Abstract: Magnetic nanoparticles have found broad applications in medicine, in particular as contrast agents for T₁- and T₂-weighted magnetic resonance imaging (MRI). The ability of a contrast agent to influence the proton relaxation rate in a tissue is described by its relaxivity. In the submitted bachelor thesis we characterise physical properties of samples of ε -Fe₂O₃ nanoparticles coated with amorphous silica (SiO₂), particularly with the aim to determine the dependences of their relaxivities on the magnetic field, temperature and thickness of silica coating. The distribution of the particle sizes was derived from the TEM pictures giving the median ~ 20 nm and the thickness of the silica coating \sim 4; 8; 13; 19 nm. The lattice parameters and presence of < 2% admixtures of α phase were ascertained by XRD analysis; hyperfine parameters obtained by Mössbauer spectroscopy indicate no change of magnetic properties of the particles by silica coating. The relative amount of ε -Fe₂O₃ and SiO_2 in the samples was specified from the magnetic measurements. Aqueous suspensions of different concentrations of coated nanoparticles were prepared, and their relaxivities r_1 , r_2 were measured in different magnetic fields. Temperature dependence of relaxivities of a chosen sample was obtained in fields 0.47 T and 11.75 T. Field and temperature dependences are in agreement with theoretical models. The r_2 relaxivities of examined samples are generally lower than those of commercially produced superparamagnetic contrast agents y-Fe₂O₃ and Fe₃O₄. Owing to their quadratic dependence on magnetisation in the motional averaging regime (MAR), the relaxivities may be enhanced by increasing the magnetisation with targeted substitutions of aluminium or gallium.