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Study programme: Computer Science

Specialization: Discrete Models and Algorithms

Prague 2015
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Abstrakt: Normálńı obarveńı – ekvivalentńı verze petersenovského obarveńı –
je speciálńı dobré hranové obarveńı kubických graf̊u pěti barvami. Každá hrana
normálně obarveného grafu je normálńı, tj. použ́ıvá spolu se svými čtyřmi sousedy
pouze tři barvy nebo všech pět barev. Dle Jaegerovy hypotézy maj́ı všechny
kubické grafy bez most̊u normálńı obarveńı. Platnost hypotézy by dokázala
např́ıklad hypotézu Cycle double cover. Zde řeš́ıme slabš́ı verzi Jaegerova pro-
blému. Hledáme dobré hranové pěti-obarveńı takové, že alespoň část hran je
normálńı. Pro obecné hranoly (generalized prisms) ukážeme obarveńı s dvěma
třetinami normálńıch hran, pro grafy bez krátkých kružnic obarveńı s necelou
polovinou normálńıch hran. Dále navrhneme nový pohled na normálńı obar-
veńı – řet́ızky (chains). Pomoćı nich dokážeme tvrzeńı o nemožnosti výskytu
právě jedné chyby ve skoro normálńım obarveńı a také několik tvrzeńı o řezech
v normálně obarveném grafu plynoućı rovněž z nikde-nulového Petersenova toku.
Nakonec prozkoumáme čtyřcyklus v normálně obarveném grafu.
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Abstract: Normal coloring — an equivalent version of Petersen coloring — is
a special proper 5-edge-coloring of cubic graphs. Every edge in a normally colored
graph is normal, i.e. it uses together with its four neighbours either only three
colors or all five colors. Jaeger conjectured that every bridgeless cubic graph has
a normal coloring. This conjecture, if true, imply for example Cycle double cover
conjecture. Here we solve a weakened version of Jaeger’s problem. We are looking
for a proper 5-edge-coloring such that at least a part of the edges is normal. We
show a coloring of generalized prisms with two thirds of the edges normal and
a coloring of graphs without short cycles with almost half of the edges normal.
Then we propose a new approach to normal coloring — chains. We use chains
to prove that there cannot be only one single mistake in an almost normally
colored graph. We also prove some statements about cuts in a normally colored
graph which also follow from nowhere-zero Petersen flow. Finally, we examine
a four-cycle in a normally colored graph.
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1. Introduction

We will be concerned with Petersen coloring and primarily with an equivalent
version of Petersen coloring — normal coloring. Normal coloring is a special
5-edge-coloring of cubic graphs — graphs with all vertices of degree three.

Jaeger conjectured in article [1] in 1985 that all bridgeles cubic graphs have
a normal/Petersen coloring. This conjecture will be essential to us. Proof of
Jaeger’s conjecture would imply that also famous Cycle double cover conjecture
and Berge-Fulkerson conjecture are true.1 This indicates that Jaeger’s problem is
probably quite difficult to solve (and, unfortunately, this thesis does not contain
a solution to it). Thus we will focus mostly on weakenings of this problem.

Natural weakenings are described at the end of this chapter after we define all
crucial terms and formulate the important conjectures. In Chapter 2 we look more
closely at normal coloring and some of its properties. We solve some weakenings
of Jaeger’s problem for some classes of cubic graphs in Chapter 3, the main result
of this thesis is Theorem 3.2. Chapter 4 contains a brief summary of Petersen
flow — a nowhere-zero flow that all graphs with a Petersen coloring have and vice
versa. Petersen flow is a good tool to show some statements about the behaviour
of normal coloring in a cut. We prove the statements about cuts and a little bit
more using a new technique — chains — in Chapter 5. Chapter 6 is devoted to
the study of small cycles, especially of a square, in a normally colored graph.

1.1 Definitions

For the standard definitions and theorems of graph theory see Diestel’s book [4].
We start with the definition of Petersen coloring.

Definition. A Petersen coloring of a cubic graph G is a mapping from the edges
of G to the edges of Petersen graph — the graph in Figure 1.1 — such that every
triple of adjacent edges in G is mapped to a triple of adjacent edges in Petersen
graph. We denote Petersen graph by P .

Figure 1.1: Petersen graph.

As Jaeger showed in [1], Petersen coloring is equivalent to normal coloring
defined as follows (we prove the equivalence later).

1Cycle double cover conjecture was proposed independently by Seymour [7] (1977) and
Szekeres [8] (1973). The other conjecture was made independently by Berge and Fulkerson [9]
(1971).
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Definition. Consider a cubic graph G with a proper 5-edge-coloring c. We say
that an edge is rich if the edge and its four neighbours have together five different
colors (as many as possible). We call an edge poor if the edge with its neighbours
uses just three different colors (as few as possible). The coloring c is normal

coloring if every edge is either rich or poor. We say that an edge is normal if it
is either rich or poor.

Petersen graph can be constructed like this:2 vertices of the graph are all
3-element subsets of a 5-element set. There is an edge between vertices u and v
if and only if |u ∩ v| = 1. If we take for the 5-element set the set of colors
{1, 2, 3, 4, 5} and color every edge (u, v) of Petersen graph with the color in u∩ v,
we get a normal coloring np of Petersen graph where every edge is rich. See
Figure 1.2.

3 4

2 5

1

1

1

134

245235

124 135

125

145 123

345 234

5 2

34

5 2

4 3

Figure 1.2: Petersen graph (constructed as a Kneser graph) with a normal color-
ing np.

We will use the normal coloring np of Petersen graph in the proof of equivalence
of normal and Petersen coloring.

Theorem 1.1. (Jaeger) A graph G has a normal coloring if and only if it has
a Petersen coloring.

Moreover, a normal coloring n of G can be defined from the Petersen coloring p
of G as:

∀e : n(e) = np(p(e))

where np is the normal coloring of Petersen graph from Figure 1.2.
And a Petersen coloring p can be defined from a normal coloring n as follows.

We set p(e) = f for e = (u, v), e ∈ E(G), f ∈ E(P ) if

• e is colored with color c in the coloring n and f is colored with the same
color c in the coloring np, and if

• e has neighbours on one side (adjacent either both to u or both to v) colored
with c1 and c2 in n and f has neighbours on one side colored with the same
colors c1 and c2 in np.

2The construction originates from Kneser graphs — graphs whose vertices are k-element
subsets of a n-element set and there is an edge between u and v iff corresponding subsets are
disjoint. Petersen graph is a Kneser graph whose vertices are 2-element subsets of a 5-element
set.
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Proof. First consider a normal coloring n defined from a Petersen coloring p
as above. The proper coloring condition is satisfied in n since every triple of
adjacent edges is mapped by p to a triple of adjacent edges in Petersen graph and
np assign to the adjacent triple three different colors. Consider an edge e ∈ G
and its neighbours. Denote the neighbours as in Figure 1.3.

e1

e2

e

e3

e4

Figure 1.3: Notation for edges.

The triples of adjacent edges (e, e1, e2) and (e, e3, e4) can be mapped by p
either both to the same triple in P , then e is poor in n, or to the neighbouring
triples (e1, e2, e, e3, e4 are mapped to an edge of P and its four neighbours) and
then the edge e is rich in n.

Now suppose we have a Petersen coloring p defined from a normal coloring n
of G as above. There is exactly one edge f ∈ E(P ) for each e ∈ E(G) satisfying
the conditions from the theorem:

Consider an edge e colored with c and its neighbours colored as in Figure 1.4.

c1

c2

c

c3

c4

Figure 1.4: Notation for colors.

There is exactly one triple {t1, t2, t3} of adjacent edges in Petersen graph
colored with {c, c1, c2} in the coloring np and also exactly one triple {t′1, t

′
2, t

′
3}

colored with {c, c3, c4}. If the edge e is poor in the coloring n, then {c, c1, c2} =
{c, c3, c4} thus {t1, t2, t3} = {t′1, t

′
2, t

′
3} and the edge f for e is unique. If the edge e

is rich in n, then |{c, c1, c2} ∩ {c, c3, c4}| = 1 thus {t1, t2, t3} and {t′1, t
′
2, t

′
3} are

neighbouring triples and the one edge from {t1, t2, t3} ∩ {t′1, t
′
2, t

′
3} is the unique

edge f for e. (It does not matter whether we use the neighbours colored with c1
and c2 or the ones colored with c3 and c4 to find the edge f .)

A triple of adjacent edges colored with some colors c1, c2 and c3 is mapped
to a triple of adjacent edges as required — to the triple adjacent to the vertex
c1c2c3 (vertex of Petersen graph denoted by c1c2c3 in Figure 1.2).

Sometimes it is useful to look at Petersen coloring as a cycle-continuous map-
ping to Petersen graph. The definition of cycle-continuous mapping and the
proof of equivalence of cycle-continuous mapping to Petersen graph and Petersen
coloring follows.

Definition. A cycle continuous mapping from a graph G1 to a graph G2 is a map-
ping from the edges of G1 to the edges of G2 such that the preimage of every cycle
of G2 is a union of cycles in G1.

Theorem 1.2. A mapping from the edges of a cubic graph G to the edges of
Petersen graph is a cycle-continuous mapping to Petersen graph if and only if it
is a Petersen coloring.
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Proof. Suppose we have a graph G with Petersen coloring p. Consider a cycle C
in Petersen graph. Preimage of the cycle C cannot contain a vertex v of degree
three because the edges adjacent to v are mapped to a triple of adjacent edges in P
and the cycle C does not have a vertex of degree three. Similarly the preimage
cannot contain a vertex v′ of degree one since the triple of edges adjacent to v′

is mapped to an adjacent triple in P and there is no vertex of degree one in
the cycle C. Thus there can be only vertices of degree either zero of two in the
preimage of the cycle so it is a union of cycles. Therefore p is a cycle-continuous
mapping.

Consider now a cycle-continuous mapping m : E(G) → E(P ) for a cu-
bic graph G. Assume, for a contradiction, that the triple of edges (e1, e2, e3)
adjacent to a vertex v ∈ V (G) is not mapped to a triple of adjacent edges
of P . There is no three-cut in P formed by non-adjacent edges so graph P ′ =
P \ {m(e1), m(e2), m(e3)} is connected and thus there is a path from one vertex
adjacent to m(e1) to the other one in P ′. This path together with the edge m(e1)
creates a cycle whose preimage contains vertex of degree one — v. Therefore the
preimage is not a union of cycles. A contradiction. (See Figure 1.5.)

m(e1)

m(e2)

m(e3)

P

G

e1

e2 e3
v

G

e1

e2 e3
v

m

m
−1

Figure 1.5: A mapping m that is not a Petersen coloring is not a cycle-continuous
mapping to Petersen graph either.

1.2 Conjectures

In this text we will examine the following problem proposed by Jaeger in [1].

Conjecture 1.3. (Jaeger) Every bridgeless cubic graph has a Petersen coloring.

If Jaeger’s conjecture was true, it would prove also Cycle double cover and
Berge-Fulkerson conjecture.

Conjecture 1.4. (Cycle double cover) For every bridgeless cubic graph G there
is a set of cycles of G such that every edge of G is in exactly two of those cycles.

Conjecture 1.5. (Berge-Fulkerson) Every bridgeless cubic graph G has six per-
fect matchings such that every edge of G is in exactly two of those matchings.
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The idea of the proof of Berge-Fulkerson and Cycle double cover conjecture
from Jaeger’s conjecture is the following.

Idea of the proof. Let us consider a bridgeless cubic graph G. According to
Jaeger’s conjecture it has a Petersen coloring and thus also a cycle-continuous
mapping c to Petersen graph. We find a set of cycles as in Cycle double cover
conjecture for Petersen graph. The preimage of these cycles in the mapping c is
a cycle double cover of graph G.

We proceed similarly with Berge-Fulkerson conjecture. We find six perfect
matchings as in the conjecture for Petersen graph. Then we use a Petersen
coloring of graphG to find the six perfect matchings of graphG that satisfy Berge-
Fulkerson conjecture — the preimages of the six perfect matchings of Petersen
graph in Petersen coloring are the six perfect matchings of G we are looking
for.3

1.3 Natural weakenings of Jaeger’s conjecture

As Jaeger’s problem 1.3 seems to be quite difficult, we will focus on weakenings
of this problem.

In my bachelor thesis [6] I was trying to find for all cubic graphs a normal
coloring that uses more than five colors. I.e., the condition that every edge
together with its four neighbours uses three (poor edge) or five (rich edge) colors
remains but altogether there are more than five colors in the graph. It is easy for
ten colors since all cubic graphs have strong 10-edge-coloring in which all edges
are rich. For bridgeless cubic graphs we get a normal coloring with seven colors
from a theorem that all those graphs have nowhere-zero Z

3
2-flow. In the bachelor

thesis I found normal coloring with nine colors for graphs either with a bridge,
a two-cut or with a triangle.

Here we will look for 5-edge-colorings where only a certain part of the edges is
normal. Our aim is to make the normal part as big as possible. We will show how
to color a specific class of cubic graphs — generalized prisms — in such a way
that 2/3 of the edges will be normal. For cubic graphs without short cycles we
will find a coloring with approximately half of the edges normal.

3The complement of a perfect matching of Petersen graph is a union of cycles that go through
every vertex. Preimages of those cycles in Petersen coloring is a union of cycles of G that go
through every vertex of G and the complement of those cycles is a perfect matching in G.
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2. General properties of normal

coloring

We start with some properties of normal coloring that we will use later and then
we continue with properties that we will not use but that help us to get to know
the normal coloring better.

First we look at a basic property of normal coloring that will be useful many
times later.

Lemma 2.1. Suppose there is a colored edge e with three neighbours colored as
well, one uncolored neighbour and the proper coloring condition is satisfied. For
every such partial coloring there is exactly one color for the last neighbour of e
that makes the edge e a normal edge.

Proof. Denote the color we are looking for by x and the known colors by c1, . . . , c4
as in Figure 2.1.

c1

c2

c3

c4

x

Figure 2.1: Notation for colors.

We distinguish the two following cases.

• If c4 ∈ {c1, c2}, then we have to set x to the one color from {c1, c2} \ c4.
The edge e is poor.

• If c4 /∈ {c1, c2}, then we have to set x to the color from {1, 2, 3, 4, 5} \
{c1, c2, c3, c4}. In this case e is rich.

A particular consequence of Lemma 2.1 is that we cannot change a normal
coloring at a single edge, keeping it normal.

For further use we define for every color c the following relation on pairs of
colors.

Definition. Let a, b, c, d, e be some colors. We define a relation ∼c on unordered
pairs of colors. We write that ab ∼c de iff c /∈ {a, b, d, e}, a 6= b, d 6= e and either
{a, b} = {d, e} or {a, b} ∩ {d, e} = ∅.

Example 2.2. We have 12 ∼3 45, 12 ∼3 12 but 12 6∼3 24.

Note 2.3. An edge colored as in Figure 2.2 is normal iff ab ∼c de.

Note 2.4. The relation is equivalence since it is obviously reflexive, transitive
and symmetric.
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a

b

c
d

e

Figure 2.2: A normal edge supposing ab ∼c de.

The next two statements are not important for further text but they help us
to get used to normal coloring. The first statement tells us how we can change a
normal coloring to obtain another one if there is an uniquely colored cut in the
graph.

Theorem 2.5. Let G be a normally colored graph. Denote the normal coloring
by c. Assume that there is a cut E ′ ⊂ E(G) of G such that for a color x and
every edge e ∈ E ′ we have c(e) = x (the cut E ′ is colored with only one color x).
Denote the colors different from x by x1, . . . , x4 and the components of G \E ′ by
G1 and G2.

Let us define a new coloring c′ of G from coloring c as follows:

• If c(e) = x, then c′(e) = x.

• If e ∈ G2, then c′(e) = c(e).

• If e ∈ G1 and

– c(e) = x1, then c′(e) = x2.

– c(e) = x2, then c′(e) = x1.

– c(e) = x3, then c′(e) = x4.

– c(e) = x4, then c′(e) = x3.

The new coloring c′ is also a normal coloring of G.
(I.e., we can pair arbitrarily the colors different from x, switch the colors in

these pairs in one component of G \ E ′ and the coloring remain normal.)

Proof. There is no change for edges of G2 — their colors and colors of their
neighbours remain the same — so they are still normal. For edges of G1 the
change is the same as it would be if we permuted colors in whole graph G. Thus
the edges of G1 also remain normal.

Finally let us have a look at the edges in E ′. An edge e ∈ E ′ has two
neighbours e1, e2 in G1 which have both changed its color and two neighbours
e3, e4 in G2 whose colors remained the same. Without loss of generality sup-
pose c(e) = 1, c(e3) = 2 and c(e4) = 3. Then either {c(e1), c(e2)} = {2, 3} or
{c(e1), c(e2)} = {4, 5}. Thus {c′(e1), c

′(e2)} is either {2, 3} or {4, 5} if we switched
2 with 3 and 4 with 5; if we switched 2 with 4 and 3 with 5, then {c′(e1), c

′(e2)}
is either {4, 5} or {2, 3} and the same holds for the case we switched 2 with 5
and 3 with 4. In all cases the edge e remain normal.

The second statement is about the structure of a normally colored graph.
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Theorem 2.6. Consider a normally colored graph G. Let us create a new graph
G′ from G by removing all vertices that are adjacent to an edge colored with
a color c. Every component of G′ uses only three colors. (Obviously, there is no
edge colored with c in G, but furthermore, none of the components uses all four
remaining colors.)

Proof. All rich edges were removed from the graph G since every rich edge is
either colored with c or has an adjacent edge colored with c. And every path
of poor edges uses together with all its adjacent edges only three colors so every
component of G′ uses also only three colors. There is an example of a part of
graph with removed vertices adjacent to an edge with color 5 in Figure 2.3.

1

1

1

1

1 1

3

3
3

3

3

3

2

2

2

2

2

2

2

2

5

5

5

4

4

4
4

removed vertex

preserved edge

removed edge
1

4

12

Figure 2.3: An example of a part of a graph with removed vertices adjacent to
an edge colored with 5. On the left side there is a component colored with 1, 2
and 3, the component on the right side is colored with 1, 2 and 4.
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3. Only part of the edges is

normal

Let us investigate a weakening of Problem 1.3. What if we did not want every
edge to be normal but just part of them?

We can quite easily get a proper edge-coloring of a bridgeless cubic graph
G without cycles of length less than five (without a triangle or a square) with
1/3 of edges satisfying the “rich” property. Every bridgeless cubic graph has
a perfect matching (this follows from Tutte’s Theorem). By contracting the
edges in the perfect matching we obtain a 4-regular graph G′. Since G contains
neither triangle nor square, there are no multiple edges in G′. Thus we can use
Vizing’s Theorem to obtain a proper 5-edge-coloring of G′. Now we decontract
the edges of the perfect matching and color every one of them with the color that
none of its neighbours has. We clearly have a proper coloring where every edge
of the perfect matching is rich. The number of edges of a perfect matching is
|E|/3. The special cases where G has either a triangle or a square can be solved
separately and we also get |E|/3 normal edges (in this case some of them might
be poor).

We show how to obtain 2/3 of edges normal for a special class of graphs —
generalized prisms — in the first section of this chapter. In the second section we
color graphs without short cycles in such a way that approximately half of the
edges is normal.

3.1 Generalized prisms

If we remove edges of a perfect matching from a cubic graph we get a graph
consisting just of cycles. If there is only one cycle then it is a Hamiltonian cycle,
the graph is 3-edge-colorable and in a 3-edge-coloring all edges are poor. Thus
a natural class of cubic graphs for which we can examine Problem 1.3 is formed
by generalized prisms.

Definition. Generalized prism is a cubic graph which consists of two cycles of
the same length with a perfect matching between them — see Figure 3.1. Let us
call the edges on the two cycles cycle-edges and the edges of the perfect matching
matching-edges.

Figure 3.1: A generalized prism.
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We will consider only generalized prisms with an odd length of the cycles since
a prism with an even length of the cycles is 3-edge-colorable and thus all its edges
can be easily poor.

We have already shown how to make all matching-edges rich. Now we prove
that we can make all edges on one of the cycles normal (Theorem 2.3 in Šámal’s
article [3]). That gives us also |E|/3 good edges.

Theorem 3.1. (Šámal) For every proper coloring of the first cycle we can color
the rest of the generalized prism in such a way that it is a proper coloring and the
edges on the first cycle are all normal.

Proof. Suppose we have an odd cycle C1 = {e1, . . . , e2k+1} and a proper edge-
coloring of the cycle c : E(C1) → {1, . . . , 5}. Let us denote the edge adjacent to
ei and ei+1 by fi (and the edge adjacent to e2k+1 and e1 by f2k+1). See Figure 3.2.

ei−1

ei+1

fi−1

fi

ei

Figure 3.2: Notation for edges.

Note that as soon as we choose a color for f1, there is (according to Lemma 2.1)
only one color for f2 that makes the edge e2 normal. After the edge f2 is colored,
there is only one color for f3 to make e3 normal, etc. See an example in Figure 3.3.

5

1 2 4 3 2 5 1 3

3 2 4 1 2 4

Figure 3.3: After we choose a color for f1 — here the bold number 5 — the colors
for all other fi are given.

We have three options how to color f1 —we can use the colors from {1, 2, 3, 4, 5}\
{c(e1), c(e2)}. Each of them gives us a coloring of f2, . . . , f2k+1 in which the edges
e2, . . . , e2k+1 are normal. We need to prove that in at least one of them, the
edge e1 is normal too.

Without loss of generality, let us assume that c(e1) = 1 and c(e2) = 2. We
create a 5-tuple Pi for every fi as follows. For f1 it will be P1 = (3, 4, 5, 1, 2) —
the first three numbers represent colors that can be used for f1 (so that we do
not violate the proper coloring condition), the next two are the remaining colors
— the first one is the color of the adjacent edge with an odd index (in this case
e1) the second one is the color of the adjacent edge with an even index (e2). The
other 5-tuples we derive from the previous one as follows.

The first number of Pi will be the color which we have to use for fi to make
the edge ei normal in the case where fi−1 is colored with the first color from Pi−1.
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Similarly we derive the second and third number of Pi from the second and
third number of Pi−1.

The last two numbers of Pi will be, as in P1, c(ei) and c(ei+1) if i is odd, and
c(ei+1) and c(ei) if i is even.

An example of deriving 5-tuples is in Figure 3.4.

345 12

154 32

154 32

513 42

f2k+1

1

2

3

2

4

Figure 3.4: An example of deriving 5-tuples.

Now we can color {f1, f2, . . . , f2k+1} either all with the first color from cor-
responding 5-tuple or all with the second color or the third color, and the edges
e2, e3, . . . , e2k+1 will all be normal. The edge e1 will be normal in one of these
three colorings iff the hypothetical (2k + 2)-nd 5-tuple P2k+2 derived from P2k+1

has one of the first three numbers the same as corresponding number of P1. (If
the first colors are equal then we use the first color for every matching-edge, etc.)

Finally, we prove that there is always a match in these three spots. All the 5-
tuples are permutations of {1, 2, 3, 4, 5}. We will first show that they all have the
same sign.

It is sufficient to show that the sign does not change in one step — that the
signs of the (i− 1)-st and the i-th permutation are the same. Let us distinguish
two cases.

• If c(ei−1) = c(ei+1), then ei has to be poor and thus the first three numbers
of Pi−1 are the same as that of Pi.

Furthermore, the last two numbers of Pi−1 are c(ei−1), c(ei) (or c(ei), c(ei−1)
in the case where i is odd) and in Pi it is c(ei+1), c(ei) (or c(ei), c(ei+1))
and that is the same. See Figure 3.5.

xyz klk

xyz kll

k

Figure 3.5: In the case c(ei−1) = c(ei+1) are permutations for fi−1 and fi equal.
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xym lk

yxk lm

k

l

m

Figure 3.6: In the case c(ei−1) 6= c(ei+1) the permutations have still the same
sign.

• The case c(ei−1) 6= c(ei+1) is in Figure 3.6.

Without loss of generality c(ei−1) = k, c(ei) = l, c(ei+1) = m and x and y are
the remaining colors. Putting c(fi−1) = x makes c(fi) = y. If c(fi−1) = y,
then c(fi) = x. And in the case c(fi−1) = m it is c(fi) = k.

So the colors x and y are switched in Pi−1 and Pi. The color l is in the
same spot in both 5-tuples (the fourth if i is odd and the fifth if i is even).

Thus the color k is in the same spot in Pi−1 as m is in Pi so there is another
switch with the colors k and m.

Therefore, there are two transpositions between these two permutations and
the sign is also not changed.

Now P1 is (3, 4, 5, 1, 2) and the hypothetical (2k + 2)-nd 5-tuple P2k+2 is
( , , , c(e2k+3), c(e2k+2)) that is ( , , , c(e2), c(e1)) and that is ( , , , 2, 1). Thus
there is one transposition in the fourth and fifth place. So there has to be an odd
number of transpositions in the first three places. That gives us that P2k+2 begins
with neither 345, 453 nor 534 and has to begin with either 354, 435 or 543 which
gives us a match in either first, third or second place.

For the edges of the other cycle of the generalized prism we proceed greedily
in choosing colors — for every edge is good any color that none of its neighbours
has.

But we can do more than |E|/3 with generalized prisms. With the following
theorem we will have 2/3 of the edges normal.

Theorem 3.2. Every generalized prism has a proper edge-coloring with all the
cycle-edges normal.

To obtain the result above we first color the matching-edges in such a way
that it will be then possible to color the cycle-edges on both cycles. Since we do
not want the matching-edges to be normal, there is no influence of the colors of
the cycle-edges on the first cycle to the colors of the cycle-edges on the second
cycle. Thus we can look at the cycles separately.

Definition. Consider a graph G consisting of a cycle and an additional edge adja-
cent to each vertex of the cycle — one cycle and matching-edges (see Figure 3.7).
We will call that graph a sun-graph.

Lemma 3.3. Suppose we have an edge-coloring c of a sun-graph G such that all
cycle-edges are normal and it is a proper edge-coloring. Now we make a new graph

12



Figure 3.7: A sun-graph.

G′ from G by replacing a cycle-edge e with five edges as shown in Figure 3.8 (the
new graph has two additional matching-edges and two additional cycle-edges).

For every color C 6= c(e) there is a coloring c′ of G′ such that it is still a proper
edge-coloring with normal cycle-edges, the color of the old edges remains the same,
and the two new matching-edges have the color C.

x2 e x4

x1 x3

x2 e1 e3

x1 e2

e5

e4

x4

x3

Figure 3.8: Adding new edges.

Proof. We define the new coloring c′ as follows. For the old edges:

∀f ∈ E(G), f 6= e : c′(f) = c(f)

as required and for the new edges:

c′(e1) = c′(e5) = c(e)

c′(e2) = c′(e4) = C( 6= c(e)).

We will find a color for the edge e3 later.
The only problem may appear around the place where we added the new

edges. Namely, we have to check whether the edges in Figure 3.8 are normal.
The proper coloring condition is satisfied so far. Edges x2 and x4 are still

normal as they were before (they “see” the same colors as before). Edge e3 will
be poor as long as we satisfy the proper coloring condition after selecting a color
for e3. We will show that there is a color c′(e3) for e3 such that e1 is normal, the
same color is also convenient for edge e5 and neither c′(e3) = c(e) nor c′(e3) = C
(which would violate the proper coloring condition).

It follows from Lemma 2.1 that there is a colorX that satisfies c′(x1)c
′(x2) ∼c(e)

CX . It also holds c′(x1)c
′(x2) ∼c(e) c′(x3)c

′(x4) since e was originally normal.
And by transitivity of ∼c(e) we get c′(x3)c

′(x4) ∼c(e) CX . So setting c′(e3) = X
is exactly what we need.

From this lemma we create “patterns”. The basic idea is that we start
with a small colored sun-graph and use the lemma to obtain coloring of big-
ger sun-graphs. Then we glue two colored sun-graphs together (we glue together
matching-edges of the same color) and we get a coloring of a generalized prism.

13



We can use the lemma repeatedly for the sun-graph and we can glue two sun-
graphs in different ways. Thus we will be able to color many generalized prisms
using this tool. We describe two ways how to choose the original small colored
sun-graph and apply Lemma 3.3. This leads to two “patterns”; we will show that
we can find one of them in every generalized prism so all generalized prisms can
be colored this way.

Pattern 1 is derived from the coloring of the sun-graph with 5 cycle-edges
in Figure 3.9.

1

2

34

5

1

2

3 4

5

Figure 3.9: Graph for Pattern 1.

We can add any number of pairs of matching-edges colored with 5 to any place
except between the matching-edges colored with 2 and 3 (because the cycle-edge
here is colored with 5). Note that any of the new cycle-edges — the cycle-edges
that are added by the operation from Lemma 3.3 — cannot get color C, in this
case 5, so we can really add pairs repeatedly. Therefore we are able to color the
cycle-edges in all the cases where matching-edges are colored as in Figure 3.10
(and also in the cases where the colors of matching-edges are as in Figure 3.10
only permuted — we will especially need to permute the colors {1, 2, 3, 4}).

32

41

odd number

of cycle-edges

even

one

odd

Figure 3.10: One side of Pattern 1 and a coloring of the matching-edges. All
matching-edges that are not in the figure are colored with 5.

Now if we found in a generalized prism four matching-edges that satisfy the
distance condition from Figure 3.10 on both sides (see Figure 3.11) we would be
able to color the whole prism in such a way that the cycle-edges would be normal
and it would be a proper edge-coloring.

Pattern 2

Let us proceed similarly with the graph in Figure 3.12.
We can add pairs of matching-edges colored with 5 anywhere here. From that

we obtain the pattern in Figure 3.13.
Now we can prove the theorem.
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one one

odd odd odd

even even

odd number

of cycle-edges

Figure 3.11: Pattern 1. In does not matter what is “in the middle” of the graph
— which of the four matching-edges on the left side is which on the right side.

1

1
23

2 3

Figure 3.12: Graph for Pattern 2.

oddodd

odd

odd

odd

odd number

of cycle-edges

Figure 3.13: Pattern 2.
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Proof of Theorem 3.2. We show that we can find either Pattern 1 or Pattern 2
in every generalized prism.

Let us pick any triple of matching-edges that are in a row on the first side
of the graph. Note that distances between them on this side are 1, 1, odd1 and
that is odd, odd, odd. We look at the distances between those three edges on
the second side. They are either odd, odd, odd — and we found Pattern 2 — or
even, even, odd. In this case we will find Pattern 1. We take the edge displayed
in Figure 3.14 and we have four matching-edges convenient for Pattern 1 on this
side.

oddeven

odd

one

Figure 3.14: The last edge we need for Pattern 1. One of the former sections of
even length has been split into section of length one and section of odd length on
the right side.

On the other side we have one of the situations from Figure 3.15 which are
both also good for Pattern 1 so we really found Pattern 1.

odd even

one one

oddeven

one one

Figure 3.15: The situation on the first side of the graph after the addition of the
fourth edge.

If we were able to extend this theorem to more than two cycles and allowed
diagonals2 in the graph, we would get a proof of the following conjecture proposed
by Šámal (Conjecture 1.3 in [3]). It is a weakening of Jaeger’s Conjecture.

1The distance still means the number of cycle-edges that are between some matching-edges.
If we write about distances of three or more matching-edges we write the numbers of cycle-edges
in the gaps between these matching-edges clockwise (or anticlockwise).

2Diagonal — a matching-edge that is joining two vertices from one cycle, not vertices from
different cycles as in generalized prisms.
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Conjecture 3.4. Consider a bridgeless cubic graph G and a perfect matching
of G. There exists a proper 5-edge-coloring of G such that all edges of G that are
not in the perfect matching are normal.

Also the question how to make even the matching-edges normal remains open.
We could obtain some normal matching-edges from the previous proof. In the
case we found Pattern 1, the three matching-edges that create the pattern are
normal and also the thick matching-edges from Figure 3.16 are normal (the ones
that are between the matching-edges colored with 1 and 3 on the right side of the
prism).

odd

odd

odd

odd one

one

5

2

5

5
5

5

5

5

5

5

5
55

5

5

5

5

4
2

4

2

4

1

4

1
4

134

3

4

3

5

5

5

5

5
5

1

2

3

2

4

2

2

4
2

1

3

Figure 3.16: In the case we used Pattern 1, the three matching-edges colored with
1, 2, 3 and the thick matching-edges are normal.

However, there does not have to be any edge as the thick ones in Figure 3.16,
so only the three normal matching-edges are assured. And in the case we used
Pattern 2 we may get even less than three normal matching-edges. But we started
the proof by choosing any triple of edges that are in a row. As there is as many
possibilities as is the number of vertices on one cycle to do that, we can get a lot
of proper edge-colorings with all the cycle-edges normal and maybe some of them
will have even a lot of matching-edges normal.

3.2 Graphs without short cycles

In graphs with no short cycles we can find a proper 5-edge-coloring that has
approximately half of the edges normal.

Lemma 3.5. Consider a rooted tree T ′ where the root has three children, all
other inner vertices have two children and leaves are all in the same depth d.
(The induced subgraph of a cubic graph G without cycle of length 2d + 1 or less
made by any vertex of G as a root and all the vertices at the distance up to d
from that vertex.)

We sort the edges of the tree into layers. In the first one there will be edges
adjacent to the root, in the second one their children, etc. Denote the tree without
the last layer by T .
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For every coloring of two last layers of T ′ satisfying the proper coloring con-
dition, we can color the rest of the tree in such a way that at least |E(T )|−9

2
+ 3

edges in T will be normal. (Edges in the last layer of T ′ do not have all their
neighbours in T ′ so we cannot say whether they are normal or not.)

Proof. The plan is to color the tree from the leaves to the root, one layer at a
time. We will maintain the proper coloring condition throughout the coloring
process. We denote the coloring by c.

In the situation from Figure 3.17 (assuming that the colored part does not
violate the proper coloring condition) we can always color the (i− 1)-layer edges
in such a way that at least two of the four i-layer edges are normal and the proper
coloring rule remain preserved.

colored

not colored

(i+ 1)-st layer

i-th layer

(i− 1)-st layer

x1 x2 x3 x4

y1 y2

Figure 3.17: Coloring the rooted tree.

According to Lemma 2.1 there is one color c1 for y1 such that the edge x1 is
normal. Similarly there is one color c2 for y1 to make the edge x2 normal and also
color c3 (c4 respectively) for the edge y2 that makes the edge x3 (x4 respectively)
normal.

The choice of colors for y1 and y2 depends on c1, c2, c3 and c4.

• If c1 6= c2 and c3 6= c4, then we pick for y1 color c1 and for y2 a color from
{c3, c4} \ c1. Which gives us two of the edges {x1, x2, x3, x4} normal.

• If c1 = c2 and c3 6= c4, we use color c1 for y1 and for y2 a color from
{c3, c4} \ c1. That makes three of the edges {x1, x2, x3, x4} normal (x1, x2

and either x3 or x4).

• We proceed similarly in the symmetric situation c1 6= c2 and c3 = c4.

• Finally, we handle the case c1 = c2 and c3 = c4. If moreover c1 6= c3, we can
make all four edges normal by setting color of y1 to c1 and color of y2 to c3.
If c1 = c3, then we also color the edge y1 with c1 so both x1 and x2 are
normal. For edge y2 we choose color from {1, 2, 3, 4, 5} \ {c1, c(x3), c(x4)}
just to preserve the proper coloring condition.

We use these rules until the second layer. We will show that the last three
uncolored edges in the first layer can be colored in such a way that at least three
from last nine edges are normal. That gives us the number |E(T )|−9

2
+ 3 from

above.
It is left to show how to select colors for the last three edges.
Let us denote the edges as in Figure 3.18.
All the edges eji are already colored. Our goal is to color f1, f2 and f3 in

such a way that the proper coloring condition is satisfied and at least three of the
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e1
1

e1
2

e1
3

e2
3

e2
2

e2
1

f1
f2 f3

Figure 3.18: Coloring the last three edges — notation.

edges {e11, e
2
1, e

1
2, e

2
2, e

1
3, e

2
3, f1, f2, f3} are normal. According to Lemma 2.1 there is

exactly one color cji for the edge fi to make the edge eji normal.
We distinguish the cases according to the number of i for which c1i = c2i .

• If there is at least one i such that c1i = c2i and at least one k that c1k 6= c2k,
then we color fi with the color c1i , fk with a color from {c1k, c

2
k} \ {c

1
i } and

the remaining edge with any color that none of its neighbours has. And we
have at least three edges normal (e1i , e

2
i and either e1k or e2k).

• If for all i we have c1i 6= c2i , we distinguish whether the three unordered
pairs {c1i , c

2
i } are all the same or not.

If they are not all the same, then there is a color cxi and an index j such
that cxi /∈ {c1j , c

2
j}. Without loss of generality we may assume c11 /∈ {c12, c

2
2}.

Then we put c(f1) = c11, c(f3) ∈ {c13, c
2
3}\{c

1
1} and c(f2) ∈ {c12, c

2
2}\{c(f3)}.

We get one of edges e1i , e
2
i normal for every i.

If {c1i , c
2
i } are the same for all i, then we use color c11 for f1, c

2
1 for f2 which

makes two of edges {e11, e
2
1, e

1
2, e

2
2, e

1
3, e

2
3} normal. And we can made f3 rich in

the following way. Since {c13, c
2
3} = {c11, c

2
1}, it holds {c(e

1
3), c(e

2
3)}∩{c

1
1, c

2
1} =

∅. So we color f3 with the one color from {1, 2, 3, 4, 5} \ {c11, c
2
1, c(e

1
3), c(e

2
3)}

and f3 is rich.

• Finally, we look at the case where for every i: c1i = c2i .

When the colors c11, c
1
2 and c13 are not the same, let us say c11 6= c12 (without

loss of generality), then we put c(f1) = c11, c(f2) = c12 and any color for f3
only to maintain the proper coloring condition. We have the edges e11, e

2
1,

e12 and e22 normal.

If c11 = c12 = c13, we can make only two edges from {e11, e
2
1, e

1
2, e

2
2, e

1
3, e

2
3} normal

so we need one of {f1, f2, f3} normal as well. Suppose c11 = c12 = c13 = 1,
c(e11) = 2 and c(e21) = 3 (without loss of generality).

Now there are six cases of coloring of edges e12, e
2
2, e

1
3 and e23 in Figure 3.19.

We color these cases as shown in this figure. The thick edges are normal
and there are always at least three of them.

All other cases of coloring of e12, e
2
2, e

1
3 and e23 are somehow equivalent to

one of those six.

– None of edges {e11, e
2
1, e

1
2, e

2
2, e

1
3, e

2
3} can be colored with 1.

– We can suppose that c(e1i ) < c(e2i ).
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2 2 2 333

1 4 5

1.

2 2 2 433

1 4 5

2.

2 2 4 533

5 4 1

3.

2 2 2 543

1 3 4

4.

2 2 3 443

1 3 5

5.

2 2 3 543

5 3 1

6.

Figure 3.19: Coloring the last three edges—some special cases.

– We can also assume that the three pairs (c(e11), c(e
2
1)), (c(e12), c(e

2
2))

and (c(e13), c(e
2
3)) are sorted lexicographically:

(c(e11), c(e
2
1)) <lex (c(e12), c(e

2
2)) <lex (c(e13), c(e

2
3)).

– Since c(e11) = 2 and c(e21) = 3 we can switch 2 and 3 and also 4 and
5 in c(e12) and c(e22) (for example, putting c(e12) = 2 and c(e22) = 4 is
equivalent to c(e12) = 3 and c(e22) = 5).

That gives us for the pair (e12, e
2
2) only three different pairs of colors that

we have to check: (2, 3), (2, 4) and (4, 5).

For each of them there are several possibilities of colors of the pair (e13, e
2
3).

In Figure 3.19 there are the cases:

1. 23, 23, 23 (colors of eji in the format c(e11)c(e
2
1), c(e

1
2)c(e

2
2), c(e

1
3)c(e

2
3))

2. 23, 23, 24

3. 23, 23, 45

4. 23, 24, 25

5. 23, 24, 34

6. 23, 24, 35.

The rest that is not excluded by the rules above is:

– 23, 23, 25 which is equivalent to the case number 2 from above

– 23, 23, 34 — equivalent to 2 as well

– 23, 23, 35 — also equivalent to 2

– 23, 24, 24 — equivalent to 2

– 23, 24, 45 — equivalent to 6

– 23, 45, 45 — equivalent to 3.

So the last three edges can be always colored as required.
Note that in the cases 4 and 5 in Figure 3.19 it is not possible to make more

than three of the last nine edges normal without recoloring of already colored
edges.
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Theorem 3.6. Every graph G with minimal cycle length greater than or equal to
2h can be colored with five colors in such a way that it is a proper coloring with
at least |E(G)|

2
· 2h−2
2h−1

edges normal.

Proof. We start with a proper 5-edge-coloring (we have even a proper 4-edge-
coloring from Vizing’s Theorem).

For every vertex v of G there is a “rooted almost tree” — induced graph on
vertices that are at distance h or less from the vertex v and with v as a root
(similar graph to one in Lemma 3.5). Let us denote this graph Gv. The reason
for that “almost” is that there could be a cycle in Gv since cycles of length 2h
are allowed.

We will create for every vertex v rooted trees Tv and T ′
v. In the case that Gv

does not contain a cycle, we put Tv = Gv. Otherwise we derive Tv from Gv as
follows. First we delete edges connecting vertices at distance exactly h from v (if
there are any). If there is still a cycle, there is also a vertex x in that cycle with
two paths from x to v of length h. We duplicate x, put one of the vertices at the
end of one path and the other at the end of the second path. (It can also happen
that one vertex at distance h is in two cycles as in Figure 3.20. In this case we
simply replicate that vertex three-times.)

x

v

x1 x2 x3

v

Figure 3.20: We replicate the vertex three-times if it is in more than one cycle.

After we destroy all the cycles, we get rooted tree Tv where the root v has
three children, all other inner vertices have two children and the leaves are in
depth h. Tree T ′

v will be Tv with an extra layer — we add to all leaves of Tv their
adjacent edges from G that are not their neighbours in Tv. If some two leaves
have the same adjacent edge, we duplicate this edge. If an edge is adjacent to a
vertex u in G and the edge is in Tv but it is not adjacent to u in Tv (due to the
duplication of vertices before), we duplicate this edge as well. See Figure 3.21.

We color the edges in Tv and T ′
v with the same colors as they had in G. All

the edges of Tv that were normal in G are now normal in T ′
v.

If there is a tree Tv with less than |E(Tv)|−9
2

+3 normal edges, we use Lemma 3.5
for trees Tv and T ′

v to repair that tree. We propagate the changes to G and from G
to all other trees Tv and to the trees T ′

v.
Note that using the lemma we do not recolor the last layer of Tv (or last

two layers of T ′
v) and in the previous layers there was no duplication of edges or

vertices. So we can do the propagation — the edges that were duplicated for T ′
v

could not be colored with two different colors. Also the proper coloring condition
in G could not be violated because the recolored edges have all their neighbours
from G even in T ′

v. And all the edges that were or became normal in T ′
v are then

normal even in G and also in Gv.
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G Tv

T
′

v

a1 a3a2

a4 a5

b1 b2

a6 a7 a8 a9

a1 a3a2

b1

b2

b3 b4 b5

a4 a5 a6 a7 a8 a9

a1 a3
a2

b3 a6 a5 b3 b4 a8 a7 b4 b2 b5

a4 a5 a6 a7 a8 a9

v

v

v

Figure 3.21: Creating trees Tv and T ′
v.

We repeat that operation. In every step the number of normal edges increases
so at some point there will be no tree with too many bad edges.

We will now compute N — the number of pairs (Gv; normal edge e that is
in Gv) in two different ways to obtain the number of normal edges in G.

• The number of pairs is greater than or equal to: the number of different Gv

× the minimal number of normal edges in Gv.

The number of Gv is the same as the number of vertices in G which is
2
3
|E(G)| since G is a cubic graph.

Minimal number of normal edges is in every Gv after the recoloring greater
than or equal to |E(Gv)|−9

2
+ 3 where |E(Gv)| is the number of edges in Gv.

It holds |E(Gv)| = |E(Tv)| = 3 + 3 · 2 + 3 · 22 + · · ·+ 3 · 2h−1 = 3(2h − 1).

From all this we obtain

N ≥
2

3
|E(G)|·

(

3 · (2h − 1)− 9

2
+ 3

)

=
2

3
|E(G)|·

3 · (2h − 1)− 3

2
= |E(G)|·(2h−2).

• We can compute N also as: the number of all normal edges in G × the

number of different Gv that contain one particular edge.

Denote the number of normal edges by M — that is what we want to find.

Every edge is in those Gv whose root is at the distance (h − 1) or less
from that edge (from closer of the vertices adjacent to that edge). Since
the minimal cycle length is 2h or more the number of vertices at distance
x ≤ h−1 is 2(x+1). (The vertices are arranged as in Figure 3.22. The leaves
on the left side can be connected with the leaves on the right side but these
are the only cycles that can be on these vertices.)
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h− 1 h− 1

e

Figure 3.22: Vertices at the distance h− 1 or less from an edge e.

So the number of all the graphs Gv containing one particular edge is 2h +
2h−1 + · · ·+ 21 = 2h+1 − 2.

We conclude that
N = M · (2h+1 − 2).

Combining those two computations we obtain

M · (2h+1 − 2) ≥ |E(G)| · (2h − 2).

And finally

M ≥
|E(G)|

2
·
2h − 2

2h − 1
.
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4. Petersen flow

We have already mentioned in Introduction that Petersen coloring and normal
coloring are equivalent. Here we write about another property — Petersen flow
described by Jaeger in [2] — that is also equivalent to Petersen coloring.

Petersen flow is a nowhere-zero flow. First we define flows and nowhere-zero
flows in general.

Definition. Suppose we have a directed graph G and an Abelian (commutative)
group A. A mapping f : E(G) → A is an A-flow iff for all V ′ ⊆ V (G):

∑

u∈V ′

v∈V (G)\V ′

(u,v)∈E(G)

f(u, v)−
∑

u∈V ′

v∈V (G)\V ′

(v,u)∈E(G)

f(v, u) = 0.

Note 4.1. It is sufficient to require the previous condition only for all vertices
v ∈ V (G) instead of all subsets V ′ ∈ V (G). The definition with the condition:

∑

(u,v)∈E(G)

f(u, v)−
∑

(v,u)∈E(G)

f(v, u) = 0

for all v ∈ V (G) is equivalent to the previous one.

Note 4.2. If G has a bridge, then every A-flow has to have the value 0 on the
bridge.

Definition. A nowhere-zero flow of a graph G is an A-flow of G that does not
use the value 0.

Note 4.3. A graph with a bridge cannot have a nowhere-zero flow.

Sometimes we need to forbid more values in a flow.

Definition. A B-flow, B ⊆ A, is an A-flow that uses only values from B.

We will be interested in a B-flow for a given B ⊆ A satisfying B = −B and
0 6∈ B. It follows from B = −B that if we have a B-flow for one orientation
of G, we can create a B-flow for any orientation of G. Thus we can examine the
property of “having a B-flow” on undirected graphs.

Petersen flow is a B-flow with a particular B ⊂ Z
6
2, 0 6∈ B. The construction

of B for Petersen flow will follow.
Note that B = −B as for any element a ∈ Z

6
2 it holds a = −a. And from that

we also get that we do not have to consider any orientation of G to get a Petersen
flow of G. The flow condition can be modified in this case just to:

∀v :
∑

(u,v)∈E(G)

f(u, v) = 0.

Let us look at the construction of B for Petersen flow. We start with a
spanning tree T of Petersen graph. Recall we denoted Petersen graph by P .
There are six edges of P that are not in T . Each of those edges corresponds to a
cycle of P — edge (u, v) defines a cycle formed by the edge (u, v) and the path
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from u to v in T . Those six cycles are a basis of the cycle space1 of Petersen graph.
Now consider a matrix M of size 15× 6 with rows indexed by the edges of P and
columns indexed by the cycles from the basis of the cycle space of Petersen graph.
The element in the i-th row and the j-th column mij ∈ Z2 indicates whether the
i-th edge is in the j-th cycle from the basis.

Or, in terms of flows, we have six flows (f1, . . . , f6) of a basis of the Z2-
flow space of Petersen graph and the rows of the matrix (mi1, . . . , mi6) are
(f1(ei), . . . , f6(ei)), ei ∈ E(P ).

The columns of M generate the cycle space P and the rows are the values
that are used by Petersen flow.

Definition. Let F ⊂ Z
6
2 be a set of the fifteen vectors (f1(e), . . . , f6(e)), e ∈

E(P ); (f1, . . . , f6) is a basis of vector space of Z2-flows of Petersen graph. Pe-

tersen flow is a B-flow with B = F .

Example 4.4. Let us start with the spanning tree of P from Figure 4.1. On the
right side of the figure there is the basis of the cycle space of P created from the
edges α, . . . , ζ outside of the spanning tree.

α
β

γ

δ

ǫ

ζ

1

2

3

4

5

6
7

8

9

10

11
12

13 14

15

α β γ

δ ǫ ζ

Figure 4.1: A spanning tree and a basis of cycle space of P for an example of
construction of Petersen flow.

For the matrix M we order the elements of the basis α, β, γ, δ, ǫ, ζ and all
the edges of the Petersen graph 1, . . . , 15 as in Figure 4.1. The matrix M is
the following matrix.

1A cycle space of a graph G is a vector space of cycles (unions of cycles) of G. Note that
the cycle space of G corresponds to the vector space of Z2-flows in G.
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M =





















































α β γ δ ǫ ζ

1 1 0 0 0 0 0
2 0 1 0 0 0 0
3 0 0 1 0 0 0
4 0 0 0 1 0 0
5 0 0 0 0 1 0
6 0 0 0 0 0 1
7 1 1 1 0 1 1
8 0 1 1 0 1 1
9 1 1 1 0 1 0
10 0 0 1 0 1 1
11 1 0 1 1 0 0
12 0 1 0 1 1 0
13 1 0 0 1 0 0
14 0 0 0 1 1 0
15 0 0 0 0 1 1





















































Rows of M create the set F used by Petersen flow.

As Jaeger showed in the article [2], it does not matter which basis (f1, . . . , f6)
we choose (or with which spanning tree we start) — once a graph has a Petersen
flow constructed from one basis, it has a Petersen flow constructed from any basis.

Note 4.5. All elements in F are different.

Note 4.6. If for a set E ′ ⊆ E(P ):

∑

e∈E′

(f1(e), . . . , f6(e)) = 0,

then E ′ is a cut in Petersen graph. This follows from the fact that cycle-space
and cut-space of a graph are orthogonal vector spaces.

It especially means that whenever

3
∑

i=1

(f1(ei), . . . , f6(ei)) = 0,

the edges e1, e2 and e3 are adjacent in P (P is cyclically 4-edge-connected).

Let us now look at the equivalence of Petersen flow and Petersen coloring.
The next statement was proved by Jaeger in [2].

Theorem 4.7. A cubic graph G has a Petersen flow if and only if it has a Pe-
tersen coloring.

Moreover, we can define a Petersen flow f from a Petersen coloring p of
graph G as follows. Let (f1, . . . , f6) be a basis of the space of Z2-flows in P . For
an edge e ∈ E(G) we set f(e) to (f1(p(e)), . . . , f6(p(e))).

And if we have a Petersen flow f created from a basis (f1, . . . , f6) then the
mapping p : E(G) → E(P ) such that p(e) = e′ if f(e) = (f1(e

′), . . . , f6(e
′))

(e ∈ E(G), e′ ∈ E(P )), is a Petersen coloring.
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Proof. Suppose we have a Petersen coloring p of a cubic graph G. Let us define
a flow f from p as above. We have to check whether for every vertex v ∈ V (G)
is the flow condition satisfied, i.e., whether for every triple of adjacent edges e1,
e2, e3 holds: f(e1) + f(e2) + f(e3) = 0. Since p is a Petersen coloring, the edges
p(e1), p(e2) and p(e3) are adjacent. And f1, . . . , f6 are cycles so we have for
every i: fi(p(e1)) + fi(p(e2)) + fi(p(e3)) = 0 (either zero or two numbers from
{fi(p(e1)), fi(p(e2)), fi(p(e3))} are equal to 1). Thus the flow condition is satisfied
and f is a Petersen flow of G.

Suppose now that G has a Petersen flow f created from a basis (f1, . . . , f6).
We show that the mapping p defined from f as in the theorem is a Petersen
coloring. For every e ∈ E(G) there is exactly one e′ ∈ E(P ) such that f(e) =
(f1(e

′), . . . , f6(e
′)) (follows from Note 4.5). Consider a triple of adjacent edges

e1, e2, e3 ∈ E(G). Suppose p(e1) = e′1, p(e2) = e′2 and p(e3) = e′3. It holds
f(e1) + f(e2) + f(e3) = 0 which means that

3
∑

i=1

(f1(e
′
i), . . . , f6(e

′
i)) = 0.

From this and Note 4.6 follows that e′1, e
′
2 and e′3 are adjacent in P thus p is

indeed a Petersen coloring of G.

From the equivalence between Petersen flow and Petersen coloring (and also
normal coloring) we obtain immediately the following statements about small
cuts in a normally colored graph.

Theorem 4.8. A normally colored graph does not have a bridge.

Proof. Normally colored graph has a Petersen flow. But Petersen flow is a nowhere-
zero flow and nowhere-zero flows do not exist in graphs with a bridge. A contra-
diction.

Theorem 4.9. The edges in a two-cut in a normally colored graph have the same
color.

Proof. To obtain a contradiction, suppose that the edges e1 and e2 in a two-cut
of a normally colored cubic graph G have different colors. Denote the normal
coloring of G by n. From Theorem 1.1 and the coloring n we get a Petersen
coloring p of the graph G such that p(e1) 6= p(e2). Then we use Theorem 4.7 and
we obtain a Petersen flow of G such that f(e1) 6= f(e2). Thus f(e1) + f(e2) 6= 0
and f is not a flow. A contradiction.

Note 4.10. We get from a normal coloring n a Petersen coloring p such that
p(e1) 6= p(e2) (and from that a contradiction as in the proof before) even in the
cases where n(e1) = n(e2) = c but the pairs of neighbours of e1 have not ∼c

equivalent colors as pairs of neighbours of e2. I.e., if we denote the colors of
the neighbours of e1 and e2 as in Figure 4.2, then it has to hold c1c2 ∼c c3c4,
otherwise it leads to a contradiction as well.

Theorem 4.11. The edges in a three-cut in a normally colored graph G have
three different colors.
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c

c

c2

c1

c4

c3

Figure 4.2: Notation for colors in a two-cut.

a

b

c

a1

a2
b1

b2
c1

c2

Figure 4.3: Notation for colors in a three-cut.

Proof. Let us denote the normal coloring of G by n, the cut edges by e1, e2 and e3
and the colors of the cut edges and of their neighbours as in Figure 4.3 (n(e1) = a,
n(e2) = b and n(e3) = c).

Suppose that (at least) two colors from {a, b, c} are equal. We distinguish two
cases.

• There are two edges that are colored with the same color and also the pairs
of neighbours of the corresponding edges have equivalent pairs of colors —
without loss of generality a = b and a1a2 ∼a b1b2.

• For every pair of cut edges that have the same color the pairs of colors
of their neighbours are not equivalent (i.e., if for example a = b, then
a1a2 6∼a b1b2 and the same holds for a and c and for b and c).

In the first case we obtain from the coloring n and Theorem 1.1 a Petersen
coloring p such that p(e1) = p(e2). Thus, by Theorem 4.7, graph G has a Petersen
flow f with f(e1) = f(e2). But then f(e1)+f(e2) = 0 and f(e1)+f(e2)+f(e3) 6=
0, because f(e3) 6= 0. So f is not a flow. A contradiction.

In the second case we get from n by Theorem 1.1 a Petersen coloring such
that p(e1), p(e2) and p(e3) are three different edges and they are not a triple of
adjacent edges. Thus in Petersen flow f obtained from p by Theorem 4.7 it is
f(e1) + f(e2) + f(e3) 6= 0 (follows from Note 4.6). A contradiction.

Note 4.12. We obtain p(e1), p(e2) and p(e3) different but not adjacent (and thus
we get the same contradiction as in the last case of the proof before) even when
a, b, c are different unless also a1a2 ∼a bc, b1b2 ∼a ac and c1c2 ∼a ab.

Note 4.13. In a general cut there can be some pairs of edges that have the
same value in Petersen flow and the rest are edges whose values in Petersen flow
correspond with edges in Petersen graph that form a cut in Petersen graph (follows
from Note 4.6). From that we obtain necessary rules for Petersen coloring and
for normal coloring of edges in the cut.
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For example for four-cut we have that the colors of the cut edges in normal
coloring are either

• all the same or

• all different or

• two and two are the same.
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5. Chains

In this chapter we describe a new approach — chains — to Problem 1.3. The
inspiration are Kempe chains1 that are very useful in graph coloring problems.

The original aim was to find a way how to recolor a properly colored graph
locally in such a way that the number of normal edges would increase and the
rest of the graph would not be affected. We have already done some local changes
in Chapter 3 for graphs without short cycles. But we wish to have a tool that
would work even when there were only few edges that are not normal.

An attempt at local recoloring using the chains is at the end of this chapter
but it is not as “local” as we would like it to be.

Nevertheless we prove here some of the statements about cuts already shown
in Chapter 4 but now we use the chains to do that. And we also prove one new
statement that in an almost normally colored graph there cannot be only one
edge which is not normal.

5.1 Definition and basic statements

Suppose we have a normal coloring of a cubic graph G. Let us have a look at
the subgraph of G made by the edges that are colored either with color 1 or 2.
Clearly every vertex in this subgraph has degree at most two so the subgraph
is a union of paths and cycles. Contrary to Kempe chains used for the usual
edge-coloring, we need to consider all components of this graph together.

Definition. In a normally colored graph G the a,b-chain is a connected component
of the subgraph of G made by exactly the edges colored either with color a or b.

Inner-vertices of the a,b-chains are the vertices with degree two in the chains.
End-vertices of the a,b-chains are the vertices with degree one in the chains.
Outer-vertices of the a,b-chains are vertices that are not in any a,b-chain.
We will refer to an edge from the a,b-chains as a chain-edge and to an edge

not in the a,b-chains as a non-chain-edge.
We will distinguish the chain-neighbours and the non-chain-neighbours of

a vertex. A vertex u is a chain-neighbour of a vertex v iff the edge (u, v) is a chain-
edge. Otherwise (if (u, v) is a non-chain-edge), is u a non-chain-neighbour of v.

There is an example of the chains in Blanuša snark in Figure 5.1.
We can reformulate the definition of normal coloring in terms of chains.

Definition. We say that a, b-chains satisfy the neighbour-property if no inner-
vertex is a non-chain-neighbour of an end-vertex and also no outer-vertex is
a neighbour of an end-vertex (both cases would imply a not normal edge).

Figure 5.2 shows general structure of the graph with chains that follows from
the neighbour-property.

1In an edge-colored graph G an (a,b)-Kempe chain is a component of the subgraph of G
made by the edges that are colored with either a or b. For vertex-colored graph it is a maximal
path with vertices colored with either a or b. The operation of switching colors a and b in one
Kempe chain does not violate the proper coloring condition.
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Figure 5.1: The 1,2-chains in Blanuša snark.

end-vertices

outer-vertices

inner-vertices

Figure 5.2: The structure of the 1,2-chains in Blanuša snark colored as in Fig-
ure 5.1.

Theorem 5.1. A proper 5-edge-coloring of a cubic graph is a normal coloring iff
for every pair of colors a,b the neighbour-property is satisfied.

Proof. Suppose we have a normal coloring of graph G. Consider the a, b-chains.
For a contradiction assume that

• an inner-vertex is a non-chain-neighbour of an end-vertex. Then the edge
joining these two vertices has neighbours colored with a and b on one side
and a and something else then b (or b and something else then a) on the
other side. Thus this edge is not normal. A contradiction.

• an outer-vertex is a neighbour of an end-vertex. The outer-vertex is adjacent
to the edges colored with c, d and e ({a, b}∩{c, d, e} = ∅). The end-vertex is
adjacent to one edge colored either with either a or b and two edges colored
with colors from {c, d, e}. From that we get that also the edge joining the
outer-vertex with the end-vertex is not normal. A contradiction.
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Now suppose we have a proper 5-edge-coloring that satisfy the neighbour-
property and there is an edge e which is not normal. Without loss of generality
we may assume that the edge e has color 1 and its neighbours on one side have
colors 2 and 3 and the neighbours on the other side have colors 2 and 4. Consider
the 2,3-chains. There are an inner-vertex and an end-vertex joined with the edge e
so the neighbour-property for 2,3-chains is violated. A contradiction.

Now let us have a look at the neighbour-property more closely. The non-
chain-neighbours of the end-vertices of the a,b-chains can be only end-vertices as
well (for arbitrary a and b). Since every end-vertex has two non-chain-neighbours,
there are cycles on the end-vertices formed by the edges that are not in the chains
(there are only end-vertices in these cycles and every end-vertex is in such cycle).
Furthermore, the cycles has to be all even as we will show in the next theorem.
We will call those cycles the joining cycles.

Theorem 5.2. The joining cycles have an even length.

Proof. Without loss of generality suppose we have 1,2-chains and colors 3, 4, 5
on a joining cycle. Suppose also that there is a vertex u adjacent to chain-edge
with color 1 and cycle-edges with colors 3, 4 (clockwise) — we will refer to such
vertex as a 134 vertex.

Let us have a look at the next vertex v clockwise on the joining cycle. If the
next chain-edge (the chain-edge adjacent to v) is colored with 1, then v is a 143
vertex (because the cycle-edge between u and v has to be poor). If the next
chain-edge is colored with 2, then v is a 245 vertex. See Figure 5.3.

3

3/5

1

1/24
u

v

Figure 5.3: The vertex u is a 134 vertex and v is a 143 vertex or a 245 vertex.

The next vertex clockwise after a 143 vertex must be either a 134 vertex or
a 235 vertex, etc.

The whole situation is depicted with the finite-state machine in Figure 5.4.
The nodes of the finite-state machine represent vertices on the joining cycle

— first number is color of adjacent chain-edge and the other two are colors of
adjacent cycle-edges (clockwise). As we are going clockwise the joining cycle
vertex by vertex, we change correspondingly state in the finite-state machine. If
we are moving to a vertex with adjacent chain-edge colored with 1, we change the
state according to the arrow signed by 1 in the finite-state machine. Similarly if
we move to vertex with adjacent chain-edge colored with 2.
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Figure 5.4: Finite-state machine for coloring a joining cycle.

When we return to the vertex where we started on the joining cycle, we should
be in the starting state in the finite-state machine. But since in every step we
change the state from a circled one to a squared one and vice versa in the finite-
state machine, it is not possible to return to the same node after an odd number
of steps. Thus the joining cycle has to have an even length. (If it had odd length,
then at least one of the edges on the joining cycle would not be normal.)

5.2 Small cuts

The facts about joining cycles imply the two following statements for cuts. We
will consider only the cuts where no pair of edges of the cut is adjacent unless
written otherwise.

Lemma 5.3. Consider a graph G with a cut E ′ ⊂ E(G) splitting G into graphs
G1 and G2. For every pair of colors (a, b) holds the following. The number of
end-vertices of a, b-chains that

• belong to G1 (G2 respectively)

• are adjacent to an edge from the cut E ′ and

• have the chain-neighbour in G1 (G2 respectively)

is even. (See Figure 5.5.) We will refer to such end-vertex as an “end-vertex at
the cut”.

Proof. Every end-vertex is adjacent to one chain-edge and two edges of a join-
ing cycle. Since for every end-vertex at the cut the chain-edge is in G1 (in G2

respectively), we have for each such end-vertex one edge from a joining cycle in
the cut. And vice versa — every edge from the cut that is in a joining cycle gives
us one end-vertex at the cut. Obviously the number of edges in the cut that are
in the joining cycles has to be even (the joining cycles are cycles) so the number
of end-vertices at the cut has to be even too.
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G1 G2
E

′

Figure 5.5: The a, b-chains at a cut. The thick lines are the chains. The highlight-
ed end-vertices are the end-vertices at the cut that we are counting in Lemma 5.3.

Lemma 5.4. Suppose we have a graph G with a cut E ′ and components of G\E ′

denoted by G1 and G2 one more time. If for some a, b there is no such end-vertex
of a,b-chains at the cut as in Lemma 5.3, then there has to be an even number of
end-vertices of a,b-chains in G1 (in G2 respectively). Which particularly means
that in this case there has to be an even number of edges of the cut E ′ that are in
the a,b-chains (i.e., colored with either a or b).

Proof. If in G1 (in G2 respectively) there is no end-vertex at the cut of a,b-chains,
then there is no joining cycle in G that contains a cut edge. So every joining cycle
is either whole in G1 or whole in G2. And since the joining cycles are even (and
the vertices of joining cycles are exactly the end-vertices of the a,b-chains), the
lemma is true.

With these tools we can prove some theorems about cuts in a normally colored
graph that we have already proved using Petersen flow.

Theorem 5.5. A cubic graph with a normal coloring does not have a bridge.

Proof. Let us assume for a contradiction that we have such graph and the bridge
is colored with color 1 (without loss of generality). Now if we look at the 1,2-
chains (1 and any other color work as well) there is no end-vertex at the cut as
in Lemma 5.3. And there is an odd number of end-vertices in one component of
G without the bridge — one edge in the cut is colored with either 1 or 2. So we
have a contradiction with Lemma 5.4.

Theorem 5.6. The edges in a two-cut of a normally colored graph have the
same color. Moreover, the pairs of colors of the neighbours of the cut edges are
equivalent. (If c is the color of the edges in the cut and c1, . . . , c8 are the colors
of their neighbours as in Figure 5.6, then c1c2 ∼c c5c6 (actually it holds cici+1 ∼c

cjcj+1 for all i, j ∈ {1, 3, 5, 7} but all these follow from the first equivalence,
transitivity of ∼c, and the fact that the edges in the cut are normal).

Proof. Suppose we have a normally colored graph G with a two-cut colored with
different colors — without loss of generality with colors 1 and 2. Denote the
components of G without the edges of the two-cut by G1 and G2. Consider the
1,3-chains. There is one chain-edge in the cut so there cannot be two end-vertices
at the cut as in Lemma 5.3 in G1. If there is one such end-vertex at the cut, then
it contradicts Lemma 5.3. And if there is no end-vertex at the cut in G1, then
we have a contradiction with Lemma 5.4. So the cut edges are colored with the
same color.
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c

c

c2
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c4

c3
G1 G2

Figure 5.6: Notation for colors in a two-cut.

Assume, without loss of generality, that the cut edges are colored with 1 and
suppose that the colors of the neighbours are not equivalent. We may assume
c1 = 2, c2 = 3, c5 = 2, c6 = 4 — we can get all the other cases by a permutation of
colors. Now consider the 2,3-chains and we have a contradiction with Lemma 5.3
— there is one end-vertex at the cut in G1 (see Figure 5.7).

1

1

c8

c7

c4

c3
G1 G2

4

2

3

2

Figure 5.7: The 2,3-chains in the case when the neighbours of cut edges do not
have equivalent pairs of colors.

Note 5.7. In a two-cut it cannot happen that the edges in the cut are adjacent,
because it would imply that the graph has a bridge and normally colored graphs
have to be bridgeless according to Theorem 5.5.

Theorem 5.8. The edges in a three-cut have three different colors in a normally
colored graph. Furthermore, if we denote the colors of the edges as in Figure 5.8,
we get that a1a2 ∼a bc, b1b2 ∼b ac and c1c2 ∼c ab.

a

b

c

a1

a2
b1

b2
c1

c2

a3

a4
b3

b4
c3

c4

G1 G2

Figure 5.8: Notation for colors in a three-cut.

Proof. Suppose we have a normally colored graph with a three-cut colored with
at most two colors. We may assume that these colors are 1 and 2 (or just 1).
Then, considering the 1,2-chains, there are no end-vertices at the cut as in Lem-
ma 5.3 and there is an odd number (three) of chain-edges in the cut so we get
a contradiction with Lemma 5.4. Thus the colors a, b, c are different.
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Assume a = 1, b = 2, c = 3. Suppose for a contradiction that one of the
relations a1a2 ∼a bc, b1b2 ∼b ac and c1c2 ∼c ab is not true. Without loss of
generality a1a2 6∼a bc and a1 = 2 and a2 = 4. (If a1a2 6∼a bc, then one of {a1, a2}
is from {b, c}, that is {2, 3}, and the other is not.) Consider the 2,4-chains. See
Figure 5.9. Denote the vertices in G1 adjacent to the cut edges by u, v, w as in
this figure.

1

2

3

2

4

G1 G2

u

v

w

Figure 5.9: The 2,4-chains in a bad coloring of neighbours of a three-cut.

Vertices u and v cannot be end-vertices at the cut as in Lemma 5.3. If w is
such end-vertex, then it contradicts Lemma 5.3. Otherwise (if neither of u, v, w
is such end-vertex), we have a contradiction with Lemma 5.4.

Note 5.9. If there are two adjacent edges in a three-cut, we can obtain a similar
result. The two adjacent edges in the three-cut imply a two-cut right next to the
three-cut. The situation is depicted in Figure 5.10. Denote the colors of the edges
as in this figure.

a

b

c

a1

a2
b1

b2
c1

c2

a3

a4

G1 G2

d

Figure 5.10: Notation for the colors of the edges in a three-cut with two adjacent
cut edges. The dashed line indicates the two-cut.

From Theorem 5.6 about two-cut we get a = d and a1a2 ∼a bc.
The fact that a = d implies a 6= b and a 6= c. Also b 6= c because corresponding

edges are adjacent. So the edges of the three-cut have different colors even in this
case.

About the colors of neighbours of the cut edges we already know a1a2 ∼a bc.
Furthermore, dc ∼b ac and db ∼c ab because d = a. That gives us (together
with the fact that the edges colored with b and c are normal) also b1b2 ∼b ac and
c1c2 ∼c ab.

5.3 Not one mistake alone

So far we have shown statements that had been already proved in Chapter 4.
Now we prove one more statement — that there cannot be only one not normal
edge in a properly edge-colored graph.

36



Theorem 5.10. Suppose we have a cubic graph with a proper 5-edge-coloring and
assume there is one edge that is not normal. Then there is at least one another
edge that is not normal either.

Proof. To obtain a contradiction, suppose that there is a properly edge-colored
cubic graph G with all edges normal except one. Denote this edge by e and its
adjacent vertices by u and v. Without loss of generality we can assume that e is
colored with 1 and its neighbours have colors 2 and 3 on one side and 2 and 4 on
the other side. Consider the 2,3-chains. See Figure 5.11.

2

3

1

4
u ve

2

Figure 5.11: The 2,3-chains around a not normal edge e.

The edge e is a non-chain-edge that connects the inner-vertex u and the end-
vertex v. Since e is the only not normal edge, this is the only violation of the
neighbour-property in 2,3-chains. So for every end-vertex except v holds that
the two its non-chain-neighbours are end-vertices as well. And for v only one of
its two non-chain-neighbours is an end-vertex. And that is not possible. (The
subgraph of G made by the end-vertices of the 2,3-chains and the non-chain-edges
joining those vertices would have one vertex of degree one and all other vertices
of degree two.) A contradiction.

5.4 An attempt at local recoloring

In a properly edge-colored graph we can switch the colors in one Kempe chain
and the coloring remain proper.

Unfortunately, in the case of normal coloring it does not work that way. If we
switch the colors in only one a,b-chain, we get also a normal coloring only if the
a,b-chain is a cycle. We can switch the colors on all a,b-chains, but that is just
a permutation of colors which is not very helpful when we want to do some local
changes in the coloring. But if we are lucky, we will be able to switch colors in
some a,b-chains but not in all of them.

Let us start with switching colors in one a,b-chain (that is not a cycle) and
see which edges might stop being normal. See Figure 5.12 for the notation.

We have to check the chain-edges whose color has been changed — c1, . . . , cn,
and the neighbours of them — the edges f1, . . . , f4, g1, . . . , gn−1.

The edges g1, . . . , gn−1 are still normal. They have neighbours colored still
with a and b on one side and on the other side with two colors that are ∼c(gi)

equivalent to ab.
Also c1, . . . , cn remain normal:

• c1 and cn were rich and it holds for different colors r, s, t, u, v: rs ∼t uv iff
ts ∼r uv,
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c1 c2 cn

g1 g2 gn−1f1

f2

f3

f4

h1

h2

h3

h4

Figure 5.12: Notation for edges in and around a chain.

• c2, . . . , cn−1 were poor and it holds for any colors x, y, z: xy ∼z xy iff
zy ∼x zy.

But f1, . . . , f4 are not normal now because from the five edges — fi and its
four neighbours — only one has changed its color (for every i).

The edges f1, . . . , f4 are all joining two end-vertices so they are all adjacent to
one more chain-edge different from c1 and cn. In Figure 5.12 are these chain-edges
denoted by h1, . . . , h4. If we switch colors even in the a,b-chains beginning with
the edges h1, . . . , h4, the edges f1, . . . , f4 became normal again. However, this
can make another non-chain edges adjacent to end-vertices of recolored chains not
normal. (Similar edges for each chain as f1, . . . , f4 are for the chain in Figure 5.12
can stop being normal.) So we switch another a,b-chains until all edges are
normal.

We can quite easily end up with all a,b-chains switched this way. This recol-
oring can be useful in the cases where there is a proper subset J of the set of
joining cycles, with a property that all the chains which start with a (end-)vertex
that is in a joining cycle from J , also end with a vertex of a joining cycle from J .
Then we can recolor only these chains to get from one normal coloring another
normal coloring. See Figure 5.13.

C1

C3

C2

Figure 5.13: The a,b-chains and their joining cycles in a graph where we can
actually switch colors in only some a,b-chains. Note that there are not all edges
in the figure — for example the non-chain-edges adjacent to inner-vertices of the
chains are missing; the graph is not disconnected. The joining cycles C1 and C2

can create a proper subset of joining cycles J as described in the text, and we
can switch colors in the chains that start/end with a vertex of these cycles.

There are cases when switching colors in chains might also help us to repair
some mistakes in an almost normal coloring. A very artificial example: if we
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switch colors in some a,b-chains in a normally colored graph and get a not normal
coloring, then, of course, switching it back will repair the coloring. But we can
expect that the real cases will not be that friendly.
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6. Small cycles in a normally

colored graph

For many conjectures in graph theory we have theorems of the form: the hypo-
thetical counterexample does not contain a particular small graph (such as small
cycle, a path etc.).

For Jaeger’s problem Hägglund and Steffen showed in [5] that minimal coun-
terexample does not contain graph K∗

3,3 as a subgraph (see Figure 6.1).

Figure 6.1: Graph K∗
3,3.

Here we will look at small cycles. It is easy to show that minimal counter-
example does not have a triangle — for every normally colored graph we can add
a triangle to any vertex and expand the coloring to the new edges as in Figure 6.2.
Which means that if we had a graph with a triangle that did not have a normal
coloring, then this graph without the triangle — a smaller graph — would not
have normal coloring either. We can also get from a normally colored graph with
a triangle a normal coloring of that graph with the triangle contracted.

Theorem 6.1. Consider cubic graphs G and G′ such that G′ contains a triangle
and G is created from G′ by contraction of the edges of the triangle.

Suppose we have a normal coloring of G. Then we can provide a normal
coloring of the graph G′.

It is also possible to find a normal coloring of the graph G if we have a normal
coloring of the graph G′.

c1 c2

c3

c4c5

c6

c1 c2

c3

c4c5

c6

1

2 3

1

2 3

3 2

1

v

G G
′

Figure 6.2: Adjustment of coloring for graph with an additional triangle/for graph
with a contracted triangle.
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Proof. We may assume, without loss of generality, that the edges adjacent to v
are colored with 1, 2 and 3. We can expand the coloring as in Figure 6.2 no
matter what the colors c1, . . . , c6 are.

It is not possible for an edge of a triangle in a normally colored graph to
be rich thus it has to be poor. Therefore we may assume that the edges of the
triangle and the adjacent edges are colored as in Figure 6.2 and we can use in G
the same colors as in G′ (also in Figure 6.2).

However, a similar elimination of square seems to be, if possible, much bigger
task. Following theorems tell us at least how does the normal coloring around
the square look like and show how we can add a square to a normally colored
graph in some cases.

Theorem 6.2. Assume we have a normally colored graph G′ containing a square.
Then the four edges adjacent to the square are colored either all with the same
color or with two colors — one edge with an edge that is not opposite from it have
one color and the other two have the other color. See Figure 6.3.

c1 c1

c2 c2

Figure 6.3: The only possible coloring of the four edges adjacent to a square in
a normally colored graph. It might be c1 = c2.

Proof. Let us denote the edges as in Figure 6.4.

x1 x2

x3 x4

y1

y4

y2 y3

Figure 6.4: Notation for the edges.

We will rule out all the possible colorings of edges x1, . . . , x4 except the one
above. Let c denote a normal coloring of G′.

• Suppose c(x1), . . . , c(x4) are all different. Without loss of generality, we
may assume that c(x1) = 1, c(x2) = 2, c(x3) = 3 and c(x4) = 4.

If y1 is poor, then c(y2) = 2 and c(y3) = 1. For the edge y4 there remains
only the color 5, otherwise the coloring would not be proper. Now it should
be c(y1) = 4 so that the edge y2 is normal, but also it should be c(y1) = 3
so that y3 is normal. A contradiction. See Figure 6.5.

If y1 is rich, then c(y2) ∈ {4, 5} and c(y3) ∈ {3, 5}. It cannot be c(y2) = 5
because neither with c(y3) = 3 nor with c(y3) = 5 would y5 be normal. So
it is c(y2) = 4 and that imply c(y3) = 3. Which means that y4 is poor and
we have a symmetric situation to the one where y1 was poor.
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1 2

3 4

4

5

2 1

3

Figure 6.5: The case where the colors c(x1), . . . , c(x4) are different and the edge
y1 is poor.

• The edges x1, . . . , x4 use together three different colors and the edges with
the same color are next to each other (not opposite). Without loss of
generality, we put c(x1) = 1, c(x2) = 1, c(x3) = 2 and c(x4) = 3. The
edge y1 has to be poor so c(y2) = c(y3). But as c(x3) 6= c(x4), the edge y4
cannot be normal. See Figure 6.6.

1 1

2 3

c(y2) c(y2)

!

Figure 6.6: The case where c(x1) = c(x2) and c(x3), c(x4) are different.

• The edges x1, . . . , x4 use together three different colors and the edges with
the same color are opposite each other. Without loss of generality assume
that c(x1) = 1, c(x2) = 2, c(x3) = 3 and c(x4) = 1. All the edges y1, . . . , y4
have to be rich, otherwise the proper coloring condition is violated. This
imply that all c(y1), . . . , c(y4) are either 4 or 5. So either c(y1) = c(y4) = 4
and c(y2) = c(y3) = 5 or the other way around. However, in neither of these
cases is any of the edges y1, . . . , y4 normal.

• The edges x1, . . . , x4 use together two colors but the same colored edges
are opposite each other. Without loss of generality, c(x1) = c(x4) = 1 and
c(x2) = c(x3) = 2. Also in this case all edges y1, . . . , y4 have to be rich.
That means that c(y1), . . . , c(y4) ∈ {3, 4, 5}. We may assume, without loss
of generality, that c(y1) = 3 and c(y3) = 4. To make y1 rich, we need
c(y2) = 5. Now it should c(y4) = 4 so that y2 would be rich, but also
c(y4) = 5 so that y3 would be rich. A contradiction. See Figure 6.7.

1 2

2 1
4

3

5 4

5

Figure 6.7: The case where c(x1) = c(x4) and c(x2) = c(x3) but c(x1) 6= c(x2).

Note that the other cases are possible — see Figure 6.8.
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1 1

2 25

3 3

4
1 1

1 12

3 3

2

Figure 6.8: The good cases where it is possible to color the edges of the square.

Now we show how to modify the coloring after removing a square.

Theorem 6.3. Consider a normally colored graph G′ that contains a square.
Denote the color of one pair of adjacent edges by c1 and the color of the other
pair by c2 as in Figure 6.3. If we make the operation from Figure 6.9 with the
square, we get a smaller graph G that is also normally colored.

c1 c1

c2 c2

c1

c2

G
′

G

Figure 6.9: Removing a square.

Proof. We only have to check if the two new edges are normal as the other edges
have their neighbours colored in G with the same colors as in G′. Denote the
edges as is suggested on the left side of Figure 6.10.

x1 x2

x3 x4

c1 c1

c2 c2

y1

y4

y2 y3

c4

c5

c3 c3

z1

z2

z4

z3

z5

z6

z8

z7

A B

C D

Figure 6.10: On the left side is the notation for edges, on the right side the
notation for colors. The capital letters A, B, C, D represents the pairs of colors
of pairs of edges z1z2, z3z4, etc.

The edges x1 and x2 are colored both with the color c1 so the edge y1 is poor.
Thus the edges y2 and y3 have the same color.

Denote the colors as on the right side of Figure 6.10. The pair of colors of
edges z1, z2 is denoted by A. Also B, C and D represents pairs of colors of
corresponding edges.

Since x1 and x2 are normal, it holds A ∼c1 c3c4 and c3c4 ∼c1 B. By transitivity
of ∼c1 we obtain A ∼c1 B. Similarly we get C ∼c2 D. Thus the new edges in G
are normal.
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However, such a simple modification of coloring does not seem possible when
we are adding a square. At least not for all the colorings of the former graph. We
will show which are the good colorings and how to modify them after an addition
of a square. First we color uncolored edges in a special situation that helps us to
color the square later.

Lemma 6.4. Suppose that we have a situation as in Figure 6.11. The thick lines
— a1, . . . , a6 — are colored and the rest — b1, . . . , b3 — are not. We would like
to color the uncolored edges in such a way that the edges a1, b3 and a2 would be
normal. This is possible for any coloring of the colored edges satisfying the proper
coloring condition, except the case: a1 = a2, a3a4 6∼a1 a5a6.

b1 b2

a1 a2

b3

a3

a4
a6

a5

Figure 6.11: Notation for colors.

Proof. Without loss of generality we can assume that a1 = 1, a3 = 2 and a4 = 3.
Now the cases where we only switch colors 2 and 3 in a2, a5, a6 are equivalent.
Also switching colors 4 and 5 gives us equivalent cases. So all the cases of proper
colorings of a1, . . . , a6 (except those where a1 = a2 and a3a4 6∼a1 a5a6) are equiv-
alent to one of the ten cases in Figure 6.12. And those we color as suggested in
this figure.

3 3

1 1

2

2

3

3

2

3 3

1 1

2

2

3

5

4

2 1

1 2

3

2

3

3

1

4 3

1 2

5

2

3

4

1

5 3

1 2

4

2

3

4

3

2 1

1 2

3

2

3

5

4

2 5

1 4

3

2

3

2

1

4 1

1 4

5

2

3

5

1

4 1

1 4

5

2

3

3

2

3 5

1 4

2

2

3

5

2

Figure 6.12: Coloring of the three uncolored edges in the situation from Lem-
ma 6.4.
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Note 6.5. The first two cases in Figure 6.12 have more solutions but the rest
have only the one in this figure.

Note 6.6. The case a1 = a2 and a3a4 6∼a1 a5a6 really does not have a solution.
We may assume, without loss of generality, that a1 = a2 = 1, a3 = 2, a4 = 3,
a5 = 2 and a6 = 4.

The middle edge (the one colored with b3) has to be poor so b1 = b2. Thus
b1b3 ∼1 b2b3. But it is 23 ∼1 b1b3 and 24 ∼1 b2b3 and by transitivity of ∼1 we get
23 ∼1 24. A contradiction.

Theorem 6.7. Consider a graph G with a normal coloring c. We create a graph
G′ from G by adding a square to two edges e and f (inverse operation to the one
in Figure 6.9).

There is a normal coloring c′ of G′ whenever:

• c(e) 6= c(f) or

• c(e) = c(f) = x and the pairs of colors of neighbours of e and f are ∼x

equivalent.

Proof. We color every edge that is both in G and G′ with the same color as in
the coloring c. The four edges adjacent to the square get colors according to c(e)
and c(f) — see Figure 6.13.

c(e) c(e)

c(f ) c(f )

c(e)

c(f )

G′G

Figure 6.13: Adding a square.

That makes all the edges that are both in G and G′ normal.
Now we need to find colors for the edges of the square in such a way that the

new edges will be normal.
We split the square into two symmetric parts as in Figure 6.14 and color first

the left part using Lemma 6.4.

c(e) c(e)

c(f ) c(f )

A

C

B

D

Figure 6.14: Splitting the square. The capital letters represent the pairs of colors
one more time.
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x1 x2

x3 x4

y1

y4

y2 y3

x1 x2

x3 x4

y
′

1

y
′

4

y2 y3

y
′′

1

y
′′

4

Figure 6.15: Notation for edges.

For the notation for edges see Figure 6.15. The notation for pairs of colors of
edges adjacent to x1, . . . , x4 is in Figure 6.14.

According to Lemma 6.4 we can color the edges y′1, y2 and y′4 in such a way
that x1, y2 and x3 are normal unless c(e) = c(f) and A 6∼c(e) C which is exactly
the case we have excluded in this theorem. So we color y′1, y2 and y′4 using
Lemma 6.4.

It holds A ∼c(e) B and C ∼c(f) D so coloring y′′1 with the came color as y′1, y3
as y2 and y′′4 as y′4 makes the edges x2, y3 and x4 normal. And finally, if we use
these colors in the former — not split — square (for y1 and y4 we use the colors
of y′1 and y′4), the edges x1, . . . , x4, y2, y3 will be still normal and y1 and y4 will be
poor.
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Conclusion

We examined some weakenings of Jaeger’s conjecture of the form: for all graphs
in a specific class of cubic graphs there is a proper 5-edge-coloring with at least
a given number of edges normal.

We showed how to color all generalized prisms in such a way that 2/3 of the
edges are normal. Namely, the edges of both cycles of generalized prisms are
normal in our coloring. There arise several possibilities of improving this result.
We can extend the class of generalized prisms by allowing diagonals or adding
one or even more cycles. Natural improvement is also increasing the number of
normal edges.

Then we colored graphs without cycles of length less than 2h in such a way
that at least |E(G)|

2
· 2h−2
2h−1

edges were normal. This is less that the 2
3
|E(G)| we

proved for the generalized prisms, but we do not require any special structure of
the graph besides the absence of short cycles.

Also, we proposed a different way to look at normal coloring — chains. We
proved some statements about cuts in a normally colored graph, which also follow
from Petersen flow, and another statement, that in an almost normally colored
graph there cannot be only one not normal edge. We hope that chains may help
with further progress in Jaeger’s problem.

Finally, we investigated a square in a normally colored graph and we out-
lined obstacles in a way to prove that the minimal counterexample to Jaeger’s
conjecture does not contain a square.
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