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Introduction

Ultrafilters on natural numbers have been receiving much attention over the
years and many results and constructions of special types of ultrafilters be-
came part of mathematical folklore. There have been several attempts to
connect ultrafilters with families of “small” sets. For our purposes two of
them are important — Gryzlov’s 0-points and #-ultrafilters introduced by
Baumgartner. Both notions denote ultrafilters that contain “small” sets
where “smallness” is defined by zero asymptotic density in the first case and
a prescribed family .# in the second case. Not only the ultrafilter itself con-
tains such a set, but also many other ultrafilters, images under permutations
in the first case and under all functions in the second case.

Gryzlov defined O-points in his talk during the 12th Winter School on
Abstract Analysis in Srni and he constructed such ultrafilters in ZFC (see
[17], [18]). His investigation was stimulated by a question of van Douwen.

The definition of #-ultrafilter which was given by Baumgartner in [2]:
Let £ be a family of subsets of a set X such that .# contains all singletons
and is closed under subsets. Given a free ultrafilter % on w, we say that %
is an #-ultrafilter if for any F': w — X there is A € % such that F[A] € #.

Baumgartner defined in his article discrete ultrafilters, scattered ultra-
filters, measure zero ultrafilters and nowhere dense ultrafilters which he ob-
tained by taking X = 2“, the Cantor set, and .# the collection of discrete
sets, scattered sets, sets with closure of measure zero, nowhere dense sets
respectively. If we let .# be the collection of sets with countable closure then
we obtain countably closed ultrafilters which were introduced by Brendle
[6]. Yet another class of #-ultrafilters was introduced by Barney in [1] by
taking .# to be the sets with o-compact closure. All these classes of ultra-
filters are proved to be pairwise distinct under some additional set-theoretic
assumptions (Continuum Hypothesis or some form of Martin’s Axiom). It
seems that some additional set-theoretic assumptions cannot be avoided com-
pletely when speaking about .#-ultrafilters because Shelah [25] proved that
it is consistent with ZFC that there are no nowhere dense ultrafilters, which
implies that the existence of any of these ultrafilters (being a subclass of
nowhere dense ultrafilters) is not provable in ZFC. (These “topologically”
defined ultrafilters are of certain importance, e.g., in the forcing theory, as
the result of Blaszczyk and Shelah [4] shows).

Another example of #-ultrafilters are ordinal ultrafilters which were de-
fined also in [2] by taking X = w; and & = {A C w; : A has order type <
a} for an indecomposable ordinal . It was also Baumgartner [2] and Brendle
(6] who studied .#-ultrafilters in this setting and presented several interesting



results, but it remains an open question whether these “ordinal” ultrafilters
exist in ZFC. The ambition of this thesis, however, is not to solve this intrigu-
ing question whose solution probably requires advanced forcing techniques.

We study in this thesis #-ultrafilters in the setting X = w and .# is
an ideal on w or another family of “small” subsets of natural numbers that
contains finite sets and is closed under subsets. So we consider as .# the
family of sets with asymptotic density zero, the summable ideal or the family
of thin sets or (SC')-sets. We prove that it is consistent with ZFC that such
ultrafilters exist and investigate sums and product of these ultrafilters.

We investigate also relationships of such ultrafilters to other well-known
classes of ultrafilters among others to P-points which can be described as
Z-ultrafilters in two ways: If X = 2 then P-points are precisely the
Z-ultrafilters for .# consisting of all finite and converging sequences, if
X = w; then P-points are precisely the .#-ultrafilters for & = {A C w; :
A has order type < w} (see [2]). It seems that there is no family .# of sub-
sets of natural numbers such that P-points are precisely the .#-ultrafilters,
but we can relate all the introduced classes of .Z-ultrafilters to P-points.

Finally, we approach the position of Gryzlov. We weaken the notion
of Z-ultrafilter so that we restrict the functions considered in definition of
an .#Z-ultrafilter to finite-to-one functions at first and then to one-to-one
functions and we construct in ZFC such an ultrafilter with the summable
ideal chosen for .#, which strengthens Gryzlov’s result.

The structure of the dissertation is as follows: After reviewing basic no-
tions we introduce in chapter 1 several collections of “small” subsets that we
use to define corresponding classes of #-ultrafilters. Chapter 2 is devoted
entirely to #-ultrafilters and the relationship of various classes of ultrafilters
and it contains, for instance, a construction of a hereditarily rapid ultrafilter
that is not a @-point. Sums and products are studied in chapter 3. The
thesis ends with chapter 4 in which we adopt Gryzlov’s approach. We focus
on weaker forms of #-ultrafilters and construct a summable ultrafilter.

Some parts of this thesis have been already published or accepted for pub-
lication. Some results from section 2.3 can be found in [13] or [14] (eventually
under different set-theoretic assumptions); section 4.2 is based on [15].



Basic notions

Given a non-empty set X we will denote by (X)) the power set of X, i.e.,
the set of all subsets of X. The set of all natural numbers is w and we denote
N = w )\ {0}. We will denote by ¢ the cardinality of the continuum or the
cardinality of Z(w).

The set of all finite subsets of w is denoted by [w]<“, the set of all infinite
subsets of w by [w]* as usual. We denote the set of all functions from w to w
by “w. Let us recall the quasiorder <* on “w: for f, g € “w we write f <* g
if and only if there is n € w such that f(m) < g(m) for every m > n. A
family F C “w is called a dominating family in (Yw, <*) if for every g € “w
there exists f € F with g <* f.

Continuum Hypothesis and Martin’s Axiom

It was already stated in the introduction that some additional set-theoretic
assumptions seem to be necessary when speaking about .#-ultrafilters. We
mention here two of them: the Continuum Hypothesis and Martin’s Axiom.

The Continuum Hypothesis (CH in abbreviation), 2¢ = w,;, enables us
for example enumerate all functions from w to w by countable ordinals. MA
stands for Martin’s Axiom, which is implied by CH, but not equivalent to it
(see [20]).

We deal mostly with Martin’s Axiom for countable posets (in abbreviation
MA.:ple), which is a weaker form of Martin’s Axiom. However, before we say
what MA_ e i8S, let us recall some definitions concerning posets.

Let (P,<p) be a poset. A set D C P is dense in P if (Vp € P) (3¢ <p p)
qe€D. Aset 9 CPisa filterin Pif(Vp,qe¥) (Fre¥)r<pp&kr<pq
and (Vp € ¢4) (Vg € P) p <p g implies ¢ € 4.

MA_ .. is the statement: Whenever (P, <p) is a non-empty countable
poset, and 2 is a family of < ¢ dense subsets of P, then there is a filter ¢
(called a 2-generic filter) in P such that (VD € 2) 4 N D # 0.

Filters and ideals

Let X be a nonempty set and # C P (X), # # (). We say that Z is
a k-linked family if Fo N FyN---N F} is infinite whenever F; € %, i < k.
a centered system if % is k-linked for every k.
a filter base if F # () for every F € % and if Fy, F, € .Z then there is
F € % such that FF C F] N Fs.
a filter (on X) if Z is a filter base and whenever F' € # and F C G C X

then G € Z.



an ultrafilter (on X) if % is a filter and for every M C X either M or
X \ M belongs to #, i.e., # is a maximal filter on X.

Observe that a filter on X is precisely a filter in the poset (Z(X), C).

If % is a centered system then the smallest filter (base) that contains
F is called the filter (base) generated by # and we denote it by ((#))
((:#)). To obtain a filter base we have to add all finite intersections of sets
from .# and we have to add all supersets of sets in the filter base to get a
filter. An example: if # C (X)) is a filter base that is closed under finite
intersections and A C X such that # U {A} is a centered system (we say
that A is compatible with F') then (F UA) = FU{A}U{FNA:F e .7}
and ((F)={MCX:(3Fe F)FNAC M}.

An (ultra)filter .Z is called free if ({U : U € F} = 0 and it is called
fized (or principal) if {U : U € F} # 0.

The character of % is the minimal cardinality of a subfamily of .# that
generates %, we write x(-%) = min{|4| : Z C Z, (X)) = F}.

An ideal is a dual notion to filter. Hence .# C £ (X) is an ideal on X if
it is a non-empty proper subset of (X ) and it is closed under subsets and
finite unions.

If # C Z(X) is a filter then #* = {X \ F : F € Z} is the dual ideal
to & and if # C Z(X) is an ideal then #* ={X \ A: A € £} is the dual
filter to Z.

A basic example of an ideal is the principal ideal #4 = {B C X : B C A}
for a given A C X or the Fréchet ideal, the family of all finite subsets of the
given set. The dual filter is called the Fréchet filter and consists of cofinite
subsets. Dual ideals to ultrafilters are called maximal ideals.

The smallest ideal that contains a family A C Z?(w) is the ideal generated
by A, denoted (A). A family A that generates an ideal .# is the base of .#
and the character of # is the minimal cardinality of a base of the ideal, i.e.,
x(#) =min{|A|: (VI € F)(Fk € w)(FA;,..., Ay € A)I C A U---U A}

The following definition is crucial for our future considerations:

An ideal & C P (w) is called tall if every A € £ contains an infinite

subset that belongs to the ideal .#.
For every A, B C w we say that A is almost contained in B and we write

A C* B if A\ B is finite. Using this notation we recall the definition of the
pseudorntersection number:
p = min{|Z#|: F C P(w) is centered, ~((IA € [w]*)(VF € F)A C* F)}

It is not difficult to prove that x(#) > p for every tall ideal .#.

We say that an ideal .# is a P-ideal if whenever A, € .4, n € w, then
there is A € .# such that A,, C* A for every n.



Rudin-Keisler order and Katétov order

The Cech-Stone compactification of w, denoted by fw, is the unique (up to
homeomorphism) compact space that contains w as a dense subset and such
that for every compact space K and every continuous function f : w — K
there is a continuous extension (f : fw — K called the Stone extension. It
implies that every function f : w — w has its Stone extension 3f : fw — [w.

We identify points of fw with ultrafilters on w. The points of the remain-
der w* = fw \ w correspond to the free ultrafilters on w, the fixed ultrafilters
are identified with points of w.

Let %,¥ € PBw. Observe that Z = {f[U] : U € %} is a filter base.
We denote by Bf(% ) the filter generated by & and it is easy to check that
Bf(%) is indeed an ultrafilter. It is easily verified that Sf(%) = ¥ iff
VU e%) flUlev if( VW e¥) fflV]eZ.

We write % ~ ¥ if there exists a permutation 7 of w such that gn (%) =
% . It is clear that the relation = is an equivalence relation on [w.

For %, Vv € PBw we write % <gix ¥ iff there is f € “w such that
Bf(¥) = %. The relation <gg is a quasiorder since the relation is not
antisymmetric, but we get the Rudin-Keisler order if we consider the quotient
relation defined by <gpx on fw/=.

Katétov order < is an extension of the Rudin-Keisler order to arbitrary
filters or ideals. We write # <y ¢ if there exists a function f : w — w such
that f~1[U] € ¢ for every U € #. It is easy to check that # <y ¢ if and
Ollly if Z#* <K @G>,

We say that C C pw is closed downward under <gpyx if % € C and
¥V <prx % implies ¥ € C.

Some well-known ultrafilters

We will investigate relations between some classes of .Z-ultrafilters and sev-
eral well-known classes of ultrafilters in chapter 2. We summarize in this
section the definitions and equivalent descriptions of ultrafilters on w that
we will consider. Two types of ultrafilters, hereditarily Q-points and heredi-
tarily rapid ultrafilters namely, are newly introduced.

A free ultrafilter % is called a P-point if for all partitions of w, {R; : i €
w}, either for some ¢, R; € %, or (U € %) (Vi € w) [UNR;| < w. An
equivalent combinatorial description is: a free ultrafilter % is a P-point if
and only if whenever U, € %, n € w, there is U € % such that U C* U,
for each n (i.e. P-points are dual filters to maximal P-ideals). The class of
P-points is downward closed under Rudin-Keisler order (see e.g. [11]).



A free ultrafilter % is called a selective ultrafilter (or a Ramsey ultrafilter)
if for all partitions of w, {R; : ¢ € w}, either for some i, R; € %, or (3U € %)
(Vi € w) |UNR;| < 1. We will profit also from the following equivalent
characterization of selective ultrafilters: if % is a selective ultrafilter on w
then for every f € “w there is U € % such that f [ U is either one-to-one
or constant (see [11]). It is also proved in [11] that selective ultrafilters are
minimal in Rudin-Keisler order on ultrafilters.

Every selective ultrafilter is a P-point, but the converse is not true.

A free ultrafilter % is called a Q-point if for every partition {Q, : n € w}
of w into finite sets there exists U € % such that (U N Q.| < 1 for every
n € w. The notion of @-point was introduced by Choquet [10]. An equivalent
description of ()-points, known also as rare ultrafilters, was given by Mathias
in [21]: an ultrafilter % is a Q-point if every finite-to-one function is one-to-
one on a set in %.

It folows from the definition that every selective ultrafilter is a Q-point. A
(Q-point need not be a selective ultrafilter, but it is selective if the ultrafilter
is also a P-point.

A free ultrafilter % is called a rapid ultrafilter if the enumeration functions
of its sets form a dominating family in (“w, <*) where enumeration function
of a set A is the unique strictly increasing function e, from w onto A. Rapid
ultrafilters (called also semi-@-points by some authors) are due to Choquet
[10] resp. Mokobodzki [23].

We say that a free ultrafilter % is a hereditarily Q-point (rapid ultrafil-
ter) if it is a Q-point (rapid ultrafilter) such that for every ¥ <px % the
ultrafilter ¥ is again a Q-point (rapid ultrafilter).

It is known that every @-point is a rapid ultrafilter and, obviously, ev-
ery hereditarily @-point is then a hereditarily rapid ultrafilter. Bukovsky,
Coplékové showed in [7] under additional set-theoretic assumptions that
rapid ultrafilter need not be a @Q-point. This result is strengthened in Proposi-
ton 2.4.6 in chapter 2 where we construct a hereditarily rapid ultrafilter which
is not a @Q-point assuming Martin’s Axiom for countable posets.

It is consistent that all the above mentioned types of ultrafilters exist
under various set-theoretic assumptions (for instance, Booth [5] proved that
selective ultrafilters exist if Martin’s Axiom holds). However, there exist
various models of set theory showing that it is consistent with ZFC that no
such ultrafilters exist. A model with no P-points constructed Shelah [24].
Miller [22] showed that there are no Q-points (or even rapid ultrafilters) in

the Laver model.



1 Small subsets of natural numbers

Several collections of “small” subsets of w are presented in this chapter. We
summarize definitions, give some equivalent descriptions in some cases and
show the relationships among the various types of small sets.

The following diagram summarizes inclusions between the classes of thin
sets, (SC)-sets, (S)-sets and (H)-sets which are defined in the following

sections.

thin sets

( (SC)—sets)

(H )-sets

Some more ideals on w are described in the last section of this chapter.
They do not appear in the diagram because their relation to the other classes

is not clear enough.

1.1 Thin and almost thin sets

Definition 1.1.1. An infinite set A C w with enumeration A = {a,, : n € N}
is called thin (see [3]) if limy o 722 = 0.

n

An example of a thin set is the set {n!: n € w}. The family of thin sets
is the smallest subset of #?(w) we will consider. A slightly larger collection
of subsets of w represent the almost thin sets.

Definition 1.1.2. An infinite set A C w with enumeration A = {a, : n € N}

an

is called almost thin if lim sup,,_, e % s

It is obvious that every thin set is almost thin. The converse is not true,
see for example the set {2" : n € w}.

Neither the family of thin sets nor the family of almost thin sets is an
ideal. To see this consider sets A = {n!:n € w} and B={n!+1:n € w},
which are thin but the union A U B is not even almost thin.

We will denote the ideal generated by thin sets by .7 and the ideal gen-
erated by almost thin sets by &/. Both ideals extend the Fréchet ideal.
Obviously, &/ O .7 and the following lemma shows that the ideals do not

coincide.

Lemma 1.1.3. A={2":ncw}e &\ 7.



Proof. Since A is almost thin it belongs to the ideal .&/. Assume for the

contrary that there are thin sets A,,..., Ay such that A C A, U---U A,. For
every ¢ = 1,...,k there is n; € w such that whenever a,b are two elements
of A; with n; < a < b then § < 2% Let ng = max{n; : i = 1,...,k} and
consider the set {270,2m0*1 . 2m0+k}  Each of its k + 1 elements belongs
to A; for some i, so there is ip such that A;, contains two of them. For these
elements we have n;, <a <band § > 5%}3—;; = 2% — a contradiction. O

Lemma 1.1.4. Let A be a subset of w. If A € T then (Ik € w) (Vn € w)
|JAN[2%, 2" +n]| < k.

Proof. Assume for the contrary that A € Z and (Vk € w) (3In € w) |AN
[27, 2™ + n]| > k. It follows from A € 7 that there are thin sets A,,..., A,
such that A = U:L A;. For every i« = 1,...,m there exists n; such that
the ratio of any two successive elements in A; which are greater than n; is
less than % Let ng = max{m + 1,n; : ¢ = 1,...,m}. According to the
assumption there exists n € w such that |[A N [2" 2" + n]| > ng. Now from
the Pigeon Hole Principle we have |A; N [2",2" + n]| > 2 for some i. Hence
there are two successive elements in A; greater than n; whose ratio is greater
on

(or equal to) 5 > 5+ — a contradiction. O

Lemma 1.1.5. Neither & nor 7 are P-ideals.

Proof. Consider thin sets Ay = {n!+k :n € w}, k € w. We want to prove
that whenever A C w contains all but finitely many elements of each A, then
A cannot be written as a finite union of almost thin sets, i.e. A ¢ 7.

Let A = |J;; Bj. There exists ng > [ such that the interval [n!,n! + 1] is
contained in A for every n > ng. Therefore one of the sets B; contains two of
its elements. Since there are only finitely many sets Bj;, but infinitely many
n > ng there exists B; such that |B; N [n!,n! + ]| > 2 for infinitely many n.
It follows that B; = {bJ : n € w} is not almost thin because

n!

: b, .
lim sup —— > lim sup =
I+ 1
n—oo  Op.q n—oo T4+

1.2 Sets with property (SC) and (C)
Given A Cw and k € w we define A+k={n:n—-ke A}.

Definition 1.2.1. We say that set A C w has property (SC), in short, A is
an (SC)-set, if (A+ k)N A is finite for all £ € N.

10



Lemma 1.2.2. Every almost thin set has property (SC').

Proof. Let A = {a, : n € N}. If there is £ € N such that {n: a, + k € A}

is infinite then
An (n

lim sup > lim sup =]
n—oo (An+1 n—oo Qn+K
and A is not almost thin. 0

The set of all squares of natural numbers {n? : n € w} has property (SC)
and it is not almost thin.

Lemma 1.2.3. Set A = {a, : n € N} C w has property (SC) if and only if
for every k € N there is ng such that a,1 — an, > k for every n > ny.

Proof. Assume first that A has property (SC). Then M; = {n:a, +i € A}
is finite for every ¢ < k. Let ny = 1 + max|J,., M;. It is easy to see that
(n+1 — Qn > k whenever n > ny. -

On the other hand, if for every k£ € N there is ny such that a,,, —a, >k
for every n > ny then (A + k) N A C {ay,as,...,a,,} is finite. |

The family of sets with property (SC') is not an ideal, consider, e.g., the
union of sets {n? : n € w} and {n*+1 : n € w} that does not satisfy condition
(SC). But it still satisfies a weaker condition (C').

Definition 1.2.4. We say a set A C w has property (C) if (A+ k)N A is
finite for all but finitely many k& € N.

However, even the larger family of sets with property (C') is not an ideal.
There exist two thin sets whose union does not fulfil condition (C').

Example 1.2.5. Let us enumerate prime numbers as {p; : £ € w}. Put
={n!:n € w}, B={(p")!+k:kn € w} Weknow that A is thin.
If b= (p")!'+ k € B and b’ € B is the immediate succesor of b in B then

b« etk o 2p) o 5t '
S5 %p_:“-i-—l)!_ < (pk"k+1)! = =77 Hence B is thin. Obviously, AU B does not

satisfy condition (C') since (AU B)+k)N(AUB) D {(px")! +k:n € w} is
infinite for each k € N.

It follows from the definition that every set with property (SC') has prop-
erty (C'). Although the converse implication is not true it turns out that the
ideals generated by families (SC') and (C') coincide.

Lemma 1.2.6. Families (C) and (SC) generate the same ideal on w.

11



Proof. 1t suffices to prove that every set with property (C') belongs to the
ideal generated by sets with property (SC'). Assign to every set A with
property (C) finite set K4 = {k € N : (A + k) N A is infinite}. We will
proceed by induction on n = |K 4.

If K4 = 0 then A has property (SC') and it trivially belongs to the ideal.

Now, suppose that every set B with |Kz| < n is a finite union of sets with
property (SC') and consider A with |K 4| = n+ 1. Define £ = max K4 and
set Ag=(A+k)NAand A; = A\ Ag. We get (Ag+k)NAyC (A+2k)NA
which is a finite set, and (A + k)N A C (A+k)NANA; = 0 hence
Ka,| < |Ka\{k}| = n and |K4,| < |Ka\ {k}| = n. According to the
induction assumption Ay and A; can be written as a finite union of sets with
property (SC), thus the set A = Ay U A, belongs to the ideal generated by

(SC)-sets. O

Lemma 1.2.7. Let A be a subset of w. Set A belongs to the ideal generated
by (SC)-sets if and only if (3k) (Vd) (Ing) (Yn > ny) |[[n,n+d N A| < k.

Proof. f A= Ay U---UA where A; € (SC) fori=1,...,k then according
to Lemma 1.2.3 there is n}}, i = 1,...,k, such that |[n,n +d] N A;| <1 for
every n > ni. Let ng = max{n} :i=1,...,k}. It is obvious that (Vn > ng)
[n,n+d] N A| < k.

On the other hand, if (3k) (Vd) (3ng) (Vn > ng) |[n,n+d) N A| < k then
put A; = {@mksi : m € w} where {a,, : m € w} is an increasing enumeration
of A. Obviously, A = A; U---U A and it is easy to see that A; € (SC) for
every ¢ = 1,...,k because |A; N [n,n + d]| < 1 whenever n > n,. O

Lemma 1.2.8. The ideal generated by (SC)-sets is not a P-ideal.

Proof. Consider thin sets Ay = {n!+ &k : n € w}, k € w, as in the proof of
Lemma 1.1.5. They have property (SC') and we prove that whenever A C w
contains all but finitely many elements of each A; then A cannot be written
as finite union of sets with property (SC).

Let A = Ujg B;. There exists ng > [ such that the interval [n!, n! + ]
is contained in A for every n > ng. Therefore one of the sets B; contains
two of its elements. Since there are only finitely many sets B;, but infinitely
many n > ng there exists B; such that |B; N [n!,n! 4 ]| > 2 for infinitely
many n. It follows that B; does not satisfy condition (SC') because there are
infinitely many elements in B; with difference ¢ for some 7 < [. ]

1.3 Summable ideal

Definition 1.3.1. Summable ideal is the family {A CN: 3" _, 1 < +oo}.

We call the sets from the summable ideal (5)-sets.

12



Although the summable ideal is defined as an ideal on N we will often
regard it as an ideal on w (which is generated by the summable ideal on N
and {0}).

It follows from the definition that every almost thin set belongs to the
summable ideal. However, there is no inclusion between the summable ideal
and the ideal generated by (SC')-sets.

Example 1.3.2. Consider the set [ J{[2",2" +n) : n € w}. It belongs to the
summable ideal because

but it is obviously not in the ideal generated by (SC')-sets.

Example 1.3.3. Consider a sequence (a, : n € N) of natural numbers
defined by recursion: a; = 1 and apyy = a, + k if n € [2"", 261y Tt is easy
to see that the set A = {a, : n € N} has property (SC). To check that it
does not belong to the summable ideal observe first that for elements of A
we have amx < k- (2% — 1) for every k > 2. So we get for k > 2

¥, — T 1 > i > 2
Qn ~ Qok  Qok + K ag + k(28 — 1) ° agx + k(28 —1) 2k

It follows that
| i 1
an — 2k

and set A is not in the summable ideal.

tod

o0 1 (o @]
L Z
n=1 k=2 n=2

It is a known fact that summable ideal is a P-ideal, but we give the proof
for the sake of completeness.

Lemma 1.3.4. Summable ideal is a P-ideal.
Proof. Let Ay, k € w, be (S)-sets. For every k there is n; such that
1 1
2. = NS
aeAkﬂ[nk,+oo)
Set A = | J{ArN[ng, +00) : k € w}. It is easy to check that A belongs to the
summable ideal and A; C* A for every k € w. O
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Lemma 1.3.5. If A ={a, : n € N} s an (S)-set then lim,,_., -+ = (.

il

n

Proof. We will show that if limsup, ., 2= = ¢ > 0 then A iq not in the
summable ideal. Take ng € N such that & > £, Then Z:” 2

al"lo “1;0 s

By induction construct a sequence (m)k&, bU(ll thist D oy == 2 (k+2)E for

every k. Assume we know already ny, ..., Smce lim supnq —=c>0

we can choose ngy; > 2nk such that an"—*i > £ We get %ﬂﬂ o L <2
M1 Nk41 =

s z::i:;i:Z“‘ s b Yo JEE _(k+ 2)§+35=(k+3)5

ﬂlan

Finally, >, N = o~ is minorized by a divergent series, hen(.e it (11\015_305. O

1.4 Density ideal

Definition 1.4.1. We say that upper asymptotic density of set A C w is
d*(A) = limsup,,_,, JA%”I. If d*(A) = 0 then A has asymptotic density zero,
in short, A is an (H)-set.

Notice that B C* A implies d*(B) < d*(A).

Lemma 1.4.2. For A= {a, :n € N} C w we have

n

d*(A) = limsup

n—oo Qn+1
— [AOn] _ n_ . -
Proof. Set ay = sup{'=~ : n > k} and Sy = sup{; "7 : n > k}. Obviously,

Br < ag,+1- If n > ag+1 then there exists a unique m > k such that a,,+1 <
n < ame1 + 1 and we have M%[ = B & < fr. Henece B, 2 .41 S0

n: = am+

(Br)kew is a subsequence of (g )kew and limg_oo Br = limg_ 00 k. 0

It follows from the definition that the collection of sets with asymptotic
density zero is closed under subsets and under finite unions. Hence it is an
ideal and we call the ideal density ideal.

Lemma 1.4.3. Every (S)-set has asymptotic density zero.

Proof. If A = {a, : n € N} belongs to the summable ideal then according to

Lemma 1.3.5 lim,,_,o0 =+ = = 0. Then also lim,_, o, =2~ +1 = 0 and from Lemma

1.4.2 we conclude that A has asymptotic density Aelo ]
Lemma 1.4.4. Every (SC)-set has asymptotic density zero.
Proof. Assume A = {a, : n € N} has property (SC) and that a,.; —a, > k

whenever n > ny. Define Ay = {a, : n > ng}. For every k& we have
d*(Ax) = limsup,,,_, ﬂnk-:-nm+1 < limsup,, ., ﬁ < 2. Since A C* Ay
for every k, it follows that d*(A) = 0. O
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Lemma 1.4.5. Density ideal is a P-ideal.

Proof. Assume A, k € N, are sets with asymptotic density zero. We may

assume that Ay, C Ay for every £ € w (otherwise we can switch to sets
. ArNn 1

By, = U-igk A;). Fix n; such that i—“;—l- < ¢ whenever n > n; and let

5 =
- 8 . 5 . |ANn| | AxNn| ]
A = Uren (A N [y, ngy1)). For n € [ng, ngq) we have =2 < IEET < :
and we get
. |ANn| 1
lim sup < lim = =i,
n—oo n k—'DO %

Hence A belongs to the density ideal and obviously A, C* A for every k. O

1.5 More ideals on w

We say that A C w contains an arithmetic progression of length n if there
exist @ € w and d > 0 such that all the members of arithmetic progression
a+j-dfor j=0,...,n— 1 belong to the set A.

Definition 1.5.1. Van der Waerden ideal is the family # = {A Cw : A
does not contain arithmetic progressions of arbitrary length}.

It is obvious that the family % is closed under subsets and that w & # .
It follows from the van der Waerden Theorem that # is closed under finite
unions and hence an ideal. We mention here two different formulations of
this well-known theorem. The proof of the van der Waerden Theorem can

be found for example in [16] or [9].
Theorem 1.5.2 (van der Waerden).

1. If A = Ay U---U A, is a subset of natural numbers that contains
arithmetic progressions of arbitrary length then at least one of the sets
Ai, ..., A, has the same property.

2. For every k,l € w there exists N(k,l) € w such that for every colouring
of the set {1,2,...,N(k,l)} with k colours there is a homogeneous set

that contains an arithmetic progression of length .

It is easy to see that # contains all finite sets. The set {2" : n € w} is an
infinite set that belongs to # because it contains no arithmetic progression
of length 3. Another example of an infinite set in # is the set {n*: n € w}
which contains no arithmetic progression of length 4 (an observation made
already by L. Euler). These two examples show also that sets in # need not
be thin or almost thin. However, every almost thin set belongs to the van

der Waerden ideal.
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Lemma 1.5.3. If A= {a, : n € N} Cw is an almost thin set then A € ¥ .

Proof. We want to prove that limsup, ., ;2 =1if A = {a, : n € N} C
w contains arithmetic progressions of arbitrary length. In such a case for
every k € w there are by € w and d;, > 0 such that by + j - di € A for
j =0,1,...,k — 1. Actually, there are infinitely many pairs b, and d;. for
every k. So there are infinitely many n € N such that a, = b + (k — 2)d,

and by + (k — 1)d, € A. For such indices we get:
A S bk+(k‘—2)dk S (k—2)dk B k—2
any1 b+ (k—1dp =~ (k—1)dx, k-1

It follows from limg_ .o ﬁ = 1 that limsup,,_, ., a7 = 1 and the set A is

not almost thin. ]

Now, we can conclude that the set from Example 1.2.5 belongs to the
ideal % while it does not belong to the ideal generated by (SC')-sets. In
fact, there is no inclusion between the latter ideal and #’. Remember the
(SC)-set from Example 1.3.3 that obviously does not belong to the ideal # .

Surprisingly, there is an inclusion between the van der Waerden ideal and
the density ideal. Szemeredi [26] proved that every set from the van der
Waerden ideal has asymptotic density zero. To see that the density ideal is
strictly greater consider the set {[n®, n*+n) : n € w} or {[2",2"+n) : n € w}.

The latter set belongs not only to the density ideal, but also to the
summable ideal. Hence the van der Waerden ideal and the summable ideal
differ, but it is still not known whether there is an inclusion between these
two ideals, which is a famous conjecture of Paul Erdos.

Conjecture 1.5.4 (Erdos). If A is a subset of natural numbers such that

> aca » = +00 then A contains arithmetic progressions of arbitrary length.

The last collection of small subsets of natural numbers that we introduce
is inspired by the summable ideal and it can be found for example in [12].
Definition 1.5.5. For any function g : N — (0, 4+00) we define a generalized
summable ideal ¥, as the family {A CN: " _, g(a) < +oo}.

It is obvious that every generalized summable ideal extends the Fréchet

ideal. If > .n9g(n) < 400 then £, = Z(N). If lim,, . g(n) > 0 then
4, consists precisely of all finite sets. Therefore we assume in the following

that ) .ng(n) = 400 and lim, .. g(n) = 0 to obtain a proper ideal that
is strictly greater than the Fréchet filter.

Lemma 1.5.6. Ideal %, is a P-ideal for any function g.
Proof. The proof is analogous to the proof of Lemma 1.3.4. O
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2 Z-ultrafilters

In the first section of this chapter we present several general results about .# -
ultrafilters. We recall the definition of .#-ultrafilter and give some necessary
conditions on the existence of #-ultrafilters. We show also that .#-ultrafilters
exist in ZFC for every maximal ideal .# with x(.#) = ¢ and it is consistent
with ZFC that #-ultrafilters exist for any tall ideal .#.

Since all the ideals defined in chapter 1 are tall it is consistent with ZFC
that .Z-ultrafilters for these families exist. We speak about (almost) thin
ultrafilters, (SC)-ultrafilters, (S)-ultrafilters, (H)-ultrafilters, etc. and we
focus in the rest of the chapter on these particular classes of ultrafilters. So we
prove in the second section that thin ultrafilters and almost thin ultrafilters
coincide; in the third and fourth section we study the relationships between
the above mentioned classes of #-ultrafilters and some well-known classes
of ultrafilters; the fifth section contains three results on #-ultrafilters and
S,-ultrafilters that are not included in the previous sections.

2.1 General results

Definition 2.1.1. Let .# be a family of subsets of a set X such that .#
contains all singletons and is closed under subsets. Given an ultrafilter %
on w, we say that % is an & -ultrafilter if for any F': w — X thereis A € %

such that F[A] € £.

In the following we will always consider X = w although some results are
true for arbitrary X.

The family .# need not be an ideal in general, but it is enough to consider
ideals on w if we want to study the classes of #-ultrafilters because replacing
flU] € £ by f[U] € (&) in the definition of #-ultrafilter, where (.#) is
the ideal generated by .#, we get the same concept (noticed in [2]). The
following lemma shows that #-ultrafilters and (.#)-ultrafilters coincide.

Lemma 2.1.2. For an ultrafilter % the following are equivalent:
(i) % s an S -ultrafilter
(i) % is an (F)-ultrafilter

Proof. 1t suffices to prove that (i7) implies (¢) since () implies (4i) trivially.
Therefore assume that % is an (. )-ultrafilter and let f € “w. There exists
V € % such that f[V] € (#) so there are for some k € wsets Ay,..., Ay € I
such that f[V] C AjU---UAg. Now fHAJU---UfYHA] = f A U---U

1% Knlhiowia ru‘i_:ﬁ‘.‘__;.-
Ef': YO AN oy

N
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A DV €. So f7YA;] € % for some i < k. Put U = f~'[4;]. Then
U € % and f[U] = A; € Z. It follows that % is an #-ultrafilter. O

Let .Z be an ideal on w. If an ultrafilter % extends the dual filter of .#.
ie., Z N.Z =0, then % is not an .#-ultrafilter. However, the converse does
not hold.

Example 2.1.3. Take ¥ € w*, ¥ N ¥ = 0. Let A = {a, : n € w} be
an infinite set from the ideal .#. Define f : w — w so that f(a,) = n +1
and f(k) = 0 for any £ ¢ A. Now let % be the ultrafilter generated by
{f[V]:Ve¥} ThenZN.Z #0since A= f'w\{0}] € ZN.# but
% is not an Z-ultrafilter since (VU € %) flU] € ¥, ie., f[U] & .

Baumgartner noticed in [1] that the class of #-ultrafilters is closed down-
ward under the Rudin-Keisler order <gpg. Recall that Z <px ¥ if there is
a function f : w — w whose Stone extension Bf : fw — Bw maps ¥ on %
(see [5]).

Lemma 2.1.4. IfC is a class of ultrafilters closed downward under <gpy and
S an ideal on w then the following are equivalent:

(i) There exists % € C which is not an & -ultrafilter

(ii) There exists ¥ € C which extends I*, the dual filter to ¥

Proof. No ultrafilter extending .#* is an #-ultrafilter, so (ii) implies (i) triv-
ially. To prove (i) implies (ii) assume that % € C is not an .#-ultrafilter.
Hence there is a function f € “w such that (VA € &) f7[A] € . Let
Y ={V Cw: f!V] € }. Obviously ¥ extends .#* and ¥ <px %.
Since C is closed downward under <y and Z € C we get ¥ € C. ]

If we consider two ideals .#, ¢ we may ask whether the classes of .#-
ultrafilters and _# -ultrafilters coincide or not. The following corollary of the
lemma above suggests in what form we can find ultrafilters demonstrating

that the two classes are distinct.

Corollary 2.1.5. Let ., # be ideals on w. If there is an _Z -ultrafilter that
is not an S -ultrafilter then there is an _Z -ultrafilter that extends #*. [

Let us recall the definition of Katétov order <y on ideals on w. We say
that . <k _# if there is a function f : w — w such that f~'[A] € # for
every A € #. For filters %, ¢ is the Katétov order defined analogously: we
write # <k ¥ if there is a function f : w — w such that f~'[F] € ¢ for
every F' € Z.
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Lemma 2.1.6. An ultrafilter % is an F-ultrafilter if and only if 5 Ly U .

Proof. If #* <k % then there exists f : w — w such that f~'[A] € % for
every A € #*. Since U C f~!f[U]] € % for every U € % and % is a filter
we get f[U] € & for every U € % and % is not an Z-ultrafilter.

If #* Ly % then for every f : w — w there is A € .#* such that
f7YA] € %. Since % is an ultrafilter we get w\ f~'[A] € Z and we have
also flw\ f7'[A]] Cw\ A € #. Hence Z is an #-ultrafilter. O

Lemma 2.1.7. Let .F be a filter on w and % a (free) ultrafilter on w. Then
F <g % if and only there is an ultrafilter V' such that ¥V <py % and

YV 2 Z.

Proof. If # <y % then there is a function f:w — w such that f~'[F] € %
for every F € #. Put ¥ = {A Cw: (3U € %) f[U] C A}. 1t is easy to see
that % C ¥, ¥ is an ultrafilter and Sf(%Z) =¥ . Hence ¥ <px %.

If ¥ <rk % then there exists f : w — w such that f~'[V] € % for
every V € ¥. In particular, f~'[F] €  for every I € .#Z C ¥ and we have

F <k U. U

Putting together Lemma 2.1.6 and Lemma 2.1.7 we have proved the fol-
lowing proposition characterizing #-ultrafilters for an ideal .#.

Proposition 2.1.8. Let .Z be an ideal on w. For an ultrafilter % € w* the
following are equivalent:

(i) % is an Z-ultrafilter
(1) I* £k U
(iii) ¥V Lrx % for every ultrafilter vV O F* O

As an immediate consequence of the previous proposition we get a result
that generalizes the obvious fact that if # C ¢ then every Z-ultrafilter is
a ¥ -ultrafilter.

Corollary 2.1.9. If ¥ <k _# then each Z-ultrafilter is a ¢ -ultrafilter. O

There are many ultrafilters that are not .#-ultrafilters for a given ideal .#
because any ultrafilter extending the dual filter of #* is not an .#-ultrafilter.
So there are, for instance, no Z-ultrafilters where .# is the Fréchet ideal.
However, the Fréchet ideal is not the only one ideal for which .#-ultrafilters
do not exist. The following proposition provides a necessary condition on .#
for the existence of #-ultrafilters.
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Proposition 2.1.10. There are no % -ultrafilters for an ideal .% which is
not tall.

Proof. Suppose that for A € [w]“\ & we have & N 2(A) = [A]<¥ and let
e4 : w — A be an increasing enumeration of the set A.

Now assume for the contrary that there exists an Z-ultrafilter 7 € w*.
According to the definition of an #-ultrafilter there exists U € % such that
ealU] € . Since e4[U] C A the set e4[U] is finite. It follows that [/ is finite
because e, is one-to-one — a contradiction to the assumption that no set in

% is finite. ]

The next proposition provides a sufficient condition for the existence of
S -ultrafilters.

Proposition 2.1.11. If .# is a mazimal ideal on w such that x(.%) = ¢ then
S -ultrafilters exist.

Proof. Enumerate all functions from w to w as {f, : @ < ¢}. By transfinite
induction on o < ¢ we will construct filter bases .#, satisfying

(i) #o is the Fréchet filter

(ii) Zo C Z5 whenever a < 3

(ili) # = Uqaey Fa for v limit

(iv) (Va) |#a| < |a| - w

(v) Vo) (AF € Fot1) fulF| € F

Suppose we know already .%#,. If there is a set F' € .%, such that f,[F] €
& then put #,.1 = #,. Hence we may assume that f,[F] € .#. Then
w \ fulF) € & for every F € #, and since x(.#) = ¢ > |#,| we can find
M € % such that M N f,[F] is infinite for every F' € .%,. To complete the
induction step let .#,1 be the filter base generated by .%#, and f,'[M].

It is obvious that any ultrafilter that extends the filter base # = J _. %,

is an Z-ultrafilter. O

Proposition 2.1.11 may be considered as a special case of a result proved
by Butkovi¢ova in [8] not using the terminology of .#-ultrafilters. We present
here the theorem reformulated in terms of #-ultrafilters.

Theorem 2.1.12 (Butkovicova). Let & be a mazximal ideal on w such
that x(#) = ¢ and assume k 1is a cardinal, k < c¢. There exist 2~ (distinct)

K -ultrafilters.

The last two results in this section are consistency results. Proposition
2.1.13 states that #-ultrafilters exist for every tall ideal .# under the as-
sumption p = ¢ (this is a slightly stronger assumption than MA .,.). Finally,
it turns out in Proposition 2.1.14 that #-ultrafilters need not be P-points if
we assume Continuum Hypothesis and .Z is a tall P-ideal.
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Proposition 2.1.13. (p=c) If .# is a tall ideal then & -ultrafilters exist.

Proof. Enumerate all functions from w to w as {f, : @ < ¢}. By transfinite
induction on a < ¢ we will construct filter bases .#, satisfying

(i) %o is the Fréchet filter

(ii) F, € #3 whenever a < 3

(iii) £y = Ugey Fa for v limit

(iv) (Yar) | Fal < Jo] - w

(v) (Va) (3F € Fot1) folF) € &

Suppose we know already #,. If there is a set I € %, such that f,[F] €
& then put #,41 = #,. Hence we may assume that f,[F] & .#, in particular
fo[F] is infinite, for every F € %,.

Since |#,| < ¢ = p there exists M € [w|* such that M C* f,[F] for every
F e %,. The ideal .# is tall, so there is A € .# which is an infinite subset of
M and we have A C* f,[F] and f;'[A] N F is infinite for every I" € .%Z,. It
follows that f;![A] is compatible with .Z,. To complete the induction step
let Z,41 be the filter base generated by %, and f,'[A].

It is easy to see that every ultrafilter that extends .# = (J,_. %, is an

Z-ultrafilter. ]

Proposition 2.1.14. (CH) If .# s a tall P-ideal on w then there is an
S -ultrafilter which is not a P-point.

Proof. Fix a partition {R, : n € w} of w into infinite sets and enumerate
“w= {fa: a < wp}. By transfinite induction on o < w; we will construct
countable filter bases .%#, satisfying

(i) &y is generated by the Fréchet filter and {w \ R, : n € w}

(ii) Z#, C Z3 whenever a < 3

(i) #y = Uyey Fa for v limit

(iv) (Va) (VF € Z,) {n:|F N R,| = w} is infinite

(v) (Va) (3F € o) folF) € F

Suppose we know already .#,. If there is a set F' € .%#, such that f,[F] €
& then put Foy1 = Zo. If (VF € Z#,) folF]| € # then one of the following
cases 0CCurs.

Case A. (VF € Z,) {n: |falF N Ry|| = w} is infinite

Fix an enumeration {F} : k € w} of #,. According to the assumption
the set My = {n : |fa[Fx N R,]| = w} is infinite for all £ € w. For every
k € w, n € M}, we can find an infinite set Iy, C fo[Fx N R,] with [}, € &
because .# is tall. Since .# is a P-ideal there exist / € .# such that I}, , C* |
for every k£ € w and n € M. It is easy to see that for every I € .%#, the
set {n: |f[I] N Fx N R,| = w} D M is infinite. To complete the induction
step let .#,.1 be the countable filter base generated by .%, and f,'[/].
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Case B. (3Fy € Zo) {n: |fa[FoN R,]| = w} is finite

Enumerate #, \ {Fo} = {Fx : k > 0}. For every k > 0 the set M, = {n :
FyoNF.NRy| =w and |fo[Fr N FyN R,)| < w} is infinite. For every n € M,
define u, = max{u € fo[Fx NFoN R, : |f7 {u}NF.N N R,| = w}.

Let Ax = {u, : n € My}. If Ay is finite for some & then let .Z,,, be the
filter base generated by %, and f,'[Ax]. Otherwise, we can choose for every
k an infinite set [, € .# such that I;, C A;. Note that for every u € [, we
have |f;'{u} N F, N Fy, N R,| = w} for some n € M. Since .# is a P-ideal
there exists I € # such that I, C* [ for every k. It is easy to see that
{n: |f7HI]N Fe N FyN R,| = w} is infinite for every k. To complete the
induction step let .#,,1 be the countable filter base generated by .%, and
fa 'H1.

Finally, let # = (J,.,, Za- It is clear that every ultrafilter which extends
F is an J-ultrafilter because of condition (v). The filter base .# satisfies
also condition (iv) and the following claim shows that such a filter base can
be extended to an ultrafilter that is not a PP-point.

Claim: If % is a filter base satisfying (iv) and A C w then either (FU{A})
or (F U{w \ A}) satisfies (iv).

Whenever .# is a filter base satisfying (iv) and A C w then either for
every F' € % exist infinitely many n € w such that |[AN F N R,| = w, so the
filter base generated by .# and A satisfies (iv) or there is Fyy € .Z# such that
for all but finitely many n € w we have |[AN Fy N R,| < w. Then since for
every F' € & exist infinitely many n € w for which |F N Fy N R,| = w the
filter base generated by # and w \ A satisfies (iv). Hence for every subset of
w we may extend .# either by the set itself or its complement. Consequently,
Z may be extended to an ultrafilter satisfying (iv). O

2.2 Thin and almost thin ultrafilters

Let us recall that an ultrafilter % € w* is an (almost) thin ultrafilter if for
every f € “w there exists U € % such that f[U] is (almost) thin.

Every thin ultrafilter is an almost thin ultrafilter because the correspond-
ing families of subsets of w are in inclusion. The following proposition states
that thin ultrafilters and almost thin ultrafilters actually coincide.

Proposition 2.2.1. Every almost thin ultrafilter is a thin ultrafilter.

Proof. Because of the Corollary 2.1.5 it suffices to prove that every almost
thin ultrafilter contains a thin set. So assume that %/ is an almost thin
ultrafilter and Uy € % is an almost thin set with an increasing enumeration

Up = {un : n € w}. If Uy is not thin then we have limsup, i = gy < L
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We may assume that the set of even numbers belongs to % (otherwise the
roles of even and odd numbers exchange).

Define g : w — w so that g(u,) = 2n, glw\ Up] = {2n+ 1 : n € w}.

Since 7 is an almost thin ultrafilter there exists /; € % such that g[(/,]
is almost thin. Let U = UgNU; = {uy,, : k € w}. Almost thin sets are closed
under subsets, therefore g[U] = {g(u,,) : k € w} C g[U/;] is almost thin and

£ glun,) 4. 214
1 > limsup;_, o g——‘“—("nkﬂ) = HIMiSUPy. 00 55— o

We know that there is ng such that (Vn > ng) 22— < 2+ 4114 that there

Unt1 — -
is kg such that (V& > ko) nx > ng. Hence for k > kg we have
; Mk ol 1 473
Un,  Uny Uny -1 < (q(} + 1) EHLTEE
unk+] unk+1 ?J‘le+1 o 2

It follows from lim sup;,_, . ﬁ—l < 1 that limy (N1 — nx) = +00. Hence

. U ' . _+_1 Mgyp1—MNg
lim —2% < lim (qo() ) = ()

k—oo Up,, ,  k—oo

dd

and the set U € % is thin. ]

2.3 Connections to selective ultrafilters and P-points

We know from the definition that every selective ultrafilter is a P-point.

From the inclusion of coresponding ideals we obtain inclusions for the classes

of thin ultrafilters, (SC)-ultrafilters, (S)-ultrafilters and (H)-ultrafilters.
The following diagram shows all inclusions between these classes of ultra-

filters (an arrow stands for inclusion).

(selective ultfs)

[(SC)—ultst ”

We will show that assuming Martin’s Axiom for countable posets none of
the arrows reverses and no arrow can be added.

Proposition 2.3.1. Every selective ultrafilter is a thin ultrafilter.
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Proof. Consider the partition of w, {R, : n € w}, where Ry = {0} and
R, = [n!,(n+ 1)!) for n > 0. If % is a selective ultrafilter then there exists
Uy € % such that |Uy N R,| < 1 for every n € w. Since % is an ultrafilter
either Ag = |J{R, : niseven} or A) = |J{R, : nis odd} belongs to % .
Without loss of generality, assume Ay € %. Enumerate U = Uy N Ay € %
as {ug ' k € w}. If up € [(2my)!, (2my + 1)!) then upyy > (2my + 2)! and we
have ;:ﬂ:_l < Eéﬁf:ﬁi}z}: = 2mi+2 < ﬁ Hence U is thin and we have proved
that every selective ultrafilter contains a thin set. Selective ultrafilters are
minimal points in Rudin-Keisler ordering, hence the class is downward closed
under <ry and we may apply Lemma 2.1.4 to conclude that every selective

ultrafilter is thin. ]

Corollary 2.3.2. A free ultrafilter s selective if and only if it is a P-point
and thin ultrafilter.

Proof. Every selective ultrafilter is according to the previous proposition a
thin ultrafilter and it is also known to be a P-point. Every thin ultrafilter is
a Q-point (see Proposition 2.4.1), so every ultrafilter that is thin and P-point
is selective. (]

Proposition 2.3.3. Every P-point is an (SC')-ultrafilter.

Proof. Let % be a P-point. Consider an arbitrary function f:w — w. Our
aim is to find U € % such that f[U] € (SC).

Take arbitrary Uy € . If f[Uy] € (SC) then set U = Uy. Otherwise, we
will proceed by induction. Suppose we know already U; € Z,i=10,1,... k—
1, such that U; C U;_; for « > 0 and the difference of two successive elements
of f[U;] is greater or equal to 2* for every i < k. Enumerate f[U;_,] =
{un : n € w}. Since Z is an ultrafilter either f~'[{us, : n € w}] N Uy_,
or f~'{ugns1 : n € w}] N Uk_y belongs to . Denote this set by Uj. If
flUx] € (SC) then let U = Uy. If f[Ux] € (SC) then we may continue the
induction because the difference of two successive elements of f[Uy] is greater
or equal to 2 - 2F1 = 2%,

If we obtain an infinite sequence of sets U, € % such that U,, D U,
and the difference of two succesive elements of f[U,] is greater or equal to
2" for every n then since % is a P-point there is U € % such that U C* U,
for every n € w. For this U we have f[U] C* f[U,] for every n € w. Thus
for every k € w all but finitely many pairs of succesive elements in f[U] have
difference greater or equal to 2% and it follows that f[U] € (SC). O

Notice the following interesting consequence of the previous proposition:
Since every (SC)-ultrafilter is an (H)-ultrafilter we obtain as a corollary
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of this proposition that every P-point is an (f/)-ultrafilter. In particular, it
means that every P-point contains a set with asymptotic density zero. Hence
the dual filter to the density ideal is an example of a P-filter (filter dual to
a P-ideal) that cannot be extended to a P-point.

In Proposition 2.1.14 we constructed under CH for a given tall P-ideal on
w an #-ultrafilter which is not a P-point. We cannot apply the proposition
to obtain a thin ultrafilter that is not a P-point because the ideal .7 is not
a P-ideal (see Lemma 1.1.5). Nevertheless, we construct a thin ultrafilter
which is not a P-point even under a strictly weaker assumption MA_,..

Proposition 2.3.4. (MA.we.) There exists a thin ultrafilter which is not a
P-point.

Proof. Enumerate “w = {f, : @ < ¢} and fix a partition {R, : n € w} of w
into infinite sets. Our aim is to construct a filter base .# such that for every
F € % there are infinitely many n such that |F'N R,| = w.

By transfinite induction on a < ¢ we will construct filter bases .%,,, o < ¢,
so that the following conditions are satisfied:

(i) Fo is generated by the Fréchet filter and {w \ R, : n € w}

(ii) #, C %5 whenever a < 3

(i) #y = Uyey Fa for v limit

(iv) (Va) | Za| < |a| - w

(v) (Va) (VF € Z#,) {n:|FNR,| =w} is infinite

(vi) (Va) (3F € Foy1) folFl € T

Suppose we know already .Z#,. If there is a set F' € %, such that f,[F] €
T then put 11 = Z,. So we may assume that (VF € .Z,) fu[F] € 7, in
particular, f,[F] is infinite.

If there exists K € [w]<“ such that f;'[K]NFNR, is infinite for infinitely
many n for every F' € %, then we let %, be the filter base generated by
Fo and f7YK]. In the following we will assume that no such set exists, i.e.,
() for every K € [w]<“ there is Fx € %, such that fJ'[K]N Fx N R, is
infinite for only finitely many n.

Case I. VF € Z,) {n € w: |fa[F NR,)| = w} is infinite

Set Ir = {n € w: fo[F N R,] is infinite}. Consider poset P = {K €
[W]<¥ : v > u? whenever [u,v] N fo[K] = {u,v}} with partial order given by
K<pLif K=Lor KDL and min(K \ L) > max L. For every F' € Z,,
n € Ip and k € w define D, ={K € P: |[KNFNR,| >k}

Claim 1: D\ is dense in P for every ' € #,, n € Ip, k € w.

Take L € P arbitrary. Since F'N R, and f,[F N R,] are infinite sets we
may choose L' C F' N R, such that |L'| = k, min L' > max L, f,[min '] >
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(max fo[L])? and fu(u) > (fa(v))? whenever u,v € L', u > v. Let K = LUL'.
[t is obvious that K € Dg, and K <p L.

The family 2 = {Dpni: F € F#o,n € Ip, k € w} consists of less than ¢
many dense sets in P. By Martin’s Axiom for countable posets there exists
a P-generic filter 4. Let U = | J{K : K € ¥}.

Now it is easy to check that U satisfies the following
o (VFeF,) {ncw:|UNFNR,| =w} is infinite

Given F € #, for every n € [p and every k € w thereis K € 9 N Dy, &.
So [UNFNR, >|KNFNR,| >k and it implies that |[UN FNR,| = w
for every n € Ip.

o fLlUl €T
Enumerate f,[U] = {u, : n € w}. For every n € w there is K,, € ¥ such

that un, uns1 € fo[Ky]. Since K, € P we have u,,.q > (u,)? and 4o < L

Upn 41 Un
Thus limy e 722 < B0 0= =2 10,
To complete the induction step let .%#,,, be the filter base generated by

F. and U.

Case II. (3Fy € Z#,) {n € w: |fo[Fo N Ry]| = w} is finite

For every F € #, let Ir = {n € w: FFN FyN R, is infinite and f,[F N
FyN R, is finite}. Observe that I is infinite for every F € .%, according to
the assumption. For every n € [ define h(n) = max{m € f,[FFNFyN R,] :
|[foH{m}NFNFyNR,| = w}. The latter set is non-empty and finite, whence
the definition is correct.

Claim 2: {h(n) : n € Ip} is infinite.

Assume for the contrary that there is & € w such that hA(n) < h for
every n € Ir. We know from (&) that there is F}, € Z#, such that {n :
|f-1[0, AJNFLNR,| = w} is finite. Hence {n : |f;'[0, AINFNFoNEF,NR,| = w}
is finite. Since Ipnp, is infinite and Ipnp, C* Ip there are infinitely many
n € Ip such that [(FNFoNFLNR,)\ f7'(0, h]| = w while fo[FNFyNF,NR,]
is finite. It follows that we can find m € f,[F N Fy N F, N R,]\ [0, ] such
that |f;H{m} N FNFyNF,NR,| =w. We have m > h — a contradiction
to the definition of h(n).

Choose a sequence Hp = (h; : @ € w) C {h(n) : n € Ip} such that
hiv1 > (h;)? for every i. It is obvious that Hp is thin and infinite. Remember
that for every h; € Hp there is n; € Ir such that f;'{h;} N FNFyNR,, is
infinite. Note that n; # n; for i # 7, so |[f;'[HF|N F N FyN R,| = w for
infinitely many n.

Consider poset P = {K € [w]<¥ : v > u? whenever [u,v]N K = {u,v}}
with partial order given by K <p L if K = L or K D L and min(K \ L) >
max L. For F € %, and k € w define Dpy, = {K € P: |K N Hg| > k}.
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Claim 3: Dpg is dense in P for every F' € #, and k € w.

Take L € P arbitrary. Thereis L' C Hp\ [0, (max L)?] such that |L/| = k.
Let K = LU L' Obviously, K € Dp; and K <p L.

The family 2 = {Dpy : F € F4,k € w} consists of less than ¢ many
dense sets in P. By Martin’s Axiom for countable posets there exists a
9-generic filter 4. Let H = |J{K : K € ¥}.

Now it remains to check that the filter base generated by %, and [ '[H]
satisfies conditions (v) and (vi).

o (VF € %) {new:|f;H]NFNR,| =w} is infinite

For every F' € #, and for every k € w there exists K € ¥4 N Dpy. It
follows that |{n : | [ {H|NFNR,| = w}| > {n: |[JHKINFNR,| = w}| > k.
o LM =HeT

Enumerate H = {u, : n € w}. For every n € w there is K € 4 such

that u,, u,y+1 € K. Since K € P we have up; > (u,)? and ;i‘l‘—l < % Thus

: Un : (R
im. == < bmigoee T

To complete the induction step let .%#,,, be the filter base generated by
Z, and f7[H].

Finally, let # = |J,.. %« The filter base # has the property that for
every F' € .% there are infinitely many n such that F'N R, is infinite therefore
it can be extended to an ultrafilter which is not a P-point (see the proof of
Proposition 2.1.14). It is obvious that every ultrafilter extending .# is a thin
ultrafilter because of condition (vi). O]

The following proposition implies that under Martin’s Axiom for count-
able posets there are: P-points which are not thin, (SC)-ultrafilters which are
not thin, (SC)-ultrafilters which are not (.S)-ultrafilters and (H)-ultrafilters
which are not (S)-ultrafilters.

Proposition 2.3.5. (MA.w.) There exists a P-point which is not an (S)-
ultrafilter.

Proof. Enumerate all infinite partitions of w (into infinite sets) as {Z* : a <
c¢}. By transfinite induction on & < ¢ we will construct filter bases .Z,, a < «,
so that the following conditions are satisfied:

(i) &y is the Fréchet filter

(i) 4 C &5 whenever a < 3

(iil) £, = Uqey Za for 7 limit

(iv) (Vo) |#a| < |af - w

(v) (Vo) (VF € Fo) X perz = +00

(vi) (Va) (IF € Fu41) either ARS € #°) FF C RS or (VRY € Z%)
IFONRS| < w

27



Induction step: Suppose we know already .#, and we construct . %, , .

Case A. (3K € [w]<¥) (VF € #,) FN,cx RS € (S)

For some ng € K the filter base generated by Ry and .7, satisfies condi-
tion (v). Otherwise, there would be for every n € K a set F,, € .%, such that
F,NR® € (S). We would have (), ., F5.NU,cx Bt € (S) — a contradiction
to the assumption of Case A. So we let %, be the filter base generated by
Z. and the set RS .

no*

Case B. (VK € [w]<) (3Fk € Fa) Fx N U, B2 € (8)

Consider P = {(K,n) € W] xw : K C ., R}, KN R* # 0}
with ordering given by (K,n) <p (L,m) if (K,n) = (L,m) or K > L,
min(K \ L) > maxL, n > m and (K \ L) NU,.,, B¥ = 0. For every
F € %, and k € w define Dgy, = {(K,n) € P : Y . cxrp+ > k} and
D; = {{K.n) € P:a>j}

Claim: Dpy is dense in P for every I' € %, and k € w; D; is dense in P
for every j € w.

Take (L,m) € P arbitlary According to the assumption there is F,, €
F, such that Fon N U;c,, R € (S). It follows that (5, N F) \ U,c,, By ¢
(S). Hence we can choose a finite set L' C (F,, N F) \ Uicpm B such that
Y wcrs z = k. Let n = max{i: L' N R # @} and K = LUL'. 1t is easy to
see that (K,n) <p (L,m) and (K,n) € Dpy. So Dy is dense. For j < m
we have (L,m) € D; and for any j > m we can choose arbitrary r € R}
such that » > max L. Let K’ = LU {r}. Of course, (K’,j) <p (L, m) and
(K',j) € Dj. So Dj is dense.

The family 2 = {Dpy: F € %o,k € w}U{D, : 7 € w} consists of dense
subsets in P and |2| < ¢. Therefore there is a Z-generic filter ¥.

Let U = |J{K : (K,n) € 4}. It remains to check that:

o (VF € Fo) Ypeunr 5 = +00

We have UN F ¢ (S) for every F' € %, because for every k € w there

exists (K,n) € 4 N Dpy and we get > cpnr = = D acknr = = k.
o (VR € &) UNR2| < w

Take (Kn,jn) € 4 N D, where j, = min{j : (3K € [w]<¥)(K,j) €
4 N D,}. Now observe that for (K,m) € 4 we have K N R* =0 if m < n
and that K N R® = K,, N RY if m > n. To see the latter consider (L, m') € ¢
such that (L, m’) <p (K, m) and (L,m’) <p (K, jn) (such a condition exists
because ¥ is a filter) for which we get LNRY = KNRS and LNRY = K,NR2.
It follows that U N Ry = K, N RY is finite.

To complete the induction step let .%#,,; be the filter base generated by
F, and U.
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[t is clear from condition (vi) that every ultrafilter which extends . #
U,<c #a is a P-point. Because of condition (v) there exists ultrafilter ex-
tending .# which extends the dual filter of (5). So there exists a ’-point
which is not an (S)-ultrafilter. (]

Proposition 2.3.6. If an (S)-ultrafilter exists then there is an (S)-ultrafilter
which is not an (SC)-ultrafilter.

Proof. We shall prove in Proposition 3.2.1 that the class of (S)-ultrafilters
is closed under products (for the definition of products of ultrafilters see the
first paragraph of chapter 3). Hence if % is an (S)-ultrafilter then % - % is
an (S)-ultrafilter too. But the ultrafilter % - % cannot be an (SC')-ultrafilter
according to Proposition 3.2.2. 0]

Corollary 2.3.7. (MA.we) There is an (S)-ultrafilter which is not an (SC')-
ultrafilter.

Proof. 1f Martin’s Axiom holds then selective ultrafilters exist. Every selec-
tive ultrafilter is a thin ultrafilter (see Proposition 2.3.1) and hence an (.5)-
ultrafilter. So (S)-ultrafilters exist under Martin’s Axiom and from the previ-
ous proposition we get an (S)-ultrafilter which is not an (SC')-ultrafilter. [J

2.4 Connections to Q-points and rapid ultrafilters

The following diagram shows all inclusions between the classes of (hered-
itarily) @-points, (hereditarily) rapid ultrafilters, thin ultrafilters and (.5)-
ultrafilters (an arrow stands for inclusion). No arrow can be reversed or
added if we assume Martin’s Axiom for countable posets.

her. ()-points
= thin ultfs
P
(Q—points)( her. rapid ultfs)

y

(rapid uItfs)

(S)—ultf?'

Proposition 2.4.1. Every thin ultrafilter is a QQ-point.

Proof. Let % be a thin ultrafilter and 2 = {Q, : n € w} a partition of w
into finite sets. Enumerate Q, = {¢*:i=0,...,k,} (where k, = |Q,| — 1).
We want to find U € % such that |U N Q,| < 1 for every n € w.

Define a strictly increasing function f : w — w in the following way:
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f@) = 0. f(g8™) = (n +2) - max{f( (qk. )y Anga} for n € w and f(q")
flg)+ifori < k,,new.

Since 7 is a thin ultrafilter there exists ( fo € Z such that f[l/ ..J {tts
m € w} is a thin set. Hence there is my € w 511(11 that I’—*—I < : for every
m > my.

Function f is one-to-one and 2 a partition of w into finite sets so we can
find K C w of size at most mg such that {f'(v;) : i < mo} C Y, i s
The latter set is finite, which implies U = Uy \ |, o On € % .

From the definition we have U N @Q,, = 0 for n € K and it remains to
check that
e (Vneg K)|UNQ,l <1

Assume for the contrary that for some n ¢ K there are two distinet el-

ements uy, uy € U NQ,, uy < us. Then f(u;) = v, for some m > my and
S(uy) flay)

_— o 3 5 r Jrl o Uny I'J"L —_— —
f(uz) = v, for some n > m + 1. We get —J—l i & & f(“ > T 2
(n4+1)-M  _ n41 n-— 1 1 &, N
——(]T}H)_MM! = = where M = max{f(q; ),k.}. But! H__, > 5 a contra-
diction. []

Lemma 2.4.2. Fvery QQ-point contains a thin set.

Proof. 1t follows from the proof of Proposition 2.3.1 that every (Q-point con-
tains a thin set because the partition considered in the proof consists of finite

sets. ]

Corollary 2.4.3. A free ultrafilter on w is thin if and only if it is a heredi-
tarily QQ-point.

Proof. If 7 is a thin ultrafilter then every ¥ <gpy % is also a thin ultrafilter
because thin ultrafilters are downward closed under Rudin-Keisler order and
Proposition 2.4.1 implies that % is a hereditarily ()-point.

If % is a hereditarily @-point then for every function f the ultrafilter
Bf(%) is a Q-point and hence contains according to Lemma 2.4.2 a thin set.
It follows from the definition of Bf(% ) that there exists U € % such that
f[U] is thin and % is a thin ultrafilter. O

Lemma 2.4.4. Every rapid ultrafilter contains an (S)-set.

Proof. If % is a rapid ultrafilter then there is U = {u, : n € w} € % such
that 2" < ey(n) = u, for all but finitely many n. So

We see that the set U is an (.5)-set. O
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Corollary 2.4.5. Every hereditarily rapid ultrafilter is an (S)-ultrafilter.

Proof. If % is a hereditarily rapid ultrafilter then for every function [ the ul-
rmﬁlt(l‘ 3f(% ) is a rapid ultrafilter and hence contains according to Lemma

2.4.4 an (S)-set. It follows from the definition of Ff(‘Z) that there exists
U € % such that f[U] belongs to the summable ideal and # is an (S)-
ultrafilter. [

Proposition 2.4.6. (MA.u.) There is a hereditarily rapid ultrafilter which
15 not a Q-point.

Proof. Enumerate “w x “w = {{fa, ga) : @ < ¢} and fix a })dl'liti()ll of w into
finite sets {Q, : n € w} (such that limsup, , |Q.| = +00). By transfinite
induction on a < ¢ we will construct filter l)lh(‘h F., @ < ¢, so that the
following conditions are satisfied:

(i) %y is the Fréchet filter
(ii) .Z#, C .#35 whenever a < 3
(iii) #y = Ugey Za for v limit
(iv) (Va) Fal < Ja] - w
(v) (Va) (VF e #,) (Vkew) (3new) |[FNQ,| =2k
(vi) (Vo) (3U € Fas1) such that g, <* es ) or fo[U] is finite

Let us first prove that any filter base satisfying condition (v) can be

extended to an ultrafilter which is not a @)-point.
Claim 1. Let .# be a filter base on w such that (VI € %) (Vk € w)

(3n € w) |[FNQn| > k. For every A C w either (F U{A}) or (Z U{w\ A})
has the same property.

If (% U{A}) does not have the required property then there is Fy € .Z#
and ko € w such that |[Fo N ANQ,| < ko for every n € w. Since F NI, € .F
we know that for every k € w there is ny such that |[FFN N Q| > k + ko.
It follows that |[FF'N (w\ A) N Qn,| > k for every F € # and (F U{w\ A})
has the required property.

Induction step: Suppose we know already .%#,. If there is U € .%, such
that go <* e, then simply put F,;1 = F,. If there is not such a set U
we will construct a suitable set eventually making use of Martin’s Axiom.

Case A. (AK € [w]<) (VF € Z,) (Yk) (3n) |[JK]INFNQ,| >k

Let Z,41 be the filter base generated by %, and U = f,'[K]. Then for
every ultrafilter % which extends the filter base .#,, the ultrafilter 5 f,(% )
is principal. It is easy to see that there is V' € % such that g, <* ey (v).

Case B. (VK € [w]<“‘) (EJFK € Z,) (Fky) (Vn) |fTUK]N FreNQ,| < kg

Consider P = {(L,m) € (W] X w: L C ;e @is LN Qum # 0,4, >
[ |L|} with partial 01der1ng given by (K,n) <p (L,m) if (K,n) = (L, m)

._a
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orn>m, KDL min(K\L)>maxL and (K\L)Nn{,.,, Q =10 For
every F € Foand k € w let Dpy = {(L,m) € P: (3n)|LNFNQ,| > k).

Claim 2. Dpgy is a dense subset of (P, <p) for every I' € .7, and k € w.

Let (L,m) € P be arbitrary. Set My = max{g,(n): n < |L| + k}. M,
max fo[L] and My = 1 + max|J,.,, Q:i- Finally, let M = max{M,. M, M.},
Interval [0, M] is finite so there exist Fy, € #, and ky, € w such that for
every n we have |f'0, M] N Fay N Q| < Ky According to condition (v)
there exists n (we may assume n > m) such that [FF0Fy,NQ,,| > M+ ky+ k.
Since |FNFayyNQuN f710, M]| < kar we can choose L' C FN [y NQ, such
that |L'| = k and f,(a) > M. Let K = LUL'. It is not difficult to check that
(K,n) € P and then it is obvious that (K,n) € Dy and (K, n) <p (L, m).
So Dpgy is dense in P.

The family 2 = {Dpy : F' € Z,,k € w} consists of dense subsets of P2
and has cardinality less than ¢. Therefore there exists a Z-generic filter 4
on P according to Martin’s Axiom for countable posets.

Let U = |J{L : (3m)(L,m) € ¥} and verify that the set [/ satisfies the
following conditions:

e VFe %) Ykew) (Enew) UNFNQ, >k

For every (K,m) € 4 N Dgj we have U D K and there is n such that
IKNFNQ, > k.
® go <7 €, (U]

There exist (Kj,m;) € ¥4, j € w, such that (Kj;1,mj41) <p (K;,m;) for
every j € w and U = [J,, K;. Since ej (k) > ga I |Kj]| for every j we have
9o <7 €4, (U1

To complete the induction step let %, be the filter base generated by
F, and U.

It is obvious that every ultrafilter which extends # = (J, .. .%, is a
hereditarily rapid ultrafilter because of condition (vi) and it can be extended
to a non-Q-point because of condition (v). O

Proposition 2.4.7. (MA.y.) For any (tall) ideal & on w, there is a Q-point
which is not an Z -ultrafilter.

Proof. Enumerate all partitions of w into finite sets as {2, : @ < ¢} and
fix a partition {R, : n € w} of w into infinite sets. By transfinite induction
on a < ¢ we will construct filter bases .#,, @ < ¢, so that the following
conditions are satisfied:

(i) % is the Fréchet filter

(ii) Fo C #5 whenever a < 3

(iii) #y = Ugey Fa for v limit

(iv) (Vo) | Za] < o] - w
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(v) (Vo) (VF € F) (\m cw) |FNR,| =w

(vi) (Va) (3F € Fay1) (VQ € 2,) [FNQ| L1

Induction step: Supposo we know already .#,. If there is a set F e 7,
such that [FN Q| <1 for every Q € 2, then put #,,, = .#,. If this is not
the case, we can construct such a set using Martin's Axiom.

Consider P = {K € [w]*¥ : (VQ € Z,)|K NQ| < 1} with partial order
defined by K, <p K, if K = Ky or K, D K and min(/As \ A}) > max i,
For every F € F,and n,k €wlet Dp,,={K € P:|KNFNR,| > k)

Claim: Dpg,  is a dense subset of (P, <p) for every IF' € . %,. n. k € w.

Whenever we take L. € P there is a finite set S C w such that L, C (. . Q..
Since (F'N R,) \ [0, max |J;.¢ Q] is infinite we can choose for j = 1,2, ... k
distinct n; € w\S and elements ¢; € FNR,NQ,,. Let K = LU{q1.qo,...q}.
Obviously, K <p L and K € Dg, k. |

The family 2 = {Dgni 0 F € Fo,n,k € w} consists of dense subsets of
P and has cardinality less than ¢. So there exists a Z-generic filter 4 on P.

Let U =J{K : K € 4}. The set U satisfies the following conditions:

o (VF e .%,) (Vnew)UNFN R, is infinite

For every k € w and every K € ¥ N Dg,x we have U D K and |[K N F N
R,| > k. Thus U N F N R, is infinite.

e (VQ e 2,) UNQ| <1

If u,v € U then there is K € ¢ such that u,v € K and according to the
definiton of P elements u, v belong to distinct sets from partition 2.

To complete the induction step let .#,,, be the filter base generated by
F4 and U.

Finally, let .# = |J,..#a. It is obvious that each ultrafilter extending
Z is a Q-point and F'N R, is inﬁnitc for every FF € .#, n € w.

Hence the set R4 = Une/l R, is compatible with .# for every A C w. Let
4 ={Rs: A€ #*} and observe that any ultrafilter extending .# U¥ is a
(Q-point because it extends .# and it is not an #-ultrafilter because of the

function f defined by f[R,] = {n}. O
Proposition 2.4.8. (MA.,..) There is an (S)-ultrafilter which is not a rapid
ultrafilter.

Proof. Enumerate “w = {f, : @ < ¢}. By transfinite induction on a < ¢
we will construct filter bases .#,, a < ¢, so that the following conditions are
satisfied:

(i) %y is the Fréchet filter

(ii) #, C %3 whenever a < 3

(iil) £, = Uyey Fa for 7 limit

(iv) (va) | %] < o] -w
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(v) (Va) (VF € #,) (Yk ew) (3new) |[FN2n 20 H| > p*

(vi)(vn)(afe? ) [p:( ) .,_.If|,1ﬁ<-4x

Claim 1: Let A C w. If (Yk € w) ( ) |AN[2% 2" Y| > ¥ then
- )n-{»l‘

f £* e4 where f(n)
[t follows from the assumption that there are infinitely many n such that

AN [2", 2" > n. For such indices n we get a,, < 2"*! where a,, is the nth

element of A. So we have e (n) < f(n) for infinitely many n and f € ¢ 4.

Claim 2: If A is a subset of w and .# is a filter base on w such that
(VF € .F) (Yk) (3n) [FN[2", 27| > n* then either the filter base generated
by .Z and A or the filter base generated by # and w\ A has the same property.

If the filter generated by .# and A does not have the required property
then it means that there exists Fy € # and kg € w such that [Fy, N AN
[ar 2l < n* for every n € w. Since I'N Iy € .# we know that for every
k € w there is some n € w such that |FN N [27, 27| > a*tho Tt follows
7N (w\ A) N [27, 27H1)| > pktho — ko S 7k for every F € .#. So the
filter generated by .%# and w \ A has the required property.

Induction step: Suppose we know already .#,. If there is I’ € .Z, such
that fo[F] € (S) then simply put #,1 = Z,. If fo[F] & (S) (in particular,
fo[F] is infinite) for every F' € .%#, we will construct a suitable set eventually
making use of Martin's Axiom.

If there exists K € [w]<“ such that for every I' € %, and every k € w
there is n € w such that |[F'N f;'[K] N[2" 2"t} > n* then we let %, be
the filter base generated by .%, and f'[K]. In the following we will assume
that no such set exists, i.e., (&) for every K € [w|<¥ there is Iy € .Z, and
ki € w such that for every n € w we have |Fx N f7[K] N [27, 27| < nkx.

Case I. (VF € Z,) (Vk € w) (3n € w) |fo[F N[27, 27H)]| > nf

Let P = {K € [w]<¥ : Zaefa[!{]; < (2 - 2,L|)mm} [hi} and define a
partial order <p on P in the following way: K <p L if and only if K = L
or K D L and min K \ L > max L. For every I' € %, and k € w define
Dpr={K € P: (In e w)|K N F N [2",2"1)| > n*}.

Claim 1: Dpy is a dense subset of (P, <p) for every F' € .%#,, k € w.

Let L € P be arbitrary. According to the assumption of Case I. there ex-
ists n € w such that | fy[FN[27, 27+1)]| > pkt(Ei+k+) max fall] (we may assume

that n is large enough so that we have 2" > max L and n{lt+ktD)maxfall] -

max f,[L] - nlt+k+1),
Since nkt(Lltktl)maxfall] 5 pk | p(Ll+k+1)max fall]l there exists L' € F N

[27,271) of size n* such that @ > max L and fa(a) > nlbitk+lymaxfall]
max f,[L] - n!H+*+! for every a € L'. Let K = LU L'
To see that K € P observe that Zaefa[h’] e = ZHEfcr[L] -+ Zuéfa[h’] 5 =
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n_ 1 1 - n I ) B l < (D
= 2l L] ):uin falL] T pILTER nn\fil 7 = < (2 L] )Illtllf.,-_f.: T TR max £, |/ s A

14 )L =(2- ”'”‘-)nunf 7 Sinee min f,[L] = min f,[A] and

2 21L1+1 / min fa[L]

, o ; 1 1 » E
‘[\’ > U' + 1 we get Z” 2falK] & S 2= TR )“”“’. ISk [t is obvious that
K <p L and K € Dpy. Therefore Dy is dense in I

Since 2 = {Dpy : F € F,.k € w} is a family of dense subsets of a
countable poset and |Z| < ¢ there is a Z-generic filter ¢ on P,

Let U = |J{K : K € 4}. It remains to check that:

o (VF e %) Vkew)(Bnew)|UNnFn2*, 2" > n*

For every K € 4 N Dg we have U O K and there is some n such that
“\' NFN [.)n. r)n+] I > ”k
B Znefn[ff] < 400, i.e., folU] € (

Enumerate f,[U] = {u, : n € w}. For every n there exists A, € 4 such
that u, € K,. Since ¥ is a filter we may assume [\'ml <p K, for every
n € w. Obviously, U = Un -, K and we get ZM falU] 3 L & mm; T because

1 . 1 ! o
Zﬂ‘efcr[f\.‘n] E S (2 - 2”""|)minfn[h'"] f()l (V(Iy 1.

To complete the induction step let %, be the filter base generated by

Fo and U.

Case II. (3Fy € %) (3ko € w) (Vn € w) |falFo N [27, 24| < nto

Let P = {K € [w|*¥ : (Vu,v € K)u < v implies 2u < v} and define a
partial order <p on F in thc following way: K <p L if and only if K = L
or K O L and min K \ L > max L. For every F' € #, and k € w define
Dpy={K € P: (3n ew)|Fn fJK]N[2" 2| > n*}.

Claim 2: Dpy Is a dense subset of (P, <p) for every F' € %, k € w.

Let L € P be arbitrary. According to the assumption (&) there is I}, €
Z, and k; € w such that for every n we have |f,'[0,2max f,[L]] N F, N
[27,2"*t1)| < nft. From condition (v) we know that there is n € w such
that |FF'N Fp N Fy N [27, 27| > phthethko 5 pktke 4 pki Hence there exists
M C FNF,NFyN (2", 27F1) of size n*+*0 such that f,(a) > 2max L for every
a € M. It follows from the assumption of Case II. that there is h € f,[M]
such that |f7'(h) N M| > n*. Let K = LU {h}. Since h € f,[M] we have
h > 2max L and K € P. 1t is obvious that K <p L and K € Dg,. Hence
Dpy is dense.

Since 2 = {Dpy : F € %4,k € w} is a family of dense subsets of a
countable poset and |Z| < ¢ there is a Z-generic filter &4 on P.

Let H = J{K : K € 4}. It remains to check that:

o (VF e %,) (Vk €w) (3n € w) “HH]n[27, 27| = n®

For every K € ¢4 N Dpy we have I O K and there is some n such that
|PG K] [2r 2 )] = b
2 fa[fa_l[H” =H € (5)
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Enumerate /{ = {h, : n € w}. Since h,,y > 2h, for every n we got
R I O e d o= 2
ZH{—'..-' hn S ha >—~N€.-' M T hyt

To complete the induction step let .#,., be the filter base generated by

Fo and f;1[H].

[t is obvious that every ultrafilter which extends .# = L. ¢ Fe is an
(S)-ultrafilter and it can be extended to an ultrafilter that is not a rapid
ultrafilter because of condition (v). (]

2.5 Some other classes of .Z-ultrafilters

We know that van der Waerden ideal contains all thin sets therefore every
thin ultrafilters is a #-ultrafilter and it is consistent that #~ultrafilters exist.
Every #-ultrafilter is an (H )-ultrafilter because van der Waerden ideal is a
subideal of the density ideal. We present in this chapter two more results
concerning #-ultrafilters and we show also that it is consistent that .#,-
ultrafilters exist for every generalized summable ideal .#,.

Proposition 2.5.1. (MA..) There is a P-point which is not a ¥ -ultrafilter.

Proof. Enumerate all partitions of w (into infinite sets) as {#, : @ < ¢}. By
transfinite induction on a < ¢ we will construct filter bases .%,,, & < ¢, so
that the following conditions are satisfied:

(i) Zp is the Fréchet filter

(ii) Fo C %3 whenever a < (8

(iii) Fy = Upey Fa for v limit

(iv) (Va) |#a| < o] - w

(v) Va) (VF e %) FgW

(vi) (Vo) (3F € Fo4qa) either (AR, € o) F C RY or (VR € XA,)
FNRY <w

Induction step: Suppose we already know .%#, and we construct %, ,.

Case A. (3K € [w]|<¥) (VF € Z) FNU,cx RS & W

For some ng € K the filter base generated by R;; and .7, satisfies condi-
tion (v). Otherwise, there would be for every n € K a set I, € Z, such that
F,N RS € W. We would have [, Fo N U,cix B € # — a contradiction
to the assumption of Case A. Now we let .%,,; be the filter base generated
by # and the set R .

Case B. (VK € [w]<¥) (3Fk € %) Fk NU,cx RS €W

Consider P = {(K,n) € W] xw: K C {J,,, R, KN RS # 0} and
define (K,n) <p (L,m) if (K,n) = (L,m) or K O L, min(K \ L) > max L,
n>mand (K\L) N, B = 0. For every FF € %, and k € w let
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Dpy = {{K,n) € P: KN F contains an arithmetic progression of length k}
and D; = {{K,n) € P:n > j}.

Claim: Dry is dense in (P, <p) for every F € #, and k € w; D; is dense
in (P,<p) for every j € w.

Take (L, m) € P arbitrary. According to the assumption there is I, €
F, such that Fiu N, R® € #. 1t follows that (Fa N FY\ U, REE ¥
Hence we can choose an arithmetic progression L' C (F,nNF)\U,<,, R® such
that min L' > max L and the length of L' is k. Let n = max{i : L'N R® # 0}
and K = LU L' It is easy to see that (K,n) <p (L,m) and (K,n) € Dr,.
So Dg is dense. For j < m we have (L,m) € D; and for any j > m we can
choose arbitrary r € R such that 7 > max L. Let K’ = LU {r}. Of course,
(K',7) <p (L,m) and (K’, j) € D;. So D, is dense.

The family 2 = {Dpx : F € &,k € w} U {D;: j € w} consists of dense
subsets in P and 2| < ¢. Therefore there is a 2-generic filter 4.

Let U = | J{K : (K,n) € 4}. It remains to check that:

e (VF € #,) UN F contains arithmetic progressions of arbitrary length

Take k € w arbitrary. For every K € 4 N Dg; we have U O K and
K N F contains an arithmetic progression of length k. Hence U N F contains
arithmetic progressions of arbitrary length.

o (VREE %) UNRE| < w

Take (Kp,jn) € 4 N D, where j, = min{j : (AK € [W]<¥)(K,j) €
% N D,}. Now observe that for (K,m) € 4 we have KNR: =0ifm < n
and that KN R2 = K, N RS if m > n. To see the latter consider (L, m') € ¢¥
such that (L, m') <p (K, m) and (L, m’) <p (K,, jn) (such a condition exists
because ¥ is a filter) for which we get LNRS = KNRY and LNRS = K,NRS.
It follows that U N RS = K, N RS is finite.

To complete the induction step let #,,1 be the filter base generated by
Foand U.

It is obvious that every ultrafilter which extends &F = {J_ .. %Fa is a P-
point. Because of condition (v) there exists an ultrafilter extending % which
extends the dual filter of #, i.e. it is not a #-ultrafilter. O

Proposition 2.5.2. (MA.w.) There exists an (S)-ultrafilter which is not a
W -ultrafilter.

Proof. Enumerate “w = {fy : a@ < ¢}. By transfinite induction on o < ¢
we will construct filter bases Z,, o < ¢, so that the following conditions are
satisfied:

(1} &y is the Fréchet filter

(ii) &y C F3 whenever a < 3

(iti) Fy = Ugey Fa for v limit
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(iv) (Va) |Fa| < lof - w

(v) Va) (VF e &F,) FEW

(vi) (Vo) (AF € Fos1) folF) € (S), ie., Zaeh{pl <+

Induction step: Suppose we know already $#,. If there is F € £, such
that fo[F] € (S) then simply put Fop1 = Fo. If fu[F] € (S) for every
F € %, we will construct a suitable set to add.

Case A. (AM € [w]<) (VF e &F,) f[JIIMINnFg¢w

Let Fq+1 be the filter base generated by #, and f1[M].

Case B. (VM € [w]<) (3Fy € &£,) f7UM]N Fy € # (hence Fy \
M) € 7).

Consider P = {K € W] : 3 e, k12 < @~ sm)immr 77} and define a
partial order <p on P in the following way: K <p L if and only if K =L
or K O Land minK\ L > maxL. For every F € %, and k € w let
Drr = {K € P: KN F contains an arithmetic progression of length k}.

Claim: Dr;, is a dense subset of (P,<p) for every F € %,, k € w.

Take L € P arbitrary. For r; = 2+ . k. max f,[L] we have F,, € &,
such that F,, \ f;'[0,7.] € # and we denote A,, = (FNF.)\ £710,7.].
Since A,, € # we can choose an arithmetic progression L’ C A,, such that
min L/ > max L and |[L'| = k. Let K = LUL’. To see that K € P notice that

Zaefa[K] % = Zaefa[L] : + Za,efa[L"] a — (2 )mmfa[L] + 2IL|+1kr’rcta.fo[L] <
(2 - 5o + o) mmrm = 2 - 2,L,+1)mmf [L] S1nce min f,[L] = min f,[K]
and |K| > [L| +1 we get 3-,crix)a ) o It is obvious that
K <p L and K € Dgj once we have checked tha.t = }’ Therefore Dg is

dense in P.

Since Z = {Dry : F € #,, k € w} is a family of size less than ¢ consisting
of dense subsets of a countable poset there is a Z-generic filter ¥.

Let U = |J{K : K € 4}. It remains to check that:
o (VF € #,) UN F contains arithmetic progressions of arbitrary length

Take k € w arbitrary. For every K € 4 N Dy we have U O K and
K N F contains arithmetic progression of length K. Hence U N F contains
arithmetic progressions of arbitrary length.
® Y e < T0 Le., folU] € (S)

Enumerate fo[U] = {u, : n € w}. For every n there exists K,, € ¢ such
that u, € K,. Since ¥ is a filter we may assume K,,; <p K, for every

n € w. Obviously, U = U,e, Kn and we get 3"ocr 17 < mmaqny because

Zaefa[Kn] ; S (2~ |1]‘.'n| )minfi[Kn] for every n.
To complete the induction step let #,.1 be the filter base generated by

F, and U.
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It is obvious that every ultrafilter which extends & = |J,. %Fa is an
(S)-ultrafilter. Because of condition (v) there exists ultrafilter extending &
which extends the dual filter of #. ad

The generalized summable ideal .#; is a tall P-ideal on natural numbers so
we can apply Proposition 2.1.13 to show that the existence of Z;-ultrafilters is
consistent with ZFC. From Proposition 2.1.14 we get even an g -ultrafilter
that is not a P-point under the assumption that Continuum Hypothesis
holds. The following proposition states that it is sufficient to assume Martin’s
Axiom for countable posets to construct an #-ultrafilter (we regard here Z,
as an ideal on w, which is possible since w and N are isomorphic).

Proposition 2.5.3. (MAuw.e) For every function g : w — (0,+00) with
lim,—e0 g(n) = 0 there is an F,-ultrafilter.

Proof. Enumerate “w = {f, : @ < ¢}. By transfinite induction on a < ¢
we will construct filter bases #,, a < ¢, so that the following conditions are
satisfied:

(1) & is the Fréchet filter

(ii} #o C &3 whenever o < 3

(il) Fy = Uacy Fa for v limit

(iv) (Va) |#a| < lo| - w

(v) (Va) (3F € For1) folF) € F, ie., Zaefa[F] g(a) < 400

Induction step: Suppose we know already #,. If there is F € %, such
that f,[F] € #, then simply put Fot1 = Fao. If fulF] € &, for every
F e %, we will construct a suitable set to add.

Consider a poset P = {K € [w]< : g(v) < 3g(u) whenever u < v,
u,v € fo[K]} and define a partial order <p on P in the following way:
K <p Lif and only if K O L. For every F € &, and m € w let Dp,, =
{K € P:|KNF|>m}.

Claim: Dp,, is a dense subset of (P, <p) for every F € %,, m € w.

Take arbitrary L € (P, <p). Since fo[F| & F, the set F\ f7 1[0, max fo[L]]
is infinite. So we can choose z; € F such that z; > max L, f,(z:) >
max f,[L] and g(f,(z1)) < 3 max{g(u) : u € fo[L]}. Now, we can proceed
by induction and choose elements zo,...,z, such that z; € F, z; > z;_,,
fa(zi) > folzi—1) and 9(falzi)) < %g(fa(mi—l)) for i = 2,...,m. Finally,
put K = LU{zy,23,...,Zm}. Obviously, K <p L and K € Dg,, so the set
Dgm is dense in P.

Since the family 9 = {Dgp, : F € Fo, m € w} consists of dense subsets
of a countable poset and |2| < ¢ there is a P-generic filter 4 on P.
Let U = |J{K : K € 4}. It remains to check that:
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e (VF € #,) UNF is infinite
For every m € w there exists K € ¥ N Dp,,. Since U O K we get

[UNF|>|KNF|>m and the set U N F is infinite.
@ ZGEfa[U]g(a) < +OO, i.e., fa[U] E jg

Let fo[U] = {un : n € w} be an increasing enumeration of f,[{U]. Ac-
cording to the definition of P we have g(u,41) < %g(un) for every n. Hence

D new 9(Un) < g(uo) - D> necw 51;; < +00.
To complete the induction step let #,4; be the filter base generated by

ZFq and U. It is obvious that every ultrafilter which extends & = J, . %,
is an J-ultrafilter. 0
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3 Sums of HA-ultrafilters

Baumgartner in [2] studied closure of #-ultrafilters under ultrafilter sums
for the setting X = R and # a family of subsets of R. We study the closure
of #-ultrafilters under ultrafilter sums for the case X = w and .# is an idesl
on w. Two general results can be found in the first section and some results
concerning ideals from chapter 1 are in the second section.

Let us recall the definition of ultrafilter sums and products at first:

If % and #,, n € w, are ultrafilters on w then ) , (%, : n € w) is
the ultrafilter on w x w defined by M € > 4 (% : n € w) if and only if
{n:{m:{(n,m) € A} € %} € %. We often identify isomorphic ultrafilters
so we occasionally regard >, (¥, : n € w) as an ultrafilter on w. Ultrafilter
> 9 (¥ : n € w) is called the % -sum of ultrafilters ¥, n € w. If ¥, = ¥ for
every n € w then we write }_, (¥n i n € w) = % - ¥ and ultrafilter Z - ¥
is called the product of ultrafilters % and V.

3.1 General results

Definition 3.1.1. Let C and D be classes of ultrafilters. We say that C is
closed under D-sums provided that whenever {¥;, :n€w}CCand € D
then > 4 (%, : n € w) € C. In practice we can talk about closure under
Ramsey sums, P-point sums, #-sums, thin sums, (S)-sums, (SC)-sums,
(H)-sums, etc.

Proposition 3.1.2. Let # be an ideal on w and C a class of ultrafilters on w.
If there exists an ultrafilter in C which is not an S -ultrafilter then the class

of Z -ultrafilters is not closed under C-sums (in other words, if the class of
S -ultrafilters is closed under C-sums then C is a subclass of #-ultrafilters).

Proof. Let ¥,, n € w, be arbitrary #-ultrafilters and let % € C be an
ultrafilter that is not an S -ultrafilter, i.e., there exists g : w - w such that
glV] & # for every V € % . Define f : w X w — w so that f({n,m)) = g(n)
for every n,m € w. For every U C w x w let U, = {m : (n,m) € U} and
U={n:U, €%}

Forevery U € 3o, (% :n € w)ywehave {n: 3m) (n,m) e U} D U € %.
Hence f[U] D g[U] € £ and 3.5, (¥ : n € w) is not an F-ultraflter. O

Proposition 3.1.3. If .# is a P-ideal on w then the class of # -ultrafilters
is closed under #-sums.

Proof. Suppose % and ¥,, n € w, are S-ultrafilters. Let f : w X w — w
be an arbitrary function. We want to find U € >, (¥, : n € w) such that

flU]l € #£.
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R .:ﬂ\

Define function f, : w — w by f.(m) = f({n,m)) for every n € w.

Since ¥, is an Z-ultrafiiter there exists Up € ¥, such that f,[U,] € .#
for every n. Now we can find a set A € & such that f,[U,] C* A for every
n because we assumed that £ is a P-ideal.

It is obvious that f;'(fa[Us]] € %.. Therefore either f,7![fn[Un] N A] or
S fa[Un) \ A] belongs to %,. Let Iy = {n € w: f7'[fu[Us) N A] € %.} and
L ={new: f7f[UJ\ A] € %.}. Since % is an ultrafilter one of the sets
I, I, belongs to the ultrafilter % .

Case A. In € %

Put U = {{n} x f7fulUs] NA] : n € Ip}. It is easy to see that U €
E%(% ‘n € w) and f[U} = UneIo fn[Un] NACAe /.

Case B. I, e %

Since f,[U,]\ A is finite and ¥;, is an ultrafilter, there exists k,, € f,[U,]\ A
such that f!'{k,} € #,. Define g : w — w by g(n) = k,. Since % is an
F-ultrafilter there exists V € % such that g[V] € #. It remains to put U =
{{n} x f7{kn} :n€ 1NV} It is easy to check that U € } o, (¥, : n € W)
and f[U] C g[V] € £. 0

3.2 Special classes

Proposition 3.2.1. The class of (S)-ultrafilters is closed under (S)-sums,
the class of (H)-ultrafilters is closed under (H)-sums and the class of Z,-
ultrafilters is closed under #Z;-sums.

Proof. Since (S), (H) and %, are P-ideals it is an immediate consequence of
Proposition 3.1.3. O

Ideals generated by thin sets and (SC)-sets are not P-ideals (see Propo-
sition 1.1.5 and Proposition 1.2.8) and it turns out that thin ultrafilters and
(SC)-ultrafilters are not closed even under products which are special cases

of sums.

Proposition 3.2.2. % -% is neither a thin ultrafilter nor an (SC)-ultrafilter
for every % € w*.

Proof. Assume % 1is a free ultrafilter on w. Let us recall that % - % =
Y g (¥n i n € w) where ¥, = % for every n € w. For every U C w X w let
U={m:(n,m)eU}landU={n:U, e %}

Consider f : w X w — w defined by f({n,m)) = n + m. For every

n € w define f, : w — w by fo(m) = f({n,m)). Notice that that f, is
one-to-one for every n and f is finite-to-one. For every A C w we have

fnold] = A+n = {a+n:a € A} according to the definition of f,. We
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will show in the following that f[U] is not thin and f[U] & (SC) for every
UeuU %.

Fix U € % % and let {a, : n € w} be an increasing enumeration of f[U].
Since U € % - % we have U € %, in particular U is infinite. Choose two
distinct elements ny,n, € U and denote V = U,, NU,,. The set V is infinite
because % is a free ultrafilter. We get f[U] = U,y fulUn] 2 fo,[Un,] U
faalUn,] 2 (V4+n1)U(V +n2). It follows that | f[U]N[v, v+ max{ni, no}]| > 2
forevery v € V., -

If u > max{n,,ny} then for a,,a,+1 € [u,u + max{n;,n2}] we have
- > ety 2 1 and any1 — an < max{ni, ns}.

There are infinitely many u € V with u > max{n;,ny}. It follows that the
set f[U] is not thin because limsup, .o, ;22 > 3 and f[U] does not belong

to (SC) either because there is j < max{ni,ny} such that (f[U] + j) N f[U]
is infinite. O
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4 Weaker forms of “-ultrafilters

In the first section of this chapter we present several results concerning weak
Z-ultrafilters which we define analogously to #-ultrafilters with the only
difference that functions considered in the definition are finite-to-one.

In the second section we restrict further the family of functions considered
in the definition of an #-ultrafilter to one-to-one functions and focus on the
summable ideal to get an example of such an ultrafilter in ZFC.

4.1 Weak Z-ultrafilters

Definition 4.1.1. Let .# be a family of subsets of a set X such that &
contains all singletons and is closed under subsets. Given an ultrafilter % on
w, we say that % is a weak & -ultrafilter if for every finite-to-one mapping
F:w — X there is U € % such that F[U] € £.

Obviously, every #-ultrafilter is a weak #-ultrafilter.

In the following we concentrate on weak #-ultrafilters, where X = w and
# is again a collection of small subsets of w and we are especially interested
in the ideals introduced in chapter 1.

Lemma 4.1.2. If Z is a tall P-ideal and %,, n € w, weak & -ultrafilters
then every accumulation point of the set {%, : n € w} is a weak Z -ultrafilter.

Proof. Assume f is a finite-to-one function. There exists U, € %, such that
flUn] € & for every n € w. Since £ is a P-ideal there exists an infinite
set A € S such that f{U,] C* A for every n. It implies U, C* f~![A]
because f is finite-to-one. If % is an accumulation point of {%, : n € w}
then U = fl[A] € % because w \ f~1[A] &€ %, for every n. Of course,
flU] = A € # and it follows that % is a weak #-ultrafilter. O

Weak thin ultrafilters provide a new description of Q-points.

Proposition 4.1.3. An ultrafilter on w is a weak thin ultrafilter if and only
if it is a QQ-point.

Proof. It follows from the proof of Proposition 2.4.1 that every weak thin
ultrafilter is a Q-point.

Now, assume % is a -point and f : w — w is a finite-to-one mapping.
Define Q, = f'[n!, (n + 1)!) for every n € w. The family {Q, :n € w} is a
partition of w into finite sets. So there exists V € % such that [V NQ,| <1
for every n. Since % is an ultrafilter either Vj = J{Qz : n € w}, or
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Vi = U{Q2n+1 : 7 € w} belongs to the ultrafilter 7. We may assume that
Vo€ %. Let U =V NV, It is easy to verify that f[U] is a thin set:
If ap, @ny1 € f[U) then there is k, € w such that a, € [(2k,)!, (2k, + 1))

and anp+; > (2k, + 2).. We get limsup,,_,, ;f:—l— < lim supn_,mg%;—: ==
: : 1
lim sup,, .o, g7 < limsup, o 575 = 0. O

Corollary 4.1.4. It is consistent that there are no weak thin ultrafilters. O

It follows from Proposition 2.4.7 that there are rapid ultrafilters which
are not (S)-ultrafilters, but there are no rapid ultrafilters which are not weak

(S)-ultrafilters.
Proposition 4.1.5. Every rapid ultrafilter is a weak (S)-ultrafilter.

Proof. Assume % is arapid ultrafilter and f : w — w a finite-to-one function.
Define g(n) = max f~1[0,2"] + 1. Since % is rapid there is U € % such that
g <* ey. So we have u,, > g(n) (where u, denotes the nth element of U) for
every n > ng. The definition of function g gives f(u,) > 2". It follows that

1 1 1 1 1
2 oS 2 Ty Ty S 2 Ty T 2 3 S

a€ fiU) n<ng n<ng

Hence f[U] belongs to the summable ideal and % is a weak #-ultrafilter. O

4.2 0O-points and summable ultrafilters

Let us recall that an ultrafilter % € N* is called a 0-point if for every one-
to-one function f : N — N there exists a set U € % such that f[U] has
asymptotic density zero. Gryzlov constructed such ultrafilters in ZFC (see
17], [18)).

We strengthen Gryzlov’s result and construct a summable ultrafilter that
we define as an ultrafilter %7 € N* such that for every one-to-one function
f+ N — N there exists U € % with f[U] in the summable ideal. OQur proof
was motivated by Gryzlov’s original construction as it was written down by
K. P. Hart [19].

Let us call a family &# C £ (IN) summable if for every one-to-one function
f N — N there is A € & such that f[A] belongs to the summable ideal.

During the construction we make use of the following upper bound for
partial sums of the harmonic series:

Fact 4.2.1. 1+ 2+ -4+ % <1+InN <1+log, N for every N € N.
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Lemma 4.2.2 is fairly general, but it enables us to construct a summable
centered system by applying Proposition 4.2.3 to get summable k-linked fam-
ilies for every k. The summable centered system may then be extended to a
summable ultrafilter.

Lemma 4.2.2. If %, is a k-linked family of infinite subsets of N for every
k€N then & = {F C N: (Vk)(3U* € &, )U* C* F} is a centered system.

If moreover, £ is a P-ideal, f € NN a one-to-one function and for every
k € N there exists U* € Fi such that f[U*) € F then there exists U € &
such that f[U] € . In particular, if % is summable for every k then & is

summable.

Proof. Take F\,Fy,...,F, € & and for every j = 1,...,n choose Uf € &,
such that U"c C* F; for every k. Forevery k > n famlly ﬁ}c is n-llnked hence

N, Uy is an 1nﬁn1te set. We have

ﬁ U & ﬁ F;
j=1 j=1

for every k > n and it follows that family % is centered.
For the moreover part, consider A € # such that f[U¥] C* A for every
k € N. We get U* C* f1[A] for every k € N. According to the definition

set U = f~}[A] belongs to & and f{U] = A€ .#. a

Proposition 4.2.3. Let A be an infinite subset of N. For every k € N there
exists a summable k-linked family %, C FP(A).

Proof. Fix k € N. We divide A into disjoint finite blocks, A = (J, .y Bn,
and for every n enumerate B, faithfully, as {b(¢) : ¢ € Hk__o Q(7,n)} where
Q(j,n) is defined by Q(j,n) = 2"? Notice that for every i < k we have
QGG n)| = 2" - | TT;26 QU ).

Forevery i < k, z € Q(2,n) and s € H?=i+1 Q(j,n) define B,(i, z,s) =
{b(p™(z)"s) : p € Hj;}) (7,n)}. For every one-to-one function f: N - N
let m{ = min f[B,(i, z, s)]. Finally, let z(f,s) € Q(¢,n) be that = for which
m{ is maximal, i.e., My (te) = max{m{ : z € Q(i,n)}. Now, we may define
A7 C A block by block as the union A/ = |,y Bf, where B{ C B, is
defined in two stages: first B = |Jf_, B/(:) and second Bf (i) = U{BI(i,s) :
s € H’?_Hl Q(j,n)}, where BL(i, s) = B,(3,z(f, 5), s).

Claim 1. The family %, = {Af: f e NN one-to-one} is k-linked.
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Consider fy, f1,..., fe distinct one-to-one functions from N to N. Since

k oo &
NA»2 UM 58
j=0 n=1 j=0

it suffices to show that ﬂ;;o B} # @ for every n € N. To see this fix n and
define ¢ € H?.__OQ(j, n) recursively: put s = @ and set ¢(k) = z(fo, so),
next s; = (¢(k)) and ¢(k — 1) = z(f, s;), and so on. It follows that b(y) €
Moo BE (k= 5,85) € M=o BY (k — 5) € Moo BY.

Claim 2. For every one-to-one function f the set f{Af] belongs to the

summable ideal.
Our aim is to bound the sum ) o/ Tla) from above by elements of a

convergent series because f[A/] = U,y fIBf]. At first, we estimate the
sum of the reciprocals of elements in f[B/(i, s)] for every i < k and s €

=i QULT). |
Since |f[B4 (3, 8)]| = | TTjZo Q(j, n)| we have

i—1

1 2n-(2‘—1)

1 i I —
GGB%:G‘S) f(a) < ‘EQ(J, n)’ " min f[B,{(,;,s)] - mi'(f,s) (1)

k : k .

Put ¢;n = | [[;i4, @(4, n)| and enumerate {mi(f‘s) 15 € [1j2ip1 QUL M)}

increasingly as {m; : Ll =1,...,¢in}. It is easy to see that m; > - Q(i,n) for
every [ and it follows that

1 EV_: L 14lgan _ 1H e 08 Q0
I=1 m; =1 LT QG o

where we used Fact 4.2.1.
Now, observe that

k k
1+ Y 1ogQUn) S1+n) 2 =1+n@* —1) <n2*  (3)
j=i+l i=0
and putting together (1), (2) and (3) we obtain

nzk-}-l

1+Z:?=i+ log, Q(J,n)
a)“‘HQJ’ )| A1) =

aGB,’: (1.)
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Thus we get for every n

k
1 n2k+1 n(k + 1)2¢+1
Z f_ Z on ()
aGBn 1=
and finally
1 2 nlk + 1)2k+1
f— Z n{ + ) < 2(k + 1)28 (6)
i.e., the set f [Af ] belongs to the summable ideal. O

While constructing a 0-point Gryzlov made use of function Q(j,n) = n?.
We cannot use this function for our purpose because it “grows too slowly”.
Its polynomial growth with respect to n provides in formula (4) (or (5))
a divergent series as an upper bound for Zae B! }—(15)— So it seems to be
necessary that Q(j,n) depends exponentially on n. In formula (4) occurs
| H;';E Q(7,n)| - Q(i,n)~!, which excludes functions of type 2" - p(j) or 277\
where p(j) is a polynomial in j. Hence our definition Q(j,n) = 2" seems
to be the best possible to use while constructing a summable ultrafilter.

Theorem 4.2.4. There is a summable ultrafilter on N.

Proof. Consider an arbitrary countable family {Ax : £ € N} of infinite sub-
sets of natural numbers and apply Proposition 4.2.3 to obtain & summable k-
linked family .%; on A for every k. From Lemma 4.2.2 we obtain a summable
centered system % on N. It is obvious that any ultrafilter that extends &

is summable. M
Corollary 4.2.5. There are 2° distinct summable ultrafilters on N.

Proof. Assume {Aj : k € N} is a countable family of disjoint infinite subsets
of N and & is a summable k-linked family on Ax for every k. For every
free ultrafilter % on N let Fo C FP(N) consist of sets F € N such that
{k: FNA, € F} € %. It is easy to see that Fo is a summable filter
base and Fq #* Fy whenever Z # 7. It follows that there are 2° distinct

summable ultrafilters. 0

The construction of a summable ultrafilter relies strongly on the fact that
functions in question are one-to-one and there is no obvious way to trans-
form the construction to obtain (S)-ultrafilters or even weak (S)-ultrafilters
although the moreover part of Lemma 4.2.2 is still true for all finite-to-one
functions. This is not the case for Proposition 4.2.3, which can be easily
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modified just for those finite-to-one functions f for which the size of preim-
ages of singletons, i.e., the sequence |f~'(n)|,eN, is bounded from above
by a natural number p (such functions are called p-to-one). It suffices then
to enumerate the block B, in the proof of Proposition 4.2.3 faithfully as
{b(r,p) 7 €p,p € H?:o Q(j,n)} and we may repeat the construction step
by step. The only difference is that in formula (6) from Claim 2 we get
another upper bound for the sum of reciprocals of the elements of f[Af],
namely 3¢ 4r 7oy < 2p(k + 1)25,

Another interesting question arises if we replace the summable ideal in
the definition of a summable ultrafilter by the generalized summable ideal
#, defined in chapter 1. It is not known at the moment whether it is possible
to construct in ZFC an ultrafilter % such that for every one-to-one function
there is U € % with f[U] € &, for arbitrary function g.
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