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Autor: Marek Šabata
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Introduction

Financial data can be viewed as a realization of a random process. It is there-
fore natural to employ methods of time series analysis to find a suitable model
explaining the data, which could then help us predict the next move. In financial
jargon, this area of stock market analysis falls behind technical analysis of stocks.

Among the most popular time series models in general is the linear autore-
gressive moving average model, or in short linear ARMA model. It is composed
of two parts - autoregressive model, which models current value of a stochastic
process as a linear combination its past values, and moving average model, which
models the current value of the process as a linear combination of past values of
a white noise process.

Linear models can be a good first step when analysing any kind of time se-
ries data. However, in reality linear models are hardly ever sufficient to capture
the nonlinearities clearly present in financial time series. Financial data incor-
porate lot of nonlinear features such as nonlinear relationship between lagged
variables, different growth in periods of recession and expansion, etc. It is there-
fore suitable to introduce nonlinearities in time series models. At the same time
we would like to keep the simple structure of the linear model, which has usually
very straightforward interpretation. Combining these two desires, we arrive at
nonlinear ARMA models.

The thesis is divided as follows. In the first chapter, we will present gen-
eral theory concerning time series modeling. In the second chapter, theory of
linear ARMA models will be presented, since methods used in linear ARMA
models analysis can be considered as building blocks for the nonlinear theory of
ARMA models. In the third chapter, we present three nonlinear ARMA mod-
els. The first one is so called threshold autoregressive model (TAR), the second
is autoregressive conditional heteroscedastic model (ARCH) and the last one is
generalized conditional heteroscedastic model (GARCH). In the fourth chapter,
we will fit the models on real financial data, namely on daily returns of S&P500
index and analyse soundness of the models. In the conclusion, we summarize the
thesis and our findings.

All our analyses will be done in statistical software R. The script is imple-
mented in such way that any stock can be analyzed in the same way as we’ve
analysed the S&P500 index just by downloading the right data set.
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Chapter 1

Time series characteristics

In this chapter, we will present general framework of time series analysis and
basic tools commonly used in analysing time series data, that will enable us to
proceed with statistical inference later on. Most of the definitions and theoreems
we present in the thesis are loosely adapted from the books Fan and Yao (2003)
and Hamilton (1994).

In the thesis, we suppose that Ω is a nonempty set - sample space, A is a
σ-algebra such that A ⊂ 2Ω and P is a probability measure on A , so P(Ω) = 1.
Therefore (Ω,A ,P) is a probability space.

For the purpose of our analyses, we will consider only real random variables,
that is measurable functions X : (Ω,A )→ (R,B), where B denotes the Borel σ-
algebra of the real line R. If we refer to a stochastic (or random) process, we mean
a discrete sequence of random variables {Xt, t ∈ Z}, where Xt : (Ω,A )→ (R,B)
for each t ∈ Z. Since our main concern will be daily financial data, discrete time
processes will suffice for our analyses.

Throughout the thesis we will consider only parametric time series models.
Parametric models make assumptions about distribution of the data, that is the
data are from some family of distributions {f(x, θ), θ ∈ Ω0} , where Ω0 ⊂ Rm.
The family of distributions is usually known. In contrary to nonparametric mod-
els, parametric models have fixed number of parameters, independent of the
amount of data.

1.1 Stationarity

If a time series is stationary, we can say that it retains some time invariant
properties. This enables us to proceed with statistical inference. Without sta-
tionarity, we can hardly make any statistical inference about the time series data,
since, simply said, the distribution of the data throughout the time varies. In
time series analysis, two types of stationarity are usually used. First one is the
weak stationarity and second is the strict stationarity.

Definition 1. A time series {Xt, t ∈ Z} is stationary if ∀t, EX2
t < +∞ and:

i) ∀t, EXt = c, c ∈ R
ii) Cov(Xt, Xt+k) is independent of t for each k.

Definition 2. A time series {Xt, t ∈ Z} is strictly stationary, if for all n ∈ N
and any integer k ∈ N vectors (X1, . . . , Xn) and (X1+k, . . . , Xn+k) have the same
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joint distribution.

Note that in the definition of weak stationarity, we only impose some condi-
tions on the first two moments and make no further assumption about distribu-
tions of the random variables. Hence other moments do not even have to exist. In
order for a time series to be strictly stationary, it has to have equal not only the
first two moments, but whole distribution function has to be the same throughout
time. It can easily be seen that if a strictly stationarity series has finite second
moments, then it is weakly stationary but not vice-versa.

In reality, weak stationarity is usually sufficient for linear time series models,
where we are interested in linear relationship among the variables in time and
focus on modeling the first moment. However, in context of nonlinear time series,
strict stationarity is often required. If we want to make some statistical inference
about nonlinear models, we usually have to look beyond the first two moments
and here the strict stationarity comes in play.

1.2 White noise and causality

We now briefly introduce two basic types of time series processes, that are
essential in time series analysis in general, since most of the more sophisticated
models build on their theory. Namely these two are the white noise process and
the Gaussian process.

Definition 3. Stochastic process {Xt} is called a white noise, denoted as {Xt} ∼
WN(0,σ2), if EXt = 0, Var(Xt) = σ2 and Cov(Xt, Xs) = 0 for all s 6= t.

White noise process interprets not directly observable information. It is used
heavily in linear time series processes since we make assumptions only about the
first two models, so it goes in hand with weak stationarity. We can easily see, that
if we have a sequence of independent and indentically distributed (i.i.d.) random
variables {Xt} with EXt = 0 and Var(Xt) = σ2, denoted by IID(0, σ2), it is a
special case of a white noise process.

Definition 4. We say that a stochastic process {Xt} is Gaussian, if all of its
finite-dimensional distributions are normal.

Since normal random variables are uncorellated if and only if they are inde-
pendent, a sequence of i.i.d. normal random variables is automatically a Gaussian
white noise process.

It can also be easily checked, that WN(0,σ2) is stationary, but does not have
to be strictly stationary. If, however, we have Gaussian white noise process that
is weakly stationary, it is automatically strictly stationary.

Another important concept in time series analysis is causality. A causal time
series is such that it is caused entirely by a white noise process. We may premise
- using definition of moving average process from the following chapter - that
causal time series can be expressed as MA(+∞).

Definition 5. We say that time series {Xt} is causal, if for all t

Xt =
+∞∑
j=0

djεt−j,
+∞∑
j=0

|dj| < +∞,
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where {εt} ∼ WN(0, σ2).

Causality will help us detemine whether a time series following a specific model
is stationary later on.

We now proceed to explain how to measure linear relationship between the
variables in a stochastic process {Xt}.

1.3 Autocorrelation

Autocorrelation tells us about linear relationships between random variables
in the process {Xt}. The autocorrelation coefficient, defined as Cov(Xt+k, Xt)
measures linear dependence of the variables Xt+k and Xt.
When the process {Xt} is stationary, we may then write

Cov(Xt+k, Xt) = Cov(Xk, X0), for k ∈ N,

so the correlation between Xt+k and Xt depends only on the time difference k.
That leads us to the following definition.

Definition 6. Let {Xt} be a stationary time series. The autocovariance function
(ACVF) of the process {Xt} is defined as

γ(k) = Cov(Xt+k, Xt), k ∈ Z.

The autocovariance function (ACF) of the process {Xt} is defined as

ρ(k) =
γ(k)

γ(0)
= Corr(Xt+k, Xt), k ∈ Z,

We would now like to know under what assumptions is a real valued function
γ(·) : N→ R an ACVF function of a stationary time series.

Theorem 1. A real valued function γ(.) : N → R is the ACVF of a stationary
time series if and only if it is even and nonnegative definite in the sense that

n∑
i,j=1

aiajγ(i− j) ≥ 0

for any integer n ∈ N and arbitrary numbers a1, . . . an ∈ R.

Autocorrelation function will help us to identify parameters in linear models
further on. For this reason, we would like to know, given observations {X1, . . . , XT}
generated by a stationary time series, how to estimate the ACF function.

We first show how to estimate the autocovariance function. Knowing how to
estimate the autocovariance function, the autocorrelation function can then be
estimated easily.

Since the autocovariance is defined in the means of covariance, it can be
naturally estimated as follows.

γ̂(k) =
1

T

T−k∑
t=1

(Xt − X̄T )(Xt+k − X̄T ), k = 0, 1, . . . , T − 1,
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where X̄T = 1/T
T∑
t=1

Xt. The ACF function can be then estimated as

ρ̂(k) =
γ̂(k)

γ̂(0)
, k = 0, 1, . . . , T − 1.

However in this manner it is impossible to estimate γ(k) and therefore ρ(k)
for k ≥ T and even for k slightly smaller than T the estimates are not really
good, given only a few observations (Xt, Xt+k) available. Box and Jenkins (1970)
proposed that T ≥ 50 and k ≤ T/4 for the estimation to be sound.

Another important measure that will give us some insights into the structure
of a time series {Xt} is so called partial autocorrelation function (PACF).

Definition 7. Let {Xt} be a stationary time series with EXt = 0. Then the
partial autocorrelation function is defined as π(1) = Corr(X1, X2) = ρ(1) and

π(k) = Corr(R1|2,...,k, Rk+1|2,...,k), for k ≥ 2,

where
Rj|2,...,k = Xj − (αj2X2 + . . .+ αjkXk), and

(αj2, . . . , αjk) = arg min
β2,...,βk

E[Xj − (αj2X2 + . . .+ αjkXk)]
2.

In other words, Rj|2,...,k denotes the residual from the linear regression of
Xj on (X2, . . . , Xk). It can be intuitively interpreted as additional information
contained in Xj that is not already explained by (X2, . . . , Xk).

We can see that for a Gaussian process, the PACF may be rewritten as

π(k) = E[Corr(X1, Xk+1|X2, . . . , Xk)].

The definition of PACF may seem quite opaque and it may seem hard to
calculate the PACF function for a given time series {Xt}. The following theorem
tells us that PACF is in fact entirely determined by the ACVF.

Theorem 2. For any stationary time series {Xt}, it holds

π(k) =
γ(k)− Cov(Xk+1,X

T
2,k)Σ

−1
2,kCov(X2,k, X1)

γ(0)− Cov(X1,XT
2,k)Σ

−1
2,kCov(X2,k, X1)

,

where γ(·) is the ACVF of {Xt}, X2,k = (Xk, . . . , X2)T and Σ2,k = Var(X2,k).

What follows is a theorem linking the PACF function with time series mod-
eling. Althoug its meaning and importance might be unclear now, we will use it
later on to determine one of the parameters in the linear ARMA modeling case.

Theorem 3. Let {Xt} be a stationary time series with EXt = 0. Then π(k) = bkk
for k ≥ 1, where

(b1k, . . . , bkk) = arg min
b1,...,bk

E[Xt − b1Xt−1 − . . .− bkXt−k]
2.
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The theorem tells us, that π(k) is in fact the last autoregressive coefficient in
the autoregressive approximation for Xt by the variables Xt−1, . . . , Xt−k.

Both PACF and ACF provide important information about the correlation
structure of the series {Xt} and are crucial for identification and estimation of
various time series models. We will show more details in the fourth chapter in
light of fitting concrete time series models.

In reality, both ACF and PACF are estimated by some standard algorithms
implied in the modeling software. In our case, we will use a special library for time
series modeling in R, namely tseries library, where the methods for estimating
ACF and PACF are implemented.

We now proceed to theory of linear ARMA modeling.
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Chapter 2

Linear ARMA models

In this chapter, we will introduce theory of linear autoregressive moving aver-
age (ARMA) processes. Methods used in estimation of linear ARMA models are
heavily utilized in nonlinear ARMA models, so we can consider the linear pro-
cesses as a building stone for nonlinear ARMA processes. We will also fit a linear
model on the financial data in the fifth chapter, so we can see whether nonlinear
models truly gives us better representation of a real financial data compared to
the linear ones.

2.1 Introduction to linear ARMA models

We are going to present basic definitions concerning linear ARMA processes.
We start with basic definitions of linear time series autoregressive process, moving
average process and subsequently to combination of the two former - autoregres-
sive moving average process.

Definition 8. An autoregressive process of order p ≥ 1 is defined as

Xt = b1Xt−1 + . . .+ bpXt−p + εt

where {εt} ∼ WN(0, σ2). The time series {Xt} generated from this model is
called AR(p) process.

Autoregressive (AR) model represents the current value of the process Xt as
a linear combination of past values of the process together with some white noise.
That is, current state is completely determined by the past values Xt−1, . . . , Xt−p
and some random error εt. The model can be viewed as a classical linear regression
model without intercept. In practice modeling the time series without intercept
is no restriction, since it is common in time series analysis to subtract the mean
from the data before proceeding with further analyses.

Definition 9. A moving average process with order q ≥ 1 is defined as

Xt = εt + a1εt−1 + . . .+ aqεt−q

where {εt} ∼ WN(0, σ2). The time series {Xt} generated from this model is
called MA(q) process.
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MA models represents the current value as a linear combination of a white
noise process realizations, so the value ofXt can be considered completely random.

By combining AR and MA processes, we arrive at an autoregressive moving
average process.

Definition 10. The autoregressive moving average (ARMA) process of orders p
and q is defined as:

Xt = b1Xt−1 + . . .+ bpXt−p + εt + a1εt−1 + . . .+ aqεt−q,

where {εt} ∼ WN(0, σ2), p, q ≥ 0 are integers. We write {Xt} ∼ ARMA(p,q).
The time series {Xt} generated from this model is called ARMA(p,q) process.

It is often useful to represent linear ARMA processes using backshift opera-
tors. Namely, denote

b(z) = 1− b1z − . . .− bpzp and a(z) = 1 + a1z + . . . aqz
q,

for z ∈ C and further define the backshift opetaror B as

BXt = Xt−1, BkXt = (Bk−1)BXt = Xt−k, k ∈ N.

We can then rewrite the ARMA process in a simple form as

b(B)Xt = a(B)εt.

One advantage of using the polynomial representation of ARMA model
is that lot of properties of ARMA models can be determined by exploring the
polynomials b(z) and a(z). For example the following theorem, which helps us to
identify whether a linear ARMA process is stationary, holds.

Theorem 4. Stochastic process {Xt} given by a linear ARMA(p,q) process is
stationary if b(z) 6= 0 for all complex numbers z such that |z| ≤ 1.

Before proceeding to the estimation of parameters in the linear ARMA
model, we provide one more definition that is useful for their analysis. In the
previous chapter, we defined a causal time series. As we said, causality means
that the process {Xt} may be expressed as MA(+∞) process. Similar term to
causality is invertibility of time series.

Definition 11. We say that ARMA(p,q) is invertible, if a(z) 6= 0 for all complex
number z such that |z| ≤ 1.

As opposed to causality, invertibility means that the white noise process {εt}
can be expressed as an AR(+∞) process. That is, if ARMA(p,q) process is
invertible, the white noise can be represented as

εt =
+∞∑
j=0

djXt−j with
+∞∑
j=1

|dj| < +∞,

so the current state of the white noise is completely determined by infinite past
of the series {Xt}.
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2.2 Linear ARMA modeling

When we want to fit ARMA(p,q) model, two main questions arise. First is
how to determine the orders p and q, that is how to specify the model. The
second question is how to estimate the parameters b1, . . . , bp and a1, . . . aq. What
is also very important in time series analysis is postfitting diagnostic checking on
the validity of the fitted model. We will present methods showing how to solve
all of these issues. Our main focus will be on the Gaussian maximum likelihood
estimation method, which is applicable to any stationary time series, according
to Fan and Yao (2003).

2.2.1 Models and background

Suppose we have X1, . . . , XT obervations from a causal ARMA(p, q) process,
so

Xt = b1Xt−1 + . . .+ bpXt−p + εt + a1εt−1 + . . .+ aqεt−q,

where {εt} ∼ WN(0, σ2). We want to determine the orders p, q and coefficients
of the AR part and MA part of the model and the variance of white noise σ2.
Without loss of generality, we asume that EXt = 0, which can be obtained by
subtracting the sample mean from the data before we fit the model.

As we already stated, we will proceed with maximum likelihood estimation
when fitting the model. However, given the dependence in data, calculating the
Gaussian likelihood function for ARMA model requires calculating inverse of a
T × T covariance matrix. This may be computationally very challenging. Hence
various approaches were developed to deal with this problem. We will explore
one such method in the next few paragrahps.

2.2.2 Prewhitening - the best linear prediction

As we said, when calculating the maximum likelihood estimatior, we would
have to calculate inverse of large matrices, which could be computationaly infea-
sible. One method how to deal with this problem is to prewhiten the data. That
is to find the best linear predictor for Xt, based on Xt−1, . . . , X1 for each t > 1.

Definition 12. Let {Xt} be a stationary process with zero mean. We say that

X̂k+1 = φk1Xk + . . .+ φkkX1

is the best linear predictor for Xk+1 based on Xk, . . . , X1 if

E[Xk+1 − X̂k+1]2 = min
{ψ}

E
[
Xk+1 −

k∑
j=1

ψjXk−j+1

]2

Given a set of coefficients {φkj}, we would like to know under what assump-
tions are the coefficients the best linear predictor for Xk+1. The following theorem
gives us the answer.

Theorem 5. A set of coefficients {φkj} is the best linear predictor for {Xk+1} if
and only if

k∑
j=1

φkjγ(i− j) = γ(i), i = 1, . . . , k

10



where γ(·) is the ACVF of {Xt}.

Proof. See Fan and Yao (2003), page 92.

k
In the proof, it can be seen that

Cov(X̂k+1 −Xk+1, Xi) = 0, i = 1, . . . , k

From the definition of prewhitening, Xi − X̂i is linear combination of only
Xi, . . . , X1. If we define X̂1 = 0, then {Xt − X̂t, t = 1, . . . , T} is a sequence
of uncorrelated random variables. Subtracting the best linear predictor from
each variable Xk from the original observations, we obtain uncorrelated sequence
{Xt − X̂t, t = 1, . . . , T} - this sequence is called prewhitening. We can easily see
that E(Xt − X̂t) = 0 and

νt+1 = Var(Xt+1 − X̂t+1) = E[(Xt+1 − X̂t+1)Xt+1] = γ(0)−
t∑

j=1

φtjγ(j).

We will now show so called innovation algorithm, according to which we can
easily calculate the predictive errors {Xt − X̂t} and their variances {νt}. For
details about the algorithm, we refer the reader to Brockwell and Davis (1991).
Innovation algorithm:
i) Set ν0 = γ(0).
ii) Recursively calculate:

θk,k−j = ν−1
j

{
γ(k − j)−

j−1∑
i=0

θj,j−iθk,k−iνi

}
,

and

νk = γ(0)−
k−1∑
j=0

θ2
k,k−jνj.

Then calculate the values of sequences {θij} and {νj} in the order

θ11, ν1; θ22, θ21, ν2; . . . ; θT−1,T−1, . . . , θT−1,1, νT−1.

The best linear predictors are then given by X̂1 = 0 and

X̂k+1 =
k∑
j=1

θkj(Xk+1−j − X̂k+1−j), for k = 1, . . . , T − 1.

We can now proceed to the maximum likelihood estimation.

2.2.3 Maximum likelihood estimation

Before we present the maximum likelihood estimation method, we need to
intrudoce a few notations.
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Firstly, denote XT = (X1, . . . , XT )T and X̂T = (X̂1, . . . , X̂T )T . We denote

Θ =


0 0 0 · · · 0
θ11 0 0 · · · 0
θ22 θ21 0 · · · 0
...

...
. . . . . .

...
θT−1,T−1 θT−1,T−2 · · · θT−1,1 0


It is then possible to write

X̂T = Θ(XT − X̂T )

and express XT = (Θ + IT )(XT − X̂T ), where IT is T × T identity matrix.
We further denote C = (Θ + IT ), D = diag(ν1, . . . , νT−1) and Σ = Var(XT ).

According to the equation for νt = γ(0)−
t∑

j=1

φtj(j) we can then express

Σ = CDCT with |Σ| = |D| =
T−1∏
j=1

νj.

Hence if the process {Xt} is a Gaussian causal ARMA process, then the likelihood
function is the density of multivariate normal distribution

L(b, a, σ2) ∼ |Σ|−
1
2 exp

(
− 1

2
XT
TΣ−1XT

)
=

= (ν0 . . . νT−1)−
1
2 exp

(
− 1

2

T∑
j=1

(Xj − X̂j)
2

νj−1

)
=

= σ−T (r0 . . . rT−1)−
1
2 exp

(
− 1

2σ2

T∑
j=1

(Xj − X̂j)
2

rj−1

)
where b = (b1, . . . , bp)

T , a = (a1, . . . , aq)
T and rj = νj/σ

2. We just note here,
that the values Xt = Xt(b, a) in fact, since we suppose the process is generated by
linear ARMA(p,q) process. We call the distribution of L(b, a, σ2) the Gaussian
likelihood function. The maximum likelihood estimator can be then obtained as
a maximizer to

(b̂, â, σ̂2) = arg max
(b,a)∈B,σ>0

L(b, a, σ2)

where
B = {(b, a) : b(z) · a(z) 6= 0 ∀z : |z| ≤ 1}

By requiring (b, a) to be in the set B, it guarantees that the model is invertible
and causal.

We can also notice, that {ri} and {φji} do not depend on σ2. Therefore we
can proceed with the maximization in two steps, namely maximazing over σ first
and then search for (b̂, â). For simpler notation, we write

S(b, a) =
T∑
j=1

(Xj − X̂j)
2

rj−1

.

12



Then maximizing over σ, the maximum likelihood estimator can be written as

(b̂, â) = arg max
(b,a)∈B

(
ln(S(b, a)) +

1

T

T∑
j=1

ln(rj−1)

)
, σ̂2 =

S(b̂, â)

T
.

Now we can see why prewhitening is such powerful tool. We don’t have to
calculate the inverse of covariance matrix Σ. By prewhitening the time series, we
substantially reduce the computational time of searching for (b̂, â).
Acording to Fan and Yao (2003), when {Xt} is not Gaussian, the Gaussian like-
lihood function or distribution of L(b, a, σ2) written above, may still be regarded
as a measure of goodness of fit to the data. In the first theorem of the following
section, we will show that even if the data does not follow a normal distribution,
but only {εt} ∼ IID(0, σ2) holds, then the maximum likelihood estimator derived
above is asymptotically distribution free. However, when εt is not Gaussian, the
maximum likelihood estimators are usually inefficient. When εt has heavy tails
in the sense that Var(εt) = +∞ then the Gaussian likelihood estimation may
lead to even inconsistent estimators. For more robust methods, see David et al.
(1992).
We now proceed to asymptotic properties of the likelihood estimators.

2.2.4 Asymptotic properties

After deriving the maximum likelihood estimators, we are interested in their
asymptotic properties. Let {Wt} ∼ WN(0,1) and define

b(B)Ut = Wt and a(B)Vt = Wt,

where b(·) and a(·) are the polynomials from linear ARMA process representation.
Then {Ut} is an AR(p) process with coefficients b1, . . . , bp defined in terms of AR-
coefficients and {Vt} is an AR(q) process with coefficients a1, . . . , aq defined in
terms of MA-coefficients. We can see that the processes are correlated with each
other, since they are both generated from the same white noise process. Denote
the initial values of processes {Ut} and {Vt} as Z = (U−1, . . . , U−p, V−1, . . . , V−q),
and

W(b, a) = Var(Z)−1

Then the following theorem tells us about asymptotic distribution of the maxi-
mum likelihood estimator with identically distributed errors.

Theorem 6. Let {Xt} be ARMA(p,q) process with {εt} ∼ IID(0, σ2), σ2 > 0 and
let (b0,a0) ∈ B be the true values of parameters from the set B defined above.
Denote (b̂, â) the maximum likelihood estimators and σ̂2 the variance from MLE.
Then for T → +∞ it holds:

T 1/2

(
b̂− b0

â− a0

)
D−→ N

(
0,W(b0,a0)

)
We can see from the theoreem, that the asymptotic distribution of the MLE is

independent of σ2. Hence we can say that the estimator of causal and invertible
ARMA processes does not deteriorate with the magnitude of the white noise.
Hannah (1973) showed that it holds even for general ARMA processes.
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2.2.5 Confidence Regions

With the theorem above in hand, we can proceed to construction of confidence
regions and intervals for testing hypotheses about parameters we obtained using
the MLE for the ARMA process or AR and MA processes respectively. For
causal and invertible ARMA process, we may use the asymptotic variance matrix
W(b, a) to calculate the standard errors of the MLE for the parameters. The
asymptotic limit distribution for the estimated parameters in ARMA process can
be used to construct confidence regions in the following way. An approximate
(1− α) confidence region for the AR coefficient b is constructed as:

{b = (b1, . . . , bp)
T : (b̂− b)TŴ−1

1 (b̂− b) ≤ χ2
p(1− α)/T},

where Ŵ1 is the upper-left p × p submatrix of W(b̂, â), and χ2
p(1 − α) is the

100α-th percentile of χ2-distribution with p degrees of freedom. If we want to
test a single parameter, the approximate (1−α) confidence interval for bj can be
calculated as:

{bj : |b̂j − bj| ≤ T−1/2w
1/2
jj z(1− α/2)},

where z(α) is the 100α-th percentile fo the standard normal distribution.
Similarly the approximate (1−α) confidence region for the MA coefficient vector
a is constructed as:

{a = (a1, . . . , aq)
T : (â− a)TŴ−1

2 (â− a) ≤ χ2
q(1− α)/T},

where Ŵ2 denotes the q× q lower-right submatrix of W(b̂, â) and the rest is the
same as with the parameter b. For the single parameter ai, we can construct the
confidence interval as

{ai : |âi − ai| ≤ T−1/2w
1/2
p+i,p+iz(1− α/2)},

where z(α) is the 100α-th percentile fo the standard normal distribution.
As we now know to estimate the parameters (b, a) in the linear ARMA

process given set of observations {X1, . . . , XT}, the question is how to determine
the orders p and q. In the next part of this chapter, we present general method
of fitting a model to a set of data, so called Akaike information criterion. It can
be used to find the orders p and q.

2.3 Model identification

We will present two methods showing how to determine the linear ARMA
model orders p and q, specifically the Akaike Information Criterion (AIC) and
Bayesian Information Criterion. As we said, these methods can be used to help
us fit any unknown density function. We will present it in a compact manner
here. Let’s start with the AIC, which can be considered as a basic measure of a
goodness of fit. Details can be found in Akaike (1973).

2.3.1 Akaike information criterion

Let’s first describe the idea of how AIC works. Say that we want to
approximate unknown density function g by a probability density function f . We
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define the Kullback-Leibler information as follows

I(g, f) = E[ln
( g(X)

f(X)

)
] =

∫
g(x)ln

( g(x)

f(x)

)
dx, where X ∼ g.

We can see, using Jensen’s inequality, that I(g, f) is always positive, since

I(g, f) = −E[ln
(f(X)

g(X)

)
] ≥ −ln(E

[f(X)

g(X)

]
) =

= −ln
(∫ f(x)

g(x)
g(x)dx

)
= −ln(1) = 0,

and the equality holds if and only if f = g.
Since we can rewrite the integral as∫

g(x)ln
( g(x)

f(x)

)
dx =

∫
g(x)ln(g(x))dx−

∫
g(x)ln(f(x))dx,

we see that the right hand side does not depend on f . It is therefore suitable to
choose f that minimizes the right hand side of the equation

−
∫
g(x)ln(f(x))dx = −Eg[ln(f(X))].

However, in reality, we don’t know the function g. Therefore, given set of
observations {X1, . . . , XT}, we will replace the expectation by the statistic

− 1

T

T∑
j=1

ln(f(Xj)),

which is an unbiased estimator of the expectation.
In reality, we usually choose f from a set of parametric family {fm(·|θm)}

and typically the form of the function fm is given for each m. For example in
linear time series modeling, functions fm may stand for ARMA family with order
(p,q) = m and θm = (b1, . . . , bp, a1, . . . , aq). To find the best approximation, we
need to minimze the term

− 1

T

T∑
j=1

ln(fm(Xj|θm)).

Similarly as with maximizing the Gaussian likelihood function, we may view
this process as a two step optimization, in which we first find the minimizer of θm
for each fixed m and then to find m that minimizes the whole sum. It is not hard
to see that the minimizer in the first step is the maximum likelihood estimator,
which maximizes the following log-likelihood density function

θ̂m = arg max
θ

T∑
j=1

ln(fm(Xj|θm)).
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The second step of the optimization is to find m̂ that minimizes the sum, that is

m̂ = arg min
m∈N
− 1

T

T∑
j=1

ln(fm(Xj|θ̂m)).

However, as Akaike pointed out, this approach has one drawback - the expression

− 1

T

T∑
j=1

ln(fm̂(Xj|θ̂m̂))

is no longer an unbiased estimator of −Eg[ln(fm(X|θm)], since the expression is
overfitted, which is caused by using the same sample {X1, . . . , XT} twice. Once
for the estimation of the log-likelihood and second for estimating the parameter
θ̂m.

Akaike (1973) proposed one solution to the problem. He added the bias to
the sample likelihood function and then showed that it can be asymptotically ap-
proximated as pm/T , where pm is the number of estimated parameters. Formally
written, he proved that

−Eg[ln(fm(X|θm)}+
1

T

T∑
j=1

Eg[ln(fm̂(Xj|θ̂m̂)] ≈ pm
T
.

In order to correct the bias, we should add the term pm
T

to the minimized value,
that is

− 1

T

T∑
j=1

ln(fm̂(Xj|θ̂m̂)) +
pm
T
.

Finally, by multiplying the expression by 2T , we obtain the Akaike information
criterion (AIC):

AIC(m) = −2
T∑
j=1

ln(fm(Xj|θ̂m) + 2pm.

The first part of AIC can be intuitivelly explained as a lack of fit, so more
sophisticated models should decrease this term and vice versa. The second part
penalizes us for increasing the number of parameters. So the optimum model
minimizing AIC ratio is a well balanced trade-off between complexity and sophis-
tication.

2.3.2 Bayesian information criterion

AIC is surely good first step when fitting model orders, but in reality it has
several drawbacks. Due to the form of AIC, it often overestimates the number
of parameters in the model, because it doesn’t penalize the model enough for
increasing the number of parameters. Moreover, according to Akaike (1970), se-
lecting orders based on AIC does not lead to consistent order selection. Therefore
we would like to find a procedure which treats the drawbacks of AIC, yet retains
its advantages. Therefore we will present the Bayesian information criterion,
which is more sensitive to increasing the number of parameters, does not lead to
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oveftiffing and the parameters estimated by BIC are strongly consistent. Basing
the criterion on AIC, Bayesian information criterion (BIC) is defined as

BIC(m) = −2
T∑
j=1

lnfm(Xj|θ̂m) + ln(T )pm.

From the equation above, we can see that BIC penalizes the model for overfitting
much more than the AIC. As we’ve already proclaimed, Hannah (1980) showed
that BIC is consistent estimator for the order of the model.

We now dispose of all necessary theory for identification of the best linear
ARMA model. However, in reality no thorough modeling should be complete
without post fitting diagnostic. After specifying a model, we need to check
whether our model truly represents the reality well. This is the topic of next
few paragraphs. Again as with the procedures for order determination, diagnos-
tic checking does not apply only to linear models, but generally to all time series
models.

2.4 Diagnostic checking

Since fitting a time series model is only approximation of reality, we should al-
ways conduct postfitting diagnostic to see whether the model explains the trends
in the data well. We will present introduction to one method for diagnostic
checking, namely the residual based method, which tests whether residuals from
a fitted model behave like a white noise process. We will show the basic procedure
for linear model, however the ideas hold even for nonlinear models.

Suppose we have a fitted ARMA(p,q) model. Then we can define the stan-
dardized residuals as follows:

Rj =
(Xj − X̂j)

(σ2rj−1)1/2
, j = 1, . . . , T,

where X̂j and rj−1 are the same as in the Gaussian likelihood function, so both
depend on the parameters b and a. If we replace them with the maximum
likelihood estimators, we arrive at the standardized residuals:

R̂j =
Xj − X̂j(b̂, â)

(σ̂2rj−1(b̂, â))1/2
, j = 1, . . . , T.

We would like the sequence {R̂j} to be similar to the sequence {Rj} ∼
WN(0,1). Moreover if the sequence {εt} is Gaussian, then {R̂j} ∼ N(0,1).

Since statistical tests for whiteness require theory of spectral densities, which
is beyond the scope of this thesis, we will proceed with just visual diagnostics.
Looking at the time series plot of {R̂j} it should look ”randomly” as a white
noise process. In case there is a clear deviation from the zero mean or changing
variance over time, the sequence is most probably not a white noise process.

By this paragraph, we can close the theory of linear ARMA models and move
on to the theory of nonlinear ones.
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Chapter 3

Nonlinear ARMA models

As we’ve already discussed in the introduction, linear ARMA models can be a
good stepping stone to model a time series data, however in real life and financial
time series particularly, hardly any phenomenon exhibits strictly linear features.

Time series in reality can have many nonlinear futures, such as nonnormally
distributed errors, the series may exhibit cycles, nonlinear relationship between
lagged variables, and so on. This in turns limit the power of linear models and
hence we need to turn to nonlinear methods to take care of such nonlinearities.

In this chapter, we will present three nonlinear models - the first one is
threshold autoregressive model, second one is conditional heteroscedastic model
and third one is generalized conditional heteroscedastic model.

Let’s begin with the threshold models.

3.1 Threshold Autoregressive model

As we stated, linear approximation is a good stepping stone for time series
modeling, yet global linear law is often bound to have a few insufficiencies and
is therefore inappropriate. For example in the financial time series context, it
would be naive to assume that during the phase of recession, markets behave the
same as in the phase of expansion. Therefore, we may try to model the nonlinear
dynamics through dividing the state space into several subspaces and then on
each of those subspaces proceed with a linear approximation. This leads us to
the following definition.

Definition 13. A threshold autoregressive process (TAR) with k (k ≥ 2) regimes
is defined as

Xt =
k∑
i=1

{bi0 + bi1Xt−1 + . . .+ bi,piXt−pi + σiεt}I(Xt−d ∈ Ai)

where {et} ∼ IID(0, 1), d, p1, . . . , pk are unknown positive integers, σi > 0, bij
are unknown parameters, and {Ai} forms a partition of R such that

⋃k
i=1Ai = R

and Ai ∩ Aj = ∅ for all i 6= j.

We can easily see, that TAR is an AR model on each Ai. Therefore it retains
the simplicity of linear models, yet can capture the nonlinearities present in time
series data. The random variable Xt−d which dictates the partition of R is called
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threshold variable and d is called a delay parameter.
A few questions arise, when we look at the definition. One is how to de-

termine the partition of the subspace and then how to determine the threshold
variable. Although we will use a special case of the TAR model based on eco-
nomic interpretation when modeling the financial data in the fifth chapter, we
will proceed with general approach of fitting the TAR processes.

3.1.1 Estimation and model identification

Suppose that we have observed values X1, . . . , XT from the TAR process, with
k ∈ N given. We now show the method how to estimate parameters bij’s, σi’s
and d and determine the orders pi’s together with partitions of R, Ai’s.

Firstly, we will derive the method for estimation assuming the partition
{Ai} and orders pi’s are known. Afterwards, we will show how to determine the
partition of the state space and orders pi.

For simplicity assume that d ≤ p = max
1≤i≤k

pi. We define the square error

function L(bi, d;Ai) as follows:

L(bi, d;Ai) =
∑
p<t≤T

Xt−d∈Ai

{Xt − (bi0 + bi1Xt−1 + . . .+ bi,piXt−pi)}2.

We can then estimate the least squares estimators for autoregressive coefficients
bi = (bi0, . . . , bi,pi)

T , i = 1, . . . k and d as the minimizer (b̂1, . . . , b̂k) and d̂ that
minimize the overall square error function, defined as a sum of square error func-
tions:

k∑
i=1

L(bi, d;Ai).

Similarly as we’ve already done in previous MLE maximizations, we can
minimize the overall square error function in two steps. First for each d, we
minimize the value L(bi, d;Ai). That can be easily done using the least squares
method, so it can be obtained explicitly by minimizing the square errors ε2i,t,
where εi,t = σiεt for i = 1, . . . , k.

Afterwards it remains to choose d̂ to minimize the value of the overall square
error function. If we have two minimizers, we choose the one with smallest d as
an estimator for the delay parameter.

Next we would like to find an estimator for the variances σ2
i . First denote

Ti = |{t : p < t ≤ T and Xt−d̂ ∈ Ai}| for i = 1, ..., k. We can then defince the
variance estimator as in ordinary least squares manner, that is

σ̂2
i =

1

Ti
L(b̂i, d̂;Ai).

We can now proceed the problem of choosing the partition {Ai}. When
modeling the financial data in the fifth chapter, we deal with this problem by
partitioning the state space based on economic interpretation. However, gener-
ally, we would proceed as follows.
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For each partition {Ai} of R, denote L({Ai}) =
k∑
i=1

L(b̂i, d̂;Ai), the mini-

mal value of the sum
k∑
i=1

L(bi, d;Ai). We are then looking for a partition {Âi},

that minimizes L({Ai}). In practice, we assume that the partition is in form
Ai = (ri, ri+1] such that −∞ = r0 < r1 < . . . < rk = ∞ and k is usually small,
such as k = 2, 3, 4 and the thresholds rk are searched within certain inner sample
range to ease the computational burden. The inner sample may be selected for
example based on some qualitative criteria.

We can proceed and define the least squares estimator, minimizing the overall
square error term with Ai = Âi, b̂i and d̂ and define

σ̂2
i =

1

Ti
L(b̂i, d̂, Âi), i = 1, . . . , k

The only thing remaining to determine are the autoregressive orders pi’s.
To do so, we will use a generalized Aikaike ratio, which is defined as

AIC({pi}) =
k∑
i=1

[Tiln(σ̂2
i ) + 2(pi + 1)],

where σ̂2
i ≡ σ̂2

i (pi). We then choose orders pi, that minimize the generalized AIC
ratio. The intuition behind the generalized AIC is basically the same as with the
ordinary AIC defined in the previous chapter.

Before proceeding to the asymptotic properties of the estimator, it is good
to note under what assumptions is the series generated by TAR stationary. One
simple criterion, that can be easily seen, is that the TAR process admits a strictly

stationary solution, if σ1 = . . . = σp and
p∑
j=1

max
1≤i≤k

|bij| ≤ 1 where p = max
1≤i≤k

pi. If

this condition holds, {Xt} is then causal and therefore stationary. Just note that
this is sufficient condition for the process to be stationary. Now we can proceed
to the asymptotic properties of the estimator.

3.1.2 Asymptotic properties of TAR estimator

From now on, we will suppose that the series {Xt} generated by TAR
process is strictly stationary with finite second moments. Then if the partition
{Ai} and the parameter d are given (which in our case will true), the least squares
estimator for bi is asymptotically normal in the sense that√

Ti(b̂i(d)− bi)
D→ N(0, σ2

iW
−1
i )

where

Wi =

(
1 µ1T

µ1 E(ξiξ
T
i )

)
, ξi = (ξ1, . . . , ξpi)

T

and 1 denotes pi × 1 vector (1, . . . , 1), µ = Eξt and finally

ξt = bi0 + bi1ξt−1 + . . .+ bi,piξt−pi + et, {et} ∼WN(0, 1)

With this in mind, we can easily derive the asymptotic confidence region and
intervals and test hypotheses about parameters in the model. The derivation of
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confidence regions and intervals is similar to the one described in the previous
chapter about linear ARMA model.

Similarly as with the linear models, we would like to have a method for
post fitting diagnostics of the model. Since TAR is linear on each subset of R,
the residual based method described in the previous chapter can be very well
employed even for TAR models, so there is no need to present a new method.

Let’s move on to another nonlinear ARMA models, that are closely related,
namely to the ARCH and GARCH models.

3.2 GARCH and ARCH models

In traditional time series analysis - what have we been doing up to now, we
usually try to somehow model the first moment. Autoregressive conditional het-
eroscedastic (ARCH) and generalized autoregressive conditional heteroscedastic
(GARCH) focus insted on the conditional second moments of the time series.
This makes ARCH and GARCH extremely popular in the financial time series
modeling, since they may be used to explain and model risk and uncertinity by
taking into account the dependency of conditional second moments into modeling
consideration. In this chapter, we will outline the basic probability properties of
ARCH and GARCH models and most frequently used statistical inference models
will be presented.

3.2.1 ARCH process

Let’s begin with definition of the ARCH model.

Definition 14. An autoregressive conditional heteroscedastic (ARCH) process
with order p, p ≥ 1, is defined as

Xt = σtεt where σ2
t = c0 + b1X

2
t−1 + . . .+ bpX

2
t−p,

c0 ≥ 0, bj ≥ 0 are constants, {εt} ∼ IID(0, 1), and εt is independent of {Xt−k, k ≥
1} for all t. A stochastic process {Xt} defined by the equation above is called an
ARCH(p) process.

The intuition behind ARCH model is that the predictive distribution of Xt

based on its past values is a scale transform of the distribution of εt, where
the scaling constant is represented by σt that depends on the past values of the
process. Therefore it enables us to model nonconstant variance throughout time.

Under such construction, if past observations are large, the variance will be
large. This nicely reflects the phenomenon present in financial markets, that
with higher prices comes greater volatility. This is in contrast with linear models,
where conditional mean squared predictive errors are constants.
We proceed with a theorem that links stationarity with ARCH models.

Theorem 7. i) The necessary and sufficient condition for ARCH model defining

a unique strictly stationary process {Xt, t ∈ Z} with EX2
t < +∞ is that

p∑
j=1

bj < 1.

21



Furthemore,

EXt = 0 and EX2
t =

c0

1−
p∑
j=1

bj

and Xt ≡ 0 for all t if c0 = 0.
ii) If EX4

t < +∞ and

max{1, (Eε4t )
1
2}

p∑
j=1

bj < 1,

then for the strictly stationary solution of the ARCH model holds
that EX4

t < +∞.

According to the previous theorem, stationary ARCH process {Xt} ∼

WN(0, c0/(1−
p∑
j=1

bj)). We may rewrite the square of Xt as follows:

X2
t = c0 + b1X

2
t−1 + . . .+ bpX

2
t−p + et,

where et = (ε2t − 1)(c0 +
p∑
j=1

bjX
2
t−j). From this, we can conclude that

E(et|Xt−k, Xt−k−1, . . .) = 0, for k ≥ 1.

Then calculation of the expectation of the second moment of Xt+k for k > p can
be obtained as:

E(X2
t+k|Xt−m,m ≥ 0) = c0 +

p∑
j=1

bjE(X2
t+k−j|Xt−m,m ≥ 0)

or

Var(Xt+k|Xt−m,m ≥ 0) = c0 +

p∑
j=1

bjVar(Xt+k−j|Xt−m,m ≥ 0).

More generally, for any k ∈ N we have

Var(Xt+k|Xt−m,m ≥ 0) = c0 +
k−1∑
j=1

bjVar(Xt+k−j|Xt−m,m ≥ 0)+

+

p∑
j=k

bjX
2
t+k−j.

What we’ve now derived is in fact called volatility clustering in the scope of
financial time series analysis. From the above equation, we can see that if the
series gets volatile, that is the variance Var(Xt+k|Xt−m,m ≥ 0) is high, it won’t
fade out until after k − 1 periods.
We now show a theorem with some further properties of the ARCH model.

Theorem 8. Let {Xt} be a strictly stationary ARCH(p) process with c0 > 0 and
p∑
j=1

bj < 1. Then:

22



i) {Xt} ∼ WN(0, c0/(1 −
p∑
j=1

bj)), and the conditional variance function fulfills

the equation

V ar(Xt+k|Xt−m,m ≥ 0) = c0 +

p∑
j=1

bjV ar(Xt+k−j|Xt−m,m ≥ 0).

Under additional condition

max{1, (Eε4t )
1
2}

p∑
j=1

bj < 1,

it holds that
ii) {X2

t } is a linear causal AR(p) process, and its ACF is always positive if

p∑
j=1

bj > 0

and
iii) Xt exhibits heavier tails than those of εt in the sense that κx ≥ κε, where κx
and κε are the kurtoses of random variables Xt and εt respectively.

3.2.2 GARCH process

We now proceed to the properties of the GARCH model. The GARCH model
is generalized ARCH model, which apart from second moments of the series takes
into consideration second moments of moving averages. According to Fan and
Yao (2003), ARCH(p) model defined in the previous section provides a reasonable
fit to a financial time series only if the order p is large. This is caused by the fact,
that conditional variance is dependent only on previous values of X2

t . It is then
quite natural to take into account not only past values X2

j ’s but also past values
of σ2

j ’s. This leads us to the definition of the GARCH processes.

Definition 15. A generalized autoregressive conditional heteroscedastic (GARCH)
process with order p, p ≥ 1, and q, q ≥ 0, is defined as:

Xt = σtεt where σ2
t = c0 +

p∑
i=1

biX
2
t−i +

q∑
j=1

ajσ
2
t−j,

where c0 ≥ 0, bi ≥ 0, aj ≥ 0 are constants, {εt} ∼ IID(0, 1), and εt is independent
of {Xt−k, k ≥ 1} for all t. A stochastic proces {Xt} defined by the equation above
is called a GARCH(p,q) process.

We will now show the relationship between linear ARMA model and GARCH
model. It is possible to express X2

t in the following terms:

X2
t = c0 +

p∑
i=1

biX
2
t−i +

q∑
j=1

ajσ
2
t−j + εt =
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= c0 +

max(p,q)∑
i=1

(bi + ai)X
2
t−i + et −

q∑
j=1

ajet−j,

where bp+j = aq+j = 0 for all j ≥ 1 and

et = X2
t − σ2

t = (ε2t − 1)

(
c0 +

p∑
i=1

biX
2
t−i +

q∑
j=1

ajσ
2
t−j

)
.

We can see, that the process {X2
t } is in fact ARMA(max(p, q), q) model. We know

from the section about ARMA processes, that invertible ARMA(p,q) process
with finite p and q can be transformed into AR(+∞) process. In the case of
GARCH processes, it means that invertible GARCH process may be expressed
as ARCH(+∞) process. This explains why even low order GARCH model, such
as GARCH(1,1) may provide an easily comprehensible representation of even
complexly autodependent structure of {X2

t }, which would otherwise require an
ARCH process with high order p to explain the data similarly well.
We will now provide a theorem linking stationarity with GARCH processes.

Theorem 9. The necessary and sufficient condition for the series {Xt, t ∈ Z}
with EX2

t < +∞ generated by a GARCH(p,q) process to be unique and strictly
stationary is

p∑
i=1

bi +

q∑
j=1

aj < 1

Furthemore, EXt = 0 and

V ar(Xt) =
c0

1−
p∑
i=1

bi −
q∑
j=1

aj

, Cov(Xt, Xt−k) = 0, ∀k ∈ Z \ {0}

Additionaly, EX4
t < +∞ holds, if

max{1, (Eε4t )
1
2}

p∑
i=1

bi

1−
q∑
j=1

aj

< 1

The previous theorem gives us sufficient and necessary condition for the
GARCH process to be strictly stationary with finite second moments.

Under the condition
p∑
i=1

bi +
q∑
j=1

aj < 1, {Xt} ∼WN(0, c0/(1−
p∑

i=1

bi −
q∑
j=1

aj))

and the ARMA representation is casual and invertible. Hence EX2
t = Eε2tEσ

2
t =

Eσ2
t and

E(Xt|Xt−1, . . .) = 0.

It also holds from the equation for et that

Eet = E(et|Xt−1, Xt−2, ...) = 0

As a consequence, we can write

Var(Xt|Xt−1, . . .) = E(X2
t |Xt−1, Xt−2, . . .) =
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c0 +

p∑
i=1

biX
2
t−i +

q∑
j=1

ajσ
2
t−j = σ2

t .

Hence σ2
t is the conditional variance of Xt given its infinite past.

If {Xt} is a strictly stationary GARCH(p,q) process and condition

max{1, (Eε4t )1/2}

p∑
i=1

bi

1−
∑q

j=1 aj
< 1 (∗)

holds, then Eσ4
t = EX4

t /Eε
4
t < +∞ and hence even Eε4t < +∞. Therefore {X2

t }
is causal and invertible ARMA(max(p,q),q) process. Note that in contrast to
ARCH processes, the ACF of {X2

t } does not have to be always positive.
We can summarize our knowledge about GARCH in the following proposition.

Theorem 10. i) If {Xt} is a stationary GARCH(p,q) process, then it is also a

white noise process, namely {Xt} ∼ WN(0, c0/(1−
p∑
i=1

bi −
q∑
j=1

aj)) and σ2
t is the

conditional variance of {Xt} given its infinite past, that is

σ2
t = Var(Xt|Xt−1, Xt−2, . . .).

ii) If {Xt} is a strictly stationary GARCH(p,q) process, for which condition (∗)
holds, then {X2

t } is a causal and invertible ARMA(max(p,q),q) process. Furthe-
more Xt exhibits heavier tails than those of εt in the sense that κx ≥ κε, where
again κx and κε denotes the kurtosis of Xt and εt respectively.

We now proceed to the estimation of ARCH and GARCH processes.

3.2.3 Estimation

Suppose we have observations X1, . . . , XT . We assume, that {Xt} is a strictly
stationary solution of the GARCH process, that is

Xt = σtεt and σ2
t = c0 +

p∑
i=1

biX
2
t−i +

q∑
j=1

ajσ
2
t−j

where p ≥ 1, q ≥ 0, c0, bi, aj > 0 and
p∑
j=1

bi +
q∑
j=1

aj < 1, {εt} ∼ IID(0, 1).

We’d like to estimate the conditional second moments, which are generally more
difficult to estimate than conditional means. Although there are various methods
for estimating the parameters c0, bi and aj, we will present just one, namely the
conditional maximum likelihood estimator.

Conditional maximum likelihood estimators
Similiar as for the ARMA processes, the most frequently used estimator for

ARCH/GARCH models are derived from a Gaussian likelihood function. For a
general GARCH(p,q) model with p > 0, q ≥ 0, conditional variance σ2

t cannot
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be expressed as a finite number of past observations Xt−1, Xt−2, . . .. We have to
therefore truncate some observations. We can write:

σ2
t =

c0

1−
q∑
j=1

aj

+

p∑
i=1

biX
2
t−i +

p∑
i=1

bi

∞∑
k=1

q∑
j1=1

. . .

q∑
jk=1

aj1 . . . ajkX
2
t−i−j1−...−jk

It can be seen, that if q = 0, the multiple sum is equal to zero, hence for ARCH
model, we can express the conditional variance as a finite sum of Xt’s. Since the
expected value of the series is finite and bi’s and aj’s are nonnegative, the sum
converges almost surely.

In order to calculate the maximum likelihood estimator in real modeling, we
take a truncated version of the expression above, that is:

σ̃t
2 =

c0

1−
q∑
j=1

aj

+

p∑
i=1

biX
2
t−i+

+

p∑
i=1

bi

∞∑
k=1

q∑
j1=1

. . .

q∑
jk=1

aj1 . . . ajkX
2
t−i−j1−...−jkI(t− i− j1 − . . .− jk ≥ 1), t > p

As we stated above, if q = 0, then σ̃t
2 = σ̂t

2 holds.
Denote b = (b1, . . . , bp)

T and a = (a1, . . . , aq)
T . Then we can write the

conditional maximum likelihood estimator (b̂, â, ĉ0) as a maximizer to

lk(c0,b, a) =
T∑
t=k

[ln(σ̃t
2) +X2

t /σ̃t
2],

where k > p is an integer. Formally, the estimator can be written as

(b̂, â, ĉ0) = arg max lk(c0,b, a).

When we think that normal distribution is not sufficient for the modeling,
as may be frequent in financial time series modeling, two other distributions are
commonly used. Speficically the t-distribution and the Generalized Gaussian
distribution. Generally we may write the maximum likelihood function as

lk(c0,b, a) =
T∑
t=k

[ln(σ̃t)− ln(f(Xt/σ̃t))].

The function f may then be the density of normal distribution, or we may use
other forms, such as:
i) t-distribution with v degrees of freedom and density function:

fv(x) =
Γ((v + 1)/2)

(πv)1/2Γ(v/2)

(
v

v − 2

)1/2(
1 +

x2

v − 2

)− v+1
2

,

where v > 2 may be viewed as a continuous parameter.

ii) Generalized Gaussian distribution and density function:

fv,λ(x) = v{λ21+ 1
v Γ(1/v)}−1exp

(
− 1

2

|x|v

λv

)
,
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where λ = (2−
2
v Γ(1/v)/Γ(3/v))1/2 and v ∈ (0, 2).

Both distributions are normalized, so they have mean 0 and variance 1 and
all have heavier tails than normal distribution, so they may be more suitable for
modeling financial time series.

When searching for the most feasible density function, we may again use
the Akaike information criterion or Bayesian information criterion to determine
which one is the best.

Let’s proceed to the asymptotic properties of the conditional MLE.

3.2.4 Asymptotic properties of conditional MLE

We now present in a very compact manner results about asymptotic distri-
butions of the Gaussian likelihood estimation method as developed by Hall and
Yao (2003).

Suppose again that {Xt} is a strictly stationary solution of GARCH(p,q)
process with p ≥ 1 and q ≥ 0, c0 > 0, bj > 0 for j = 1, . . . , p and ai > 0 for

i = 1, . . . , q. Denote (ĉ0, b̂, â) the maximum likelihood estimator derived from
maximizing

lk(c0,b, a) =
T∑
t=k

[ln(σ̃2
t ) +X2

t /σ̃
2
t ].

Assume, that k = k(T )→ +∞ for T → +∞ and at the same time k(T )/T → 0.

For simplicity, denote further θ = (c0,b
T , aT )T , θ̂ = (ĉ0, b̂

T , âT )T and Ut =
∂σ2

t

∂θ
.

Hall and Yao (2003) show, that Ut/σ
2
t has all of its moments finite. Write

M = E(UtU
T
t /σ

4
t ) > 0

that is the matrix M is positive definite.
In order to present the theorem concerning asymptotic distribution of the

MLE, we need to introduce one more definition.

Definition 16. We say that distribution G is in the domain of attraction of a
distribution F if

1

an
(Sn − bn)

D−→ F, as n→ +∞

where Sn =
n∑
i=1

ξi, {ξi} ∼ i.i.d. G, and an > 0 and bn are some constants.

With this in mind, we can proceed to the theorems about asymptotic proper-
ties of the maximum likelihood estimator.

Theorem 11. i) If E(ε4t ) < +∞, then

T 1/2

(E[ε4t ]− 1)1/2
(θ̂ − θ) D−→ N(0,M−1)

.
ii) Denote λT = inf{λ > 0 : E[ε41I(ε21 ≤ λ)] ≤ λ2/T}. If E(ε4t ) = +∞ and the
distribuiton of ε2t is in the domain of attraction of normal distribution, then

T

λT
(θ̂ − θ) D−→ N(0,M−1).
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3.2.5 Bootstrap regions and intervals

The last thing we need to construct are confidence regions and intervals for
testing hypotheses about parameters. However the situation about confidence
regions and intervals is quite complicated in connection with the ARCH and
GARCH processes. Looking at the previous theorem, we see that the range of
possible limit distributions for the Gaussian likelihood estimator can be pretty
extensive. The limit distributions in case of MLE for ARCH and GARCH pro-
cesses are not restricted to a family of distributions that can be described with
a finite number of parameters, as in the case of linear ARMA process or TAR
process. For this reason, it is impossible to perform statistical tests based on
asymptotic distributions. Fan and Yao (2003) propose use of bootstrap methods.
Since the theory of bootstrap methods is beyond the scope of this thesis, we refer
the reader to Fan and Yao (2003), pages 163-166 for their treatement.
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Chapter 4

Financial data modeling

In this chapter, we will aplly the theory laid in previous three chapters to
model real financial data. Namely we will fit the linear ARMA model, TAR
model, ARCH model and GARCH model on the historic data of the Standard &
Poor’s 500 (S&P500) index, that is an American stock market index based on the
market capitalization of the 500 largest companies with stock listed on the New
York Stock Exchange and National Association of Securities Dealers Automated
Quotations. All the models, graphs and analyses were carried out in statistical
software R. Before proceeding to our own analyses and models estimation, we
will first present a brief introduction to financial data modeling.

Daily financial data usually consists of some unpleasant characterisic. We
touched the first two According to Rydberg (2000), these can be:
i) Heavy tails

In the financial comunity, it is generally accepted, that the returns Xt have
heavier tails than are the tails of a normal distribution. Usually we suppose that
Xt only has a few number of finite moments. General agreement is that the daily
returns have finite second moment, that is EX2

t < +∞. That is also the prereq-
uisite to GARCH and ARCH modeling.
ii) Volatility clustering

In the financial world, large price changes usually occur in clusters. This
means that large volatility changes are usually followed by large changes and
small volatility changes are usually followed by small changes. This observation
in fact led to the developement of ARCH and GARCH models.
iii) Asymmetry

Assymetry means that the distribution of stock returns is skewed negatively.
Rydberg lists one possible explanation that traders react more strongly to nega-
tive information than to positive one.
iv) Long range dependence

Returns usually don’t show any serial correlation, which however doesn’t
mean they are unrelated. It shows that squared returns and even absolute returns
exhibit persistent autocorrelations, which indicates long-memory dependence of
these functions of returns.
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4.1 Preliminary stock analysis

We obtain the S&P500 data directly from the yahoo’s financial webpage for
the S&P500 index, namely
http://finance.yahoo.com/q?s=ĜSPC. We downloaded daily data about closing
values of the index from 3.1.1950 to 8.5.2015. The sample size is T = 16443. The
data are downloaded directly using our script via the quantmod library in R.

First we will do some graphical investigation of the data, that is we will
take a look at plots of various indicators we described in the previous chapters.
From the plots, we can identify seasonal trends, components and possible outliers.
These informations should tell us whether, for example, it will be neccessary to
difference the data to arive at a stationary time series.

The figure below shows evolution of the S&P500 index from 3.1.1950 till
1.5.2015. Despite a few eras of economic downturns, the index is continually
rising, beggining at value 16.6 in 1950 and reaching 2108.3 on 1st May 2015. The
two major declines depict the 2001 and 2008 global financial crises.
Time series plot of S&P500 index:

It is clearly visible, that the time series can’t be stationary. Therefore we will
take a look at daily differences, that is the values Xt − Xt−1, which are in fact
daily gains or losses of the index. Looking at the figure below, we see that we
got rid of the increasing trend, however the volatility is much larger the further
we go in time. This can be well explained by the fact that the higher the value
of the index is, the higher the volatility is.
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S&P500 gains and losses:

We may try to take a look at just percentual changes, which should be
independent of the magnitude of the data. That is, we define a new random
varible Yt = 100(ln(Xt)− ln(Xt−1)) and plot it against time. In fact, the process
{Yt} captures daily returns of the S&P500. On the figure below, we see the
returns of the index.
S&P500 returns:

We see that this series looks pretty stationary. We check the stationarity
by using the augumented Dickey-Fuller test. The null hypothesis states that the
series is not stationary versus the alternative that it is. For a detailed treatment
of the augumented Dickey-Fuller test, see Xiao and Phillips (1998). The Dickey-
Fuller statistic for stock returns is -26,151 and the p-value is less than 0.01,
hence we reject the hypothesis that the data are not stationary at even 0,99 level
of confidence. With this knowledge, we can proceed with analysis of the daily
returns of the S&P500 index.

Below we present basic statistical summaries concerning the returns of the
index. The measures of location and variability we obtained are:

Minimum 1st quartile Median Mean 3rd quartile Maximum
-22,9 -0,4119 0,0470 0,02951 0,4967 10,960
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Variance IQR
0,9439 0,9806

We also present the histogram for returns compared to the normal distribu-
tion N(0,02951; 0,9439). We see that there is a long stretch on the left hand side
of the distribution, corresponding to the 1987 stock market crash. However, if we
get rid of this outlier, the distribution is quite symmetric and does not deviate
from the normal distribution a lot.
S&P500 returns histogram, compared with normal distribution:

With this initial analysis in mind, we proceed to the linear ARMA modeling of
the financial returns.

4.2 Linear ARMA modeling

We will first try to fit the daily returns of the index using linear ARMA model.
To determine the orders p and q, we will plot the ACF and PACF of the daily
returns. This will help us to determine the subsets {1, . . . , p̃} and {0, . . . , q̃} in
which we will then search for the optimal parameters p̂ and q̂ respectively, that
minimize BIC/AIC.
Let’s take a look at the ACF plot for the time series.
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Autocorrelation function of S&P500 returns:

We see from the figure above that the series displays relatively strong correlation
even between large lags. It cuts off after 34 lags, which is quite a lot. Below we
can see the partial autocorrelation function for the series.
Partial autocorrelation function of S&P500 returns:

From the figures above, we see that they both display very similar structure.
The dashed lines on both plots are set at ±1, 96/

√
T (since u(1−α/2) = 1, 96 for

α = 0, 05, where u(·) is the quantile function of standard normal distribution).
We can then visualy test the hypothesis H0 : ρ(k) = 0 at the 5% significance level.
It shows that |ρ̂(k)| and |π̂(k)| are beyond the ±1, 96/

√
T line for even quite large

k’s, namely for k = 1, 2, 7, 12, 16, 18, 21, 26, 27, 29, 32, 34. It seems that the value
Xt depends even on very large lags. One possible explanation could be, given the
nature of financial data and taking into consideration that we have daily returns,
that present value of the index might be influenced by what happened one month
ago.

Based on the analysis of ACF and PACF we will set p̃ = 2 and q̃ = 2 and
will select the best model based on the BIC and AIC. Even though they are some
significant correlations beyond the second lags, we won’t fit a model with high
orders p and q to prevent overfitting.

Using the both BIC and AIC ratio, the optimal orders of p and q of the
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ARMA model was selected as p = 2 and q = 2. The fitted model looks as follows:

X̂t = b1Xt−1 + b2Xt−2 + εt + a1εt−1 + a2εt−2 =

= 0, 2881Xt−1 + 0, 2267Xt−2 + εt − 0, 2585εt−1 − 0, 2756εt−2,

where all coefficients are significant at more than 95% level of confidence. The
standard errors are 0, 15 for b1, 0, 14 for b2, 0, 14 for a1 and 0, 11 for a2. The
estimated σ̂2 = 0, 9413, so {εt} ∼ WN(0, 0,9413).

We now proceed to diagnostic checking to determine whether the model is
sound. We will first check the structure of residuals defined as ε̂t = Xt − X̂t and
see if they behave like a white noise process. The mean of the residuals series is
0,0005, so it is basically zero. Below we show time series graph of the residuals.
Residuals plot:

We see that apart from a few major jumps, which happen during volatile periods
of the initial returns series, the process appears as a white noise process. We will
further check the ACF function of the series {ε̂t} to see whether the variables are
correlated.
ACF of residuals:

Looking at the graphs of residuals, we see that there are some significant cor-
relations between the lags. This may be caused by the model we selected - by
selecting the ARMA(2,2) model, we got nicely rid of the correlations in the first
two terms, however the correlation structure beyond the second lag persisted.
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Based on this information, we have to conclude that the series {εt} is not a white
noise process, hence our model may have some insufficiencies.

We now proceed to the nonlinear ARMA models fitting. First we start with
the TAR model.

4.3 TAR modeling

As we already stated in the theoretical part of the thesis, we are going to
use a special case of the TAR model, which is based on economic representation.
Specifically, we inspire ourselves with model by Tiao and Tsay (1994), who fitted
TAR model on quarterly US gross national product in a following way. They
divided the state space into four regimes that represent the economic phases of
growth, contraction, recession and expansion. Mathematically written, if we have
a time series data {X1, . . . , XT}, representing the percentage growth of economy.

The phase of recession can be expressed as:
Xt−1 ≤ Xt−2 ≤ 0, meaning that the economy was in contraction and proceeded
into even worse one. The phase of growth can be expressed as:
Xt−1 > Xt−2 and Xt−2 ≤ 0, that is the economy declined, but improved in the
following period. The phase of contraction can be expressed as: Xt−1 ≤ Xt−2

and Xt−2 > 0, so the economy grew, but did not manage to sustain the growth
in the next period. The last phase, phase of expansion, can be expressed as:
Xt−1 > Xt−2 > 0, so the economy grew in the previous term and managed to
grow even more in the following one.

The same interpretation as for economic phases holds for stock market re-
turns. Just note that the names of phases may be quite misleading in our case.
Since we have daily financial data, calling a two consecutive days with decline
a recession may seem exaggerated, as it is not such a big deal as in the case of
economic gross national product data.

After analysing our data, we got that there were 2147 recessions, 6351 con-
traction periods, 5588 growth periods and 2355 periods of expansion. Below, we
can see the estimated TAR model, where (**) means that the coefficient is sig-
nificant at less than 0.001 level of significance, (*) at 0.01 significance level and
others are insignificant at even 0.1 level of significance. The model fitted by TAR
is as follows:

X̂t = −0.2∗∗ − 0.14113X∗∗t−1 − 0.01303Xt−2 + ε1,t Xt−1 ≤ Xt−2 ≤ 0

X̂t = 0.01968 + 0.03835X∗t−1 − 0.05964X∗∗t−2 + ε2,t Xt−1 > Xt−2, Xt−2 ≤ 0

X̂t = −0.020224 + 0.019830Xt−1 + 0.004788Xt−2 + ε3,t Xt−1 ≤ Xt−2, Xt−2 > 0

X̂t = 0.15573∗∗ + 0.01044Xt−1 − 0.11422X∗t−2 + ε4,t Xt−1 > Xt−2 > 0,

where ε1,t ∼ WN(0, 1.283), ε2,t ∼ WN(0, 1.0567), ε3,t ∼ WN(0, 0.82425) and
ε4,t ∼ WN(0, 0.6367).

We may see, that in the phase of contraction, there is no significant coefficient.
The lowest p-value for any coefficient for the contraction period is 0,2. Based on
this finding, we can conclude that if the stocks are in contraction period, then
their developement for the next day is completely random. However, we should
take the fitted model with slight skepticism, since the R-squared for the model
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at any of the four regimes is below 0,1.
Last thing we need to do is check whether residuals from the model at least

visually correspond to the white noise process. Again our post-diagnostic checking
will be just very basic. Means of the residuals’s series {εi,t} for each of the four
models (i = 1, 2, 3, 4) are basically zero, with the largest one being 1, 142636 ×
e−16. Hence it is fair to assume that the errors follow a white noise processes with
zero first moment.
Below we can see four graphs, all residuals from model on each subspace.
Recession:

Contraction:

Growth:

Expansion:
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Although all four of them are more volatile in the periods of large volatility
of the initial data, overall we may say that they appear fairly random. Hence it
wasn’t a big mistake to think of the series {εi,t}, i = 1, 2, 3, 4 as a white noise
processes.

4.4 ARCH and GARCH modeling

Looking at the possible problems arising in financial data, which were pre-
sented at the beggining of this chapter, ARCH and GARCH models are con-
structed as to deal with the first two problems. According to theorems 8 and
10, ARCH and GARCH proceses with normal errors are naturally heavy-tailed.
Also, the models are specifically created as to deal with the volatility clustering.

Some variations of GARCH process have been introduced to deal with all the
problems present in financial data, however in this thesis we will proceed with
just the models presented in previous chapters. We refer interested reader to see
Fan and Yao (2003), page 170, where some advanced models are presented.
Before proceeding to fitting the models, we will take a look at ACF function of
squared returns, which might be helpful in the scope of ARCH modeling.
Autocorrelation function of squared returns of S&P500:

Comparing the result with the autocorrelation in the series {Xt} of returns, wee
see that the autocorrelation is much stronger in the squared series {X2

t }.
We will first fit the GARCH(p,q) model with Gaussian error, that is {εt} ∼

i.i.d N(0,1), based on the maximum likelihood ratio method we presented in the
fourth chapter. The orders p and q will be again determined by the AIC/BIC.
If the optimal model select q = 0, the GARCH model will in fact transofm into
ARCH model.

Based on both AIC and BIC, we selected GARCH(1,3) model with estimated
conditional standard deviation

σ̂2
t = c0 + b1X

2
t−1 + a1σ

2
t−1 + a2σ

2
t−2 + a3σ

2
t−3 =

= 0.048 + 0.1103X2
t−1 + 0.6602σ2

t−1 + 10−9σ2
t−2 + 0.2209σ2

t−3.

The standard errors of the estimated coefficients of the equation above are, 0.005
for c0, 0.08 for b1, 0.08 for a1, 0.12 for a2 and 0.07 for a3 respectively and were
calculated based on the asymptotic normal distribution of the estimator. The
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coefficient β2 is not significantly different from zero, therefore we may remove it.
All other coefficients are significant at less than 0.01 significance level.

Below we can see the graph of fitted variance σ̂2
t according to our GARCH

model. We added the graph of S&P500 returns to check whether the estimated
variance behaves according the trends in the data. We may conclude that it
models the volatility in the returns series very well. We can also see the plot of
the residuals defined as ε̂t = Xt/σ̂t. The series {ε̂t} is definitely less volatile than
the initial series and at first look appear as a white noise.
Fitted variance:

S&P500 returns:
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Residuals:

Since we don’t have any proper test for whiteness of the residuals ε̂t, we will at
least check whether the series has zero mean and whether the terms are mutually
uncorrelated. The mean of the series {ε̂t} is 0,035, so it seems sufficiently close
to zero. To check whether the values are independent, we take a look at the ACF
function of the series {ε̂t}.
ACF of residuals:

Looking at the ACF plot of the residuals series, we see that there is relatively
weak correlation between the lags, indicating that they may be dependent, which
would violate the assumption of their independence. Note that if our model is
perfect, the residuals should behave like a Gaussian white noise.

After all our analyses, we may conclude, that the model fitted with normal
conditional distribution is quite sound. We will try to fit the model with t-
distribution described in the previous chapter instead of normal distribution. We
will again select the model based on AIC and BIC. The method for estimating
the model will again be the maximum likelihood estimation we presented in the
fourth chapter, however now we will use the t-distribution as a density function.

The optimal model was selected as GARCH(1,1) by both AIC and BIC. The
GARCH(1,1) model for the S&P500 returns, which was fitted using the maximum
likelihood method looks as follows:

σ̂2
t = c0 + b1X

2
t−1 + a1σ

2
t−1 =

= 0, 0569 + 0, 0751X2
t−1 + 0, 9194σ2

t−1,
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where all coefficients are statistically significant at less than 0,001 level of signif-
icance based on the t-tests. The standard errors of the estimated coefficients of
the equation above are 0,005 for c0, 0, 004 for b1 and 0, 004 for a1 respectively.

We again take a look at the plot of the conditional standard deviation σ̂t, now
fitted based on the GARCH(1,1) model with t-distribution. Visually comparing
the volatility with S&P500 returns, we see that the model catches the volatility in
the data well. We may see that the volatility fitted with t-distribution is somehow
higher in the more volatile periods and lower in less volatile periods than when we
fitted the model with normal distribution. Looking at the residuals ε̂t = Xt/σ̂t,
we see that the series is much less volatile than the initial values of returns.
Fitted variance:

S&P500 returns:
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Residuals:

We will again check the ACF function of the residuals series {ε̂t} based on the
model with t-distribution. The mean of the series is 0,036, again not far from
zero. Below we can see the plot of the ACF function.
ACF of residuals:

We see that the residuals correlation structure is very similiar to the previous
one. Hence, all our conclusions from the model with normal distribution apply
even for the model with t-distribution. On the other hand, we can’t say that by
using the t-distribution as a conditional distribution in the MLE, we improved the
model. The model is simpler in the sense that it has lower order q and therefore
may be easier to interpret.
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Chapter 5

Conclusion

In this bachelor thesis, we dealt with theory of nonlinear ARMA models and
its application to financial time series. The main objective of this thesis was to
acquaint with the theory of nonlinear ARMA models and then apply it on real
financial time series data, speficically on Standard and Poor’s 500 index returns.

After introduction to general time series modeling in the first chapter, we
presented the theory of linear ARMA models in the second chapter, since many
concepts are used in the nonlinear theory as well. In the third chapter, the theory
of three nonlinear ARMA models was presented - namely the threshold autore-
gressive model (TAR), autoregressive conditional heteroscedastic (ARCH) and
generalized autoregressive conditional heteroscedastic (GARCH). Main concern
was put on the estimation of the models using the maximum likelihood method,
asymptotics of the estimators and then confidence regions and interval for test-
ing hypothesis about the parameters in the model. Finally, in the fourth chapter,
we fitted linear ARMA model, TAR model and two GARCH models, one using
standard normal distribution in the maximum likelihood method and the second
using t-distribution.

The thesis can have a few possible extensions. First of all we may explore
methods, which provide mathematically reasonable diagnostic checking and there-
after select better models to fit the reality. Secondly, we may try to forecast the
values of the index or of the volatility of the index using our models, giving them
very usefull utilization. Thirdly, we may try to employ another nonlinear ARMA
models, such as bilinar models, which are not so standard in the scope of financial
time series modeling and see how they behave. We also didn’t touch the theory
of nonparametric models, which could give us completely different look at the
financial time series modeling.

We may conclude that ARMA modeling is nevertheless very interesting topic
of financial time series analysis.
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