
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Bc. Marek Linka

Visual Studio Refactoring and
Code Style Management Toolset

Department of Distributed and Dependable Systems

Supervisor of the master thesis: Mgr. Pavel Ježek, Ph.D.

Study programme: Informatics

Specialization: ISS

Prague 2015

I declare that I carried out this master thesis independently, and only with the cited
sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act No.
121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles
University in Prague has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In Date Signature

Název práce: Sada Visual Studio nástrojů pro refaktoring a správu stylu kódu

Autor: Bc. Marek Linka

Katedra/Ústav: Katedra distribuovaných a spolehlivých systémů

Vedoucí bakalářské práce: Mgr. Pavel Ježek, Ph.D.

Abstrakt: Dodržování konzistentního stylu je nezbytné pro udržení spravovatelného
zdrojového kódu. V době, kdy složitost softwarových řešení neustále roste, je tento požadavek
důležitější než kdy dřív. Většina komerčně dostupných nástrojů pro zvýšení produktivity
psaní kódu se ale zaměřuje více na refaktoring a podporu dodatečných technologií než na
dodržování konzistentního stylu psaní. Rozhodli jsme se proto napravit tuto situaci tím, že
naimplementujeme sadu nástrojů pro Visual Studio rozšiřitelnou pomocí zásuvných modulů
zaměřenou na hledání a nápravu porušení stylistických pravidel v jazyku C#. Dokončením
našeho záměru jsme vytvořili nástroj, který se hladce integruje s Visual Studiem a poskytuje
uživatelům efektivní a intuitivní prostředky pro zlepšení spravovatelnosti jejich kódu.

Klíčová slova: Visual Studio, Refaktoring, Styl kódu, Roslyn

Title: Visual Studio Refactoring and Code Style Management Toolset

Author: Bc. Marek Linka

Department/Institute: Department of Distributed and Dependable Systems

Supervisor of the bachelor thesis: Mgr. Pavel Ježek, Ph.D.

Abstract: Keeping a consistent coding style is an important part of having a maintainable code
base. In times when software solutions become increasingly complicated this requirement is
more important than ever. However, most commercially available coding productivity tools put
a much bigger focus on refactoring and support of additional technologies than on maintaining
consistent code style. We decided to remedy this situation by implementing a plugin-extensible
toolset for Visual Studio focused on diagnosing and correcting code style violations in C# code
bases. By completing our intent we created a tool that integrates seamlessly with Visual Studio
and provides the user with effective and intuitive tools to improve the overall maintainability
of their code base.

Keywords: Visual Studio, Refactoring, Code style, Roslyn

i

Dedication
To my father, for helping me get as far as I got. We miss you.

To my family, for supporting me in this endeavor all these years.

And finally, to my friends. Stay crazy!

Dedication

ii

Had to be me. Someone else might have gotten it wrong.
—Mordin Solus, Mass Effect 3

iii

Acknowledgements
I would like to express my gratitude to all the people who helped me in the course of
writing of this thesis. Whether by providing constructive criticism, technical expertise,
or simply moral support, you all helped me make this big step forward.

A special thank you belongs to the person charged with supervising this thesis, Mgr. Pavel
Ježek, Ph.D., whose feedback was invaluable and who helped transform this thesis from
a loose set of ideas into a coherent whole I can be proud of.

To everyone, THANK YOU.

iv

1. Introduction ... 1
1.1. Problem statement .. 3
1.2. Goals of this thesis ... 5

2. Analysis .. 6
2.1. Understanding source code .. 6

2.1.1. Parsing C# ... 8
2.2. Integrating with Visual Studio and Roslyn .. 10
2.3. Extensibility .. 12
2.4. Code transformations .. 16
2.5. Settings .. 18
2.6. Code navigation .. 22

3. Implementation .. 24
3.1. Layout overview ... 24
3.2. Code diagnostic implementation .. 27
3.3. Refactoring implementation ... 30
3.4. Platform abstraction .. 31
3.5. Settings composition ... 37
3.6. Settings .. 37
3.7. Visual Studio commands ... 38
3.8. Navigation pane .. 39
3.9. Main installation package .. 40
3.10. Code diagnostics package .. 40
3.11. Code refactorings package ... 41
3.12. Diagnostics unit tests ... 41
3.13. Refactorings unit tests ... 41
3.14. Platform services unit tests .. 42

4. Comparison with similar applications ... 43
4.1. JetBrains ReSharper + StyleCop .. 43
4.2. DevExpress CodeRush .. 43
4.3. Conclusion .. 44

5. Conclusion .. 45
5.1. Fulfillment of thesis goals ... 45
5.2. Future development ... 45

A. User Manual ... 47
A.1. Installation ... 47
A.2. Usage .. 48
A.3. Implemented code transformations .. 51

A.3.1. Diagnostics ... 51
A.3.2. Refactorings .. 53

B. Plugin Development Guide .. 54
B.1. Prerequisites ... 54
B.2. Developing a plugin ... 54

C. References .. 63
D. Content of the enclosed CD .. 64

1

1. Introduction
In real-world software development, software systems are usually developed in teams
of multiple developers. This allows for more flexible workload decomposition and
more effective development, but also leads to situations where programmers with vastly
different backgrounds need to work together on a single solution.

These different backgrounds reflect, among other things, in the way programmers write
and style their code – how they wrap lines of code, what brace layout they use, etc.
These differences don't necessarily cause problems for the system being developed, but
they can make cooperation in the team problematic. For most programmers, reading and
understaing code written by someone else is one of the most difficult thing they might
be asked to do. And if the situation is complicated by the fact that the code's author
uses a significantly different code style, understanding such a code might become almost
impossible.

Authors of most modern programming languages realize these issues and many languages
ship with a set of recommended practices and guidelines for styling code. The main issue
with these conventions is that there is a rather large gap between knowing that guidelines
exist and actually following them. This difficulty comes from the fact that programmers
are taught to be lazy (in certain aspects) and unless something forces them to acknowledge
that their code is not following standards, they tend to postpone any corrections until
“when I have the time”.

To overcome this problem, automated tools are necessary. If a programmer writes a line of
code that breaks a stylistic rule and an automated check will immediately inform them of
the problem, there is a good chance that the code will be fixed immediately. But watching
for and reporting issues is just half of the story. To further increase the chance that the
programmer will actually resolve the code issue, the tool should also provide an option
to fix the problem automatically – to transform (or refactor) the problematic code so that
it no longer violates the guidelines. Apart from resolving style issues, refactorings can
also be used to automate certain repetitive and/or uninteresting tasks and save developers
some time (renaming fields/methods/classes etc., creating new classes from usage etc.).

If we take a closer look at the Microsoft .NET family of languages, these come with a
rather comprehensive set of rules and guidelines for writing consistent code [1]. These
conventions are followed within Microsoft itself and present a stable set of stylistic rules
for the most popular .NET language, C#. The rules contained within the specification deal
with the most important aspects of writing code, from naming, through layout (braces,
spacing, indentation, etc.), to documentation and several more.

Consider the following code. The method implemented in this example doesn't do
anything interesting, but reading through the code is very difficult. The name of the
method is generic and doesn't hint at the actual purpose of the method. Variable names
are confusing (t, T, t2, etc.), typing is inconsistent (var, Int32), and the overall layout
is chaotic (braces, line breaks). Fixing these issues manually would take a non-trivial
amount of time.

Introduction

2

 public myspecialthingy Get(int x, string t, int a, bool t2)
 {
 Int32 T = 456;
 var n = 28D;
 if (t2 == false) throw new ArgumentException();
 string y = new String();
 for (var m = 0; m <= a; m = m + 1) {
 y = y + t;
 }
 myspecialthingy tt = new myspecialthingy();
 tt.str = y;
 tt.t = n * a;
 return tt;
 }

The next code example demonstrates the difference that proper styling can make. It
performs exactly the same operation as the code above, but it's styled according to the
C# guidelines. Variables and class have been renamed to better reflect their intended
purpose. Implicit typing is used across the whole method and braces and line breaks
are normalized. In the end, an object initializer is used to create a new instance of the
CustomTuple class.

 public CustomTuple GetTuple(
 string stringSeed,
 int copies,
 bool isValid)
 {
 var numberSeed = 28D;
 if (!isValid)
 {
 throw new ArgumentException();
 }

 var stringValue = string.Empty;

 for (var index = 0; index <= copies; index++)
 {
 stringValue += stringSeed;
 }

 var result = new CustomTuple
 {
 StringValue = stringValue,
 Number = numberSeed * copies
 };

 return result;
 }

Introduction

3

In comparison to the first example, this code should be much easier to read and
understand. Using an automated tool to validate and fix the original code would save a
lot of time which could be spent on actual development.

Unfortunately, Visual Studio, as the most popular and advanced IDE for writing C#
code, does not contain the ability to evaluate code against the aforementioned Microsoft
guidelines. Developers either have to study the conventions and check their code as
they are writing it, or look for a third-party tool to help with this task. StyleCop [2],
a Visual Studio plugin, was one such tool. StyleCop used to be very popular with
Visual Studio users and contained over a hundred and fifty various code style checks,
ranging from simple (class must have a documentation comment) to complex (enforcing
correct parentheses for logical expressions). Unfortunately, development of StyleCop was
discontinued some time ago and no viable replacement has been found as of yet.

Situation on the refactoring side of things is slightly better. Even a freshly installed
Visual Studio contains a set of basic refactorings. These include symbol renaming,
symbol declaration, and several more. These are the most widely used refactorings, but
they are far from covering even a half of the situation where (semi-)automated code
transformations might come in handy. Developers who want to utilize more advanced
forms of refactoring have to look for a third-party tool.

There are two widely used refactoring toolsets – JetBrains ReSharper [3] and DevExpress
CodeRush [4]. These are both commercial products with a lot of features and can help
with much more than refactoring C# code – they work with a variety of languages and
frameworks (C#, Visual Basic.NET, XAML, and more). These tools are definitely much
more powerful that the basic refactorigns that ship with Visual Studio, but they also have
their own shortcomings, which this thesis will attempt to address.

1.1. Problem statement

First main problem we already mentioned in the introduction – Visual Studio does not
contain the ability to monitor code for style violations, so developers haave to install
third-party tools. And while StyleCop fit the requirements perfectly, its development has
been cancelled and no new versions will be published. This is especially problematic,
since at the time of writing of this thesis (2015), Microsoft is preparing to release Visual
Studio 2015 – the latest StyleCop version will not support the new IDE at all.

Second issue we see with Visual Studio is the very limited number of refactorings
available in it. This can be remedied by installing ReSharper or CodeRush, but both of
these tools are very expensive, costing upwards of 150€. Considering the fact that since
the release of Visual Studio Community Edition (early 2015), all the power of the VS
IDE is now available to anyone for free, this price can discourage many programming
beginners (often students).

There is one more problem with at least the ReSharper tool (but most likely with
CodeRush also) – its huge set of features. ReSharper, besides refactoring C# code,
performs a high number of other tasks. It can refactor XAML code and HTML, it can
simplify working with resource files, it can work with JavaScript and TypeScript files
and CSS. ReSharper also modifies the behavior of certain Visual Studio components,
such as IntelliSense (smart autocompletion) and unit testing. Many of these features are
only used rarely (such as TypeScript support) and the overloading of default behavior (for

Introduction

4

example for IntelliSense) can cause more problems that it solves, because of potential
bugs and performance drops.

All these features are installed together with the C# refactoring support and usually
just occupy space and consume system resources, without providing any significant
advantages. The whole toolset is therefore bloated, which leads to the final issue:
performance.

Most users who installed ReSharper complain about degraded performance. This is best
demonstrated on a simple scenario of opening a solution file. Since we wanted to see how
much ReSharper affects the IDE performance, we measured the time required to open a
relatively small-sized VS solution file with and without ReSharper running. We used the
folowing experiment settings:

• CPU: Intel Core i7 3770K @ 3,50 GHz

• RAM: Kingston HyperX Beast @ 2133 MHz, 24 GB (23,8 GB usable)

• Storage: 2x Intel 530 SSD 120 GB (RAID1; hosting system, Visual Studio, and
ReSharper) + 2x Seagate Barracuda 7200.12 500 GB (RAID0; hosting the tested
solution)

• OS: Windows 8.1 x64, all the available updates installed, with paging file disabled

• Tested solution: 8 projects (console application, ASP.NET MVC application,
Windows Service, several class libraries)

After opening the solution multiple times both with and without ReSharper, the following
numbers were measured:

• Load time without ReSharper: 5 - 6 seconds

• Load time with ReSharper: 15 - 17 seconds

It is obvious that the performance impact of the ReSharper tool is significant, even
on a rather powerful hardware. It is also not limited to solution load, but affects the
performance of the whole IDE. One of the source of the performance hit is the use of a
third-party source code parser. This component is used to scan and analyze the source
code being edited, but since it does not use the Visual Studio compilation pipeline, it must
perform its own parsing in addition to the parsing VS performs itself. This might easily
lead to doubling the time necessary to analyze the source code.

It is also worth noting that both ReSharper and CodeRush support plugins, which allows
their features to be expanded. This allows for users to implement features they need even
if the core tool does not contain them, leading to improved flexibility.

There is one more, relatively independent, issue with Visual Studio we wish to address –
navigation within the code base. For solutions consisting of only one or two projects, this
is not a problem, since the number of places to look for a specific piece of code is rather
low. For real-world systems consisting of ten or more sub-projects, orientation becomes
much more difficult. Using the solution explorer integrated into the VS IDE requires a
lot of mouse clicks and the integrated search ability is easier to access, but rather slow

Introduction

5

on the actual search. Both these issues cause users to break their flow of work and costs
time that could be spent elsewhere.

1.2. Goals of this thesis

The overall goal of this thesis is to develop a set of tools that would resolve the
issues mentioned in the previous chapter. This goal can be further decomposed into the
following areas of interest:

1. Code style validation

Wathing for code style violations will be the cornerstone of the solution. The resulting
application will be scanning the source code for problems and notify the user when
a rule violation is detected.

The core set of implemented style rules will be related to areas where proper styling
has the greatest advantage – enforcing documentation comments and proper naming.
If time permits, additional rules will be implemented, such as monitoring brace layout
and member accessibility.

2. Refactoring

Closely related to code style monitoring, (semi-)automated code refactorings will be
implemented. These will allow for easy correction of detected stylistic problems and
automate other often-performed tasks.

In addition to automated fixes for the style violations mentioned above, refactorings
for manipulating properties (e.g. auto-property to backing field), implementing
popular concepts (INotifyPropertyChanged, DataContract), and typing (explicit to
implicit typing and back). More popular refactorings will be implemented as time
allows.

3. Extensibility

Even though there will be refactorings and code style diagnostics available in the
solution, this initial set will be far from comprehensive. The solution will come with
the ability to extend the list of supported features by the way of plugins.

4. Code navigation

Navigating within a code base should be as painless as possible, to minimize
workflow disruption. This thesis will attempt to improve upon the existing VS
capabilities in this area.

5. Performance and IDE integration

The toolset proposed and implemented in this thesis will attempt to find a way to
minimize its performance impact. At worst, the performance of our toolset should be
equivalent to other currently available tools, but if at all possible, it should be better.
The solution should also integrate with the Visual Studio IDE to match the ease of
use of commercial alternatives.

6

2. Analysis
In order to meet the thesis goals, the toolset implemented as part of this thesis must have
several basic capabilities around which the required features are built. Understanding
source code is one such capability, because in order to perform a refactoring it's necessary
to first know what is being transformed. Another basic capability leading to fulfillment
of thesis goals is direct Visual Studio integration, which is required in order to provide
the best possible usability, user experience, and performance. This thesis also aims to be
extensible by plugins to allow easy introduction of new features, which influences the
design of certain core features.

This chapter will cover these basic capabilities and discuss the main decisions affecting
the design and implementation of this toolset, including certain important encountered
issues. From this point onward, this analysis will be specific to the C# language, since it
is both this thesis' target language and the language this thesis is implemented in.

2.1. Understanding source code

Source code for most programming languages is usually stored in the form of simple text
files. Text files are easy to read and write, they can be compressed effectively, and have
other advantages over, for example, binary files (files whose content is encoded in some
kind of machine-readable-only binary format). But any source code file also has to follow
a certain structure (syntax), to be considered valid. Without proper syntax, a source code
file becomes just another text file that has no inherent meaning to the operating system
and other software.

Therefore, any application attempting to transform a source code file (refactor it) must
guarantee the resulting code will be syntactically valid – no developer would consider
using a tool that is known to break the code it is used on. For this requirement to be met,
the application must understand the syntax of the programming language it is designed
for and follow it strictly. In other words, whatever the transformation input, the output
must be syntactically correct for the given programming language.

However, there are situations where syntactic information is not enough – certain more
advanced code transformations might require a deeper understanding of the source code.
Imagine a method rename refactoring – a method might be used in source files different
from the file that declares the method, in which case renaming it only at the place
of declaration would break compilation. Additionally, there might be several different
methods with the same name, so even performing a global textual search and replace
would fail – it would rename even methods that were supposed to remain unchanged.
Performing such rename operation safely requires a so called semantic model. Semantic
model describes the meaning of the syntactic elements (classes, methods etc.), including
their usage, across the whole code base. In the method rename example, semantic model
would be used to find all the places where the particular method being renamed is used.
The renaming operation would then happen at all the usage places, thus ensuring that the
code will compile properly, but leaving the unrelated same-named methods unchanged.

It is important to note that this thesis also imposes one rather specific requirement on its
language parser – the ability to write the performed changes back into source files. The
reason for this requirement should be apparent: any refactoring performed by this thesis

Analysis

7

must become part of the code base. Transforming code only in memory has no effect on
the code base itself, therefore these changes need to be written back to files.

There are two main ways of reading and manipulating source code programmatically –
text-based and graph-based. The text-based approach is simpler of the two and uses the
fact that source code is basically just text. Using this approach, an application would
read the source file character by character, construct words, sentences, and analyze the
sentence structure.

Text-based parsers

Manipulating code with the help of a text-based parser would require the whole source
code to be stored in memory as text. Any change to the code would then be executed by
modifying the memory-stored text (e.g. inserting the text of a new statement at a particular
place). This approach presents several problems. Since text data (“strings”) cannot
store additional information, finding the proper location for manipulations (insertions,
deletions) would be difficult. Operations like “Rename method Foo to Bar” would need
to scan the source code stored in memory to discover where the method is declared. The
location of the method would be discarded after the method was found (or not found)
since the text-based approach has no way of remembering it for later use.

This behavior is highly inefficient – every operation requires at least one scan of the
source code text. Constructing a semantic model from strings would require the whole
code base to be loaded into memory and multiple string searches to discover all the
semantic links between the files.

Graph-based parsers

The graph-based way of parsing source code mitigates this performance issue by reading
the source code file and constructing its in-memory representation as a graph. For most
modern programming languages, these graphs take the form of a tree. Concepts such as
classes and methods are described using vertices (tree nodes) and their position within
the graph (tree) describes their position within the original source file. Strings are only
used to store the information that requires a string form, such as identifiers (names).

Performing a rename operation (method “Foo” to “Bar”) would then require the
application to traverse the tree and search for the target method node, then changing
its identifier. It should be obvious that traversing a tree stored in memory is usually
faster than performing a text search on the whole souce file – navigating the tree using
pointers/references to child nodes is much simpler in comparison to the repetitive string
comparisons required by the text-based approach. The fact that the tree nodes can store
additional information also allows for faster execution of more complex queries, such as
“Give me the locations of all declared classes” – the locations could be pre-computed as
the parser reads the source file, without the need to perform a text search.

There are two main types of trees used by currently used parsers and compilers –
abstract sytax trees (ASTs) and concrete syntax trees (CSTs). The main difference
between the two is in what information they store. ASTs only retain the information about
“significant” code elements – things like classes, methods, statements etc. Information
about the layout of the code – which includes whitespace, comments, braces, and more
– is lost during the construction of an AST. Concrete syntax trees retain even this layout
information and thus are much closer to representing the actual code file than the ASTs.

Analysis

8

CSTs tend to have more complex structure because of this reason, but they allow for more
detailed operations (e.g. “Add a comment to a statement”).

Graph-based parsers are also more efficient when constructing semantic models. Even
though this operation still requires the whole code base to be loaded into memory, the
tree object model lowers the space requirements and still allows for faster searches, so
the queries necessary to construct the semantic model of a code base finish faster.

Writing changes to files

The text-based approach has its advantages in writing files – since a code file is stored
in text form even in memory (including layout – braces, whitespace etc.), writing any
changes just means the application must take the current text and save it into a file as is.
This can be done easily and requires no additional steps.

Writing changes to files is more difficult with graph-based parsers. The whole code tree
must first be turned into text (serialized), then the text written to a file. Depeneding on
the size of the tree, this serialization operation might take a relatively long time because it
requires every node to be turned into text. This means a lot of memory allocation to store
the strings and a large number of string operations (e.g. concatenation). The distinction
between ASTs and CSTs becomes important in this scenario as well. Reading a file into
an AST and writing it back (even without any modifications) would lose information such
as whitespace positions and comments. This is definitely not the desired behavior for
any refactoring solution. CSTs don't suffer this information loss and are therefore better
suited for use in refactoring solutions.

Conclusion

Since goal 5 of this thesis focuses on minimizing the performance overhead caused by
this thesis, it was decided to use graph-based source code parsing. Even though text-
based parsers are better at writing changes into files, the graph-based parsers are faster at
parsing and manipulating code. It is also important to realize that changes are only written
once at the end of a code transformation, while code might be analyzed and transformed
dozens of times during a transformation. Graph-based parsers are therefore better suited
for this thesis.

This thesis has C# as its target language, which means a graph-based C# parser was
necessary. Writing such a parser from scratch would easily outgrow the scope of a master
thesis, therefore it was decided a third-party component for parsing source code would be
used. This approach would allow for better focus on implementing the desired features
instead of worrying about the complexities of the programming language.

2.1.1. Parsing C#

There were several solutions for parsing C# code available at the time of writing of this
thesis, so it was necessary to define a set of criteria by which to measure their respective
usability. These are closely related to the thesis goals and cover things like language
version support, parser capabilites, and performance.

Analysis

9

1. Language version

The C# language has first appeared in the year 2000 and has undergone significant
modifications and upgrades. Current stable version of the language is C# 5.0,
available since 2012, supported by the Visual Studio 2012 and 2013. C# 6.0 is
currently in development and is planned to be released together with the next version
of Visual Studio later this year (2015). As this thesis aims to provide support for
currently available tools, the C# parser picked for the implementation needed to
support at least the C# 5.0 language specification

2. Capabilities

As discussed in the Section 2.1, “Understanding source code”, there are refactorings
that require a semantic model of the whole code base to work properly. This creates
another requirement on the parser of choice – ability to construct and work with
semantic models. And since this thesis must be able to write code modifications back
into source files, only solutions supporting this ability were considered, ideally with
support for concrete syntax trees. Freely available and open-source parsers were given
priority

3. Resource consumption and performance

The last important factor in choosing a language parser was the amount of system
resources it requires. Since every parser run outside of the main Visual Studio
compilation pipeline subsitutes a performance degradation, the ability to integrate
directly into the pipeline was considered a major advantage

Available tools

A list of available C# parsers was compiled, based mostly on popularity of the tool and
its capabilities. After evaluating the candidates, three tools seemed suitable for use for
this thesis' implementation: NRefactory [7], C# Parser and CodeDOM [6], and Microsoft
Roslyn [8].

1. NRefactory

One of the most popular code refactoring toolsets currently available is ReSharper.
This toolset uses the NRefactory open-source parser to analyze and transform C#
code. NRefactory supports C# 5.0, both syntactic and semantic analysis, and writing
changes to files, but only works with abstract syntax trees. It contains facilities for
preserving comments and other information, but special care must be taken in order
to prevent information loss.

NRefactory also ignores Visual Studio compilation and performs its own parsing runs
in addition to any parsing Visual Studio does. This means higher system utilization
and degraded analysis times.

2. C# Parser and CodeDOM

C# Parser and CodeDOM by Inevitable Software is another powerful C# parser.
It supports C# 5.0, performs both syntactic and semantic analysis, but uses ASTs.
Comments and other non-significant entities can be preserved, but it requires special

Analysis

10

effort. It is also closed-source and paid, which makes it unsuitable for the needs of
this thesis.

3. Microsoft Roslyn

Microsoft Roslyn is an open-source project developed by Microsoft to reimplement
the aging C# and VB.NET compilers (originally written in C++) in managed code.
Starting with Visual Studio 2015, Roslyn will become the main .NET compiler
available in the IDE. In addition to tree-based syntactic and semantic analysis, Roslyn
uses concrete syntax trees and also allows for byte-code emission (altough this
capability is not necessary for this thesis).

Roslyn also meets the requirement for direct integration with Visual Studio
compilation pipeline – with Visual Studio 2015, Roslyn will become the compilation
pipeline. Therefore any application using Roslyn to perform code analysis will require
less parser runs, thus lessening the performance hit this analysis causes. Roslyn will
also support the C# 6.0 language specification at the time of its release, making any
applications using it prepared for the upgrade.

However, Microsoft Roslyn has one major downside – it is currently in beta stage,
with the final version due to be released together with Visual Studio 2015. This
means that not all features are implemented yet and there have been several rounds
of breaking changes in the APIs.

Conclusion

After considering the pros and cons of the available options, it was decided to use
Microsoft Roslyn for this thesis. Roslyn fits the requirements set by the thesis goals and
its beta stage is more than offset by the fact that it will allow for easy integration with
Visual Studio and its coming support for C# 6.0.

2.2. Integrating with Visual Studio and Roslyn

In order to achieve its main goals, this thesis must be able to both integrate with Visual
Studio and parse code using the Roslyn parser. There are several options available to
achieve these goals and will be discussed below.

Visual Studio integration

Recent versions of Visual Studio (since at least Visual Studio 2010) support several
different ways of integrating third-party plugins, the latest of which is the Visual Studio
Packages (VSPs) framework. Older extensibility options, such as Visual Studio add-ins,
still exist (mostly for backwards compatibility reasons), but VSPs are the latest standard
and their use is recommended.

VSPs are a framework for implementing, packaging, and distributing Visual Studio
plugins, but are also used by the Visual Studio IDE itself to provide basic services such as
code highlighting, smart text editor, and IntelliSense. This clearly demonstrates that VSPs
can be used to customize virtually any aspect of the IDE, a task not easily achieved using
the older extensibility APIs, mainly becuase the older APIs don't cover the necessary
features and capabilities.

Analysis

11

To remain as future-proof as possible, it was decided to use the VSP framework for this
thesis – this way this thesis remains open to potential expansion of features in the direction
of IDE enhancements (e.g. smarter autocomplete) and the newer APIs make an overall
better choice for this thesis. Backwards compatibility is also not an issue for this thesis,
since Roslyn will only be available for Visual Studio 2015 and (presumably) later. 3.
Implementation will cover more detail about the usage of VSPs in this thesis.

Accessing Roslyn

Once this thesis integrates with Visual Studio, the next required step is to harness the
power of Roslyn to analyze code loaded within the IDE. This can be done in two different
ways: by creating and using a distinct Roslyn instance only accessed by this thesis or by
integrating with the Roslyn instance “living” within the IDE itself.

Creating a separate Roslyn instance within an application is rather simple – all it requires
is to reference the necessary assemblies (freely available for download or built from
source) and then use the APIs available within them. However, this approach has one
major downside – a Roslyn instance created in this way allocates additional system
resources and every parser run in such an instance happens in addition to any parsing
Visual Studio performs internally. This means this thesis would lose most performance
advantages resulting from the fact that Roslyn will become the main compiler in the next
VS version and perform similarly to NRefactory and ReSharper.

If this approach was chosen, this thesis would have to monitor the Visual Studio code
editor for changes (new code written, code deleted etc.) and parse the code every time
a change happened. This would often result in two parsings of the same file (one be the
IDE, one by this thesis), slowing down code analysis. This is obviously not ideal for this
thesis. Nontheless, this way of using Roslyn is extremely easy to implement and for this
reason it was used to implement the code navigation pane contained in this thesis. This
feature will be covered later on.

Accessing the native Roslyn instance present within Visual Studio resolves the
performance degradation. There would be no reason to allocate additional system
resources and there would only be a single parser instance analyzing a particular code
file. The downside here is that getting third-party code into the native Roslyn instance
is more difficult and requires the knowledge of how VS handles its packages and how
Roslyn expects the third-party code to behave. In short, code accessing the native Roslyn
instance must be packaged using the VSP framework, with special configuration. In order
for this code to be executed by the Roslyn instance, it also need to implement a specific
set of base classes and interfaces. Discovering and configuring all of these details takes
certain effort and it is not straightforward to do it manually.

Roslyn SDK

To lessen the aforementioned configuration difficulty, the Roslyn project comes with its
own software development kit (SDK). SDKs are generally described as sets of tools that
allow or simplify development for a particular system or framework. In Roslyn, the SDK
installs into Visual Studio and contains libraries and VS project templates that take care
of most of the complexity necessary to reach the native Roslyn instance running in Visual
Studio. These project templates create VS projects that are automatically configured to
integrate with the native Roslyn instance and provide a simple skeleton code on which

Analysis

12

to implement any Roslyn-enabled features (code diagnostics, refactorings) in a way that
can be invoked by the native instance.

Achieving the same level of integration is certainly possible even without the use of the
SDK, but every detail would have to be first researched and then configured manually.
This would still provide virtually no advantage over the configuration created by the
SDK's project templates, it would just cost more effort. Therefore it was decided to
employ the Roslyn SDK to create the necessary projects and configurations, thus allowing
the development to focus more on features and less on technicalities of the Roslyn and
Visual Studio architectures.

The problem of portable classes

Using the Roslyn SDK project templates also presents several complications, foremost
of which is that their output consists of Portable Class Libraries (PCLs). As the name
suggests, portable class libraries in .NET are designed to allow execution on different
platforms with different sets of hardware/software (such as Windows Desktop, Windows
Modern, Windows Phone etc.). PCLs can only work with a limited subset of the .NET
base class library and platform-specific APIs are not accessible to them at all. This means
that Roslyn can (at least theoretically) run even on platforms different from Windows
Desktop. This is certainly an interesting possibility, but one that is not required for
implementation of this thesis – this thesis' toolset only runs within Visual Studio, which
is only available for the full-featured Windows Desktop.

PCLs within an application behave a little like a virus – all code accessed from within
a PCL must itself be portable, turning the containing assemblies into PCLs. This is
especially troublesome for code that is accessed from a PCL (e.g. from a Roslyn-based
refactoring) and still requires to access APIs that are not available from within a PCL.
One such example is the global settings manager implemented by this thesis to manage
and store user settings, making them accessible wherever they are needed. Settings are
stored in files, therefore the manager must be able to read and write files and cannot be
a portable class. On the other hand, the manager must be accessible from within Roslyn-
powered code and therefore must be portable, leading to a contradiction.

There are several ways to overcome this issue, most of which rely on dependency
injection (DI). To allow the portable bits of this thesis to interact with the non-portable
bits, an abstraction layer is created between the two parts (this usually takes the form of an
interface). Reusable non-portable services (e.g. the settings manager) are registered in a
dependency injection container and whenever a service is required, it is retrieved from the
container and accessed through the abstraction layer (interface), making it callable from
a PCLs. This allows PCLs to call even non-portable services, since they don't reference
the non-portable code directly.

More details about this approach and its actual implementation will be discussed in later
chapters.

2.3. Extensibility
One of the main goals of this thesis is extensibility – the ability to expand the
available capabilities using a plugin system. This goal stems from the fact that the core
implementation of this thesis can only contain a limited number of code style diagnostics
and refactorings and many potential users might find this core set lacking in features.

Analysis

13

To accomplish this goal, a plugin architecture had to be designed. This includes areas such
as plugin design, distribution, installation, management, and execution. After considering
the requirements and specifics of this thesis (Roslyn, VS integration etc.), two approaches
to plugin architecture seemed viable: an entirely custom plugin engine where all the
aforementioned areas are managed by this thesis, or a system that delegates some of the
tasks to the underlying IDE and only provides certain unifying services.

Custom architecture

Implementing an entirely custom plugin architecture means that literally every task
related to plugins must be performed by the application itself. Questions such as “What
do plugins look like?”, “Where and how to install plugins?”, “How to discover, load,
and execute plugins?” would all have to be answered and their answers manually
implemented.

Implementing a plugin architecture in this way means total freedom of design and also
total control over the plugin capabilities, making implementation more straightforward
and moslty free of external constraints. However, it also means that the architecture would
have to be designed extremely well – once designed, modifying the interaction points
between the main application and the plugins later on would be costly and could easily
lead to breaking changes (situations where older plugins stop working with the newer
plugin APIs). This would degrade the user experience and forcing plugin developers
to constantly look out for problems. This would become especially problematic if the
original design was flawed in some fundamental way – if it would be too slow, or too
restrictive, or similar. Redesigning the architecture would in this case most likely lead to
a total breakdown of any existing plugins.

Since this whole thesis and most of its plugins deal with transforming source code, there
was also the question of how to let plugins access the Roslyn APIs. As discussed in
Section 2.2, “Integrating with Visual Studio and Roslyn”, this thesis uses the VS-native
instance of Roslyn to achieve the best analysis performace possible. To provide the same
performance for plugins would mean that even the plugin code would have to be executed
by the native Roslyn instance. In the end, the main application would only be responsible
for finding installed plugins, loading them, and then passing them to the Roslyn instance
– effectively becoming a simple bridge between the plugins and Roslyn.

Building upon VS extensibility

Looking at the issues and complexities of the fully custom approach, it was deemed
too complicated – especially given that the main application would only perform the
“boring”, boilerplate role of installing, finding, and loading plugins. It is necessary to
realize here that all of these tasks are already implemented in Visual Studio itself. The
VSP framework is capable of performing plugin installation and load. Visual Studio also
has an intuitive way to view installed plugins, including update and uninstallation. In
addition, the VSP framework is robust, tested by time, and standardized, making any
potential breaking changes unlikely.

In combination with the Roslyn SDK (discussed in Section 2.2, “Integrating with Visual
Studio and Roslyn”) the VSP framework is also capable of installing packages that can
access the native Roslyn instance, without the need for a “middle man” of this thesis.

Analysis

14

Leaving the basics of the plugin architecture to the IDE itself thus makes a lot of
sense, implementation-wise – all the necessary features are already implemented in a
standardized and popular way, no need to “reinvent the wheel”. However, leaving things
entirely to Visual Studio and its VSP framework would mean that any plugins would
effetively be Visual Studio plugins, not plugins for this thesis. Still, there are areas where
the standard VS extension framework falls short – developing solutions for these areas
would bring added value to any Roslyn-based plugins, thus making integration with this
thesis an asset.

After looking at what the VSP framework can and can't do, two important aspects of
plugin development where Visual Studio extensibility doesn't provide suitable facilities
were identified: settings management and user interface.

Most Visual Studio plugins are configurable and require a way of storing and accessing
this configuration. Visual Studio allows plugins to integrate with its Options window but
this integration is cumbersome to implement for the developer and cumbersome to use
for the user – the Options window is often very cluttered. Many plugin authors therefore
create their own settings windows, leading to situations where various “Settings” menus
are strewn about the whole IDE, making the task of finding the proper one for a given
plugin confusing.

Providing a unified way to manage settings (store, load, distribute), including an intuitive
user interface, would mean that users would be able to manage all Roslyn-related settings
from one place and in a consistent way. This would help lessen confusion originating
from large number of independent plugins with different UI, leading to improved user
experience.

It was therefore decided that this thesis will implement facilities that allow other VS
plugins (even those not powered by Roslyn) to register their settings with this thesis and
have them managed in a unified manner. This includes ability to show user interface for
displaying and changing these third-party settings in a single window and in a way that
is visually consistent across plugins and the core thesis, virtually erasing the distinction
between core settings and plugin settings.

Platform services

Allowing third-party code to integrate with the core thesis also brings several issues.
In order for a plugin architecture to be viable, development of plugins must be made
as painless as possible, to encourage developers to actually write plugins. There is also
the problem of inconsistency of behavior – in an application with several plugins there
might arise a situation where two plugins perform similar tasks differently, leading to
user confusion. Two examples of these issues follow:

1. Complicated API – code emission

Emitting new code will be happening virtually in every refactoring (for obvious
reasons) and lies at the very core of this thesis, which is why it should be as simple
as possible for the plugin developers. Unfortunately, the Roslyn APIs responsible for
code emission are rather cumbersome. Imagine a plugin needs to create a new field
declaration as part of a refactoring:

 string username;

Analysis

15

This is a simple enough piece of code, and it should be possible to emit is using a
simple API call (pseudo-code):

 FieldFactory.Create("string", "username");

This would be the ideal scenario – simple, with obvious intentions and result.
However, as mentioned earlier (Section 2.1.1, “Parsing C#”), Roslyn uses concrete
syntax trees to manipulate code and the APIs are designed in a way that supports all
the edge-cases that exist within the C# language. This means that to emit a simple
uninitialized field declaration from the example above, the plugin must perform the
following call:

 var declaration =
 SyntaxFactory.LocalDeclarationStatement(
 SyntaxFactory.VariableDeclaration(
 SyntaxFactory.IdentifierName("string"),
 SyntaxFactory.SeparatedList(
 new[] {
 SyntaxFactory.VariableDeclarator("username")
 })));

This code is far from intuitive and its author must be relatively familiar with the
Roslyn APIs. This goes directly against the requirement that plugin development
should be as simple as possible.

2. Inconsistency of behavior – name casing analysis

As an example of inconsistent behavior, let's look at the issue of maintaining
consistent member (class, property, method, field etc.) naming. Any programmer
will readily agree that naming things is difficult, which is why the C# stylistic guide
provides extensive rules for naming code elements. The core solution will of course
implement stylistic checks against these guidelines, but many developers might find
these rules unusable for their work and they might want to implement their own using
plugins.

Important aspect of consistent naming is casing – C# developers typically use
variations of camelCase and PascalCase to name code elements. Therefore virtually
every stylistic check that verifies naming must also check whether the casing is
correct. This includes both the rules implemented in the core thesis and those
implemented in plugins. But different implementations of this casing check might
behave differently in certain situations, e.g. in the decision whether underscores (“_”)
are considered valid name elements. If the core implementation differed from the
plugin implementation in such cases, it could easily lead to confusion of the end user.

Solution

In order to resolve both the issue of inconsistency and complicated APIs, this thesis
implements a platform abstraction layer. This layer serves as a repository for the most
often-used application logic related to stylistic validation, code analysis, and code
emission. It is available both to the core implementation and to plugin developers. This

Analysis

16

layer concentrates all the often-used logic in one place, making sure that behavior of
these methods is consistent no matter where they are called from. It also hides certain
complexities of the Roslyn APIs behind a much simpler interface, reducing the amount
of code necessary to perform certain frequently used actions.

However, because of the size of the Roslyn's API surface and its complexity, the
abstraction layer could not possibly cover it all. Implementing such an abstraction would
be redundant and it would either end up similar in complexity or removing a lot of features
(keeping the API simple would require many edge-cases to be ignored). Instead, the
implementation was decided to start with the methods most usable for the core features
– more methods will be added as they are discovered.

2.4. Code transformations
Transforming source code is the cornerstone of this thesis. All the previously discussed
topics are mainly just stepping stones that lead to an efficient and powerful way of
performing these transformations. As mentioned in Section 2.1, “Understanding source
code”, Microsoft Roslyn will be used to facilitate the code analysis and manipulation,
helped by the Roslyn SDK APIs for integrating with the native VS Roslyn instance. That
still leaves the question of what code transformations will be available and what form
they will take.

Roslyn-based transformations

Before deciding upon the set of code transformations to implement in this thesis, it was
necessary to discover what is possible to implement with Roslyn. After working through
the available APIs it was apparent that Roslyn recognized three main types of code
operations: code diagnostics, code fixes, and code refactorings. These three categories
differ in their capabilities and way of execution within the IDE and will be covered in
the following paragraphs.

1. Code diagnostics

Code diagnostics in Roslyn serve as a way to analyze the syntactic and/or semantic
structure of a code file (or the whole code base), provide the user with visual clues
as to any discovered problems, and possibly provide automated fixes – they are used
to diagnose code issues (hence the name).

Roslyn diagnostics can operate on both syntactic and semantic models and can access
both at the same time, allowing for very complex and thorough code base analysis.
Compared to code refactorings (discussed below), diagnostics differ mainly in the
way they are invoked by the Roslyn instance – all code diagnostics are run with every
VS parser run, analyzing the code on the fly. Whenever a source code file changes
(signifficantly, not with every key press, for performance reasons), Roslyn runs code
diagnostics on it.

This means that for a given code file refactorings might be run tens of times a minute,
depending on the way it is edited. This leads to an important factor for writing code
diagnostics: their implementation should be as fast as possible, otherwise they might
cause lag issues in the IDE. If a particular diagnostic took 10 seconds to complete, the
user would be stuck for 10 seconds every time the diagnostics were run. This would
hamper productivity and greatly frustrate the user.

Analysis

17

Therefore even if code diagnostics can perform very complex syntactic and semantic
checks, they should only be used to implement checks that are fast, have low system
resource consumtion, and running them often makes sense. Code style analysis is a
good example of such diagnostics, since checking code style usually doesn't require
semantic information and it only works with a single source file at a time.

2. Code fixes

Code diagnostics are used to analyze code and detect issues, but they don't have the
ability to actually change the code – they can only read. To remedy a problem detected
by a code diagnostic, code fixes are used.

Every code diagnostic may declare one or more related code fixes. After all
diagnostics are run and their results collected, these fixes are made available to the
user through contextual icons at the edge of the code editor (this is also handled
by Roslyn). The user might decide to perform some fixes, but no code fixes are
performed automatically.

Because of this manual execution, code fixes don't necessarily have to be extremely
fast. Users should be well aware that they are invoking a potentially complex action
and should be willing to wait for a little bit. However, given the fact that the original
diagnostic is required to be fast, the analyzed problem can't be too complex (otherwise
the diagnostic would be complex as well), which means that code fixes also tend to
be rather fast.

In this thesis, stylistic code diagnostics will be paired with code fixes providing the
user with the ability to automatically fix discovered style violations.

3. Code refactorings

Code refactorings are the last category of code manipulations Roslyn recognizes.
Refactorings are very similar to a combination of code diagnostics and fixes – they
implement both the code responsible for deciding whether it is possible to refactor a
given piece of code and the code of the actual transformation.

Refactorings have access to both syntactic and semantic models of the code base and
therefore lack no ability compared to diagnostics. They can also transform code just
like code fixes.

The main difference from diagnostics is that refactorings are not performed
automatically, but must be executed by the user. There is no visual indication that
a certain piece of code is suitable for a refactoring – the user needs to ask the IDE
to show the list of refactorings available for a specific piece of code. At this time,
the analytical part of the available refactorings is executed and all refactorigns that
are capable of transforming the given piece of code are displayed to the user. The
user might subsequently choose to execute the transformative part of any of these
refactorings.

This manual execution mode means that refactorings are executed much less often
than diagnostics and so neither the analysis nor the transformation needs to be instant.

Analysis

18

This allows for more complex, even solution-wide transformations to be written as
refactorings.

This thesis will use refactorings to implement transformations that don't need to be
executed with every parser run and that the user doesn't want to apply to every instance
where thay can be applied. For example, automatic implementation of a specific
interface will be implemented as a Roslyn refactoring – the user will not want all
classes to implement such an interface, only a small subset of them, therefore there
is no need to run such a transformation with every parser run and display visual
indicators about the transformation to the user. When the user decides that a piece of
code is worth of refactoring, they will execute the transformation manually.

Core code transformations

This thesis will implement a set of core code transformations using the means of Roslyn
code diagnostics, code fixes, and refactorings. However, it was necessary to decide what
code transformations will be part of this core set. There are hundreds of potentially useful
code transformations, but due to the time constraints and other factors it was not possible
to implement them all.

After a brief analysis of past experiences with similar tools (namely StyleCop and
ReSharper) it was decided that the core transformations will be picked by their usefulness
and overall impact on code quality, with the addition of features deemed useful but
missing from existing refactoring tools.

In case of code style diagnostics, this thesis focuses on partially replacing capabilities
of the recently-discontinued StyleCop extension. StyleCop implemented over a hundred
different code style checks, which is still a rather large number, so this thesis chose
to implement checks for stylistic rules whose violation has the biggest impact on code
quality. This mainly includes checks for documentation comments, brace layout, and
naming. These areas of style are the most visible and have a great impact on the overall
code readability and understanding.

Refactorings implemented in this thesis mainly contain transformations that work with
properties (changes to/from auto-properties), implement certain popular base classes,
interfaces, or other concepts (e.g. data contracts), and more. These are mostly, from
personal experience, often-used tasks that come in handy in practice.

2.5. Settings

As discussed in Section 2.3, “Extensibility”, a unified settings manager should be
implemented in this thesis, to allow the management of plugin settings in a consistent
manner. It was therefore necessary to implement a way for plugins to access this settings
manager. It was also necessary to design a proper way to store the settings.

Software is most often developed in teams of multiple people, which might lead to
stylistic incosistencies. And even if all the team members used the same plugins for
stylistic checks, their settings could differ, leading to inconsistent code style across
the code base. To prevent this issue from occuring, the settings should ideally be
synchronized between the various users and machines. This could be achieved in multiple
ways, including some sort of entirely custom implementation, but this would again be just
reinventing the wheel. Source code is traditionally stored within code versioning systems

Analysis

19

whose primary objective is to make sure that all developers always have access to the
latest version of the code. Versioning systems also serve to synchronize and distribute
changes made by different programmers.

This is exactly the behavior that could be used to distribute and sychronize settings for this
thesis. By making the settings part of the code base, this thesis can rely on the underlying
versioning system to distribute them to all developers and make sure the settings are kept
in sync. Storing settings within the code base also makes it possible to version the settings
themselves and even track users changing them. This approach allows for easy answering
of questions such as “What settings were in effect in at this time or code base version?”,
should it become necessary.

Allowing the settings to become versioned with the code itself brings several
requirements, first of which is that the settings must be stored in a file somewhere within
the code base. This, by extension, means that the settings manager must be able to read
and write files, requiring platform specific APIs for doing so. This is where the issue of
portability discussed in Section 2.2, “Integrating with Visual Studio and Roslyn” becomes
obvious.

Writing settings into files could be accomplished in two different ways: in text form
or in binary form. Implementation-wise, this distinction is not very important for this
thesis – writing both text and binary files is easily accomplished using the available APIs.
However, the integration with versioning systems warrants a more thorough analysis of
both options. Binary files have a theoretical advantage over text files in performance –
reading and writing binary data is usually faster and leads to smaller files. Given the size
of the settings files, though, saving a few kilobytes in a solution of tens or hundrends of
megabytes of source code is not very noticable. Binary files are also harder to read and
edit without the proper tools. Binary files would therefore prevent certain features of the
versioning system, such as web preview or diff computation, from working properly.

Text-based settings file will be slightly larger than the binary files but they are more
suitable for versioniong systems, mainly for change tracking reasons. Most versioning
systems are able to compute diffs of text files, allowing for more thorough change tracking
and analysis. In contrast, most versioning systems ignore binary files in diffs and simply
treat them as text files. Though change tracking of settings files might not be an often-
performed operation, it might come in handy from time to time. Text files are also much
easier to edit manually, compared to binary files – any old text editor (e.g. notepad) can be
used to view and modify them. The aforementioned web preview integrated into certain
versioning systems would also work properly on text-based settings files.

In the end, it was decided to use text files to store settings information, mainly for their
easy editability and suitability for versioning systems. However, there are many textual
formats that could be used to store the settings, for example XML, JSON, INI files, in
addition to an entirely custom implementation. All of these formats can be stored within a
file and can be managed effectively by a versioning software, including diff computation.

After considering several text-based file formats for storing structured information
(custom-build, INI files, JSON, and XML), it was decided that the implemented toolset
will use XML for storing settings. This decision was made mostly because XML is
easily read and written in .NET, does not require any additional libraries, and fulfills all
requirements the implemented toolset might have.

Analysis

20

Distributing settings and portability

Settgins, apart from being stored, also need to be distributed to the code that makes use
of them. This thesis therefore implements a settings manager that takes care of both the
storage and distribution of settings and is accessible from virtually every part of the core
application and any potential plugins. This means that settings manager can be used from
both non-portable and portable code (e.g. code transformations).

As mentioned in Section 2.2, “Integrating with Visual Studio and Roslyn”, portable code
(refactorings, diagnostics etc.) may only interact with other portable code, which is a
problem for this settings manager, since it must be able to read and write files, which is not
supported from a portable library. To overcome this issue, this thesis uses the generally
recommended solution of dependency injection (DI) and injects the non-portable code
(hidden behind a portable interface) into the portable code.

There are several popular frameworks for performing DI in .NET but this thesis
sticks with the tools available in BCL. Visual Studio itself contains a powerful
dependency injection container based on Managed Extensibility Framework (MEF).
MEF is basically .NETs way of implementing DI – objects can be designated as exports
(providers on which other code can depend) and can also declare imports (dependencies
that should be injected). When the dependency container is asked to get an instance of
(resolve) a particular export, all its imports are recursively satisfied, returning an object
that has all its dependencies instantiated “automatically”. Since MEF is a standard .NET
way of performing DI and VS supports it, it was initially decided to use this way of DI
to get around the PCL problem within this thesis.

To be able to use DI to inject non-portable services into portable classes, the non-portable
code first had to be abstracted behind interfaces. These interfaces had to be contained
in a portable library in order to be usable from portable code. The non-portable code
then implemented these interfaces and was declared as a MEF export in order to be
injected into objects that required it by the composition container. Next step was to make
Visual Studio load this non-portable code into its composition container. This was done
by configuring the VS package containing the exported code as a MEF component. MEF
component VSPs are automatically included in Visual Studio's composition container at
the time of load.

Next step was to actually import the non-portable code into the portable classes. The
Roslyn SDK designates all VS packages created by it as MEF components, which ensures
that any composable parts found within those packages can take part in dependency
resolution. Classes requiring access to the non-portable code were annotated with imports
to allow dependency injection. After compilation and debugging, the MEF composition
container within Visual Studio managed to discover the imports and exports and satisfy
them for both code fixes and refactorings, but not for code diagnostics. Figure 2.1
describes this injection process.

Analysis

21

Figure 2.1. Injecting non-portable code into portable code through abstraction

After thorough investigation it was discovered that no matter the configuration, code
diagnostics would never participate in dependency injection using the VS MEF container.
After contacting the Roslyn developers, it was discovered that this behavior was
intentional and stemmed from the fact that while both code fixes and refactorings are
instantiated using the MEF container, diagnostics are instantiated using .NET reflection.
The whole dicussion can be viewed at CodePlex [9]. The Roslyn developer answering
the question acknowledged that this behavior might change in the future, but a different
approach was necessary to make this thesis work as intended.

It was deemed unnecessary to rewrite the whole DI implementation because of this
problem, since large part of the injection worked well using the MEF container. Instead,
a very simple custom service container was implemented (in a portable assembly, to be
usable from both portable and non-portable code) and the code diagnostics, instead of
having the dependency injected by the composition container, requested the necessary
code from this service container. This resolved the issue in all the necessary cases –
MEF composition is used where possible and custom solution is employed where MEF
composition is not available. Figure 2.2 describes the modified injection process for both
portable and non-portable code.

Analysis

22

Figure 2.2. Work-around for non-conposable portable code

2.6. Code navigation

Improving code navigation is one of the primary goals of this thesis (goal 4). In Visual
Studio, navigation within an average code base is often relatively difficult. This difficulty
stems from the fact that a typical “real-world” code base might consist of scores or even
hundreds of files and finding a particular piece of code in it must therefore rely on the
tools provided by the IDE.

From experience, there are two different aspects of code navigation. One is the navigation
between files contained within the code base, e.g. when the user wants to switch from
editing file MyTestClass.cs and open file Window.xaml. Visual Studio provides
its “Solution Explorer” to facilitate this “inter-file” navigation between code elements.

The second type of navigation is navigation within a single code file. Code files might
(and often do) contain thousands of lines of code and declare scores of methods,
properties, and other code elements. Trying to find a specific member (method, property
etc.) becomes more difficult the longer the code file is. Additionaly, Visual Studio
contains no native way of making this “intra-file” navigation easier for the user (apart
from a standard text search, which is insufficient – e.g. there is no autocompletion). For
this reason it was decided that the implementation of this thesis should contain a tool to
simplify this kind of single file navigation.

Analysis

23

There were two approaches considered to implementing this navigation tool. The first
aproach was similar to ReSharper's “Navigate to member” feature – the tool would
employ a keyboard shortcut that would display a special search box. This search box
would autocomplete member names from the current source code file and would be
able to navigate directly to the user-selected member. Figure 2.3 illustrates ReSharper's
implementation of this approach, inlucing the autotomplete mechanism.

Figure 2.3. ReSharper's “Navigate to member” feature

This approach is definitely viable but has several drawbacks, greatest of which is the
necessity for a keyboard shortcut. Visual Studio already contains lots of keyboard
shortcuts so finding one that is both convenient to use and still unused by the IDE would
be problematic. Having to memorize this shortcut also puts pressure on the user and could
easily lead to a situation where this navigation feature would remain unused because of
the necessary memorization of the shortcut.

The alternative solution would be to implement a “code map” of sorts. This map would
extend the code editor with a special area that would display a condensed overview of the
whole code file, showing the names of all the namespaces, classes, and other members in
alphabetical order for easy orientation. Clicking a code member on the map would take
the user directly to the member's declaration in the code file.

This approach eliminates the need for a keyboard shortcut as the map is part of the code
editor itself. It also provides a good way to view a summary of the code file as it only
displays member signatures. However, the drawback here is that the map occupies screen
space, decreasing the amount of code that is visible to the user. To combat this issue the
map needs to be collapsible – that way the user can hide the map when it's not needed but
still keep it close at hand to make navigation in the code file a matter of a single click.

It is important to note that the code map does not integrate with the native Visual
Studio's Roslyn instance. Instead, it references the Roslyn libraries and uses the syntax
parsing APIs directly. This behavior is necessary because the native Roslyn instance only
supports three types of integrations – code diagnostics, code fixes, and refactorings. There
is no way for the code map to be implemented as one of these, therefore direct integration
with the native instance is not possible.

24

3. Implementation
This chapter covers the overall organization of the application and describes the
implementation of its components. The implementation work was done using Visual
Studio 2015 Preview (version number 14.0.22310.1 DP), corresponding Visual Studio
2015 Preview SDK, and the Roslyn SDK (version 1.0.0.41031). The implemented code
should work properly even with newer versions of the necessary tools but due to the
preview stage of all the tools this is impossible to guarantee.

Due to its length, plugin development guide is not part of this chapter. Instead, it can be
found in Appendix B, Plugin Development Guide.

The whole solution is covered by Microsoft Public License (Ms-PL) [11]. Creation
and distribution of both free and commercial derivative works based on the current
implementation is allowed, given that the creator of such works respects the conditions
as stated in the license.

3.1. Layout overview

The implementation part of this thesis consists of 13 distinct projects organized
into a Visual Studio solution. Seven of these projects contain the implementation
of the core features (blue; Diagnostics, Refactorings, PlatformServices, Settings,
Settings.Composition, CodeMapPane, and Commands), three contain unit tests for
certain parts of the core implementation (green; Diagnostics.Test, Refactorings.Test,
PlatformServices.Test), and three serve to package the solution output into Visual Studio
Packages for ease of distribution and installation (orange; Package, Diagnostics.Vsix,
Refactorings.Vsix). Figure 3.1 summarizes the top-level organization of the solution:

Tests

Package

Diagnostics.Vsix Refactorings.Vsix Commands CodeMapPane

Diagnostics Refactorings

Settings

Settings.Composition PlatformServices

Diagnostics.Test

Refactorings.Test

PlatformServices.Test

Figure 3.1. Top-level solution overview – an arrow from project A to
project B signifies that A uses objects from B (possibly transitively)

Implementation

25

Brief overview of these project follow (the projects will be discussed in-depth after this
overview):

1. Main installation package (ProjectLuna.2015.Package)

The main distribution and installation package which, upon build, contains all the
other packages necessary to install the solution output as a Visual Studio plugin.

2. Code diagnostics package (ProjectLuna.2015.Diagnostics.Vsix)

The package containing the Roslyn-based diagnostics implemented within this thesis,
making them ready to install into the VS IDE and integrate with the native Roslyn
instance.

3. Code refactorings package (ProjectLuna.2015.Refactorings.Vsix)

The package containing the Roslyn-based code refactorings implemented within this
thesis, making them ready to install into the VS IDE and integrate with the native
Roslyn instance.

4. Code diagnostics implementation project (ProjectLuna.2015.Diagnostics)

The project containing the implementation of the Roslyn-based code diagnostics and
fixes. This is a portable class library (PCL) project.

5. Code refactorings implementation project (ProjectLuna.2015.Refactorings)

The project containing the implementation of the Roslyn-based refactorings. This is
a portable class library (PCL) project.

6. Unit test project for code diagnostics (ProjectLuna.2015.Diagnostics.Test)

Contains unit tests covering certain aspects of code diagnostics and fixes. The tests
make use of the PlatformServices project. These tests are only used in development
and are not part of the final ditribution package.

7. Unit test project for code refactorings (ProjectLuna.2015.Refactorings.Test)

Contains unit tests covering certain aspects of code refactorings. The tests make use
of the PlatformServices project. These tests are only used in development and are not
part of the final ditribution package.

8. Platform services project (ProjectLuna.2015.PlatformServices)

Implements the platform abstraction layer discussed in Section 2.3, “Extensibility”
and is referenced by both the Diagnostics and Refactorings projects, as well as the
various unit test projects.

9. Unit test project for platform service (ProjectLuna.2015.PlatformServices.Test)

Contains unit tests covering certain parts of the platform abstraction implementation.
These tests are only used in development and are not part of the final distribution
package.

Implementation

26

10. Settings base classes project (ProjectLuna.2015.Settings.Composition)

Contains basic classes related to settings management that should be accessible from
both portable and non-portable code. This is a portable class library project referenced
by both the Diagnostics and Refactorings projects, as well as the Settings projects.

11. Settings manager project (ProjectLuna.2015.Settings)

Implements the settings manager discussed in Section 2.5, “Settings”, including the
necessary UI components. This is a non-portable project.

12. Code map project (ProjectLuna.2015.CodeMapPane)

Implements the code navigation pane that extends the code editor, discussed in
Section 2.6, “Code navigation”.

13. Visual Studio commands package (ProjectLuna.2015.Commands)

Contains code necessary to extend the VS IDE's user interface to allow the user to
interact with the rest of the implementation.

Please note that the names of all the projects included in the solution start with
“ProjectLuna.2015.” (named after the code name of the project chosen by the author:
“Project Luna”). The following text only refers to the respective projects by the remainder
of the name, for brevity's sake.

Solution operation

The toolset implemented in this thesis works by integrating with Visual Studio 2015. The
main distribution package (Package) is responsible for the integration process itself. Once
the toolset is installed, there are two components that perform the user-visible actions
of analyzing and transforming source code. These are implemented in the Diagnostics
and Refactorings projects, respectively. The code implemented in these two projects
integrates with the Microsoft Roslyn instance running within the host IDE and, when
executed by this instance, provides the user with new code diagnostics, fixes, and
refactorings in the code editor. The implemented diagnostics are run automatically as the
user edits the source code. Code fixes and refactorings are executed manually when the
user chooses to perform an action using the provided user interface.

The code transformations implemented in these two projects also rely on the platform
abstraction layer implemented in the PlatformServices project which includes helper
functions that simplify code analysis, manipulation, and emission. Several of the
implemented code transformations also require access to the settings manager and
therefore make use of the Settings and Settings.Composition projects as well. These two
projects are responsible for loading, storing, and distributing the toolset's settings.

The Commands project is also related to the settings manager as it extends the host IDE's
user interface with the menu items necessary to bring up the settings window where the
user can view and edit settings for the toolset. The CodeMapPane projects implements
the code navigation pane that extends the code editor to simplify navigation within code
files. This project stands relatively separate from the rest as it does not make use of any
other project in the solution.

Implementation

27

There are three unit test projects present in the solution (Diagnostics.Test,
Refactorings.Test, and PlatformServices.Test) that are only used during development
and are not part of the actual distribution and operation of the toolset. The VSIX
projects (Diagnostics.Vsix and Refactorings.Vsix) are necessary to properly package and
configure the contained assemblies (code diagnostics and refactorings, respectively) to
allow their execution by the Roslyn instance.

3.2. Code diagnostic implementation

The project Diagnostics implements the core set of code style diagnostics and fixes. This
is a Portable Class Library (PCL) project. As mentioned in Section 2.2, “Integrating with
Visual Studio and Roslyn”, the Roslyn SDK was used to create and configure this project,
including its portability. The project references other parts of the solution, including
the platform services and settings manager. There are 24 diagnostics with code fixes
implemented in this project.

Diagnostics

All the implemented code diagnostics inherit from the DiagnosticAnalyzer class
(provided by the Roslyn libraries). This makes it possible for the diagnostics to
be executed by the native Visual Studio Roslyn instance. Figure 3.2 illustrates this
inheritance hierarchy:

Figure 3.2. Code diagnostic inheritance

The actual diagnostic implementation overrides the declared base class methods. The
SupportedDiagnostics property describes the diagnostic(s) to the Roslyn API. It
is possible for a single diagnotic class to diagnose more than one issue, but the diagnostics
implemented in this thesis only diagnose a single code issue.

As an example, let's look at a dignostic that analyzes whether a field is declared as
private and if not, reports a warning (this is an actual diagnostic implemented in
this thesis). The SupportedDiagnostics property for this diagnostic first creates a
diagnostic descriptor, then returns it:

Implementation

28

 var descriptor = new DiagnosticDescriptor(
 DiagnosticId,
 Description,
 MessageFormat,
 Category,
 DiagnosticSeverity.Warning,
 true);
 return ImmutableArray.Create(Rule);

The DiagnosticId, Description etc. are fields containing the necessary values.

After the Roslyn instance discovers that there is a code diagnostic with a description
returned by the SupportedDiagnostics property, it initializes the diagnostic itself
by calling the Initialize method. This method is used to tell the analysis engine
what kind of code elements is the diagnostic interested in (syntax nodes, semantic model,
comments etc.). Most implemented diagnostics work with specific symbol types (such as
field symbols). This requirement is signalled to the Roslyn runtime by using the provided
context parameter and its methods Register*. The diagnostic implementation calls
one or more of these Register* methods and provides a method callback that performs
the actual code analysis.

In the example diagnostic above, the registration is rather simple: the diagnostic is
only interested in field declarations, therefore its Initialize method uses the
RegisterSymbolAction method:

 context.RegisterSymbolAction(
 AnalyzeSymbol,
 SymbolKind.Field);

This call tells the Roslyn instance that whenever a field symbol is encountered during the
code analysis, it should call the AnalyzeSymbol method on it. The AnalyzeSymbol
method is the core of the actual code diagnostic and performs the code analysis itself. It
receives an argument containing information about the analyzed piece of code, analyzes
it, and if an issue is detected, reports this fact back to the Roslyn instance:

 void AnalyzeSymbol(SymbolAnalysisContext c)
 {
 // analysis here
 var diag = (...) // create a diagnostic report
 c.ReportDiagnostic(diag);
 }

Diagnosed issues reported by code diagnostics are subsequently collected by the Roslyn
instance and appropriate user interface is displayed to the user. This mostly consists of
highlighting the problematic piece of code and allowing the user to execute a code fix (if
one is avaiable for the diagnosed issue).

All the implemented code diagnostics have the same general shape enforced by the
DiagnosticAnalyzer class inheritance.

Implementation of code diagnostics was also slightly complicated by the composition
issue discussed in Section 2.5, “Settings”. Because diagnostics are currently instantiated

Implementation

29

by the IDE using reflection, they cannot participate in dependency injection, which
prevents them from getting a settings manager reference from the dependency injection
container. Therefore a diagnostic required to access user settings currently retrieves the
settings manager service from a special service container. This container will be covered
in more detail in Section 3.5, “Settings composition”. Code diagnostics also make use of
the platform abstraction and helper methods implemented in the PlatformServices project.

Code diagnostics implemented within the Diagnostics project are all located in the
ProjectLuna.Diagnostics.Diagnostics namespace and are separated into
child namespaces according to their area of interest.

Code fixes

Roslyn-based code fixes implemented for this toolset, similarly to diagnostics, inherit
from a specific Roslyn-provided class and are also located in the Diagnostics project.
For code fixes, this class is called CodeFixProvider and the inheritance hierarchy
is illustrated in Figure 3.3.

Figure 3.3. Code fix inheritance

The actual code fix implementation overrides the base class members to allow the Roslyn
instance to discover and execute the fix. Fixes are only executed when the user explicitely
selects to run a code fix in response to an issue previously reported by a code diagnostic.

Code diagnostics may and may not have an associated code fix implemented. To
determine what code fix (if any) applies to a given code diagnostic, the Roslyn instance
calls the GetFixableDiagnosticIds. This method might return an array of IDs in
case the fix applies to several different diagnostics, but the code fixes implemented as
part of this thesis only ever apply to a single one.

As an example, imagine a code fix that applies to the code diagnostic example mentioned
above (check whether a field is declared private). This code fix takes a field with
access modifier other than private and turns this access modifier into private. To
tell the Roslyn instance executing the code analysis that this code fix applies to the a
forementioned diagnostic, the GetFixableDiagnosticIds has a body like this:

 return ImmutableArray.Create("FieldDiagnosticId");

Implementation

30

If this diagnostic exists and it evaluates a piece of code as having issues, the IDE
automatically discovers that there is a code fix for this issue and allows the user to execute
this fix.

If the user wants to see the fixes available for the diagnosed issue, the Roslyn instance
calls the ComputeFixesAsync on the fix, passing information about the diagnosed
issue as a parameter. This method is responsible for analyzing the diagnosed issue and
informing the Roslyn instance about the code transformation that fixes the issue. This
information also includes the method callback that should be executed when the fix is
actually applied. The execution of a code fix ends when this callback return control back
to the Roslyn runtime.

The CodeFixProvider also declares a GetFixAllProvider method. This
method is called when the user decides to “Fix all” diagnosed issues. However, the code
fixes implemented in this thesis do not implement a custom FixAll provider and instead
use fallback to a default FixAll implementation provided by the Roslyn libraries.

Some implemented code fixes require access to the settings manager implemented in the
toolset. Because code fixes compose properly using the Visual Studio MEF dependency
injection container (discussed in Section 2.5, “Settings”), these code fixes are decorated
with the ExportCodeFixProviderAttribute attribute. This attribute marks the
class as MEF-composable and ensures that any required dependencies will be injected
by the DI container. This attribute is also used to specify the target language for the fix,
which is C# for this thesis. Example:

 [ExportCodeFixProvider(
 FieldAccessiblityAnalyzer.DiagnosticId,
 LanguageNames.CSharp)]

All code fixes implemented as part of this thesis use to same basic concepts of overriding
the GetFixableDiagnosticIds and ComputeFixesAsync methods, they only
differ in their implementation of these methods. They also make use of the platform
abstraction and helper methods implemented in the PlatformServices project.

Code fixes implemented in the Diagnostics project are located in the
ProjectLuna.Diagnostics.Fixes namespace and are separated into child
namespaces according to their area of interest.

3.3. Refactoring implementation

Code refactorings implemented for the toolset discussed in this thesis are located in the
Refactorings project. Just like the diagnostics project, the refactoring project was created
and configured by the Roslyn SDK and is a portable project. It also references the platform
services and setttings manager projects. This project implements 16 different refactorings
in total.

Similarly to code diagnostics and fixes, all implemented refactorings inherit from a
specific Roslyn-provided base class, CodeRefactoringProvider:

Implementation

31

Code refactoring inheritance

The actual implemented refactoring overrides the base
ComputeRefactoringsAsync method. When the user decides to refactor a piece of
code, the Visual Studio IDE runs all the available refactorings against this piece of code
by invoking their ComputeRefactoringsAsync method and providing the code in
question in the context parameter.

The method's implementation then takes the provided parameter and analyzes the code.
When a possible refactoring is available for the given piece of source code, the method
reports this fact to the Roslyn instance executing the refactoring. This includes the
callbackmethod that should be executed to perform the refactoring itself.

The Roslyn runtime collects results for all the available refactorings and displays them to
the user in the form of a contextual icon with a dropdown menu. When the user decides
to apply the refactoring, the callback method is executed, performing the actual code
transformation. Execution of a refactoring ends when this callback method returns.

All refactorings implemented as part of this thesis follow the same execution workflow,
they only differ in the implementation of the ComputeRefactoringsAsync method.

To allow for MEF-based composition and dependency injection, the code refactorings
classes are decorated with the ExportCodeRefactoringProviderAttribute
attribute. This allows the code refactoring to import the settings manager using
DI, similarly to code fixes – refactorings compose properly using the MEF-based
composition of Visual Studio. Refactorings also make use of the platform abstraction and
helper methods implemented in the PlatformServices project.

3.4. Platform abstraction

The PlatformServices project implements the plarform abstraction discussed mainly in
Section 2.3, “Extensibility”. Code implemented here contains mostly various useful
helper methods for manipulating code elements, facilities for easy code emission, and
methods that simplify testing. The helpers are used mostly from code diagnostics and
refactorings (projects Diagnostics and Refactorings).

Implementation

32

Helper methods

The helper methods for manipulating code contain a varied set of operations, from
analyzing string casing to custom code to insert members into classes. These methods
were implemented over time as the need for them was discovered. There are several areas
covered by these helper methods:

• Documentation comments (Comments.cs)

Documentation comments are improtant part of a readable code base and the toolset
implemented in this thesis puts great emphasis on enforcing them. Helpers in this file
focus on detecting and adding documentation comments to code elements without
them. The implementation makes use of the Roslyn APIs to both check whether a
code element has a documentation comment and for adding new comments. The helper
methods don't simply create an empty skeleton comments but try to fill the content
also. Instead of

 /// <summary>
 ///
 /// </summary>

the helper methods also create the summary description (example for a constructor
documentation comment):

 /// <summary>
 /// Initializes a new instance
 /// of the <see cref="MyClass"/> class.
 /// </summary>

The actual content depends on the type of code element being commented and is usually
based on the code element's name.

• Miscellaneous (Helpers.cs)

This source file contains helper methods with no explicit categorization. There are
currently two public methods implemented in this file – one for analyzing symbol
inheritance (IsDerivedFrom) and one for analyzing the type of exception thrown by
a throw statement (GetExceptionType). The first method uses Roslyn's Symbol
API to walk the inheritance hierarchy and matching the target type name. The second
method uses the Syntax Node API to find the exception declaration and return the
exception's type name.

• Member positioning (Positioning.cs)

Positions of members within structs and classes should follow certain basic guidelines
to improve code readability. The FindPosition method returns the appropriate
position for a code element. The order of precedence of code elements used in this
method is as follows: fields, enums, constructors, event fields, events, properties,
methods, classes, structs.

Implementation

33

• Member injector (MemberInjector.cs)

The member injector implementation (InsertDeclaration method) serves to
insert new code elements into classes and structs at their appropriate positions. It uses
the member positioning helper methods to find the proper position for the element
being inserted and inserts it at that position using the Syntax Node API.

• Naming (Naming.cs)

There are several helper methods for analyzing and manipulating code element names
implemented in this source file. They mostly deal with proper casing (PascalCase and
camelCase) and are used for stylistic validation in code style diagnostics. However, to
manipulate casing, names must first be split into words they consist of. Example:

Names _my_class and MyClass both consist of the same words “my” and “class”
but their form is different. The helper methods implemented in Naming.cs attept to
parse the actual words out of the original string. This parsing is done by iterating over
the original string and splitting it in meaningless characters (e.g. “_”) and character
case change (e.g. when the “C” is encountered in MyClass).

Numbers within strings are not considered word breaking and are evaluated as part of
the previous word: MyClass3 is parsed into “My” and “Class3”.

After the original string is partitioned into words, the case-manipulating methods then
work on these words by changing the case of the words: PascalCase to MyClass and
camelCase to myClass.

For the full list of implemented methods and details about their operation see the
programmer's documentation.

• Property manipulation (Properties.cs)

This file implements the code necessary to analyze declared properties
(IsAutoProperty, HasGetter, HasSetter, FindGetter, FindSetter)
and transform them (ExpandAutoProperty). These methods are implemented
using Roslyn's Syntax Node API and work by analyzing the property declaration syntax
tree.

These methods are used from code diagnostics, fixes, and refactorings.

• Inserting usings (UsingDeclarations.cs)

Inserting using directives (not to be confused with using statements) is performed
using the Syntax Node API. Usings already present in the code file are collected and
new using directives are added.

The InsertUsings method also automatically puts the usings inside the namespace
declaration they belong to and sorts them by name, as recommended by the C# code
style guidelines.

This list of helper methods implemented in the platform abstraction reflects the current
state of implmentation. Future work might see more methods added to the list as the need
for them arises.

Implementation

34

Most of the public methods contained in the abstraction layer are implemented as
extension methods. This makes their invocation much more convenient and mimics the
behavior of certain Roslyn APIs. Consider the folowing code:

 if (property.IsAutoProperty())
 {
 ...
 }

This way of invocation is more fluent and its meaning slightly more obvious than the
standard static invocation:

 if (Properties.IsAutoProperty(property))
 {
 ...
 }

This thesis uses extension methods wherever possible, to make the code using these
methods more readable.

Code emission

The platform services project implements extensive facilities for
simplifying code emission. These facilities are located in the
ProjectLuna.PlatformServices.Synthesis namespace.

Emission of all the standard code elements is supported: namesapces, classes, structs,
fields, properties, and attributes. It is also possible to emit if, using, and foreach
statements. The API implemented in this project is not comprehensive–it focuses mainly
of performing the basic code emission tasks and there might be situations where a desired
code cannot be emitted by it (e.g. emitting throw statements is not supported). In such
a case the standard Roslyn APIs are used.

It is also important to note that the code emission API was designed and implemented
relatively late in the implementation process, therefore not many code transformations
use it. It was designed more for use from plugins.

Code emission using the platform services APIs starts with the Luna class and uses fluent
form.

As an example, the following code emits a simple field declaration:

 var field =
 Luna.Field("test")
 .Public()
 .Type("int")
 .ToNode();

The resulting code element from such a call would look like this:

 public int test;

Implementation

35

The fluency of the API is achieved by passing a context between the API calls. This
context accumulates information about the requested operations and the actual code
element is only created at the end of the call chain, when all the necessary information
is known. In the example above, a FieldContext class is instantiated by the call
to Luna.Field(...). The FieldContext contains methods that manipulate its
state, such as the Public method, which modifies the context's state to indicate that
the resulting field should be public. The final ToNode call then takes the state of the
context and constructs a new FieldDeclarationSyntax node that can be further
consumed by Roslyn.

Emission of every code element is achieved using the same approach, but the capabilities
of different emission contexts might differ, depending on the code element they emit. It
is also worth noting that the constructors of the emission context classes are internal
to force users to use the Luna class to access the emission API. This requirement is in
place mainly to prevent users from potentially misuing the emission API.

Testing facilities

The abstraction layer also implements classes and methods that help with
testing of code diagnostics, fixes, and refactorings. These were implemented in
response to this toolset's need for debugging and verifying the behavior of
the implemented code transformations. The testing facilities are located in the
ProjectLuna.PlatformServices.Testing namespace.

The AnalyzerTestBase class is used to simplify instantiation of the code
analytic and fix that are being tested. Both analytics and fixes tend to have
long class names (e.g. CommentsMustBeginWithWhitespaceAnalyzer) and
writing new MyAwesomeLongAnalyzerName became bothersome fast. The
AnalyzerTestBase contains two properties that instantiate the diagnostic and code
fix respectively and then hold the instances for later use. Instead of calling

 var analyzer =
 new CommentsMustBeginWithWhitespaceAnalyzer();

it is possible to use the folloing code:

 this.Analyzer

Both the Analyzer and Fix properties are lazy, meaning they are initialized at their
first usage, not with the class constructor. All the test classes in the Diagnostics.Test
project inherit from this class.

The CodeAnalyzerTesting class implements extension methods that make testing
code diagnostics easier. There are methods that simplify test project creation (test project
means a “code base” against which the diagnostic is run and tested), verification of
diagnostic result, application of code fixes, and verification of the fix. Using the helper
methods implemented in this class, unit tests for code diagnostics are written like this:

Implementation

36

 const string Code = "(SOURCE CODE)";
 Code.Project()
 .VerifyDiagnosticsCount(this.Analyzer, 1)
 .Doc(0)
 .Fixed(this.Analyzer, this.Fix)
 .Verify(
 document => { (VERIFICATION) });

This code again resembles a fluent syntax, this time achieved by using extension methods
on existing Roslyn classes (such as Document). It is worth noting that not all the
diagnostic tests are written in this form. This is caused by the fact that some tests are older
than the testing API and were therefore written using only the base Roslyn facilities. The
most interesting parts in this call chain are execution of a code diagnostic and application
of a code fix.

To achieve the desired effect, the implementation mimics the behavior of the Roslyn code
analysis engine – at the beginning, diagnostics are computed over the provided code file
using the AnalyzerDriver Roslyn class. Results (diagnosed issues) are collected and
ordered by their position in the code file (this is performed by the GetDiagnostics
method).

After diagnostics are computed, corresponding fixes are applied. The API creates a
CodeFixContext and passes it to the provided code fix class. Results of the code fix
operation are accumulated and applied to the code file being analyzed. This is performed
by the Fixed method.

Helpers that simplify testing of refactorings follow very similar concepts. The
RefactoringTestBase class fulfills the same role for refactorings as the
AnalyzerTestBase does for code diagnostics – it simplifies instantiation and
improves readability by hiding the long class names behind a property called
Refactoring.

The RefactoringTesting is analogous in purpose to the
CodeAnalyzerTesting class. It makes writing unit tests for refactorings easier by
providing extension methods that allow writing of the following test code:

const string Code = "(SOURCE CODE)";
Code.Doc()
 .Context(node => (SELECTOR))
 .GetRefactorings(this.Refactoring)
 .VerifyActionCount(1)
 .Fix()
 .Verify(solution => (VERIFICATION));

The tested refactoring is executed by the test in a way similar to what Roslyn does in
Visual Studio. A refactoring context is created in the Context method. The tested
refactoring is then executed against this context and the results are collected. The
VerifyActionCount method verifies that the number of available refactorings
corresponds to what is expected. Subsequently, the refactoring is applied to the code file.

Implementation

37

This is where is was necessary to slightly bend the rules of the Roslyn
APIs – the method required to access the post-refactoring code file
(CodeAction.GetChangedSolutionAsync method) is declared internal in
the Roslyn version this thesis uses, preventing the test framework from actually seeing
the result of the refactoring. The Fix method therefore uses reflection to invoke the
necessary methods, bypassing the internal access modifier entirely. This is a very
fragile concept and it might easily break with the next version of Roslyn, but it works for
now. Alternative solution will be implemented in case of problems.

After the fix is applied, verification of the refactored code occurs in the Verify method.

3.5. Settings composition
The Settings.Composition is a Portable Class Library storing the interfaces and classes
necessary to access the settings manager. Its portability allows the implemented code to
be accessed from both code transformations (which are portable) and the settings manager
(which is non-portable).

The ISettingsProvider interface is used to abstract the actual non-portable settings
manager for use in portable classes. Since this interface is declared in a portable library,
even portable code can use it. By using the dependency injection process described in
Section 2.5, “Settings”, the non-portable settings manager implementing this interface is
injected into the portable classes as a dependency. This effectively bypasses the limitation
that portable code cannot call non-portable code.

The ServiceContainer class serves as a replacement for dependency injection
where DI is not available (code diagnostics). It is a very simple container class that
stores references to “services”. The settings manager registers itself in this container when
settings are first loaded and code diagnostics that require access to this settings manager
retrieve the settings manager instance from it. The ServiceContainer is portable
and static and all services registered within are singletons.

3.6. Settings
The Settings project implements the core of the settings manager. This project is non-
portable and builds upon the Settings.Composition project by using its classes and
interfaces.

Settings are stored as XML files and accessed using LINQ-to-XML technology. The
SettingsSubsystem class is reponsible for loading and storing the settings files.
Settings files are also implemented as hierarchical – the manager walks the folder
structure from root to the currently loaded solution folder and looks for settings files. The
discovered files are then merged into a single XML document from the inside out – the
settings “furthest” from the solution folder have the lowest priority, the settings “closest”
to it override any settings that were declared in the files further up the folder tree.

Settings are internally divided into “sections”, which serve to group related settings
and provide a more granular ways to access them. Sections are identified by GUIDs to
minimize the chance of collision.

The SettingsProvider class is responsible for reading the loaded XML
settings file and parsing the settings into an object model. It also implements the

Implementation

38

ISettingsProvider from the Settings.Composition project. This class is marked
as a MEF export and participates in dependency injection, hidden behind the interface.
Instances of this class are injected into portable classes that require access to the settings
manager and are also registered in the ServiceContainer class mentioned above.
By hiding behind a portable interface this class serves to distribute settings to where they
are needed.

The ISettingsEditor interface is used to identify classes that serve as settings
editors. Settings editors are discovered using MEF composition by the Settings
window and displayed to the user. The core toolset implements this interface in the
GlobalEditor class which serves as an editor for the core implementation's settings.

3.7. Visual Studio commands

The Commands project is responsible for extending the Visual Studio user interface with
elements that allow the user to interact with the implemented toolset. This currently means
providing a single menu item to open the settings window. The constructor of the main
class is called when a solution is loaded in the IDE and is therefore also responsible for
initializing and release of the settings manager.

This project was created using the Visual Studio Package project template with support
for commands, which generated a basic skeleton code for adding new commands to the
Visual Studio IDE.

There are three important aspects to this project: command definition, command
registration, and the settings window.

Command definition

Command definitions specify the visual aspect of commands – where the
IDE should display them and how the commands look (text, tooltip, icon
etc.). Commands definitions are created using XML and are located in the
ProjectLuna.2015.Commands.vsct file.

Visual Studio commands are organized into groups, therefore the VSCT file defines a
new command group:

<Group
 guid="guidProjectLuna_2015_CommandsCmdSet"
 id="MyMenuGroup"
 priority="0x0600">
 <Parent
 guid="guidSHLMainMenu"
 id="IDM_VS_MENU_TOOLS"/>
</Group>

The definition specifies the group's GUID, ID, and priority within the parent menu. By
providing the Parent element, it is also requested that the group be displayed as part of
the “Tools” Visual Studio menu. The “Settings” menu item is defined as a button in the
aforementioned group.

Implementation

39

Command registration

Defining the necessary XML elements allows Visual Studio to discover the commands
but they don't define the menu's behavior when activated (clicked). This is perfromed
in the ProjectLuna.2015.CommandsPackage.cs file, in the Initialize
method by retrieving the IDE's command service and registering the menu item with it.

A method callback is specified in this registration and is invoked when the user activates
the command. This method constucts and displays the settings window used to view and
edit settings for the implemented toolset and its plugins.

Settings window

This window is used to manage the available settings both for the core toolset and third-
party plugins. This window is displayed to the user by clicking a command registered
into the Tools menu (discussed above).

The window is a standard WPF window that uses bindings and templates to render
its user interface (the standard MVVM pattern is employed). The main feature of the
window is the ability to discover all the individual settings pages belonging to the core
implementation and plugins and display them. This is performed by using the Visual
Studio's composition service:

 var componentModel =
 Package.GetGlobalService(typeof(SComponentModel))
 as IComponentModel;
 this.editors =
 componentModel.GetExtensions<ISettingsEditor>();

The discovered ISettingsEditor instances are then stored in a backing field of the
Editors property and displayed in the window's user interface through binding and
templating.

This window's Save button uses the settings manager API to save the current settings
by calling the SettingsSubsystem.SaveSettings method.

3.8. Navigation pane

The CodeMapPane project implements the code navigation pane that extends the code
editor with the ability to easily navigate between code members by clicking. This is a
Visual Studio Package project (VSIX) that integrates with the Visual Studio code editor
using the VSP API.

This integration is achieved by implementing a custom editor adornment. This adornment
is capable of drawing WPF controls over the code editor surface, displaying the
navigation pane. The adornment is instantiated by a custom factory class implementing
the IWpfTextViewCreationListener. This interface's TextViewCreated
method is called by the IDE whenever a code editor window is being opened. The factory
creates a new code map pane and attaches it to the code editor in this method.

The CodeMapPane class represents the adornment itself. This class is responsible for
instantiating the WPF user control containing the code map's user interface and drawing

Implementation

40

it over the code editor. This includes any potential repositioning resulting from window
resize and similar events.

The NavigationPane user control implements the user interface for the code pane
that is displayed to the user. It's a standard WPF user control that uses MVVM (model-
view-viewmodel) pattern to display information and interact with the “business logic”
of the code map pane. The actual logic responsible for scanning the source code file for
changes is implemented in the NavigationPaneViewModel class.

This class is instantiated by the CodeMapPane class and passed to the user control as
its DataContext. It implements the INotifyPropertyChanged which allows it
to inform the view (user control) that a change has happenend in one of its properties,
enforcing the view to redraw its user interface to reflect the change.

The viewmodel also hooks the Changed event of the text buffer belonging to the code
editor the code map is attached to. This allows the code map to react to changes in
the edited source code by calling the Roslyn APIs and parsing the content of the file.
Signifficant syntax nodes (namespaces, classes, properties etc.) are selected from the file,
transformed from the relatively heavy Roslyn objects into lightweight object model, and
stored in a property. Upon change, this property notifies the user control that its value has
changed and the user interface is redrawn to reflect the modified code.

It is important to note that the code map does not use the native Roslyn instance present
in Visual Studio to parse the code, instead it references the Roslyn libraries and calls the
syntax parser directly (this behavior is explained in more depth in Section 2.6, “Code
navigation”):

 var tree = CSharpSyntaxTree.ParseText(...);

The analysis of code members is then performed on the resulting syntax tree.

3.9. Main installation package
The main installation package is a Visual Studio Package project used to bundle all the
other components of the implementation into a single installation file. This package file
can subsequently be used to install the implemented toolset into a supported version of
Visual Studio.

This project does not contain any code, everything is configured using the package's
manifest file (source.extension.vsixmanifest) located in the project root.

The manifest file declares six “assets” (an asset is basically an external component that
should be included in the package)–four VS packages containing the implementation
components (diagnostics, refactorings, commands, and code map) and two MEF
component declarations (settings manager and base classes). This MEF declaration is
important to ensure that the components participate in dependency injection using the
Visual Studio MEF framework (discussed in Section 2.2, “Integrating with Visual Studio
and Roslyn” and Section 2.5, “Settings”).

3.10. Code diagnostics package
Code diagnostics package is a Visual Studio Package project responsible for installing
the code diagnostics and fixes. This project, just like the main package, does not contain

Implementation

41

any code. It's manifest file (source.extension.vsixmanifest) is configured to
include the output of the Diagnostics project both as an asset and as a MEF component
to ensure its participation in dependency injection.

This package is not installed directly, its part of the main installation package which is
also responsible for installing it.

3.11. Code refactorings package
Code refactoring package is a Visual Studio Package project responsible for installing the
implemented code refactorings. This project, just like the main package, does not contain
any code. It's manifest file (source.extension.vsixmanifest) is configured to
include the output of the Refactorings project both as an asset and as a MEF component
to ensure its participation in dependency injection.

This package is not installed directly, its part of the main installation package which is
also responsible for installing it.

3.12. Diagnostics unit tests
The project Diagnostics.Test contains unit tests for the implemented diagnostics. These
tests were used during development to make sure the code behaves as expected without
the need to run a debugging instance of Visual Studio. This project references both the
platform abstraction project and the settings manager.

The tests are written for the MS Test testing framework which is a native part of
Visual Studio and they make use of custom-built testing facilities implemented in the
platform abstraction layer. This mainly means that the unit tests classes inherit from
the AnalyzerTestBase class which simplifies access to the tested code diagnostic
and fix and several helper methods that simplify creation of a test code base, executing
the diagnostic, and applying the code fix for analysis (these are discussed in detail in
Section 3.4, “Platform abstraction”).

The tests implemented in this project are far from comprehensive. Due to time constraints
it was not possible to dedicate enough time to test development to allow for optimal test
coverage of the implemented code. Therefore the tests mainly illustrate the concept of
testing code diagnostics and fixes and the use of the custom testing facilities and serve
as a base for future work.

3.13. Refactorings unit tests
Unit tests for the implemented code refactorings are located in the Refactorings.Test
project. This project also references the platform abstraction project to access the custom-
built testing facilities implemented in it.

Refactoring unit tests are written for the MS Test testing framework and make extensinve
use of custom testing facilites implemented in the platform abstraction later. All
refactoring tests inherit from the RefactoringTestBase class which simplifies the
process of instantiating the tested refactoring class.

The tests themselves then work by first creating test code base from strings, running the
refactorings on this test code base, and verifying the analysis result. If the analysis result

Implementation

42

is correct, refactoring transformation is applied and the result of this transformation is
verified. APIs implemented in the platform abstraction layer are used for all of these steps
and will are discusses more in Section 3.4, “Platform abstraction”.

Time constraints did not allow to cover all the implemented refactoring code with tests
but the existing tests serve as a viable proof of concept and base for future work.

3.14. Platform services unit tests

The PlatformServices.Test project contains unit tests targeting the PlatformServices
project. The implemented tests are writtent for the MS Test testing framework and focus
on testing the code emission API. The tests rely only on the testing facilities provided by
the test framework (Assert.IsNotNull etc.), there are no custom testing facilities
used in these tests.

Time constraints did not allow for extensive test coverage of the PlatformServices project
and so this project remains open for future work.

43

4. Comparison with similar
applications

This chapter discusses application functionally similar to the toolset implemented as part
of this thesis, how they differ from it, and how this thesis addresses their shortcomings.

4.1. JetBrains ReSharper + StyleCop

ReSharper by JetBrains is probably the most widely-used “productivity tool” for Visual
Studio on the planet. It implements a large number of advanced refactorings and code
transformations and supports additional languages and frameworks, such as XAML,
Visual Basic.NET, and TypeScript. ReSharper also supports extensibility using plugins.

However, these extensive features come at a price: ReSharper is rather expensive (costing
approximately 150€) and its many features consume a lot of system resources, slowing
down the IDE noticeably.

How this thesis differs

The toolset implemented in this thesis is nowhere near ReSharper, feature-wise. The
number of implemented code transformations is very small in comparison and this toolset
only support the C# language.

However, ReSharper contains very limited abilities when it comes to validating code
style. This feature has been long supported by installing the StyleCop extension (which
integrated with ReSharper), but since StyleCop has been discontinued, this is no longer
an option. The code style validations currently implemented in this thesis focus on the
most important aspects of code style, but this could easily be extended to rival (or even
surpass) StyleCop's abilities.

This toolset also shows better performance characteristics than ReSharper. Solution
load with the toolset installed feels approximately as fast as it was before the toolset's
installation. Code diagnostics are running smoothly and don't hinder the user's workflow,
there is virtually no lag involved. Comapred to ReSharper, the toolset's operation feels
much smoother.

The last point of comparison is price – this toolset, if it ever becomes publicly available,
builds upon open-source technologies and frameworks and would be also available as an
open-source project, making it freely available to anyone. This makes the toolset much
more accessible to users.

4.2. DevExpress CodeRush

CodeRush is a direct competitor to ReSharper, with similar features, except CodeRush
is more focused on manipulating C# and VB.NET code, there is no support for XAML,
HTML, JavaScript or other technologies that ReSharper supports.

However, CodeRush's main focus is code refactoring, there is very little ability to check
or improve code style. On this front, CodeRush looks even less capable than ReSharper

Comparison with similar applications

44

because StyleCop was never available as a CodeRush plugin. CodeRush's performance
seems to be slightly better than ReSharper's.

CodeRush's price-tag is even heavier than ReSharper's – at $250 (or 234€) for a single
license only professional software developers might even consider purchasing it.

How this thesis differs

CodeRush implements a much more comprehensive set of refactorings than the
implemented toolset. However, CodeRush's lack of code style checking capabilities (such
as monitoring documentation comments) still makes the implemented toolset useful, even
used id tandem with CodeRush.

Performance-wise, usage of Roslyn and smaller size give the implemented toolset a
noticeable advantage. Since this toolset does not require any code base preprocessing
(CodeRush does), the solution load times are virtually unaffected by the toolset's
installation.

4.3. Conclusion

After evaluating the two most popular coding productivity tools available for Visual
Studio, it is obvious that they both offer a much broader spectrum of features than what
is implemented in this thesis. However, both of these tools cost a rather large amount of
money and have noticable performance impact on the host IDE. Their features also lack
the focus on code style validation.

The implemented solution offers a smaller set of features, but these features are focused
mainly on managing code style and providing several other code transformation that the
paid tools omit. This implementation's integration with the Roslyn technology makes it
unique among the evaluated tools and translates to lessened performance degradation.

Overall, the implemented toolset's price (free), focus on areas where existing tools fall
short (code style), and minimal performance overhead make this tool a viable addition to
other, more established code refactoring and productivity tools.

45

5. Conclusion
5.1. Fulfillment of thesis goals

This thesis' original aim was to implement a toolset that would provide code style
validation, refactoring, and improved code navigation for C# code. This toolset was
supposed to integrate seamlesly with Visual Studio without hindering performance and
allow its abilities to be extended using third-party plugins.

After evaluating the final implementation result and comparing it with similar
applications, it is safe to say that the goals have been met to an acceptable degree.
The implemented toolset allows powerful C# code analysis and manipulation using a
new technology directly from Microsoft and implements 24 code style checks and 16
refactorings. The implemented code map enables the user to easily navigate among
various member declarations in a file with a single click and responds in timely fashion
to changes in the code file.

The Visual Studio integration has been achieved and its performance impact is very
low, compared to alternative tools. The plugin architecture, while partially relying on
Visual Studio's native capabilities, allows third-party plugins to make use of implemented
services and integrate with the toolset's settings manager.

5.2. Future development

The implementation of this thesis' toolset fulfills the thesis goals, but is far from finished.
There are several areas where future work should focus in order to improve capabilities
and bring the implementation closed to a publicly releasable state:

• Code style rules and refactorings

The currently implemented code style validation rules only cover a small part of what
the C# code style guide proposes. This coverage should be improved by implementing
additional rules and related fixes. New refactorings could also be introduced to help
improve productivity.

• Improvements to platform services

The platform service library should also be extended to cover a larger portion of the
Roslyn APIs, thus simplifying their usage. Areas such as manipulating method bodies
and arguments, analyzing LINQ expressions, and support for C# 6.0 features should
be implemented.

• User interface

The user interface for the settings manager and code pane is usable, but it could be
improved upon to provide better experience for the suer. This includes support for
different color schemes (or “themes”) supported by Visual Studio and introduction of
icons and images instead of text to make orientation easier.

Conclusion

46

• Stability improvements and bugfixes

While the current implementation tries to be as defensive as possible when it comes to
various edge cases in the source code file, it is difficult to predict all the scenarios where
a code manipulation might fail. Future work should invest more effort into testing and
verification to provide the best possible stability of the toolset.

47

Appendix A. User Manual
This chapter covers the installation and basic operation of the implemented toolset from
the end user's point of view.

A.1. Installation

System requirements

• Operating system: Windows 7 SP1 or newer, both x86 and x64 based

• .NET Framework version: 4.6 preview

• Hard drive space: 25 MB

• Additional software: Visual Studio 2015 Preview or newer

Installation process

The Visual Studio Refactoring and Code Style Management Toolset is distributed
in the form of a Visual Studio Package file. This package is called
ProjectLuna.2015.Package.vsix and supports automatic installation into
Visual Studio 2015 Preview or newer. Unfortunately, the VSIX package only supports
installation into the main Visual Studio settings hive, which has Roslyn disabled,
rendering the whole toolset inoperable. This behavior should be corrected with the release
of the final version of VS 2015, for which the VSIX package should behave correctly.

To install the toolset into the “Roslyn” settings hive which has Roslyn enabled by default,
follow these steps:

1. Make sure that Visual Studio has been run with the necessary root suffix at least once.
This is necessary because it creates the folder structure required by the next steps of
the installation process. If you are not sure, simply run the following command line
command (devenv.exe is the main Visual Studio 2015 executable):

devenv.exe /rootsuffix Roslyn

After the IDE starts, close it again and proceed to the next step.

2. Find the Installation.zip attachment and navigate to the extensions folder for
the Roslyn root suffix instance. This folder is usually located on the following path:

C:\Users\[user]\AppData\Local\Microsoft\VisualStudio
\14.0Roslyn\Extensions\

3. Extract the Installation.zip into this folder. It should create a Marek Linka
folder containing the actual distribution files.

4. To make Visual Studio “notice” the installed packages, navigate to the following path:

[VS2015 installation path]\Common7\IDE\Extensions

User Manual

48

Open the extensions.configurationchanged file located in this folder in
any text editor and save it – it is only necessary to change the file's edit timestamp.
This will force Visual Studio to refresh its extension cache upon next start.

Performing these steps should ensure that the toolset is properly installed and registered
in the Roslyn-enabled instance of Visual Studio. To check this, simply run devenv.exe /
rootsuffix Roslyn and bring up the Extensions window. Figure A.1 shows the Extensions
window with the installed components.

Figure A.1. Post-installation Extension manager

The installation process might leave the toolset's components installed but disabled, in
which case simply manually enable them and restart the IDE (don't forget the “Roslyn”
root suffix).

The installation process is rather complicated due to the fact that VS 2015 is currently
still a preview and that Roslyn is only enabled by a special root suffix. Once the IDE is
released in final form, Roslyn will be enabled by default and the installation will only
rely on the VSIX package, no manual configuration will be necessary.

Uninstallation of the toolset is possible using the Extensions window in a standard way.

A.2. Usage

Performing code transformations

Once the installation process is complete, the implemented diagnostics and facilities
should be available in any C# code. Code diagnostics are executed as the user types,
highlighting any discovered issues immediately using “squiggly lines”, illustrated in
Figure A.2.

Figure A.2. Code breaking a stylistic rule

User Manual

49

Placing the caret into the highlighted text brings up a context-sensitive icon at the left side
of the code editor. Clicking this icon brings up additional information about the diagnosed
issue, including the ability to perform a fix. Figure A.3 shows an example of the user
interface rendered for this task.

Figure A.3. Application of a code fix (including a preview of the proposed change)

Applying a fix subsequently transforms the code. It is possible to revert the transformation
by the Undo command (bound to Ctrl+Z by default).

Code refactorings are not evaluated automatically by the IDE, it is necessary to trigger
them manually. This action is available from the code editor's context menu (shown in
Figure A.4) and is also bound to a keyboard shortcut (Ctrl+. by default):

Figure A.4. Quick actions context menu item

Opening the quick fix menu will bring up the context sensitive menu at the left side of
the code editor. This menu will be populated with the currently available code actions,
including refactorings. The UI for applying a code refactoring is shown in Figure A.5:

Figure A.5. Application of a refactoring fix
(including a preview of the proposed change)

Clicking the refactoring will perform the transformation (as demonstrated in the preview
pane). This action is revertable by using the Undo command.

User Manual

50

Code map

The code map is automatically displayed at the right side of the code editor window.
Figure A.6 shows the code map's UI.

Figure A.6. The code map

The code map reflects declared members of the code file, including namespaces, classes,
properties, constructors, and methods (including their signatures). These declarations are
displayed hierarchivaly to reflect their nesting and parents can be collapsed to save space.
The header of the code map is clickable and doing so hides the entire code map from
view, as illustrated by Figure A.7.

Figure A.7. Code map in collapsed state

Clicking the header again will expand the code map back into full view.

Managing settings

The toolset's settings are accessed using the Project Luna Settings menu item located in
the Tools menu, as shown in Figure A.8.

Figure A.8. Settings menu item

Clicking this menu item brings up the settings manager window, shown in Figure A.9.

Figure A.9. The settings window

User Manual

51

The left side of the window displays all the available setting sections. Sections are used to
organize settings into smaller groups by their focus to simplify orientation. Plugins might
also declare their own sections, in which case these sections would also be displayed in
the left pane of the window.

The main part of the window displays the settings available in the selected section.
Clicking the Save button saves the current setting values. Closing the window without
clicking the Save button discards all changes.

A.3. Implemented code transformations

A.3.1. Diagnostics

There are currently 24 code style diagnostic rules whose validation is supported by
the toolset. These are divided into four categories: naming, comments, layout, and
miscellaneous.

Naming

Diagnostic rules in the naming category analyze that code elements' names follow the
casing specified in the settings (camelCase, PascalCase). The following code elements'
names are checked:

• Constant fields (default camelCase)

• Constant local variables (default PascalCase)

• Events (default PascalCase)

• Non-constant fields (default PascalCase)

• Methods (default PascalCase)

• Method parameters (default camelCase)

• Properties (default PascalCase)

• Types (default PascalCase)

• Non-constatnt local variables (default camelCase)

Layout

The diagnostics in the layout category monitor block language constructs for missing
braces and display a warning when braces are missing. Example:

User Manual

52

 // the following
 if (true)
 return;

 // should look like this
 if (true)
 {
 return;
 }

The following language constructs are validated:

• if statements

• using statements

• for statements

• foreach statements

Comments

Diagnostics in the comments category monitor the presence of documentation comments
on code member declarations and the layout used for single-line comments. Example:

 // missing documentation comment
 private void Example()
 {
 }

 // invalid comment layout (missing space after //)
 //this is an invalid comment layout

The following code constructs are checked for documentation comments:

• Enum members

• Events

• Exceptions explicitly thrown by methods

• Fields

• Methods

• Properties

• Types

Additionally, single-line comments are checked against the following rules:

• Comment must be separated from the leading // by white space

• Comment must be preceded by an empty line

User Manual

53

• Comment must not be followed by an empty line

Miscellaneous

The miscellaneous category contains two validations:

• Source file must have a file header

• Fields must be declared as private

A.3.2. Refactorings

The toolset implements 16 refactorings:

• Convert auto-property to a property with backing field

• Convert a property with backing field to auto-property

• Convert a class into a data contract, including property annotation with
[DataMember] attributes

• Convert a class to exception, including necessary constructor declarations

• Implement INotifyPropertyChanged interface for a class

• Change access modifier (e.g. private to internal etc.)

• Check method argument for null

• Check variable for null

• Move class to a separate source file

• Organize using declarations

• Propend this to local member access calls

• Add change notification to a property

• Rename source file to match class name

• Split declaration and assignment

• Convert string concatenation to a call to string.Format

• Explicit to implicit type declaration (e.g. int i; to var i;)

54

Appendix B. Plugin Development
Guide

This appendix summarizes the process of creating a new plugin that integrates with this
thesis and supplies an enirely new code style diagnostic.

B.1. Prerequisites

Before starting the actual plugin development, it is first necessary to install and configure
the necessary tools. Plugin development relies on the following:

• Visual Studio 2015 Preview or newer

Microsoft Roslyn is only available in VS 2015, therefore plugin development must be
done within this pre-release version of the IDE.

• Corresponding Visual Studio 2015 SDK

Development for Roslyn requires the VS SDK to be present on the development
machine. The SDK version should correspond to the installed version of Visual Studio
2015.

• Roslyn SDK Project Templates

The Roslyn project templates simplify the development of Roslyn-enabled VSIX
packages. Installing these templates is strongly recommended to make development
easier.

Additional information about the steps necessary to install and configure the
aforementioned tools, together with download links, can be found at Roslyn's GitHub
page [10].

B.2. Developing a plugin

The diagnostic

The first step in creating a Roslyn code diagnostic is to create a new solution and add a
new project based on the “Diagnostic with Code Fix” project template. This template is
installed as part of the Roslyn SDK project template and resides in the “Extensibility”
category of the New Project window, shown in Figure B.1.

Plugin Development Guide

55

Figure B.1. New Diagnostic with Code Fix project

Creating a new project from this template will automatically create a solution containing
several projects: the diagnostic implementation, unit test project for the implementation,
and a VSIX package project. The unit test project contains skeleton code for creating tests
for the implemented code diagnostic and the VSIX project is simply used to create an
installable package from the diagnostic.

The core implementation of a plugin lies in the main diagnostics project (its name depends
on the name specified when creating the project). This project also contains skeleton
code with a simple code diagnostic (DiagnosticAnalyzer.cs). This example code
scans types declared in a code file and reports a warning whenever a type name is not all
uppercase. This is, of course, a rather primitive and useless diagnostic, but it serves as a
very simple example of how to use the Roslyn APIs.

This guide will reimplement the skeleton code to scan declared classes for properties
and report a warning when the number of properties in a class is odd. As a fix,
the diagnostic will declare a new property in the affected class, making the number
even. Such a diagnostic is utterly useless in a production environment, but it will serve
as a complex example for using the Roslyn API in combination with facilities provided
by the toolset implemented in this thesis. The plugin will also feature a setting to turn
the diagnostic on and off.

The provided skeleton code diagnostic inherits from the DiagnosticAnalyzer class.
The base class declares two abstract members, as shown in Figure B.2.

Plugin Development Guide

56

Figure B.2. Diagnostic inheritance

Both the abstract members are already overriden. The SupportedDiagnostics
returns a descriptor for the diagnostic that is consumed by the Roslyn runtime when
executing the diagnostic. The Initialize method serves to tell the runtime what kind
of analysis the diagnostic performs.

There are also several fields declared in the class, containing information about the
diagnostic used by the SupportedDiagnostics property. Let's change these fields
to reflect accurate information about the new diagnostic:

 string DiagnosticId = "EvenOddAnalyzer";
 string Title =
 "Type must have an even number of properties";
 string MessageFormat =
 "Type name '{0}' contains odd number of properties.";
 string Category = "Demo";

The DiagnosticId field contains the diagnostic's ID. This value is used to uniquely
identify the diagnostic at runtime and to find a code fix that corresponds to the diagnostic.
It should remain public so it can be accessed from other assemblies, if necessary. The
Title field stores the title displayed in the UI when presenting the diagnostic's result.
The MessageFormat field contains the formatting string used to create the main
message describing the diagnosed issue. The Category simply serves to group related
diagnostics in the UI for better orientation.

After setting the diagnostic's information, the next step is to implement the Initialize
method. This method receives a parameter of type AnalysisContext that can be used
to register analysis actions that the runtime should perform. The demo diagnostic will
scan types for properties, therefore it's necessary to tell the Roslyn runtime to run analysis
on types:

Plugin Development Guide

57

 context.RegisterSymbolAction(
 Analyze,
 SymbolKind.NamedType);

The RegisterSymbolAction method tells the runtime that the specified method
(Analyze) should be called on any symbol that represents a named type (classes,
structs). There are other Register methods with similar signatures that can be used to
register analysis on different entities – syntax nodes, trivia (comments, whitespace etc.),
semantic model, and more.

The final step to implementing a diagnostic is to implement the Analyze method. This
method receives an argument of type SymbolAnalysisContext (named context)
that contains all the information about the encountered symbol (in this case, a named type
symbol). The diagnostic must take this symbol and find the properties declared within:

 var t = (INamedTypeSymbol)context.Symbol;

 var properties =
 t.DeclaringSyntaxReferences[0]
 .GetSyntax()
 .ChildNodes()
 .OfType<PropertyDeclarationSyntax>()
 .Count();

 if (properties % 2 != 0)
 {
 var diagnostic =
 Diagnostic.Create(Rule, t.Locations[0], t.Name);
 context.ReportDiagnostic(diagnostic);
 }

This code first converts the generic Symbol instance provided by the context
argument to the INamedTypeSymbol interface. The second line of code counts the
number of properties declared in the type. It does this by first finding the syntax node
declaring the type and then finding its PropertyDeclarationSyntax child nodes.

Finally, if the number of declared properties is odd, the code reports a warning using the
ReportDiagnostic method. When this diagnositc is executed, the runtime will pass
any encountered named type symbols to the Analyze method and if this method reports
a problem, display a “squiggly line” to indicate a problem, illustrated in Figure B.3.

Figure B.3. A diagnosed code style issue

It is worth noting that the code diagnostic does not use any facilities provided by the
implemented toolset, it only uses the standard Roslyn APIs. This is caused by the fact
that Roslyn APIs for reading code and traversing syntax trees are rather well designed
and simple to use. Therefore the core toolset provides no custom API for this task, as it
was deemed unnecessary.

Plugin Development Guide

58

The code fix

Code diagnostics may have fixes associated with the problems they diagnose. In context
of the implemented example diagnostic, the code should take a class with odd number
of properties and declare a new one in it, thus satisfying the diagnostic rule. The fix will
make use of the code synthesis API implemented as part of this thesis' toolset.

The project template also created a skeleton code for a code fix. This code is located in the
CodeFixProvider.cs file. The original implementation takes a problem reported
by the original diagnostic (“type name is not all uppercase”) and changes the type name
to uppercase. This walkthrough will reimplement this code fix to create a new property
instead.

Every code fix must inherit from the CodeFixProvider class. This abstract class
declares three members, as shown in Figure B.4.

Figure B.4. Code fix inheritance

The GetFixableDiagnosticIds method tells the runtime what diagnostics this fix
applies to. A single fix might apply to several different diagnostics, therefore this method
returns an array of IDs. The original implementation already specifies that the code fix
applies to the desired diagnostic so it is possible to simply leave the code as is.

The GetFixAllProvider method is used to get a batch fixer for the diagnostic. This
method is used when the user decides to fix all the diagnosed issues across the whole
code file, project, or solution. The Roslyn libraries provide a default implementation of
a batch code fixer and it is usually safe to leave the original code as is:

 public
 sealed
 override FixAllProvider GetFixAllProvider()
 {
 return WellKnownFixAllProviders.BatchFixer;
 }

However, if a special behavior is required to perform a “fix all” operation of a code fix,
it is possible to implement a custom FixAllProvider and return it from this method.

Plugin Development Guide

59

The ComputeFixesAsync method is the most important of the three. This method is
called by the Roslyn runtime to get the information about fixes available for a previously
diagnosed issue. This method receives an instance of the CodeFixContext class
(named context) as a parameter. The parameter contains all the information about the
diagnosed issue and also serves to report the available fixes. This is the method that has
to be rewritten to create a new property in the diagnosed class.

The first few lines of code in this method analyze the diagnostic and find the class
declaration syntax node:

 var root = await
 context.Document
 .GetSyntaxRootAsync(context.CancellationToken)
 .ConfigureAwait(false);

 var diagnostic = context.Diagnostics.First();
 var span = diagnostic.Location.SourceSpan;

 var declaration = root
 .FindToken(span.Start)
 .Parent
 .AncestorsAndSelf()
 .OfType<TypeDeclarationSyntax>()
 .First();

The code first retrieves the analyzed document's syntax root, then finds the span
(area of text) where the diagnosed problem occurs. The last line then finds the
TypeDeclarationSyntax node residing at the span. This is the syntax node of the
class with odd number of properties.

Registering a fix with the API is achieved using the provided context parameter:

 context.RegisterFix(
 CodeAction.Create(
 "Add property",
 c => AddProperty(context.Document, declaration, c)),
 diagnostic);

This code informs the Roslyn runtime that there is a code fix available, the fix is called
“Add property”, is performed by invoking the AddProperty method, and relates to the
diagnostic stored in the diagnostic variable.

When the runtime executes the ComputeFixesAsync method and receives a fix,
the user interface then allows the user to apply it. This is done by invoking the
AddProperty method.

In case of the example diagnostic, the AddProperty needs to create a new property
declaration in the affected class. This can be done by only using the Roslyn APIs,
but the process can be greatly simplified by using the code emission facilities
implemented in this thesis' core toolset. These facilities are implemented in the
ProjectLuna.2015.PlatformServices.dll library. To make use of them,
the project needs to reference this library.

Plugin Development Guide

60

After adding the necessary reference, the code emission API is accessible through the
ProjectLuna.PlatformServices.Synthesis.Luna class. Creating a new
property declaration using the Luna class looks like this:

 var property =
 Luna.Property("Demo")
 .Type("string")
 .Public()
 .ToNode();

The created property is called “Demo”, is of type string, has a public access
modifier, and has both its accessors (get, set) are empty. The final ToNode call creates
a syntax node that can be further used in calls to the Roslyn APIs.

The final step in fixing the odd number of properties in a class is to actually insert the
newly created property into the class. This is achieved by using the following code:

 var newType = typeDecl.InsertDeclaration(property);
 var newRoot = root.ReplaceNode(typeDecl, newType);
 var newDoc = document.WithSyntaxRoot(newRoot);

 return newDoc.Project.Solution;

The InsertDeclaration method is part of the platform services library from this
thesis. It takes a type and inserts a new member into it. The next calls then take this
modified class and create a modified document (WithSyntaxRoot). The final line of
code returns the modified code base back to the Roslyn runtime.

And that is everything that needs to be done to create a simple code fix. For detailed
information about the APIs used in the examples, see Roslyn's documentation and the
programmer's documentation of this thesis.

Using settings

The toolset implemented in this thesis also provides a unified way for plugins to store and
use settings. The final part of this walkthrough will describe the process of integrating a
plugin with this settings manager.

The first step necessary for a plugin to make use of the settings manager is to reference the
ProjectLuna.Settings.Composition.dll library. This library implements
all the necessary classes and interfaces to access the settings manager.

The settings manager uses a concept of “sections” to store settings. A section is basically
a subset of the settings set that groups relates settings. For example, a plugin must declare
its own section to store its settings. These sections are identified by GUIDs, so the plugin
first needs to generate a valid GUID and store it for later access.

Settings can be accessed from anywhere within the plugin's code base
using the ServiceContainer static class declared in the referenced
Settings.Composition library. An example:

Plugin Development Guide

61

 var settings = ServiceContainer
 .TryResolve<ISettingsProvider>();

 var isDisabled = settings
 .GetSetting<bool>(
 Helpers.SettingsSectionGuid,
 "IsDisabled");

The code first retrieves the ISettingsProvider instance used to access the settings,
then uses this instance to ask for a setting “IsDisabled” located in the section identified
by the provided GUID. The setting will be read as a boolean value. This way of accessing
settings works universally and does not require any configuration on the plugin's part.

The toolset implemented in this thesis also provides a unified user interface for viewing
and managing settings using a single window. To allow a plugin to integrate with
this settings window, the ISettingsEditor interface must be implemented in
the plugin. The settings manager uses MEF composition to discover the instances
of this interface, therefore the implementing class must also be decorated with the
[Export(typeof(ISettingsEditor))] attribute.

The interface declares two properties – called SectionName, Control – and a method
called GetSettings. The SectionName property is used to identify the setting
section to the user and it should be kept short and clear. The Control property returns
a WPF UserControl class that is rendered in the settings window and displays the UI
elements used to edit the settings in the corresponding section.

The GetSettings method is called when the user decides to save the current settings.
It must construct an instance of the Section class and fill it with current setting values.
This section is subsequently stored in the settings file by the settings manager.

Unfortunatly, the ISettingsEditor is not portable, therefore it cannot be
implemented in the same assembly as the code diagnostic. Implementing this
interface thus requires a separate, non-portable project to be added to the solution.
A simple Class Library project is sufficient. This project needs to reference
the ProjectLuna.Settings.dll library, which contains the aforementioned
interface. This project also needs to be included in the VSIX package as a MEF
component to allow its participation in MEF composition.

Implementing the necessary interface should subsequently be rather straightforward.
Please refer to the programmer's documentation for details about the required APIs.

Putting it all together

With both a diagnostic and a code fix implemented and integrating with the settings
manager, it is time to test the implementation by running it inside Visual Studio. Simply
run the solution with the VSIX project as the startup project. Doing so will start a new
instance of Visual Studio, including the Roslyn runtime, and load the content of the VSIX
package. It's improtant to note that the toolset implemented in this thesis must also be
installed for all the plugin's features to work properly.

The Visual Studio's Extension manager should properly display the plugin, similarly to
Figure B.5.

Plugin Development Guide

62

Figure B.5. Plugin installed in Extensions window

The settings manager (accessed using the Project Luna Settings menu item in the Tools)
menu should also display the new settings section, as shown in Figure B.6:

Figure B.6. Plugin in Settings window

If both of these windows display the plugin properly, the whole project is configured
properly and should work well with the core toolset. There are more advanced features
implemented in the toolset that can be used in plugin development but these are outside
the scope of this guide. Please refer to the programmer's documentation for information
about the usage of these advanced APIs.

63

Appendix C. References
Table C.1. References

[1] C# Coding Conventions at MSDN https://msdn.microsoft.com/en-us/
library/ff926074.aspx

[2] Homepage for the StyleCop VS
extension

https://stylecop.codeplex.com/

[3] JetBrains ReSharper homepage https://www.jetbrains.com/resharper/
[4] DevExpress CodeRush homepage https://www.devexpress.com/products/

coderush/
[5] SharpDevelop IDE homepage http://www.icsharpcode.net/

OpenSource/SD/
[6] C# Parser and CodeDOM homepage http://www.inevitablesoftware.com/

Products.aspx
[7] NRefactory C# parser homepage https://github.com/icsharpcode/

NRefactory
[8] Microsoft Roslyn project homepage https://github.com/dotnet/roslyn
[9] CodePlex discussion about diagnostics'

MEF composition
http://roslyn.codeplex.com/
workitem/467

[10] Roslyn development introduction and
tools

https://github.com/dotnet/roslyn#build-
tools-that-understand-c-and-visual-
basic

[11] Microsoft Public License text http://www.microsoft.com/en-us/
openness/licenses.aspx

https://msdn.microsoft.com/en-us/library/ff926074.aspx
https://msdn.microsoft.com/en-us/library/ff926074.aspx
https://stylecop.codeplex.com/
https://www.jetbrains.com/resharper/
https://www.devexpress.com/products/coderush/
https://www.devexpress.com/products/coderush/
http://www.icsharpcode.net/OpenSource/SD/
http://www.icsharpcode.net/OpenSource/SD/
http://www.inevitablesoftware.com/Products.aspx
http://www.inevitablesoftware.com/Products.aspx
https://github.com/icsharpcode/NRefactory
https://github.com/icsharpcode/NRefactory
https://github.com/dotnet/roslyn
http://roslyn.codeplex.com/workitem/467
http://roslyn.codeplex.com/workitem/467
https://github.com/dotnet/roslyn#build-tools-that-understand-c-and-visual-basic
https://github.com/dotnet/roslyn#build-tools-that-understand-c-and-visual-basic
https://github.com/dotnet/roslyn#build-tools-that-understand-c-and-visual-basic
http://www.microsoft.com/en-us/openness/licenses.aspx
http://www.microsoft.com/en-us/openness/licenses.aspx

64

Appendix D. Content of the
enclosed CD

The enclosed CD contains the following:

• Electronic version of the master thesis (this document) in the form of a PDF document

• The distribution package - a ZIP archive containing the compiled solution output

• The source code package - a ZIP archive containing the complete source code

• Programmer's documentation - two CHM files (compiled HTML help file) containing
the programmer's documentation for the portable and non-portable code

	Visual Studio Refactoring and Code Style Management Toolset
	Table of Contents
	1. Introduction
	1.1. Problem statement
	1.2. Goals of this thesis

	2. Analysis
	2.1. Understanding source code
	2.1.1. Parsing C#

	2.2. Integrating with Visual Studio and Roslyn
	2.3. Extensibility
	2.4. Code transformations
	2.5. Settings
	2.6. Code navigation

	3. Implementation
	3.1. Layout overview
	3.2. Code diagnostic implementation
	3.3. Refactoring implementation
	3.4. Platform abstraction
	3.5. Settings composition
	3.6. Settings
	3.7. Visual Studio commands
	3.8. Navigation pane
	3.9. Main installation package
	3.10. Code diagnostics package
	3.11. Code refactorings package
	3.12. Diagnostics unit tests
	3.13. Refactorings unit tests
	3.14. Platform services unit tests

	4. Comparison with similar applications
	4.1. JetBrains ReSharper + StyleCop
	4.2. DevExpress CodeRush
	4.3. Conclusion

	5. Conclusion
	5.1. Fulfillment of thesis goals
	5.2. Future development

	Appendix A. User Manual
	A.1. Installation
	A.2. Usage
	A.3. Implemented code transformations
	A.3.1. Diagnostics
	A.3.2. Refactorings

	Appendix B. Plugin Development Guide
	B.1. Prerequisites
	B.2. Developing a plugin

	Appendix C. References
	Appendix D. Content of the enclosed CD

