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Introduction

Ult rafi lters on natural numbers have been receiving much att ntion ov r tll
years and many resul ts and construct ions of special types of ultrafilt rs b ­
came part of mathematical folklore. There have been several attempts to
connect ultrafilters with families of "srnall" set s. For our purposes two of
thern are important - Gryzlov's O-points and f -ultrafilters int roduced by
Baumgartner. Both notions denote ultrafilters that cont ain "srnall" sets
where "smallness" is defined by zero asyrnptotic density in the first case and
a prescribed farnily f in the second case. Not only the ultrafilter it self con­
tains such a set, but also many other ultrafilters, images under perrnutations
in the first case and under all functions in the second case.

Gryzlov defined O-points in his talk during the 12th Wint er School on
Abstract Analysis in Srní and he constructed such ultrafilters in ZFC (see
[1 7], [18]). His investigation was stimulated by a question of van Douwen.

The definition of f-ultrafilter which was given by Baumgartner in [2] :
Let f be a farnily of subsets of a set X such that f contains all singlet ons
and is closed under subsets. Given a free ultrafilter 0// on W, we say that 0//
is an Jt'-ultrafilter if for any F : W --+ X there is A E 0// such that F[A] E f.

Baumgartner defined in his article discrete ultrafilters, scattered ultra­
filters, measure zero ultrafilters and nowhere dense ultrafilters which he ob­
tained by taking X == 2w

, the Cantor set, and f the collection of discrete
sets, scattered sets, sets with closure of measure zero, nowhere dense sets
respectively. If we let f be the collection of set s with countable closure then
we obtain countably closed ultrafilters which were introduced by Brendle
[6]. Yet another class of f-ultrafilters was introduced by Barney in [1] by
taking f to be the sets with o-compact closure. AIl these classes of ultra­
filters are proved to be pairwise distinct under some additional set-theoretic
assumptions (Continuum Hypothesis Ol' some form of Martin's Axiom). It
seems that some additional set-theoretic assumptions cannot be avoided com­
pletely when speaking about f-ultrafilters because Shelah [25] proved that
it is consistent with ZFC that there are no nowhere dense ultrafilters, which
implies that the existence of any of these ultrafilters (being a subclass of
nowhere dense ultrafilters) is not provable in ZFC. (These "topologically"
defined ultrafilters are of certain importance, e.g., in. t he forcing theory, as
the result of Blaszczyk and Shelah [4] shows).

Another example of f-ultrafilters are ordinal ultrafilters which were de­
fined also in [2] by taking X == Wl and f == {A C Wl : A has order type <
lX} for an indecomposable ordinal a. It was also Baumgartner [2] and Brendle
[6] who studied f -ultrafilters in this setting and presented several interesting
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resul ts , but it remains an open question whether these ' ordinal ultrafilters
exist in ZFC. The ambition of this thesis, however , is not to olv this intrigu­
ing ques tion whose solution probably requires advanced forcin g t chniques ,

We study in this thesis f -ultrafilters in the setting X == w and ý is
an ideal on w ar another family of "small" subsets of natural numbers that
contains finite sets and is closed under subsets. 80 we consider as ~ the
family of sets with asymptotic density zero, the summable ideal ar the family
of thin sets Ol' (SC)-sets. We prove that it is consistent with ZFC that such
ultrafilters exist and investigate sums and product of these ultrafilters.

We investigate also relationships of such ultrafilters to other well-known
classes of ultrafilters among others to P-points which can be described as
f -ultrafilters in two ways: If X == 2W then P -points are precisely the
f -ultrafilters for J consisting of all finite and converging sequences, if
X == Wl then P-points are precisely the (.ýf-ultrafilters for ~ == {A C Wl :

A has order type < w} (see [2]). It seems that there is no family ~ of sub­
sets of natural numbers such that P-points are precisely the f -ultrafilters,
but we can relate all the introduced classes of J-ultrafilters to P-points.

Finally, we approach the position of Gryzlov. We weaken the notion
of ~-ultrafilter so that we restrict the functions considered in definition of
an J-ultrafilter to finite-to-one functions at first and then to one-to-one
functions and we construct in ZFC such an ultrafilter with the summable
ideal chosen for J, which strengthens Gryzlov's result.

The structure of the dissertation is as follows: After reviewing basic no­
tions we introduce in chapter 1 several collections of "small" subsets that we
use to define corresponding classes of J-ultrafilters. Chapter 2 is devoted
entirely to J -ultrafilters and the relationship of various classes of ultrafilters
and it contains, for instance, a construction of a hereditarily rapid ultrafilter
that is not a Q-point. Sums and products are studied in chapter 3. The
thesis ends with chapter 4 in which we adopt Gryzlov's approach. We focus
on weaker forms of f-ultrafilters and construct a summable ultrafilter.

Some parts of this thesis have been already published Ol' accepted for pub­
lication. Some results from section 2.3 can be found in [13] Ol' [14] (eventually
under different set-theoretic assumptions); section 4.2 is based on [15].
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Basic notions

Given a non-empty set X we will denote by & (./Y) the pow r s t of ./Y, i.
the set of all subsets of X. The set of all natural numbers is w and w deno te
N == w \ {O}. We will denote by c the cardinality of the continuum ar the
cardinality of 9(w).

The set of all finite subsets of w is denoted by [w] <W, the set of all infi nite
subsets of w by [w]W as usual. We denote the set of all funct ions frorn w to w
by "co, Let us recall the quasiorder <" on W w : for oj ,9 E W w we write f <.' 9
if and only if there is ti E w such that J(m) < g(m) for every 1TI > n. A
family :F C Ww is called a dominating family in (Ww , < *) if for every 9 E W w

there exists f E :F with 9 <* i-

Continuum Hypothesis and Martin's Axiom

It was already stated in the introduction t hat sorne additional set-theoretic
assumptions seem to be necessary when speaking about Ý -ultrafilt ers. We
mention here two of them: the Continuum Hypothesis and Martin's Axio m.

The Continuum Hypothesis (CH in abbreviation), 2W == Wl, enables us
for example enumerate all functions from w to w by countable ordinals. MA
stands for Martin's Axiom, which is implied by CH, but not equivalent to it
(see [20]).

We deal mostly with Martin's Axiom for countable posets (in abbreviation
MActble), which is a weaker form of Martin's Axiom. However, before we say
what MActble is, let us recall some definitions concerning posets.

Let (P, <p) be a poset. A set D C P is dense in P if (Vp E P) (3q <p p)
q E D. A set C§ C P is a filter in P if (Vp, q E C§) (3r E ť§) r <p p & r <p q
and (Vp E C§) (Vq E P) p <p q implies q E ť§.

MActble is the statement: Whenever (P, <p) is a non-empty countable
poset, and ~ is a family of < c dense subsets of P, then there is a filter C§

(called a ~-generic filter) in P such that (VD E ~) C# n D =I 0.

Filters and ideals

Let X be a nonempty set and ff C 9(X), § i= 0. We say that § is
a k-linked family if Fo n Fl n · . ·n Fk is infinite whenever F, E §, i < k .
a centered system if § is k-linked for every k.
a filter base if F i= 0 for every F E § and if Fl, F2 E § then there is

F E !# such that F C Fl n F2 .

a filter (on X) if §' is a filter base and whenever F E !# and F C G C X
then G E!#.
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an ultrafilter (on X ) if ff is a filter and for every M C ./Y ith r II Ol'

X \ NI belongs to ff , i.e., ff is a maximal fil t er on X.
Observe that a filter on ./Y is precisely a filter in t he poset (g(./y), C) .
If ff is a centered system then the smallest filt er (base) that contains

ff is called the filter (base) generated by ff and we denote it by ((ff))
((§)). To obtain a filter base we have to add all fini t e intersections of sets
from ff and we have to add all supersets of sets in the filter base t o get a
filter. An example: if ff C &(X) is a filter base that is closed under finite
intersections and A C X such that § U {A} is a centered system (we say
that A is compatible with F) then (ff U A) == ff U {A} U {F nA : F E ff}
and ((§)) == {M C X : (3F E ff)F nA C NI}.

An (ultra)filter § is called [ree if n{U : U E ff} == 0 and it is called
fixed (or principal) if n{U : U E ff} =I 0.

The character oj ff is the minimal cardinality of a subfamily of ff that
generates ff, we write x(ff) == min{/88/ : 88 C ff, ((88)) == §}.

An ideal is a dual notion to filter. Hence f C 9(X) is an ideal on X if
it is a non-empty proper subset of 9(X) and it is closed under subsets and
finite unions.

If § C f!/J(X) is a fiIter then §* == {X \ F : F E §} is the dual ideal
to ff and if f C &(X) is an ideal then J* == {X \ A : A E J} is the dual
filter to J.

A basic exarnple of an ideal is the principal ideal ,fA == {B eX: B CA}
for a given A C X or the Fréchet ideal, the family of all finite subsets of the
given set . The dual filter is called the Fréchet filter and consists of cofinite
subsets. Dual ideals to ultrafilters are called maximal ideals.

The smallest ideal that contains a family A C f!1J (w) is the ideal generated
by A, denoted (A). A family A that generates an ideal f is the base oj f
and the character oj f is the minimal cardinality of a base of the ideal, i.e.,
X(J) == min{IAI : (VI E f)(3k E w)(3A1 , . . . ,Ak E A) I C Al U ... U Ak } .

The following definition is crucial for our future considerations:
An ideal J C f!/J(w) is called tall if every A tf. f contains an infinite

subset that beIongs to the ideal f.
For every A, B C w we say that A is almost contained in Band we write

A C* B if A \ B is finite. Using this notation we recall the definition of the
pseudointersection number:
p == min{lff/ : ff C &(w) is centered, -,((3A E [w]W)(VF E §)A C* F)}

It is not difficult to prove that X(f) > p for every tall ideal J.

We say that an ideal f is a P -ideal if whenever A n E §, n E w, then
there is A E J such that An C* A for every n.
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Rudin-Keisler order and Katětov order

T he Čech-Stone compactification of w, denoted by (3w is the uniqu (up to
homeornorphism) compact space t hat contains w as a dense sub t and su h
t hat for every cornpact space K and every continuous function f : w -+ J(
t here is a continuous extension (3f : (3w -+ K called the St one xt nsion. It
implies that every function f : w -+ w has its Stone extens ion (3f : {3w -+ (3w.

We identify points of (3w with ultrafilters on w. The points of the remain­
der w* == (3w \ w correspond to the free ultrafilt ers on w, t he fixed ultrafilters
are identified with points of w.

Let Od, 1/ E (3w. Observe that f!g == {f[U] : U E Od} is a filter base.
We denote by (3f(Od) the filter generated by f!g and it is easy to check that
(3f(~) is indeed an ultrafilter. It is easily verified that (3f(~) == 1/ iff
(VU E 02/) f[U] E 1/ iff (VV E 1/) f -l[V] E ~.

We write o~ ~ 1/ if there exists a permutation 7r of w such that (37r (1/) ==

Od. It is clear that the relation ~ is an equivalence relation on (3w .
For Od, 1/ E (3w we write ft' <RK 1/ iff there is f E W w such t hat

(3f (1/) == 02/ . The relation <RK is a quasiorder since the relation is not
antisymmetric, but we get the Rudin-Keisler order ifwe consider t he quotient
relation defined by <RK on (3w /~.

Katětov order <K is an extension of the Rudin-Keisler order to arbit rary
filters or ideals. We write § <K c;g if there exists a function f : w -+ w such
that j-I[U] E c;g for every U E §. It is easy to check that ff <K r§ if and
only if ff* <K c;g*.

We say that C C (3w is closed doumioard under <RK if 02/ E C and
1/ <RK tf/ implies 1/ E C.

Sorne well-known ultrafilters

We will investigate relations between some classes of ~-ultrafilters and sev­
eral well-known classes of ultrafilters in chapter 2. We summarize in this
section the definitions and equivalent descriptions of ultrafilters on w that
we will consider. Two types of ultrafilters, hereditarily Q-points and heredi­
tarily rapid ultrafilters namely, are newly introduced.

A free ultrafilter tf/ is called a P -point if for all part it ions of w, {~ : i E

w}, either for some i, ~ E tf/, or (3U E 02/) (Vi E w) IU n ~I < w. An
equivalent combinatorial description is: a free ultrafilter 02/ is aP-point if
and only if whenever U; E tf/, n E w, there is U E Od such that U C* U';
for each n (i.e. P-points are dual filters to maximal P-ideals) . The class of
P-points is downward closed under Rudin-Keisler order (see e.g. [I l j) .
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A free ultrafilt er ú2/ is called a selective uitrajilter (Ol' a RaI11 ultrafil t r)
if for all par ti tions of w, {R : i E w} , eit her for S0111e i , R E ú{~, Ol' (3U E Oll)
(\:Ii E w) IU n Rl < 1. We will profit also frorn t he following quivalent
characterization of selective ultrafilters: if ú2/ is a select ive ult rafi lt r 011 W

then for every f E " io there is U E ú2/ such that f rU is either one-to-one
or constant (see [11]). It is also proved in [11] that selective ultrafilters are
minimal in Rudin-Keisler order on ultrafilters.

Every selective ultrafilter is aP-point , but the converse is not t rue.

A free ultrafilter ú2/ is called a Q-point if for every partition {Qn : ti E w}
of w into finite sets there exists U E úl/ such that IU n Qnl < 1 for every
n E w. The notion of Q-point was introduced by Choquet [10]. An equivalent
description of Q-points, known also as rare ultrafilters, was given by Mathias
in [2l]~ an ultrafilter úl/ is a Q-point if every finite-to-one func tion is one-to­
one on a set in úl/.

It folows from the definition that every selective ultrafilter is a Q-POiI1t. A
Q-point need not be a selective ultrafilter, but it is selective if t he ultrafilter
is also aP-point.

A free ultrafilter ú2/ is called a rapid ultrafilter if the enumeration functions
of its sets form a dominating family in (Ww , <*) where enumeration function
of a set A is the unique strictly increasing function eA from W onto A. Rapid
ultrafilters (called also semi-Q-points by some authors) are due to Choquet
[10] resp. Mokobodzki [23].

We say that a free ultrafilter ól/ is a hereditarily Q-point (rapid ultrafil­
ter) if it is a Q-point (rapid ultrafilter) such that for every Y <RK úl/ the
ultrafilter 1/ is again a Q-point (rapid ultrafilter).

It is known that every Q-point is a rapid ultrafilter and, obviously, ev­
ery hereditarily Q-point is then a hereditarily rapid ultrafilter. Bukovský,
Copláková showed in [7] under additional set-theoretic assumptions that
rapid ultrafilter need not be a Q-point. This result is strengthened in Proposi­
ton 2.4.6 in chapter 2 where we construct a hereditarily rapid ultrafilter which
is not a Q-point assuming Martin's Axiom for countable posets.

It is consistent that all the above mentioned types of ultrafilters exist
under various set-theoretic assumptions (for instance, Booth [5J proved that
selective ultrafilters exist if Martin's Axiom holds). However, there exist
various models of set theory showing that it is consistent with ZFC that no
such ultrafilters exist. A model with no P-points constructed Shelah [24] .
Miller [22] showed that there are no Q-points (ar even rapid ultrafilters) in
the Laver model.
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1 Srnall subsets of natural nurnbers

Several collections of "small" subsets of w are presented in t hi hap r. v
summarize definitions, give some equivalent descripti ons in some a S and
show the relationships among the various types of srnall sets.

The following diagram surnmarizes inclusions between the classes of thin
sets , (SC)-sets, (S)-sets and (H)-s ets which are defined in the following
sections.

thin sets

(SC)-sets (S)-sets

(H)-sets

Some more ideals on w are described in the last section of this chapter .
They do not appear in the diagram because their relation to the other classes
is not clear enough.

1.1 Thin and alrnost thin sets

Definition 1.1.1. An infinite set A C w with enurneration A == {a n : n E lN}
is called thin (see [3]) if limn~oo ~ == o.

an+l

An example of a thin set is the set {n! : n E w}. The farnily of thin sets
is the smallest subset of f!lJ (w) we will consider. A slightly larger collection
of subsets of w represent the almost thin sets.

Definition 1.1.2. An infinite set A C w with enumeration A == {an : ti E lN}
is called almost thin if lim sUPn~oo~ < 1.

an+l

It is obvious that every thin set is almost thin. The converse is not true,
see for exarnple the set {2n : n E w}.

Neither the family of thin sets nor the family of almost thin sets is an
ideal. To see this consider sets A == {n! : n E w} and B == {nI + 1 : ti E w},
which are thin but the union A U B is not even almost thin .

We will denote the ideal generated by thin sets by !Y and the ideal gen­
erated by almost thin sets by ~. Both ideals extend the Fréchet ideal .
Obviously, d ~ lY and the following lemma shows that the ideals do not
coincide.

Lem m a 1. 1.3. A == {2n : n E w} E d \ !Y.
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Proof. Since A is almost t hin it belongs to the ideal d . unl for the
contrary t hat t here are t hin sets A I, ... , Ak such that A CAl U ... U Jl k . For
every i == 1, ... , k there is ni E w such that whenever a, b ar two 1-ment
of Ai with ni < a < b then ~ < 21k ' Let no == max{7~i : i == 1 .. . k} and
consider the set {2n o , 2710 +1

, ... , 2n o+k
} . Each of its k + 1 element b lon gs

to Ai for some i, so there is io such that Aio contains two of t h lil . For th
1 h b d a > 2

n o Id"e ements we ave nio < a < an b _ 2n O+ k == 2k - a contra iction.

Lemma 1.1.4. Let A be a subset oj w. If A E :Y then (3k E w) (\in E w)
!A n [2n

, 271 + n]1 < k.

Proof. Assume for the contrary that A E :Y and (Vk E w) (3n E w) IA n
[2n , 2n + n] I > k. It follows from A E :Y that there are thin sets Al, . .. , Am

such that A == u;n I Ai' For every i == 1, ... , m there exists ni such that
the ratio of any two successive elements in Ai which are great er than n; is
less than~. Let no == max{m + 1, ni : i == 1, ... , m}. According to t he
assumption there exists n E w such that IA n [271

, 2n + n]1 > no. Now from
the Pigeon Hole PrincipIe we have IAi n [2n

, 271 + n] I > 2 for some i. Hence
there are two successive elements in Ai greater than ni whose ratio is greater
(ar equal to) 2::n > ~ - a contradiction. O

Lemma 1.1.5. Neither d' nor !!7 are P-ideaZs.

Proof. Consider thin sets A k == {n! + k : ti E w}, k E w. We want to prove
that whenever A C w contains all but finitely rnany elements of each Ak then
A cannot be written as a finite union of almost thin sets, i.e. A tf. Jd.

Let A == Uj~l Bj. There exists no > Zsuch that the interval [nf, n! + lJ is
contained in A for every n > no. Therefore one of the sets B j contains two of
its elements. Since there are only finitely many sets B j , but infinitely many
n > no there exists Bj such that IBj n [nf, n! + ZJl > 2 for infinitely many n.
It follows that B j == {~ : n E w} is not almost thin because

bt n!
lim sup .:»: > lim sup , l = 1.

n-+oo ~+1 n-+oo n. +

D

1.2 Sets with property (SC) and (C)

Given A C w and k E w we define A + k == {n : n - k E A}.

Definition 1.2.1. We say that set A C w has property (SC), in short , A is
an (SC)-set, if (A + k) n A is finite for all k E JN.
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Lemma 1.2.2. Every almost thin et ha proper-ty ( ').

Proof. Let A == {an : 11 E }. If ther i k E

is infinite t11e11
u h tha {71 : a; + k E /1}

1· a n Ii a.,1111 sup > un sup == 1
11,---+ oo an+1 - 11,---+ 00 an + k

an.d A is 110t almost thin . D

The set of all squares of natural numbers {n2
: 71 E w} ha property ( ')

and it is not a1most thin.

Lemma 1.2.3. Set A == {an : 11 E N} C w has property (SC) if and ouh) iJ
for every k E N there is nk such that a n+l - an > k for every n > 11k'

Proof. Assume first that A has property (SC ). Then M, == {n : an + i E A}
is finite for every i <k. Let nk == 1 + max Ui~k Mi' It is easy to see that
an+l - an > k whenever n > tu:

On the other hand, if for every k E N there is nk such that an+l - a.; > k
for every ti > nk then (A + k) nA C {al' a2,"" an k } is fini t e. D

The family of sets with property (SC) is not an ideal, consider , e.g., the
union of sets {n2

: ti E w } and {n2 +1 : ti E w } that does not satisfy condit ion
(SC). But it still satisfies a weaker condition (C).

Definition 1.2.4. We say a set A C w has property (C) if (A + k) n A is
finite for all but finitely many k E N.

However, even the larger family of sets with property (C) is not an ideal.
There exist two thin sets whose union does not fulfil condition (C).

Example 1.2.5. Let us enumerate prime numbers as {Pk : k E w}. Put
A == {nf : n E w}, B == {(Pk n )! + k : k,n E w}. We know that A is thin.
If b == (Pkn)! + k E Band b' E B is the immediate succesor of b in B then
b < (Pkn)!+k < 2(Pk

n)!
- 2 H B' h' Ob' I A B d

b' - (Pkn+ 1)! - (Pk n+1)! - Pk n+1' ence lS t ln. VIOUS y, U oes not
satisfy condition (C) since ((A U B) + k) n (A U B) ~ {(Pk n )!+ k : n E w} is
infinite for each k E N.

It follows from the definition that every set with property (SC) has prop­
erty (Cf). Although the converse implication is not true it turns out that the
ideals generated by families (SC) and (C) coincide.

Lemma 1.2.6. Families (C) and (SC) generate the same ideal on w.
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Proo]. It suffi es to prove that ev ry t with prop rt ( 1) bIng t
ideal generated by sets with proper ty (SC) . A ign to - p-r · t v i h
property (C) finite set ! ( A == { k E : (A + k) n 1 i infini t} . will
proceed by induction on 'll == lKAl .

If K A == 0 t hen A has property (SC) and it t rivially b -long to the id al.
Now, suppose that every set B with /1(BI < 'll i a finitr un ion of set with

proper ty (SC) and conside r A with lKAl == Jl + 1. Defin k == 111' X ! ( A an I
set Ao == (A + k) nA and Al == A \ Ao. We get (Ao+k) n Ao c (;1+2k) n 14
which is a finite set, and (A l + k) n Al C (A + k) n A n 141 == 0 hen ­
IKAol < /KA \ {k} / == n and IK;hl < IKA \ {k} 1 == ti . According o the
induction assumption Ao and Al can be writ ten as a finite union of -t with
proper ty (SC) , thus the set A == Ao U Al belongs to the id al g 11 - rated by
(SC)- set s. D

Lemma 1.2.7. Let A be a subset of w. Set A belongs to the ideal qenerated
by (SC)-sets if and only if (3k) (Vd) (3nd) (V'll > nd) I['ll, Jl + d] n AI< k.

Proof. If A == Al U ... U A k where Ai E (SC) for i == 1, ... , k then according
to Lemma 1.2.3 t here is n~ , i == 1, ... , k , such t hat I[n, ti + d] n Ai / < 1 for
every ti > n~ . Let nd == max{n~ : i == 1, ... , k}. It is obvious that (Vn > nd)
I[n, n + d] n AI < k.

On the other hand, if (:3k) (Vd) (:3nd) (Vn > nd) I[n, n + d] nAI < k then
put Ai == {amk+i : m E w} where {am : m E w} is an increasing enumeration
of A. Obviously, A == Al U .. · U Ak and it is easy to see t hat Ai E (SC) for
every i == 1, ... ,k because IAi n [n, ti + d]1 < 1 whenever n > nd. D

Lemma 1.2.8. The ideaZ generated by (SC) -sets is not a P -ideal.

Proo]. Consider thin sets A k == {nI + k : n E w}, k E w, as in the proof of
Lemma 1.1.5. They have property (SC) and we prove that whenever A C w

contains all but finitely many elements of each Ak then A cannot be writ t en
as finite union of sets with property (SC).

Let A == Uj~l Bj . There exists no > Zsuch that the interval [n!, n! + l]
is contained in A for every ti > no. Therefore one of the sets B, contains
two of its elements. Since there are only finitely many sets B j , but infini tely
many n > no there exists B, such that IBj n [n! , 'll ! + ZJ l > 2 for infini tely
many ti. It follows that Bj does not satisfy condition (ISC) because there are
infinitely many elements in B j with difference i for some i < Z. D

1.3 Surnrnable ideal

Definition 1.3.1 . Summable ideal is the family {A C N : LaEA ~ < +oo} .
We call the sets from the summable ideal (S) -sets.

12



Although t he SU111111able ideal i d fi n d a all id al n I \ v \ \ iIl ft -n
regard it as a11 ideal on w (which is g -11 rat d b th U111111 I bl i j -al II I

and {O}).
It follows from t he definit ion that ev ry almo t thin ' -t b -long o th

summable ideal. However , t here is no inclusion b tween t h u111111abl - i I-al
and the ideal generated by (SC)-sets .

Example 1.3.2. Consider the set U{ [2n , 2n + 1~): 1~ E w}. It be longs to th
summable ideal b ecause

00 n -1 1 00

""__ < ,, _11 < +00
Z::~ 2n + i - L....J 2n '
n=O i= O n =O

but it is obviously no t in t he ideal generated by (SC) -sets .

Example 1.3.3. Consider a sequence (an : n E N ) of natural numbers
defined by recursion: a1 == 1 and an+ 1 == a., + k if n E [2 k,2k+ 1) . It is easy
to see that the set A == {an : n E JN} has property (S C). To check that it
does not belong to the summable ideal observe first that for elements of A
we have a2k < k . (2k

- 1) for every k > 2. So we get for k > 2

It follows that

and set A is not in the summable ideal,

It is a known fact that surnmable ideal is a P-ideal, but we give the proof
for the sake of completeness.

Lemma 1.3.4. Summable ideal is a P-ideal.

Proof. Let A k , k E w, be (S)-sets. For every k there is 'l1. k such t hat

Set A == U{Ak n [nk' +(0) : k E w}. It is easy t o check that A belongs to the
summable ideal and A k C * A for every k E w. D

13



Lemma 1.3 .5 . Jf A == {an : 71 E T} is a71 ( )- t ihen lim ., .u. == O.
a n

Proo]. We will show t hat if lim Sll P n -+ oo ;~. == C > O th -n 1 i 110t in t h

sum mab le íd eal , Take no E such t hat ~ > -2
c

. T 11 -n ~71~ 1 _1 > ~ > *.
ano 11. - (ln (ln a L.

By induct ion construct a sequence \71k ) k EW such t hat ~:~~ 1 a~. > (k + 2) ~ for
every k. Assume we know already Tl-O, ... , 71k ' Since lim sup., 00..!3:- == C > Oa n

we can choose nk+1 > 271k such that !~ > ~ . vVe get nk+l -nk > ~ . Hk +l
a n k + 1 a n k + 1 ~ a n k _f_1

and ~nk+ l .L == ~n~ _1 + ,\:,n k+ l .L > (k + 2) ~ + 1 . ~ == (k + 3 ) ~ .
0 n - 1 an 0 n - 1 an L.--n - n k+1 an - 4 2 2 '1

Finally, ~nEN a
1
n

is minorized by a divergent s ri - , henc it d iv rg - . D

1.4 Density ideal

Def:inition 1.4.1. We say t hat upper asymptotic density of s t A C w i
d*(A) = lim sUPn ---+oo IA~nl . If d*(A) = O t hen A has asymptotic density zem,
in short, A is an (H)-s et.

Notice that B C * A implies d*(B) < d*(A).

Lem m a 1.4.2. For A == {an : ti E lN} C w we have

n
d*(A) == lim sup--

n~oo an + 1

Proo]. Set ak = sup{ I A~nl : ti > k} and f3k = suPCn~1 : n > k}. Obviously,
(3k < aak+1· If ti > ak+1 then there exists a unique m > k such t hat am +1 <
n < am+1 + 1 and we have IA~nl = r;: < a1n

m
+ 1 < f3k' Hence s, > a ad l . So

((3k)k EW is a subsequence of (ak)kEW and limk~oo (3k == limk~oo O'.k. O

It follows from the definition that the collection of sets with asym pt otic
density zero is closed under subsets and under finite unions. Hence it is an
ideal and we call the ideal density ideal.

Lemma 1.4.3. Every (S)-set has asymptotic density zero.

Proof. If A == {an : n E N] belongs to the summable ideal then according t o
Lemma 1.3.5 limn~oo .!!:- == O. Then also limn~oo n+ 1 == O and from Lemm a

a n an

1.4.2 we conclude that A has asymptotic density zero. D

Lemma 1.4.4. Every (SC)-set has asymptotic densi ty zero,

Proo]. Assume A == {an : ti E lN"} has property (SC ) and that an+1 - an > k
whenever ti > tu: Define Ak == {an : n > nk}' For every k we have

d*(Ak ) == lim sUPm~oo m +1 < lim sUPm~oo +7c +1 < -kl . Since A C * A kan k +rn an k m ,

for every k, it follows that d*(A) == O. O

14



Lemma 1 .4 .5 . D ensity ideal is a P -id ale

Proof. Assume .i4 k k E ar t wi h asyrnptot i cl 11 i z ',1' . - ln'

assume that rl k c A k+1 for every k E w (Otll rwi we an wi t h ' ts

B - U A) F ' r I th t IAknnl 1 h . > . I Ik - i ~ k i · IX TLk SUC 1 a 11 - < k w en ev -1 TL _ 77'k ne

A = UkEN(Akn [nk,nk+J))' For n E [nk,nk+l) w have IA~n l < I A ~~lll < t
and we get

IAnn,1 . 1
lim sup < h 111 - == O.
n~oo ti k -,;oo k

Hence A belongs to the density ideal and obviously A k C* A for ev -ry k . D

1.5 More ideals on w

We say that A C w contains an arithmetic progression of length ti if there
exist a E w and d > O such t hat all the members of arithmetic progression
a + j . d for j == O, ... , ti - 1 belong to t he set A.

De:finition 1.5.1. Van der Waerden ideal is the family 1/1' == {A C w : A
does not contain arithmetic progressions of arbitrary length}.

It is obvious that t he family 11' is closed under subsets and that w rl. lf/ .
It follows from the van der Waerden Theorem that fF is closed under finite
unions and hence an ideal, We mention here two different formulat ions of
this well-known theorem. The proof of the van der Waerden T heorem can
be found for example in [16] Ol' [9].

Theorem 1.5.2 (van der Waerden).

1. If A == Al U·· . U Ar is a subset oj naturel numbers that con tains
arithmetic proqressions oj arbitrary length then at least on e oj th e sets
Al, ... ,Ar has the same property.

2. For every k, l E w there exists N(k, l) E w such that [or every colouring
oj the set {I, 2, ... , N(k, Z)} with k colours there is a homogen eous se t
that contains an arithmetic progression oj ienqtli Z.

It is easy to see that 11' contains all finite sets. The set {2n : n E w} is an
infinite set that belongs to 11/ because it contains 110 arithmetic progression
of length 3. Another example of an infinite set in 11/ is the set {n 2 : n E w}
which contains no arithmetic progression of length 4 (an observation made
already by L. Euler). These two examples show also that sets in 11' need not
be thin ar almost thin. However, every almost thin set belongs to the van
der Waerden ideal,

15



tAi
O

Lernrna 1 .5 .3 . If A == {an : 7'L E I } C w i a7'L almo t tliiti t tll. t i ~ E 1// .

Proo]. We want to prov that lim uPn a~~~ l == 1 if == {c., : n E I } C

W contains arithmetic progressions of arbitrary I ngth. In uch a a - f r
every k E w there are bk E w and dk > O uch that bk + j . dk E /1 f r

j == O, 1, . .. ,k-I . Actually, there are infini t ly m any pair Ok nd dk f r
every k . So there are infini tely many n E such that an == bk + (k - 2)dk

and bk + (k - l)dk E A. For such indices we get :

an > bk + (k - 2)dk > (k - 2)dk = k - 2
an+l - bk + (k - l)dk - (k - l)dk k -I

It follows from limk-t oo k~=21 == 1 that lim sUPn-too .s»: == 1 and th
a n + l

not almost t hin .

Now, we can conclude that the set from Example 1.2 .5 b slong to th
ideal 1// while it do es not beIong to t he ideal generated by (SC)-sets . In
fact, t here is no incIusion between the Iat ter ideal and 1//. R memb r the
(S C )-set from ExampIe 1.3.3 t hat obviously do es 110t belong to the ideal 1f/.

Surprisingly, t here is an inclusion between the van der Waerd n id al and
t he density ideaI. Szemeredi [26] proved t hat every set from the van der
Waerden ideal has asymptotic density zero. To see that the density ideal is
strictly greater consider the set {[n3

, n3 +n) : n E w} Ol' { [2 n
, 2n +n ) : n E w}.

The latter set belongs not only to the density ideal , but also to the
summable ideaI. Hence the van der Waerden ideal and the summable ideal
differ, but it is stilI not known whether there is an inclusion between these
two ideals, which is a famous conjecture of Paul Erdos,

Conjecture 1.5.4 (Erdos). If A is a subset oj natural numbers such that
LaEA ~ == +00 then A contains arithmetic progressions oj arbitrary length.

The last collection of small subsets of natural numbers that we introduce
is inspired by the summable ideal and it can be found for example in [12].

Definition 1.5.5. For any function 9 : N ---+ (O , + (0 ) we define a gen eralized
summable ideal f g as the family {A c N : LaEA g(a) < +oo}.

It is obvious that every generalized summable ideal extends t he Fréchet
ideaI. If LnEN g(n) < +00 then f g == &'(N). If linln-too g(n ) > O then
f g consists precisely of all finite sets. Therefore we assume in the following
that LnElN g(n) == +00 and limn~oog(n) == O to obtain a proper ideal t hat
is strictly greater t han the Fréchet filter.

Lemma 1.5.6. Ideal f g is a P-ideal for any Junctio n g.

Proo]. The proof is analogous to the proof of Lemma 1.3.4. D
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2 f-ultrafilters

I II the fi rst section of t h is chapter we pre ent e ert 1g -n ral r - ul b u Ý-
ultrafilters. We recall t he d efinition of Ý-ult rafilt er and giv - onu ne -__ 'ar,
conditions on the existence of cf-ultrafi lter . W how also that Ý-ult ra[i l - 1'.'

exist in ZFC for every maxirnal ideal Ý wit h / (cf) == c nd i i on 'i .t -nt
with ZFC that cf-ultrafilters exist for any tall ideal Ý .

Since all the ideals defined in chapt r 1 are tall it i con i t nt with ZFC
that Ý -ultrafilters for these families exist . We speak about (alnlo t) thin
ultrafilters, (SC)-ultrafilters, (S)-ultrafilters, (fI)-ult rafi lt r , t . and w

focus in the rest of the chapter on these parti cular classes of ultrafil ter . 80 W

prove in the second section that thin ultrafilters and almost thin ult ra.fi lter
coincide; in the third and fourth section we study the relationship b tw n
the above mentioned classes of cf-ultrafilt ers and some well-known classes
of ultrafilters; the fifth section contains three result s on 1J1-ul trafilt rs and
Ýg-ultrafilters that are not included in the previous sect ions .

2.1 General results

Definition 2.1.1. Let Ý be a family of subsets of a set X such that Ý

contains all singletons and is closed under subsets. Given an ultrafilter 0//
on w, we say that úl/ is an cf -ultrafilter if for any F : w ~ X there is A E 0//
such that F[A] E J.

In the following we will always consider X == w although some results are
true for arbitrary X.

The family cf need not be an ideal in general, but it is enough to consider
ideals on w if we want to study the classes of Ý-ultrafilters because replacing
f[U] E cf by f[U] E (f) in the definition of cf-ultrafilter, where (f) is
the ideal generated by cf, we get the same concept (noticed in [2]). The
following lemma shows that J -ultrafilters and (cf)-ultrafilters coincide.

Lemma 2.1.2. For an ultrafilter úl/ the following are equivalent:

(i) úl/ is an cf -ultrafilter

(ii) W is an (c.Y) -ultrafilter

Proof. It suffices to prove that (ii) implies (i) since (i) implies (ii) trivially.
Therefore assume that W is an (c.Y)-ultrafilter and let f E '",»: There exists
V E W such that f[V] E (cf) so there are for some k E w sets Al, .. . , .Ak E c.Y
such that f[V] C AIU· ··UAk . Now f -l[A I ] U · · 'Uf-l[Ak J == j - I [AIU· ··l)

17



Ak] ~V EÚ(/ . Soj- l [Ai] E O(/ for 0111 i<k. P l U== j' -l [. l\;] . lh -JIl
U E ú(/ and f [U] == Ai E f . It follows t hat 0(/ i c ll Ý -ult rafi lte r. O

Let f be an ideal 011 w . If an ultrafilter úl/ ext -n 1 thc íual fi l .11' of {~

i .e., ú(/ n f == 0 t hen Ol/ is no t an f -uI rafi1t -r . I-I w -v -r h - II\ . l rs d . '
not ho ld .

Example 2.1.3. Take 1/ E w* , 1/nf == 0. Let A == {an : TL E w} b ­
a11 infinit e set from t he ideal f . Define j : w ~ w so that f (an ) == T~ + 1
and f (k) == O for any k tf- A. ow let ú(/ be th ul trafilt r gene rat d b
{f - l [V] : V E 1/}. Then ú(/ n f i= 0 since A == j - I [w \ {O}] E 0// n f but
ú2f is not an f- ultrafilter since (VU E ú(/) f[U] E 1/, i.. , j [U] tf- f.

Baumgartner no ticed in [1] t hat t he class of Ý -ultrafilt rs i 'los cl down­
ward under t he Rudin-Keisler order < RI<' Recall t hat ~ < RI( 1/ if th re is
a function f : w ~ w whose Stone extension f3f : f3w ~ f3w 111ap Y on Olt'
(see [5]).

Lemma 2 .1.4. IfC is a class of ultrafilters closed downward utuler < R /( and
y an ideal on w th en th e following are equivalent:

(i) There exists ú(/ E C which is not an f -ultrafilter

(ii) There exists 1/ E C which extends f *, the dual fil ier to Ý

Proof. No ultrafilter extending .v: is an f- ul t rafilter , so (ii) implies (i) t riv­
ially. To prove (i) implies (ii) assume that 0// E C is no t an f- ultrafilter .
Hence there is a function f E W w such that (VA E f) j - l [A] tf- 0//. Let
1/ == {V c w : f - l[V] E ú(/}. Obviously 1/ extends f * and 1/ <RK 0//.
Since C is closed downward under <RI< and 0// E C we get 1/ E C. D

If we consider two ideals Ý, / we may ask whether t he classes of f ­
ultrafilters and / -ultrafilters coincide Ol' not. The following corollary of the
lemma above suggests in what form we can find ultrafilters demonstrat ing
that the two classes are distinct .

Corollary 2. 1. 5 . Let .«, / be ideals on w. If th ere is an / -ultrafi lte r th at
is not an f -ultrafilter then there is an / -ultrajilier th at extends f * . D

Let us recall the definition of Katětov order < K on ideals on w. We say
that f <K / if there is a function f : w ~ w such that j -I[A] E / for
every A E f. For filters §, es is the Katětov order defined analogously: we
write ff <K es if there is a function f : w ~ w such that j - l[F] E es for
every F E ff.
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Lemma 2 .1 .6 . ATL ultrajili rOl/ 'is an f -ulirafil t r 'Žf tuul or~ly lJ Ý 1:.1\ úll .

Proo]. If f* <!( 02/ t 11e11 t11 re xi ts 1 : w ---t W II h t h - J- I[ 1] E úl; f r

every A E Y* . Since U C iř' [j[U]] E Oll' for v ory U E Oll' an I <ll i: a fi ltcr
we get 1[U] tj. y for every U E Ol/ and Ol/ i ' 110t a11 f-uItr fil r .

If y * i l { Ol/ t hen for every f : w ---t W therr i A E (ýf . uch t hat
j - l [A] tj. Ol/ . Since 6(/ is a11 ultrafil t I' we g -t w \ 1- 1[A] E Il and we h: v ­
also f[w \ j -l[A]] C w \ A E .r Hence Ol/ is an f- ultrafilt -r . D

Lemma 2.1. 7 . Let ff be a filter on w and o/~ a (free) ulirajilier on w . T li n
ff < K ú(/ if and only ihere is an ultrafilter Y S1lCh that Y < tu: 0// and
-r » «.
Proo]. If ff <1< Ol/ then t here is a function f : w ---t w such t hat j - l [F] E 0/1
for every F E ff . Put Y == {A C w : C~U E Ol/)f[U] CA } . It i ca y to see
t hat ff C 1/, 1/ is an ultrafi1ter and j3f (6(/) == 1/. Hence Y < R !( o/~ .

If 1/ < RK Ol/ t hen there exists f : w ---t w such t hat j - I[V] E o/~ for
every V E 1/. In particu1ar, j - l [F ] E Ol/ for every F E ff C Y and we have
~~ <K Ol/. O

Putting together Lemma 2.1.6 and Lemm a 2.1.7 we have proved t he fol­
lowing proposition charact erizing f-ultrafi1 t ers for an ideal Y .

Proposition 2.1.8. Let f be an ideal on w. For an ultrafilier Ol/ E w* the
following are equivalent:

(i) ú2! is an f -ultrafilter

(ii) f* Í:.K ólJ'

(iii) 1/ Í:.RK ólJ' for every ultrafilier 1/ ~ f * o

As an immediate consequence of the previous proposition we get a result
that genera1izes the obvious fact that if f c / t hen every f-ul t rafilt er is
a / -ultrafilter.

Corollary 2.1.9. lf f <K / then each f -uitrafilter is a / -ultrafilter. O

There are many u1trafilters that are not Ý-u1trafilt ers for a given ideal f
because any ultrafilt er extending the dua1 filter of f * is not an f -ultrafilt er .
80 there are, for inst ance, no f-ultrafilters where f is t he Fréchet ideal.
However, the Fréchet ideal is not the only one ideal for which f-ultrafilters
do not exist. The following proposition provides a necessary condition on Ý

for the existence of Ý -ult rafilt ers.
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Proposition 2.1.10. Th ere are no f -u ltrafi lter for an ideal cýf uiliicli i
not tall.

Proof. Suppos that for A E [w]W \ Ý we h ·3,V - f n (A ) == [/ \] 'v '.11 I I )t

eA : w --+ A be an increasing enumerat ion of the -tA .
ow assume for the contrary that th re exist an f -ult rafil -r ú71 E w .

According to the d efinition of an Ý -ult rafi lt r th r xists U E Úl! 'u h th. t
eA[U] E .r, Since eA [U] C A the set eA[U] is fin itc , It follow that U i fini t
because eA is one-to-one - a contra.diction to t he as um p t ion tha t n et in
úJ/ is finite. D

The next proposition provides a. sufficient condition for th - -xi t -n of
Ý-ultrafilters.

Proposition 2.1.11. If Ý is a maximal ideal on W sucli that (f) == c ihen
Ý -ultrafilters exist.

Proof. Enumerate all functions from w to w as {fa: a < c}. By t l' n finite
induction on a < c we will construct filter bases § o: satisfying

(i) §o is the Fréchet filter
(ii) §a C §(3 whenever a < j3
(iii) /#', == Uo:<, /#'a for! limit
(iv) (\fa) Iffal < lal· w

(v) (Va) (3F E ffa +1) !a[F] E Ý

Suppose we know already ffa. If there is a set F E ffo: such that ! o:[F] E

Ý then put /#'a+l == ffa. Hence we may assume that !a[F] tf. f. Then
w \ !a[F] E J for every F E ffa and since X(f) == c > I§al we can find
M E J such that M n !a[F] is infinite for every F E s ; To complete the
induction step let /#'a+l be the filter base generated by §a and f ;l[M].

It is obvious that any ultrafilter that extends the filter base ff == Ua<c /#'0:
is an Ý-ultrafilter. O

Proposition 2.1.11 may be considered as a special case of a result proved
by Butkovičová in [8] not using the terminology of J-ultrafilters. We present
here the theorem reformulated in terms of Ý-ultrafilters.

Theorem 2.1.12 (Butkovičová). Let f be a maximal ideal on w such
that x(Ý) == c and assume K is a cardinal, r: < c. There exist 2K; (distinct)
Ý -ultrafilters.

The last two results in this section are consistency results. Proposition
2.1.13 states that J -ultrafilters exist for every tall ideal J under the as­
sumption tJ == c (this is a slightly stronger assumption than MActble)' Finally,
it turns aut in Proposition 2.1.14 that Ý-ultrafilters need not be P-points if
we assume Continuum Hypothesis and Ý is a t all P -ide al.
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P r oposit ion 2.1.13 . (p-== c) If f i a tall id ol tli T~ ýf -ultrujiitcrs xi. .t.

P roof. E1111111era t e all functi ons frorn w to w a { f ,: ' < c}. r t. ran..fin it
induction on a < c we will construct fil er b a - ffo: t i. f. ping

(i) ff"o is t he Fréchet filter
(ii) §Cť C ff[3 whenever a < {3
(iii) ff, == Ua<, »: for I limit
(iv) (Va) 19-a I < lal ·w
(v) (Va) (3F E ffa+1 ) 1a[F] E J
Suppose "ve know already ffa · If t here is a set F E ffa u h that f o: [FJ E

f t hen put §a+1 == ffa. Hence we m ay aSSUl11e that f a[F] tf- f , in part icu lar
1a[F] is infi ni t e, for every F E ffa·

Since I§a l < c == p t hcre exists lvI E [w]W such that Al C* Ja[F ] for eve ry
F E ffa . The id eal f is tall, so t here is A E J which is an in fi ni t e ub et of
M and we have A C* 1a[F] and 1; 1[A] n F is infinite for every F E «; l t
follows t hat 1; 1[A] is compatible wit h ffa . To complete t he indu .t ion tep
let § a+1 be the filt er base generated by ffa and f ;l[A].

It is easy to see t hat every ul trafil t er that extends ff == Ua<c§ a i ' an
f -ultrafilter. O

Proposition 2.1.14. (CH) If f is a ta ll P-ideal 0'(1, w th en tli Te is an
f -ultrafilter which is not a P -point.

Proof. Fix a partition {Rn : n E w} of w int o infinite sets and enum ra t
"io == {f'a : a < W1}. By transfinite induction on ex < W l we will const ruct
countable fiIter b ases !#a satisfying

(i) ffo is generated by the Fréchet filt er and {w \ Hn : n E w}
(ii) ffa C !#[3 whenever a < {3
(iii) ff, == Ua<,!#a for I limit
(iv) (Va) (VF E !#a) {n : IF n Hnl == w} i8 infinit e
(v) (Va) (3F E §a+1) fa[F] E f
Suppose we know already §a. If there is a set F E !#a such t hat 1a[F ] E

f then put §a+l == g-a· If (VF E !#aJ !a[F] tf. ýJ then one of t he following
cases occurs.

Case A. (VF E !#a) {n : Ifa[F n Rn] I == w} is infin it e
Fix an enumeration {Fk : k E w} of g-a. Accord ing t o the as sum pt ion

the set Mk == {n : IJa[Fk n Hn] I == w} is infinite for al l k E w. For every
k E w, n E Mk we can find an infinite set !k ,n C Ja[Fk n Hn] with Ik ,n E f
because f is talI. Since f is a P-ideal there exist I E J such t h a t lu.« C * I
for every k E w and n E Ms, It is easy to see that for every Fk E ffa the
set {n : IJ;1[1] n Fk n Rnl == w} :=) M k is infini t e. To complet e t he induction
step let !#a+l be the countable filt er base generat ed by !#a and 1; 1[J].
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Case B. (~Fa E §a ) {T~: l!a[Fan RnJI == w} i Fini .
El1Ull1 rate § a \ {Fo} == { Fk : k > O} . F r very k > Ot.he set J\ /k == {n, :

IFan r; n Hnl == w and l!a [Fk n Fo n RnJ/< w} is infini -. F r i v ry 11 E \Ik

dcfine U n == n1aX{lLE !a[Fk n Fo n RnJ : 1! ; l{lL} n r; n Fa n I ni == w}.
Let A k == { U n : 7~ E lVIk }. If A k iS fl nite for oIII - k thnl :JI' Q 1 b th -

filter base gencratcd by ffa and ! ; l [Ak ] . Oth rwi vV n h o for r ~

k an infinite set Jk E y such that Jk CAk ' ot that for -v ry 'll E Jk W ,

have 1 1~1 {U} n F; n Fo n Rnl == w} for sorn 7~ E lvf k . Since f iL' a I -ideal
there cxists J E y such t hat f k C* 1 for every k . It i sa to t c tha
{T~ : 11;1[1] n Fk n Fo n Rnl == w} is infini tc for every k . To complc th ­
induction step let ffa +1 be t he count able fi lter ba e g -II - rc t -d by ffa a.n I
1; 1[J].

Finally, let ff == Ua<wl §cť" It is clear that every ul trafilt -r wh ich e.. .tend
ff is an y-ultrafilter because of condit ion (v) . T h fi lt er ba - ~ .a t i fi
also condition (iv) and the following claim shows that uch a fi lt r ba: - can
be extended to an ultrafilter that is not a P -pOillt.

Ciaim: Iiff is a niter base satisiying (iv) and A C LiJ th Tl ei ilu:r (§ U { A })
ar (ff U {w \ A}) sntisiies (iv).

Whenever § is a filter base satisfying (iv) and A C w then eith r for
every F E ff exist infinitely many n E w such that IAn F n ~LI == w , o th
filter base generated by ff and A satisfies (iv) Ol' there is Fo E ff such that
for all but finitely many n E w we have jA nFa n Hnl < w. T hen ince for
every F E ff exist infinitely many n E w for which IF n Fo n Rnl == w t h
filter base generated by ff and w \ A satisfies (iv). Hence for every subset of
w we may extend § either by the set itself ar its complement. Consequently,
ff may be extended to an ultrafilter satisfying (iv). D

2.2 Thin and almost thin ultra:filters

Let us recall that an ultrafilter úl/ E w* is an (almost) thin ultrajilter if for
every f E "u: there exists U E ~ such that f[U] is (almost) thin.

Every thin ultrafilter is an almost thin ultrafilter because the correspond­
ing families of subsets of w are in inclusion. The following proposition states
that thin ultrafilters and almost thin ultrafilters actually coincide.

Proposition 2.2.1. Every almost thin ulirajilier is a thin ultrafilter.

Proof. Because of the Corollary 2.1.5 it suffices to prove that every almost
thin ultrafilter contains a thin set. So assume that úl/ is all almost t hin
ultrafilter and Ui, E ~ is an almost thin set with an increasing enumeration
Ui, == {un : n E w}. If Ua is not thin then we have limsuPll ~oo ~ == qa < 1.

I. U n +l

22



vV may a SUll1 t hat t he s t of ven 11Ull1b -r b -1 ng t úll' ( t. h .rwi . , t h ~

roles of ev n and odd number ex hange).

Define 9 : w -t W so t hat g(lLnJ == 2TL g[w \ Ua] == { ~77J + 1 : n E} .
Since cp/ is a n alrnos t t hin ul t rafil t er t h r xi t Ul E ~ 'll h th r t g[ I]

is a lm ost thin. Let U == Uan Ul == {un k : k « w}. 1\ ln10 t thin ,_ t.s ar ' -I ' -cl
under su bsets , therefore g[U] == {g(lLn k ) : k E w} C g[Ud i alm . th in an I

1 I· g(un k ) - li 2n k> lm SUPk-+oo ( ) - lm SUPk-+oo 2 .
9 u n k +1 nk -t- l

We know t h a t there is n o such that (Vn > no) ~~:l < qO; 1 and that t h re

is ko such t hat (Vk > ko) TL k > rLa . Hence for k > ko w have

It fo1lows from lim Sup k-+oo~ < 1 that lin1k-+ 00 (11k+ 1 - 11k ) == + . 1-1 -II
nk+l

and the set U E ú2/ is thin. o

2 .3 Connections to selective ultrafilters and P-points

We know from the definition that every select ive ultrafi lter is a P-p oint .
From the inclusion of coresponding ideals we obtain inclusions for t he cla ses
of thin ultrafilters, (SC)-ultrafilters, (SY)-ultr afilters and (JI)-ult rafilters .

The following diagram shows all inclusions between t hese classes of ultra­
filters (an arrow stands for inclusion) .

selective ultfs

P-points thin ultfs

(SC)-ultfs (S)-u lt-fuj
""-----,......--- --/

(H)-ultfs

We will show that assuming Martin's Axiom for count able posets none of
the arrows reverses and no arrow can be added.

Proposition 2.3.1. Every selective ultrafilter is a thin ultrafilter.
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Proo]. Consider the parti tion of w {Rn : TlJ E w} \ h r - Jťo == {O} 'Ul I
~l == [rL! ( TL + 1)! ) for TL > O. If 6(/ i a -1- t iv - ultrafilt -r II in r h r -xist..
Ui, E Od such that IUon Rnl < 1 for -vel' · 71 E w . in 0// i ' an ult rafilt i r

either Ao == U{ Rn : TL is evcn ] Ol' Al == U{~t : TL i Id} b 1 ll g. ~ to (f/ .

Without loss of generality, a sume Ao E C21 . EnU111 -ra U == [10 n .140 E ú/I

as { U k : k E w}. If Uk E [( 21n k ) ! , ( 2mk + 1)!) th n 1l k + l > ( 2 771k + :... )! . n I \\
h Uk < (21n

k +
1)! - 1 < 1 HU ' tl' dl, Iave Uk +l - ( 2m k + 2)! - 2mk +2 - 2k +2 ' enc 1 11111 an w - 1aV - I 1 (

that every selective ultrafilter contains a thin set . Sel - t iv - ultr r fil t l' ar
minimal points in Rudin-Keisler ordering, h nce the cla i d wnw, I' I 1 ~ I
under <Rl( and we may apply Lemma 2.1 .4 to concludr that - VCl' lective
ultrafilter is thin . O

Corollary 2.3.2. A free ultrafilter is selective if and OTLly if it is aP-point
and thin ultrafilter.

Proo]. Every select ive ultrafilt er is according to the pl' vious 1 1'01... 0 .it io: a
thin ultrafilter and it is also known to be aP-point. Every thin ul rafilter i
a Q-point (see Proposition 2.4.1) , so every ult rafilter that is thin an I F-point
is select ive. O

Proposition 2.3.3. Every P-point is an (SC)-ultrafilter.

Prool. Let Ol/ be aP-point. Consider a11 arb it rary funct ion f : w -f w . aur
aim is to find U E Ol/ such that I[U] E (SC ).

Take arbitrary Ua E Ol/. If I[Uo] E (SC ) th II set U == Ua . Oth rwi e, w­
will proceed by induction. Suppose we know already U, E W, i == 0,1, .. . ,k ­
l, such that U, C Ui - 1 for i > Oand the difference of two successive elements
of I[Ui ] is greater ar equal to 2i for every i < k . Enumerate f [Uk - 1] ==
{un : n E w}. Since ó2/ is an ultrafilt er either f - 1[{U2n : n E w}] n Uk- 1
or 1- 1

[{ U 2n + l : ti E w}] n Uk - 1 belongs to W. Denote t his set by Ui; If
I[Uk ] E (SC) then let U == Ui: If f[Uk ] rl- (SC) then we may continue the
induction because the difference of two successive elements of f[Uk ] is greater
or equal to 2 . 2k - 1 == 2k .

If we obtain an infinite sequence of sets U'; E Od such that U'; =:) Un+1

and the difference of two succesive elements of f [UnJ is greater or equal to
2n for every ti then since ú2/ is aP-point there is U E 02/ such that U C* U;
for every n E w. For this U we have f[U] C* j[Un ] for every n E w. Thus
for every k E w all but finitely many pairs of succesive elements in f [U] have
difference greater or equal to 2k and it follows that j [U] E (SC) . O

Notice the following interesting consequence of the previous proposition:
Since every (SC)-ultrafilter is an (H)-ultrafilter we obtain as a corollary
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of t his propo ition hat vel' P-point i an (I-I)-ul rafilt cr. In par t i .u la r it
m ean t h at every P-point COll ain c · wi th a ym p i I )IL'it. r zcr . I-I -nc
t he dual filter to the density ideal i an exampk f al -filt ~ r (Hlt r d ll' 1 to
a P-ideal) that cannot be extended to '1 P-point .

In Prop os it ion 2.1.14 we co11St ruct duncl -r Ctl foI' a giv :\ II t a.l l I -i I -'1.1 II

W an Ý-ultrafilter which is not aP-point . - cann t appl t h pl' P i i II

to obtain a thin ult rafilt er that is not aP-point be au th - icl al !Y i II

a P-ideal (see Lemma 1.1.5) . Nevertheles, we on tru a t hin ul tr afil t -r
which is not aP-p oint even under a strictly weak r as umpti II }\/I t blc-

Proposition 2.3.4. (MActb le) There exists a ihin ulirajili T uihicli i not (J,

P-point.

Proof. Enumerate W w == {fa: a < c} and fix a partit ion {}~1 : 1~ E w} of w
into infinite set s. Our aim is t o construct a filter ba e § uch t. hat f r -v r
F E ff there are infinit ely many ti such that IF rl~ll == w.

By t ransfin it e induction on a < c we will construct filtcr bases ffa , < c
so t ha t the following conditions are satisfied :

(i) ffo is generated by t he Fréchet filter and {w \ n; : 11 E W}

(ii) ffa C ff{3 whenever a < (3
(iii) ff, == Ua<, «; for r limi t
(iv) (Va) Iffal < lal· w
(v) (Va) (VF E ffa) {n : IF n Rnl == w} is infinite
(vi) (Va) (3F E ffa+1 ) f a[F] E 3'"
Suppose we know already ffa. If t he re is a. set F E ffa such that .fa[F] E

g- then put ffa+1 == ffa . So we may assume that ('tlF E §a) ! a[F ] tf- 3'", in
particular, fa [F] is infinite.

Ifthere exists K E [w]<w such that ! ;l[K]nF n Rn is infini t e for in fini t ely
many ti for every F E ffa then we let ffa+1 be t he filt er base generated by
ffa and 1;1 [K]. In the following we will assume that no such set exists , i.e. ,
("-) for every K E [w]<w there is FK E ffa such t hat ! ; l [K] n FK n R; is
infinite for only finitely many ti.

Case J. (VF E ffa) {n E W : I/a[F n Rn] I == w} is infinite
Set l r == {n E w : la[F n Rn] is infinite}. Consider p oset P == {K E

[w]<w : v > u2 whenever [u, v] n fa [K] == {u, v}} wit h partial order given by
K <p L if K == L ar K ~ L and min(K \ L) > m ax L . For every F E ffa,
n E fp and k E w define DF,n ,k == {K E P : /K n F n Rnl > k }.

Claim 1: DP,n,k is dense in P for every F E :#a, n E fF, k E w.
Take LEP arbitrary. Since F n u; and fa[F n Rn] are infinite sets we

may chaose LI C F n n; such that ILII == k , min L I > max L, Ja[mill L I] >
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(nlax fa[ L])2 an d f a(u ) > (faCu))2 when \ r u V E 1/ , II > . L t !\r == I~U I/ .

It is obvious that K E D F,n,k and 1\ <j L .

The family !!J == { D F,n,k : F E ffa 71 E Ip k E w} nsi: ts f 1',-', , t han c
many dense ets in P . By /lart in 's Xi0l11 for countable po. ta t ll Jr , '~" l. t:'

a !!J-geI1eric filt er C§ . L t U == U{J( : I( E ~} .

ow it is easy t o check t hat U sati fi s t h followina
• (VF E ffa ) {n E w : IU nF n Hnl == w} i infini t r

Given F E ffa for every n E f F and every k E w t here i 1\ E C§ n L I- Jl k ., ,

So IUn F n Hnl > IK n F n Rnl > k and it implies that IV n F n l~ l, 1 == w
for every ti E f F,

• fa[U] E g
Enumerate f arU] == {un : 7~ E w}. For every T~ E w ther i l rn E ~ 'uch

that U n , U n +1 E f a[Kn ]. Since K n E P we have l Ln+l > ( lLn) 2 an I~ < _1 .
1Ln +l U n

Thus lim n -+oo~ < limn -+oo --L == O.
U n +l - U n

To complete the induction step let ffa +1 be the fiI ter ba - g en rat - I b
s: and U.

Case II. (3Fo E §Cť) {n E W : IfCť[Fo n Hn] I == w} is fin ite
For every F E §Cť let IF == {n E w : F n Fo n R,1 is infini t - and fa[F n

Fo n Hn] is finite}. Observe that I F is infinite for everyF E ffCť ac rd ing t
the assumption. For every n E f F define h(n) == 111ax{m E f a[F n Fon R,1] :
1/;1{m} nF n Fo n Rnl == w}. The latter set is non-ernpty and finite, whence
the definition is correct.

Claim 2: {h(n) : n E IF } is infinite.
Assume for the contrary that there is h E w such that 1~ ( 7~ ) < h for

every n ElF' We know from (~) that there i Fi; E »: such that {n :
1/;1[0, h]nFhnRnl == w} is finite. Hence {n : If; l [O , h]nFnFon Fhn Rnl == w}
is finite. Since f F n Fh is infinite and I F n Fh C * I F there are infini tely many
ti E fp such that /(FnFonFhnRn ) \1;1[0, h]/ == w while fCť[F n Fo nFh n Hn]

is finite. It follows that we can find m E 1Cť[F n Fo n Fh n Hn] \ [0, h] such
that If;l{m} n F n Fo n Fh n Hnl == w. We have m > h - a contradiction
to the definition of h(n).

Choose a sequence H F == (hi : i E w) C {h(77J) : n E f F} such that
hi+1 > (hi ) 2 for every i. It is obvious that ffF is thin and infinite . Remember
that for every hi E H F there is ni E fF such that f; l{ h-i } n F n Fo n Hni is
infinite. Note that ni i= nj for i i= i, so Ij;l[HF ] n F n Fo n Rn / == w for
infinitely many n.

Consider poset P == {K E [w]<w: v > u2 whenever [U, v] n K == {u,v} }
with partial order given by K <p L if K == L or K ~ L and min (J< \ L) >
rnaxL. For F E §Cť and k E w define D F,k == {K E P : IK n HF / > k} .
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Cleim 3: DF,k is d 11 in? for -v lj F E , tuu! k E

Tak LEP arbitrar . Ther - i LI C }-fF\ [O (nlcx L)2] II .h that ll/I == k .
Let J( == L U L I. Obvious1y J( E DF,k and ]\ < l L .

The family ~ == {D F k : _F E !7co k E w} n i ts of 1 'l S t ha u C many

dense s ts Úl P . By Martin Axiom for ountabl - p , ts t ll ~ rc )~ .i:.ts '1

.9-generic fi lter r;# . L t f l == U{]( : ]( E ~} .

ow it remains to check that t he fi lt r ba - g -n ratcd b: :#0: and j -l [/-I ]
satisfies condit ions (v) and (vi) .
• (VF E !7a) {n E w : If;1[H] nF n Hnl == w} i infi nit -

For every F E !7a and for very k E w ther -xi t l J ' E Cf} n 1 F)~. I
follows t hat I {T~ : If;l[ [f]n Fn Rn l == w}/ > /{1l : 11;1[J ]nFn J 11 == w}1 > k.

• fa [1;-1 [H]] == f l E !7
Enumerate H == {un : TL E w}. For every ti E w th r - i. K E C§ such

t hat U n , U n+l E K. Since K E P we have 'Un + 1 > (1 l n ) 2 an d ~ < _1 . Thus
U n I- I H n

limn ---+ oo ~- < lilTIn ---+ oo _1 == O.
U n + l U n

To comp1ete the induction step let §a+l be the filter ba gen -ra cl b
§a and t ; 1[If].

Final1y, let § == Ua<c !#a. The filter base !7 has the property that for
every F E ff there are infinitely many ti such that FnHn is infinite th refore
it can be extended to an u1trafilter which is not a P -pOillt (see the proof of
Proposition 2.1.14). It is obvious that every ultrafi1ter extending § is a thin
u1trafilter because of condition (vi). O

The fol1owing proposition implies that under Mar tin 's Axio I11 for count­
able posets there are: P-points which are not t hin, (SC)-ultrafilters which are
not thin, (SC)-ultrafi1ters which are not (S)-u1t rafi1ters and (I-I)-ul trafil ters
which are not (S)-ultrafilters.

Proposition 2.3.5. (MActble) There exists aP-point which is not an (S) ­
ultrafilter.

Proof. Enumerate a1l infini te partitions of w (into infini te sets) as {!Jťa : a <
c}. By transfinite induction on a < c we will construct filter bases !#a, ex < C,

so that the following conditions are satisfied:
(i) §o is the Fréchet filter
(ii) §'a C §j3 whenever ex < f3
(iii) §, == Ua<,!#a for, limit
(iv) (Va) Iffal < lal· w
(v) (Va) (VF E ffa ) ~aEF ~ == +00
(vi) (Va) (3F E L-$"a+l) either (3R~ E j%a) F C R~ ar (VR~ E !!la)

IFnR~1 < w
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Induction tep: Suppo e we kI10\ ~ alread ' o ' nd wr c nstru t ' /- 0 - - 1 .

Case A. (3J( E [w] <W) (VF E § a) F n U n E /( lín tf. ( )
For S0111e T~O E K t he fi lter base gen ra t -d 1y Fi~o and '/'Cr sat isfics condi­

tion (v) . Otherwise , t here would be for ev -T J 71 E f( é: -)t F; E CJk o :"U h t.ha t
r; n R~ E (S) . We would have n n E /< r; n U n E !( R~ E ( .) - č: ntradicti II

to t he ass umption of Case A. 80 we 1 t §a+l bc th - BIt r b rl g -n rel I 1
», and t he set R~o'

Case B . (VK E [w]<W) (3FK E §a) F/( n U n E!< R~ E ( )

Consider P == {(K, 7") E [w]<W x w : J( C Ui<n l i [ n n; =I 0}
with ordering given by (K ,71) <p (L ,7n) if ( I< ,7") ~- (L, TlL) Ol' 1\ ~ L

mi11(K \ L) > iuex L 71 > m and (I{ \ L ) n Ui~1Tt Rf == 0. -or svory

F E § a and k E w define Dp,k == {(J(,7l) E P : L a E!<n F ± > k} and
Dj == {(K, n) E P : ti > j}.

Claim: DF,k is dense in P for every F E §a an d kE w; D, i derise in J
for every j E w.

Take (L ,m) E P arbitrary. According to the assumption th 1'8 is ~n E

«; such that r; n U i<m Rf E (S). It follow s that ir; n F) \ Ui<7n Rf tf.
(S). Hence we can choose a finite set L' c (Fm n F ) \ Ui~m Rf uch that

LaEL1 ~ > k. Let n == max{i : L' n Rf =I 0} and K == L U L'. It is asy to
see that (K, n) <p (L, m) and (K, n) E Dp,k' 80 Dp,k is dense. For j < mj
w~ have (L, m) E Dj and for any j > m we can chaose arbitrary T E Rj
such that r > maxL. Let K' == L U {r} . Of course, (K' ,j) <p (L , m) and
(K',j) E o; So o, is dense.

The family ~ == {DF,k : F E §"a, k E w} U {D j : j E w} consists of dense
subsets in P and 1~1 < c. Therefore there is a 9 -generic filt er es.

Let U == U{K : (K, n) E ~}. It remains to check that:

• (VF E §a) LaEunF ~ == +00
We have U rl F tf:. (8) for every F E ffa because for every k E w there

exists (K, n) E ~ n DF,k and we get LaEunF ~ > LaEKnp ~ > k .

• (VR~ E f/ťa) /U n R~I < w
Take (Kn,jn) E ~nDn where i; == min{j : (3K E [w] <W)(K,j) E

C§ n Dn } . Now observe that for (K, m) E ~ we have K n R~ == 0 if m < ti

and that K nR~ == K; n R~ if m > n. To see the lat t er consider (L, m') E C§

such that (L, m') <p (K, m) and (L, m') <p (Kn, jn) (such a condit ion exists
because C§ is a filter) for which we get LnR~ == KnR~ and LnR~ == KnnR~.

It follows that U n R~ == tc; n R~ is finite.

To complete the induction step let §a+l be the filt er base generated by
». and U.
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It i ~ l '1.1' fr 111 , 11 liti n (\ i ) t.ha t -v rv ultrafil t r \ 'hicl: ('. '1 'IlC l. ' ,

UCl <c y.. i ' P -I in t . - . '1II f' concl i ti )n (v) t,II )rc x i.. t ~ ult ra fiIt \r , .
t cII li 11g J \\ hi h -x .)11 I t ll dual flIt. "\ r of ( ') . ' t ll ,ro )x isL ' ( I )-poiII t
\\ hich i II t an ( )- ult rafi lt r. O

Proposit ion 2.3.6. 1f a77~ ( )-1lltTafi lt r 1~i is tli JL tll. T i." (Ln ( ' )-ult7'aJl:U T

which i no t an (k ,1)-ul trafilier.

Proo]. e hall p rov - in Pl' posit i n 3.:.... .1 t hat t h class of (. ')- ll It rnti It )rs
is clo ed Ull 1-1' product (fo r t h lefini ti on f I l' III t of ul tra fi lt )rs .. 'P tll)
fil' t p aragraph of chapt r 3). I-I -n - if Ú)L' i an ( )- ul r: fl It ,1' t ll )11 LIL' . {1/ i.'
an (S)- ult l'a fi lt r t oo . But t he ultrafil t r 0/, . o/L' ann t be a.n (ll })-ult r(.íi lt .r

accord ing t o Proposi tion 3.2.2. O

Corollary 2 .3.7. (MActble) Th ere i an (S )-ultTafilt T uiliicli is uoi au (l. ' ,,')_
uiiraji lier.

Proo]. If Mar t iri's Axiom holds then se lect ive u lt rafil srs xi st . 1 v r scl c­
t ive ultrafilter is a thin ultrafilter (see Proposi tion 2.3.1) c nel II n <r: an ( )­
ultrafilter . So (S)-ultrafilters ex ist und r Martin 's Axiom nd front thr pl' vi­
ous proposition we get an (S)-ultrafiltel' which is not an ( 1)-ul t1' a fil r . O

2.4 Connections to Q-points an d rap id ult r a filt rs

The following diagram shows all inclusions bctw 11 t he .ia ss of (hered ­
itarily) Q-points, (hereditarily) rapid ultrafil t ers , t h in ul tra filt -r and ( )­
ultrafilters (an arrow stands for inclusion). No arrow can b - rev r ed r
added if we assume Martin's Axiom for count able posets.

her. Q-points
== thin ultfs

Q-points her . rapid ultfs

rapid ultfs ~(S)- ul t fs I

Proposition 2. 4.1. Every thin ultrafilter is a Q -point.

Proo]. Let ó2I be a thin ultrafilter and 12 == {Qn : n E w} a part ition of w
into fin ite sets . Enumerate Qn == {qr : i == 0, . .. ,kn} (where kn == IQnl - 1).
We want to find U E ú2/ such that IU n Qnl < 1 for every n E w .

Define a strictly increasing function f : w ---+ Will t he following way:
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f (qg) == o. .f (qg I 1) == (n + ~ ) . II1·L r { f (qk~ rl ) . k 7l _ I } f r n ' II IId .f((I:I) .z:

f (qg) + i f r z: < u.,n E

in J újf' i. Cl t h in ul trafil t r t ll re .x ists o E 11.'11 :h th.u j [{ io] == {l lnl:

Tll E w} i' c hin .ct. I-I 'll C th "1' i:' lll O E such t.hat ~ »: A for -v \1'\'
l ' m i 1 - •

n i > 'lna.

Func ion f is on -- t o- ll , 'ln 1 .Pl I art.it. ion o f in t.o finit ~ .' 'L ' .'0 w r: " l Il

find J{ c W of iz at 111 7710 II h t hat {f -l (I i) : i < ll/ O} C Un-/\"(211 '

Th la t t r -t i fin it - whi h impli U == o \ Un /( Qn E :J/ .
Frorn th defini ion w have U n Qn == 0 f r 71 E I( an I it r ' I11 clill .' t

che k that

• (Vn tj. J( ) IU n Qnl < 1
Assum e for the contrary that for .orn e 77, tf- !( t.hcr \ a r ~ tv, o di st.in t ~ l ­

ernents Ul, lL2 E U n Qn, 111 < 1l2 · Th n f(711) == / 111 [Ol'. m c 711, _ 7na a nd

f (u ) == v for some TL> Tn+ 1. W ·l gct ~ > ~ == f (lLl ) > f (qó' )
2 n - V m f 1 - 1 Jl f (II 2 ) - f ((IÓl

) - k Tl -

(n+ I)'Nf _ n +1 where ,, /[ - ma r{J(qn-l) t.} But 71 + 1 > 1 (., .ont ra-
(7~+1) .M +Nf - n +2 J ~ - J k fl _ 1 /\'71' - 11+2 - :2 L L

di ction. D

Lem m a 2. 4. 2. Every Q-poin,t cotiiain a thin . t .

Proo]. It follows fro m t he proof of Propo ition 2.3.1 th t vory Cd-p int n­
t a ins a thin set because t he parti t iOI1 con id er - I in thc proof c II i 't f fin it '
sets. D

Corollary 2. 4.3. A free ultrafilter on w is thin i ] and only if it is a h T di­
tarily Q-point.

Proof. If ó2t is a thin ultrafilter then every 1/ <RJ< ó2t is a lso a t h in ult rafi ltcr
because thin ultrafilters are downward closed under Rudin-K -isl r ord r and
Proposition 2.4 .1 implies that ó2t is a hereditarily Q-point.

If ú2/ is a hereditarily Q-point then for every function f t h ul trafilt er
(31 (62/ ) is a Q-p oint and hence contains according to Lemma 2. 4.2 a t hin set .
It fol lows from the defini tion of (31 (ú2f') that there exist s U E ú2f' such that
f[U] is thin and 62/ is a thin ultrafilter . D

Lemma 2. 4.4. Every rapid ultrafilter contains an (S"' )-set.

Proo]. If ó2t is a rapid ultrafilter then there is U == {u n : TL E W} E ó2t such
that 2n < eu(n) == U n for all but finitely many n. So

1 1 1L - < L - + L -: < +00.u., u.; 2
n Ew n:S;no n>no

We see that the set U is an (S)-set.
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Corollary 2.4.5 . E» r y li .- 7' ditcu ily rapid ult.niji]! r is au (. ') - ul l nijilt r.

Proo]. If 0// i a h r .d it a rily rapid ul: rafilr r t h ' ll for C\ \1'," f unrt ion f tll \ lll­
t rafi lter ,3 f (o/J' ) i ' rapid ul rafil t 11' é II i hcn 'c . int.ai ns ar: '0 1' l iIlg to L \11 111 1<1

2.4.4 a n ( )- '- -t o It f II -» from t ll lcfi nirion of ,fj / (J)J' ) t.hat t hcrt- -x i.. t s

U E 0// u h that J [U] 1 1 ng t t ll \ sununa bl ~ id -a l Hll I 'II i.. an (. ')­
ul t rafi lt el'. O

Pro p osit ion 2. 4.6. (A1A tbl c ) Tli 7' L' (1. ll. /1' dita7'1"ly rapid ullrajilu-: II li icli
is not a Q -poin,t.

Proof. Enumeratc W w x W w == {(Ja 090 ) : o~ < c} an c] fi: r a part.i t.iou of w int.o
finite setS {Qt i : T~ E w} (l u ch t ha t Ii1n s II 1 1/. - ' IQ7t I == + ). I y 1. ra II s f II i t ('
induction on a < c "ve will onstru t fi lt '1' bascs ,ryn o' < c so t.hat t.hc

followirig conditions are at isfiecl:
(i) ffo is the Fréchet fi lt el'
(ii) ffo. C fff3 whenever LY < (3
(iii) ff'Y == Ua.< 'Y ffa. for "Y Iim i t
(iv) (Va) Iffo.l < lal · w
(v) (Va ) (V.F E ffo.) (Vk E w) (jT~ E w) I l~ n Qn l > k
(vi) (Va) (jU E ffo.+l ) such t hat ga <* cfo[U] Ol' Ja[U] L' finit ,

Let us first prove t hat any filter bas - satisfy ing condit ion (v) can b
extended to an ultrafil t er which is no t a Q-point .

Claim 1. Let § be a filter base on w such that (V.F E tff ) (Vk E w)
(3n E w) IFnQnl > k. For every A C w eituet (ffu {A } ) ot (ffu {w\A})
has th e stuiie property.

If (§ U {A}) does not have the required property then th -re is Fo E ff
and ko E w such that IFon A n Qnl < ko for every n E w. Since F n Fo E c:#
we know that for every k E w there is nk such that IFn Fo n Qnk I > k -+ ko.
lt follows that IF n (w \ A) n Qnk/ > k for every F E ff and (:7 U {w \ A})
has the required property.

lnduction step: Suppose we know already ffo.. If t here is U E ffo. such
that 9a <* efo(U] t hen simply put § o.+l == ffo.. If there is not such a set U
"ve will construct a suit able set eventually m aking use of Martiu's Axiom.

Case A. (jK E [w]<W) (VF E §o.) (Vk) (jn) If;l[l< ]n F n Qnl > k
Let §o.+l be the filter base generated by § a and U == f;l[K] . T hen for

every ultrafilter ú// which extends the filter base ffo.+l the ultrafilter f3 1o. (ú//)
is principal. It is easy to see that there is V E ú2/ such that 090. <* ef o(V] '

Case B. (VK E [w] <W) (3FK E § o.) (jk j { ) (Vn) If;l[I{] n .F /( n Qn/ < k/(

Consider P == {( L,m) E [w] <w x w : L C U i<m Qi, L n Qm, =I 0,efo[ L] >
90. r ILI} with partial ordering given by (K ,n) <~ (L,m ) if (I{ , Tl/) == (1./ , rn )
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r Tl > 711 . I( =:) 1. m i II ( I\~ \ /J) In'L ~ f./ aII I ( I\~ \ / ) n Ui . - II I == IfL I·() r
-, \ ry F E Y. and k E l t f J- ,k == { ( f./ .ll l, ) E I : ( ~ n) 1 1 n { ' n C) 11 -: k } .

Clenr: ~ , D F,k i ' '1 cl n - ' lIO. t ť ( I , < 1 ) [; t (' \. )f. \ · J- ' , (\ .uul k
Let (L 71l) E P b a r l itra ry. t /0 == I n a. ~{ g (ll) : 'll _ Ir l -- k }. .\/} ==

m ax 10: [1 ] n 1 1\12 == 1 + 111a... ~ UŽ<171Qi' ~ inally, let \/ == ll léL·{ .\/O' sl , . .\f.2 } .

III t -rval [O, 1] i finit - t h r - .. ~ i t P \f E Y o. (1II I k1\ f E su .II t II čl 1. f r
cver . TL \ V - hClV - If - 1[O, / ] n F1\ / n Qll. I < k \ I ' J\ , ' ( rcl i II g t o ('oII cl i t i() II (v)
th -1' exi t s 'll (wc 111 a y a UI11 -) 71 > 'ln ) II .h t. hat IP n r f n 2n l _ 1\ / - kl" - k.
Sinel F n F 1\ f n Q11 n f ; 1[O \1[ ] I < k 1\ f \-' ( II ch . 1/ c I~ n 1' ;\1 n (2 Tl sII CII
that ILII == k and l a(a) > 1. L t f == L u L', I i ' II . cliffi .ult ro rh -ck t.ha t
(J( TL) E P and t h n it i bv iou t hat (I( 71) E J F,k a nd (1(, 71,) < p ( /.1 'lil ).
80 D F k is den e in ? ,,

The family ~ == { D f . ,k : F E §o:, k E w} C ll. i.. t .. of d onsc S ll l»: \ts f I )
and ha card inality 1 t han c. Th r f r r t ll ' I' - .. .i t .. a 0J-g inr- r i« Iiltcr ~(j

on I accord ing to Mar t in .' Axiom f r ounta 1 p . ts .

Let U == U{ L : (31n) (L, 7TL) E 0'} and v rify thr t th ' \ U sat isfi .. t.h ,
following condit ions :
• (VF' E §a) (Vk E w) (3n E w) IU nF n Qn l > k

For every (K , ln,) E C§ n ]J p,k we h ave U =:) J nd t.h r lS 71, ' ll .h Lh it

IKnF nQnl >k.
• 9a <* efo[U]

There exist (I<j , mj ) E C§, j E w , such t hat ( l(j+l lnj -t 1) < p (I i . ln'j ) f r

every j E w and U == U jEwK j . Since efo [I<j ] > 090 r IJ(j / f r v ·ry.j w hav

o9a <* efo[U ]'
To complete the induction step let ffa +1 be the fil t r b as - g .n -ra t I by

»; and U.
It is obvious that every ul trafil t r whi ch ext -nds § == Ua<c !7a is a

hereditarily rapid ultrafilter because of condit ion (vi ) and it can b - xt -nde I
to a non-Q-point because of condition (v). O

Proposition 2.4.7. (MA ctble) For any (tall) ideal f on ui , there is a Q -poin t
which is not an f -ultrafilter.

Proo]. Enumerate all partitions of w into finit e set s as {.E2a : a < c} and
fix a partition {Rn : n E w} of w into infinite sets . By t ran sfin it e induction
on a < c we will construct filter bases §a, a < c, so that t he following
conditions are satisfied:

(i) ffo is the Fréchet filt er
(ii) ffa C §f3 whenever a < f3
(iii) :7, == Ua<, § a for, limit
(iv) (Va) Iffal < lal· w
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(v) (V ,) (V F E :!f' ) (V II E ) IF n n; I ==
(vi) (V ,) (~ F E Y, 1) (VQ E ) II' n C21< 1

In lu ion te p: UPI - \\ know alr '1 I. ' o : Ir t.h I' \ l S Cl s -t. r' ' n

" U h tha IFn Q/ < 1 f r V - 1'} Q E 2() t.hcn pu t . n --l == .r.; lf t his i,' no
h - a II t ľu t II h c . - IIS i II O' ~ I(- ľ t i ll ' , Ax iolll.

Co n i 1 r I == {I( E [w]<w : (VQ E )1 1\'n Q/ < I} with P<rt i : 1>1' 1\1'
d -f II ed byl(2 < p f\ 1 i f f... == 1\ 1 r 1( 2 ~ 1\ r1 é II 1III i II ( f\ r~ \ / \ ' 1 ) III 'L' 1\' I .

Fo r v ry F E ffa and 71 k E w let [Fn ,k == {/( E I : 11\' n F n 1f-1I 1 ::_ k}.

Cteitn : 1 F,n ,k j a clen - nt: ct DE(1 <I ) ~ r vory I· E ,~o . ll, k E
Wh II v r we tak - LE I ther - i ' afinit. t 'f C .-'U .h t hat /.1 C Ui .'C2 i .

Since (F' n Hrl ) \ [O m ax U iE Q d i infi ni t - \\ can 'h ' ~ for j == 1, ~ ~ . . k
di stinct 71j E W \ a nd element qj E Fn u;nQnj ' I t f( == 1.1 U { (j l Q'2 . .. q k }.

Obviously, J( <p L and J( E D/.,n ,k .

The f ln i1y qJ == {1 F,11 I k : F E ffa n k E w} , l l ' i.'t: f (I ll. ' ~ s I I I .' ; t.' ( f
P and h as card inality less t han c. So t h ,ľ - ...ists é ~-gCll .ric: Iilt ,r ~!J II I .

Let U == U { !(: I<E 0' } . The s -t U sat isf t hc f llowinr; r: nd it ions:

(VF E ffoJ (Vn E w) U n F n 11~l i. infini t
For eve ry k E w and every ]< E 0' n 1 F,n ,k W hav U :J I( , nd If ( II J;' n

Rnl > k . Thu U n F r. u; is infini t r .

• (VQ E 2)Cť) IV n QI < 1
If u, v E U then t h re is K E C§ uch that u , vE l a n -I .cord ing to th

definiton of P elem nts u , v b long t o di stinct .cts from par t i t i n !?lo .
To complete t he induction step let ffa + 1 be th _l filt -I' a - ge n r a t lel b:

§a and U.
F inally, let ff == Ua<c ffCť . It is obvious t hat each ul trafil t I' x t nelin g

ff is a Q-point and F n Rn is infinite for very F E :7, n E w.

Hence the set RA == UnEARn is cornpatible with ff for very A C w. I.J -t
C§ == {RA: A E f* } and observe that any ultrafil t er ex tend ing ff U C!J i a
Q-point b ecause it extends ff and it is not an JO'-ult rafi lte r b -caus - of t hr
function f defined by f [Rn] == {n} . O

Proposition 2. 4.8. (MActble) There is an (S) -ultrafilt er which is n ot a rapid
ultrafi lter.

Proof. Enumerate W w == {JCť : a < c}. By transfinit e induction on a < c
we will construct filter bases §Cť' a < c, so that the foll owing cond it ions are
satisfied :

(i) ffo is the Fréchet filtel'

(ii) §Cť c ff{3 whenever a < (3
(iii) §, == Ua<, ffCť for -y limit

(iv) (Va) Iffal < lal· w
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(v) (Va) (VF E ~ ) (Vk E ) (:3 71 E I ) Ir n [:", 71 , ~ 71 - ' l ) 1 _ n k

(v i) (VD') (:3 F E ~~o 1) f Cl [ F ] E ( -' ) , i .(',, (l ~ f !F1 ~ - ~ ~

Cui Í1n 1: L -t ~ -1 C . I f (Vk E uJ) (:=l n E w) 14 \ n [ ~ 71 , :2 71 1 ) I /' II k (ll )11

.J i * .-\ wueie f (T~) == 2TL 1.
I t follow [ 1'0111 th 3. U I111 .ion r.har t. horo 'Uď infinit ly m.mv II .. uch t hat

f l n [211" 2TL + 1) > 71. For . U "\ h i II cl i ' , 71, \ve g t a Tl ~ Tl + 1 \VII \l' C u II is t. hC II t h
e1-111-nt [A , O we hav A ( T~) < f (77 ) [a r i II f II i t ly 111 anv II (l IId I _ e.: \ .

Clniu: 2: I f A i a ubse: of W And § i.' ~l niter I (1 "C Oll suct, thati
(VF E ff) (Vk) (:377/) IFn [211, 211 1) / > TL k tll -ll eit lic r II ~ f iltrl' !J; lSC ~f!,-eI1 Cril t yJ
by ff and A ar the fii ter bas - geneiti: cl b r > tu u!w\ / \ un ' t lu: ,','(1 111 \ ]Jr o]) c r ( y.

If t he fi lt er ge nerat ed by ff and J\ do is not ha ' t.h rcquiroc! Pľ)P r ty

t hen it 111 ans that t hr re ex i: t Fo E (f/" and ko E W such t l ia t Iro n / l n
[2n

, 211+ 1)1< TL ko for every 771 E w . Sin f ' n Fo E § \v kn » v t. hnt Ior ( ~V ny
k E co t here is S0111e n E W 'uch t hat IFn ] ' 0 (, [..... ft 27l.+ 1) I > 7l,k -f- ko . l t foll ) \VS

that II-t' n (w \ A) rl [2ií , 2fi + 1)1 > fl k +ko - flko > fL
k for VCl' . f' E /7 . t.hc

filter generated by § and w \ J-1 has t he r quired prop r ty.

Induction step : Sup p ose we know already !7rr. ' If t hcrc i. F ,ryn such
t h a t f a[F] E (S) t hen Si111P1Y PUt ffa+ 1 == ff . If f Cr [ I, ] tf- (l- f) (i1'1 P Clr t iCIIIa I'

f a[F] is infinit e) for every F E ffa we will con .t r u t a su it.al le set ev ntu all y
m aking use of Martin 's Axi om.

If there exists K E [w] <w such t hat for every .F E ffCť C n 1 v ry k E w
there is ti E w such t hat IF n f ; l[K] n [2 71

, 2n + 1) 1 > n k t hen we 1 t ffCť -f- 1 be
the filter base generated by !#a a nd i:' [J(] . In t he foll owing w · will a' ume
that no such se t exists , i.e ., (.) for every J( E [w]<w t her is r l\' E ffCť an cl
kK E w such that for every n E w we have I l~< n J; l[I{] n [2n ~ 211,+1)1 < r~ kJ( .

Case J. ('VF E !#a) ('Vk E w) (3n E w) Ifa[F n [2n, 271+ 1)]1> 11
k

Let P = {K E [w]<w : LaEJ<>[KI ~ < (2 - 21~(I )min)<>[ /~ } and defin '1

partial order < p on P in the following way: K < p L if an only if K == L
or K ~ L and min K \ L >max L . For every F E §a and k E w define
Dp,k == {K E P: (3n E w)IKnFn [2n,2n +1 )1> nk

} .

Claim 1: Dp,k is a dense subset of (P, <p) for every F E /# a, k E w .

Let LEP b e arbitrary. According t o the assumpti on of Case I. t here ex­
ists n E w such that Ifa[Fn[2n , 2n +1)]1> nk+ (IL I+k+ l )"rnax / n fL ] (we may aSSU111e
that n is large enough so that we have 2n > m ax L and n,(ILI+ k+ l )"rnax fa[ L ] >
max 1a[L] . nILI+k+1).

Since n k+( ILI +k+ 1).max/a [L] > n k + n(IL I+k+ l )"n1axfa [L ] t her ex ists L I CF n
[2n,2n+ 1 ) of size n k such that a > m axL and f a(a) > n( IL I+k+l )"lnax f a [L ] >
max 1a[L] . nILI+k+l for every a E LI . Let J( == L U I/ .

To see that K E P observe that L aE/a [K ] ~ == L aEfa [L] ~ + LaEfa[L /] ±<
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1 k
( ~ _ _ 1 ) ., + . Tl < ( ~_ ~1 ) . 1 _ I __ • __• # / ._

21L I lI11n f Ll TlIL I - Á: + l ' l1léLX f o [/_] - 21/,1 111111 fn[I.] I IJ· 1 ! 1 lila .' Jil .1.; - ( ....

21~ I + 21L \ 1)!ll i ll } [L1 = ( :... - 21LIl I ) !ll i ll } [LI ' i II '!ll i II f" [I,1 = III i II I. [/\'] a II I

IK I > IL I + 1 W' g t ti E f o [1,' ) ~ < (:... - 21;\'1) II I i II ) o [/,'1' I t. i,' ohviotl. ' t II '\
[( < p L and I( E 1 I, .k · h -rcfor ~ /) F ,k is dr n: in I).

in ~ == {DF, k : r E . o k E} i' a [(1 milv [cl 'll~' ~11 1 .' ' t. . of čl

IIII abl - p -t ' .n I I9 I < c t h r i. a 9 -O' II r ic f 1t r ~ () II I ).
L -t U == U{J( : f\ E 0' } . I r II1c .i ll :' t .h 'ck t hCl t :

• (VF E ff ) (Vk E w) (~71 E w) I n F n [__ TL ~ 1l - -1 ) 1 > n k

Fo r -v -r f\ E 0' n 1 J. k \ V - ha\ - ~ 1( '1 II I t ll r is " 011 1{. II S II (' II t IIčl t
I

Il( n F n [2 n 2n+ 1) 1 > 7L
k.

• ~aE fo [U I ±< + i. -., Ja[U] E ( )
E numeratc .fa[U] == {'un : 'll E w}. -or ev ry 'll, t.h rc xist .» 1\' 71. E ~Ij such

that u.; EKn . Sin c (jj i a fi lt -r \V Ina, a.. lUH) 1\ 71. + I _ I ) lv.; f( r ~ \ cr y

U I 2n E w . Obviou ly, U == 1'Ew f n. and \\ gc t f [ ] - < 1 C .a usr:(, a (l - m in fn [Ul
'""" 1. < (2 - _ 1_) 1 for v ry n
L--aEfo[ J<n ] a - 21K n l Ininfo [J(n] , I .

To co111P1-t - t h in IU t i n -p lct ffa + 1 bc t II flIt ~r bn, ' , gCllcr é t ~ I b,'
»: and U.

Case II. (~Fo E §"cx) (~ ko E w) ( V 'll E w) li [Fo n [2 1L 21l. -/-1 )1 < 'lLko

Let P == {K E [w]<w : (VU,v E J() lL < v implies 21L < v} and cl .fi nc Cl

partial order <p on P Íl1 t he following way: [{ < JL if and nly if f == /.1
Ol' K ~ L and min K \ L > max L. For ev .r y F E ffcx n I k E w cl -fin
DF,k == {K E P: (~n E w) IF n f ;l [K] n [211,211.+1)1 > 1l

k}.

Claim 2: D F ,k is a dense subset of(P, ~p) for -very F E ff , k E w .

Let L EP be arbit rary. According to the assumption (-'-) h -' 1' i FL E

ffCť and kL E w such that for every n we have IJ;I[O, 2111éLr f a[L]] n FL n
[2n,2n+1 ) / < n k L . From condition (v) we know that t her i ' 11 E w U h
that /F n FL n Fo n [2n , 2n + 1 ) / > nk+kL+ko > n k+ko + n k L. tl -ne t h re ex is s
M c F n FL n Fo n [2 n

, 2n+1
) of size n k+ko such that Jcx(a) > 2 rnax L for ev -ry

a E lVI. It follows from the assumption of Case II. t hat th r - is h E Ja[iVl ]
such that If;;l(h) n MI > n", Let K == L U {h}. Since h E Jcx [NJ] we have
h > 2 max L and K E P. It is obvious that K <p .L an d f( E 1 P,k ' Henc
D F k is dense.,

Since 9 == {DF,k : F E ffcx , k E w} is a family of dense subsets of a
countable poset and 19/ < ethere is a 9-generic filter ~ on P .

Let H == U{K : K E ~}. It remains to check that:
(VF E §"cx) (Vk E w) ( ~TL E w) IF n 1;1[1-1] n [2 n

, 2n +1)1> 1l
k

For every K E C§ n D F ,k we have f l ~ K and there is S01118 n such that
IF n f;l[K] n [2 n

, 2n +1 )1> n",

fcx[j;l[H]] == H E (S)
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-v r . ult rafi l .r \\ hich -x t II I.. .: == U n ' C , l n i.. a n
an bc -.. o t -n 1 d t '3 II III r '1fi It r t h '1 t is II ( t. ( r čl p i I
nd i ion ( ) . O

.. num ra t [I == {ll Tl : II E }. Il1 C ' II 71 -+- 1

1 1 1 2- <--n Ew h n - ho n ~...;J 2 71 ho '

T ' 111pl' t t he i II III \t i II " -'I I 1,t ~~ Cl . i, 1 b t' t II fi lt \r h(1.' (' g('II -rtl t I I 1y
~Cl a n 1 f - 1 [l l ].

It i b ri U L' h ·
( )-ul t rafil -r and
uIt ra fiI rb, U - f

2.5 Sorne oth r classe of f -u lt r fil -r

vVe know t hat van cl -r \i ar ľ 1·II id a l . nt. ains a.ll t. hin sots t. hcr f( r ~ ~ -r r

t h in ul trafilt rs is a lP'-ult r afil t · r c nd it i onsi .t .nt t hat '1//- 11 It rafiItc rs '.. .ist.
Every lj/-ultrafil t r i an (lf)- u ltrafi lt r b au. ' II cl r V Cl r I -n id al i.' čl

ubid ea l of t h den ity icl 'lal. \i - pr nt in this cll'1I t 'I r t \V n« rc r ~sults
concern ing 11'-ult l'af It . L ancl vV ho\v a l: t hé t it i.. C II S ist CII t, t. II a t ,Yg -

ultrafilters ex is t for evcry g .neraliz cd unun al I iel a] ,.Yg .

Prop osit ion 2.5.1. (NfAct b 1 ) Th r i: a I -po ini uiliicli i , not a '/// -u ltl'ajilt ,1',

Proo]. Enumera t e a ll part it ions of w (int in fi n it scts ) é L. ' {'%'n : O' < c}. I ,
t ransfin ite induction on a < c we will con t ruc t fil t ľ bas ' ,.tJ:n , < c ..
t ha t the following cond it ions ar sa t isfi xi :

(i) §o is t he Fréch et filt r
(ii) § a C § [3 whenever a < (3
(iii) § , == Ua<, «, for I limit
(iv) (\fa) I§CťI < lal· w

(v) (\fa ) (\fF E §Cť) F tf. 1//
(vi) (\fa) (3F E §Cť+l) eit her (3R~ E I%a ) F C Iť~ Ol' (\f lťn E / )

I F n R~ 1 <w
Induction step: Suppose we already know »: and we construct :#a+ 1.

Case A. (3K E [w] <W) (\IF E § a) F n U n El< R~ tf. 11/
For some no E K t he filt er base genera t ed by R~o and §Cť sat isfi -s condi­

tion (v). Otherwise, t he re would be for every n E K a set ~l E §Cť u h t hat

Fn n R~ E /tí. We would have nnEK Pn n UnEl< R~ E 11/ ..- a cont rad iction
to the assumption of Case A. Now we let § a+ l b e the filt er bas gen ra t ed

by ffa and the set R~o '

Case B. (tiK E [w]<W) (3FK E §a) FK n U n E]{ R~ E 1//
Consider P == {(K, n) E [w]<w x w : K C U i<n Rf, J{ n J1~ 1= 0} and

define (K,n) <p (L, m) if (K, n) == (L ,m) or K ~- IJ , m in(K \L) > 111aX L
n > m and (K \ L) n Ui~mRf == 0. For every F E §a 8J1d k E w I t
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DF,k = {(K, n) E P : K n F contains an arithmetic progression of length k}
and Di = {(K, n) E P : n > jl.

Claim: DF,k is dense in (P, <p) for every F E $Q and k E w; D, is dense
in (P, <p) for every j E w.

Take (L, m) E P arbitrary. According to the assumption therc is Fm E

$0. such that r; n Ui<m Rf E "11/. It follows that o: nF) \ Ui<r" Rf ~ "11/.
Hence we can choose an arithmetic progression L' C (FmnF)\U<m Rf such
that min L' > max L and the length of L' is k. Let n = max{i : IIrn Ri =l:0}
and K = L U L'. It is easy to see that (K, n) <p (L, m) and (K, n) E Dř",k.

80 DF,k is dense. For j < m we have (L, m) E Di and for any j > m we can
choose arbitrary r E Rj such that r > max L. Let K' = L U {1·}. Of course,
(K',j) <p (L,m) and (K',j) E Dj . 80 Di is dense.

The family ~ = {DF,k : F E §o., k E w} U {D j : j E w} consists of dense
subsets in P and I~I < c. Therefore there is a ~-generic filter C#.

Let U = U{K : (K, n) E ~}. It remains to check that:
• (TIF E §o.) U n F contains arithmetic progressions of arbitrary length

Take k E w arbitrary. For every K' E C§ n DF,k we have U ~ K and
K n F contains an arithmetic progression of length k. Hence U n F contains
arithmetic progressions of arbitrary length.

• (TlR~ E 3lo.) IU n R~I < w
Take (Kn,jn) E C§ n Dn where i« = min{j : (3K E [w]<W)(K,j) E

C;/ n Dn } . Now observe that for (K, m) E C§ we have K n R~ = 0 if m < n
and that K nR~ = Kn nR~ if m > ti. To see the latter consider (L, m') E ~
such that (L, m') <p (K, m) and (L, m') <p (Kn, jn) (such a condition exists
because C;/ is a filter) for which we get LnR~ = KnR~ and LnR~ = KnnR~.

It follows that U n R~ = K; n R~ is finite.
To complete the induction step let $0:+1 be the filter base generated by

$0. and U.
It is obvious that every ultrafilter which extends § = Uo.<c $0. is a P­

point. Because of condition (v) there exists an ultrafilter extending § which
extends the dual filter of "11/, í.e, it is not a 1I'-ultrafilter. O

Proposition 2.5.2. (MActble) There exists an (S)-ultra.filter which is not a
1//-ultrafilter.

Proof. Enumerate W w = {fo. : a < cl. By transfinite induction on a < c
we will construct filter bases §o:, a < c, so that the following conditions are
satisfied:

(i) §o is the Fréchet filter
(ii) §o. C §r; whenever a < f3
(iii) §'Y = Uo.<'Y s, for I limit
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(iv) ('Va) 1$01 < 10/· W

(v) (vo) ('VF E $0) F rf-/I/
(vi) (Va) (3F E $0+1) fo[F] E (S), i.e., Eae/o[F] ~ < +00
Induction step: Suppose we know already ~Q. If there is F E $'Q such

that Ja[F] E (8) then simply put $0+1 = $0. If /o[F] rt (8) for every
F E $0 we will construct a suitable set to add.

Oase A. (3M E [w]<W) (\:IF E §o) j;l[M] n F rt "fil
Let $0+1 be the filter base generated by §Q and f;l[NI].
Oase B. (\:1M E [w]<W) (3FM E §o) /;l[M] n FM E W (hence FA-I \

f;1[M] rl. Ir).
Consider P = {K E [w]<w : Eae/o[K] ~ < (2 - 21~1) min}o[KJ} and define a

partial order <p on P in the following way: K <p L if and only if K = LI
or K :) L and min K \ L > maxL. For every F E $0 and k E w let
DF,k = {K E P : K n F contains an arithmetic progression of length k}.

Claim.· DF,k is a dense subset oE (P, <p) for every F E $0' k E w.
Take LEP arbitrary. For rL = 21L1+1

· k · max 10 fL] we have Fr L E §a

such that Fr L \ f;1[O, rL] f/. "If/ and we denote Ar L = (F n Fr L ) \ 1;1[0, rL]'
Since Ar L f/. "If/ we can choose an arithmetic progression L' C Ar L such that
min L' > max L and IL'I = k. Let K = LUL'. To see that K E P notice that
" ! - " ! + " 1 < (2 _ 1) 1 + k <LJae/a[K] a - LJae/a[L] a LJaefQ[L'] a - 21 L I minfa[L] 2ILI+lkmax/Q[L]-

(2 - 21i, + 2IL' +l ) min }o[L) = (2 - 2/L'+l)min}o[LJ' Since minfo[L] = min fo [K]
and IKI > ILI + 1 we get Eae/o[K) ~ < (2 - 2,}<j) m~olKj; It is obvious that
K <p L and K E DF,k once we have checked that . E . Therefore DF,k is
dense in P.

Since ~ = {DF,k : F E §o, k E w } is a family of size less than c consisting
of dense subsets of a countable poset there is a ~-geIleric filter fi!.

Let U = U{K : K E f'd}. It remains to check that:
• (\:IF E §o) U n F contains arithmetic progressions of arbitrary length

Take k E w arbitrary. For every K E C;# n DF,k we have U :) K and
K n F contains arithmetic progression of length K. Hence U n F contains
arithmetic progressions of arbitrary length.

• Eae/a[uJ ~ < +00, í.e., fo[U] E (S)
Enumerate Jo[U] = {un : n E w}. For every n there exists Kn E f§ such

that U n E K n . Since f'd is a filter we may assume K n+1 <p K n for every
n E w. Obviously, U = Unew K; and we get Eae/o[u] ~ < min~o[UJ because

Eae/a[Kn) ~ < (2 - 21;nl)min/~[Kn] for every ti.

To complete the induction step let §0+1 be the filter base generated by
$0 and U.
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It is obvious that every ultrafilter which extends § = Uo<c t~Q is an
(S)-ultrafilter. Because of condition (v) there exists ultrafilter extending t~

which extends the dual filter of 11/. o

The generalized summable ideal J g is a tall P-ideal on natural numbers so
we can apply Proposition 2.1.13 to show that the existence of J1g-ult rafi Iters is
consistent with ZFC. From Proposition 2.1.14 we get even an Jg-ultrafilter
that is not aP-point under the assumption that Continuum Hypothesis
holds. The following proposition states that it is sufficient to assume Martin's
Axiom for countable posets to construct an Jg-ultrafilter (we regard here J g

as an ideal on w, which is possible since w and lN are isomorphic).

Proposition 2.5.3. (MActbleJ For every function 9 : w ..... (O, +00) wíth
limn--.oo g(n) = °there is an Jg-ultrafilter.

Proof. Enumerate Ww = {fo: : Q < cl. By transfinite induction on Q < C

we will construct filter bases §o:, o: < C, so that the following conditions are
satisfied:

(i) ~o is the Fréchet filter
(ii) ~o: C §{3 whenever a: < (3
(iii) $'1 = Uo:<'1 $0: for I limit
(iv) (vo) 1$0:1 < IQI ·w
(v) (Vo) (3F E $0:+1) 100[F] E J g , i.e., EaE/o[F] g(a) < +00

Induction step: Suppose we know already §o:. If there is F E c.~o: such
that fo:[F] E J g then simply put $0:+1 = $0:' If !o:[F] ft J g for every
F E ~o. we will construct a suitable set to add.

Consider a poset P = {K E [w]<w : g(v) < ~ g(u) whenever u < v,
u, v E fo:[K]} and define a partial order <p on P in the following way:
K <p L if and only if K :) L. For every F E $0: and m E w let DF,m =
{K E P: IKnFI > ml·

Claim: DF,m is a dense subset of (P, <p) for every F E $0:, m E w.
Take arbitrary L E (P, <p). Since 100[F] fl. J gthe set F\f;I[O, max 100[L]]

is infinite. So we can choose Xl E F such that Xl > max L, fo:(X1) >
maxfo:[L] and g(fo:(X1)) < ~max{g(u) : u E fo:[L]}. Now, we can proceed
by induction and choose elements X2, ... ,Xm such that x, E F, x, > Xi-1,
fo:(Xi) > fo:(Xi-1) and g(fo:(xi)) < ~g(fo.(Xi-I)) for i = 2, ... , m. Finally,
put K = L U {Xl, X2,"" xml. Obviously, K <p L and K E DF,m SO the set
DFm is dense in P.,

Since the family ~ = {DF,m : F E $0., m E w} consists of dense subsets
of a countable poset and I~I < c there is a ~-generic filter fi/ on P.

Let U = U{K : K E fi/}. It remains to check that:
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• (\IF E ~a) U n F is infinite
For every m E w there exists K E f§ n DF,fn' Since U :> K we get

IU n Fl > IK n Fl > m and the set U n F is infinite.

• Lae!Q[u] g(a) < +00, i.e., Ja[U] E J g

Let fa [U] = {Un : n E w} be an increasing enumeration of f CI [Ul. Ac­
cording to the definition of P we have g(Un+l) < 4g(un ) for every n. Hence
Lnew g(un ) < g(ua) · LnEw 2~ < +00.

To complete the induction step let ~o+l be the filter base generated by
§o and U. It is obv.ious that every ultrafilter which extends $ = Ua<c $0
is an Jg-ultrafilter. O

40



3 Sums of J-ultrafilters

Baumgartner in [2] studied closure of J-ultrafilters under ultrafilter surns
for the setting X = JR and JI' a family of subsets of lR. We study the closure
of J-ultrafilters under ultrafilter sums for the case X = w and J is an ideal
on w. Two general results can be found in the first section and some results
concerning ideals from chapter 1 are in the second section.

Let us recall the definition of ultrafilter sums and products at first:
If ~ and r: n E w, are ultrafilters on w then EdlI('m : 71 E w) is

the ultrafilter on w x w defined by M E Ec1JI ('m : n E w) if and only if
{n : {m : (n, m) E A} E 'm} E ~. We often identify isomorphic ultrafilters
so we occasionally regard EOlI ('m : n E w) as an ultrafilter on w. Ultrafilter
E~ ('m : n E w) is called the ~ -sum ol ultrafilters 'm, n E w. If 'm = r for
every n E w then we write Ec1JI ("P'n : n E w) = 0/1 · ý' and ultrafilter ~ · 1/
is called the product oj ultrafilters ~ and 1/.

3.1 General results

Definition 3.1.1. Let C and V be classes of ultrafilters. We say that C is
closed under V-sums provided that whenever {'m : n E w} C C and ~ E V
then EOlI ('m : n E w) E C. In practice we can talk about closure under
Ramsey sums, P-point sums, J-sums, thin sums, (S)-sums, (SC)-sums,
(H)-sums, etc.

Proposition 3.1.2. Let JI be an ideal on w and C a class of ultrafilters on w.
lf there exists an ultrafilter in C which is not an J-ultrafilter then the class
oj JI -ultrafilters is not closed under C-sums (in other words, if the class ol
JI -ultrafilters is closed under C-sums then C is a subclass ol J-ultrafilters).

Proof. Let "P'n, n E w, be arbitrary J-ultrafilters and let ~ E C be an
ultrafilter that is not an J-ultrafilter, i.e., there exists 9 : w --+ w such that
g[V] (/. JI for every V E o/t. Define f : w x W --+ W so that f( (n, m)) = g(n)
for every n, m E w. For every U C w x w let Un = {m : (n, m) E U} and
ff = {n : Un E 'm}.

Forevery U E EOlI("P'n: n E w) wehave {n: (3m) (n,m) E U} ::) ff E~.
Hence f[U] ::) g[ff] (/. J and EOlI('m : n E w) is not an J-ultrafilter. O

Proposition 3.1.3. lf J is a P-ideal on w then the class oj JI -ultrafilters
is closed under JI -sums.

Proof. Suppose 0/1 and r; n E w, are J-ultrafilters. Let f : w x W --+ W

be an arbitrary function. We want to find U E EOlI ('m : n E w) such that
f[U] E f.
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Define function in :W --+ W by Jn(m) = f( (n, 7n)) for every n E w.
Since Yn is an JP-ultrafilter there exists Un E Yn such that fn[Un] E J

for every n. Now we can find a set A E J such that fn[Unl C· A for cvery
n because we assumed that J is a P-ideal.

It is obvious that J;l[Jn[Un]] E Yn. Therefore either /;1 [!n[Un] n Al ar
i;l[fn[Un] \ Al belongs to Yn. Let 10 = {n E W : f;l[fn[Unl n Al E Yn} and
II = {n E W: /;1 [fn[Un] \ A] E Yn}. Since ~ is an ultrafilter one of the sets
I o, II belongs to the ultrafilter 'PI.

Case A. Io E ~
Put U = {{n} x f;l[fn[Unl n A] : n E Io}. It is easy to see that U E

E'2f (Yn : n E w) and f[U] = UnElo fn[Un ] n A CAE J.
Case B. II E ~

Since fn[Un]\A is finite and Yn is an ultrafilter, there exists kn E In[Unl\A
such that f;l{kn} E 1/n. Define 9 : W --+ W by g(n) = knl Since %' is an
J-ultrafilter there exists VE%' such that g[V] E J. It remains to put U =
{{n} x f;l{kn} : nE/I n V}. It is easy to check that U E E"lI (Yn : n E w)
and I[U] c g[V] E J. O

3.2 Special classes

Proposition 3.2.1. The class oj (S)-ultrafilters is closed under (S)-sums,
the class oj (H)-ultrafilters is closed under (H)-sums and the class oj J g ­

ultrafilters is closed under Jg-sums.

Proo]. Since (8), (H) and J g are P-ideals it is an immediate consequence of
Proposition 3.1.3. O

Ideals generated by thin sets and (SC)-sets are not P-ideals (see Propo­
sition 1.1.5 and Proposition 1.2.8) and it turns aut that thin ultrafilters and
(8C)-ultrafilters are not closed even under products which are special cases
of sums.

Proposition 3.2.2. 0/1. ól/ is neither a thin ultrafilter nor an (SC)-ultrajilter
for every ~ E io",

Proof. Assume ~ is a free ultrafilter on W. Let us recall that ól/ · %' =
E'2f (Yn : n E w) where r; = ~ for every n E W. For every U C w x w let
Un = {m: (n,m) E U} and fj = {n: Un E ól/}.

Consider I : w x W -+ W defined by f( (n, m)) = n + m. For every
n E w define in : W -+ W by In(m) = f( (n, m)). Notice that that ln is
one-to-one for every n and f is finite-to-one. For every A C w we have
fn[A] = A + n = {a + n : a E A} according to the definition of ln. We
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will show in the following that I[U] is not thin and j[U] rt. (SC:,:') for every
UE~·~.

Fix U E ~ · 0// and let {an : n E w} be an increasing enumeration of f [LIl.
....... -

Since U E ~ · 0// we have U E 0/1, in particular U is infinite. Chaose two
distinct elements nI, n2 E U and denote V = Unl n Un'J. The set V is infinite
because ~ is a free ultrafilter. We get I[U] = UnEW ln [Unl :) lnI [Unl] U
fn2 [Un 2] :) (V +nl) U (V +n2). It follows that I/[U]n [V, V+ rnax]111, n2}II > 2
for every v E V.

If u > maxinI, n2} then for an , an+l E [u, u + maxinI, n2}] we have
..J!n- > u > ! and a - a < max{nl n2}an+l - u+ma.x{nl,n2} - 2 n+l n - ,.

There are infinitely many u E V with u > max{n} , n2}. It follows that the
set I[U] is not thin because lim sUPn_oo a::l > 4and f[U] does not belong

to (SC) either because there is j < nlax{nl, n2} such that (/[U] + j) n f[L']
is infinite. O
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4 Weaker forms of J-ultrafilters

In the first section of this chapter we present several results concerning weak
tJ'-ultrafilters which we define analogously to J'-ultrafilters with the only
difference that functions considered in the definition are finite-to-one,

In the second section we restrict further the family of functions considered
in the definition of an JI-ultrafilter to one-to-one functions and focus on the
summable ideal to get an example of such an ultrafilter in ZFC.

4.1 Weak J-ultrafilters

Definition 4.1.1. Let JI be a family of subsets of a set X such that J
contains all singletons and is closed under subsets. Given an ultrafilter ~ on
W, we say that ~ is a weak JI -ultrafilter if for every finite-to-one mapping
F : w ~X there is U E ~ such that F(U] E J.

Obviously, every JI-ultrafilter is a weak c.?-ultrafilter.
In the following we concentrate on weak JI-ultrafilters, where X = w and

J is again a collection of srnall subsets of w and we are especially interested
in the ideals introduced in chapter 1.

Lemma 4.1.2. II JI is a tall P-ideal and ~n' n E w, weak JI -ultrafilters
then every accumulation point ol the set {~n : n E w} is a weak JI -ultrafilter.

Proof. Assume f is a finite-to-one function. There exists Un E ~n such that
f[Un ] E JI for every n E w. Sínce J is a P-ideal there exists an infinite
set A E JI such that f[Un ] C· A for every ti. It implies U« C· I-I [A]
because f is finite-to-one. If ~ is an accumulation point of {o/tn : n E w}
then U = f-I[A] E o/t because w \ I-I[A] tj. o/tn for every n. Of course,
f[U] = A E JI and it follows that o/t is a weak J-ultrafilter. O

Weak thin ultrafilters provide a new description af Q-points.

Proposition 4.1.3. An ultrafilter on w is a weak thin ultrafilter il and only
if it is a Q-point.

Proof. It follows from the proof of Proposition 2.4.1 that every weak thin
ultrafilter is a Q-point.

Now, assume o/t is a Q-point and I : w ~ w is a finite-to-one mapping.
Define Qn = f-1[n!, (n + 1)!) for every n E w. The family {Qn : n E w} is a
partition of w into finite sets. 80 there exists V E ~ such that IV n Qnl < 1
for every n. Since o/t is an ultrafilter either va = U{Q2n : n E w}, or

44



Vl = U{Q2n+1 : n E w} belongs to the ultrafílter ťfI' o We may assume that
Vo E ~ o Let U = V n V00 It is easy to verify that f[U] is a thin set:

If an , an+l E f[U] then there is kn E w such that an E [(2kn )!, (2kn + I)!)
d > (2k 2)' 'll t I' ~ < l' (2kn+l)!an an+l _ n + o. vve ge lm SUPn.-.oo a

n
+l _ nTI SUPn.-.oo (2k n +2)! -

lim sUPn--+oo 2k:+2 < lim sUPn --+ oo 2n~2 = 00 O

Corollary 4.1.4. ft is consistentthat there are no weak thin ultrafilters. O

lt follows from Proposition 2.4.7 that there are rapid ultrafilters which
are not (S)-ultrafilters, but there are no rapid ultrafilters which are not weak
(S)-ultrafilters.

Proposition 4.1.5. Every rapid ultrafilter is a weak (S)-ultrafiltero

Proo]. Assume ól/ is a rapid ultrafilter and f : w --+ w a finite-to-one function.
Define g(n) = maxf-I[O, 2n ]+ 1. Since ~ is rapid there is U E ód such that
9 <" eu· 80 we have U n > g(n) (where U n denotes the nth element of U) for
every n > no. The definition of function 9 gives f(u n ) > 2n . It follows that

Hence I[U] belongs to the summable ideal and tPI is a weak J-ultrafilter. O

4.2 O-points and summable ultrafilters

Let us recall that an ultrafilter ól/ E N· is called a O-point if for every one­
to-one function I : lN --+ N there exists a set U E ól/ such that I[U] has
asymptotic density zero. Gryzlov constructed such ultrafilters in ZFC (see
[17], [18]).

We strengthen Gryzlov's result and construct a summable ultrafilter that
we define as an ultrafilter ól/ E N" such that for every one-to-one function
f : N --+ lN there exists U E tPI with I[U] in the summable ideal, Our proof
was motivated by Gryzlov's original construction as it was written down by
K. P. Hart [19].

Let us call a family § C ~(N) summable if for every one-to-one function
f : lN --+ lN there is A E § such that I[A] belongs to the summable ídeal.

During the construction we make use of the following upper bound for
partial sums of the harmonie series:

Fact 4.2.1. 1 +! + · · ·+ Iv < 1 + ln N < 1 + log2 N for every N E N.
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Lemma 4.2.2 is faírly general, but it enables us to construct a summable
centered system by applying Proposition 4.2.3 to get summable k-linked fam­
ilies for every k. The summable centered system may then be extended to a
summable ultrafilter.

Lemma 4.2.2. II §k is a k-linked family of infinite subsets of N for every
k E N then § = {F C N : ('Vk)(3Uk E ~k) c» C· F} is a centered system.

lf moreover, f is a P-ideal, I E NIN a one-to-one function and for every
k E N there exists Uk E §k such that I[U k] E J then there exists U E fF'
such that I[U] E J. In particular, il ~k is summable for every k then $is
summable.

Proo]. Take Fl, F2, . . . ,Fn E § and for every j = 1, ... ,n chaose Ujk E §k
such that Uf C* Fj for every k. For every k > n family §k is n-linked, hence
n;=1 Uf is an infinite set. We have

n n

n u~ C* nF.J - J
j=1 j=1

for every k > n and it follows that family § is centered.
For the moreover part, consider A E J such that f[Uk] c*A for every

k E N. We get Uk C* f-l[A] for every k E N. According to the definition
set U = f-l[A] belongs to § and I[U] = A E J. O

Proposition 4.2.3. Let A be an infinite subset ofN. For every k E N there
exists a summable k-linked family §k C 9(A).

Proof. Fix k E lN. We divide A into disjoint finite blocks, A = UneIN Bn ,

and for every n enumerate Bn , faithfully, as {b(cp) : cp E n;=o Q(j, n)} where

Q(j, n) is defined by Q(j, n) = 2n .
2j

• Notice that for every i < k we have
IQ(i, n)1 = 2n

• In~=-~ Q(j, n)l·
For every i < k, x E Q(i, n) and s E rr;=i+l Q(j, n) define Bn(i, x, s) =

{b(cp"(x)"s) : cp E rr~=-~ QU,n)}. For every one-to-one function f : N --. N
let m! = minf[Bn(i, x, s)]. Finally, let x(j, s) E Q(i,n) be that x for which
m! is maximal, i.e., m!(f,s) = maxim! : x E Q(i, n)}. Now, we may define

AI C A block by block as the union AI = UnelN Bl, where B~ C Bn is

defined in two stages: first B~ = U~-o B~ (i) and second B~(i) = U{B~ (i, s) :
s E n;=i+l QU, n)}, where B~(i, s) = Bn(i,x(f, s), s).

Claim 1. The family!Fk = {AI: j E NN one-to-one} is k-linked.
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Consider 10, fl, .. · ,fk distinct one-to-one functions from N to N. Since

k 00 knA/i J UnB~;
j=O n=l j=O

it suffices to show that n;=o B~; f; 0 for every n E N. To see this fix n and

define ip E rr;=o Q(j, n) recursively: put so = 0 and set cp(k) = x(Jo, so),
next Sl = (<p(k)) and <p(k - 1) = X(fl' Sl), and so on. It follows that b(ep) E

nk Bfj(k " ) c nk Bfj(k ") c nk Bfjj=O n - ), Sj - j=O n - J - ;=0 n·

Claim 2. For every one-to-one function f the set I[Af] belongs to the
summable ideel.

Our aim is to bound the sum LaEB! ,la) from above by elements of a
convergent series because I[Af] = UnelN I[B~]. At first, we estimate the
sum of the reciprocals of elements in I[B~(i, s)] for every i < k and S E

rr;=i+1 Q(j, n).
Since If[B~(i,s)]1 = Irr~:'~Q(j,n)1 we have

L !) < IIIQ(j, n)l· I, = 2n'~2'-1) (1)
aEB!(i,s) f a - j=O min f[Bn(i, s)] mx(f,s)

Put qi,n = Irr;=i+1 Q(j, n)1 and enumerate {m~(fls) : s E rr;=i+1 Q(j, n)}
increasinglyas {ml: 1= 1, ... , Qi,n}' It is easy to see that ml > l- Q(i, n) for
every 1 and it follows that

Ě J-. < 1 .Ě ~ < 1 + log2 qi,n = 1 + L;=i+1 1og2 Q(j, n)
1=1 ml - Q(i, n) 1=1 1 - Q(i, n) Q(i, n) (2)

where we used Fact 4.2.1.
Now, observe that

k k

1 + L log2 Q(j, n) < 1 + n L 2j = 1 + n(2k+1 - 1) < n2k+1 (3)
j=i+l j=O

and putting together (1), (2) and (3) we obtain

1 + L;=i+11og2 Q(j, n) n2k+1

-Q(i, n) 2n ·
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Thus we get for every n

and finally

L 1 <f n(k +2~)2k+1 <2(k + 1)2k+1,
aEA/ f(a) n=l

i.e., the set J[Af] belongs to the summable ideal.

(5)

(6)

o

While constructing a O-point Gryzlov made use of function Q(j, n) = n2; .

We cannot use this function for aur purpose because it "grows too slowly".
Its polynomial growth with respect to n provides in formula (4) (or (5))
a divergent series as an upper bound for LaEB~ J~)' 80 it seems to be
necessary that Q(j, n) depends exponentially on n. In formula (4) occurs
In~-~ Q(j, n)l' Q(i, n)-l, which excludes functions of type 2n • p(j) or 2n op(j)

where p(j) is a polynomial in j. Hence our definition Q(j, n) = 2n .
2j seems

to be the best possible to use while constructing a summable ultrafilter.

Theorem 4.2.4. There is a summable ultrafilter on N.

Proof. Consider an arbitrary countable family' {Ak : k E N} of infinite sub­
sets of natural numbers and apply Proposition 4.2.3 to obtain a summable k­
linked family §k on Ak for every k. From Lemma 4.2.2 we obtain a summable
centered system § on N. It is obvious that any ultrafilter that extends $
is summable. O

Corollary 4.2.5. There are 2' distinct summable ultrafilters on N.

Proo]. Assume {Ak : k E N} is a countable family of disjoint infinite subsets
of N and §k is a summable k-linked family on Ak for every k. For every
free ultrafilter o/t on N let $au c f11J(N) consist of sets F C JN such that
{k : F n Ak E §k} E ~. It is easy to see that §au is a summable filter
base and §au # §r whenever ~ # 1/. It follows that there are 2' distinct
summable ultrafilters. O

The construction of a summable ultrafilter relies strongly on the fact that
functions in question are one-to-one and there is no obvious way to trans­
form the construction to obtain (S)-ultrafilters or even weak (S)-ultrafilters
although the moreover part of Lemma 4.2.2 is stilI true for all finite-to-one
functions. This is not the case for Proposition 4.2.3, which can be easily
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modified just for those finite-to-one functions f for which the size of preim­
ages of singletons, í.e., the sequence If-l(n)lneN, is bounded from above
by a natural number p (such functions are called p-to-one). It suffices then
to enumerate the block Bn in the proof oí Proposition 4.2.3 faithfully as
{b(r, cp) : r E p, 'P E n; oQU, n)} and we may repeat the construction step
by step. The only difference is that in formula (6) from Claim 2 we get
another upper bound for the sum of reciprocals of the elements of f[A!],
namely LaeA/ I~) < 2p(k + 1)2k

+1 ,

Another interesting question arises if we replace the summable ideal in
the definition oť a summable ultrafilter by the generalized summable ideal
J g defined in chapter 1. It is not known at the moment whether it is possible
to construct in ZFC an ultrafilter ~ such that for every one-to-one function
there is U E ól/ with f[U] E J g for arbitrary function g.
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