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Study programme: Fyzika

Specialization: Obecná fyzika
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supervision. I am grateful to RS Dynamics for supporting my research and for
bringing my attention to this exciting topic.



I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In ........ date ............ signature of the author
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1. Introduction

The purpose of this chapter is to discuss the motivation and challenges behind
Electrical impedance tomography (EIT) and to summarize its history and cur-
rent applications, amongst which medical EIT is of main interest. Regarding
applications in medicine, the rationale for applying EIT to a particular problem
will be discussed and basic aspects of the interaction of electric fields with bio-
logical tissues will be studied. To examine the main differences between EIT and
well-established imaging techniques, the mechanisms of their operation will be
outlined.

Furthermore, special focus will be given to the possibility of performing female
breast examinations with EIT. Firstly, arguments, justifying the use of impedance
techniques for breast cancer detection will be given. Secondly, a number of breast
EIT systems, which have been constructed to date will be reviewed to outline the
approaches to breast scanning by impedance tomography.

1.1 What is the motivation of EIT?

Electrical impedance tomography (EIT) is an imaging technique which attempts
to provide information about the interior electrical properties of a body under
consideration. Its main objective is to reconstruct the distribution of electrical
conductivity inside the body by acquiring a set of voltage measurements from
electrodes positioned on its boundary - the inverse problem. Optionally, deter-
mining both the amplitude and phase angle of the voltage measurements can
provide information about both conductivity and permittivity, allowing for the
reconstruction of the admittivity distribution within the object.

The goal of EIT development is to provide a cost-effective imaging modality
mainly for geophysical, industrial and medical applications. This thesis will focus
on some of the means of using EIT to monitor the physiology of organ systems
and to detect malignant tissue. Unlike many established imaging modalities in
medicine such as Computed Tomography (CT), Positron Emission Tomography
(PET) and Mammography, EIT does not expose the patient’s body to ionizing
radiation and the electrical current applied during the scanning process conforms
to limitations on its magnitude as well as on the total amount of power dispersed
within the subject as prescribed by safety standards.

However, the advantages of using electricity to scan the human body have to
be traded off against the quality of the images produced. Poor spatial resolution
compared to that of established imaging techniques is seen as a major disad-
vantage. It can be attributed to the complexity of the inverse problem which is
highly nonlinear compared to that of i.e. Computed Tomography.

The topic of medical EIT, including the justification of use, will be further
discussed later in this chapter.

1



1.2 What are the challenges of EIT?

The design of an acquisition circuit collecting boundary measurements must be
suited for a given application of EIT. For example, fast acquisition of voltage
measurements is necessary in medical applications for patient comfort and in
situations, where the time-difference character of a succession of images offers
valuable information. Naturally, designing such a circuit while avoiding parasitic
effects has its difficulties.

Based on the description given in section 1.1, from a mathematical point of
view, EIT can be classified as an inverse boundary value problem. In a situa-
tion, where we measure a response (output) of a system to a particular stimulus
(input) to study the system structure, we are dealing with an inverse problem.
In theory, a set of all possible boundary measurements does uniquely determine
the admittivity distribution in the interior of the body of interest [121]. This
complete set of measurements is highly ideal, as in practice, only a reduced set
may be obtained. The challenge here is to optimize the placement of electrodes
and make a suitable choice of stimulation and measurement patterns for a given
placement.

Furthermore, specifically adapted inversion techniques must be employed to
tackle this problem, since when attempting the reconstruction of images through
numerical calculations the resulting system of equations is ill-conditioned. Mean-
ing that, without the help of regularization techniques designed to treat this ’de-
ficiency’, it would not be possible to obtain any results. These advanced methods
are usually based on imposing constraints on the sought solution based on avail-
able a priori information such as an estimate on the conductivity distribution or
its smoothness.

In addition to these difficulties, the solution to the inverse problem necessi-
tates the ability to determine electric fields in the interior of the body for each
stimulation pattern given its geometry and a chosen electrode placement - the
forward problem. For certain special geometries, these may be determined ana-
lytically. For arbitrary shapes of the body of interest, the finite element method
(FEM) is well-suited. Furthermore, the formulation of the problem in finite ele-
ments has to include a description of electrode placement, while accounting for
physical effects occurring at the electrode-skin contact.

In summary, the design of an integrated EIT system requires a considera-
tion of all problems mentioned above and prompts collaboration between math-
ematicians, physicists, engineers and professionals working in the desired area of
application.

1.3 History

The idea of using electric fields and related natural phenomena to inspect a
physical object via measurements obtained on its boundary has been first put
into practice in geophysics. Determining soil resistivity using an arrangement
of electrodes placed on the earth’s surface was described around the year 1920
by the Schlumberger brothers. These techniques were further improved to allow
for 1D lateral and vertical profiling of the resistivity of Earth’s surface, laying
the foundations of 2D profile reconstruction. The ideas were expanded to the
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third dimension by Electrical Resistivity Tomography (ERT), an analogue of
EIT where one is only concerned about the real part of the admittivity. The
omission of capacitive effects is acceptable in geophysics, since the resistivity
carries the majority of information about the composition of soil. An overview
of the techniques employed in geophysical resistivity surveys can be found in [88]
[75].

Moreover, many important developments in the early theory of inverse prob-
lems can be traced back to geophysics. An important figure in the field of inverse
problem theory and regularization was Andrey Nikolayevich Tikhonov, a promi-
nent Russian mathematical physicist, who lived in the 20th century. Geophysics
was one of Tikhonov’s main areas of interest and during the World War 2, he was
tasked by the Geophysical Institute of the USSR Academy of Sciences to investi-
gate the effectiveness of DC electrical prospecting methods [138]. Tikhonov was
well aware of the ill-posedness of the inverse problem and such problems were still
considered impossible to solve at the time. He was surprised when his collabora-
tion with practical geophysicists yielded useful results which led to the discovery
of oil deposits in the Ural region. The geophysicists were able to solve the in-
verse problem by restricting their search to solutions which were intuitively more
likely and natural. This led Tikhonov to incorporate a mathematical analogue
of intuition into the solution to inverse problems, and in 1943 the foundation
to Tikhonov regularization theory for solving ill-posed inverse problems was laid
[125].

Amongst the first research works taking on the challenge of focusing the tech-
niques described so far on medical applications are [59], [68], [13]. Researchers
of Sheffield University D. C. Barber and B. H. Brown [14] are credited with the
first tomographic image produced by EIT - a cross-section of a human forearm.

1.4 The EIDORS software package

In this section a result of a joint effort of a number of EIT researchers to provide
a unified software base for EIT image reconstruction. Utility of the EIDORS
suite will be further studied in this thesis. A description of some of the forward
and inverse techniques it employs will be given along with examples of use. The
system offers a variety of possible treatments of both forward and inverse problems
compiled from various researchers and represents an important vantage point
overlooking the current state of EIT image reconstruction research.

Around the year 2000, EIT research consisted of the efforts of separate teams,
each taking a slightly different approach to the problem. Hand in hand came dif-
ferences in implementation and consequential mutual incompatibility of software
solutions to the forward and inverse problems of EIT and other related imag-
ing methods like Electrical Capacitance Tomography (ECT) and Diffuse Optical
Tomography (DOT).

An attempt to provide a unified software base for EIT and similar problems
was made by the cooperation of researchers at the University of Kuopio Finland
and the University of Manchester Institute of Science and Technology (UMIST)
(now a part of the University of Manchester) starting the Electrical Impedance
and Diffuse Optical Reconstruction Software (EIDORS) project [85]. The 2D
EIDORS software package based on Matlab code developed earlier at Kuopio [128]
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was released under the GNU General Public License and offered the possibility of
using finite element meshes generated by external software. The forward solver
used the complete electrode model and supported linear or quadratic elements,
while reconstruction was based on the regularized Newton’s method, using a
discrete differential operator to impose a priori smoothness on the solution.

However, the developers soon saw the need for a full 3D approach as no good
approximation to the 3D problem using 2D reconstruction was ever found. Code,
enabling the three-dimensional approach, was written at Kuopio [130], but could
not have been released due to commercial license limitations. In 2002, researchers
at UMIST released the ’EIDORS 3D’ software package [108] offering some of the
features of the Kuopio code, based on the doctoral thesis of Polydorides [107].
The Matlab system provided model interface between forward and inverse solvers
for the full 3D problem along with basic image visualization capabilities. Its im-
plementation allows for handling of arbitrary finite element meshes generated by
external software and offers built-in support for the Netgen mesher in particular
[113]. Integration with Netgen allows for an accurate introduction of the elec-
trodes and their positions into the model, namely control over mesh refinement
near contact surfaces according to their shape.

The years following the release of EIDORS3D saw a tendency of researchers
to download the software and customize it to suit their needs. Resulting mod-
ifications of EIDORS code were usually mutually incompatible and did not fit
the idea of a common software base for all purposes. This lack of extensibility
and modularity was remedied by complete restructuralization of the EIDORS3D
codebase [9] offering object-oriented approach to the data structures handled,
interface for plug-ins and caching capabilities. The package is currently hosted
at Sourceforge and may be used freely under the GNU General Public License.
A brief overview of the new system architecture and examples of use (including
common pitfalls) is given by Adler & Lionheart in [10].
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2. Can EIT be of help in
medicine?

In this chapter, an overview of the response of biological tissues to applied electri-
cal fields will be given. Physical quantities, used to measure these characteristics
(termed ’dielectrical properties’), will be introduced, and a brief review of report-
ed values of these quantities will be assembled and presented in both tabular and
graphical format. Furthermore, potential areas of applicability of EIT in medicine
will be listed, amongst which screening for breast cancer is of main interest to
this thesis. To lay a reliable foundation to the claims to be made, rationale for
the use of electroimpedance techniques for breast scanning will be discussed.

2.1 Dielectrical properties of tissues

2.1.1 General properties and approximate models

Tissues of living organisms are complex structures consisting of an arrangement
of cells interleaved with extracellular space. Individual cells are surrounded by
semipermeable membranes composed of lipids that give the cells capacitive prop-
erties. Extracellular and intracellular space both contain water with varying
amounts of ions dissolved in it which conducts electricity fairly well [139], [61, p.
411]. Thus when an alternating electric field with angular frequency ω is applied,
we describe the electrical properties of tissue using electrical admittivity (the
reciprocal of impedivity) to account for both conductivity and specific reactance

γ(x) = σ(x) + iωε0εr(x)

where σ(x) is electrical conductivity measured in Siemens per meter (S·m−1), i is
the imaginary unit, ε0 is the dielectric constant of free space, εr(x) is the relative
permitivity. The dielectric constant of free space and the relative permittivity
may be combined ε0εr(x) = ε(x) to form a quantity called the permittivity, the
unit of which is Farad per meter (F·m−1). Here both conductivity and permi-
tivity vary with spatial position and need to be represented by a function of the
position vector x ∈ R3, characterizing their distribution within the body of inter-
est. The entire imaginary part of the admittivity is called the susceptivity and
characterizes the specific reactance of the material.

In order to avoid confusion, it has to be noted, that some authors introduce
complex relative permittivity in the form

ε∗r(x) = ε′r(x) + i · ε′′r(x)

Where the real part represents the relative permittivity ε′r(x) = εr(x) and the
imaginary part satisfies ε′′r(x) = σ(x)/ωε0. Furthermore, the term ’dielectric
constant’ is sometimes used to represent the relative permittivity. However, the
use of this term is deprecated and should be avoided.

To describe the dependence of the admittivity of biological tissue on frequency
we briefly consider the equivalent impedivity (the reciprocal of admittivity) rep-
resentation. To characterize a cell as an impedance, we may take a model circuit
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consisting of a parallel connection of a resistor (Re) representing the resistance of
the extracellular space with a serial connection of a capacitor (Cm) representing
the capacitive effects of the cellular membrane and a resistor (Ri) modeling the
intracellular resistance [61, p.411].

Figure 2.1: Simple equivalent circuit of a cell

At low frequencies, current cannot enter the intercellular environment because
of capacitive effects at the membrane, and is therefore restricted to the extracel-
lular space, which represents a minority in the composition of tissue in general,
and thus the resulting overall impedance is mostly real and relatively high. As
the frequency of the current applied increases, the reactance of the membrane
decreases, permitting current flow through the parallel connection of Re and Ri.
The impedance at frequencies sufficient for the omission of membrane reactance
is again mainly real and smaller than at low frequencies. As this system is taken
between the two ”extremal” points by increasing the frequency of the applied
current a particular value ωc called the center frequency is passed which is a use-
ful characteristic of an impedance since at this frequency, the amount of current
conducted by the intracellular space is maximum.

Furthermore, when the dependence of permittivity on the frequency of the
applied current of many types of biological tissue is plotted, the resulting curve
is decreasing (reactance decreases) with three characteristic steps called the α-
dispersion, β-dispersion and γ-dispersion regions [117]. The α-dispersion region
is usually centered at 100 Hz. β-dispersion occurs in the 10 kHz - 10 MHz range
with γ-dispersion being found at higher frequencies. The biophysical mechanisms
responsible for these phenomena are outside the scope of this thesis. However,
they are of interest to EIT practice focused on detecting malignant tissue, since
the majority of changes between normal and pathological tissue has been found
to occur in the α and β regions [17]. Therefore EIT systems typically operate
between 100 Hz and 100 MHz [61, p. 411]

2.1.2 Review of tabulated data

An important study of the dielectric properties of various types of tissue from
different samples across mammalian species is given by Gabriel et. al [47], [48],
[49]. In [47] a review of dielectric characteristics from numerous sources over
the second half of the 20th century is given in convenient graphical format. The
authors provide their own experimental data in [48] and compare them to the
previously reported measurements. To complete their investigation, parametric
models for the description of the dependence of electrical properties of tissue on
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frequency are introduced in [49]. In addition to these important research works,
Gabriel C. gives a compilation of the dielectric properties of tissue at RF and
microwave frequencies in [46]. This technical report presents data quantifying
the variation of dielectrical properties of different types of tissue extracted from
multiple species with frequency in both graphical and tabulated format.

To help form a qualitative picture of the response of tissue to electric fields a
brief summary of the dielectrical properties of select tissues was assembled and
will be presented in both tabular and graphical format.

Table 2.1 contains the values of relative permitivity εr and conductivity σ for
blood, fat, lung tissue, muscle tissue and skin in the range of frequencies common-
ly used by EIT as reported in [46]. All measurements were carried out at 37 ◦C
with the data set species specification given in parentheses. Skin measurements
were carried out on a human forearm in-vivo. Values presented by the table are
plotted in figure 2.2.

Even though tissue samples were extracted from various mammals, the da-
ta shown should not be considered misleading. While there are certainly mor-
phological differences between tissues of individual mammalian species, the data
compiled by [47] providing a species-wise comparison, suggest the variations for
a given frequency and tissue type may well fall within the uncertainties of the
presented measurements and are not of systematic origin [46, p. 7]. Surely, there
is an amount of uncertainty associated with the measurement of dielectric prop-
erties of tissue, that can never be eliminated solely because it is, amongst other
factors, influenced by the heterogeneity of samples acquired from one species.
This stems from the fact, that dielectrical properties of tissue depend upon the
chemical content, temperature, time elapsed since the sample was extracted (in
vitro, as opposed to in vivo).

To support this argument, let us examine the first two data sets of table 2.1
outline the dependence of dielectrical properties of fatty tissue on frequency. By
comparing the two data sets representing human breast fat tissue and bovine fatty
tissue respectively, it can be concluded that they do not differ significantly. This,
although inconclusively, supports the claim, that the species-to-species difference
in dielectrical characteristics is within the uncertainty of measurements.

To confront data in table 2.1 with those provided by other authors, table 2.2
was assembled. It contains data from various samples at different temperatures.
The reader is referred to the corresponding sources for details. Data presented by
[115] represent a compilation of results from multiple researchers sampling tissues
of different mammals at various temperatures. The measurements in [116],[105]
were taken at 37 ◦C. When a value in the form of a/b for lung tissue is given, a
represents the value in inflated state, whereas b represents the value in deflated
state.
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Figure 2.2: Conductivity and permittivity data from table 2.1 plotted against
frequency. Notable difference between the dispersion behavior of different types
of tissue is apparent. On the other hand, values of both conductivity and permit-
tivity for bovine fatty tissue and human breast fat are in agreement, supporting
the claim that species-wise variations in the dielectrical properties of the same
type of tissue are not of systematic origin
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Table 2.1: Dielectrical properties of tissues as presented by [46]

Breast Fat (Human) Fat (Bovine)
f [Hz] εr σ [S·m−1] f [Hz] εr σ [S·m−1]
10 1.3 · 107 1.57 · 10−2 10 1.1 · 107 1.46 · 10−2

100 4.3 · 105 2.15 · 10−2 100 5.7 · 105 2.23 · 10−2

1 · 103 1.2 · 104 2.29 · 10−2 1 · 103 2.1 · 104 2.46 · 10−2

5 · 103 1.2 · 103 2.31 · 10−2 5 · 103 2.6 · 103 2.53 · 10−2

1 · 104 5.3 · 102 2.31 · 10−2 1 · 104 1.1 · 103 2.56 · 10−2

5 · 104 1.1 · 102 2.35 · 10−2 5 · 104 1.9 · 102 2.60 · 10−2

1 · 105 6.2 · 101 2.35 · 10−2 1 · 105 9.5 · 101 2.62 · 10−2

5 · 105 2.2 · 101 2.34 · 10−2 5 · 105 3.3 · 101 2.65 · 10−2

1 · 106 1.5 · 101 2.34 · 10−2 1 · 106 2.3 · 101 2.67 · 10−2

4.8 · 106 1.2 · 101 2.81 · 10−2 5 · 106 1.7 · 101 2.74 · 10−2

1 · 107 1.0 · 101 2.96 · 10−2 1 · 107 1.5 · 101 2.73 · 10−2

Inflated Lung (Ovine) Muscle (Ovine)
f [Hz] εr σ [S·m−1] f [Hz] εr σ [S·m−1]
10 3.0 · 107 2.57 · 10−2 10 4.1 · 107 2.23 · 10−1

100 1.4 · 106 4.76 · 10−2 100 1.2 · 107 2.58 · 10−1

1 · 103 9.7 · 104 5.39 · 10−2 1 · 103 5.9 · 105 3.44 · 10−1

5 · 103 2.8 · 104 6.00 · 10−2 5 · 103 5.9 · 104 3.57 · 10−1

1 · 104 1.6 · 104 6.37 · 10−2 1 · 104 3.0 · 104 3.62 · 10−1

5 · 104 4.9 · 103 7.38 · 10−2 5 · 104 1.3 · 103 3.76 · 10−1

1 · 105 3.0 · 103 8.00 · 10−2 1 · 105 9.5 · 103 3.93 · 10−1

5 · 105 9.6 · 102 9.70 · 10−2 4.8 · 105 3.7 · 103 5.30 · 10−1

1 · 106 5.8 · 102 1.02 · 10−1 1 · 106 1.7 · 103 5.85 · 10−1

4.8 · 106 2.6 · 102 1.49 · 10−1 4.8 · 106 2.7 · 102 6.56 · 10−1

1 · 107 1.4 · 102 1.79 · 10−1 1 · 107 1.5 · 102 6.70 · 10−1

Wet Skin (Human) Dry Skin (Human)
f [Hz] εr σ [S·m−1] f [Hz] εr σ [S·m−1]
20 8.0 · 104 2.89 · 10−4

100 5.6 · 104 3.32 · 10−4 100 1.3 · 103 1.81 · 10−4

1 · 103 4.0 · 104 7.10 · 10−4 1 · 103 1.2 · 103 1.80 · 10−4

5 · 103 3.3 · 104 2.25 · 10−3 5 · 103 1.1 · 103 2.10 · 10−4

1 · 104 3.0 · 104 4.49 · 10−3 1 · 104 1.0 · 103 2.49 · 10−4

5 · 104 2.1 · 104 2.80 · 10−2 5 · 104 9.7 · 102 5.34 · 10−4

1 · 105 1.6 · 104 5.93 · 10−2 1 · 105 9.3 · 102 8.93 · 10−4

5 · 105 4.7 · 103 2.06 · 10−1 5 · 105 8.51 · 102 4.86 · 10−3

1 · 106 2.1 · 103 2.70 · 10−1 1 · 106 7.9 · 102 1.19 · 10−2

4.8 · 106 5.5 · 102 3.80 · 10−1 5 · 106 4.9 · 102 9.54 · 10−2

1 · 107 2.4 · 102 4.30 · 10−1 1 · 107 3.0 · 102 1.74 · 10−1
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Table 2.2: Dielectric properties of select types of tissue. The data was collected from various sources.

Blood Fat Lung Muscle Skin
Frequency f [ref.] εr σ [S·m−1] εr σ [S·m−1] εr σ [S·m−1] εr σ [S·m−1] εr σ [S·m−1]

10 Hz [116] 0.088 0.102
10 Hz [114] 0.063-0.111 0.067-0.125
100 Hz [114] 0.067-0.125 0.07-0.13

100 Hz [115] 450·103 800·103

1 kHz [114] 0.08-0.13 0.08-0.14
1 kHz [115] 2.9·103 0.56-0.77 50·103 0.04-0.06 90·103 0.1 130·103 0.13
10 kHz [114] 0.08-0.13 0.08-0.17
10 kHz [116] 20 25 0.105 55 0.131
100 kHz [115] 2.7·103 0.68 0.50-0.61 30·103 0.40-0.59
100 kHz [116] 0.50-0.60 0.42-0.58
1 MHz [115] 0.71 0.56-0.67 2·103 0.48-0.63
1 MHz [116] 2040 0.56-0.67 0.50-0.60
10 MHz [115] 200 1.11 0.67-0.91 0.58-0.67

13.56 MHz [105] 155 1.16 38 0.21 42/94 112 0.74 120 0.25
27.12 MHz [105] 110 1.19 22 0.21 29/57 0.13/0.32 98 0.76 98 0.4
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2.2 Areas of EIT use in medicine

EIT shows potential to be used in a number of areas of clinical practice [61], [15].
It may play an important role in diagnostics, monitoring of diseases and the study
of physiological processes as a technique, which is harmless, cheap and fast, would
be of great value in those areas. EIT was found to have a plethora of potential
application, to name a few, its utility EIT was studied in the following areas:
pulmonary function, detection of breast tumors, monitoring of gastric emptying
and brain imaging.

To picture the origins of EIT devices, it is important to mention Sheffield
APT (Applied Potential Tomography1) systems which count among the first EIT
devices for potential use in clinical practice constructed [26].

In addition to specific-purpose EIT systems described in the following sections,
Multi-purpose devices should be mentioned. A project aimed at generality is the
ACT system developed at the Rensselaer Polytechnic Institute [38] the most
recent version of which is the ACT-4 (2007) [87]. The ACT-4 was used for breast
cancer detection and will be discussed further in section 2.4.

A more recently developed system is the KHU (Kyung Hee University of
Korea) apparatus [103], [102] whose present version is the Mark 2.5 (2014) [132]
featuring automatic hardware parameter calibration to counteract signal-to-noise
ratio decline with long-term usage. Its authors plan to use it in stroke, intracranial
bleeding detection, monitoring neural, cardiac activity and ventilation.

The possibility of breast examination using EIT will be discussed in more
detail in the next section (2.4.1).

2.2.1 Studying pulmonary function via EIT

The main aspects of pulmonary function studied by EIT are ventilation and
detection of blood clots in the lungs. Other imaging modalities such as X-ray
imaging, CT and MRI can be used for the same purpose with high spatial resolu-
tion. However the patient has to be exposed to ionizing radiation in the process
- a drawback EIT seeks to eliminate.

EIT is particularly suited for the imaging of lung ventilation since the conduc-
tivity of lung tissue decreases with inhalation of air giving high relative contrast
through a succession of images depicting the process of breathing. In terms of
instrumentation, a significant number of clinical studies carried out in lung EIT
used devices based on the Sheffield systems [26] developed by D.C. Barber and
B. Brown who started investigating EIT in the 1980s [13]. These systems use be-
tween 8 and 32 electrodes placed in a transverse plane around the thorax. Current
is driven through pairs of electrodes and differential voltage measurements are
collected. Reconstruction is based on linear, one-step algorithms structurally
similar to the original back-projection methods developed in Sheffield.

Recently, a collective of prominent researchers in EIT development centered
around the GREIT project [7], focused on consolidating the current state of
knowledge regarding lung EIT, assessed the progress made in various clinical
applications and gave a summary of their individual technical difficulties and un-
resolved problems [6]. The authors regarded potential applications in ventilation

1an expression for EIT used in the early works of Barber & Brown
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imaging as the most promising.

2.2.2 Brain EIT

An attractive possible use of EIT is imaging of the human brain, where it can be
used to visualize blood flow, detect ischaemia, stroke and even monitor neuronal
activity. One of the main difficulties of brain scanning with EIT is posed by the
skull, which is highly insulative. However,there are situations , where an invasive
placement of electrodes has its advantages [89]. In the beginning of brain EIT,
when only the early Sheffield systems were available, imaging was difficult, since
these systems used adjacent drive patterns (driving current through a pair of
neighboring electrodes) resulting in very low sensitivity in the center of the head
as the majority of the current was shunted by the skull. An another complication
in brain EIT reconstruction models is the fact that the skull and white matter
are highly anisotropic and thus authors point to the need for incorporation of
anisotropy into the formulation of the problem [5].

On a different note, EIT could be used to provide a fast response modality
visualizing the brain of stroke patients. In the event of a stroke, it is important
to distinguish between the haemorrhagic and ischemic case, because if ischaemic
stroke occurs, medication may be administered. This can only be done with the
help of scanning as clinical appearances of both types are identical. It has been
demonstrated that an attempt to treat ischaemic stroke using thrombolytic agents
reduces mortality and the severity of long term consequences. To enable this
treatment, the imaging and diagnosis must be carried out rapidly. CT scans are
well-suited for imaging of stroke patients, since they have an exquisite sensitivity
for the detection of blood. However, it is mostly impossible to obtain an urgent
CT scan.

Romsauerova et. al. [110] investigated this possible use of EIT using the
UCLH Mk 2 multi-frequency (MFEIT) system [136], [93]. The idea was to use
the significant differences in the dependence of conductivity on frequency be-
tween ischaemic gray matter and healthy gray matter. However, they were not
able to sense this difference using their methods as more accurate measurements
over an even broader frequency range are thought to be required. They used a
linear reconstruction algorithm employing truncated singular value decomposi-
tion (tSVD) while the sensitivity matrix had been derived from an anatomically
realistic finite element mesh of the head.

2.2.3 Monitoring the gastrointestinal tract using EIT

Changes in gastric emptying can point to a variety of functional disorders of the
gastrointestinal tract. In the past, methods employing ingestion of radioactive
dyes by the patient or intubation were used. The benefits of using EIT as a
substitute are obvious. EIT has been show to provide a reliable method of gastric
monitoring of infants [101], providing a safe means of helping diagnose pyloric
stenosis - a narrowing of the opening of the stomach into the first part of the small
intestine with relatively high incidence which usually presents symptomatically
during the first few weeks after birth [81].
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2.3 Comparison of EIT with established imag-

ing techniques

It is without question, that by proponing EIT as an imaging technique in medical
practice, researchers stepped into a highly competitive environment. Years before
first EIT systems were designed, Computed Tomography (CT) was already a
thriving area of research. First CT systems started appearing in the 1970s and
their inventors, G. Hounsfield and A. M. Cormack received the Nobel Prize in
Physiology or Medicine in 1979. What’s more, CT is not the only strong opponent
EIT has to prove having an advantage over. In 1971 Paul. C. Lauterbur invented
Magnetic Resonance Imaging (MRI) and published the theory supporting the
method in 1973 [82]. Lauterbur, along with P. Mansfield, was awarded the 2003
Nobel Prize in Physiology or Medicine for their discovery.

In this section EIT will be compared with these imaging modalities in terms
of general advantages, while their performance in breast cancer examination will
be discussed in the next section.

2.3.1 Computed Tomography

To obtain an image using a CT system, a source of X-ray radiation is rotated
around the body being investigated [60]. A detector facing the source measures
the attenuation of the beam after passing through the body with the radial dis-
tribution of total beam attenuation along a straight line through the object (a
sinogram) constituting the inverse problem data. The attenuation distribution
may be viewed as a collection of projections, which are effectively Radon trans-
forms [100] of the object structure. Thus, the spatial attenuation coefficient dis-
tribution in a horizontal slice through the object may be recovered by applying an
inverse Radon transform, forming the basis of the classical filtered back-projection
algorithm for X-ray computerized tomography. The filtered back-projection ap-
proach has the advantage of being conceptually simple and computationally un-
demanding, however, it is susceptible towards certain types of image artifacts and
sophisticated reconstruction algorithms came to replace it.

The main advantage of CT compared to EIT is the simplicity of the inverse
problem, requiring less mathematical treatment than EIT reconstruction. Name-
ly, CT does not demand the ability to carry out forward computations, its inverse
problem is well-posed and does not require conditioning via regularization Fur-
thermore, Computed Tomography may be considered a true tomographic method,
since X-rays traveling through the human body practically do not deflect outside
the plane to be imaged, while EIT needs to address the necessity of taking a 3D
approach to image reconstruction because electric current travels through ’paths
of least resistance’ and can not be confined to a plane by EIT current driving
systems.

However, a CT scanning procedure cannot be carried out without exposing
the patient to X-ray radiation, which has gradually come to be a cause for concern
amongst medical professionals [24] and poses a risk to the patient’s health. This
drawback of any X-ray based method provides motivation for the development
of alternative imaging techniques based on different physical phenomena such as
EIT.
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2.3.2 Magnetic Resonance Imaging

Like EIT, Magnetic Resonance Imaging (MRI) is based on the physics of electro-
magnetic fields, however, its means of operation are based on a different aspect
of electromagnetism [27]. To perform an MRI scan on a human subject, the pa-
tient’s body has to be permeated by a strong magnetic field (0.1 - 3.0 T) which
aligns the angular momenta of hydrogen atoms in water molecules representing
a major constituent of the tissues of living organisms. The body is then subject-
ed to a Radiofrequency (RF) pulse at a frequency determined by the magnitude
of the static magnetic field, causing a change in the direction of the hydrogen
magnetic momenta, which will then relax to a stable state in a certain relaxation
time by emitting RF pulses. Different types of tissue had been shown to relax
at different times and this phenomenon forms the basis of the distinguishability
of various types of tissue by MRI. To allow for spatially specific imaging, gradi-
ent coils varying the magnetic field linearly throughout the imaged volume are
used, causing a variation in the RF frequency of the re-emitted pulse enabling
the determination of the position where it originated.

There are a number of ways of improving the clinical utility of EIT. For exam-
ple, when aiming to sense the contrast between benign and malignant tissue using
MRI, gadolinium is administered to highlight the difference between responses of
healthy and cancerous tissue. Furthermore, an another variant of the technique
which proved useful is functional imaging, where physiological changes in tumor
tissue are used to distinguish it from its surroundings. One of such techniques is
Diffusion Weighted Imaging (DWI) based on probing the flow of water through
cancerous masses in the female breast [79] as it is restricted in tumours due to
the increased packing density of the tissue.

As a breast scanning modality, MRI offers high sensitivity without subjecting
the patient to ionizing radiation. However, the sophistication of the method is a
cause for the high cost per scan and is seen as a significant disadvantage. Has-
san & El-Shenawee conducted a large-scale investigation into the characteristics
of different imaging techniques for breast cancer detection based on electromag-
netism and reviewed their success in clinical environments [58]. Individually, MRI
showed the highest sensitivity of all the methods presented.
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2.4 EIT and cancer of the breast

Over the period of EIT development, screening for breast cancer has gradually
become one of the most active areas of research. It can be argued, that amongst
all of the potential applications where utility of EIT is being investigated, breast
cancer detection has had the biggest number of positive results. One of the
reasons for this, is the fact that the breast can be seen as an extremal part of the
human body and thus can be surrounded by electrodes easily, whereas in other
medical applications, researchers have to deal with the insulative properties of the
skull, ribcage etc. Furthermore, an another great source of success of the method
is the significant difference between normal and malign breast tissue implying
a level of contrast in the reconstructed distributions which was shown to have
diagnostic value. This section provides evidence for the claims made in this
paragraph and reviews some breast EIT systems which had been developed over
the years of EIT research. For a quick summary of the most important features
of these systems, the reader is referred to figure 2.3.

2.4.1 Motivation & rationale

According to the 2014 World Cancer Report by the World Health Organization
breast carcinoma is the most common type of invasive cancer in women and
accounts for more than 20% of all cases of invasive cancer in women. As a
preventive measure, regular screening using mammography, for women deemed
at risk was introduced.

However, conclusions reached by P.C. Gotzsche [53] in the 2009 Cochrane re-
port on regular breast examination with mammography suggest that investments
into new screening methods for breast cancer detection are reasonable. To draw
a bottom line on regular breast cancer screening, the authors state the following

’..., screening appears to lower breast cancer mortality. However, the
chance that a woman will benefit from attending screening is very
small, and considerably smaller than the risk that she may experience
harm. It is thus not clear whether screening does more good than
harm.’.

This is due to the low specifity2 of the technique, which requires the use of
additional diagnostic methods amongst which biopsy of the suspicious tissue is
common. The results of biopsies are negative in a great number of cases [28].
Furthermore, low specifity implies a risk of overdiagnosis and overtreatment. In
addition to exposing the patient’s body to x-rays mammography screenings are
known to cause a significant amount of discomfort to patients. In conclusion,
even though the benefits of screening generally outweigh the possible harm done
by X-ray exposure [43], the fact that it may increase the risk of developing cancer
is undeniable.

In summary, there is a clear demand for a low-risk imaging modality having
the potential to replace mammography in terms of specifity in female breast
examination. A number of medical professionals and EIT researchers believe
impedance imaging may fulfill these requirements. Support for this proposition

2the ability of an examination to distinguish between harmless and pathological findings
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has to be built by discovering consistent means of distinguishing between healthy
breast tissue and various malformities.

Attempts to test the hypothesis that the dielectrical properties of malignant
and healthy tissue differ, date back to the 1920s [45]. This research helped fuel
the investigation into possible methods of medical examination utilizing dieletrical
properties.

A suitable startpoint for the investigation into the current state of knowledge
regarding the contrast between malignant and normal breast tissue is an arti-
cle by Y. Zou [139], which reviews the findings of a number of researchers who
gathered in vivo and in vitro comparative measurements of the dielectrical char-
acteristics of normal and cancerous breast tissues. From the reviewed in vitro
data, its authors draw a clear conclusion, that there are significant differences
in electrical impedance between healthy and malignant tissue. To be precise,
cancerous tissues were shown to have a higher conductivity and/or permittivi-
ty. This is attributed to various morphological differences between healthy and
cancerous cells of corresponding type and altered structure of the tissue itself.
For example, J. Jossinet reported that the modulus of impedivity of cancerous
tissue (about 400Ω· cm at 1 kHz) is lower than that of non-pathologic fatty tissue
(about 2000Ω· cm) [69], [67].

Additionally, data from reviewed in vivo measurements further support the
claim, that cancerous breast tissues have lower impedance. In addition, results
by Morimoto et. al. [96] were reviewed, suggesting impedance techniques may be
specific regarding benign vs. malignant contrast. The authors presented results,
obtained from in-vivo invasive measurements, in the form of characteristics of the
equivalent circuit described earlier in section 2.1. Their results showed that Cm

of breast cancer tissue was ’significantly lower than that of benign tumors’, while
Re, Ri of malignant breast tumors were ’significantly higher than those of benign
lesions’.

Research into the dielectrical properties of breast tissue carried out by J.
Jossinet laid the foundation to investigations into the possibility of distinguish-
ing between malignant and normal breast tissue by acquiring impedance mea-
surements over a frequency range. In 1998, he acquired a set of 120 impedivity
spectra of breast tissue immediately after excision through the 488 Hz - 1 MHz
frequency range [70].

Three groups of tissue were examined - normal tissue, benign pathological
tissue and carcinoma tissue. The first important observation Jossinet made is
the fact that there is no significant correlation between impedivity and patient
age (except in the mastopathy case). An another encouraging discovery was
made - according to the author, there is no signifcant difference between groups
of normal tissue and those exerting benign pathology. Finally, it was found,
that the carcinoma group differed from all other groups by low-frequency-limit
resistivity, fractional power and the phase angle at frequencies above 125 kHz.
The results of the study indicate that impedance spectroscopy may be applicable
as a method of diagnosing breast cancer.

Upon the basis of his previous research, Jossinet proposed methods, based
on the statistical analysis of breast tissue impedance spectra, to discriminate
between several classes of breast tissue [39]. He tested his ideas on a data set
comprising 106 cases with overall classification efficiency of approximately 92%,
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while being able to correctly identify carcinomas in 86% of cases. By achieving
a sensitivity and specifity rate this high, using an impedance-based technique for
breast cancer detection, Jossinet’s study undoubtedly provided encouragement
to all researchers aiming to utilize electrical impedance methods in breast cancer
examination.

2.4.2 Approaches to breast EIT

Approaches to breast EIT may be divided into three main branches - electrical
impedance mapping (EIM), tomographic imaging and full 3D reconstruction.

Firstly, it should be noted, that the ’EIM’ abbreviation is also used to rep-
resent a more general term - Electrical Impedance Mammography. EIM systems
usually employ a rigid planar array of electrodes which is pressed against the
patients breast. This may be seen as an advantage in itself, as the breast is
compressed to form a thin layer between the array and the ribcage. To sink the
current brought in by a chosen electrode of the array, a distant electrode is used,
usually held in the patient’s hand.

An another advantage of EIM devices is the relative simplicity of the solution
to the inverse problem employed by these systems. These systems usually perform
image reconstruction based on back-projection methods, which do not require the
same degree of sophisticated treatment as conceptually more complex methods.

In tomographic imaging systems, the electrodes are placed in a rigid circular
array inside a scanning head surrounding a region of the plane defining a 2D
slice through the breast which is inserted into the scanning head of the device.
It has to be noted, that EIT cannot be considered a true tomographic modality
and thus the T in EIT is a bit of a misnomer. This is because electrical current
travels through ’paths of least resistance’ and can never be confined to a plane
as opposed to X-rays used by CT. Scanning heads for tomographic systems may
contain more than one array and allow for imaging at different depth levels.

The attempt to account for and capture this ’deflection’ of current outside
the plane defined by a planar arrangement of electrodes is made by full 3D recon-
struction, which utilizes measurements captured by a scanning head with various
electrode arrangements to reconstruct 3D conductivity distribution for the do-
main representing the breast as a whole.

Pilot developments of breast scanning applications of EIT had shed more
positive light on the most important question - Can EIT provide a reliable imaging
modality which performs comparably or as an adjunct to other methods?

2.4.3 Electrical impedance mapping (EIM) devices

The T-Scan TS2000

In the early days of EIT development Piperno et. al. conducted a large scale
clinical study on the effectiveness of various modalities of breast cancer detec-
tion [106]. One of the techniques investigated was the ’Mamoscan’ EIM device
which was further developed and later marketed as the ’TS2000’ [11] and ap-
proved by the Food and Drug Administration of the United States as an adjunct
to mammography. The study was carried out on 6000 patients, 745 of whom
had histologically confirmed malignancies. The results were amongst the earliest
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encouragements to EIT researchers, as EIT had the greatest number of correct
findings of all ’competitors’. Furthermore, in a total of nine cases, EIT was the
only modality to alert the examinators to a presence of a malignancy.

Among other groups, who demonstrated the utility of the TS2000, are Martin
et. al. [92] and Glickman et. al. [51]. Glickman et. al. even developed a
postprocessing algorithm which automatically recognized bright focal spots on
and was able to distinguish between cancerous and benign/normal tissue using
predictors. The authors reported sensitivity of 84% and specifity of 52% in a test
group of around 600 patients.

TCI’S electric mammograph

An EIM device, simmilar to the TS2000 mentioned above was constructed by
Cherepenin et. al. [35], and used 256 electrodes arranged in a square array, the
size of which was 12 cm. To reconstruct ’grayscale’ horizontal slices of conductiv-
ity distribution within the breast, a weighted back-projection method was used.
Back-projection methods are analytic in nature and provide an expression for the
conductivity σ(x).

The device was tested clinically on a sample of 21 women with tumours.
The authors claim, that 86% of examinations by EIT were fully or partially
consistent with diagnoses made by other independent methods. Furthermore,
The device was patented by TCI (Technology Commercialization International
Inc. of Albaquerque USA) who supported the research.

A year later, the same group remodeled their electrode array to form a circu-
lar pattern improving the potential efficiency of electrodes that were previously
planted in the corners of the earlier square arrangement. With this improved de-
vice, they had not carried out any clinical examinations, but studied the influence
of hormonal changes during menstrual cycles on the attributes of images [36].

MEIK

The research of Cherepenin and his colleagues, conducted at the Institute of
Radiotechnology and Electronics of the Russian Academy of Science, formed a
knowledge basis for electrical impedance mammography, which was later drawn
from by Karpov A.Yu, head of the perinatal department of the Clinical Hospital
nr. 9 in Yaroslavl, whose work led to the development of the first ”MEIK” electri-
cal impedance mammography system patented in 2003 in the Russian Federation
and the US [4]. The MEIK apparatus uses 256 electrodes in a planar array and
shares its specifics with earlier devices developed by Cherepenin et. al.

In 2003 SIM-technika ltd. set up commercial production of the MEIK device
and after obtaining the necessary approval certificates and the system came to be
used in Russia, Europe and Asia. The device was further improved and received
EC certification in 2006.

Utility of the system in clinical practice was examined during a study by
Campbell et. al. [30] which concluded with encouraging results regarding sensi-
tivity and specifity. Prasad et. al. [109] compared the sensitivity of EIT using
the MEIK system to ultrasonography and mammography using a group of 88
patients and found the total sensitivity of EIT comparable to that of mammog-
raphy. In conclusion, the authors supported the possibility of using EIT as an
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adjunct to mammography and ultrasonography in breast cancer detection, but
recommended further investigation into the specifity of EIT imaging.

2.4.4 Tomographic imaging

Dartmouth University 1st generation EIS system

The first study to test a tomographic imaging method in clinical environment was
carried out by Ostermann et. al [104], who performed absolute reconstruction
of permittivity and conductivity distributions within slices using measurements
collected by an EIT system derived from the first-generation Electrical Impedance
Spectroscopy (EIS) system (2000) developed at Dartmouth College [57].

Unlike in the majority of EIT devices, data is acquired in voltage drive mode
- voltages are applied and currents are measured. In addition, data is collected
at multiple frequencies to obtain information of spectroscopic nature. Image
reconstruction was based on the Newton method and the solver used a fine mesh
for forward modelling and a coarse mesh for the reconstruction itself.

The clinical study carried out by Ostermann was based on a small statisti-
cal sample as only 13 patients participated, meaning their positive results (false
negative rate of 4/14, false positive rate of 3/11) could only provide a symbolic
encouragement to researchers.

A similar study by Kerner et. al. on 26 subjects was conducted two years
later on subject pre-classified using mammography [74]. A conclusion that spec-
troscopic data hold promise for the detection of malignancies was reached.

Investigation of clinical utility of the first-generation system was furthered by
Soni, Hartov et. al. [120]. Images obtained from 18 normal and 24 abnormal
subjects showed electrode and 3D artifacts, but it was still possible to visually
distinguish between normal and abnormal subjects based on appearance of the
images. The authors concluded consistently with previous research that raw
admittivity data can be used to predict the presence of a malignancy through
tissue dispersion behavior obtained from the spectroscopic aspect of the data.

The De Montfort MK2 system

A device for electrical impedance mammography was constructed at the De Mont-
fort University, Leicester UK by Wang et. al. [131] called the De Montfort MK2
EIM system (1998). The device was able to collect complex measurements over
the bandwidth 1 kHz - 5 MHz from a ring configuration of 32 electrodes embed-
ded in a custom brassiere. Its electrodes were made of fabric and weaved into
the brassiere which eventually posed problems in terms of contact impedance
effects [122] (see section 3.1.2). Reconstruction of 2D slice through the breast
was based on the back-projection methods developed at Sheffield. Authors of the
apparatus encountered typical obstacles documented during the development of
other impedance-tomographic devices, namely decreased resolution in the central
region of the imaged body.
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2.4.5 Full 3D reconstruction

The Dartmouth 3rd generation system

After obtaining encouraging results from their tomographic device, the Dart-
mouth group continued with the development of an imaging system performing
full 3D reconstruction. Based on the suggestions of a number of studies, i.e.
Jossinet [70], it was proposed that the range of frequencies, the Dartmouth sys-
tem collected measurements at, be expanded to at least 1 MHz and corresponding
improvements were made to the system extending the frequency range to 12.5
MHz [55] marking the development of the third generation Dartmouth system
(2008).

Previous to these efforts expansion to higher bandwidths has proven challeng-
ing, as the influence of parasitic effects on the performance of the circuitry grows
[19].However, strength analysis has demonstrated the system had a signal-to-noise
ratio (SNR) greater than 90 dB up to 7 MHz and 65 dB at 10 MHz.

This improved version of the system had 64 electrodes incorporated into a
mechanical framework in multiple rings spaced at depth levels optimized for
breast imaging. Activity of the levels was chosen appropriately for a given breast
size. Furthermore, to eliminate skin-electrode contact considerations the Ag/Ag-
Cl electrodes of the device were coated with conductive gel, and prior to the
examination, electrode contact impedances were measured and incorporated into
the model. Patient specific finite-element meshes [90] were constructed from the
measured array diameters customized for each patient and full 3D reconstruction
was performed.

Recently, the Dartmouth third generation system was used to detect breast
cancer via cyclic blood-volume changes in the chaotic vascular networks surround-
ing malignant tumours, employing time-difference imaging [54]. Nineteen women
were examined using this technique which requires synchronicity of the system
with pulse-oxymetry acquisition. Eight parameters establishing a link between
the conductivity images and the pulse-oximeter signatures were extracted and
inspected for diagnostic value. The maximum temporal correlation coefficient
between the conductivity distribution and the pulse-oxymeter signals was found
to provide the optimal discrimination with specifity of 81% and sensitivity of 77
%.

Rensselaer Polytechnical Institute ACT devices

Researchers at the previously mentioned Rensselaer Polytechnic Institute cus-
tomized their ACT device for applications in breast EIT. The ACT3 (1994) was
capable of applying independent currents to 32 electrodes and measure their re-
spective voltages [38]. With it the group intended to imitate mammography
geometry, where the breast is compressed by two opposing radioluscent plates.
To achieve this, a test tank in the shape of a cube was constructed and electrodes
were placed on two opposite faces of the tank each carrying a 4 by 4 array of
square shaped electrodes.

An analytical solution to the forward model in this simplified homogenous
mammography geometry, based on the separation of variables in the Laplace
equation (valid while assuming homogenous conductivity distribution), was de-
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veloped and verified experimentally [37].
To reconstruct the conductivity distributions, the body representing the rect-

angular box was broken down into cubical voxels, the conductivity of which was
computed from a system of equations, derived from a discretization scheme ap-
proximating the first order term in the linearization of the conductivity distribu-
tion σ = σ0 + η [97].

The Rensselaer research group continued improving their earlier apparatus
and as a result a successor, the ACT4 (2007), was introduced. The new version
supported between 32 and 64 electrodes in both circular array and the opposing
square configurations. Intended as a spectroscopic device, it has been designed
to allow for data collection at frequencies from 3 kHz to 1 MHz.

The system performs reconstruction of distributions of the real and reactive
parts of admittivity [87]. To investigate the utility of the device for breast cancer
detection it was applied to the ’mammography’ geometry discussed earlier [112],
[72].

In cooperation with Cheju National University of Korea, the Rensselaer group
also implemented the forward solver in the rectangular box geometry via the
finite element method, adopting the Galerkin method on linear tetrahedral ele-
ments [62]. To tackle the inverse problem, the regularized one-step Gauss-Newton
method was employed.

Duke University system

Researchers at the Duke University of North Carolina have constructed a 3D EIT
system (2006) utilizing a cone shaped applicator designed to fit the breast to be
imaged. The applicator contains a total of 128 electrodes mounted in seven layers
[134].

To solve the inverse problem via an iterative scheme, the required forward
computations were based on Spectral Element Method (SEM), whereas in other
systems the forward calculation is usually enabled by an implementation of the
Finite element method on linear elements. The Duke team chose to improve upon
this by using higher order SEM with Gauss-Lobatto-Legendre basis functions and
integration points [83].

An iterative solver is used to reconstruct the pulse-basis discretization of the
difference between the current and a reference conductivity distribution [135].
On any given step of the iterative scheme, electric potential based on a current
guess on the conductivity distribution is computed and a new guess is acquired
using the regularized Gauss-Newton method entailing the minimization of a cost
function representing the data misfit with an addition of a regularization term ,
yielding a system of equations solved by the conjugate gradients method.

The device was tested using both artificial phantoms and live subjects. Bench-
mark test on multiple artificial phantoms had been carried out and the device
had been shown to offer SNR greater than 90 dB.

Sussex MK4 apparatus

The research group, which designed the De Montfort MK2 system, investigated
the possibilities of 3D imaging by developing a full 3D reconstruction system at
the University of Sussex - the Sussex MK4 apparatus (2014) [137].
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This system employs a planar array of 85 electrodes at the bottom of a cylin-
drical tank attached under an examination table. The subjects lie prone and the
examined breast is inserted into the tank. The electrodes themselves are slightly
recessed from the array and conductive contact is provided by a saline solution
as this was shown to reduce the contact impedance of the electrodes [111]. The
electrode array is then pressed against the breast to minimize the depth of tissue
examined.

An important innovation aimed at maximizing the number of independent
measurements while maintaining good SNR is the arrangement of the planar
array in a hexagonal pattern. When measurements are collected, the electrode
array is subdivided into hexagonal areas where stimulations and measurements
are carried out.

The finite element method is used to solve the forward problem and electrodes
are introduced via the point electrode model, neglecting the contact impedance
as the electrodes are not in direct contact with the breast.

During reconstruction, the sensitivity matrix (a matrix which relates per-
turbations in the boundary data to perturbations in the interior conductivity
distribution) is iteratively updated to converge to the solution starting from an
initial guess on the conductivity distribution. Advanced Tikhonov regularization
techniques controlled by multiple regularization parameters are used.

Image analysis methods and optimization of the reconstruction algorithms for
the MK4 system were considered in the thesis of G. Sze [122].
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Figure 2.3: A graphical overview of breast EIT systems mentioned in this thesis.
The devices are listed along with their most important features and references.
Arrows signify influence the systems had on one another
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3. The Forward Problem

In many EIT systems, algorithms performing the reconstruction of conductivity
distributions need to be able to compute voltage readings corresponding to a guess
on the conductivity distribution the algorithm has at a particular moment during
its runtime. This is usually the case when iterative techniques are employed.
On each iteration, the solver’s guess on the conductivity distribution is updated
based on the misfit between corresponding voltage measurements on the boundary
resulting from that distribution and the actual voltages acquired via physical
instruments. To compute the boundary data, either analytical, or numeric models
must be utilized and the search for an analytic model is only undertaken for simple
geometries. For arbitrary shapes of the domain at interest, the Finite Element
Method (FEM) is used. This chapter will outline the basic formulation of the
problem in finite elements.

3.1 The mathematical model

In this section, theoretical description of the EIT problem will be derived from
Maxwell equations assuming a quasistatic condition imposed by the time-harmonic
nature of stimulating electric fields. Appropriate description of boundary condi-
tions for practical models will be discussed.

3.1.1 Deriving the governing equations

The standard set of Maxwell equations in matter for a bounded domain Ω ⊂ R
3

(representing our body of interest) can be written in differential form as follows

∇× E(x, t) = −∂tB(x, t) (3.1)

∇×H(x, t) = j(x, t) + ∂tD(x, t) (3.2)

∇ ·D(x, t) = ρ(x, t) (3.3)

∇ ·B(x, t) = 0 (3.4)

where x ∈ Ω is a point in the body, j(x, t) represents the free current density
while ρ(x, t) denotes the free charge density. To complete the system, auxiliary
fields, D - the displacement field and H - the magnetizing field, are defined as

D(x, t) = ε(x)E(x, t) = ε0εr(x)E(x, t) (3.5)

H(x, t) =
B(x, t)

µ(x)
=

B(x, t)

µ0µr(x)
(3.6)

where ε(x) is the permittivity of the material at a point x, ε0 is the dielectric
constant of free space and εr(x) represents the spatial distribution of relative
permittivity in the material. Similarly, µ(x) represents permeability, µ0 is the
permeability of free space and µr(x) is the relative permeability. Since we assume,
that the material is linear and isotropic, both permittivity and permeability are
scalar functions.
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Furthermore, in a conductive body characterized by a conductivity distribu-
tion σ(x), the free current density j(x, t) can be related to the electric field E(x, t)
via Ohm’s law

j(x, t) = σ(x)E(x, t) (3.7)

Additionally, in case the electric field is time-harmonic with an angular fre-
quency ω one can write

E(x, t) = E(x)eiωt (3.8)

resulting in the separation of spatial and temporal coordinates in the Maxwell
equations consequently rewritten using 3.7, 3.8 as

∇× E(x) = −iωB(x) (3.9)

∇×H(x) = (σ(x) + iωε(x))E(x) (3.10)

While the term, representing displacement current in equation 3.10, has to be
taken into account (as shown in section 2.1.1), the induction term in the first
equation can be safely neglected as tissues are mostly made up of water having
relative permeability of almost 1. Consequently, if we restrict ourselves to simply
connected domains, we have

∇×E(x) = 0 =⇒ E(x) = −∇u(x) x ∈ Ω (3.11)

where u(x) is the scalar potential of the electric field. If we apply the divergence
operator to equation 3.10 and express the electric field via the scalar potential as
in equation 3.11, then since the divergence of a curl is always zero, we arrive at

∇ · (γ(x)∇u(x)) = 0 x ∈ Ω (3.12)

where γ(x) = σ(x) + iε0εr(x)ω is the complex admittivity. Equation 3.12 is
sometimes called Poisson’s equation in EIT literature, which a recurring error.
The equation should be called the continuum Kirchhoff’s law and is a natural
generalization of Laplace’s equation.

3.1.2 Boundary conditions and electrode models

Furthermore, an issue that must be adressed is the specification of boundary con-
ditions. In EIT, electrodes are attached to the body of interest which, according
to a chosen stimulation pattern, supply current to the body or measure voltage
response. To incorporate this into the physical description of the problem, a
number of models can be used. The simplest model - the continuum model, pre-
scribes current density on the boundary of the body while conservation of charge
is satisfied and a choice of ground is made

γ∇u · n = γ
∂u

∂n
= ji on ∂Ω (3.13)

∫

∂Ω

ji dS = 0 (3.14)
∫

∂Ω

u dS = 0 (3.15)
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However, this model is not suitable for use with real experimental data because
the current density at the boundary ji is not known, as instead, we measure the
current supplied by wires to discrete electrodes attached to the boundary.

To improve our description, we assume a constant current density over each
electrode - the gap model. Yet both continuum and gap models give inaccurate
results, because they fail to incorporate the shunting effect of the electrodes as
the metal they are made of represents a low-resistive path for the current in itself
[118].

Therefore, to account for the discreteness in a more suitable manner, we set
the integral of the current density over a subset of the boundary corresponding
to the surface of k-th electrode to the total amount of current it brings in

∫

Ek

γ
∂u

∂n
dS = Ik k = 1, 2, . . . , N (3.16)

N
∑

k=1

Ik = 0 (3.17)

γ
∂u

∂n
= 0 on ∂Ω/

N
⋃

k=1

Ek (3.18)

assuming the electrodes are perfect conductors, we complete the so called shunt

model by including the following condition

u = Uk on Ek k = 1, 2 . . . , N (3.19)
N
∑

k=1

Uk = 0 (3.20)

which means we assume the potential is constant on each electrode. It has to
be noted, that in an experimental environment, Uk are not a priori known as
they are the results of measurements as opposed to the magnitude of stimulation
currents. Equation 3.17 represents the charge conservation law and ensures the
existence of a solution while 3.20 specifies the choice of ground and is needed to
guarantee the uniqueness of the solution [118].

However, even the shunt model does not give accurate predictions in an exper-
imental environment. It overlooks an electrochemical effect that occurs between
the surface of the electrode and the body - the formation of a resistive layer
between the electrode and the skin. This effect was experimentally verified by
Cheng et. al. [34] and an improvement to the shunt model was made by account-
ing for the voltage drop on the electrodes - a feature of the complete electrode

model.

u+ Zkγ
∂u

∂n
= Uk on Ek k = 1, 2, . . . , N (3.21)

Where Zk represents the contact impedance of the kth electrode. Existence and
uniqueness of the electric potential u has been shown for this model by Somer-
salo et. al. [118] and it has been demonstrated that it predicts experimental
measurements with precision better than 0.1%.
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3.2 Numerical solution of the forward problem

This section will discuss the means of performing the EIT forward calculation
on a computer. The EIDORS software (section 1.4) package was chosen as a
stepping stone for outlining all the necessary components of the calculation, and
parts of its original implementation will be discussed.

In order to solve the EIT forward problem numerically, the governing model
has to be discretized using a suitable scheme. First of all, to employ the finite
element method [25], a weak formulation of the problem [42] has to be derived and
discretized based on the restriction of function spaces involved to their discrete
subspaces - the Galerkin method.

3.2.1 Deriving the weak formulation

First and foremost, we gather all the equations comprising the complete electrode
model we arrived at in the last section

∇ · (γ(x)∇u(x)) = 0 x ∈ Ω (3.12)
∫

Ek

γ
∂u

∂n
dS = Ik k = 1, 2, . . . , N (3.16)

u+ Zkγ
∂u

∂n
= Uk on Ek k = 1, 2, . . . , N (3.21)

γ
∂u

∂n
= 0 on ∂Ω/

N
⋃

k=1

Ek (3.18)

N
∑

k=1

Ik = 0 (3.17)

N
∑

k=1

Uk = 0 (3.20)

To derive the weak formulation of the problem for an unknown function u ∈ V ,
where V is a function space ensuring the correctness of the subsequent mathe-
matical reasoning (a Sobolev space [42]), we start with 3.12 by multiplying both
sides of the equation by a test function v ∈ V̂ (in the complex case we multiply
by the complex conjugate v∗), where V̂ is also a suitable function space, and
integrating over Ω

∫

Ω

∇ (γ∇u) v dx = 0 ∀v ∈ V̂ (3.22)

By utilizing Green’s identity and the Gauss-Ostrogradsky theorem we have
∫

Ω

∇ · (γ∇uv) dx =

∫

∂Ω

γ(∇u)vn dS

=

∫

Ω

∇ · (γ∇u) v dx+

∫

Ω

γ∇u · ∇v dx ∀v ∈ V̂

(3.23)

Thus 3.22 can be rewritten as
∫

Ω

γ∇u · ∇v dx =

∫

∂Ω

γ
∂u

∂n
v dS ∀v ∈ V̂ (3.24)
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Equation 3.24 is the weak formulation of the problem. The benefit of the weak
formulation lies in the fact, that the solution no longer has to satisfy classical
regularity conditions, instead, its derivatives are only required to exist in the
sense of distributions. Without this generalization of the notion of a solution -
every classical solution being a weak solution, it would not be possible to discretize
the problem using piecewise linear functions, the derivatives of which do not exist
in the classical sense.

3.2.2 Discrete approximation of the problem

To adopt the Galerkin method, we restrict ourselves to subspaces Vh ⊂ V , V̂h ⊂ V̂
having finite bases - the trial {φi}

n
i=1

and test basis {φ̂i}
n
i=1

.
Assume we have a finite element mesh consisting of p tetrahedral elements

and n vertices (degrees of freedom) at our disposal. For both the trial and test
basis, piecewise linear functions with limited support are chosen

φi(x) =

{

1 on vertex i

0 otherwise
(3.25)

The weak solution uh can be expressed in terms of the trial space basis as follows

uh =

n
∑

i=1

uiφi (3.26)

where ui is the value of the electrical potential at node i.
Thus equation 3.24 can be rewritten using decomposition into the trial and

test bases as

n
∑

j=1

uj

∫

Ω

γ∇φj∇φ̂i dx =

∫

∂Ω

γ
∂uh

∂n
φ̂i dS ∀i = 1, 2, . . . , n (3.27)

Let us now examine an element Ωl ⊂ Ω which shares one of its triangular
faces Fl ⊂ ∂Ωl with the electrode Ek as depicted in figure 3.1.

To outline the form of local relations implied by 3.27, we examine one such
relation for a fixed test function φ̂n1

, the support of which extends to neighboring
element nodes p1, n2, n3 as depicted by figure 3.1b (shaded area). It has to be
noted, that the third dimension was intentionally truncated in figure 3.1b and
that there are additional nodes connected with n1 outside the depicted plane.

Thus by setting i = n1 (see figure 3.1) and substituting for the normal deriva-
tive at the right-hand side of equation 3.27 from the boundary condition 3.21, we
arrive at

∑

j∈Jn1

uj

∫

Sn1

γ∇φj∇φ̂n1
dx =

∫

∂Ω∩Sn1

1

Zk
(Uk − uh) φ̂n1

dS (3.28)

For the sake of formula simplicity, we have adopted the following notation in the
equation above - Jn1

= {j ∈ N | suppφj ∩ supp φ̂n1
6= ∅}, Sn1

= supp φ̂n1
. A

careful reader will notice, that, as currently defined, the index set Jn1
includes

indices of trial functions for which the measure of supp φj ∩ supp φ̂n1
is zero in

R3 (the supports of these function ’share a face’ or ’share an edge’). To correct
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Figure 3.1: Illustration of a boundary mesh element Ωl and an example of how
it may form a part of the kth electrode surface

(a) A tetrahedral element Ωl, Fl represents
its face, which is in contact with the elec-
trode Ek

(b) The same element contributing one of
its faces Fl to the surface of the k

th electrode
Ek. The color fill highlights the support of
the test function φ̂n1

. The third dimension
is truncated.

the definition, we add the condition that this set does not include such indices.
By the support of a function we mean the following set

suppϕ = {x ∈ R3 | ϕ(x) 6= 0} (3.29)

After plugging in for uh at the right-hand side and rearranging the equation
we rewrite 3.28 as

∑

j∈Jn1

uj







∫

Sn1

γ∇φj∇φ̂n1
dx+

∫

∂Ω∩Sn1

1

Zk

φjφ̂n1
dx






=

∫

∂Ω∩Sn1

1

Zk

Ukφ̂n1
dS (3.30)

There are two additional relationships a degree of freedom might have with
the boundary of the body. One of such situations arises for a node such as p1
(figure 3.1), where supp φ̂p1 ∩ ∂Ω splits into two subsets - one where condition
3.21 is satisfied, while 3.18 holds at the other. In this case, the right hand side
of 3.28 is modified accordingly.

Secondly, if instead, we had chosen a node not interacting with the boundary
degrees of freedom at all, or a boundary node satisfying 3.18 on the whole in-
tersection of its corresponding test function support and the body boundary, the
right hand side of 3.28 would have been zero

In general, the surface of the electrode Ek will consist of a certain number m
of element faces {Fl}

m
l=1

. These are bound by the condition 3.16 further expanded
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as follows

Ik =

∫

Ek

γ
∂uh

∂n
dS =

∫

Ek

1

Zk
(Uk − uh) dS =

m
∑

l=1

∫

Fl

1

Zk
(Uk − uh) dS

=
1

Zk
Uk|Ek| −

m
∑

l=1

∑

j∈Jl

uj

∫

Fl

1

Zk
φj dS

(3.31)

Where we introduce Jl = {j ∈ N | Fl ∩ suppφj 6= ∅}, |Ek| denoting the surface
measure of Ek.

Finally a global full-rank linear system is assembled from the ’local’ equations
of the form 3.28.

For example, in the original (2002) implementation of EIDORS code [107] a
global system is derived, consisting of block matrices AM ∈ Cn×n, AZ ∈ Cn×n, AV ∈
Cn×N , AD ∈ CN×N , global vector of nodal potential values u ∈ Cn, electrode
voltage readings U ∈ CN and the corresponding stimulation current pattern I
(satisfying the charge conservation law 3.17) taking on the following form

[

AM + AZ AV

AT
V AD

] [

u
U

]

=

[

0
I

]

(3.32)

The block matrix on the left-hand side is called the admittivity matrix, or the
system matrix. Respectively, the block components of the first row AM , AZ , AV

correspond to the expressions in equation 3.28, while the constituents of the
second row reflect equation 3.31.

3.2.3 Solving the linear system

To characterize the linear system, a general discussion of the admittivity matrix
properties is in order. As a consequence of the limited support of the test and trial
functions (equation 3.25), the matrix is sparse. Moreover, it is square, symmetric
and full-rank.

In the subsequent discussion, we use simple notation for the linear system 3.32,
with the index n now representing the total number of rows of the admittivity
matrix.

Au = b A ∈ R
n×n/A ∈ C

n×n u, b ∈ R
n/u, b ∈ C

n (3.33)

Approaches to its solution can be divided into two main classes - direct and
iterative. An another aspect influencing the choice of a suitable algorithm is
whether we are dealing with complex or real physical quantities.

This section will discuss the methods N. Polydorides chose for his original im-
plementation of EIDORS3D [107] It has to be noted that, as of today, EIDORS3D
v.3 uses a different implementation of the forward solver by A. Adler (2005) as a
default option. However, technical documentation, detailing the means of the op-
eration of its components, is not provided by the authors. The EIDORS website
merely provides raw source code with occasional comments for functions [2].

If the system matrix is real, it is also positive definite, thus it is suitable for
a direct solution using the Cholesky decomposition, while LU decomposition is
employed in the direct complex case.

Polydorides argued, that iterative solvers are much more efficient at solving
the linear system, since the direct methods refine the solution to an unnecessary
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degree of precision. Needlessly accurate calculation of a solution to the linear
system is redundant, since the system is a result of a discrete approximation to
a continuous problem, which introduces discretization error into the model.

The original implementation of EIDORS3D offers the ability to solve the linear
system iteratively using Preconditioned Conjugate Gradients (PCG) in the real
case.

If the entries of the system matrix are complex, the ideas behind the CG
method may be extended to cases, where A is not positive definite. One such
algorithm is the Bi-Conjugate Gradients (BiCG) method [52] used by the orig-
inal implementation of EIDORS3D to deal with the complex admittivity case
iteratively.

All of the methods for solving the linear system 3.33 mentioned in this section
are provided by the standard Matlab toolkit [3] the EIDORS3D package is built
upon. Table ?? summarizes the discussion of choosing appropriate linear system
solvers for given characteristics of the admittivity matrix.

Table 3.1: Means of solving the linear system with their corresponding Matlab
functions in parentheses. For the conjugate gradient methods, preconditioners
in the form of incomplete decompositions are used. Furthermore, when apply-
ing the mldivide function to a matrix in Matlab, its properties are determined
automatically and a suitable solver is called.

Direct Iterative
Real Cholesky (mldivide) PCG (cholinc → pcg)

Complex LU (mldivide) BiCG (luinc → bicgstab)

3.2.4 Mesh refinement considerations

In the context of EIT, H. Dehghani & M. Soleimani evaluated the amount of
error introduced into the forward computation by using a discrete approximation
of the problem by conducting a numerical experiment [41]. Control over the
discretization error is important, since it may cause image artifacts in systems,
where the inverse solver relies upon the ability to compute voltages for a particular
admittivity distribution.

The authors investigated the influence of mesh refinement on the discretization
error by comparing the computed electrical fields between seven meshes of an
ellipsoid approximating a breast of an increasing degree of refinement with the
finest mesh selected as referential.

It was concluded, that the largest error occurs in the regions under each
electrode where the gradient of the electric potential is the largest. This suggests,
that the parts of the volume close to an electrode need to be treated with special
care in FEM meshing.

Furthermore, anomalies were introduced into the model body and the errors
were recalculated. Along with the previously observed effects, inaccuracies near
the boundaries of the implanted anomalies were detected. These may be explained
by the same logic as the near-electrode errors - at an interface between the ho-
mogenous background and an anomaly, the gradient of the electric potential is
also very high. This is of great importance to the development of reconstruction
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algorithms, as the high sensitivity of the EIT inverse problem to measurement
errors has a great deal of influence on the quality of images produced by the
method.

To prove that mesh refinement considerations are reasonable, Molinari et. al.
compared discretization error estimates for finite element meshes with uniform
refinement to meshes refined by a self-adaptive algorithm [95], [94]. Molinari
concluded, that by employing such a technique, it is possible to substantially
reduce the number of nodes required to obtain an image reconstruction with the
same degree of accuracy than by performing uniform refinement.

EIT researchers agree, that the reconstruction process is also sensitive to
inaccuracies in the geometry of the actual imaged body and electrode placement
[18] which often causes image artifacts to present themselves. To tackle this
problem in the area of breast EIT, Forsyth et. al. developed methods for optical
breast shape capture, allowing for he construction of patient-specific finite element
meshes along with ensuring proper electrode representation. The researchers
successfully tested their ideas on an artificial phantom and a female volunteer [44].
This may prove very useful, since given the significant variations in breast size and
shape among women, the design of an optimally-shaped scanner is challenging.

The EIDORS software package offers the possibility of working with arbitrary
geometries of the body at interest due to its extensible design. IT allows the user
to construct both forward and inverse model structures from an arbitrary FEM
mesh generated by Netgen software [113].

3.3 Optimal stimulation patterns

To maximize the efficiency of data collection by an EIT system, suitable stimu-
lation current patterns have to be chosen.

Even though the mathematical model is linear, applying any linearly inde-
pendent combination of current patterns does not allow for the construction of
an arbitrary pattern by their combination [33]. One of the reasons for this is the
fact that the voltage response to a particular stimulus cannot be measured with
absolute accuracy and a part of the information to be extracted is lost introducing
a nonlinearity.

To choose a current pattern means to select a subset of electrodes available to
the system and drive prescribed currents (assuming the device was constructed
so as to operate in current drive mode) through these electrodes, while condition
3.17 is satisfied.

Numerous aspects of the EIT problem need to be considered before making
such a choice. First of all, the voltage response to a particular stimulus serves
as a source of information to the image reconstruction process, therefore, we
naturally aim to maximize the amount of information we can extract from a set
of voltage measurements corresponding to the drive current sequence. However,
this problem is constrained by speed and simplicity of hardware. A system with
a large number of electrodes could, in theory, provide more information than a
simpler system. However, switching of its circuitry it would consume more time
and its hardware would be more susceptible to parasitic effects.
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3.3.1 Early approaches & pair-drive patterns

The earliest patterns utilized by EIT systems are adjacent and opposite patterns,
jointly referred to as pair-drive. When the adjacent pattern is employed, the
system drives current through adjacent electrodes sequentially while collecting
measurements at an another selection (i.e at all other electrodes). Adjacent pat-
ters were the first stimulation currents employed in an EIT system - the Sheffield
Mk1 [26].

In a number of applications, adjacent patterns are deemed inefficient as they
only partially penetrate insulative barriers surrounding the conductive body, i.e.
in brain imaging [124]. This was one of the reasons opposite pair-drive patterns
came to be considered. In this configuration, the device drives current patterns
through a sequence of opposing electrodes.

Avis & Barber investigated the advantages of using opposite drive compared
to adjacent and concluded that, while adjacent patterns offer better image res-
olution (determined by comparing the condition of the Sheffield back-projection
algorithm reconstruction matrix for both cases), opposite patterns outperform
the adjacent in terms of voltage measurement SNR [12].

3.3.2 Distinguishability and further development

Notions of distinguishability of conductivity distributions by different current pat-
terns were given rigorous mathematical treatment by D. Isaacson [65]. He worked
with the continuum model 3.13 (often preferred in theoretical calculations) and
defined distinguishability of two conductivity distribution as follows.

Two conductivity distributions σ1, σ2 inside a domain Ω are considered disin-
guishable by measurement of precision ε if there exists a current density j for
which ‖j‖ = 1 and

‖V (·, σ1, j)− V (·, σ2, j)‖ > ε (3.34)

where V denotes the restriction of u(x) to the boundary and ‖·‖ is the L2

norm

‖f‖2 =

∫

∂Ω

|f |2 dS (3.35)

In this formalism, Isaacson considered the current density that best distinguishes
between σ1 and σ2 to be

jopt = arg max
‖j‖=1

‖V (·, σ1, j)− V (·, σ2, j)‖ (3.36)

Furthermore, an operator defined implicitly by A(σ)j = V (·, σ, j) is studied
and Isaacson continues by showing the best current densities are eigenfunctions
of the operator (A(σ2) − A(σ1)) corresponding to its highest eigenvalues. Thus
the best current to distinguish between σ1 and σ2 is given by

max
‖j‖=1

‖(A(σ2)− A(σ1))j‖ = |λ1| (3.37)

with (j1, λ1) being the eigenpair with the largest eigenvalue.
To present an example, he performed the calculations above in two dimensions

for a disk of homogenous conductivity σ in the center of a disk domain (of radius 1)
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which was also considered homogenous with conductivity set to unity. In order to
distinguish this model distribution from an absolutely homogenous one, he found
that the space of optimal eigenfunctions is spanned by the functions C cos(θ),
C sin(θ), where θ is the azimuth and C is a constant - the so called trigonometric

patterns. What’s more, he gave an estimate of the smallest detectable object in
this configuration.

Isaacson later expanded his study with the help of M. Cheney to the discrete
case (the shunt model) [32]. In this situation, the norms in the definition of
distinguishability are replaced with their discrete ℓ2 analogues. The authors also
considered a slightly adjusted notion of distinguishability taking the total power
dispersed within the body into account. Discriminating current patterns in terms
of power is necessary as some ranked high by the old definition may not satisfy
safety requirements. When normalising by total power dispersed assuming the
distribution σ1 we have

δp(σ1, σ2, j) =

√

√

√

√

√

√

√

√

N
∑

k=1

|V k
1
− V k

2
|2

Re

(

N
∑

k=1

Ik(V
k
1 )

∗

) (3.38)

In the discrete case, Walsh [32][133], adjacent, opposite and trigonometric current
patterns were compared in terms of size of the smallest distinguishable object in
the cocentric disk configuration with Walsh and trigonometric patterns perform-
ing superior to simple pair drive patterns.

More recent results were presented by Adler et. al. [8]. His team proposed a
different distinguishability measure than Isaacson and compared various choices of
stimulation patterns on its basis. After carrying out simulations in a 2D circular
body surrounded by 16 electrodes, the authors concluded that the traditional
adjacent current patterns perform poorly compared to trigonometric patterns
and pair-drive patterns where the angular separation of the source pair is greater
than 90◦.

On the other hand, apart from reaching the general conclusion that the EIT
problem is very sensitive towards forward modeling error in static imaging1 (con-
tact impedances, electrode sizes, electrode locations and the boundary shape of
the object) Kolehmainen et. al., showed that the adjacent stimulation pattern is
less susceptible to these uncertainties than the trigonometric one [80].

1A variant of EIT where one aims to reconstruct the absolute magnitude of the admittivity
distribution. Its counterpart - difference imaging, can be employed to suppress the effect of
these errors to some degree
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4. The Inverse Problem

Over the years of EIT research, the reconstruction of an admittivity distribution
within a physical body from voltage measurements collected at its boundary has
proven to be challenging. The solution of this inverse problem is certainly the
most important topic in EIT research and attracts theoreticians and experimen-
tators alike. There is a number of research works, namely doctoral theses, offering
broad coverage of the problem [107, 20, 50, 33, 23, 127, 84, 61]. In order to provide
a reliable imaging modality for various applications discussed in the first chapter,
namely medical imaging, there are many aspects of the inverse calculation to be
considered.

When attempting to implement a numerical solution, especially those based
on linearisation, to the inverse problem the main obstacle that has to be overcome
is the ill-posedness of the problem. Unfortunately, it is difficult to give an all-
encompassing characterization of an ill-posed inverse problem. In essence, the
problem suffers from a shortage of information preventing its naive solution by
simple inversion. For example, to solve the problem numerically, at some point
we arrive at a linear system, whose coefficient matrix exerts a large condition
number. Usually, we avoid solving such problems and attempt to improve the
underlying mathematical model. However, there are certain situations, where
the coefficient matrix is ill-conditioned in its true form and this is an intrinsic
property of the problem. In such cases, obtaining a stable solution of the problem
requires treatment in terms of advanced numerical methods i.e by the means of
regularization [56].

In practice, the ill-conditioning of the EIT problem implies that there is no
direct ’classical’ approach to inverting the forward calculation and without the
help of regularization, the reconstruction process would almost certainly return
useless images. Additionally, the above difficulties also render the problem sen-
sitive to both model and data errors, resulting in the problem being considered
ill-posed in Hadamard’s sense.

Before attempting to solve an ill-conditioned problem, it is important to de-
termine what kind of ill-conditioning to expect and whether there is any prior
information which can be used to remedy the deficiency. Furthermore, there are
a number of numerical regularization methods both direct and iterative in na-
ture, that have been considered for EIT image reconstruction, each having its
advantages depending on the approach taken to the formulation of the inverse
problem.

4.1 A theoretical point of view

The inverse admittivity problem was first subjected to rigorous mathematical
treatment by A. P. Calderón in 1980 [29] and later came to be referred to as the
Calderón’s problem. He asked, whether one can uniquely determine the electrical
conductivity of a medium by making voltage or current measurements at its
boundary. To answer this question, while working with the continuum model, he
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studied the Dirichlet-to-Neumann mapping (DtN)
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To investigate the inverse problem - determining γ knowing Λγ, Calderón studied
the properties of the following quadratic form
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which can be interpreted as a measure of energy required to maintain the potential
u
∣

∣

∂Ω
at the boundary.

This problem was later found related to the Schrödinger equation and several
results were proved by Sylvester & Uhlmann, namely the uniqueness of solution
with complete boundary data in the isotropic case [121]. As in practice, the data
is only known on a part of the boundary, the partial data problem was considered
by a number of researchers [73, 99, 63]. A general overview of the whole topic is
given by Uhlmann in [126].

4.2 The basic ideas of regularization

4.2.1 Ill-conditioned systems of equations

To outline the underlying principles of regularization, consider a least-squares
problem

xLS = min
x∈Cn

‖Ax− b‖ (4.3)

where the singular values {σj}
r
j=1

of the coefficient matrix A ∈ Cm×n of rank r are
inconveniently distributed giving rise to a high condition number of the matrix.
There are two main classes of this vague characterization - rank-deficiency and
discrete ill-posedness [56].

Rank-deficient problems are characterized by the presence of a clear gap be-
tween large and small singular values in the coefficient matrix singular value
spectrum, which can be interpreted as a near linear-dependence of a number of
its rows. Therefore, the matrix can be seen as containing an amount of redundant
information and the basic strategy to condition such matrices is to extract the
linearly independent part by the means of truncation of its singular value decom-
position (SVD) - the Truncated Singular Value Decomposition method (TSVD).

If there is no well-defined gap in the singular value spectrum of the coefficient
matrix and the singular values decay gradually to zero, we are dealing with a
discrete ill-posed problem. For example, a notorious occurrence of such problems
is in the discretization of Fredholm integral equations of the first kind. To deal
with such cases, a trade-off between the norm of the residual and size of the
solution has to be made, where the notion of size of the solution is specific to the
regularization strategy employed.

4.2.2 The influence of noise and how to suppress it

Suppose, that the right-hand side of 4.3 is contaminated by a noise vector b̃

b = be + b̃ (4.4)
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where be is the exact vector and ‖be‖ ≫ ‖b̃‖. If we attempt to compute the naive
solution

xn = A†b =
r

∑

j=1

u∗
jbe

σj
vj +

r
∑

j=1

u∗
j b̃

σj
vj (4.5)

we will find it overwhelmed by noise even though its norm is significantly smaller.
This is because while the first sum corresponds to the exact solution xe we would
like to obtain, the second sum represents the projection of the noise vector into
the left singular basis of A and the influence of these components is amplified by
the presence of the singular values in the denominators.

Therefore, we seek to modify the least squares problem 4.3 in a way that
reduces the influence of noise on its solution. If the problem is merely rank-
deficient we opt for TSVD, that is extracting k terms of its dyadic expansion,
where k is an example of a regularization parameter usually chosen to be the
numerical rank of the coefficient matrix.

There are a number of strategies we could employ in the discrete ill-posed
case, for example, the Tikhonov regularization scheme is of the form

xT = arg min
x∈Cn

{‖Ax− b‖2 + λ2Ω(x)2} (4.6)

Where λ is a regularization parameter controlling the influence of the added term
on the least squares problem. The functional Ω(x) is called the discrete smoothing

norm and is usually chosen such that

Ω(x) = ‖Lx‖ (4.7)

with L either being the identity matrix, a diagonal weighting matrix or a dis-
crete approximation of a derivative operator and each choice represents a form
of bias - giving preference to solutions with smaller norms or smoother solutions
respectively. In this case, the solution can be expressed as

xT =
(

A∗A+ λ2L∗L)
)−1

A∗b (4.8)

Furthermore we can include a bias toward an a priori estimate on the desired
solution xp

Ω(x) = ‖L(x− xp)‖ (4.9)

The procedure could also be augmented with statistical a-priori information in
the form of covariance matrices to obtain the generalized Tikhonov solution and
doing so has a probabilistic interpretation [71]. If the errors in the right-side b
are correlated and Q1/2b represents its de-correlation, we modify the problem in
the following way

xGT = arg min
x∈Cn

{‖Ax− b‖2Q + ‖x− xp‖
2

P} (4.10)

Where ‖x‖2M = x∗Mx and P = L∗L.
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4.3 Numerical solution to the inverse problem

The standard way of approaching the EIT inverse problem is via the output least
squares method which is characterized by seeking a solution of the form

arg min
γ∈Cp

‖Um(Ij)− F (γ, Ij)‖ ∀Ij ∈ {I1, . . . , Id} (4.11)

Where Um ∈ CN is a vector of measured electrode voltages, Ij ∈ CN is the
jth stimulation pattern and F (γ, Ij) is the nonlinear forward operator relating
a conductivity distribution to electrode potential values. This method can be
interpreted as follows - the solution to this problem minimizes the misfit between
the actual observed voltages and those corresponding to the solution.

4.3.1 Introducing regularization

Without a direct nonlinear approach to solving 4.11 the algorithm has to rely
on linearisation eventually. In his doctoral thesis, W.R. Breckon showed that
both the nonlinear problem and its linearization are ill-posed [23]. This gives
rise to a natural question. Do we regularize the underlying non-linear problem to
cure the ill-posedness, or do we condition the result of linearisation? This opens
up a wide range of possibilities of treating the EIT inverse problem in terms of
regularization strategies.

Simple minimization in 4.11 will not lead to useful results. Breckon showed
on a simple example, that a minimum for this rudimentary cost function lies in
a long narrow valley. To obtain a meaningful solution the problem is modified
much like in the case of ill-conditioned linear systems

arg min
γ∈Cp

{‖Um(Ij)− F (γ, Ij)‖
2 + λ2Ω(γ)2} ∀Ij ∈ {I1, . . . , Id} (4.12)

A typical choice for the smoothing norm in EIT is

Ω(γ) = ‖L(γ − γp)‖ (4.13)

where L is a discrete approximation of a differential operator and γp is an a
priori estimate on the admittivity distribution obtained i.e by mapping known
anatomical features. The matrix L could be chosen to approximate the Laplacian
on piecewise constant functions [108], a first order differential operator or the
inverse Gaussian smoothing filter (an ’infinite’ order differential operator)[22].

Imposing any a priori smoothness will naturally represent a penalty to distri-
butions with sharp edges. One way of allowing the reconstruction of discontinu-
ities is by setting the penalty term Ω(γ) to the Total Variation (TV) functional
[20, 21, 50], which takes the following form for non-differentiable functions

TV (γ) = sup
v∈V

∫

Ω

f∇ · v dx (4.14)

where V is the space of continuously differentiable normed vector-valued functions
that vanish on ∂Ω.

An another strategy might be chosen when we can impose a number of con-
straints for the admittivity distribution, restricting our search to a subset of the
set of all admissible distributions - the Subspace Regularization Method (SSRM)
[127, 129].
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4.3.2 Approaches to the inverse calculation

There are three ’refinement’ stages of EIT reconstruction methods - algorithms
based on linearisation, nonlinear iterative techniques finding analogy in the Newton-
Rhapson method and last but not least fully nonlinear approaches.

The simplest way to perform the inverse calculation is by linearising the for-
ward operator around a particular admittivity γ0

F (γ) ≈ F (γ0) + J(γ − γ0) (4.15)

Where J is the Jacobian of the forward operator calculated at point γ0. If we
define ∆γ = γ − γ0 and ∆U = Um − F (γ0), then for the choice of regularization
in 4.13 the solution can be expressed as [123]

∆γ =
(

J∗J + λ2L∗L
)−1 (

J∗∆U + λ2L∗L(γp − γ0)
)

(4.16)

A well-established example of an algorithm relying on a single Tikhonov regular-
ized solution is NOSER [31, 33].

Using a single Tikhonov regularized step is valid for small changes and is often
seen in difference imaging where the goal is to produce i.e. a temporal succession
of images where occurring changes are expected to be small. Difference imaging
(Dynamical EIT) was studied in the thesis of M. Vauhkonen [127] with special
focus on reconstruction speed while recently, a nonlinear approach to difference
imaging was considered by Liu et. al. [86].

A more sophisticated approach is by designing an iterative process which
progresses towards the solution by calculation of the Jacobian at each step in
analogy with the multi-variable Newton-Rhapson method approximated by the
Gauss-Newton method, which neglects all but the first order terms in the expan-
sion of F (γ, Ij), with the addition of regularization or modification to arrive at
the Levenberg-Marquardt method [91, 107, 108].

Finally, fully nonlinear methods for image reconstruction have been considered
mostly based on the theoretical foundations to the inverse conductivity problem
described in section 4.1. Most of these methods are derived for the 2D (tomo-
graphic) case and are being adapted to the allow for 3D reconstruction.

Among the earliest is the layer stripping method [119, 66], with an another
example being the D-bar (∂̄) algorithms [78, 76, 77], which were tested on tank
phantoms [98] and on human chest data [40, 64] in the 2D case. Furthermore,
the D-bar method was extended to the third dimension by Bikowski et. al. [16].

Most of the regularization strategies mentioned rely on adding a penalty term
to the least squares problem usually imposing a constraint on the ’size’ of the
solution (i.e in terms of smoothness). The inclusion of this term is controlled
by a real number usually denoted λ throughout this chapter - the regularization

parameter. Finding a suitable value of this parameter represents an another
problem to be considered. There are a number of strategies for determining its
appropriate value for given data such as L-curve analysis [56]. Unfortunately,
ideas behind these methods are outside the scope of this thesis.
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5. The EIDORS Software
Package

This chapter gives some examples of using the Electrical Impedance and Dif-
fuse Optical Reconstruction Software (EIDORS) to manipulate EIT data and to
perform both forward and inverse calculations. For an introduction to the ideas
behind the software solution and its history see section 1.4.

There are a number of published works describing some of the software in-
ternals written in Matlab [9, 10, 107, 108] and an internet page dedicated to the
package is maintained by its developers providing tutorials and Matlab function
documentation [1]. However, a comprehensive reference manual detailing the
implementation is missing.

In the following sections, a basic overview of EIDORS functionality will be
given and examples of both forward and inverse calculations will be presented.

5.1 EIDORS structures and functionality

EIDORS operates as a Matlab module with four types of structures - fwd model,
inv model, data, image. Representing all the essential stages of solving the EIT
problem from data representation to visualization of results.

The fwd model structure contains data specifying the geometry of a finite
element mesh modeling the domain of interest along with electrode data (corre-
sponding faces of boundary elements and contact impedances), stimulation and
measurement patterns and function pointers representing the choices of forward
solver functions for performing the forward computation and for the construction
of the Jacobian (a linearization of the forward operator) utilized by Gauss-Newton
inverse solvers.

The inv model structure contains the geometry of the mesh we want to utilize
for the inverse calculation (often a coarser mesh is chosen for the inverse calcula-
tion), function pointers to desired inverse solvers and regularization strategies, a
choice of a regularization parameter (termed ’hyperparameter’ in EIDORS). An
inverse model may be constructed explicitly from a forward model assuming the
same geometry.

The data structure represents all the measurements the system took according
to the prescribed stimulation pattern and is used by inverse solvers to perform
image reconstruction.

The image structure is constructed from a forward model and carries data
about the conductivity/admittivity distribution within the domain - which is
represented by a piecewise constant function on the finite elements of the model.
The image structure is handled by a plethora of EIDORS visualization functions
which are used to display the domain conductivity layout for the forward model
(if we choose to map some of its structures we are confident about) and the
results of inverse computations. Examples of such functions are show fem and
show slices (the former displays the conductivity distribution within the 2D/3D
FEM geometry while the latter computes the distribution within set of slices
through the 3D object specified by the user).
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5.2 Examples of use

This section presents a number of simulations of the forward and inverse calcula-
tion performed in both two and three dimensions. For the purpose of examining
the functionality of EIDORS, matlab scripts listed in table 5.1 were written by
the author of this thesis and will be made available for download to the readers.
All of the graphical outputs of the scripts will be presented in this chapter. Fur-
thermore, being relatively simple, the code of two scripts for the 2D case will be
listed in this thesis for illustrative purposes.

Table 5.1: A list of Matlab scripts written to explore EIDORS functionalities

forward_2D() Forward calculation for a disc domain
in two dimensions with the visualiza-
tion of the first current patern of an
adjacent stimulation protocol

/thesis examples/img/forward 2D/

inverse_2D() Inverse calculation for a disc domain
in two dimensions with noise-free data
and the visualization of results

/thesis examples/img/inverse 2D/

inverse_2D_noise(snr,hyperparam) Inverse calculation for a disc do-
main in two dimensions with noise-
contaminated data called with snr -
signal-to-noise ratio and hyperparam
- regularization parameter for the
Tikhonov regularization strategy

/thesis examples/img/inverse 2D/

forward_3D() Forward calculation for a hemispherical
domain in three dimensions with the vi-
sualization of the first current patern
of a ring-wise adjacent stimulation pat-
tern

/thesis examples/img/forward 3D/

inverse_3D() Inverse calculation from noise-free da-
ta for a hemispherical domain with a
spherical inclusion in three dimensions
with the visualization of results

/thesis examples/img/forward 3D/clean/

inverse_3D_noise(snr,hyperparam) Inverse calculation from noise-
contaminated data for a hemispherical
domain with a spherical inclusion in
three dimensions with visualization
accepting two arguments having the
same purpose as in the 2D case

/thesis examples/img/forward 3D/noise/

41

forward_2D()
inverse_2D()
inverse_2D_noise(snr,hyperparam)
forward_3D()
inverse_3D()
inverse_3D_noise(snr,hyperparam)


5.2.1 Forward modelling and calculations

In two dimensions, calculations are preformed in a disc domain whose forward
model is constructed by a built-in common model assembly function
mk common model accepting a control string specifying the geometry and
refinement of the domain mesh. Similarly, stimulation and measurement patterns
are assembled by a built-in function and thus it is easy to specify common pair
drive patterns such as the adjacent drive chosen for the 2D examples.

While common 3D models are also accessible via built-in EIDORS functions,
the true power of the 3D reconstruction software lies in the ability to work with
an arbitrary geometry of the domain when its mesh parameters are passed to the
software. Positions of nodes and their connectivity along with the selection of
boundary elements may be generated by any software and used by EIDORS via
manual specification based on the output of the given mesh software. However,
EIDORS was integrated with Netgen meshing software [113] and offers forward
model constructors directly accepting Constructive Solid Geometry (CSG) input
for Netgen. For the 3D simulations a hemispherical domain with radius r = 80
mm was chosen.

Furthermore, integration with Netgen allows the user to specify electrode posi-
tions on the domain boundary and their geometry (the constructor accepts Carte-
sian coordinates of electrodes, corresponding unit normals to the boundary and
specifications of shapes to be projected onto the boundary at these coordinates).
In the examples package, electrode positions and unit normals are generated by
the get electrode positions() function. In the 3D examples, a total of 64 elec-
trodes was divided into eight rings forming regular octagons in horizontal slices
through the hemisphere equally spaced in the z coordinate.

Once the positions of electrodes are determined, stimulation patterns may
be assigned to the forward model and need to be assembled manually for user-
specified models. For the purpose of the 3D simulations, this is handled by the
function get stim patterns(). Current patterns were chosen so as to apply the
adjacent protocol on each ring totaling 64 stimulations, while measurements are
also taken as differences between adjacent electrodes in a ring for each stimulation
pattern giving a total of 4096 measurements.

The visualizations of electric potential distribution within the domains for the
first current pattern in both the 2D and 3D case are shown in figures 5.1, 5.6.

5.2.2 Inverse calculations

There are two scripts for inverse calculations for each dimension. In all four cas-
es, the inverse calculation is performed by a Gauss-Newton one step difference
solver. The inverse solver therefore accepts two sets of data, one representing
’earlier’ measurements taken for a homogenous conductivity distribution and the
second containing measurements with the inclusion. This algorithm then per-
forms one step of the Gauss-Newton method based on linearising the forward
operator around the earlier conductivity. All four scripts rely on the standard
Tikhonov Regularization strategy.

In the 2D case a ten times more conductive disc inclusion was introduced into
the domain of homogenous conductivity of 0.1 S/m seen in figure 5.2, while in the
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3D case a spherical inclusion having 0.2 S/m conductivity was introduced into a
homogenous distribution of 0.1 S/m as depicted by figure 5.7.

The inverse problem examples further split based on whether we are taking
noise in the data into account. The inverse 2D noise and inverse 3D noise
scripts need to be supplied with two parameters snr and hyperparam. The snr
argument specifies how high is the simulated system SNR.

The base noise amplitude is taken to be the standard deviation of the dif-
ference between the corresponding homogenous and inhomogenous conductivity
distribution measurements (component-wise). The data vector is then contami-
nated by a random vector amplified by the computed noise factor.

The second parameter hyperparam is the ’hyperparameter’ representing a
regularization parameter controlling the influence of the respective penalty term
introduced into the least-squares problem based on a chosen regularization strat-
egy. When the Tikhonov regularization strategy is chosen, the penalty term gives
preference to solutions with smaller norms and effectively controls the amount
of noise introduced into the problem. The regularization parameter needs to be
selected appropriately for a given strategy and noise level. There are a number of
strategies for selecting a hyperparameter value based on analyzing the data set
and tweaking these parameters so as to achieve higher quality of images should
be avoided in EIT practice because in a practical situation, we do not know what
is actually inside the domain. This is however outside the scope of this thesis
and the examples in this chapter require the user to select the hyperparameter
manually. The influence of hyperparameter selection may be seen in images 5.3,
5.4, 5.5 showing an underregularized solution, a solution corresponding to an
appropriate choice of hyperparameter and an overregularized solution. In an un-
derregularized solution, the influence of noise was not suppressed enough by the
regularization technique and the noise takes over the solution. An overregularized
solution has been stripped of useful components to a certain degree meaning a
part of information was washed out in the process of regularization.

The result of a conductivity distribution reconstruction is shown in figure 5.4
representing the 2D case and in figures 5.8, 5.9 in the 3D case.

Listing 5.1: forward 2D() - the forward calculation in 2D

1 %Star t EIDORS
2 startup ;
3
4 %Create a model us ing EIDORS bu i l t −in common model assembly
5 %command − c i r c u l a r model wi th 16 e l e c t r ode s , 1024 e lements
6 te s t mode l = mk common model ( ’d2C ’ , 1 6 ) ;
7
8 %Disp lay mesh
9 % f i g u r e ;

10 % show fem ( t e s t mode l . fwd model ) ;
11
12 %Create an EIDORS image s t r u c t u r e
13 te s t img = mk image ( t e s t mode l ) ;
14
15 %Create an ad jacen t s t imu l a t i on pa t t e rn us ing a command fo r common
16 %model s t imu l a t i on pa t t e rn s − 16 e l e c t r ode s , 1 e l e c t r o d e ring ,
17 %adjacen t dr ive , ad jacen t measurement , no opt ions ,
18 %10 mA current ampl i tude
19 [ stim , mea s s e l ] = mk st im patterns (16 , 1 , ’ {ad} ’ , ’ {ad} ’ , { } , 0 . 0 1 ) ;
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20
21 %Assign pa t t e rn s to image s t r u c t u r e
22 te s t img . fwd model . s t imu la t i on = stim ;
23 te s t img . fwd model . mea s s e l e c t = meas s e l ;
24
25 %Co l l e c t p o t e n t i a l a t a l l nodes
26 te s t img . fwd so lv e . g e t a l l mea s = 1 ;
27
28 %Perform the forward c a l c u l a t i o n us ing d e f a u l t A. Adler s o l v e r
29 hom data = fwd so lv e ( t e s t img ) ;
30
31 %Disp lay f i r s t s t imu l a t i on pa t t e rn
32 d i sp l ay img = rmf i e l d ( tes t img , ’ e lem data ’ ) ;
33 d i sp l ay img . node data = hom data . v o l t ( : , 1 ) ;
34 figure ( ) ;
35 show fem ( d i sp l ay img ) ;
36 end

Listing 5.2: inverse 2D noise(snr,hyperparam) - the 2D inverse computa-
tion with noise-contaminated measurements

1 function i n v e r s e 2 d n o i s e ( snr , hyperparam)
2 %Star t EIDORS
3 startup ;
4
5 %Create a model us ing EIDORS bu i l t −in common model assembly command
6 %Circu lar model wi th 16 e l e c t r ode s , 1024 elements , p lu s a f i n e r mesh
7 % of 4096 e lements
8 coar se mode l = mk common model ( ’d2C ’ , 1 6 ) ;
9 f i ne mode l = mk common model ( ’h2C ’ , 1 6 ) ;

10
11 %Create an EIDORS image s t r u c t u r e r ep r e s en t i n g a homogenous
12 %condu c t i v i t y d i s t r i b u t i o n o f 0 .1 S/m
13 f ine img = mk image ( f ine mode l , 0 . 1 ) ;
14
15 %Create an ad jacen t s t imu l a t i on pa t t e rn us ing a command fo r common
16 % model s t imu l a t i on pa t t e rn s − 16 e l e c t r ode s , 1 e l e c t r o d e ring ,
17 %adjacen t dr ive , ad jacen t measurement , no opt ions ,
18 %10 mA current ampl i tude
19 [ stim , mea s s e l ] = mk st im patterns (16 , 1 , ’ {ad} ’ , ’ {ad} ’ , { } , 0 . 0 1 ) ;
20
21 %Assign pa t t e rn s to image s t r u c t u r e
22 f ine img . fwd model . s t imu la t i on = stim ;
23 f ine img . fwd model . mea s s e l e c t = meas s e l ;
24
25 %Perform the forward c a l c u l a t i o n us ing d e f a u l t A. Adler s o l v e r
26 hom data = fwd so lv e ( f i ne img ) ;
27
28 %Introduce a 10 t imes more conduc t i ve c i r u cu l a r inhomogeneity
29 %in to the domain and perform the forward c a l c u l a t i o n
30 shape 1 = @(x , y , z ) ( ( x−0 .5 ) .ˆ2 + (y−0 .2 ) .ˆ2 < 0 . 1 5 ˆ 2 ) ;
31 f ine img . e lem data = f ine img . e lem data + 0 .9∗ e l em s e l e c t ( . . .
32 f i ne mode l . fwd model , shape 1 ) ;
33
34 figure ( ) ;
35 show fem ( f ine img ) ;
36
37 inh data = fwd so lv e ( f i ne img ) ;
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38
39 %Contaminate data wi th noise , SNR = 20∗ l o g 10 ( A s igna l /A noise )
40 i nh da ta no i s e = inh data ;
41 nampl = std ( hom data . meas − inh data . meas)∗10ˆ(− snr / 2 0 ) ;
42 i nh da ta no i s e . meas = inh data . meas + . . .
43 nampl∗randn ( s ize ( inh data . meas ) ) ;
44
45 %Create an in v e r s e model o b j e c t − d i f f e r e n c e imaging
46 inv model = e i d o r s o b j ( ’ inv model ’ , ’EIT inv e r s e ’ ) ;
47 inv model . r e c on s t t yp e = ’ d i f f e r e n c e ’ ;
48 inv model . jacobian bkgnd . va lue = 0 . 1 ;
49 inv model . fwd model = coar se mode l . fwd model ;
50
51 %Use a Gauss−Newton s o l v e r performing one s t ep d i f f e r e n c e
52 %recon s t r u c t i on on a coarser mesh
53 inv model . s o l v e = @inv so lv e d i f f GN one s t ep ;
54
55 %Choose the Tikhonov (L = parameter ∗ i d e n t i t y matrix )
56 %re gu l a r i z a t i o n s t r a t e g y
57
58 inv model . hyperparameter . va lue = hyperparam ;
59 inv model . RtR pr ior = @pr io r t ikhonov ;
60
61 %Perform the in v e r s e c a l c u l a t i o n and d i s p l a y the r e s u l t
62 rec image = i n v s o l v e ( inv model , hom data , i nh da ta no i s e ) ;
63 figure ( ) ;
64 show fem ( rec image ) ;
65 end

Figure 5.1: forward 2D - First stimulation pattern of an adjacent drive
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Figure 5.2: inverse 2D noise - The disc inclusion
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Figure 5.3: inverse 2D noise - Reconstructed distribution from 12 dB SNR
data with hyperparameter λ = 10−3. The solution is overwhelmed by noise.
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Figure 5.4: inverse 2D noise - Reconstructed distribution from 12 dB SNR
data with hyperparameter λ = 1. The hyperparameter is appropriate for the
level of noise in data.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.5: inverse 2D noise - Reconstructed distribution from 12 dB SNR
data with hyperparameter λ = 102. The solution is overregularized with its useful
components dampened.
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Figure 5.6: forward 3D - First stimulation pattern of the ring-wise adjacent
stimulation protocol

Figure 5.7: inverse 3D noise - The spherical inclusion
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Figure 5.8: inverse 3D noise - Reconstructed distribution from 12 dB SNR
data with hyperparameter λ = 10−3
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Figure 5.9: Horizontal slices through the hemisphere at z = 0.030, 0.040, 0.050,
0.060

(a) The original inclusion
(b) Reconstructed distribution from 12 dB
SNR data with hyperparameter λ = 10−3
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Conclusion

Out of all the areas, where Electrical Impedance Tomography (EIT) shows po-
tential as an imaging technique, medical applications, namely breast cancer de-
tection, were investigated. In order to form a qualitative picture of the response
of biological tissue to electrical currents and its frequency dependence a literature
review was conducted. The reviewed data indicate, that while magnetic induction
in tissue may be neglected, its capacitive properties can not be omitted. Further-
more, the rationale behind using EIT as an imaging technique for breast cancer
detection was examined. Researchers agree, that there is a significant difference
between the dielectrical properties of healthy and cancerous breast tissue, the
magnitude of which depends on frequency. These claims are supported by the
clinical success of a number of EIT devices constructed to date for the purpose of
breast cancer detection with a total of eight systems described in this thesis. It
was demonstrated that, the earlier Electrical Impedance Mapping (EIM) systems
can compete with established breast imaging techniques such as mammography.

Reconstruction of a conductivity distribution within a physical body from
voltage measurements (the inverse problem) acquired on its boundary poses many
challenges. It can be classified as an inverse boundary value problem and thus
falls into a common framework of inverse problem theory. First of all, many EIT
image reconstruction algorithms require the calculation of the potential distribu-
tion within the body in order to match the corresponding boundary data with
the actual measurements (the forward problem). For this purpose, the govern-
ing equations of the EIT problem were derived and the means of solving them
numerically via the Finite Element Method were described.

Means of solving the EIT inverse problem in three dimensions numerically
were described. As the problem inherently suffers from a shortage of information,
attempts to solve it numerically lead to ill-conditioned systems of equations. This
has to be remedied i.e. by the means of regularization. Regularization techniques
and means of introducing them into the formulation of the EIT inverse problem
were described.

In the last chapter, the capabilities of the Electrical Impedance and Diffuse
Optical Reconstruction Software (EIDORS) package were examined. Examples
of forward and inverse calculations in both 2D and 3D are available via six Matlab
scripts with the corresponding graphical output included in the chapter.

In summary, it can be concluded, that EIT shows potential as an imaging
modality not only in medical practice. However, there are a number of opti-
mization problems that need to be tackled in order to improve the quality of
images produced by the technique such as reduction of noise in the system cir-
cuitry, choosing an advantageous placement of electrodes for a given application
and electrical current stimulation pattern selection. There is also room for im-
provement in the area of reconstruction algorithms, namely for the development
of fully nonlinear approaches to the inverse problem. Another issue to be ad-
dressed is the fragmentation of the EIT knowledge base. To ensure the effectivity
of EIT research, a unified source of information about the technique should be
maintained by active researchers.
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breast tissue by electrical impedance spectroscopy. Medical and Biological

Engineering and Computing, 38(1):26–30, 2000.

53



[40] M DeAngelo and JL Mueller. 2D D-bar reconstructions of human chest and
tank data using an improved approximation to the scattering transform.
Physiological measurement, 31(2):221, 2010.

[41] Hamid Dehghani and Manuchehr Soleimani. Numerical modelling errors
in electrical impedance tomography. Physiological measurement, 28(7):S45,
2007.

[42] Lawrence Evans. Partial differential equations. American Mathematical
Society, 1998.

[43] Stephen A Feig and R Edward Hendrick. Radiation risk from screen-
ing mammography of women aged 40-49 years. JNCI Monographs,
1997(22):119–124, 1997.

[44] J Forsyth, A Borsic, RJ Halter, A Hartov, and KD Paulsen. Optical breast
shape capture and finite-element mesh generation for electrical impedance
tomography. Physiological measurement, 32(7):797, 2011.

[45] Hugo Fricke and Sterne Morse. The electric capacity of tumors of the breast.
The Journal of Cancer Research, 10(3):340–376, 1926.

[46] Camelia Gabriel. Compilation of the dielectric properties of body tissues
at rf and microwave frequencies. Technical report, DTIC Document, 1996.

[47] Camelia Gabriel, Sami Gabriel, and E Corthout. The dielectric properties
of biological tissues: I. literature survey. Physics in medicine and biology,
41(11):2231, 1996.

[48] S Gabriel, RW Lau, and Camelia Gabriel. The dielectric properties of
biological tissues: II. Measurements in the frequency range 10 Hz to 20
GHz. Physics in medicine and biology, 41(11):2251, 1996.

[49] Sami Gabriel, RW Lau, and Camelia Gabriel. The dielectric properties
of biological tissues: III. Parametric models for the dielectric spectrum of
tissues. Physics in medicine and biology, 41(11):2271, 1996.

[50] Henrik Garde. Sparsity Regularization for Electrical Impedance Tomogra-

phy. PhD thesis, Technical University of Denmark, 2013.

[51] Yael A. Glickman, Orna Filo, Udi Nachaliel, Sarah Lenington, Sigal Amin-
Spector, and Ron Ginor. Novel EIS postprocessing algorithm for breast
cancer diagnosis. Medical Imaging, IEEE Transactions on, 21(6):710–712,
2002.

[52] Gene H Golub and Charles F Van Loan. Matrix Computations, volume 3.
JHU Press, 2013.

[53] Peter C Gøtzsche and Margrethe Nielsen. Screening for breast cancer with
mammography. The cochrane library, 2009.

[54] R Halter, A Hartov, S Poplack, R diFlorio Alexander, W Wells,
K Rosenkranz, R Barth, P Kaufman, and K Paulsen. Real-time electri-
cal impedance variations in women with and without breast cancer. 2015.

54



[55] Ryan J Halter, Alex Hartov, and Keith D Paulsen. A broadband high-
frequency electrical impedance tomography system for breast imaging.
Biomedical Engineering, IEEE Transactions on, 55(2):650–659, 2008.

[56] Per Christian Hansen. Rank-deficient and discrete ill-posed problems: nu-

merical aspects of linear inversion, volume 4. Siam, 1998.

[57] A. Hartov, R.A. Mazzarese, F.R. Reiss, T.E. Kerner, K.S. Osterman, D.B.
Williams, and K.D. Paulsen. A multichannel continuously selectable multi-
frequency electrical impedance spectroscopy measurement system. Biomed-

ical Engineering, IEEE Transactions on, 47(1):49–58, Jan 2000.

[58] Ahmed M Hassan and Magda El-Shenawee. Review of electromagnetic tech-
niques for breast cancer detection. Biomedical Engineering, IEEE Reviews

in, 4:103–118, 2011.

[59] Ross P Henderson and John G Webster. An impedance camera for spa-
tially specific measurements of the thorax. Biomedical Engineering, IEEE

Transactions on, (3):250–254, 1978.

[60] Gabor T Herman. Fundamentals of computerized tomography: image re-

construction from projections. Springer Science & Business Media, 2009.

[61] David S Holder. Electrical impedance tomography: methods, history and

applications. CRC Press, 2004.

[62] Umer Zeeshan Ijaz, Bong Seok Kim, Tzu-Jen Kao, Anil Kumar Kham-
bampati, Sin Kim, Min Chan Kim, Jonathan C Newell, David Isaacson,
and Kyung Youn Kim. Mammography phantom studies using 3D electri-
cal impedance tomography with numerical forward solver. In Frontiers in

the Convergence of Bioscience and Information Technologies, 2007. FBIT

2007, pages 379–383. IEEE, 2007.

[63] Oleg Imanuvilov, Gunther Uhlmann, and Masahiro Yamamoto. The
calderón problem with partial data in two dimensions. Journal of the Amer-

ican Mathematical Society, 23(3):655–691, 2010.

[64] D Isaacson, JL Mueller, JC Newell, and S Siltanen. Imaging cardiac activity
by the D-bar method for electrical impedance tomography. Physiological

measurement, 27(5):S43, 2006.

[65] David Isaacson. Distinguishability of conductivities by electric current com-
puted tomography. Medical Imaging, IEEE Transactions on, 5(2):91–95,
1986.

[66] Sylvester John. A convergent layer stripping algorithm for the radially
symmetric impedence tomography problem. Communications in partial

differential equations, 17(11-12):1955–1994, 1992.

[67] J Jossinet. Variability of impedivity in normal and pathological breast
tissue. Medical and Biological Engineering and Computing, 34(5):346–350,
1996.

55



[68] J Jossinet, C Fourcade, and M Schmitt. A study for breast imaging with a
circular array of impedance electrodes. In Proc. Vth Int. Conf. Bioelectrical

Impedance, pages 83–86, 1981.

[69] J Jossinet, A Lobel, C Michoudet, and M Schmitt. Quantitative technique
for bio-electrical spectroscopy. Journal of biomedical engineering, 7(4):289–
294, 1985.

[70] Jacques Jossinet. The impedivity of freshly excised human breast tissue.
Physiological measurement, 19(1):61, 1998.

[71] Jari P Kaipio, Ville Kolehmainen, Erkki Somersalo, and Marko Vauhko-
nen. Statistical inversion and Monte Carlo sampling methods in electrical
impedance tomography. Inverse problems, 16(5):1487, 2000.

[72] Tzu-Jen Kao, Gary J Saulnier, Hongjun Xia, Chandana Tamma, JC Newell,
and D Isaacson. A compensated radiolucent electrode array for combined
EIT and mammography. Physiological measurement, 28(7):S291, 2007.
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List of Abbreviations

BiCG Bi-Conjugate Gradients
CG Conjugate Gradients
CT Computed Tomography
EIDORS Electrical Impedance and Diffuse Optical Reconstruction Software
EIM Electrical Impedance Mapping
EIS Electrical Impedance Spectroscopy
EIT Electrical Impedance Tomography
ERT Electrical Resistivity Tomography
FEM Finite Element Method
MFEIT Multi-frequency Electrical Impedance Tomography
MRI Magnetic Resonance Imaging
PCG Preconditioned Conjugate Gradients
SNR Signal-to-Noise Ratio
SSRM Subspace Regularization Method
SVD Singular Value Decomposition
TSVD Truncated Singular Value Decomposition
TV Total Varation (reconstruction)
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