeled directed multigraphs called templates. The graph G is one
of them. Another template is SINGLE, which consists of one vertex and no edges.

e Each template TASINGLE is expressed in a fixed way as a disjoint union through a set
PARTS; of its proper subgraphs (the parts of T), extended by a set of additional edges
(the links of T). Each H € PARTSy is isomorphic to some template U. We say that H is
of type U.
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e Let ¢ be a vertex of a template T, lying in subgraph H € PARTSt which is of type U
via vertex mapping p : H — U. The local address adrr(q) is a finite string of identifiers
separated by ,|”. It is defined inductively by

H | adry(p(q)) if U # SINGLE
H if U = SINGLE.

adrr(q) = {

The string adrg(q) is used as a regular vertex identifier.

Having a word w € ¥*, we denote a t-th letter of w by w, and define the set S; = 6(Q, w1 ... wy)
of active states at time t. Whenever we depict a graph, a solid arrow stands for the label a and
a dotted arrow stands for the label b.

3.2.2 Description of the Graph G

Let us define all the templates and informally comment on their purpose. Figure 3.2 defines
the template ABS, which does not depend on the formula ¢.

Figure 3.2: The template ABS Figure 3.3: A barrier of ABS parts

The state out of a part of type ABS is always inactive after application of a word of length
at least 2 which does not contain b? as a factor. This allows us to ensure the existence of a
relatively short reset word. Actually, large areas of the graph (namely the CLAUSE(...) parts)
have roughly the shape depicted in Figure 3.3, a cylindrical structure with a horizontal barrier
of ABS parts. If we use a sufficiently long word with no occurrence of b2, the edges outgoing
from the ABS parts are never used and almost all states become inactive.

Figure 3.4: The templates CCA, CCI and PIPE(d) respectively

Figure 3.4 defines simple templates CCA, CCI and PIPE(d) for each d > 1. The activity of
an out state depends on the last two letters applied. In the case of CCA it is inactive if (and
typically only if) the two letters were equal. In the case of CCI it works oppositely, equal letters
correspond to active out state. One of the key ideas of the entire construction is the following.
Let there be a subgraph of the form
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part of type PIPE(d)
la,b
part of type CCA or CCI (3.3)
da,b
part of type PIPE(d).

Before the synchronization process starts, all the states are active. As soon as the second letter
of an input word is applied, the activity of the out state starts to depend on the last two letters
and the pipe below keeps a record of its previous activity. We say that a part H of type PIPE(d)
records a sequence By ... By € {0,1} at time t, if it holds that

Bk:1<:>H|Sk¢St.

In order to continue with defining templates, let us define a set My containing all the literals
from Ly and some auxiliary symbols:

M¢:L¢U{y17'~'7yn}U{’217"‘7Zn}u{q7q/7r7r/}'

We index the 4n + 4 members v € My by the following mapping u:

v q r Y z1 Y2 T2 S Yn In
() 1 2 3 4 5 6 |...| 2n+1 | 2n+2
v q r' 21 -z 29 Ty |...|  zn -z,
w(v) || 2n+3 | 2n+4 | 2n+5 | 2n+6 | 2n+7 | 2n+8 |...| 4n+3 | 4n+4

The inverse mapping is denoted by p'. For each A € L, we define templates INC()A) and
NOTINC(A), both consisting of 12n + 12 SINGLE parts identified by elements of {1, 2,3} x M.
As depicted by Figure 3.5a, the links of INC(\)are:

(1,0) % (2,\) fv=Aorv=r (1,1/)i> (2,r) ifv=Aorv=r
(2,v) otherwise (2,v) otherwise

(2,) -2 (3,9) ifv=rorv=gq (2,1/)# (3,r) ifv=rorv=yq
(3,v) otherwise (3,v) otherwise

Note that we use the same identifier for an one-vertex subgraph and for its vertex. As it is
clear from Figure 3.5b, the links of NOTINC()) are:

(Lv) == (2,0) (1,v) -2 (2,7)
o [Bg) ifv= — — _
2,v) -2 (3,q) ifv q.ory (27y)i> (3,\) ifv=qgorv=AX\
(3,v) otherwise (3,v) otherwise

The key property of such templates comes to light when we need to apply some two-letter
word in order to make the state (3, A) inactive assuming (1,7) inactive. If also (1, \) is initially
inactive, we can use the word a? in both templates. If it is active (which corresponds to the
idea of unsatisfied literal \), we discover the difference between the two templates: The word
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(b) NOTINC(N)

Figure 3.5: The templates INC(A) and NOTINC(A)

INC(Z‘l) if z1 € C;

art level,, of type
:|p m OV P {NOTINC(:CI) otherwise

INC(IZ) if zo € C;

Y
| part level,, of type {

|
I Whk

NOTINC(x,) otherwise

bbb bbb

INC()) itxeC;

art levely of type
v rOLRP {NOTINC()\) otherwise

|
k& Whh

bbb kb

INC(—xp) if —x,, € C;

art level_, of type
|p o P {NOTINC(—uz:") otherwise

Figure 3.6: The template TESTER
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Figure 3.7: The templates FORCER and LIMITER respectively

a? works if the type is NOTINC()\), but fails in the case of INC()\). Such failure corresponds to
the idea of unsatisfied literal A occurring in a clause of ¢.

For each clause (each i € {1,...,m}) we define a template TESTER(z). It consists of 2n serially
linked parts, namely levely for each A € Ly, each of type INC(A) or NOTINC(A). The particular
type of each level) depends on the clause C; as seen in Figure 3.6, so exactly three of them
are always of type INC(...). If the corresponding clause is unsatisfied, each of its three literals
is unsatisfied, which causes three failures within the levels. Three failures imply at least three
occurrences of b, which turns up to be too much for a reset word of certain length to exist.
Clearly we still need some additional mechanisms to realize this vague vision.

Figure 3.7 defines templates FORCER and LIMITER. The idea of template FORCER is simple.
Imagine a situation when g1 ¢ or 710 is active and we need to deactivate the entire forcer by a
word of length at most 2n + 3. Any use of b would cause an unbearable delay, so if such a word
exists, it starts by a?"+2.

The idea of LIMITER is similar, but we tolerate some occurrences of b here, namely two of
them. This works if we assume s; o active and it is necessary to deactivate the entire limiter
by a word of length at most 6n + 1.

We also need a template PIPES(d, k) for each d,k > 1. It consists just of k parallel pipes of
length d. Namely there is a SINGLE part sq i for each d’ < d, k¥’ < k and all the edges are of
the form Sdr k' — Sd’/+1,k'-

The most complex templates are CLAUSE (i) for each i € {1,...,m}. Denote

ai = (i—1)(12n—2),
Bi (m—1)(12n —2).

As shown in Figure 3.8, CLAUSE (i) consists of the following parts:

o Parts spy,...,spy, ¢ of type SINGLE.

e Parts absy, ..., abss,+6 of type ABS. The entire template has a shape similar to Figure
3.3, including the barrier of ABS parts.
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o Parts pipey, pipes, pipe, of types PIPE(2n — 1) and pipeg, pipe; of types PIPE(2n + 2).

e Parts cca and cci of types CCA and CCI respectively. Together with the pipes above
they realize the idea described in (3.3). As they form two constellations which work
simultaneously, the parts pipes and pipe, typically record mutually inverse sequences.
We interpret them as an assignment of the variables x1,...,z,. Such assignment is then
processed by the tester.

o A part v of type SINGLE for each v € My.
e A part tester of type TESTER (7).

o A part X of type SINGLE for each A € L,. While describing the templates INC(\) and
NOTINC(A) we claimed that in certain case there arises a need to make the state (3, )
inactive. This happens when the border of inactive area moves down through the tester
levels. The point is that any word of length 6n deactivates the entire tester, but we need to
ensure that some tester columns, namely the x(A)-th for each A € Ly, are deactivated one
step earlier. If some of them is still active just before the deactivation of tester finishes,
the state A becomes active, which slows down the synchronization process.

o Parts pipes,, pipesy and pipes; of types PIPES(q;,4n + 4), PIPES(6n — 2,4n + 4) and
PIPES([3;,4n+4) respectively. There are multiple clauses in ¢, but multiple testers cannot
work in parallel. That is why each of them is padded by a passive PIPES(...) part of
size depending on particular i. If a; = 0 or 8; = 0, the corresponding PIPES part is not
present in cl;.

o Parts pipe,, pipes, pipeg, pipey of types PIPE(12mn + 4n — 2m + 6), PIPE(4), PIPE(«; +
6n — 1), PIPE(f;) respectively.

e The part forcer of type FORCER. This part guarantees that only the letter a is used in
certain segment of the word w. This is necessary for the data produced by cca and cci
to safely leave the parts pipes, pipe, and line up in the states of the form v for v € My,
from where they are shifted to the tester.

e The part limiter of type LIMITER. This part guarantees that the letter b occurs at most
twice when the border of inactive area passes through the tester. Because each unsatisfied
literal from the clause requests an occurrence of b, only a satisfied clause meets all the
conditions for a reset word of certain length to exist.

Links of CLAUSE(¢), which are not clear from Figure 3.8 are
o | pipesy|si ey ifv=-x, b

— v —)p2p681|81 n(v)

@ (p(v)+1) otherwise '

for each v € My and

~ a,b .
A == abs(x)42]in

. ap | W (k if 1/ (k) € L
piness s, 0 2 { (k) (k) € Ly

absg42lin  otherwise

for each k € {1,...,4n+4}, A € L.

We are ready to form the whole graph G, see Figure 3.9. For each i,k € {1,...m} there
are parts cli, abs, of types CLAUSE(4) and ABS respectively and parts qg,rx, 7}, 51,52 of type
SINGLE. The edge incoming to a cl; part ends in cl;|sp;, the outgoing one starts in cl;|spy,, ;-
When no states outside ABS parts are active within each CLAUSE(. ..) part and no out, r1 nor r
state is active in any ABS part, the word b2ab*™*™+7 takes all active states to s, and completes
the synchronization. Graph G does not fully represent the automaton A yet because there are
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Cll

Clz

Clm— 1

Clnz

Figure 3.9: The graph G

o 8mn + 4m vertices with only one outgoing edge, namely cl;|absi|out and cl;|sp, for each
ie{l,....m},ke{l,....,4an+6},l € {7,...,4n + 4},

o 8mn + 4m vertices with only one incoming edge: c¢l;|v and cl;|pipes;| (1,v') for each
te{l,...,m},ve My\{q,q'},v € My\{zn, 2.}

But we do not need to specify the missing edges exactly, let us just say that they somehow
connect the relevant states and the automaton A is complete. Let us set

d=12mn+8n —m+ 18

and prove that the equivalence (3.2) holds.

3.2.3 From an Assignment to a Word

First let us suppose that there is an assignment &1,...,&, € {0,1} of the variables z1,...,x,
(respectively) satisfying the formula ¢ and prove that the automaton A has a reset word w of
length d. For each j € {1,...,n} we denote

a if é.j =1
05 =
b if¢ =0
and for each i € {1,...,m} we choose a satisfied literal \; from C;. We set

w = a*(0,a) (0p_1a) ... (01a) aba®3b (a®20;) ... (a®" 20y, ) bPab* T,
where for each i € {1,...,m} we use the word
V; = Ui7m1 e Uixn’ui’ﬁxl e ’U,z"ﬁmn7

denoting
a3 if)\:XiOI‘)\§éCi
Ui\ = —
ba? if A # )\; and \ € C;

for each A € Ls. We see that |v;| = 6n and therefore
lw|=4n+8+m(12n —2) +4n+m + 10 = 12mn + 8n — m + 18 = d.
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Let us denote

and

vy=12mn+4n —2m+9

gt = Q\St

for each t < d. Because the first occurrence of b% in w starts by the y-th letter, we have:

Lemma 3.4. Each state of a form cl__|abs.._|out or abs__|out lies in Sy M-+ N 37.

Let us fix an arbitrary ¢ € {1,...,m} and describe a growing area of inactive states within c¢l;.

We use the following method of verifying inactivity of states: Having a state s € @Q and ¢,k > 1

such that any path of length k ending in s uses a member of S;_; N---NS;_1, we easily deduce

that s € S;. In such case let us just say that k witnesses that s € S;. The following claims

follow directly from the definition of w. Note that Claim 7 relies on the fact that b occurs only

twice in v;.
Lemma 3.5.
L {cllspy,. .., clilspynie} C Syn---nS,
2. cli|pipey U cl;|pipes U cl;|pipe, C Sonp1N---N ?W
3. cli]eca U cly|eci U cl;|pipes C SongsN---N ?,Y
4. cl;|pipeg U cl;|pipe; U cly| forcer  C SypizN---NS,
5. {clilv : ve My} C Singsn---NS,
6. cli|pipesy U cl;|pipesy U cli|pipeg  C Stonta;i6N---N gﬁ,
7. cli|limiter U cl;|tester C  Sibnta+6N---NS,
8. cli|pipe, U cly|pipeq U cli|pipes; < S,_1NS,
Proof.

1. Claim: {cli|spy, ..., cli|spyni6} S S2N---NS, .

We have wijws = a? and there is no path labeled by a? ending in any cl;|sp  state, so
such states lie in Sy. For each t = 3,...,v we can inductively use k = 1 to witness the
memberships in S;. In the induction step we use Lemma 3.4, which excludes the out
states of the ABS parts from each corresponding S;_;.

. Claim: cl;|pipes U cl;|pipes U cl;|pipey € Sopi1N---NS,.

All the memberships are witnessed by & = 2n — 1, because any path of the length 2n — 1
ending in such state must use a cl;|sp__ state and such states lie in So N --- NS, by the
previous claim.

. Claim: cl;|cca U cl;|cci U cli|pipes € Sopys NN S,

We have wgpqo...wonts = a?ba, which clearly maps each state of clileca, cl;|cci or
cli|pipes out of those parts. Each path of length 4 leading into the parts from outside
starts in So,11, so it follows that all the states lie in Sy,,5. To prove the rest we
inductively use the witness k = 1.

. Claim: cl;|pipeg U cl;|pipe; U cl;| forcer C Stz N---NS,.

In the cases of ¢l;|pipes and cl;|pipe; we just use the witness k = 2n + 2. In the case of
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cl;| forcer we proceed the same way as in the previous claim. We have way, 16 ... Want7 =
a®"t2. Because also wy,+5 = a, only the states ¢ o can be active within the part
cli| forcer in time 2n+6. The word way, 47 . . . Wan4+7 maps all such states out of cl;|forcer.
Each path of length 2n+2 leading into cl;|forcer from outside starts in S, 45, so it follows
that all states from cl;|forcer lie in Sy,17. To handle t = 4n +8, ..., v we inductively use
the witness k = 1.

5. Claim: {clilv : v € My} C SansgN--- ﬂ?v.
In the cases of cl;|q and cl;|¢’ we use the witness 1. We have wy,+3 = b and the only edges
labeled by b incoming to remaining states could be some of the 8mn + 4m unspecified
edges of G. But we have Wy, 1 6Winr7 = a2, so each out state of any ABS part lies in Sy, 7
and thus no unspecified edge starts in a state outside §4n+7.

6. Claim: cl;|pipes; U cl;|pipesy U cl;|pipes € Siont+aste NN S,.
We use witnesses k = o for cl;|pipes;, k = 6n — 2 for cl;|pipes, and k = a; + 6n — 1 for
cli|pipeg.

7. Claim: cl;|limiter U cl;|tester C Sienia,16 M-+ N S,y.

Because

6n—2
Wan+a;+9 - - - Wi0n+a;+6 = A )

there are only states of the form cl;|limiter|s. o in the intersection of cl;|limiter and
S1on+a;+6- Together with the fact that there are only two occurrences of b in v; it
confirms that the case of cl;|limiter holds. The case of cl;|tester is easily witnessed by
k = 6n.

8. Claim: cl;|pipe, U cl;|pipeq U cl;|pipes; C S—1 NS, .
We use witnesses k = 12mn +4n —2m+6 for cl;|pipe; and k = §; for cl;|pipey, cl;|pipess.
O

For each A € Ly we ensure by the word wu; » that the x(\)-th tester column is deactivated in
advance, namely at time ¢ = 16n + a; + 5. The advance allows the following key claim to hold
true.

Lemma 3.6. {cl;[A : A€ Ly} CS,_1NS,.

Proof. For each such A we choose
k=6n—3ck\)+ 8 +1

as a witness of cl;|/A € S,_1. There is only one state where a path of length k ending in A
starts: the state
s = cl;|tester|levely] (3, A) .

It holds that
$ € S1ontai+3s(\)+6 N NSy,

as is easily witnessed by k' = 3k(\) using Claim 6 of Lemma 3.5. But we are going to show
also that

§ € S10n+a,+3r(3)+5> (3.4)

which will imply that & is a true witness of X € gﬂ,,l, because
(v—1)—k=10n+o; + 3x(\) + 5.
So let us prove the membership (3.4). We need to observe, using the definition of w, that:
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e At time 2n + 5 the part pipes records the sequence

071;51,5175275%"'35713571

and the part pipe, records the sequence of inverted values. Because

2n+42
Won46 -+ - Wan4+7 = A e s

at time 4n + 7 the states ¢,r’ are active, the states ¢/,r are inactive and for each j €
{1,...,n} it holds that

Tj € §4n+7 < Yj € §4n+7 < T € S4n+7 <25 € S4n+7 =4 fj =1.

Because wyy1+8 = b, at time 10n + a; + 6 we find the whole structure above shifted to the
first row of cl;|tester, so particularly for A € Ly:

cl;|tester|levely, | (1, \) € S1onta; 16 < A is satisfied by &1, ..., &,.

e From a simple induction on tester levels it follows that

cli|tester|levely| (1,7) € Stontai+3m(2)+3-

Note that

W10n+a;+3k(N)+4W10n+a;+35(N)+5W10n+a; +3x(N)+6 = Ui X
and distinguish the following cases:

o If A =);, we have X\ € C;, the part cl;|tester|levely is of type INC(A\) and u; ) = a3. We
also know that A is satisfied, so

cli|tester|levely, | (1,A) € S1on+a;+6-

The state above is the only state, from which any path of length 3x(\) — 3 leads to
cl;|tester|level| (1, ), so we deduce that

cli|tester|levely| (1, A) € S1onta;+3r(3)+3-

We see that each path labeled by a® ending in cl;|tester|levely| (3,)) starts in
cli|tester|levely| (1,\) or in cl;|tester|levely| (1,7), but each of the two states lies in
?10n+ai+3ﬁ(A)+3. So the membership (3.4) holds.

o« If X\ ¢ C, the part cl|tester|levely is of type NOTINC(A) and wu;, = a’.
Particularly wionta,+3x(0)+5 = a but no edge labeled by a comes to
cli|tester|levely| (3, ) and the membership (3.4) follows trivially.

o If X\ # )\ and X € C;, the part cl;|tester|levely is of type INC(A) and u; ) = ba?. Partic-
ularly

W10n+a;+38(\)+4W10n+a;+3k(\)+5 = ba,

but no path labeled by ba comes to cl;|tester|levely| (3, \), so we reach the same conclusion
as in the previous case.

We have proven that cli\x lies in gv—l- From Claim 8 of Lemma 3.5 it follows directly that it
lies also in §v~ O]
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We see that within cl; only states from the ABS parts can lie in S,_;. Since wy_swy_1 = a?,
no state r1, 2 or out from any ABS part lies in S,_;. Now we easily check that all the states
possibly present in S, _; are mapped to sp by the word w, ... wq = b2abintm+7,

3.2.4 From a Word to an Assignment.

Since now we suppose that there is a reset word w of length
d=12mn+ 8n — m + 18.
The following lemma is not hard to verify.

Lemma 3.7.

1. Up to labeling there is a unique pair of paths, both of a length | < d — 2, leading from
cli|pipe;|s1 and cla|pipe;|s1 to a common end. They are of length d — 2 and meet in ss.

2. The word w starts by a®.
Proof.

1. The leading segments of both paths are similar since they stay within the parts cl; and
Cl21

. ab ab . a,b . b
pipes|s1 == ... — pipe; |S12mntan—2m+6 — absi|in —

b b a b b
— absi|ry — absy|out — sp; — ... — Py 16

Once the paths leave the parts cl; and cls, the shortest way to merge is the following:

b b b b b b b

cli|$pypie — @1 — G2 — ... — Qm-1 — Gm — 51 —
52
b b b b b b b
Cl?|sp4n+6 —> Q2 —q3 — ... —>4m —> 81 —> SS9 —>

Having the description above it is easy to verify that the length is d — 2 and there is no
way to make the paths shorter.

2. Suppose that wyws # a?. Any of the three possible values of wjw, implies that

{Cli|8p37 e cli|sp4n+6} C Sy

for each 7. It cannot hold that w = wlwgbd*27 because in such case all ¢l _|cca|s, states
would be active in any time ¢ > 3. So the word w has a prefix wiwsba for some k > 0.
If £ < 4n + 3, it holds that cl;|spy, ¢ € Sk+2 and therefore cl;|pipe;|si € Sk43, which
contradicts the first claim. Let k > 4n + 4. Some state of a form cl;|forcer|q:, .. or
clilforcer|ry,.. lies in Sk for each ¢. This holds particularly for ¢ = 1 and i = 2, but
there is no pair of paths of length at most

d—(n+4)>d—k

leading from such two states to a common end.

The second claim implies that cl;|pipe;|s1 € Sz for each i € {1,...,m}, so it follows that

0 (va) = {52} :
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Let us denote
d=12mn +4n — 2m + 11

and
E:wlwg

The following lemma holds because no edges labeled by a are available for final segments of the
paths described in the first claim of Lemma 3.7.

Lemma 3.8.

1. The word w can be written as w = wb*"+t™+7 for some word w.

2. For any t > d, no state from any cl_ part lie in S;, except for the sp  states.
Proof.

1. Let us write w = wywow’. From Lemma 3.7 it follows that
d (cli|pipe|s1,w') = 6 (cla|pipe; [s1, w')

and w’ have to label some of the paths determined up to labeling in Lemma 3.7(1). The
final 4n +m + 7 edges of the paths lead from cly|sp; and cla|sp; to s2. All the transitions
used here are necessarily labeled by b.

2. The claim is easy to observe, since the first claim implies that S; is a subset of
S'={s€Q|(3BdeN)s(sb?) =s5}.

O

The next lemma is based on properties of the parts cl__|forcer but to prove that no more a follows

2n+1

the enforced factor a we also need to observe that each ¢l |ccalout or each ¢l |cci|out lies

in Sgn+4 .

Lemma 3.9. The word W starts by wa?"*'b for some @ of length 2n + 6.

ntl Lemma 3.7(2) implies that cly|pipey|s; € S,

Proof. At first we prove that w starts by ua
so obviously some of the states cly|forcer|q1,o and cly|forcer|ri o lies in Sapt6. If Wontein =0
for some k € {1,...,2n + 1}, it holds that cl;|forcer|qy 2 or cl;|forcer|ry o lies in Sap464%. From
such state no path of length at most 2n + 3 — k leads to cl;|pipeg|s; and therefore no path of

length at most
2n+3—k)+ (vi+6n—1)+ (6n—2)+8;+3=d— (2n+6 + k)

leads into S’, which contradicts Lemma 3.8(2). It remains to show that there is b after the prefix
ua®" !, Lemma 3.7(2) implies that both cly|ccalin and cly|cci|in lie in Sz, 1, from which it is
not hard to deduce that cly|ccalout or cly|cci|out lies in S, 14 and therefore cli|q or cly|r lies
in Sy,47. Any path of length d — (4n + 7) leading from cly|q or cly|r into S starts by an edge
labeled by b. O

Now we are able to write the word w as
5 e 2ntly =/ =
W =ua"""b (V1vicr) - . (U, Cm) Wy_ywW5_ Wy,

where |U;| = 6n—2, |v},| = 6n—1 and |cgx| = 1 for each k and denote d; = 10n+a; +6. At time

2n 4 5 the parts cl__ |pipes and ¢l |pipe; record mutually inverse sequences. Because there is

2n+1

the factor a after w, at time d; we find the information pushed to the first rows of testers:
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Lemma 3.10. For eachi € {1,...,m}, j € {1,...,n} it holds that

cl;|tester|levely, | (1,x;) € Sq, <

cli|tester|levely, | (1,~x;) ¢ Sq;, &  Wan—2j42 7 Wan—2j+3-

Proof. From the definition of CCA and CCI it follows that at time 2n + 5 the parts pipeg and

pipe; record the sequences B(z,,3) ... B(2) and BE2n+3) . BEZ) respectively, where

1 if W = Wi+1 , 0 if Wk = Wi+1
By = . By = .
0 otherwise 1 otherwise.

Whatever the letter wa, 46 is, Lemma 3.9 implies that
clilxj € Sant7 & cli|~xj & Sant7 & Wan_2j42 7# Wan—2j43,

from which the claim follows easily using Lemma 3.9 again. O

Let us define the assignment &,...,&, € {0,1}. By Lemma 3.10 the definition is correct and
does not depend on i:

¢ {1 if cl;|tester|levely, | (1,2;) ¢ Sa,
j =

0 if cl;|tester|levely, | (1,~x;) ¢ Sq,.
The following lemma holds due to ¢l _|limiter parts.

Lemma 3.11. For each i € {1,...,m} there are at most two occurrences of b in the word v}.

Proof. Tt is easy to see that cl;|limiter|s1 o € Sionta,+6 and to note that

/
V; = W10on+o;+7 - - - W16n+o;+5-

Within the part cl;|limiter no state except for s¢,_20 can lie in Sign+4a,+5, because from such
states there is no path of length at most

d— (16n+a; +5) = f; + 4

leading into S’.

The shortest paths from s1,9 to se,—2,0 have length 6n — 3 and each path from s ¢ into S’ uses
the state sgn_2,0. So there is a path P leading from s1 ¢ to sgn—2,0 labeled by a prefix of v’.
We distinguish the following cases:

o If P is of length 6n — 3, we just note that such path is unique and labeled by a%"~3. No
b occurs in v’ except for the last two positions.

o If P is of length 6n — 2, it uses an edge of the form sy g SN Sk+1,1- Such edges preserve
the distance to sgn—2, so the rest of P must be a shortest path from sz11,1 to Sen—2,0.
Such paths are unique and labeled by a®*~2=%. Any other b can occur only at the last
position.

o If P is of length 6n — 1, it is labeled by whole v’. Because any edge labeled by b preserves
or increases the distance to sg,_2, the path P can use at most two of them.

O

Now we choose any ¢ € {1,...,m} and prove that the assignment &1, ..., &, satisfies the clause
VAeCi A. Let p € {0,1,2,3} denote the number of unsatisfied literals in C;.
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As we claimed before, all tester columns corresponding to any A € Ly have to be deactivated
earlier than other columns. Namely, if cl;|tester|level,, | (1, A) is active at time d;, which happens
if and only if X is not satisfied by £1,. .., &,, the word vjc; must not map it to cl;|pipess|sy (x)-
If cl;|tester|levely is of type INC(A), the only way to ensure this is to use the letter b when the
border of inactive area lies at the first row of cl;|tester|levely. Thus each unsatisfied A € C;

implies an occurrence of b in corresponding segment of v;:
Lemma 3.12. There are at least p occurrences of the letter b in the word v}.

Proof. Let Aq,...,\, be the unsatisfied literals of C;. From Lemma 3.10 it follows easily that
cliltester|levely, | (1, A\x) € Sa,+3r(re)

for each k € {1,...,p}. The part cl;|tester|levely, is of type INC(A), which implies that any
path of the length
(d—3) = (di + 3k(A))

starting by a takes cl;|tester|levely, | (1, M) to the state cl;|A, which lies outside S ,, as it is

implied by Lemma 3.8(2). We deduce that wg, y3x(x,)+1 = 0- [

By Lemma 3.11 there are at most two occurrences of b in v}, so we get p < 2 and there is at
least one satisfied literal in C;.
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Chapter 4
Computing Road Colorings

This chapter deals with computational problems related to road coloring. First, we give a multi-
parameter analysis of the basic computational problem called SRCP. This consists mainly of
studying a scale of various restrictions and finishes a work that was started by Roman and
Drewienkowski [78, 79]. The results are contained in the above-mentioned paper [105].
Second, we give a similar analysis with respect to slightly different computational problem
called SRCW. The results are not complete - they leave much space for a further research.
They were presented [104] at the conference LATA 2015 (Nice, France). An extended version
was submitted to a journal.

4.1 Parameterized Complexity of SRCP

The results of this section, as well as former results of Roman and Drewienkowski [78, 79],
are summarized by Tables 4.1 and 4.2. We have filled all the remaining gaps in the second
table (cf. [79, Sec. 6]), so the multi-parameter analysis of SRCP is complete in the sense that
NP-complete restrictions are identified and under several standard assumptions we know which
restrictions are FPT and which of them have polynomial kernels.

Parameter Parameterized Complexity Polynomial Kernel
d NP-complete for d = 4,5,... [79] —
|2 NP-complete for ¢ —
X =2,3,...
d and |X| See Table 4.2 —
n FPT, running time (’)*(2'2‘) ¢ Yes ¢

Table 4.1: The complete multi-parameter analysis of SRCP, new results marked by diamonds

d=2 d=3 d=4,5,...
%] =2 P [78 P ¢ NPC 4
x| =3 P [78] P [79 NPC  [78]

S| =4,5,... P [78] P [79 NPC  [78]

Table 4.2: Complexity of SRCP and SRCP®C restricted to particular values of d and |
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By SC and Z we denote the classes of strongly connected graphs and of graphs with a state
having no outgoing edges expect for loops, respectively. All the NP-completeness results hold
for both the problems SRCP and SRCPSC.

4.1.1 Parameterization by the Number of States

We point out that SRCP parameterized by the number of states has a polynomial kernel, so it
necessarily lies in FPT.

Theorem 4.1. There is a polynomial kernel for SRCP parameterized by n = |Q)|.

Proof. The algorithm takes an instance of SRCP, i.e., an alphabet X, an admissible graph
G = (Q, F) with out-degrees |X|, and a number d € N. It produces another instance of size
depending only on n = |Q|. If d > z(n), we just solve the problem using Corollary 1.33 and
output a trivial instance. Otherwise the output instance is denoted by ¥',G' = (Q', F’),d’,

where
Q= Q,
E = k,
'l = min{[3],t-(2(t) - 1)},

and the algorithm just deletes appropriate edges in order to reduce the out-degree to |X'|. Let
us use a procedure that:

o takes an admissible graph with out-degree ¢ > n - (z(n) — 1)

« for each of its vertices:

— finds an outgoing multiedge with the largest multiplicity (which is at least z(n)),

— deletes one edge from the multiedge.

Clearly the resulting graph has out-degree ¢ — 1. We create the graph G’ by repeating this
procedure (starting with G) until the out-degree is at most n - (z(n) — 1).
Now we claim that

(I,G, k) € SRCP

i
(I',G', k') € SRCP.

The upward implication is trivial since any coloring of G’ can be extended to G and the
appropriate reset word can be still used. On the other hand, let us have a coloring § of G such
that |§(Q,w)| = 1 for a word w of length at most d < z(n), so it uses at most z(n) — 1 letters
from X. If we delete from G all the edges labeled by non-used letters, we get a subgraph of
G’ because during the reduction of edges we have reduced only multiedges having more than
z(n) — 1 edges. So we are able to color G’ according to the used letters of G and synchronize
it by the word w.

O

Corollary 4.2. SRCP parameterized by n = |Q)| lies in FPT.

4.1.2 Restriction to |X| =2 and d = 3

Here we prove that SRCPg 3 (i.e. SRCP restricted to |X| = 2 and d = 3) is decidable in
polynomial time. If G = (Q, E) is a graph, by V;(¢) we denote the set of vertices from which
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there is a path of length i leading to ¢ and there is no shorter one. For any w € ¥*, G, denotes
the set of graphs with outdegree 2 that admit a coloring ¢ such that 6(Q,w) = {¢} for some
1€Q.

Lemma 4.3. A graph G = (Q, E) lies in Ggq, if and only if there is a state ¢ € Q such that
(¢,q) € E and there is a path of length at most 3 from each r € Q to q.

Proof. If there is a coloring ¢ with §(Q, aaa) = {¢}, both the claims follow immediately. On
the other hand, if the loop (g, ¢) and all the paths leading to ¢ are colored by a, we obtain a
suitable coloring. O

Lemma 4.4. Let G = (Q, E) € Gapp\Gaaa- Then at least one of the following two conditions
holds:

1. There is a vertex q € @ such that each vertex has an outgoing edge leading into V(q), or
2. G € Gupq.-

Proof. Let G = (Q, E) € Gapp\Gaga- Thus G admits a coloring § such that

6(Q, abd) = {q}

for a state ¢ € Q.

o If the coloring 4 satisfies ¢ ¢ §(Q, a), notice that each edge labeled by a has to lead into
Va(q). Indeed:

— It cannot lead to ¢ due to ¢ ¢ 6(Q, a).

— It cannot lead into any r € Vi(q) because in such case, using ¢ ¢ 6(Q, a), it would
hold that &(r,b) = ¢ and thus ¢ € §(Q,ab). Hence it would be necessary that
d(q,b) = q. According to Lemma 4.3, a loop on ¢ guarantees that G € Ggqq, which
is a contradiction.

— It cannot lead to V3(q), because there is no path of length 2 from V3(g) to g.

Thus, the condition (1) holds.

o Otherwise the coloring d satisfies ¢ € 6(Q, a). Denote
W={seQ]|ds,b)=q}.

Now define another coloring ¢’ by switching the colors of the two edges leaving each state
of W. Elsewhere, ¢’ and ¢ coincide. We claim that

¢'(Q, aba) = {q}
and so the condition (2) holds. Indeed:

— Take s € V3(q). In § there is a path
a b b
s—t—u—gq. (4.1)

Because s € V3(q), it holds that t € V2(q) and u € Vi(q). It follows that t ¢ W u €
W and thus in §’ there is a path

st u - g (4.2)
— Take s € Va(q). In § there is a path (4.1).
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x If t € Va(q), we get again that ¢ ¢ W,u € W and thus in ¢’ there is a path
(4.2).

* Otherwise we have t € V1(q). Because G ¢ Ggqq, there is no loop on ¢, thus
u#qandt ¢ W. But u € W, so we get a path (4.2) again.

— Take s € Vi(g). In &' there is always an edge s — ¢, so we need just &'(q, ba) = q.
Because we assume that ¢ € §(Q, a), in ¢ there has to be a cycle g ELINL N q for
, b a
some r € Vi(q). In ¢’ we have g — r — q.

— For s = ¢ we apply the same reasoning as for s € V5(q).

Lemma 4.5. For each G with outdegree 2 it holds that
G € Ganp\ (Gaba U Gaaa)
if and only if
o it holds that G ¢ Gape U Gaga, and
o there is a vertex ¢ € @ such that each vertex has an outgoing edge leading into V2(q).

Proof. The downward implication follows easily from Lemma 4.4. For the upward one we need
only to deduce that G € Ggp,. We construct the following coloring 4:

e The edges leading into V5(q) are labeled by a. If two such edges start in a common vertex,
they are labeled arbitrarily.

e The other edges are labeled by b.

This works because from any state s € V,(q) there is an edge leading to some t € Vi(q), and
from ¢ there is an edge leading to ¢q. We have labeled both these edges by b. It follows that
wherever we start, the path labeled by abb leads to gq.

O

Theorem 4.6. The problem SRCP; 3 in P.
Proof. Let the algorithm test the membership of a given graph G for the following sets:

1‘ Gaaa7

[\

. Gaab\Gaaa )

w

. Gaba\Gaaa7
4. Gabb\ (Gaba U Gaaa)-

For the sets 1, 2, 3 the membership is polynomially testable due to results from [79]. Lemma
4.5 provides a polynomially testable characterization of the set 4. It is easy to see that a graph
G should be accepted if and only if it lies in some of the sets.

O
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@ Cjo1,0
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Lin L2 s @ Ds

Figure 4.1: A part C;. Note the three Figure 4.2: A part V;
edges that depend on ®: they end in ver-
tices labeled by literals from C;.

Figure 4.3: The part D

4.1.3 Restriction to |X| =2 and d =4

Theorem 4.7. The problem SRCPii is NP-complete.

Let us perform a reduction from 3-SAT. Consider a propositional formula of the form

j=1

where C; = [;1VI;j2Vlj3and l;, € {z1,...,2p,77,..., Ty} foreach j € {1,...,m}, k € {1,2,3}.
We construct a directed multigraph Go = (Q, E) with

Q| =5m+3n+8

states, each of them having exactly two outgoing edges. We describe the set @ as a disjoint
union of the sets
Q=CU---UC,UV,U---UV,UD,

where
C;, = {C0,Cj1,Cj2,Cj3,Cja},
V, = {x;,7, W;},
D = {Dy,...,D7},

for each j € {1,...,m} and ¢ € {1,...,p}. The parts C; correspond to clauses, the parts V;
correspond to variables. In each V; there are two special states labeled by literals x; and ;.
All the edges of Gg are defined by Figures 4.1, 4.2, 4.3. Figure 4.4 gives an overall picture of
Go. Let us prove that

d is satisfiable

v

some labeling of G has a reset word of length 4.
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Figure 4.4: The entire Gg

The Upward Implication

Suppose that there is a labeling § by letters a (solid) and b (dotted) such that a word

w=y...ys € {a,b}"

satisfies
16(Q,w)| = 1.

Let a be the first letter of w. By a k-path (resp. k-reachable) we understand a path of length
exactly k (resp. reachable by a path of length exactly k).

Lemma 4.8. The synchronization takes place in Dy.

Proof. From D; only states from D are 4-reachable. From Dy the only states within D that
are 4-reachable are Dy, D3, Dy4. From C; ¢ only Dy is 4-reachable. O

Lemma 4.9. All edges outgoing from states of D are labeled as in Figure 4.5.

Proof. Since Dy is not 3-reachable from Dy nor Dg, all the edges incoming to Dg and Dg are

labeled by b. The remaining labeling follows easily. O
Corollary 4.10. It holds that

w = aba®.
Lemma 4.11. For each j = 1,...,m we have

(5(03‘,0,0,[)) S {xh...,mn,sﬁ,...,ﬁ}.

Proof. None of the other states 2-reachable from C; o offers a 2-path leading to Dy. O

Lemma 4.12. There are no j,l € {1,...,m} and i € {1,...,p} such that
(S(ij,ab) = T;
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Figure 4.5: The entire G¢ with the edges outgoing from D colored. Bold arrows: a, dotted
arrows: b.

Figure 4.6: An example of G¢ for ® = (z1 VTzVa3) A (z1VaeaVayg) A (TT VT3V ay). The
filling marks states that are active after applying y,y. = ab.
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and
5(Cl70, ab) =7;.

Proof. If both z; and T; are active after applying y1y2 = ab, there have to be 2-paths labeled
by a? from both the states x;,Z; to D4. It is easy to see that it is not possible to find such
labeling. O

Corollary 4.13. There is a partial assignment making all the literals
5(0170, ab) 5 5(0270, ab) P 6(Cm70, ab)

satisfied, because none of them is the negation of another. FEach clause contains some of these
literals.

We are done, the existence of a satisfying assignment is guaranteed.

The Downward Implication

For a given satisfying assignment we make a coloring based on the above-mentioned ideas and
the example given by Figure 4.6.

e For each j, the coloring of edges outgoing from Cj; o, C; 1,C; 2 depends on which of the
three literals of the clause C; are satisfied by the assignment (the example assigns 1 =
1,29 = 0,23 = 0,24 = 1). The 2-path from C; labeled by ab should lead to a state
labeled by a satisfied literal. The edges outgoing from C; 3 and C;4 are always colored
the same way.

e For each i, all the edges outgoing from the states of the V; part are colored in one of two
ways depending on the truth value assigned to x;.

e The edges outgoing from the states of D admit the only possible coloring.

Note that in our example the edges outgoing from the states of V3 could be colored in the
opposite way as well. None of the literals z3, T3 is chosen by the coloring to satisfy a clause.

Strong Connectivity

If there is a non-negated occurrence of each z; in ®, the graph Gg is strongly connected. This
assumption can be easily guaranteed by adding tautological clauses like z; V @; V T;.

4.2 Fixed Parameter Complexity of SRCW

In this section we study the problem SRCW restricted to fixed values of both the alphabet
size |X| and the set of prescribed reset words W. We show that the problem SRCW becomes
NP-complete even if restricted to |X| = 2 and W = {abb} or to |X| =2 and W = {aba}, which
may seem surprising. Moreover, we provide a complete classification of sets W = {w} where w
is a binary word: The NP-completeness holds for |¥| = 2 and any w € {a,b}” that does not
equal a®, b*, a*b, nor b¥a for any k > 1. On the other hand, for any w that matches some of
these patterns, the restricted problem is solvable in polynomial time. Finally, we give partial
results about SRCW restricted to strongly connected graphs. Table 4.3 summarizes the results
(including the notion of a sink device from Definition 4.20).

First, we prove a basic lemma, which is useful in our classifications of words: adding a prefix

to a prescribed reset word preserves NP-completeness:

Lemma 4.14. Let || > 1 and u,w € {a,b}”. Then:
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2] =2 2] =3,4,...
general S. C. general S.C.

w=ak x> P P P P
w = a"b o> P P P P
w = abb NPC P
W= ava (vea*) NPC NPC 0 ”
w # a*b! with a s.c. NPC NPC
incomplete sink device
otherwise NPC ?

Table 4.3: Complexity of SRCW

1. If SRCW,C,{W} is NP-complete, so is SRCWk,{uw}.

2. If SRCWi{w} is NP-complete, so is SRCWi{uw}.

Proof. We perform a polynomial-time reduction from SRCWy, 1,3 to SRCWy, ¢,,,,). For a given
graph G = (Q, E) we construct a suitable graph G = (@, E), with the additional property that
G € Z whenever G € Z. Let

Q = QU(@x{1,....[ul})
and let E consist of E and the additional edges
(s,1) =2 (s,2) = --- 2 (s, |u]) = s

for each s € Q. Suppose that there is a coloring ¢ of G such that [§(Q,w)| = 1. If we use
the coloring & in G to color the edges within E, we get a unique coloring 6 of G that satisfies
‘3(@, uw)| = 1. On the other hand, let & be a coloring of G such that |3(@, uw)’ = 1. Observe
that 3(@, u) = @ and thus |5(Q7 w)’ = 1. The coloring J, restricted to Q, gives a coloring of G
with |§(Q,w)| = 1. O

4.2.1 A Complete Classification of Binary Words According to Complexity of
SRCW3 ()

The theorem below presents one of the main results of the present paper. Assuming that P does
not equal NP, it introduces an exact dichotomy concerning the words over binary alphabets.
Let us fix the following partition of {a,b}":

Ty ={d",b* | k > 0}, Ts = {a'b",bla* |k >2,1>1},

Ty ={a"b,bFa | k > 1}, Ty ={a,b}"\ (M UTLUT3).
For the NP-completeness reductions throughout the present paper we use a suitable variant

of the satisfiability problem. The following is proved in Section 4.2.3 using the Schaefer’s
dichotomy theorem:

Lemma 4.15. It holds that W-SAT is NP-complete.
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W-SAT
Input: Finite set X of variables, finite set ® C X* of clauses.

Output: Is there an assignment £ : X — {0,1} such that for each
clause (z1, 22, 23, 24) € ® it holds that:
(1) £(z;) = 1 for some 1,
(2) &(z;) = 0 for some i € {1,2},
(3) &(z;) = 0O for some i € {3,4}7

In this section we use reductions from W-SAT to prove the NP-completeness of SRCWj (4}
for each w € T3 and w € T}. In the case of w € Ty the reduction produces only graphs having
sink states. This shows that for w € Ty the problem SRCWQZ’ {w} is NP-complete as well, which
turns out to be very useful in Section 4.2.2, where we deal with strongly connected graphs. For
w € T3 we also prove NP-completeness, but we use automata without sink states. We show
that the cases with w € T} U T are decidable in polynomial time.

In all the figures below we use bold solid arrows and bold dotted arrows for the letters a and b
respectively.

Theorem 4.16. Let w € {a,b}".
1. If w € Ty U T3, the problem SRCWj () is solvable in polynomial time.

2. Ifw € T3UTy, the problem SRCW, ¢,y is NP-complete. Moreover, if w € Ty, the problem
SRCWi{w} is NP-complete.

Proof for w € T7. It is easy to see that G € G, if and only if there is gy € @ such that there
is a loop on ¢o and for each s € @ we have dg(s, o) < k. O

Proof for w € T,. For a fixed gy € @, we denote Q1 = {s € Q| s — ¢o} and
R = {s € Q1 | H; has a cycle reachable from s},

where H; is obtained from G[Q1] by decreasing multiplicity by 1 for each edge ending in go. If
qo ¢ Q1, we have Hy = G[Q1]. Let us prove that G € Ggx,, if and only if there is go € @ such
that:

1. Tt holds that dg(s,qo) < k + 1 for each s € Q.
2. For each s € ) there is a ¢ € R such that dg(s,q) < k.

First, check the backward implication. For each r € R, we color by b an edge of the form
r — ¢o that does not appear in H;. Then we fix a forest of shortest paths from all the vertices
of Q\R into R. Due to the second condition above, the branches have length at most k. We
color by a the edges used in the forest. We have completely specified a coloring of edges. Now,
for any s € Q a prefix a/ of a*b takes us into R, the factor a*~7 keeps us inside R, and with
the letter b we end up in qq.

As for the forward implication, the first condition is trivial. For the second one, take any s € Q
and denote s; = 5(s,aj) for j > 0. Clearly, s € @1, but we show also that sy € R, so we
can set ¢ = sj in the last condition. Indeed, whenever s; € @ for j > k, we remark that
6(sj_k+1,ak) = go and thus s;11 € @1 as well. Since j can grow infinitely, there is a cycle
within @); reachable from sy. O
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Proof for w € T5. Due to Lemma 4.14, it is enough to deal with w = ab® for each k > 2. For a
polynomial-time reduction from W-SAT, take an instance X = {z1,...,z,}, ® ={C1,...,Cpn},
where C; = (2,1, 2j,2, 25,3, 2j,4) for each j =1,...,m. We construct the graph G 4 = (Q, F)
defined by Figure 4.7. Note that:

o In Fig. 4.7, states are represented by discs. For each j = 1,...,m, the edges outgoing
from C, and C; represent the formula ® by leading to the states zj1,2j.2,2j.3, Zju €

{z1,...,2,} C Q.

o In the case of k = 2 the state V, 2 does not exist, so we set x; — D¢ and V; ;1 — Dy
instead of z; — V; 2 and V; 1 — V, 2.

We show that G e € Gy if and only if there is an assignment £ : X — {0, 1} satisfying the
conditions given by ®. The presented construction of G & can be obviously performed in time
polynomial in the size of X and ®.

First, let there be a coloring ¢ of G, ¢ such that |5(Q, abk)’ = 1. Necessarily 5(Q, abk) ={Dy},
while there is no loop on Dg. Indeed, let C; and C}s be clauses that do not share any variable.
Due to possible adding of artificial clauses to ®, we can assume that C; and Cj exist. It is easy
to see that Dy is the only vertex reachable from C; and Cjs by paths of length at most k + 1.
We use this fact to observe that whenever z; € 6(Q,a), the edges outgoing from
zi, Vi1,..., Vik—1 must be colored according to Figure 4.8, but if z; € 6(Q,ab), then they
must be colored according to Figure 4.9. Indeed: First, let z; € §(Q,a). Then we have
5(%—, bk) = Dy. Since there is no loop on Dy, there are at most two paths of length k leading
from z; to Dg. The first one is

T; — Vi71 — Vi,g —_— Vi,k—l — Do.
If we label this path by b, we get exactly Figure 74. If k > 2, there is also the second path
zi —> Viog — Vig — V3 — -+ — V, 1 — Dy,

which uses the loop on V5. But labeling this path by b involves labeling both the edges
outgoing from V, 5 by b, which is a contradiction. Second, let z; € §(Q, ab). The path

T; — Vi’g — Vi,3 —  — Vi’kfl — DO

is the only path of length k — 1 leading from x; to Dy, so it is necessarily labeled by b*~! and
we get the coloring depicted by Figure 74.
Let £(z;) = 1 if z; € §(Q, ab) and £(x;) = 0 otherwise. Choose any j € {1,...,m} and observe
that

£(0(Cjrab)) =1, £(3(Cjra)) =0, £(9(CF,a)) =0.

Indeed, 6(C;, ab) = z; € §(Q, ab), so £ assigns 1 to x; by definition. The remaining two claims
are similar.

Thus we can conclude that all the conditions from the definition of W-SAT hold for the clause
C;. Indeed, the graph Gy ¢ is constructed such that

8(Cjyab) € {z1,252,23 %4}
0(Cja) € {z1,72},
0(Cj.a) € {z3 24}
On the other hand, let ¢ be a satisfying assignment of ®. For each j we color the edges

outgoing from Cj,C’;,CY such that the ab-path from C; leads to the z;, with £(z;,) = 1
and the a-paths from C’, C/ lead to the z;, and z;,» with {(zj,) = 0,£(2;,) = 0, where
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21,1 21,2 21,3 214 221 222 223 224 Zm,1 #m,2 m,3 “m4

Vi3 Va3 e Vi3
Vi k-2 Vo k—2 Vo k—2

Figure 4.7: The graph G ¢ reducing W-SAT to SRCW g)—3 yw—{apry for k > 2

v v
Do Do

Figure 4.8: A coloring cor- Figure 4.9: A coloring cor- Figure 4.10: Colorings for k

responding to &(z;) = 0 responding to &(z;) =1 even (top) and odd (bottom)
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p' € {1,2},p"” € {3,4}. For the edges outgoing from z;,V;1,...,V;,—1 we use Figure 4.8 if
&(x;) = 0 and Figure 4.9 if £(x;) = 1. The transitions within Dy, Dy, Dy are colored according
to Figure 4.10, depending on the parity of k. Observe that for each i € {1,...,n} we have

ngéé(Q,ab) lf f(m,)
zi ¢ 6(Q,a) if  &(xi)

0, (4.3)
1.

Indeed: first, let {(x;) = 0. For the edges outgoing from z;,V;1,...,V;,—1 we used Figure
4.8, so any possible ab-path ending in z; starts in some C;. But any ab-path starting in some
C; ends in the z;; with £(z;;) = 1. Second, let {(x;) = 1. For the edges outgoing from
Zi Vi, ..., Vig—1 we used Figure 4.9, so any possible a-transition ending in z; starts in some
C’ or CY. But any a-transition starting in some C’ or C7 ends in the z;, and z;;» with
&(2j,) = 0 and &(z;,,7) = 0.

Using (4.3) and (4.4) we can check that §(Q,w) = {Dg}: First, recall that w = ab* and describe
the set 0(Q), ab). We have

C; b, x; for some i with {(z;) = 1,
C} bV, for some i with &(z;) = 0,
C;'/ LN Vi1 for some i with &(x;) = 0,
Vis if&(z;) =0 and k > 4,
ab Do ifé(x;)=0and k=3,
T, —
Dy ifé(x;) =0 and k = 2,
Vis ifé(x;))=1andk >4,
Vi b, Dy if¢(z;) =1 and k = 3,
Dy  ifé(x;)=1and k=2,
Vz’,l lff(l’l) =0,
a Visg ifk>4
Vin LN 3 forhe{2,...,k—1},
Dy ifk=3
ab D, if k is even,
Do,D1, D2 — ,
Dy ifk is odd.

Thus, we can easily observe that
5(Q,ab) € {Vi1,Viz|&(xi) =0} U{z;, Viz|&(zi) =1} U{D,},

where p = 2 for k even and p = 0 for £ odd. Now it is easy to conclude that (5(5, bk_l) = Dg
for each s € §(Q, ab). O

Proof for w € T. Any w € Ty can be written as w = vadb*al or w = vblaFbt for gk, 0> 1.
Due to Lemma 4.14 it is enough to deal with w = abkal for each k,l > 1. Take an instance of
W-SAT as above and construct the graph Gy, = (Q, E) defined by Figure 4.11. Note that:

o In the case of I = 1, the state Z; 1 does not exist, so we set W, — Dy and V; ,_1 — Dy
instead of W, — Z; 1 and V; j_1 — Z; 1.

o In the case of k = 1, the state V; 1 does not exist, so we set x; — Z; 1 (or x; — Dy if
[=1) and x; — W, instead of x; =2V, 1.
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2,2 22,3 22,4 Zm,1 Zm,2 Zm,3 *m

Figure 4.11: The graph G, ¢ reducing W-SAT to SRCW%ZZW:{GMM} for k,1 > 1

Let there be a coloring § of Gy.¢ such that |§(Q,w)| = 1. Observe that §(Q,w) = {Do}.
(Indeed, let C; and Cjs be clauses that does not share any variable. It is easy to see that Dy is
the only vertex reachable from C; and C; by paths of length at most k + 1+ 1).

Next, we claim that

;i €0(Q,a) = Vip_1 LN 21, (4.5)
z; € 6(Q,ab) = Vig_1 — Zi1.

Note that if £ = 1 or [ = 1, the claim should hold for x; instead of V; ;1 or Dg instead of Z; ;
respectively. As for (4.5), let z; € §(Q,a). If k > 2, we have V, ;1 € 5(abk_1) and there is
exactly one path of length at most [ + 1 leading from V; ;1 to Dy:

Vik—1 —>2Zs1 —> - —> Z; ;1 — Do. (4.7)

Thus, we have V; ;1 LN Z;1. If K =1, we use the fact that there is exactly one path of
length at most [ + 1 leading from z; to Dg. As for (4.6), let z; € §(Q,ab). If k > 2, we have
Vik—1€ 5(abk). The path (4.7) above is the only path of length at most [ leading from V; ;1
to Dg. Thus, we have V; LN Z;y1. If £ =1, we use the unique path of length at most !
leading from x; to Dy.

Let &(z;) = 1 if x; € §(Q,ab) and &(x;) = 0 otherwise. We choose any j € {1,...,m} and
observe that

5(5(Cj7ab)) = 1’ 5(5(03’0‘)) = 0’ 5((S(C;I’a)) = 0.

Then we conclude that all the conditions from the definition of W-SAT hold for the clause C},
since

5(Cj,ab) S {Zj,lazj,Q;Zj,SaZjA}a
8(Cha) € {zjn, 22},
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§(C,a) € {z3,24}

due to the construction of G 5.

On the other hand, let £ be a satisfying assignment of ®. For each j, we color the edges outgoing
from Cj, C;»7 C;-’ as we did in the case of T5. For each i, we put V; ,_1 LN Z;1,Vik-1 LI W;
if £(z;) = 1 and the reversed variant if £(z;) = 0. Note that if k =1 or [ = 1, we consider z;
instead of V; ;_1 or Dy instead of Z; ;1 respectively. Let us show that §(Q,w) = {Dg}. Denote

C={C;,ClCY |j=1,...,m}

and observe that from any vertex s of Q\C, all the paths of length k+ [+ 1 starting in s end in
Dy. Thus, it is enough to show that 6(C,w) = {Dg}. Choose any j =1,...,m. First, observe
that 6 (C;, ab) = x; such that {(x;) = 1. Thus, the edge V; ,_1 — Z; 1 is labeled by a and the
path

Cj a_b} Z; i) Vi71 i> cee i) Vi,k—l i> Zi71
guarantees that §(Cj,ab"a) = Z;1 and thus §(C;, ab*a') = Dy. Second, choose s € {C},C/}
and observe that § (s, ab) = V; 1 such that £(z;) = 0. Thus, the edge V; x—1 — Z;1 is labeled

by b and the path
S a_b> V1'71 i) e L) Vi,k—l i) Zi71

guarantees that 6(Cj, abk) = Z;,; and thus 6(Cj, abkal) = Dy. O

4.2.2 A Partial Classification of Binary Words According to Complexity of
SRCW )

Clearly, for any w € T} U T, we have SRCW‘;C{M} € P. In Section 4.2.2 we show that
SRCW3 {apy € P,

which is a surprising result because the general SRCWj ¢,y is NP-complete for any w € T3,
including w = abb. We are not aware of any other words that witness this difference between
SRCW*¢ and SRCW.

In Section 4.2.2 we introduce a general method using sink devices that allows us to prove the
NP-completeness of SRCW‘QS,C{M} for infinitely many words w € T}, including any w € Ty with
the first and last letter being the same. However, we are not able to apply the method to each
w € Ty.

A Polynomial-Time Case

A graph G = (Q, F) is said to be k-lifting if there exists go € @ such that for each s € @ there
is an edge leading from s into Vi(qo). Instead of 2-lifting we just say lifting.

Lemma 4.17. If G is a k-lifting graph, then G € G .

Proof. We produce a suitable coloring of G = (@, E) as follows: For each s € @ choose an
edge leading from s into Vi(qo) and color it by a. All the other edges are colored by b. Then
8(a, Q) S Va(go) and §(ab®) = {qo}- O

Lemma 4.18. If G is strongly connected, G is not lifting, and G € G, via § and qg, then § has
no b-transition ending in Va(qo) U V3(qo). Moreover, V3(qo) = 0.

Proof. First, suppose for a contradiction that some s € V2(qo) U V5(go) has an incoming b-
transition. Together with its outgoing b-transition we have



where s # qo and t # qo. Due to the strong connectivity there is a shortest path P from ¢q to r
(possibly of length 0 if » = gg). The path P is made of b-transitions. Indeed, if there were some
a-transitions, let v’ - 7" be the last one. The abb-path outgoing from 7’ ends in §(r", bb),
which either lies on P or in {s,t}, so it is different from ¢y and we get a contradiction.
It follows that §(qo,b) # qo and d(qo, bb) # qo, so there cannot be any a-transition incoming to
qo. Hence for any s € Vi(qo) there is a transition s LN go and thus there is no a-transition
ending in V1(qo). Because there is also no a-transition ending in V3(qo), all the a-transitions
end in V5(qp) and thus G is lifting, which is a contradiction.
Second, we show that V3(qo) is empty. Suppose that s € V3(qo). No a-transition comes to
s since there is no path of length 2 from s to gg. Thus, s has no incoming transition, which
contradicts the strong connectivity.

O

Theorem 4.19. SRCWfﬁabb} is decidable in polynomial time.

Proof. As the input we have a strongly connected G = (Q, E)). Suppose that ¢ is fixed (we can
just try each go € @) and so we should decide if there is some § with §(Q,abb) = {qo}. First
we do some preprocessing:

o If G is lifting, according to Lemma 4.17 we accept.
o If V3(qo) # 0, according to Lemma 4.18 we reject.

o If there is a loop on g, we accept, since due to V3(qo) = @ we have G € Gyp.

If we are still not done, we try to find some labeling §, assuming that none of the three
conditions above holds. We deduce two necessary properties of §. First, Lemma 4.18 says that
we can safely label all the transitions ending in Va(gp) by a. Second, we have ¢y € §(Q, a).
Indeed, otherwise all the transitions incoming to gg are labeled by b, and there cannot be any
a-transition ending in Vj(qp) because we know that the b-transition outgoing from g¢q is not a
loop. Thus G is lifting, which is a contradiction.

Let the sets By, ..., Bg denote the connected components (not necessarily strongly connected)
of G[Vi(qo)]- Note that maximum out-degree in G[Vi(qo)] is 1. Let e = (r,s),¢ = (s,t) be
consecutive edges with s,t € V1(qo) and r € Q. Then the labeling § has to satisfy

e is labeled by a < ¢’ is labeled by b.

Indeed:
o The left-to-right implication follows easily from the fact that there is no loop on gg.

e As for the other one, suppose for a contradiction that both €', e are labeled by b. We
can always find a path P (possibly trivial) that starts outside Vi(gqp) and ends in 7.
Let 7 be the last vertex on P that lies in §(Q,a). Such vertex exists because we have
Va(qo) U{go} C 6(Q,a) and V5(qo) = . Now we can deduce that §(7,bb) # go, which is a
contradiction.

Tt follows that for each B; there are at most two possible colorings of its inner edges (fix variant 0
and variant 1 arbitrarily). Moreover, a labeling of any edge incoming to B; enforces a particular
variant for whole B;.

Let the set A contain the vertices s € Va(qo) U {go} whose outgoing transitions lead both into
Vi(qo). Edges that start in vertices of (Va(go) U {qo}) \ A have only one possible way of coloring
due to Lemma 4.18, while for each vertex of A there are two possibilities. Now any possible
coloring can be described by |A| + 8 Boolean propositions:

X; = egislabeled by a

ys = B islabeled according to variant 1
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for each s € A and B € {By,..., Bg}, where e, is a particular edge outgoing from s. Moreover,
the claim §(Q, abb) = {qo} can be equivalently formulated as a conjunction of implications of
the form x; — yp, so we reduce the problem to 2-SAT: For each s € A, with ey, e, leading into
B, B’ respectively, we construct two implications. For s # qg they are

{yB if labeling es by a enforces variant 1 for B
Xs —

—yp if labeling e by a enforces variant 0 for B

{yB/ if labeling e’ by a enforces variant 1 for B’
-Xg  —

—yp if labeling e’ by a enforces variant 0 for B’

Now, 6(Q, abb) = {qo} is equivalent to the conjunction of all the implications. Indeed, from the
claims above it follows easily that the implications are necessary for ¢ being abb-synchronizing.
On the other hand, a satisfying assignment of the variables induces a labeling of G that, as can
be easily checked, is abb-synchronizing.

O

NP-Complete Cases

We introduce a method based on sink devices to prove the NP-completeness for a wide class of
words even under the restriction to strongly connected graphs.

In the proofs below we use the notion of a partial finite automaton (PFA), which can be defined
as a triple P = (Q, X, ), where @ is a finite set of states, ¥ is a finite alphabet, and ¢ is a
partial function @ x X — @ which can be naturally extended to Q x ¥* — Q. Again, we write
r -2+ s instead of § (r,2) = s. We say that a PFA is incomplete if there is some undefined
value of §. A sink state in a PFA has a defined loop for each letter.

Definition 4.20. Let w € {a,b}". We say that a PFA B = (Q, {a,b},d) is a sink device for w,
if there exists go € @ such that:

1. 6(go,u) = qo for each prefix u of w,
2. 0(s,w) = qo for each s € Q.

Note that the trivial automaton consisting of a single sink state is a sink device for any w €
{a,b}”. However, we are interested in strongly connected sink devices that are incomplete. In
Lemma 4.21 we show how to prove the NP-completeness using a non-specific sink device in the
general case of w € Ty and after that we construct explicit sink devices for a wide class of words
from Tjy.

Lemma 4.21. Let w € T, and assume that there exists a strongly connected incomplete sink
device B for w. Then SRCng{w} is NP-complete.

Proof. We assume that w starts by a and write w = a®b’au for o, 3 > 1 and u € {a,b}”. Denote
B = (Qp,{a,b},dp). For a reduction from W-SAT, take an instance X, ® with the notation
used before, assuming that each € X occurs in ®. We construct a graph G, e = (@, E)
as follows. Let g1 € Qp have an undefined outgoing transition, and let B’ be an automaton
obtained from B by arbitrarily defining all the undefined transitions except for one transition
outgoing from ¢;. Let G/ be the underlying graph of B’. By Theorem 4.16, SRCWi{w} is
NP-complete, so it admits a reduction from W-SAT. Let G, = (Q, E) be the graph obtained
from such reduction, removing the loop on the sink state q; € Q. Let s1,...,5/g—1 be an
enumeration of all the states of G ¢ different from ¢j. Then we define éw,@ as shown in
Figure 4.12. We merge the state ¢, € Q with the state ¢y € Qp, which is fixed by the definition
of a sink device.
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Figure 4.12: The graph G, ¢

First, let there be a coloring 6 of G.¢ such that ’5(@, w) ’ = 1. It follows easily that &, restricted
to @, encodes a coloring ¢ of Gy, ¢ such that |§(Q,w)| = 1. The choice of G,, ¢ guarantees that
there is a satisfying assignment £ for ®.

On the other hand, let £ be a satisfying assignment of ®. By the choice of G, ¢, there is a
coloring § of G, ¢ such that [6(Q,w)| = 1. We use the following coloring of G\, ¢: The edges
outgoing from si,...,s|g—1 are colored according to §. The edges within G'p/ are colored
according to B’. The edge ¢t — F1,0 is colored by b. All the other edges incoming to the
states F1,0,...,F|g|,0, together with the edges of the form F; 5 — qo, are colored by a, while
the remaining ones are colored by b.

O

For any w € {a,b}” we construct a strongly connected sink device D(w) = (Q., {a,b},dy)-
However, for some words w € Ty (e.g. for w = abab) the device D(w) is not incomplete and
thus is not suitable for the reduction above. Take any w € {a,b}* and let ¢ &3 ¢F be the
sets of all prefixes, suffixes and factors of w respectively, including the empty word €. Let

Qu = {[W|uee), v €3 for each nonempty prefix v of u},
while the partial transition function §,, consists of the following transitions:
1. [u] =% [uz] whenever [u], [uz] € Qu,
2. [u] = [€] whenever ux € €5,
3. [u] % [¢] whenever [uz] ¢ Qu, ux ¢ €5 and va € €% for a suffix v of u.
Lemma 4.22. For any w € {a,b}", D(w) is a strongly connected sink device.

Proof. First, we have to check that the definition of D(w) = (Qw, {a, b}, d,) vields a PFA, i.e.
that no state has two outgoing transitions having the same label. Choose any [u] € Q,, and
x € {a,b}. It is enough to check that at most one of the three construction rules on Page 80
applies to [u] and x. Indeed, by the definition of @Q,, the claims [uz] € Q,, and uzx € €5 are
contradictory. With this remark, it is obvious that any two of the rules have contradictory
conditions.

Next, we show that D(w) is a sink device for w. We choose gy = [€] and verify the two defining
conditions of a sink device (see Definition 4.20):

1. Let < denote the partial order on QZ?U defined as v; < wvs if v is a prefix of vo. We start by
verifying the claim for each <-minimal nonempty u € €5. Write u = ugz for x € {a,b}
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and observe that [ug] € Q.. Thus [e] =% [ug] and in the same time [ug] — € due to the
second construction rule.

Next, consider any u € €3 and proceed by induction on the length of u. If |u| = 0, the
claim is trivial. If |u] > 0, we consider two cases:
e If u is <-minimal, we are done.

e If u is not <-minimal, write © = ugu; where ug € @i satisfies ug =< u. Since both

up and u; lie in €5 and are shorter than u, we have [¢] =% [¢] and [e] -2 [¢] by the

induction hypothesis.

2. For the case of s = [¢] it is enough to apply the first condition with u = w. So, choose any
s = [vg] € Qqu with vg # e. Find the longest prefix vy of w such that [vgv1] € Q.. Observe
that [vg] —= [vov1]. Since |vg| > 1, we have v; # w, thus we can denote w = vxvy for
x € {a,b}. There is a transition [vgvy] = [¢] since:

e If vovix € €| then the second construction rule applies easily.

e Otherwise, the transition is defined by the third construction rule via u = vgv; and
v = v1. Indeed, from the choice of v; it follows that [vgviz] & Q..

We conclude by observing that [¢] 2> [¢] due to the first defining condition.

Finally, we have to check that D(w) is strongly connected. The first construction rule implies
easily that each state is reachable from [e]. On the other hand, there is a path from any state

to [e] due to the second defining condition of a sink state.
O

Lemma 4.23. Suppose that w € {a,b}” starts by z, where {x,y} = {a,b}. If there isu € {a,b}"
satisfying all the following conditions, then D(w) is incomplete:

1. [u] € Qu,
2. uy ¢ €5,
3. for each nonempty suffix v of uy, v ¢ €X.

Proof. We claim that there is no y-transition outgoing from the state [u] € Q,,. Indeed, none
of the three construction rules from Page 80 defines such transition:

1. The first rule does not apply since uy ¢ €X and thus uy ¢ Q...
2. The second rule does not apply since uy ¢ ¢E and thus uy ¢ ¢3.
3. The third rule is explicitly eliminated by the third condition above.
O

Theorem 4.24. If a word w € Ty satisfies some of the following conditions, then SRCW‘;?{MJ} is
NP-complete:

1. w is of the form w = zwx for w € {a,b}" ,x € {a,b},

2. w is of the form w = xwy for w € {a,b}" ,x,y € {a,b},x # v,
and xFylx € €F 2kl ¢ ¢F i+l ¢ ¢F for some k,1 > 1.

w? w

Proof. Due to Lemmas 4.21 and 4.22, it is enough to show that D(w) is incomplete. Let m > 1
be the largest integer such that y™ is a factor of w. It is straightforward to check that u = y™
(in the first case) or u = z*y! (in the second case) satisfies the three conditions from Lemma
4.23. O

81



4.2.3 W-SAT Is NP-Complete

In this section we prove Lemma 4.15, which claims that the following problem is NP-complete:

W-SAT
Input: Finite set X of variables, finite set ® C X* of clauses.
Output: Is there an assignment £ : X — {0,1} such that for each

clause (21, 29, 23, 24) € ® it holds that:
(1) £(zi) = 1 for some 1,

(2) &(z;) = 0 for some i € {1,2},

(3) &(2;) = 0 for some i € {3,4}7

According to Schaefer [84] we use the following formalism. Let S be a finite set of Boolean
functions (or equivalently Boolean relations), i.e. let

SZ{Rl,...,Rk}

where
R; :{0,1}* — {0,1}

for each i = 1,..., k. Note that «; is the arity of the function R;. Having such S, we define the
following computational task:

SAT(S)

Input: Number n € N of variables. Finite list of clauses, i.e. strings
of the form R;(z;,,...,z;,) wherei € {1,...,k}, a = o,
andjl,...,ja S {1,771}

Output: Is there an assignment of x1,...,x, such that all the clauses
are satisfied?

Note that the clauses cannot contain negated literals. If there is a need for expressing negation,
it requires an appropriate function R;. For example 3-SAT is the same as SAT(S) where S
contains four ternary functions, each for a possible number of negations (from 0 to 3).
However, we will use a one-element set

So ={R¢}

where
R (1, 22,23,24) = (X1 Vo2 Va3 Vag) A (mxy Vo) A (mxs V —xy) .

So the function Ry gives 1 if and only if some input bit is 1 and there is some 0 in each half
of the input. Observe that SAT (S ) is just an alternative formulation of W-SAT.

Definition 4.25. A function R : {0,1}* — {0,1} is
o weakly negative if it is equivalent to a Horn formula,

o weakly positive if it is equivalent to a dual-Horn formula (i.e. conjunction of disjunctions
having at most one negated literal),

o affine if it is equivalent to a system of linear equations over the two-element field,

« bijunctive if it is equivalent to a 2-CNF (at most two literals in each conjunct).
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Theorem 4.26 (Schaefer Dichotomy Theorem). Let S be of the above form. If S satisfies one
of the conditions below, then SAT(S) is polynomial-time decidable. Otherwise, SAT(S) is
NP-complete.

1. Each non-constant R; has R;(1,...,1) = 1.
FEach non-constant R; has R;(0,...,0) = 1.

Each function R; is weakly negative.

N

Each function R; is weakly positive.
5. Each function R; is affine.
6. Each function R; is bijunctive.

Definition 4.27. Let R(x) = 1 for x € {0,1}“. Then C C {1,...,n} is a change set for R,z if
R(xz ® ec) = 1, where (ec), = 1 exactly for i € C.

Theorem 4.28 ([84]). A function R: {0,1}* — {0,1} is
o Affine if and only if for each x,y,z € {0,1}" it holds that

ifR(x)=1, R(y) =1, and R(z) =1, then R(z®y ® z) = 1.

e Bijunctive if and only if for any x with R(x) = 1 and any change sets C1,Cy for R, x it
holds that also C7 N Cy is a change set for R, x.

Corollary 4.29. SAT (S ) is NP-complete.

Proof. We just need to show that no of the conditions from Schaefer Dichotomy Theorem
(Theorem 4.26) hold for S¢. Indeed:

1. The function R is non-constant and we have R¢(1,...,1) = 0.
2. The function R is non-constant and we have Ry (0,...,0) = 0.

3. Any Horn formula is either satisfied by O,...,0 or contains a one-element clause z;. The
first case does not hold for R, and the second case implies that z; = 1 in any assignment
satisfying R, which does not hold for any z;.

4. Any dual-Horn formula is either satisfied by 1,...,1 or contains an one-element clause
—z;. The first case does not hold for R¢ and the second case implies that 2; = 0 in any
assignment satisfying R, which does not hold for any x;.

5. It is enough to apply Theorem 4.28 to the following assignments:

z = (1,0,0,0),
y = (0,1,0,0),
z = (0,0,0,1),
thy®z = (1,1,0,1).

6. It is enough to apply Theorem 4.28 to = = (1,0,0,0), C; = {1,2}, and Cy = {1, 3} since

33@601 = (07170?0)7
CC@BCQ = (07071a0)7
rDdec,nc, = (0, 0,0, 0) .
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Chapter 5

Jumping Finite Automata and
Contextual Deleting

This chapter presents results about languages accepted by jumping finite automata and clearing
restarting automata. Section 5.1 gives basic definitions and relates the two key models, which
have been introduced recently, with notions considered in more classical literature.

In Section 5.2 we complete the initial study of jumping finite automata, which was started in a
former article of Meduna and Zemek [64, 65]. The open questions about basic closure properties
are solved. Besides of that, we correct erroneous results presented in [64, 65]. Finally, we point
out important relations between jumping finite automata and other models studied in the
literature. An article presenting these results was submitted to a journal.

In Section 5.3, we construct a clearing restarting automaton with two-letter contexts that
accepts a language over a two-letter alphabet lying outside the class CFL, thus closing the
study raised by Cerno and Mraz, 2010 [25].

5.1 Models and their Relations

More specifically, our results and remarks deal with the following models:

1. Jumping finite automata, described recently by Meduna [64, 65]. They are equivalent to
graph-controlled insertion systems with empty contexts.

2. Clearing restarting automata, which is a subclass of Context rewriting systems, both
introduced in [25]. They are closely related to semicontextual grammars, as studied e.g.
in [55, 75].

3. Insertion systems, as a special type of insertion-deletion systems, both introduced in [76]
and widely studied in the last years. We also consider graph-controlled insertion systems,
as described in [2, 98]. Insertion systems (possibly graph controlled) are equivalent to
semicontextual grammars without appearance checking (possibly with regular control)
introduced in [55, 75].

5.1.1 Preliminary Definitions

In this chapter we heavily use the natural notion of sequential insertion, as it was described
e.g. in [44] and [47]:

Definition 5.1. Let K, L C ¥* be languages. The insertion of K to L is
L+ K = {ujvus | uyug € L,v € K}.
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More generally, for each £ > 1 we denote

L+*K = (L+*'K)+K,
L+*K = |JL+'K,
i>0

where L «+° K stands for L. In expressions with < and «*, a singleton set {w} may be
replaced by w. A chain L; < Lo + --- + L4 of insertions is evaluated from the left, e.g.
Ly + Ly + L3 means (L;  Lg) < L3. According to [32], L C X* is a unitary language if
L =w<+* K for we X* and finite K C X.

Definition 5.2. For languages K, L C ¥*, a word w € ¥* belongs to shuffle(K, L) if and only if

there are words u1, uo, ..., Uk, v1, Vs, ...,V € X* such that uqus ... ux € K, v1v9...v € L, and
W = ULV U2V3 . . . U V). Furthermore, we denote LE = {wR | we L}, where w? is the reversal
of w.

Definition 5.3. For w € ¥* and k,l € {1,...,|w|}, the term w[k] denotes the k-th letter of w

and the term wlk..l] denotes w[k]w[k + 1] ... w[l]. We write w[..k] and w[k..] instead of w[1..k]
and wlk.. |w|].

5.1.2 Insertion-Deletion Systems

An insertion-deletion system, as introduced in [76], is described by a tuple I = (T, X, A, I, D)
specifying a finite alphabet I', a set ¥ C I' of terminals, a finite set A C I'* of axioms, and
finite sets I, D of insertion rules and deletion rules from I'* x I'* x I'*. We write ujus = ujvus
if (ur,v,ur) € I, where uy, is a suffix of u; and ug is a prefix of ug. Similarly, ujvus = ujusg
if (ur,,v,ur) € D, where uy, is a suffix of u; and ug is a prefix of us. The system accepts the
language

L={we¥X |u="wuc A},

where =* is the reflexive-transitive closure of =. If D = (), the system is an insertion system.
In insertion systems we can assume that I' = 3. For each m,m’,n > 0, an insertion system
has size (n,m,m’) if each insertion rule (ur,v,ur) € I satisfies |ur,| < m,|ug| < m’. The class

!
m,m

ins) contains languages accepted by insertion systems of the corresponding size. If some of

0,0

n,m,m’ is replaced by #*, the parameter is not bounded. For example, ins."” contains exactly

finite unions of unitary languages (one unitary language for each axiom).

In [2] and [98], the authors introduce graph-controlled insertion systems. Informally, such
system may be defined by an insertion system S = (I', X, A, I, D), a set Q of components, a set
R of rules from @ x I x @, an initial component gy € @ and a final component ¢ € ). We
write (s,uius) = (r,ujvus) if (up,v,ur) € I, where vy, is a suffix of u; and ug is a prefix of
ug, and (s,v,r) € R. The system accepts the language

L={we¥x"|(q,u) =" (g, w),uc A},

where =* is the reflexive-transitive closure of the relation = over @ x ¥*. According to [2],
the term LStPy (insg’m/) denotes the class of languages accepted by graph-controlled insertion
systems with at most & components where the properties of each insertion rule are bounded by
n,m,m’ as above.

Insertion-deletion systems have been widely studied since the beginning of 21th century, see
e.g. references of [2] and [98].
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5.1.3 Jumping Finite Automata

In 2012, Meduna and Zemek [64] introduced general jumping finite automata as a model of
discontinuous information processing. A general jumping finite automaton (GJFA) is described
by a finite set @ of states, a finite alphabet X, a finite set R of rules from @ x ¥* x @, an
initial state ¢o € @, and a set F' C (Q of final states. In a step of computation, the automaton
switches from a state r to a state s using a rule (r,v,s) € R, and deletes a factor equal to v
from any part of the input word. The choices of the rule used and of the factor deleted are
made nondeterministically. A word is accepted if there is a computation resulting in the empty
word.

There is an infinite hierarchy of GJFA according to the maximum length of factor deleted in
a single step - a GJFA is of degree n if |v| < n for each (r,v,s) € R. A GJFA of degree 1 is
called a jumping finite automaton (JFA). Bold symbols JFA and GJFA denote the classes of
languages accepted by these types of automata.

As described above, a GJFA is a quintuple M = (Q, X, R, qo, F'). The following formal descrip-
tion of computation performed by a GJFA was introduced in [64].

Definition 5.4. Any string from the language >*QX* is called a configuration of M. For r,s € Q
and uq,ug, uy, ub, v C X%, we write

UITVU N pp U SUY

if uyug = wjuh and (r,v,s) € R. By v}, we denote the reflexive-transitive closure of the binary
relation ~j; over configurations. Finally,

L(M) =A{uv |u,v e X", f € Fugov ~y [}
is the language accepted by M. If M is fixed, we write just ~ and ~*.

The placement of the state symbol s in a configuration u; sus marks the position of an imaginary
tape head. Note that this information is redundant - the head is allowed to move anywhere in
each step.

Next, we give two simple lemmas that imply the membership in GJFA for each language that
can be described using finite languages and insertions.

Lemma 5.5. FEach finite language L C ¥* lies in GJFA.

Proof. The language L is accepted by the two-state GJFA M with

M = {{QO7q1}7Z7RaqO,{ql}}a
R = {(q07w7q1)|wes}a
which accepts if and only if it can delete the whole input in a single step. O

Lemma 5.6. Let L, K C ¥* lie in GJFA. Then L + K and L +* K lie in GJFA.

Proof. Let My, = (Qr,%,Rr,qo,1, Fr) and Mg = (Qk, %, Rk, ok, Fx) be GJFA recognizing
K and L respectively, assuming Qr N Qx = 0. To obtain M with L(M) = L + K, we put

M = (%R, qxk,FL),
Q = QLUQKa
R = RLURkU{(f,6q.)!|f€Fk}.
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To obtain M’ with L(M') = L «+* K, we put
M/ = (QanR/aQO,K,FL)a
R = RU{(f.eqx)|f€Fx}.
O

Let us give a few examples of GJFA languages that are used later in this paper and follow easily
from the above lemmas. Note that a GJFA over an alphabet ¥ can be seen as operating over
any alphabet ¥’ D 3. The symbol ¢ stands for the empty word.

Example 5.7. The following languages lie in GJFA.:
1. The trivial language ¥* = € <—* X over an arbitrary X.
2. The language X *uX* = X* < u for u € ¥* over an arbitrary X.
3. The Dyck language D over ¥ = {a,a}. We have D = € +* aa.

4. Any semi-Dyck language Dy over ¥ = {ai,...,ax,a1,...,a5}. We have Dy <+*

{alﬁl, RN akak}.
5. Any unitary language.

However, there are GJFA languages that cannot be obtained from finite languages by applying
Lemma 5.6, such as the following classical language that is not context-free and lies even in
JFA. By |w|, we denote the number of occurrences of a letter z € ¥ in a word w € ¥*.

Example 5.8. The JFA M with

M
R

({q07 Q17q2} ) 27 R7 qo, {qo}) 3
{(qov avql) ) (QD b7 QZ) ) (qucv QO)}

accepts the language L = {w € ¥*| |w|, = |w|, = |w|,} over ¥ = {a,b,c}".

We have shown that the class GJFA is not a subclass of context-free languages, but it was
pointed out in [64] that each GJFA language is context-sensitive. The class GJFA does not
stick to classical measures of expressive power - in the next section we give examples of regular
languages that do not lie in GJFA. As for JFA languages, in [65] the authors show that a
language lies in JFA if and only if it is equal to the permutation closure of a regular language.
Next, we fix additional notation that turns out to be very useful in our proofs. The notions
of paths and labels naturally correspond to graphical representations of GJFA, where vertices
stand for states and labeled directed edges stand for rules.

Definition 5.9. A path from sy € Q to sq € Q in a GJFA M = (Q,X, R, qo, F) is a sequence
(507U17 51) ) (51,’[}2, 52) PRI (Sd—hvd? Sd)

of rules from R. The path is accepting if sg = qp and sq € F. The labeling of the path is the
sequence v1, Vg, . .., Vg of words from ¥*. The total label of the path is the word vivy...v4 € X*.
An empty path from any state to itself has total label e.

Lemma 5.10. Let M = (Q, %, R, qo, F') be a GJFA and w € ¥*. Then w € L(M) if and only if
W E €4 Vg < Vg—1 < -+ < Vg < U1,
where vy, vs, ...,vq is a labeling of an accepting path in M.
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The above lemma suggests a generative approach to GJFA - the computation of a GJFA may be
equivalently described in terms of inserting factors instead of deleting them. A word is accepted
by a GJFA if and only if it can be composed by inserting factors to the empty word according
to labels of a reversed accepting path.

Let us point out that the class GJFA can be put into the frameworks of graph-controlled
insertion-deletion systems. The following theorem is actually an easy observation.

Theorem 5.11. It holds that GJFA = LStP, (insg’o).

Indeed, with the generative approach to GJFA in mind, a GJFA may be transformed to a
graph-controlled insertion system with the same structure, using only the axiom e and insertion
rules with empty contexts. For the backward inclusion we just encode the axioms to rules
specifying that the computation ends by deleting an axiom.

Finally, an interesting result follows from the fact that each unitary language lies in GJFA.
According to the main result of the Haussler’s article [44],U there is an alphabet ¥ such that
for given finite sets S, T C X* it is undecidable whether the intersection of € «+* S and € «* T
contains a non-empty string. It is trivial to construct a GJFA accepting (e <—* S)\ {€}, so we
obtain the following theorem.

Theorem 5.12. Given GJFA M, My, it is undecidable whether L(My) N L(Ms) = 0.

5.1.4 Clearing Restarting Automata

In [25], Cerno and Mraz introduced the following models of linguistical analysis of natural
language sentences.

Definition 5.13. For k > 0, a k-context rewriting system is a tuple R = (X,T’, I), where X is an
input alphabet, I' D ¥ is a working alphabet not containing the special symbols ¢ and $, called
sentinels, and I is a finite set of instructions of the form

(ur,v — t,uR),

where uy, is a left context, x € T* U ¢TF~1, 4 is a right context, y € T* UT*1$, and v — t is
a rule, z,t € T*. A word w = ujvus can be rewritten into ujtus (denoted asujvus — g uitus)
if and only if there exists an instruction (ur,,v — t,ugr) € I such that uy, is a suffix of ¢u; and
ug is a prefix of us$. The symbol —7, denotes the reflexive-transitive closure of —p.

Definition 5.14. For k > 0, a k-clearing restarting automaton (k-cl-RA) is a system M = (X, I),
where (2, %, I) is a k-context rewriting system such that for each i = (ur,,v — t,ur) € I it holds
that v € ¥ and ¢t = €. Since ¢ is always the empty word, we use the notation i = (ur,, v, ug).
A k-cl-RA M accepts the language

L(M)={weX|wht) €},

where F); denotes the rewriting relation —7 of M = (3,%,I). The term L(k-cl-RA) denotes
the class of languages accepted by k-cl-RA.

Like in jumping finite automata, one may consider the generative approach to languages ac-
cepted by clearing restarting automata. In this case, the generative approach is formalized by
writing we 4 w; instead of wy F ws.
The notions of k-cl-RA and insertion systems of size (x, k, k) are very similar since the gener-
ative approach makes it possible to consider insertions instead of deletions in a k-cl-RA. The
differences between the models are:

1. Insertion systems use finite sets of atoms, while k-cl-RA use only € as an atom.
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2. k-cl-RA use the markers ¢ and $ in contexts.
The first point does not make a real difference:
Theorem 5.15. It holds that INS™" C k-cl-RA.

Proof. Let I = (X,%, A, I,0) be an insertion system. The language of I is accepted by the
k-cl-RA R = (¥,IUIy4), where I4 = {(¢,v,9) | v e A} O

The following observation says that the second point may be overcame by explicit endmarking;:
Theorem 5.16. If L € k-cl-RA, then ¢L$ € INSFF.

Proof. Let R = (X,I) be a k-cl-RA. The language of R is accepted by the insertion system
I=(%,%{e},1,0). O

5.2 Closure Properties of the Class GJFA

The present section contains the following contributions:

1. We correct erroneous claims from [64] and [65] about closure properties of the class GJFA
- if fact it is not closed under homomorphism nor under inverse homomorphism.

2. We answer the open questions about closure properties of GJFA formulated in the two
publications. Specifically, we disprove the closure under shuffle, Kleene star and Kleene
plus, and prove the closure under reversal.

Endmarking — -

Concatenation — -
Shuffle - <
Union +
Complement —

Intersection —

Int. with regular languages — —

Kleene star —

Kleene plus —

<SS
|

Reversal +
Substitution — —

Regular substitution — —

Finite substitution -

Homomorphism —

e-free homomorphism —

L 2R 2R 2R 2
|

Inverse homomorphism —

5.2.1 A Necessary Condition for Membership in GJFA

In order to formulate our main tools for disproving membership in GJFA, the following technical
notions remain to be defined.

Definition 5.17. A language K C ¥* is a composition if it can be written as
K=€e+vgv4_14¢ - vy vy,
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where vy, ...,v4 € ¥* and d > 0. A composition is of degree n if |v;| < n for each i € {1,...,d}.
For each n > 0, let UC,, denote the class of languages L that can be written as

L=|JK
KeC

where C is any (possibly infinite) set of compositions of degree n. We also denote UC =
Unso UCs.

Actually, the class UC,, for n > 1 consists of the languages accepted by infinite-state machines
that work like GJFA of weight n. The corresponding languages may not be recursive. However,
we use the membership in UC only as a technical necessary condition for membership in GJFA.

Lemma 5.18. GJFA C UC.

Proof. Let M = (Q,%, R, qo, F') be a GJFA. Let P be the set of all accepting paths in M.
According to Lemma 5.10, we have

L(M) = U (6 <~ Up,d < Up,d—1 ¢ "+ < Up2 < Up71),
peP

where vp1,...,Vp,q is the labeling of p. O

The following lemma deals with the language L = {ab}”, which serves as a canonical non-GJFA
language in the proofs of our main results.

Lemma 5.19. The language L = {ab}” does not lie in GJFA.

Proof. Suppose for a contradiction that L € UC,, with n > 0. Fix w = (ab)nﬂ. According to
the definition of UC,,, w lies in a composition K C L of the form

K=K v

of degree n, denoting the last inserted word by v instead of v1.Thus, w = ujvus for ujus € K'.
As |v| < n, at least one of the following assumptions is fulfilled:

1. Assume that |ui| > 2 and write u; = abu;. If v starts by a, we have avbu; € K. If v
starts by b, we have abvu; € K.

2. Assume that |us| > 2 and write us = Ugab. If v starts by a, we have Tgavb € K. If v
starts by b, we have usabv € K.

In each case, K contains a word having some of the factors aa and bb. Thus K ¢ L, which is a
contradiction.
O

5.2.2 The Main Results

The table below lists various unary and binary operators on languages. The symbols +, —
tell that a class is closed or is not closed under an operator, respectively. A similar table
was presented in [64, 65], containing several questionmarks. In this section we complete and
correct these results. The symbol < marks answers to open questions and the symbol ¢ marks
corrections.

Before proving the new results, let us deal with the closure under intersection. The following
theorem is stated also in [64, 65], but we find the presented proof insufficient.

Theorem 5.20. GJFA is not closed under intersection.
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Proof. Let ¥ = {a,a} and L = L(M) for

M = ({q;r};zvRaq’{r})7
R = {(q,ﬁmq),(q,aa,r)},

as depicted in Figure 5.1. For each d > 1 there is exactly one accepting path of length d in M.

L= Ka,

d>1

According to Lemma 5.10, we have

where Ky = € < aa and K;;1 = K; < aa for i > 1. We show that
DNL={aa}", (5.1)

where D € GJFA is the Dyck language from Example 5.7, and {a@}” does not lie in GJFA
due to Lemma 5.19. The backward inclusion is easy. As for the forward one, it is enough to
verify that D N Ky C {aa}” for each d > 1. The case d = 1 is trivial since K; = {aa}. In order
to continue inductively, fix d > 2. For any w € D N K4, we have w = ujaaus for uius € Kgq_1.
From D = € <* aa it follows that uy € DaD, us € DaD, and thus, uyjus € D. By the induction
assumption, ujus € {aa}”. Hence w € {aa}” (@a) {aa}” or w € {aa}" a(aa)a{aa}”. The first
case implies w ¢ D, which is a contradiction, and the second case implies w € {a@}”". O

The next theorem shows that some of the announced results actually follow very easily from
Lemma 5.19, which claims that {ab}* ¢ GJFA. Theorems 5.22 and 5.23 provide special
counter-examples for the closure under inverse homomorphism and shuffle.

Theorem 5.21. GJFA is not closed under:
1. Kleene star,
2. Kleene plus,
3. e-free homomorphism,
4. homomorphism,

5. finite substitution.

Proof. We have {ab} € GJFA and {ab}" ¢ GJFA due to Lemma 5.19. As GJFA is closed
under union, {ab}" ¢ GJIFA as well. As for e-free homomorphism, consider ¢ : {a}* — {a,b}*
with p(a) = ab. We have L = {a}* € GJFA and ¢(L) = {ab}" ¢ GIJFA. Trivially, ¢ is also a
general homomorphism and a finite substitution. O

aiay

LDan )

Figure 5.1: The GJFA M with DN L(M) = {aa}”

a1a1,a202

LD

Figure 5.2: The GJFA M with L(M) = ngngang



Theorem 5.22. GJFA is not closed under inverse homomorphism.
Proof. Let ¥ = {a1,a1,a2,a2} and

M
R

({a,r}. 5, R, q,{r}),
{(q,a1a1,q), (¢, a2a2,q) , (¢, @ra17)},

see Figure 5.2. Let L = L(M). Observe that L = DsayDsay Do, where Dy is the semi-Dyck
language with two types of brackets: aj,a; and as,a2. According to Example 5.7, Do € GJFA.
Let ¢ : {a,b}" — X* be defined as

= a0z,

s 5
= =
~—
[

asa1.
We claim that ¢~!(L) = {ab}”", which means
LNrng(p) = {ajazaza; }”.

The backward inclusion is easy - we have {@jasaza;}* C @ Doay. As for the forward inclusion,
take any w € L Nrng(yp) and fix v = x; ...z, such that p(v) = w and z1,...,2, € {a,b}. As
w € rng(y), w starts by @1 or @z and ends by a; or as. Thus w € @y Dsay, 1 = a, z,, = b, and

w = a1a2p(x2) ... o(Tp_1)d2a1,
where
azp(x2) ... p(xp_1)a2 € Do.

None of the factors asa; and ai@s can occur in Ds. It follows that o = b and we continue by
induction: for each i = 2,...,m — 2 it holds that

T; = a <= xiJrl:b,
which implies v € {ab}* and w € {ajazaza;}”. O

Theorem 5.23. GJFA is not closed under shuffle.

Proof. Again, we fix ¥ = {a;,a1, as, a3z} and consider the semi-Dyck language L = Dy € GJFA
over ¥. We claim that shuffle(Ds, D3) ¢ GIJFA. According to Lemma 5.18 we assume for a
contradiction that shuffle(Dy, D) € UC,, for n > 1. Denote w = aJajatay. The word w lies
in a composition K of degree n having the form K = K’ < v, so w = ujvus for ujus € X*.
Clearly, there is ¢ € {a1, a2} such that at least one of the following assumptions is fulfilled:

1. Assume that v contains z. As |v] < n, it cannot contain Z. The word wujusv lies in K but

it contains an occurrence of x with no occurrence of T on the right, so it does not lie in

shuffle(Daq, D3).

2. Assume that v contains T. As |v| < n, it cannot contain z. The word vujug lies in K

but it contains an occurrence of T with no occurrence x on the left, so it does not lie in
shufﬂe(Dg, DQ)

Theorem 5.24. GJFA is closed under reversal.
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Proof. Let M = (Q,%, R, qo, F) be a GJFA. We claim that the automaton

MR = (QaZLRquO,F),
RF = {(q,vRJ) | (q,v,7) € R}

accepts L(M)R. Due to symmetry, it is enough to prove L(M)R C L(MR). According to
Lemma 5.10, we just observe that

(€4 Vg Vg1 4 v v)F C el il
L(M"Y)

N

for each accepting path in M with labeling v1, ..., vq4. O

5.3 Clearing Restarting Automata with Small Contexts

Though the basic model of clearing restarting automata is not able to describe all context-
free languages nor to handle basic language operations (e.g. concatenation and union) [25], it
has been deeply studied in order to design suitable generalizations. The study considered also

restrictions of the maximum context length in rewriting rules:

Theorem 5.25 ([25]).
1. Foreach k > 3, the class L(k-cl-RA) contains a binary language, which is not context-free.
2. The class L(2-cl-RA) contains a language L C ¥* with |X| = 6, which is not context-free.
3. The class L(1-cl-RA) contains only context-free languages.

The present section is devoted to proving the following theorem, which completes the results
listed above.

Theorem 5.26. The class £(2-cl-RA) contains a binary language, which is not context-free.
In order to prove Theorem 5.26, we define two particular rewriting systems:

1. A 1l-context rewriting system R,v = ({u,V},{u,V}, I,v). The set I,y is listed in Table
5.1.

2. A 2-clearing restarting automaton Rgy = ({0,1}, lo1). The set I,y is listed in Table 5.2.

We write —,v for the rewriting relation of R,v and y; for the production relation of Ro;.

(@) (b) 0 Q)
0) (¢, e = uu, $) 0) (¢,00,9) - - -
D | (¢,u—uuV,e) D | (¢10,00) | (¢,00,10) ; ;
2) | (e, Vu — uuuV, e) 2) | (01,10,00) | (00,11,01) | (11,00,10) | (10,01,11)
3) | (¢, Vu— uuuu, $) 3) | (01,10,08) | (00,11,08%) - -
Table 5.1: The rules Iy Table 5.2: The rules Io; sorted by types 0 to 3

The key feature of the system R,y is:

Lemma 5.27. Let w € L(Ryy) N {u}”. Then |w| =2 -3" for some n > 0.
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The proof is postponed to Section 5.3.1. We also define:

1. A length-preserving mapping ¢ : {0,1}* — {u,V}* as o(z1...2,) = F1 ... T,, where

T =

_ V ifl<k<nand zp_1 = xp41
u otherwise

for each k € {1,...,n}.

2. A regular language K C {0,1}":

K = {w € {0,1}" | w has none of the factors 000,010, 101, 111} .

The following is a trivial property of ¢ and K:

Lemma 5.28. Let u € {0,1}". Then u € K if and only if p(u) € {u}".

The next lemma expresses how the systems Ry, and R,y are related:

Lemma 5.29. Let u,v € {0,1}". If u o1 v, then p(u) —yv ©(v).

Proof. For u = v the claim is trivial, so we suppose u # v. Denote m = |u|. As u can be

rewrote to v using a single rule of Ry, we can distinguish which of the four kinds of rules (the
rows 0 to 3 of Table 5.2) is used:

0)

1)

If the rule 0 is used, we have u = € and v = 00. Thus ¢(u) = € and p(v) = uu.

If a rule (&, 21292,4192) of the kind 1 is used, we see that v has some of the prefixes
1000,0010 and so ¢(v) starts with uuV. Trivially, ¢(u) starts with u. Because u[l..] =
v[3..], we have p(u)[2..] = ¢(v)[4..] and we conclude that applying the rule (¢, u — uuV,€)
rewrites p(u) to ¢(v).

If a rule (1229, 2122, y1y2) of the kind 2 is used, we have

ulk.k+3] = ziz2y1Y0,
vlk.k+5] = x1292122Y1Y2.
for some k € {1,...,m—3}. As z1xoy1y2 equals some of the factors

0100, 0001, 1110, 1011, we have
p(u)lk + 1.k + 2] = Vu.
As x1292120y1y2 equals some of the factors 011000,001101,110010,100111, we have
e(v)[k + 1.k + 4] = uuuV.

Because u[..k + 1] = v[..k + 1] and ulk + 2..] = v[k + 4..], we have

Now it is clear that the rule (¢, Vu — uuuV,€) rewrites ¢(u) to p(v).

3) If a rule (129, 2122, y$) of the kind 3 is used, we have

ulm —2.m] = xzix9y,

vm—2.m+2] = z1x92122y.
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As z129y equals some of the factors 010,000, we have
pu)m—1..m] = Vu.
As x1w921 20y equals some of the factors 01100,00110, we have
pv)m—1.m+2] = uuuV.
Because u[..m — 1] = v[..m — 1], we have
plm—2 = p@)lm-2,

Now it is clear that the rule (e, Vu — uuuu, $) rewrites p(u) to ¢(v).

Corollary 5.30. If u € L(Ry1), then o(u) € L(Ryv).

Proof. Follows from the fact that ¢(e) = € and a trivial inductive use of Lemma 5.29. O

The last part of the proof of Theorem relies of the following lemma, whose proof is postponed
to Section 5.3.1:

Lemma 5.31. For each o, 8 > 0 it holds that
00 (1100)* 1000 (1100)” =, 00 (1100)**? 1000 (1100)" " .
Corollary 5.32. For each 8 > 0 it holds that
001000 (1100)” =%, 00 (1100)? 1000.

Proof. As the left-hand side is equal to 00 (1100)° 1000 (1100)” and the right-hand side is equal
to 00 (1100)% 1000 (1100)°, the claim follows from an easy inductive use of Lemma 5.31. [
Corollary 5.33. The language L(Ro1) N K is infinite.

Proof. We show that for each k > 0,

2.9k _

00(1100)" = € L(Rm)-

In the case k = 0 we just check that 00 € L(Rp1). Next we suppose that the claim holds for a
fixed k& > 0 and show that

2.9k 2 2.9k+1_o

00(1100) 7 -, 00(1100) " =

Using the rules 1a and 1b we get

2.9k _2 2.9k _2 2.9k _2
1

00(1100)~ 7 g, 1000 (1100) " -, 001000 (1100) ,

while Corollary 5.32 continues with

k_o 2.9k+1_18

HT g 00(1100) T 1000

001000 (1100)

gk+1_
Finally, denoting p = 00 (1100)2 94 18, using rules 2b, 2a, 2b, 2d, 2¢, and 2a respectively we
get
1000 —p1 p100110 —p7 p11000110 p; p1100110110 91 p110011001110 gy

2.9k+1_o

o1 p11001100110010 o3 p1100110011001100 = 00 (1100) ~ ~
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We conclude the proof of Theorem 2.8 by pointing out that Lemmas 5.28, 5.29, and 5.27 say
that for each w € {0,1}" we have

we L(Rn)NK = ¢(w)e L(Ruy)N{u}”
= (In>0)|w=2-3"
This, together with the pumping lemma for context-free languages and the infiniteness of

L(Ro1) N K, implies that L(Rp1) N K is not a context-free language. As the class of context-free
languages is closed under intersections with regular languages, nor L(Ry1) is context-free.

5.3.1 Proofs of Lemmas 5.27 and 5.31

Proof of Lemma 5.27. We should prove that w € L(Ryy) N {u}” implies |w| = 2 - 3" for some
n > 0. Let ® : {u,V}* — N be defined inductively as follows:

De) = 0,
P(wfw) = k+@(w),
d(Vw) = 143-d(w)

for each k > 1 and w € {u, V}*. Observe that we have assigned a unique value of ® to each
word from {u, V}*. Next, we describe effects of the rules of R,y to the value of ®.

0) The rule 0 can only rewrite w; = € to wy = uu. We have ®(w;) = 0 and ®(wz) = 2.

1) The rule 1 rewrites w; = uw to we = uuVw for some w € {u, V}*. We have ®(w;) =
1+ ®(w) and ®(wz) =3+ 3 - &(w). Thus, ®(wz) =3 - P(w).
2) The rule 2 rewrites wy = WVuw to we = wuuuVw for some w,w € {u, V}*. We have
®(Vuw) = ¢(uuuVw) =4+ 3 - ¢(w).

It follows that ®(wq) = ®(w2).

3) The rule 3 rewrites w; = WVu to wy = wuuuu for some w € {u, V}*. We have ®(Vu) =
®(uuuu) = 4 and thus ¢(wq) = (ws).

Together, each w € L(R,y) has ®(w) = 2-3" for some n > 0. As ®(w) = |w| for each w € {u}",
the proof is complete.

O

Proof of Lemma 5.31. We should show that
00 (1100)“ 1000 (1100)5 =5, 00 (1100)0‘Jr9 1000(1100)571
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holds for each «, 5 > 0. Indeed, it is enough to apply the following rules:

00 (1100)* 1000 (1100)” o1 00 (1100)* 100110 (1100)” o1

00 (1100)* 11000110 (1100)° oy 00 (1100)** 110110 (1100)” o1

00 (1100)*** 11001110 (1100)® —; 00 (1100)*"2 111001 (1100)” o1

00 (1100)**%11001001 (1100)® —; 00 (1100)*"* 110001 (1100)” o1

00 (1100)*™* 1101 (1100)” —; 00 (1100)*™* 1101100100 (1100)° ™+ gy

00 (1100)*** 110011100100 (1100)” 00 (1100)**? 1100100100 (1100)° ™+ g,
00 (1100)**7 011000 (1100)”~* o1

00 (1100)

1100)*77 1100111000 (1100)° o,

)
00 (1100)**° 11000100 (1100)”
00 (1100)**7 11011000 (1100)”
00 (1100)*** 11001000 (1100)° "

1
1

o1
1
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Chapter 6
Conclusions and Future Work

Synchronization Thresholds

In Chapter 2 we have proved that the subset synchronization threshold of DFA and the careful
synchronization threshold of PFA are both strongly exponential even under two heavy restric-
tions: binary alphabets and strong connectivity. The multiplicative constants in the exponents
do not seem to be the largest possible, so it may deserve a more precise study to determine
the threshold functions. There is also no method for giving upper bounds concerning various
alphabet sizes. If the éerny conjecture holds, binary cases are the hardest possible for the
classical synchronization of DFA, but this still may not hold in the generalized settings.

From a more general viewpoint, our results give a partial answer to the informal question:
Which features of DFA are needed for obtaining strongly exponential thresholds of subset syn-
chronization? However, for many interesting restrictions we do not even know whether the cor-
responding thresholds are superpolynomial. Namely, such restricted classes include monotonic
and aperiodic automata, cyclic and one-cluster automata, Eulerian automata, commutative
automata and others. For each of these classes it is also an open question whether SUBSET
SYNCHRONIZABILITY (or CAREFUL SYNCHRONIZABILITY) is solvable in polynomial time with
the corresponding restriction. Moreover, for the careful synchronization threshold car(n) the
gap between the lower bound O(n2 ~4%) and the upper bound Q(3%) is open, though it is
subject to an active research.

There are several current research directions related to the classical synchronization of DFA.
One of them, concerning binary automata with sink states, was discussed in Section 2.2. Our
new series does not seem to present the worst possible cases, but it still may be useful in further
research. Other such directions include the study of Eulerian automata: a current common work
of the author and Marek Szykula should present certain series of Eulerian DFA (see Figure 6.1),

where each n-state automaton with odd n has reset threshold equal to "zg 2 which is the value
that is conjectured to be the worst possible according to computational search.

As for general upper bounds, the new method used recently by Trahtman (see Section 1.3.2) still

Oé:z 153 « 153 o « I} o
B a B
a B a
5:;( o ,6 5 (e} 5 « w1,5

Figure 6.1: A series of n-state Eulerian automata, which is conjectured to have synchronization
2
threshold equal to "T_2
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seems to provide a possible way for lowering the bound, though the Trahtman’s particular proof
was wrong. Namely, from the correct claims in [93] it follows that if the following conjecture

holds true, then C,, < 4—78713 + C’)(nz) for each n > 1.

Conjecture 6.1. There exists K > 1 such that for each n-state synchronizing DFA A = (Q, %, 0)
and each s € Q there is a word w € ¥* with |w| < Kn and s ¢ §(Q,w).

However, correctness of this simply-looking conjecture is still unknown.

Clever methods were developed for efficient enumeration of non-isomorphic DFA in order to
produce useful experimental data regarding éerny conjecture. So far, the conjecture was verified
for all binary automata with at most 11 states [52]. Besides of that, the experimental results
show certain interesting trends in numerical distributions of possible synchronization thresholds.

Computational Complexity

In Chapter 3 we have closed a former research of restrictions and parameterized complexity of
SYN. Chapter 4 considered restrictions and parameterized complexity of SRCP and restrictions
of SRCW. In the last case we have completely characterized binary words w that make the
problem SRCW NP-complete if restricted to |£| = 2,W = {w}, and proved that if we require
strong connectivity, the case with w = abb becomes solvable in polynomial time, though in the
basic form it is NP-complete. For any w such that the first letter equals to the last one and both
a,b occur in w, we have proved that the NP-completeness holds even under the requirement
of strong connectivity. However, current joint work with Adam Roman should provide a full
classification of binary words even in the strongly connected case (i.e. fill the first column of
Table 4.3). A proof of the following claim is currently being inspected:

Conjecture 6.2. Let w be a word from {a,b}" distinct from abb and baa. If SRCWy (4} is
NP-complete, then SRCW‘;f{w} is also NP-complete.

Other immediate goals of future research are to give classifications of words over non-binary
alphabets and to study SRCW restricted to non-singleton sets of words. As for other compu-
tational problems related to road coloring, there is e.g. an interest in graphs that result in a
synchronizing automaton after any valid coloring of edges. The complexity of recognizing such
graphs is unknown.

Important computational tasks also include recognizing automata with various order-preserving
properties that guarantee low synchronization thresholds. While it is known that recognizing
monotonic automata is NP-complete [90], for many related classes there is no such result.

Jumps and Contextual Deleting

It is a task for future research to provide really alternative descriptions of the class GJFA. There
also remain open questions about decidability, specifically regarding equivalence, universality,
inclusion, and regularity of GJFA, see [65]. It also seems that general jumping finite automata
are not an ideal formal model of systems with discontinuous information processing, so it may
deserve a suitable modification or generalization.

As for clearing restarting automata, key open questions deal with A-confluence [67]. Informally,
a clearing restarting automaton is A-confluent if w F* v together with w F* ¢ imply v F* €. For
systems with this property, language membership can be tested in linear time. In general, A-
confluence of a given clearing restarting automaton is undecidable, but it is not known whether
it becomes decidable for 1-clearing restarting automata [67].

Two main generalizations of clearing restarting automata were introduced [25, 97] in order
to enlarge the descriptional power, following trends that occur in related models and keeping
certain simplicity:
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1. So-called A-clearing restarting automata are able not only to delete factors but also to
replace them with a special nonterminal symbol A, which can be then used in contexts.
Surprisingly, it turns out that A-clearing restarting automata accept all context-free lan-
guages [97].

2. In a A*-clearing restarting automaton, a factor may be also replaced with a word of the
form AJ for j > 0.

There are multiple open questions regarding the classes of languages accepted by these two
types of automata [97]. In practical use in linguistics, grammatical inference (i.e. learning) of
such automata from positive and negative examples comes into play. Results and challenges
about grammatical inference of the above models were presented in [24]. There exists software
due to (VJeJrno7 which is suitable for basic experimental work with the generalized variants of
clearing restarting automata and also implements sophisticated learning algorithms.
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