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Preface

This is a treatise on certain mappings between graphs, ddfineneans of cycle
structure of the respective graphs. We study these mapfriogsvarious per-
spectives, in Chapter 2 we start by comparing them to grapfohworphisms, this
may be viewed as a type of reconstruction problems, as wg studhat extent
is a graph determined by its cycle structure. In Chapter @ (mnt of Chapter 7)
we take the point of view of category theory and study thecstme that these
mappings impose on the class of all graphs. Next, we get t@ rmpplicable as-
pects of the mappings under study. In Chapter 4 we use thenote gertain
relaxation of Pentagon Problem due to NeSetfil. In Chaptee introduce a new
graph invariant which promises to be useful more generallystudy of graph
homomorphisms. In Chapter 6 we use our mappings to bring melerstanding
to various conjectures concerning cycle structure of gsgphrticularly to Cycle
double cover conjecture).

Chapter 1 is introductory and should be read first (at leafihiien 1.2.1), its
first part provides more detailed motivation for and ovewwi this work. The
other chapters can be read in any order; there are, howeaay dependencies
between them.

Core of the thesis is based on the following papers:

[1] Matt DeVos and Robeéémal,High-girth cubic graphs map to the Clebsch
graph (submitted), arXiv:math.CO/0602580.

[2] Jaroslav Ne3etfil and RobeBtmal Tension-continuous maps—their struc-
ture and applications(submitted), arXiv:math.CO/0503360.

[3] Jaroslav NeSetfil and Robe3amal,On tension-continuous mappindgsub-
mitted), arXiv:math.CO/0602563.

[4] RobertSamal Fractional covering by cutProceedings of 7th International
Colloquium on Graph Theory (Hyeres, 2005), no. 22, 20054pp—459.

Papers [2,3] form most of Chapters 2 and 3 and also part ofi€h@pPaper [1]
appears here as Chapter 4. Finally, Chapter 5 is expandsidwerf [4].

Prague, April 13, 2006 5
RobertSamal
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Chapter 1

Introduction

1.1 Motivation and overview of the results

In this section we will give motivation for the notions we ageing to study in
this thesis and bring an overview of the main results. Weegmesnly simplified
version of definitions here, full version will be given in $iea 1.2.

We will study certain mappings between edge-sets of grafgime way that
leads naturally to these mappings is an attempt to generttiws and tensions
on graphs. Recall that a mappiggfrom the set of edges of a (directed) graph
to an additive structure (usually a group) iflew (a tension) if the values ofp
‘around each vertex’ (or ‘along each circuit’) sum to zeroe Will extend this
notion by replacing a group with an additive structure based graph. That
is, an H-valued flow(tension respectively) is a mapping from edges of a given
graph to edges off such that the ‘image’ of a cut (circuit) is an edge-disjoint
union of (arbitrarily oriented) circuits off, arguably the most natural analogue of
zero in our setting (we will call an edge-disjoint union ofctiits acycle. Here
‘image’ means the set of such edgegbto which an odd number of edges map.
(In another version of the definition we ask for orientatidrcots/cycles to be
preserved as well, this will be formalized by consideringges and preimages of
tensions/flows.)

The above definition will be formulated precisely (and moenerally) as
Lemma 1.2.9. The cycle—cut duality can be used to obtain aivalgnt definition
(Definition 1.2.1), which is in fact the one we will start with Section 1.2. In-
stead of asking that the image of any cycle is a cycle, we agnvalently) require
that the preimage of any cut is a cut—her€evalued tensions are usually called
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cut-continuous mappings (), and these are special case of tension-continuous,
or T'T mappings. By switching from cuts to cycles in one (or both}tpaf this
definition, we getF"T" mappings (that isi -valued flows),F'F' (cycle-continuous)
mappings, and"F' mappings.

To motivate a notion by generalization of flows and tensioag perhaps seem
inadequate; it turns out, however, that these mappingsingvertant combinato-
rial meaning.

To start with, cut-continuous mappings (thafi' mappings, generalized ten-
sions) are in many respects similar to graph homomorphism€&€hapter 2 we
study a class of graphs for which existence of homomorphésm§'T" mappings
coincides lomotens graphs The main result is that, surprisingly, random graphs
are homotens with probability tending to 1. In Chapter 3 wespea the simi-
larity of homomorphisms an@T" mappings further and show that both types of
mappings share important structural properties (uniVigysdensity, antichain ex-
tension).

In Chapter 4 we (motivated by previous chapters) prove a areadrsion of
NeSetfil's Pentagon Problem: We show (Theorem 4.1.3) gheubic graph of
sufficiently high girth admits a cut-continuous mapping@tQ the original problem
asks for a homomorphism t@s. In Chapter 5 we introduce a new graph invariant,
monotone with respect to homomorphisms and cut-continneayspings. This
invariant resembles circular chromatic number and is edlad MAXCUT and
bipartite subgraph polytope.

In Chapter 6 we finally come to the most appealing reason tatysof the
quadruple ofXY mappings, that is to the use of them as a tool to approach var-
ious conjectures about cycle structure of graphs, inctyudycle double cover
(shortly CDC) conjecture, Tutte’s 5-flow conjecture, anddgeFulkerson con-
jecture. (This approach was pioneered by Jaeger [43].) Aymthers, we use
FF andF'T mappings to understand proofs of existence of CDC for spggias
of graphs by Tarsi [82], Haggkvist and McGuinness [33] andl&rify the relation
between CDC conjecture and Jaeger’s conjecture on Petsokaing.

We close by Chapter 7 with several smaller results. Of theantiqularly
worth mentioning is Section 7.1 that brings surprising @wgtion to error cor-
recting codes and Section 7.4 where factorization®Bfand F'F' mappings are
studied and used to prove a variant of Lovasz’ theorem omaptate system of
invariants.
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1.2 Definitions & basic properties

1.2.1 Basic notions: flows and tensions

Our terminology is standard, with the exception of termg’;caycle’, and ‘cir-
cuit’, where we follow the usage common in the study of flowsgyosphs, rather
than the usual one. We refer to [21, 40] for basic notions @plgs and their
homomorphisms.

By a graph we mean a finite directed or undirected graph withipheiedges
and loops allowed. We use, v) for a directed andu, v} for an undirected edge
from v to v (one of them, if there are several parallel edges). Wheretlseno
danger of confusion we usev to mean eithefw,v) or {u,v}. A circuit in a
graph is a connected subgraph in which each vertex is adjaxéno edges. For
a circuitC, we letC* andC~ be the sets of edges oriented in either direction. We
will say that(C*,C~) is asplitting of C and writeC = (C*,C~). (Of course
we can not tell which direction is which, so we may exchagfeandC~.) A
cycleis an edge-disjoint union of circuitsSplitting of a cyclds determined by
splittings of the individual circuits.

Given a graphG and a selU of its vertices, we let (U) denote the set of all
edges with one end il and the other iV (G) \ U; we call each such edge set a
cutin G. If G is directed, them* (U) contains edges leavirig ands~ (U) edges
enteringU; if T is a cut we writel' = (T, 7~) to indicate the sets of edges in
either direction.

Let M be a ring (by this we mean an associative ring with unity)ddte a
directed graph for the rest of this section. We say that ationg : E(G) — M
is anM-flow onG if for every vertexv € V(G)

DT ople)= D wele).

e entersv e leavesy

A functiont : E(G) — M is anM-tension onG if for every circuitC in G
(with splitting (C*, C™)) we have

eecCt eeC—

Note that the definition of flow can be equivalently expressethat of a tension,
we just do the summation over a dlit= (C*,C ™).

WheneveB is a subset of/, we say a functionis af\/, B)-flow (an(M, B)-
tension) if it is anM -flow (an M -tension) which attains values s only.
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We remark that the definition of flows and tensions can bedtateny abelian
group; in Section 7.2 we justify the restriction to rings. Maoncretely, in the
proof of Lemma 3.1.10, we present a way how results aboutrgeaigelian groups
can be inferred from finitely generated rings.

All M-tensions on a grap@d form a module ovei/ (or even a vector space,
if M is afield). Its dimension i8/(G)| — k(G), wherek(G) denotes the number
of components of7. This module will be called thé/-tension modulef G.

For a cutC = §(U) we define

1, if uv € CT, thatisu € U andv ¢ U
To(uv) = ¢ —1, ifuv € C~,thatisu ¢ U andv € U
0, otherwise

Any suchr¢ is called anM -tension determined by cat, or simply a cut-tension.
If U = {u} than we callr, = 7y, a vertex-tension. We also name the vertex-
tensions a®lementary tensiongt is easy to prove that elementafy-tensions
generate thé/-tension module.

Remark that even) -tension is of formép, wherep : V(G) — M is any
mapping anddp)(uv) = p(v) — p(u) (in words, tension is a difference of a po-
tential).

We define here a related construction. Détbe an (abelian) grou C M.
By Cayley graptCay (M, B) we mean a directed graph with vertex 3étand with
such edgeéz, y) for whichy — x € B. Ifwe letp : V(Cay(M, B)) — M be the
identity, thendp is an(M, B)-tension onCay (M, B). (We will see an application
of this observation in Proposition 1.2.12.)-HB = B % {0} thenCay(M, B) is
a symmetric orientation of an undirected graph, which vathetimes be caled an
undirected Cayley graph.

For M-flows the situation is similar td/-tensions: IfC = (CT,C7) is a
circuit (a cycle) then we define

1, ifec CT
pole) =X -1, ifecC™
0, otherwise

and call it aflow determined by, or simply a circuit-/cycle-flow. Each circuit-
flow will be also called arlementary flowAll M-flows onG form a module (the
M -flow moduleof G) of dimensionE(G)| — |V (G)| + k(G); it is generated by
elementary flows and orthogonal to thé&-tension module.
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The above are the basic notions of algebraic graph theorny.afoore thor-
ough introduction to the subject see [21] or [27]; we only timtwo more basic
observations:

A cycle can be characterized as a support @h&low and a cut as a support
of aZs-tension. IfG is a plane graph then each cycledircorresponds to a cut in
its dualG*; each flow onz corresponds to a tension G#.

1.2.2 XY mappings

Next we define the principal notion of this thesis. For coasess we will use
term F-mappinginstead offlow andT-mappinginstead oftension Also we let
F* meanT andT* meankF'.

Definition 1.2.1 Let M be aring, letG, H be directed graphsand lgt: E(G) —
E(H) be a mapping between their edge sets. Xet” € {F,T}. We sayf is an
XYy mappingif for everyY-mappingy : E(H) — M, the composed mapping
pf is an X-mapping on. Explicitly,

o fisTTy iff ¢ o fisanM-tension onGz for everyM -tensiony on H,
o fis FT)y iff p o fis anM-flow onG for everyM -tensionp on H,

o fiSTF)iff oo fisanM-tension onG for everyM-flowy on H,

o fis FFy iff oo fisanM-flow onG for everyM-flowyp on H,

Clearly, itis enough to verify the condition of Definitior211 on a basis of the
M-flow (M -tension) module of{, e.g., for elementary flows and tensions. The
scheme below illustrates this definition.

E(G) —L B

o
< P

M
We write f : G AN g it f is an XY», mapping fromG to H (or, more
precisely, fromE(G) to E(H)). In the important case whelW = Z,, we write
XY, instead ofX Y7, , when) is clear from the context we omit the subscript.
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We remark that more generally we could defii@ mapping between any
two matroids. Then a#'F' mapping is simply &7 mapping between the dual
matroids and similarly in the other cases. We do not follaa #pproach (although
it would save us some technical inconveniences), as we wikbdp our treatment
confined to the realm of graphs. The reason for this is that fre point of view of
problems we are willing to study (such as Cycle double cqgggphical matroids
are rather an exception: indeed, the Cycle double coveecang is false e.g. for
the uniform matroid/z 4.

Of course ifM = Zs then the orientation of edges does not matter. Hence, if
G, H are undirected graphs arfd: F(G) — E(H) any mapping, we say thgt
iian XY> mapping if for some (_e)qui\glently, for every) orientati6hof G and
H of H, fis XY, mapping fromG to H. As cuts correspond td,-tensions and
cycles toZ,-flows, with this provisiorl'T, (F'T>) mappings of undirected graphs
are mappings for which preimage of any cut is a cut (a cyclg)L&mma 1.2.9,
these are exactly the generalized tensions (flows) froneduiction. Also, for
F'F;, mappings preimage of a cycle is a cycle; hence, weltall mappingscut-
continuousandT'T> mappingsycle-continuouéin analogy with continuous map-
pings between topological spaces). Note that most impoctavices of the ring
areM = Z, andM = Z (as exemplified in Section 6.2). However, developing the
theory for general rings presents no difficulty, so we préfer unified treatment.

For general ringV/, the orientation is important. Still, we define that a map-
ping f : E(G) — E(H) between undirected grapli§ H is XY, if for some
orientationG of G andH of H, fis XYy mapping fromG to H . This definition
may seem a bit arbitrary, but in fact it is a natural one: djeitiis equivalent to
require that for eaclil there is an such thatf is an.X Y2 mapping fromG to H
(we just change orientation of edges@faccording to the change of orientation
of edges of?[). We will elaborate more on this in Proposition 1.2.2.

Convention. Unless specifically mentioned, our results hold for bothdinected
and undirected case.

Recall thath : V(G) — V(H) is called ahomomorphisnif for any uv €

hom

E(G) we havef(u)f(v) € E(H); we write shortlyh : G —— H. Itis custom-
ary to investigate homomorphisms in the context of a qudsiog;, defined on
the class of all graphs by

hom

G %5 H <= thereis a homomorphisim: G — H.

Homomorphisms generalize coloringskaoloring is exactly a homomorphism

hom

G — Ky, hencey(G) < kiff G <, K. For an introduction to the theory of
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homomorphisms consult [40].
Motivated by the homomorphism ordey,, we define for aring// orders<’,

and<?!, by

G <4y H <= thereisamapping: G TTu, H;

G<l, H <« thereisamapping:G 20 H.
These are indeed quasiorders, see Lemma 1.2.3. We @Gritd, H iff G <,
H andG =%, H, and similarly we define&s ~!, H andG ~;, H; we say
G and H areTT)s-equivalent,F' F,-equivalent, or hom-equivalent, respectively.

Sometimes, we also writ6 ~—, H to denote existence of akiYy, mapping
from G to H. If we wished to define partial orders instead of quasiordees
would have two options: either to work with equivalence stes(of~}, or z@)
of graphs, or to choose one representative from each sush, aag. so-called
cores similarly as in the case of homomorphisms. We touch thigtbgefly in
Proposition 7.4.6.

In addition to orders<; and <! we will often study homomorphisms and
TT mappings in terms of the corresponding categories. We \@ite,,,, for
the category with all finite graphs as objects and all homgumiems among them
as morphisms. Catego@rarr,, has the same class of objects, its morphisms are
TT) mappings.

If G is an undirected graph, it5-symmetri¢ orientation ﬁT is a directed
graph with the same set of vertices and with each edge raplacan oriented
2-cycle, we will say these two edges are opposite. We oblerftsymmetric
orientationﬁp by subdividing each edge into two and by orienting the résmilt
two edges in opposite directions (out of the new vertex). fdilewing result
clarifies the role of orientations.

Proposition 1.2.2 Let G, H be undirected graphs, let/ be a ring. Then the
following are equivalent.

. =1 - . XYyv 77
1. For some orientatiorG of G and H of H it holds thatG — H.

2. For each orientationﬁ of H there is an orientation??> of G such that

G
) i R —> i —> XY
3. For symmetric orientation&s x of G and Hy of H it holds thatG x ——
R
Hy.

Lor just symmetric
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Proof: If M = Z§ then all statements are easily equivalent SO supposeth i

the case. Suppose 1 holds and take a mapﬁlngﬁ XY H e may suppose
that G - GX and H - Hy. If ¢/, ¢ are opposite edges antl € E(a), then
we letf5(e’) be f1(e’) and f3(e”) be the edge opposite §a(¢’). Any Y-mapping
won ﬁy gives opposite values to opposite edges, thusfs is a mapping that
results fromp o f1 by extending to opposite edges by opposite values Ewﬁg

is anX-mapping aang ISXYM Next, take an)H suppose agalﬂ - Hy, and
let opposite edges), ¢’ of GX correspond te € F(G). By Lemma 1.2.9, the
edgesfs(e'), f3(e”) receive opposite values in eathmapping onH; therefore

at least one of them agrees with some edgd H in eachY-mapping onH.
(Thatis, ifY = T then these edges connect the same pair of vertices in the same
direction, ifY = F then they are in the same circuitsEfin the same direction.)

We let this one ot’, ¢” to be an edge of’ and letf> map it toe. Clearly, f5 is an

XY mapping; therefore 3 implies 2. Finally, 2 implies 1 is taili |

1.2.3 Basic properties

In this section we summarize some propertieXaf mappings that will be needed
in the sequel. Throughout the chapt®r,Y’, andZ stand for eithe or T'.

Lemma 1.2.3 For any mappingy : G20 g andg : H Y2, K the compo-
sitiong o f is an X Z,; mapping.

Proof: Lety : E(K) — M be aZ-mapping. Thenp o g is aY-mapping,
henceyp o g o f is an X-mapping. For undirected graphs we use part 2 (or 3) of

Proposition 1.2.2. O
E(H)
A
E(G) X2 E(K)

In the next lemma we will see how the cut—cycle duality of plegraphs trans-
lates to XY mappings. Compare also Lemma 6.2.5, which is an analogue for
graphs embedded on a non-planar surface.
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Lemma 1.2.4 Let G be a plane graphG* its planar dual, anddg : E(G) —
E(G*) the mapping that sendsto its corresponding edge’. Let M be any ring.
Thendg is an F'T), andT Fj; mapping.

Let H be another plane graph with duél*. Suppos¢ : E(G) — E(H)isa
TTy; mapping. Then

e ¢ — f(e*)is anFT)y mapping,
o ¢ — f(e)*isaTFy mapping, and

e ¢ — f(e*)* isanFF) mapping.

BG) —L0 B

do| DK |du

B L o

Proof: For the first part we only need to recall thats a flow/tension orG if
and only if ¢ o d¢ is a tension/flow orG*. (This well-known claim is implied
by the fact thatlc maps cuts of7 to cycles ofG* and vice versa.) The second
part is a consequence of the first one and of Lemma 1.2.3. Fbraated graphs
it is enough to pick an orientation 6f andG* simultaneously, that is the edgé
of G* connects the face to the left eto the one to the right of. |

In the sequel we need to define a notion dual to that of a subgiagt G be
a graph anc: one of its edges. The&'/e is obtained fromG by contracting
edgee, that is by deleting and identifying its end-vertices, preserving loops and
multiple edges. For eadhi C F(G) the graph@/ E results fromG by contracting
every edge off (in any order). Any graptf = G/E for E C E(G) is calleda

contraction ofGG, we write H é G. Note that dual notion (in the sense of random
graph) is deletion of edges (denot@d- ¢, G — F) and the subgraph relation. We
also remark that the commonly used notiliris aminor of G means thaf{ is a
subgraph of a contraction 6f.

Lemma 1.2.5 Let M be aring,G, H graphs.

If H C G that the identity mapping i&/ RELUNVE

If H é G that the identity mapping i& =,
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Proof: Itis enough to observe that restriction of a tension to a sytg(or of a
flow to a contraction) of7 is a tension (a flow). O

(In Lemma 2.1.2 we will generalize the fact that inclusiooyides aI"T" map-
ping for any homomorphism in place of the inclusion.) Thewablemma is com-
plemented by the following result—the epimorphism-mongohésm factoriza-
tion of XY mappings. In Section 7.4 we will in formula (7.5) derive a quiiative
version, which will be a crucial part of proof of Theorem B.A4.

Proposition 1.2.6 Let f : G XY, H. Then there is a graplif’ and mappings
fi:G XY, H, fo: H XY, H such thatf; is surjective and’, injective.

In caseY = T we may choose the grapi’ as a subgraph off, in case
Y = F as a contraction ofd.

Proof: LetR = E(H)\ f(E(G)). We putH' = H\ R (if Y = T) and
H' = H/R (f Y = F). We definef1, f» in the obvious way, it remains to prove
that these ar&(Y andY'Y mappings, respectively.

By Lemma 1.2.5 mappingi is Y'Y,. Next, observe that any tension éh\
R (any flow on H/R) may be extended to a tension (a flow) on the gré&ph
Consequentlyf; is XY, because is XY),. a

If we do not require a factorization, that is if we only wantregluce the tar-
get graph, then we can use either a subgraph or a contractighi$ reduction,
regardless what type of mapping are we considering.

Lemmal.2.7Lletf: G XV, H, let H' be a subgraph (or a contraction) &f

that contains all edgeg(e) for e € E(G). Thenf : G — H' is XYy, as well.

Proof: If Y = T andH’ is a subgraph, o¥ = F andH’ is a contraction then

by Proposition 1.2.6 and Lemma 1.2.5 we héve2% £(G) 24 H', so it is

enough to use composition, Lemma 1.2.3.

In the other two cases take aliymappingr’ : E(H') — M. To extendr’
to aY-mappingr on H it is enough to define(e) = 7/(e) fore € E(H') and
7(e) = 0 otherwise. Asr agrees withr’ on E(H'), we haver’ o f = 7 o f, and
asT o f is anX-mapping;’ o f is anX-mapping, as well. O

Another simple (but useful) way to modify akiY,, mapping is by adding
parallel edges, respectively subdividing edges. The msxtit shows, that we may
in many respects restrict ourselves to bijectk/®,, mappings (this approach was
taken by most authors who studied similar notions before Sextion 1.4).
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Lemmal.28letf : G XYM, 1 be anXY,; mapping of (directed or undi-

rected) graphs. Then there is a graplf and a mappingf’ : E(G) — E(H’)
such that

o [is XYy,
e f'is abijection;

e we can get’ by adding parallel edges and deleting edges frfinin case
Y =T, by subdividing and contracting edgeshihin caseY = F;

o for each edge € F(G) the edgef’(a) is parallel to/subdivision of (a).

Proof: Suppos&” = T. For an edge € E(H) we letc(e) = |f~!(e)| be the
number of edges that map ¢o We replace each edge &f by c(e) parallel edges
(that is we delete if c(e) = 0); in case of directed graphs we add the new edges
in the same direction as We keep all vertices and I¢f’ denote the resulting
graph. We defing”(a) to be any one of the parallel edges that replagéad),
making sure thaf’ is injective (therefore bijective). Clearly, for apy: V(H) =
V(H') — M, if we consider thel/-tensionsr = dp of H andr’ = dp of H’,
thent o f =7/ o f'. Thus asf is anX T, mapping,f’ is XT); as well.

If Y = F, we proceed in a similar way; in this case we replace each edge
e € E(H) by an oriented path af(¢) edges (that is if no edge 6f maps toe, we
contracte). The rest of the proof is the same as 6= T'. a

An alternative definition of tension-continuous mapping®ften useful. It
was proved in [19], we present a proof for the reader’s coievere. For mappings
f: E(G) — E(H) andy : E(G) — M we lety; denote thealgebraical image
of ¢: that is we define a mappingy : E(H) — M by

Recall thatF'* = T andT™* = F.

Lemmal.29Let f : E(G) — E(H) be a mapping. Thelf is XY, if and
only if for everyX*-mappingy : E(G) — M, its algebraical imagep; is a
Y*-mapping. Moreover, it is enough to verify this property fobasis of the
flow/tension module (for instance, for elementary flowsitars).

We formulate this explicitly fold = Z, and T'T mappings. Mapping is
TT, (cut-continuous) if and only if for every cydéin G, the set of edges df,
to which an odd number of edges@imaps, is a cycle.
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Proof: Recall that a mapping(G) — M is a flow/a tension iff it is orthog-
onal to each tension/flow with respect to the scalar prodefined by(p, 7) =
> eer(c) P(e)7(e) and the same holds fdif. Observe that by definition of the
algebraical image; it follows that for anyy : E(G) — M andr : E(H) — M
we have

(o, 0f)=(ps,7). (1.1)
Now if f is XY mapping than for any -mappingr and anyX *-mappingy the
left-hand side of (1.1) is zero. Therefore the right-hanie $s zero, too, angy is
aY*-mapping, as claimed. If on the other harfdsatisfies the condition of the
lemma, then for any’-mappingr the right-hand side of (1.1) is zero for each
X*-mappingy, hencer o f is an X-mapping andf is an XY, mapping. ]

If C'is a circuit/a cut and’ = (C'*,C~), then we say thaf' is M-balanced
if |C*| — |C~|is divisible by the characteristic df/, that is if we ge0 by adding
|C*| — |C~| instances of.. Otherwise, we sa¢' is M-unbalancedLet g,,(G)
(A (@)) denote the length of the shortddt-unbalanced circuit (cut, respectively)
in G, if there is none we pu,, (G) = oo (A (G) = o0). For the particular case
M = Z,, a circuit (cut) isM-balanced if it is of even size, hengg, (G) is the
odd-girth of G and ), (G) the size of the smallest odd cut Gt

Note that if ¢ is a flow determined by a circuit (by a cuf) in G, then
>eer(c) Ple) iszeroiffC'is M-balanced. Thug,, and\,, can be defined equiv-
alently as the smallest size of a support of a flow/tensioh withzero sum. To
emphasize this (and to enable cleaner formulations) wedatre another notation:
Fr(G) := gu(Q) andTy (G) == Ay (G).

Lemma 1.2.10Let M be aring,G, H directed graphs, suppose: G XY g,
LetC be anM-unbalanced circuit (itX = T') or cut (in caseX = F) in G. Then
f(C) contains anM -unbalanced circuit as a subgraph ¢f = T’ or cut as a
contraction (ifY = F).

Proof: By Lemma 1.2.7 we may suppoge= f(C). Lety : E(G) — M be the
X*-mapping determined b§. By Lemma 1.2.9¢¢ is aY*-mapping. Now

D oerle)= > ple)#0
ecE(H) e€E(G)

asC is M-unbalanced. If follows that if we expregs as a sum of elementary
Y*-mappings, at least one of them is determined by&minbalanced circuit/cut.
O
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Lemma 1.2.11 Suppos€=~, H are directed graphs such that X H. Then

we haveX;,(G) > Y;;(H). In particular, if XY = T'T theng,, (G) > g (H).

Proof: If X;,(G) = oo, the conclusion holds. Otherwise, l€t be anl/-
unbalanced circuit/cut of siz&*(G) in G. By Lemma 1.2.10, the subgraph/con-
traction of H induced byf(C) contains an\/-unbalanced circuit as a subgraph/an
M-unbalanced cut as a contraction, hence the same hold$.fd@his circuit/cut

is of size at leasY}; (H) and at mosX;,(G). O

Let H = Cay(M, B) be a Cayley graphy : E(G) — E(H) anXT mapping,
and leté be the ‘canonical’ tensiot(H) — B C M given bydé(uv) = v — u.
Thenif X = F, ¢d is an(M, B)-flow, if X = T is an(M, B)-tension. Thus,
FT mappings into Cayley graphs can be thought of as a gendrafizaf flows
andT'T mappings into Cayley graphs as a generalization of tensjassfying
the motivation given in Section 1.1. Itis a tantalizing diesto find out whether,
conversely, each generalized tension/flow to a Cayley gisapliension/flow. For
tensions this is fully answered by the next proposition,x@ersion of it leads to
the notion of right homotens graphs (Section 2.3). In the cddlows, however,
the situation is unclear; we will propose a conjecture intisad.2.

Proposition 1.2.12 Let H = Cay(M, B) be a Cayley graph. Then the following
are equivalent.

1.6 g

2.6 % |

3.6 MM g

4. GG has aB-tension.
Moreover, in 1-3 we can take the same mapping.
Proof: By Lemma 2.1.2 we see that 1 implies 2 and by Lemma 7.2.2 falkbat
2 implies 3. We proved that 3 implies 4 before stating the psitpn. Finally,

if 7is an(M, B)-tension onG then we express asdp forp : V(G) — M and
observe thap is in fact a homomorphism t&/, which proves 1. O
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1.3 Basic examples

We start by trivial examples, direct analogues of homomisrptio a graph con-
taining a loop. Here (as in the whole sectio6), H are any (directed or undi-
rected) graphsX, Y stand forF or T'.

e If H is formed by loops only, then any mapping#bis X T'.

o If H isformed by cut-edges only (i.€4 is a forest), then any mapping 6
isXF.

e If G is formed by loops only, then any mapping frais F'Y.

e If G is formed by cut-edges only (i.eG is a forest), then any mapping
fromGisTY.

Figure 1.1: A mappind(, Iz, K5 that is not induced by mapping of vertices.

More interesting instances &f Y mappings are obtained by deleting/contract-
ing edges, see Lemma 1.2.5. As an example of thiskfebe a graph with two

vertices and three edges between them. Cleﬁﬁyé K4, henceK3 Fha, Ky
and by duality (Lemma 1.2.4) or by another application of beanl.2.5 we have
K; T1a, K,. The mapping in the other directioi, % K3 does not exist
(by Lemma 2.2.5). However, if we considEfx mappings, then (perhaps surpris-
ingly) we find one.

Consider the 1-factorization df, (see Figure 1.1). This constitutes a mapping

Ky I, K3, henceK, ~% K3. For complete graphs this example is the only one
(Corollary 2.2.9). On the other hand, there are several atkeemples demonstrat-
ing that the existence @7 mapping is not a very restrictive relation. For instance
the well-known graphs depicted in Figure 1.2 areZdlh-equivalent. (In Chap-
ter 2 we will study conditions which guarantee th&t’& mapping is induced by a
mapping of vertices.)

These mappings (and many others) may be obtained usinglibeiftg con-
struction: Given an (undirected) gragh = (V, E) write A(G) for the graph
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[ty

Figure 1.2: Examples of graphs that arés-equivalent toCs: Petersen graph,
Clebsch graph, Grotsch graph, and graph of the dodecateOre color class is
emphasized, the respective bipartition of the vertex sgé¢fscted, too. The other
four color classes are obtained by a rotation.

(P(V),E"), whereAB € E' iff AAB € E (hereP(V) denotes the set of all
subsets o and A A B the symmetric difference of sets We can formulate this
construction for rings\/ # Zo, this is done in Section 2.3.1. Here we only state a
special case of Lemma 2.3.3 (which is proved in [19]).

Lemma 1.3.1Let G, H be undirected graphs. Thed 2 H iff G 2%

A(H).

Proposition 1.3.2 Let Pt be the Petersen grapld;i the Clebsch graphizr the
Grotsch graph,D the dodecahedron (see Figure 1.2). Thanst Cl =~ Gr ~¢
D =~ Cs. On the other hand, in the homomorphism order no two of thesghg
are equivalent. Moreove€, is the largest (in<) graph that admits &'7> map-
ping toCs.
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Proof: We haveCs ¢ Pt ¢ Cl, Cs ¢ D, andCs C Gr C CI. As inclusion
is a homomorphism and hence it inducéE’B mapping, we only need to provide

mappingsC 17, Cs andD 17, Cs (though we provide a mapping t@; from
the other graphs as well). In Figure 1.2, we emphasize sogesdd each graph.
Let G be the considered graph addC E(G) the set of bold edges. Pd = A
and letd,, A3, A4, A5 denote the sets obtained frafrby rotation, so that the sets
A; partitionE(G). Define a mapping’(G) — E(Cs) = {e1, ..., es} by sending
all edges in4; toe;.

Note that 4-edge subgraphs @ generate it¥,-tension space. Hence it is
enough to verify that after deleting any color class(bive are left with a cut.
Due to symmetry we only need to check tHa{G) \ A is a cut inG. This is
straightforward to verify, the corresponding bipartitiohvertices is depicted in

Figure 1.2.

If ¢ 2, ¢ then by Lemma 1.3.1 it holdS Jom, A(Cs5) and it is a routine

to verify that A(C5) consists of two components, both of which are isomorphic
to Cl (compare also Section 2.3). Consequertilys;, C! as claimed. O

There are quite a few connectionsXt” mappings to well-established notions
of graph theory. To start with, by Lemma 6.2.5 and Figure Be2d is a mapping

pt 22, K¢ and preimages of vertex cuts i give a list of 6 cycles that cover
each edge oPt exactly twice (Lemma 6.2.2). Cycle double cover conjecture
(Conjecture 6.1.3) states that such list of cycles existe&goh bridgeless graph.

On a similar note, if7 is a cubic graph then the number of mappiﬁlgsﬂ
K3 equals the number of 1-factorizations@f(as this is for cubic graph the same
as the number of triples of cycles covering each edge twigg) emma 1.2.4 this

yields again the mappini4 EELN K3 from Figure 1.1; on the other hand it proves

that if G is a snark (a cubic graph that is not 3-edge-colorable) maﬁi K3,

equivalentlyG' 22 K3. In particular we have thatt RVEN K3. An important

conjecture due to Jaeger (Conjecture 6.1.7) claims thatishihe ‘worst case’:

whenevelG is a bridgeless graph, then I, py,

For a different example, Ief’ be a graph with two vertices, one edge con-
necting them and one loop. It is known that the number of hoorpimsms

hom

f : G —— T equals to the number of independent sets of the géapda graph
parameter that is important and hard to compute. The canelpg parameter,

the number of cut-continuous mappings G I 7is simple to compute (but
still interesting): it is equal to the number of cutsGh that is to2!V(9)1=% where
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k is the number of components 6f The number of mappings Iz, fg equals
the number of(Z, {1})-tensions, that is of homomorphisms @fto an infinite
directed path (with one vertex of each component fixed).

We collect more such results for small target graphs in Tatdle We omit the
(usually straightforward) proofs.

|| H || FF | FT TF TT ||
¢ is Eulerian | anyc ¢l B anyc
O (has (exists(z,{1})-
z,{1})-flow) tension)
anyc cis Eulerian | anyc ol B,
[ (has (exists(z,{1})-
z,{11)-flow) tension)
cis Eulerian | ¢ has even ol ol F
Q (has degrees (exists(z,{1})- | (exists
(z,{1})-flow) (z,{£1})-flow) | tension) (Z,{£1})-
tension)
¢ has even cis Eulerian | o2 F, Gl B,
Q degrees (has (exists (exists(z,{1})-
(z,{x1p)-flow) | (z,{1})-flow) (Z,{£1})- tension)
tension)
the same as
the same as
& O
anya, counts | anyg, counts | anyg, counts | anyg, counts
P the number of | the number of | the number of | the number of
Eulerian Eulerian homomor- homomor-
subgraphs of: | subgraphs of: | phisms phisms
glom, B glem,
¢ is Eulerian | ¢ can be hom B o RELING
decomposed

AN

into 3 postman
joins
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hom — hom —

G can be ¢ is Eulerian G—"5C4 ¢—" P

@ decomposed
into 3 postman

joins
Table 1.1: Characterization of directed graphsuch thatz—=-#, for
small instances ofr. (In the seventh rovw?, denotes infinite oriented
path with a loop on each vertex; the homomorphisms are cdwp® a
shift.)

1.4 Relevant literature

This thesis continues and generalizes the work started apargy DeVos, Ras-
paud, and NeSetfil [19]. This paper extends Jaeger’s #4Bfoach to classical
conjectures on the structure of cycles in a graph (such ageBeulkerson conjec-
ture, Cycle double cover conjecture, Tutte's 5-flow conjeg}; we will discuss
this approach in more detail in Chapter 6. Perhaps more itaptly, Jaeger's
approach is in [19] put into more general framework of tenstontinuous and
flow-continuous (offl"T" and F'F', in our terminology) mappings.
Prior to that, special cases &fY mappings were studied (sometimes implic-

itly):

e Whitney’s [89, 90] classical 2-isomorphism theorem (Tlenr7.4.4) can
be restated in our language: For 3-connected grépéusd H, any bijection
f: E(G) — E(H) such that botty and f~! areTT»? is induced by an
isomorphism. (A characterization for non-3-connectegsais given as
well.)

e Kelmans [49] generalized Whitney’s theorem by introduttd circuit and
cocircuit semi-isomorphisms and semi-dualities of grafiese are equiv-
alent to definition ofX'Y mapping, although the notion is only defined when
the mapping is a bijection.

e Linial, Meshulam, and Tarsi [55] study five classes of bijgximappings
between edge-sets of graphs. These are chromatic (indyaetddmomor-
phism), cyclic ("T3), orientable cyclicT7T%), strong and weak mappings.

2or, equivalently,F’ Fy.
3The last two types of mappings are frequently studied in aaitil setting, in contrary witl' T
and F' F; mappings which can be defined for matroids, too.
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Among else, they prove that each of these mappings inclimesdxt one
and consider versions of chromatic number defined by meathesé map-
ping (compare Section 7.1 and Corollary 2.3.9).

¢ Shih [80] views a bijectiort T2, H as an identificatio®(G) = E(H)
for which the cycle-space @ is a subspace of cycle-spaceff(compare
Lemma 1.2.9). He characterizes the pairs of graphs for wdirdlensions of
these two spaces differ by at most 1.

e Tarsi [83] studies bijectivé"T" mappings and discusses their relevance to
Cycle double cover conjecture.

In each of the above-mentioned papers, only bijective nmayspare studied.
As explained in Lemma 1.2.8, this restriction does not lomse generality (al-
though we believe that it is advantageous to allow non-byjeenappings, too).

Several other papers used methods that can be nicely eggrasd/or moti-
vated by our context, see for example Section 6.3 and 7.1.



20

CHAPTER 1. INTRODUCTION



Chapter 2

T'T mappings &
homomorphisms: homotens
graphs

In this chapter we will start to inquire the relationshipyweén homomorphisms
andTT mappings. We will see that homomorphisms constitute a &gixample
of T'T mappings and, moreover, that for many graphs these two tfpaappings
coincide (although much evidence in the other directior bel given, too). We
will study properties of such graphs (called left and rightrfotens graphs) and
use these graphs to embed the categouy,,,, of graphs and homomorphismsto
the categoryrarr of graphs and™T" mappings.

2.1 Introduction

It is a traditional mathematical theme to study the questiben a map between
the sets of substructures is induced (as a lifting) by a nmappi underlying struc-

tures. In a combinatorial setting (and as one of the simpistances of this gen-
eral paradigm) this question takes the following form:

Question 2.1.1Given undirected graph&, H and a mapping : E(G) —
E(H), does there exist a mapping: V(G) — V(H) such thatg({z,y}) =
{f(z), f(y)} for every edgdz, y} € E(G)?

21
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In the positive case we say thais induced byf. It is easy to see that such

mappingf is a homomorphisnd hom, 1 and that to each homomorphism cor-
responds exactly one induced mappingThus Question 2.1.1 asks which map-
pingsg between edge sets are induced by a homomorphism. Variotzsoes
of this problem were considered for example by Whitney [8Y, 8leSetfil [65],
Kelmans [49], and by Linial, Meshulam, and Tarsi [55]. Thédwing necessary
condition for a mapping : E(G) — E(H) to be induced by a homomorphism
was isolated in the above mentioned paper [55] and recanbydader context by
DeVos, Nesetfil, and Raspaud [19]:

For every cuC C E(H) the sety~*(C) is a cut ofG. (2.1)

If we use analogy with a continuous mapping between topofqmaces (for
which preimage of any open set is an opet set), we may say tygpimyg is cut-
continuous In terminology of Definition 1.2.1 this is equivalent to bgiTT5.
Still, we will often use term ‘cut-continuous’ instead @fl» for this important
special case.

Cut-continuous mappings extend the notion of a homomonplaisd the re-
lationship of these two notions is the central topic of Cbap? and 3. We pro-
vide evidence in both directions. We present various exasgl cut-continuous
mapping that are not induced, in particular in Propositidn2we construct such
mappings between highly connected graphs. On the other, laandiescribed in
Section 2.2, for most of the graphs all cut-continuous ngpare induced.

2.1.1 Homotens graphs

For a homomorphism (of directed or undirected graphs) V(G) — V(H)
we leth! denote thenapping induced by the homomorphignon edges, that is
R ((u,v)) = (h(u), h(v)), or k¥ ({u,v}) = {h(u), h(v)}. If we consider directed
graphs and: is anantihomomorphispthat is if for every edgéu,v) € E(G)
we have(h(v), h(u)) € E(H) (h reverses every edge), we defib§ (u,v)) =
(h(v), h(u)) and call it a mapping induced by antihomomorphismHlhas par-
allel edges, them! is not unique: we just ask that maps each of the edges
(u,v) to some of the edge@i(u), h(v)); similarly for homomorphisms of undi-
rected graphs and for antihomomorphismddlhas oriented 2-cycles then it may
happen that is both a homomorphism and an antihomomorphism. In this case
we choose on each component@fwhether we will use the definition df* for
homomorphisms or for antihomomorphisms. We do not allowydwer, to use the
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‘homomorphism’ definition for some edge and the ‘antihomgohism’ definition
for another edge of the same component.
To simplify expressing, we will use the term (anti)homontagmn for a map-
ping that is on each component either a homomorphism or @moemdémorphism.
The following easy lemma is the starting point of our invgation in this chap-
ter.

Lemma 2.1.2 Let G, H be (directed or undirected) graphs/ a ring. For every
(anti)homomorphisny from G to H the induced mapping? (f°, respectively)
from G to H is TTy;. Consequently, fror& <, H followsG <, H.

Proof: Itis enoughto prove Lemma2.1.2 for homomorphisms of daggraphs.
Soletf : G — H be such homomorphismy,: V(H) — M a tension. We may
assume thap is a cut-tension determined by X). Then the cut(f (X))
generates precisely the cut-tension f. O

The main theme of Chapters 2 and 3 is to find similarities affigreénces
between orders;, and<?,. In particular we are interested in when the converse
to Lemma 2.1.2 holds. Now, we present a more precise ver§iQuestion 2.1.1
stated in the introduction.

Problem 2.1.3 Let f : E(G) — E(H). Find suitable conditions fof, G, H that
will guarantee that whenevef is TT),, then it is induced by an (antj)homomaor-
phism; i.e., there ig : V(G) — V(H) such that on each component@f the
mappingg is either a homomorphism or an antihomomorphism gnd g*.

Shortly, we say a mapping isducedif it satisfies the condition of Prob-
lem 2.1.3. This problem leads us to the following definitions

Definition 2.1.4 We say a graphG is left M-homotensif for every loopless
graph H everyT'T; mapping fromG to H isinduced(that is induced by a homo-
morphism or an antihomomorphism on each connected comgorfer brevity
we will often call leftA/-homotens graphs just/-homotens (following [77]).

On the other handH is aright M -homotengraph if for every graplG state-

mentsG 2™ H andG ™, H are equivalent.

1t is easy to observe that # contains a loop (and it is not a single loop), then for almesteG
there are non-inducefiT,; mappings fromG to H.
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We should note here, that the precise analogy of Iéfhomotens graphs—
everyT'T), mapping toH is induced—is not interesting, as this is much too strong
requirement. For simplicity, suppo3d = Z.. Let H be such graph, lef\(H)

be as defined before Lemma 1.3.1. The mappingA(H) LN 5 given by
f({A, B}) = AA Bis induced by an (antijhomomorphism, sayNow this can
happen only if for everyd € V(A(H)) vertexg(A) is adjacent to every edge
of H. (To see this, note that({4, A A e}) = e, thereforey(A) is one of the end
vertices ofe.) And this in turn can happen only i is edgeless, or contains at
most one edge.

Definition of left M-homotens makes sense for both directed and undirected
graphs.

If M = 7% then there are only trivial directetf/-homotens graphs (namely
an orientation of a matching). Thus, we restrict to study mditected homotens
graphs in this case. For other rings, Proposition 2.1.®stttat the orientation
does not play any role; this will be useful in Section 2.2 im study of directed
M-homotens graphs.

For M # 7% we might study undirected/-homotens graphs, too. The re-
lationship between these two notions (undirected grapleiisdiens versus some
its orientation is homotens) is not clear. For evédy the latter notion implies
the former one; however, somewhat surprisingly, both matiare equivalent for
many ringsM , at least for such, in which the equationt x = 0 has no nonzero
solution. (For right homotens graphs, the above discusgipties, too.)

Proposition 2.1.5 Let G;, G2 be two (directed or undirected) graphs, such that
we can get, from GG; by changing directions of edges (in the case of directed
graphs), deleting edges and adding multiple ones. ebe a ring. Ther; is

left M-homotens if and only if75 is left M -homotens.

Proof:  Supposez; is not homotens, that is there exists a grdph and a

mapping f1 : G T, H, that is not induced. By Lemma 1.2.8 we may

suppose thaf; is injective. We modifyf; and H;, to get a non-induced map-

ping f2 : Go I, H,. If we change an orientation of an edge, we change an

orientation of the corresponding edgefify. If we add an edge parallel to some
edgee of G; then we map it to a new edge fff;, parallel tof; (e). Itis clear, that
we get al'T); mapping that is not induced. m|

We close this section by a lemma that somewhat simplifies dfi@ition of
left homotens graphs (and particularly shows that to teatdgfaph is homotens
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is a finite problem). (Parallel result for right homotensgra will be proved as
Proposition 2.3.5.)

Proposition 2.1.6 For any finite graphG there is a finite grapi’ such that for
any ring M the following are equivalent.

1. G is left M-homotens.

2. any mapping~ T, 7 is induced.

Proof: Letm = |E(G)| and letG’ be a graph such that every graph with at
mostm edges appears as a subgraplyof
Clearly condition 1 implies condition 2. For the converselication, take a

graphH and a mapping : G I, gy, Graph induced by (E(G)) contains at
mostm edges, hence it is a subgraph@f By Lemma 1.2.7 and 2.1.2 we may
suppose thaf is in fact a mapping frond: to G’, hencef is induced. O

2.1.2 Examples

We illustrate the complex relationship of homomorphismd A" mappings by
several examples presenting the similarities and (mathly)differences in con-
crete independent settings. Towards the former, we pradiafinite chain and
antichain of<?, thereby exhibiting a similar behavior of homomorphismsl an
TT mappings. On the other hand, we show that arbitrarily higineativity of the
source and target graphs does not fdaf@e, mappings (much the le§s7,; map-
pings) and homomorphismsto coincide. Finally, we showdhatquivalence class
of a4 can contain exponentially many equivalence classes;ofin the next sec-
tion, we will see that these results are in fact an exceptiotihe sense of random
graphs (Theorem 2.2.9).

Proposition 2.1.7 appears already in [19], we include a foia@oconvenience
of the reader. Note that this proposition will be stronghyneelized by Theo-
rems 2.2.9,2.2.15, and 3.1.6.

Proposition 2.1.7 GraphsK,: form a strictly increasing chain i, order, that
is
K4 -<t2K8 -<g KIG -<t2 SN

There are graph&s1, Go, ... that form an infinite antichain: there is no mapping

G 2 G fori # 4.
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Proof: The following equivalence is a special case of Propositi@& (It ap-
pears as Proposition 6.6 in [19] with a direct proof.) For graphG holds

G L Koy = G 12 Ko (2.2)
This implies the first part. For the second partdgtbe the Kneser grapR (n, k)

with & = (2! —2) andn = 2k+2"—2. Itis known [59] thaty(G;) = n—2k+2 =

2t. This by equivalencé2.2) implies thatG; 5& G; fori > j. The remaining

part follows from Lemma 1.2.11: It is known (and easy to werihat the length of
the shortest odd cycle i (n, k) is the smallest odd number greater than or equal
ton/(n — 2k), which means thag,, (G;) = 2t + 1. O

The differences of 7> mappings and homomorphisms are easy to find. For

example (see Section 1.3) we hakig EEER K3 but obviously there is no ho-
momorphismK,; — Kj3. (More such small examples are collected in Proposi-
tion 1.3.2.) On the contrar{; 7 mappings are more restricted and, indeed, there
is noT' Tz mapping fromk, to K.

As a further evidence, in the next proposition we give an itdfidlass of graphs
where homomorphisms ariiT, mappings differ. In particular for every we
present (vertexyp-connected graphs that are not homotens.

Proposition 2.1.8 Letn be odd. Denoté&-,, one of the (two isomorphic) compo-
nents ofA(K,,). Graphsk,, andG,, are TT,-equivalent and both arén — 1)-

connected. FinallyG,, 227 K, forn = 2% — 1.

Proof: Using Lemma 1.3.1 folG = H = K, we getK, hom, A(Ky).
TTy

From connectivity ofK,, and from Lemma 2.1.2 it follows(,, — G,,. Us-

ing Lemma 1.3.1 folG = H = A(K,) we getA(K,) I, K, hence also
TTs

G, — K,,.

GraphK,, is (n — 1)-connected. Easi\(K,,) = @, where@,, is the
n-dimensional hypercube ar@jgf) means that we are connecting by an edge the
vertices at distance two in the hypercube. It is well-knowd atraightforward to
verify that@,, is (n — 1)-connected. The vertices with odd (even) number of 1's

among their coordinates form the two componenl@ﬁ?; for an oddn these two
components are isomorphic by a mappihg- (1,1,...,1) — Z. Observe that if

we take a path id),, and leave every second vertex out, we obtain a pa@%.
SOQS) is (n — 1)-connected sinc@,, is.
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For the last part of the theorem, it follows from the remarkthie Section 7.1
thatx(G,) =n+ 1forn =2F — 1. O

To find differences ofl'T;, and homomorphisms is a bit more complicated.
Any two oriented trees ar€7-equivalent, hence we have plenty of 1-connected
graphs for which!, andx;, differ. For 2-connected examples, consider any per-

—

mutation : E(al) — E(C,). This isTTy, but (except fom of them) is not
induced by a homomorphism. We may now use the replacemerdtapeof [40]

(see also proof of Proposition 2.1.10), that is we replaegyeedge ofan by a
suitable graph (for every edge we use a different graph)higway we produce

from the oriented circuit two graplts andH, such that there is only one mapping
11Ty, — —

G — H and it respects one of the permutations £(C,,) — E(C,). So if
we chooser that is not a cyclic shift, we obtain graphs such thats!, H and
G %5, H. These graphs may have arbitrarily large edge-connegtilagy are not
vertex 3-connected, however. Whitney’s theorem (Theoreh#Y seems to sug-
gest, that this situation may not repeat for graphs of highenectivity. Therefore,
the following result may be a bit surprising.

Proposition 2.1.9 For everyk there are vertext-connected graphs/, H such

thatG —= H butG Qﬂ H. Therefore, for eaclk exists ak-connected graph

that is notZ-homotens.

Figure 2.1: The left graph is an example of highly connectexply that is not
Z-homotens; the right one is a witness for this fact.
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Proof: Fix ak, let G, H be graphs illustrated fot = 4 in Figure 2.12 The
construction is due to Shih [80].

Clearly bothGG andH arek-connected and there is no homomorphism between
them. The natural bijection betweéhand H—we identify the leftK;,'s in G
andH, the rightK,1’s in G andH, and the edges as depicted in the figure—is
easily checked to b&7,. O

Many more graphs give negative answer to Problem 2.1.3, Werenly re-
call the perhaps most spectacular example: Petersen giagtsal 7> mapping
to C5 (Proposition 1.3.2).

We conclude this section by a more quantitative example.

Proposition 2.1.10 There are2¢™ undirected graphs with vertices that form an
antichain in the homomorphism order, yet all of them &fE,-equivalent.

Proof: To simplify notation, we will construd,,’, ) graphs withsn+1 vertices,
this clearly proves the proposition. We use teplacement operatioaf [40]. Let
H be a graph (we explain later how do we choose it),deb, =1, ..., z5 be
pairwise distinct vertices off. Next, we take an oriented path withedges and
replace each of them by a copy Af. That is, we taked, ..., H,—isomorphic
copies ofH—and identify vertex of H; with a of H;; (foreveryi =1,...,n—
1). Let G be the resulting graph.

Finally, for eacht € {0,1}™ we present a grapti;. We let F; be a copy
of the Petersen grapPt if t; = 1, and a copy of the prism af's—graphR in
Figure 2.1.2—ift; = 0. We construct the grapHi; as a vertex-disjoint union af,
Fy, ..., F; plus some ‘connecting edges’: foreveéry1,...,nandj =1,...,5
we letz! denote the copy of; in H; C G andu] the copy ofu; in F;; we letz] u]
be an edge off;. Note that eacld’; has(|V (Pt)| + |V (H)| — 1)n + 1 vertices.

Claim 1. H can be chosen so that the only homomorphism- G is the

identity. Moreover the vertices; can be chosen so that the dis-
tance between any two of them is at ledst

This follows immediately from techniques of [40]: we candaly from the
Figure 4.9 of [40] (depicted here in the middle of Figure 2) s our grapli.

hom

Claim 2. If G; —— Gy thent; <t} holds for each.

2|f we wish to construct directed graphs, consider any oaigmmn of them, such that corresponding
edges of7 and of H are oriented in the same way, except of the edgaghich are oriented differently
inGandinH.
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Take any homomorphisth: G hom, Gy, fix ani, and letF; (F)) be the copy
of Pt or R that constitute thé-th part of graphG; (G respectively). By Claim 1,
f maps the vertices df identically, in particularf (z]) = z/’. As the only path
of length3 connecting vertices? andz? ™ °*! is the one containing verticed
andu! ™15t ‘mappingf satisfiesf(u’) = u/’ as well. Consequently; maps
vertices ofF; to vertices off/. To showt; < ¢; it remains to observe that there is

hom

no homomorphisntt —— R.
TT>

Claim 3. For everyt, t’ we haveG; —= Gy.

We map every edge af and every edge’«’/ andu’u? ™°? > identically
(we call such edgesasy edges We map edges af; in G, to edges of the outer
pentagon ofF! in G by sending an edge to the outer edge with the same number
in Figure 2.1.2. To check that this is indeed'&, mapping we use Lemma 1.2.9:
if C'is a cycle contained in som& then we easily check that algebraical image
of C'is a cycle. IfC contains only easy edges that it is mapped identically,sso it
algebraical image is again a cycle. As every cycle can beemris a symmetric
difference of these two types, we conclude that we have ngetstd ai'T> map-
ping.

Now we are ready to finish the proof. Consider a4eatontaining all vertices
of {0,1}™ with |n/2| coordinates equal to 1. By Claim 2, graphs G are ho-
momorphically incomparable for distinctt’ € A. On the other hand, by Claim 3,
all of the graphs arg&T>-equivalent. O

In this proof we can use other building blocks instead of Betegraph and the
pentagonal prism. To be concrete, we can take graptis from Proposition 2.1.9
and use graph&' U H andH U H. If we slightly modify the construction, we can
prove version of Proposition 2.1.10 f@t7z mappings, and therefore far7,
mappings for arbitrand/. Moreover, by another small change of the construc-
tion, we can guarantee that all of the constructed graphs-amnected (for any
givenk).

It would be interesting to know i2<" from Proposition 2.1.10 can be im-
proved. Note that in the homomorphism ordgr the maximal antichain has full
cardinality [53], that is there are

1( (5) )

1y ) —o(1)

ni\[3(3)]

homomorphically incomparable graphs withvertices (Theorem 2.2.13, compare

Corollary 2.2.14). Proposition 2.1.10 claims that at lexstof these graphs are
contained in one equivalence classdf; .
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2.2 Left homotens graphs

In this section we look where homomorphisms a@fd,,; mappings meet: we
study a class of graphs that force afi§’,; mapping from them to be induced,
that is class of left homotens graphs. We prove a surprigsgltthat most graphs
have this property. In Section 2.2.2 we use these graphsdaoafinembedding
of category of graphs and homomorphism to the category gflgrandl T,
mappings, simplifying and generalizing a result of Chapter

2.2.1 A sufficient condition

Recall (Definition 2.1.4) that a graph is left A/-homotens if every"T, map-
ping fromG (to any graph) is induced. The characterization of lefthomotens
graphs seems to be a difficult problem; in this section weinlatgeneral sufficient
condition in terms ohicegraphs.

In Proposition 2.1.9 we saw that high connectivity does ngily homoten-
sness. In Corollary 2.2.17 we will see that every vertex obmbtens graph is
incident with a triangle. In view of this, a condition sufcit for homotens has to
be somewhat restrictive.

Definition 2.2.1 We say that an undirected graghis niceif the following holds
1. every edge df is contained in some triangle
2. every triangle i is contained in some copy &f,
3. every copy of{, in GG is contained in some copy &f5

4. for everyK, K’ that are copies of{, in G there is a sequence of vertices
v1, U2, - .., SUCh that
o V(K) = {v1,v2,v3,v4},
L4 V(KI) = {Ut) Vt—1, Vt—2, Ut—B}y
e v;v; is an edge ofy whenevel <i < j <tandj <1+ 3.
We say that a graph iweakly niceif conditions 1, 2, and 4 in the list above are

satisfied. Finally, we say thatdirectedgraph is (weakly) nice, if the underlying
undirected graph is (weakly) nice.
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Theorem 2.2.2Let G, H be undirected graphs, l&¥ be nice, and let\/ = Z

for somer. Supposef : G ., H. Thenf is induced by a homomorphism
of the underlying undirected graphs. Shortly, every uradéd nice graph iZ,-
homotens.

Theorem 2.2.3LetG, H be (directed or undirected) graphs, I6tbe weakly nice,

and letM +# 75 be a ring. Supposg : G —4 H. Thenf is induced by an
(ant|)homomorph|sm Shortly, every weakly nice grapi/isiomotens.

We take time out for two lemmata that describe possitiiemappings from a
small complete graph. The first one uses technique of fraakticovering by cuts,
which is further developed in Chapter 5. The second one ieremhnical, as it
does not restrict to the cadé = Z,.

Lemma2.24letf : K5 T2, |, whereH is any undirected loopless graph.

Thenyf is induced by an injective homomorphism. Moreover, thisdraorphism
is uniquely determined.

Proof: Supposef(K5) is a four-colorable graph. A composition 6> map-

ping f : K5 KELN f(Ks) With a TT, mapping induced by a homomorphism

f(Ks) hom, K, gives K5 I, K,. Consider three cuts of size 4 iK,; they
cover every edge exactly twice. Hence, their preimageshaee tcuts ink5 that
cover every edge exactly twice. Bif; has 10 edges, while the largest cut has
only2 -3 = 6 edges.

Hence, the chromatic number ¢{K5) is at least five. As it has at most 10
edges, the chromatic number is exactly five. Igt..., V5 be the color classes
of f(K5). There is exactly one edge between two distinct color ctagstherwise
the graph is four-colorable). Hencg,is a bijection. Next|V;| = 1 for every:

(as otherwise we can split one color-class to several piaedgoin these to the
other classes; again, the graph would be four-colorablehs€quentlyf (K5) is
isomorphic toKs.

We call star a set of edges sharing a vertex. We know that pggmf every
star is a star, hence dsds a bijection, also image of every star is a star. Stars shar-
ing an edge map to stars sharing an edge, hénge@nduced by a homomorphism.

O

Lemma 2.2.5 Let M be a ring that is not isomorphic to a power ab. Letf :
f T, H, whereH is any loopless directed graph arfd4 any orientation
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of K4. Thenf is induced by an injective (ant)homomorphism. Moreouds t
(anti)homomaorphism is uniquely determined.

Proof: Suppose first thaf(ﬁ) is a three-colorable graph, i.e., that there is a

homomorphisnk : f(K,) — K3, where K3 is the symmetrigorientation ofs,

that is a directed graph with three vertices and all six aeéredges among them.

A composition ofl"T;, mappingf : E I, (E) with hf givesg : E TTu,

?3. Consider the three cuts of sizan ?3: X1, X5, X3. As M is not a power
of Zo, 1+1 # 0; letp,; be M-tension thatﬂtains valuel on X; and0 elsewhere.
We can choose; so, that for every € E( K3) we have{p1(e), pa(e), p3(e)} =
{O,jzl}_.> As g is TTy;, mappingsy; = ; o g are M-tensions and for every
e € E(Kq) we have{y:(e), ¥2(e), v3(e)} = {0, £1}. ()

Call anM -tensionsimpleif it attains only value$) and+1. We will show that
three simplelM/ -tensionsyy, 2, 13 ONn E with property (*) do not exist.

To this end, we will characterize sei&®ry = {e € E(R;),d)(e) = 0} for
simple M-tensionsy). Let be such tension. Pick € V(E) and leteq, eq, e3
be adjacent tw. Note thaty is determined by its values an, ez, e3. We may
suppose that eaah is going out ofv; otherwise we change orientation of some
edges and the sign gf on them. Further, we may suppose tHaty(e;) = 1}| >
[{i,¢(e;) = —1}|; otherwise we consideri). Thus, we distinguish the following
cases (see Figure 2.3).

e (e;) € {0,1} for each.
Let z be the number of; such that)(e;) = 0. Theny is determined by a
cut with z + 1 vertices on one side of the cut. Therefore, thel§at is

either the edge set ofEl, of a triangle, or it is a pair of disjoint edges.

o Ple1) =1,9(e2) =0,¢(e3) = —1.
In this caseKer v is a single edge. Note, that this case (and the next one)
may occuronly ifl +1+ 1= 0.

o ler) =v(e2) =1,9(es) = —1.

In this case tooKer ¢ is a single edge.

Hence,E(Rl) is partitioned into three sets, whose sizes aré1lirn2, 3,6}.
Therefore, there are two possibilities:

3T-symmetric according to the definition of Section 1.2.2
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e 6 =3+ 2+ 1: The complement of a triangle is a star of three edges, there
are no two disjoint edges in it.

e 6 = 2+2+42: Inthis case, all threg,’s are determined by a cut. Suppd_sf)@
is oriented as in Figure 2.3, the values/gfare indicated. It is not possible
to fulfill the condition (*) on both edges frorKer v);, as one ofps, 3
will assign these edges the same (honzero) value and theata@pposite
(nonzero) values.

So far we have proved, that the chromatic numbqf(d_{i) is at least four. As

f(Rl) has at most 6 edges, its chromatic number is exactly fourliet.., Vy
be the color classes. There is exactly one edge between stidlicolor classes
(otherwise the graph is three-colorable). Thfiss a bijection. Next|V;| = 1 for
everyi (as otherwise, we can split one color-class to several piand join these
to the other classes; again, the graph would be three-déraConsequently,
f(Rl) is some orientation of4.

We callstar a set of edges sharing a vertex. If wedebe a simplelV/-tension
on f(f4) corresponding to a cut which is a star, ther f is a simple tension
that is nonzero exactly on three edgé¢sg a bijection). By the characterization
of zero sets of simple tensions we see that preimage of eaclsst star. Asf
is a bijection and preimage of every star is a star, also indigvery star is a
star. This allows us to define a vertex biject'@nV(Rl) — V(f(R;)) by letting
g(u) = ' iff the f-image of the star witl as the central vertex is the star centered
atu’. Stars sharing an edge map to stars sharing an edge, fienoeluced by,
which is either a homomorphism or an antihomomorphism. O

Proof of Theorem 2.2.2 and 2.2.3: It is convenient to suppose th@tcontains no
parallel edges (Proposition 2.1.5). Li§tbe a copy ofi4 in G (if G is a directed
graph, then we mean by this thidtis some orientation ok’y). For Theorem 2.2.3
(thatis whenV is not a power 0%,) we use Lemma 2.2.5 to see that the restriction
of f to K is induced by an (anti)homomorphism. When proving Theorez22
we know thaiG is nice, thereford( is part of a copy of5 in G. By Lemma 2.2.4
the restriction off to this copy ofKj is induced by an homomorphism, therefore
the same applies fdk'. Let this homomorphism fronk” to H be denoted by .,
that is we assumg| g (k) = hs (O flp(x) = hy)-

As every edge of7 is contained in some copy @, it is enough to prove that
there is a common extension of all mappidgs | K C G, K = K4} (we may
define it arbitrarily on isolated vertices 6f).
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We say thathx and hy agreeif for any v € V(K) N V(K’) we have
hi(v) = hg:(v) and either botth g, hy are homomorphisms or both are an-
tihomomorphisms. Thus, we need to show that any two mappgirgsi - (for
K, K’ from the same component 6f) agree.

First, let K, K’ be copies of, that intersect in a triangle. Thérn, andh g
agree (note that this does not necessarily hold if the iet¢ien is just an edge,
see Figure 2.3), moreover either bdth, hx are homomorphisms or both are
antihomomorphisms.

Now supposeX, K’ are copies of<, that have a common vertex SinceG is
aweakly nice graph, we find vertices, vs, . ..,v; asin Definition 2.2.1. Let7; =
Gl{vi, vit1,Vit2, vit3}]: everyG; is a copy of Ky, G; = K andG;_3 = K.
Suppose = v; = v, wherel € {1,2,3,4},r € {t —3,t —2,t —1,¢}. Consider

a closed waldV = v, vj41,. .., Up—1, 0. Letv, = hg,(v;) forl < i <t -3
andv; = hg,_,(v;) fort —3 < i < r. Mappingshq, andhg,,, agree, hence
vivi 1 = f(vivig1) is anedge ofl. SOW' = vj, vy, ..., v,._q, v, is awalk in

Let p be ‘ax1-flow aroundi¥”, formally

o(e) = Z 1- Z 1.
I<i<r—1 I<i<r—1

e=(vi,vi41) e=(Vi41,V;)

Clearly ¢ is an M-flow. Similarly, definey’(e) from W’. We havey’ = ¢y,
hencey’ is a flow (Lemma 1.2.9). This can happen onlyiif’ is a closed walk,
thatisv;, = v/.

By definition,v]. = hx+(v). Mappingshq, andhg,,, agree, stig, (vit;) =
ha,.,(viyj) for j < 3. Consequentlyy; = hx (v), which finishes the proof. O

We summarize Theorems 2.2.2 and 2.2.3.

Corollary 2.2.6 An undirected nice graph is lef/-homotens for every ring/.
A (directed or undirected) weakly nice graph is I&fthomotens for every ring/
that is not a power o,.

In Proposition 2.1.8 we saw highly-connected graghs that are notZ,-
homotens. As a consequence of Corollary 2.2.6 these graphsoa nice. To
see this directly, recall th&t,, was one component & (K ,,) for a suitable:, and
althoughA(K,,) containsK,, not every copy of{, is contained in a copy oK.

Extending our conditions that guarantee that a grapgif ieomotens, we give
the following lemma, which will be used in Section 2.2.2. (8lehat the word
‘spanning’ is needed.)
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Lemma 2.2.7 SupposeH contains a connected spannidg-homotens graph.
ThenH is M-homotens.

Proof: Letf : H EEL'N K, let G be the connected spannirdd-homotens

subgraph offf. Restriction off to E(G) is TTy, hencef(e) = g¥(e) for each
e € E(G) and some (antijhomomorphisgn Lete = uv € E(H) \ E(G). We
have to provef(e) = (g(u), g(v)). Let P be a path froms to v in G. By treating
the closed walkP U {uv} asW in the end of the proof of Theorem 2.2.3, we
conclude the proof. O

2.2.2 Applications

In this section we provide several applications of nice pgafthat is, of Corol-
lary 2.2.6). Particularly, we prove that ‘almost all’ gragdre leftA/-homotens for
every ringM and construct an embedding of categ@¥y,,, into Grr,,. Some-
what stronger embedding result fdf = Z, is proved by an ad-hoc construction
in Theorem 3.2.2. Here we follow a more systematic approagk-employ a
modification of an edge-based replacement operation (63 Ris a warm-up we
prove an easy, but perhaps surprising result.

Corollary 2.2.8 For every graphG there is a graphG’ containingG as an in-
duced subgraph such that for every ring everyTTh; mapping fromG’ to arbi-
trary graph is induced by an (anti)homomorphism (i®.,is M-homotens).

Proof: We take ag>’ the (complete) join oy and K5; that is, we letl/ (G') =
V(G) U {v1,v2,...,v5}, and E(G’) = E(G) U {all edges containing somg}.
By Theorem 2.2.3 it is enough to show tl@tis nice. Every copy of; (¢ < 5)
in G’ can be extended t&’s by adding some vertices;. One can also show
routinely that any two copies oK, in G’ are ‘K4-connected’'—condition 4 in
Definition 2.2.1. O

We consider the random graph modé(n, 1/2), that is every (simple undi-
rected) graph with vertice$l,2,...,n} has the same probability (in Proposi-
tion 2.2.10 we deal with graphS(n,p) for a generap). As it is usual in the
random graph setting, we study if a graph propéttiyolds asymptotically almost
surely (a.a.s.), that is whether

lim PTGEG(n,l/Q) [G hasP] =1.
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We also consider the countable random gréfitv, 1/2). Surprisingly, it is
almost surely isomorphic to a particular graph, the sceddRado graph. Thisis a
remarkable graph (it is homogeneous and it contains evamtable graph as an
induced subgraph), see [14] for more detailed discussion.

The following theorem was our main motivation for introdugiweakly) nice
graphs.

Theorem 2.2.9Let M be aring.
1. Complete grapli; is M-homotens fok > 5 (and fork > 4 if M # Z3).

2. The random grapl(n,1/2) is M-homotens a.a.s. The Rado graphlis
homotens.

3. The randonk-partite graph isM-homotens a.a.s. far > 5 (and fork > 4
if M # 7%). Explicitly,

lim Prg_cn,1/2)[G is M-homoteng G is k-partite] = 1.

4. The randoni¥;-free graph isM-homotens a.a.s. for > 6 (and fork > 5
if M # 73).

If M # 71, then in each of the statements, any orientation of the censitigraph
is M-homotens, too.

Proof: It is a routine to verify thatk; is nice (weakly nice fot = 4), hence 1
follows by Corollary 2.2.6.

Next, we prove that the random gra@fin, 1/2) is a.a.s. nice, it is possible to
prove in the same way that the Rado graph is nice. Therefogen2 by another
application of Corollary 2.2.6.

ForS C V(G) (whereG = G(n,1/2)) write Cs for the event ‘there is a
common neighbor for all vertices iff'. If |S| = s, the probability ofC's clearly
is(1—55)""*. As (") - (1 — 5)"* tends to zero for any fixed| C holds a.a.s.
for all S with size at most 4. This implies the first three conditiong'hn

To prove the last condition, |6k, K’ be two copies ofKy. Denote vertices
of K by v1, ve, vs, vy, and vertices o’ by vs, vg, v19, v11 (in any order). If
we find a triangle that is connected to every vertexsiru K’, we may denote
its vertices byvs, vg, v; and we are done. For a given three-elementSset
V(G)\ (V(K)UV(K")) the probability thats induces a triangle and is connected
to all vertices iV (K) UV (K”) is at leas2 2%, hence the probability that there is
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no suchs is at most(1 — 2721)(»=8)/3 As the number of possible paif&’, K”)
is at mostn®, this concludes the proof.

By [51], a randomK-free graph is a.a.gk — 1)-partite, hence 3 implies 4.
The proof of 3 is similar to the proof that the random graphdssa nice, we sketch
it for convenience.

Let Ay, ..., A be the parts of the randompartite graph. By standard argu-
ments, all4;’s are a.a.s. approximately of the same size, in particlllarenon-
empty. It is a routine to verify parts 1, 2, and (in case 5) 3 of Definition 2.2.1.
For part 4, letV (K) = {v1,...,vs}, V(K') = {vg,...,v12}. We picKiy, ..., i4
so thatv, € A;, for eacht, except possibly it = k ort = k 4+ 8. We attempt
to pickvs € A;,, ..., vs € A;, to satisfy the condition 4. The probability that a
particular 4-tuple fails is at mogtl — 2—18)|A”'J""J"‘L"““_8 <(1- 2—18)"/%.
Hence, the probability that some copi&Ss K’ of K, are ‘bad’ is at mosh®c”
(for somec < 1). O

From the point of view of random graphs it is natural to studhetther random
graphd G(n, p) are homotens for a genegak= p(n). We can use the approach of
Theorem 2.2.9 fop <« 1/2; it is not clear, however, if we can get tight result by
using nice graphs. Still, we can use general results on moeajraph properties
to prove that there is some tight result. Recall that a famcty(n) is called a
thresholdfor graph propertyP if

e lim, .o Praeg(n,p) (G hasP] = 1 whenevep > po, and
e lim, .o Praeg(n,p G hasP] = 0 whenevep < po.

As property ‘being homotens’ is not monotone (a graph witk edge is ho-
motens, a graph with two connected edges is not), it may maot daes not) have
threshold in the above-defined sense. Indeed, in the naxt ves show that it has
two ‘local thresholds’.

Proposition 2.2.10 There ispy = po(n) satisfying

“a . L@
n273 =Po= 7o

such that for every/

0 if =% < p<po,
1 if p< =7 orp>> po.

lim Prgecn,p)|G is left M-homotens graph= {

4with n vertices and each edge present with probabjlity
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Proof: We start by collecting several results about random graphs.first four
of them are well-known (consult [47]).

Claim 1. If p > logn/n thenG(n, p) is connected a.a.s.

Claim 2. If p < 1/n%/? then a.a.sG(n, p) contains no path with two edges.

Claim 3. If 1/n%/? < p < 1/n thenG(n,p) is a forest that contains two
adjacent edges.

Claim 4. If p > 1/n*/3 then a.a.sG(n, p) contains a tree with 4 vertices.

Claim 5. If p > 1/n'/?! thenG(n, p) is nice a.a.s.

This follows by the same proof as part 1 of Theorem 2.2.9.

Claim 6. If p < 1/n%/3 thenG(n, p) a.a.s. contains no odd wheel.

Let X be the random variable counting number of odd wheels. Glearl

2.3
EX < k+1 2k:n'(pn)
_;n P 1—p?n

which tends to zero. By Markov inequality, there is a.a.sodd wheel.

Let H be the graph property ‘being left homoten&’,'to be connected’ and
putP = H N C. By Lemma 2.2.7 propertf is monotone (i.e., it is preserved by
adding edges), hence it has a threshold by a result of [1s{dbalso [47]). Let
po be this threshold.

No forest (except of a matching) is homotens. This, togettighr Corol-
lary 2.2.17, Claim 3, 4, and 6 implies thatif 3/2 < p < n=%/3 thenG(n, p) is
nothomotens a.a.s. ForlargelClaim 1 state§?(n, p) hasC a.a.s.,sd = HNC
a.a.s. This implies that, is a threshold foi as well and thap, > ¢;n=2/3. By
Claim 5 we se@q < con~ /2!, Finally, by Claim 2 the grapti(n, p) is homotens
forp < n=3/2, O

Problem 2.2.11 Determine the threshold for property ‘being connected Mt
homotens graph’, that is the threshalgl from Proposition 2.2.10.

Next, we mention an easy corollary of Theorem 2.2.9. Howsimaply and
naturally does this result look, it is not easy to prove dlgecAn extension of
argument used in Lemma 2.2.4 yields oty <! Kg <! Kg <! --- (Theo-
rem 5.2.4), use of Lemma 1.3.1 yieldls, <* Ky <! K6 <! --- (for M = Z,,
similarly for otherM). In [55] this result is proved (fok! = Z5) by use of strong
maps between matroids.
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Corollary 2.2.12 For everyM the complete graph&’,, form an ascending chain
in <%, with the exception ak’; =4 K,. Thatis

t t t t
Ky <4y K3 iy Ka <Gy Ks <0y Ko <3 -+
where the inequalitys <, K4 is strict whenevel is not a power ofZ.

Theorem 2.2.9 enables us also to provEZA version of the following result
about homomorphisms of random graphs. (The original thea@gpears in [53],
see also Section 3.6 of [40].) Note that Theorem 2.2.13 (hod &lso Corol-
lary 2.2.14) is asymptotically tight, as if we have more drahen by Sperner’s
theorem there is even an inclusion between two of them.

Theorem 2.2.13 ([53]) Random (undirected) graph is almost surely rigid (with
respect to homomorphism). There are

LB Yooy
n! ([2 (5)]

graphs onn vertices with no homomorphism between any two of them aitnd wit
only identical homomorphism on each of them.

Corollary 2.2.14 Let M be a ring. Random (undirected) graph is almost surely
TT)y-rigid. There are
(2)

%(L%@J)“ — o)

pairwiseTT);-incomparablel' T, -rigid graphs omn vertices.

We finish Section 2.2.2 by another application of Corollarg.@ —we show
that the structure df'T; mappings is at least as rich as that of homomorphisms.

Theorem 2.2.15There exists a mapping that assigns (directed or undirected)
graphs to graphs (of the same type), such that for any fihgnd for any graphs
G, H (we stress that we consider loopless graphs only) holds

G=<nH < F(G) <y F(H).

Moreover F' can be extended to a 1-1 correspondence for mappings between
graphs: if f : G — H is a homomorphism, theR(f) : F(G) — F(H) is a
TT) mapping and an{"T); mapping betweeR'(G) and F(H ) is equal toF'(f)

hom

for some homomorphisih: G — H.
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In terms of category theory; is an embedding of the categd®yay,.., of all
graphs and their homomorphisms into the categéryrr,, of all graphs and all
T'Ty-mappings between them.

Proof: We will use a modification of edge-based replacement (sdg [Uét I be
the graph in Figure 2.4 with arbitrary (but fixed) orientatid’o construct'(G),
we will replace each of the vertices 6fby a triangle and each of the edgegdf
by a copy ofI, gluing different copies on the triangles correspondintheoend-
vertices of the edge. More precisely, ét= V(G) x {0,1,2}, for every edge
e € E(Q) let I, be a separate copy df If e = (u,v) then we identify vertex
u; (i € {0,1,2}) with (u,¢) in U, and vertexy; with (v,4) in U. Let F(G) be
the resulting graph; we write short)(G) = G« I. If f : V(G) — V(H) is a
homomorphism then we defid&(f) : E(F(G)) — E(F(H)) as follows: lete =
(u,v) be an edge off anda an edge off(I.). Lete’ be the image of under;.
In the isomorphism betweely andI’ the edge: gets mapped to somé. We put
F(f)(a) = d. ltis easily seen thak'(f) is aTTy (thusTT);) mapping that is
induced by a homomorphism, we lgf /) denote this homomorphism. Now, we
turn to the more difficult step of proving that evefii’,; mapping fromG to H

hom

is F(f) forsomef : G —— H. We will need several auxiliary claims.

Claim 1. [ is critically 6-chromatic.

Take anyK5 in I, color in by 5 colors. There is a unique way how to extend
it, which fails, sox(I) > 6. Clearly 6 colors suffice. Moreover, if we delete
any vertex off then it is possible to color the remaining vertices condeelyt
1,2,3,4,5,1,2,...,5.

Claim 2. I is rigid.

That is, the only homomorphisigh: I — I is the identity. By Claim 1 can-
not map! to its subgraph, hencgis an automorphism. There is a unique vettex
of degree 9, s¢ fixes it. There is a unique Hamilton cycle= x4, ..., z16 Such
thatz;z; is an edge whenevér— j| < 4, therefore this cycle has to be fixed fy
too. This leaves two possibilities, but only one of them miyes'diagonal’ edge
properly.

Claim 3. I is K5-connected.

That is, for every two vertices, b of I there is a patlh = a1, az2,...,ax = b
such that;a; is an edge whenevér— j| < 4.

hom

Claim 4. WheneverH is a graph ang : I —— H = I a homomorphism,
there is an edge € F(H) such thay is an isomorphism betweeghand/..

If ¢ maps all vertices of to one of thel.’s, then we are done by Claim 2.
If not, let a, b be vertices ofl such thatg(a) is a vertex ofl. (for some edge
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e = uv € E(H)) andg(b) is not. Choose a path = a1,asg,...,a, = basin
Claim 3, and leta; be the last vertex on this path that is a vertex aof Not all
three vertices;_1, a;,—2, a;—3 can be in the ‘connecting trianglé¢v} x {0, 1,2},
on the other hand each of them is connected {9, a contradiction.

Claim 5. For every grapltH the graphH * I is M-homotens.

This is an easy consequence of Lemma 2.2.7: if we delete thgddal’ edge
from each copy of, the resulting graph is nice.

To finish the proof, let: : F(G) T, F(H) be aT'Ty mapping. As graph
G « I is M-homotensp is induced by a homomorphism, say: F(G) Jom,
F(H). By Claim 4,¢ maps anl. to anl./, therefore there is a homomorphism
f:V(G) — V(H) such thayy = ¢(f) andh = F(f), as claimed. O

2.2.3 A necessary condition

In this section we present a necessary condition for a graite Z-homotens.
As mentioned earlier, circuits are the simplest examplagaphs that are n-
homotens. Similarly, no graph with a vertex of degree Z4isomotens, except
of a triangle. This way of thinking can be further strengthe@and generalized,
yielding Theorem 2.2.16. To state our result in a compact, wayintroduce a
definition from [28]. We say that a gragh is chromaticallyk-connectedf for
everyU C V(G) such thatG — U is disconnected the induced gragfiU] has
chromatic number at leagt It [28] another (equivalent) formulation is given:
G is chromaticallyk-connected if and only if every homomorphic image®is
k-connected.

Theorem 2.2.16Let M be aring. If a (directed or undirected) graph is connected
and M-homotens then it is chromaticaldyconnected.

Proof: Supposé is a counterexample to the theorem. Hence, vertic€s cén

be partitioned into setdl, B, U, L, such thatd U B separate$/ from L (that

is there is no edge fror®y to L), moreoverA, B are independent sets. We may

supposed U B is a minimal set that separatésfrom L. We are going to prove

thatG is notZ-homotens, therefore by Theorem 7.2.12 fbthomotens as well.
We identify all vertices ofA to a single vertex:, and all vertices ofB to

a vertexb. Let F' be the resulting graph, anfl : G — F be the identifying

5By Theorem 7.2.12 the presented condition is necessanygi@i to bel/-homotens for each/,
too.
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homomorphism. We define AT, mapping ¢ from F as follows. Foru € U
we map edge:a (if it exists) tobu, au to ub, ub to au, andbu to ua. Foru,v €

U we map edgeuw (if it exists) tovu. Every other edge is mapped to itself.
We let F’ denote the resulting graph (it has the same set of verticéd.aft is
straightforward to use Lemma 1.2.9 to verify tlyas indeedl"77,.

Consequentlyy o f# is aT'Ty; mapping; we need to show that it is not induced.
Atleast one of4, B is non-empty. Moreover, aéU B is a minimal separating set,
there are vertices € AUB, u € U, € L such that, without loss of generality,

xl are edges of!. By definition ofg we haveyo f*(xl) = xl andgo f*(zu) = uy.
Thereforey o ¥ maps two adjacent edges to two nonadjacent edges, henoeit is
induced. a

The following corollary gives a simpler necessary conditithough a weaker
one: We can prove that the graph of icosahedron isZzbbmotens by using
Theorem 2.2.16 (the neighborhood of an edge %3 but not by using Corol-
lary 2.2.17.

Corollary 2.2.17 LetG be a connected graph with at least four vertices. Suppose
the neighborhood of some € V(&) induces a bipartite graph. The@ is not
M-homotens for any ring/ .

Consequently, every vertex of a homotens graph is incidiémtu odd wheé€l
(in particular with a triangle), except if it is contained & component of size at
most three.

Proof: Let A, B be the color-classes of neighborhoodvoflf there is a vertex
nonadjacent tw, then we can use Theorem 2.2.16. So suppdseconnected to
every vertex of7. Then every other vertex has a bipartite neighborhood. Tihe o
case that stops us from using Theorem 2.2.16 is wHeérB| < 1, that is when
G has at most three vertices. a

A somewhat surprising consequence of Corollary 2.2.17isrth triangle-free
graph (except of a matching) is homotens. This implies tHewiang corollary.

Corollary 2.2.18 A cubic graph isM-homotens if and only if each of its compo-
nents is isomophic t&, and M is not a power ofZ,.

6This operation is sometimes called an (oriented) Whitnagthgompare Corollary 7.4.5.
A wheel with k spokes,W,, is a graph that consists of a circdit, and a central vertex that is
connected to each vertex of the circuit.
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Among regular graphs of higher degree it is possible to finmdtens graphs
(e.g., the complete graphs). Still, these are not typiesd édso Theorem 2.2.9 and
Proposition 2.2.10).

Corollary 2.2.19 Letr > 3 be integer,M ring. The probability that a random
r-regular graph isM-homotens tends to zero if the size of the graph grows to
infinity.

Proof: It is known (see Lemma 2.7 of [91]) that for any fixed graphwith
more edges than vertices the probability that randeregular graph om vertices
containsF’ tends to zero. If we apply this for all odd wheels with at mospokes
in place of ', we see that by Corollary 2.2.17 the result follows. O

Corollary 2.2.17 also indicates that complete graphs ireain the definition
of nice graphs are necessary, at least to some extent. Howegecondition of
Corollary 2.2.17 (or Theorem 2.2.16) is far from being sidifit: for example the
graph from Proposition 2.1.9 is chromaticalhconnected and n@-homotens. In
particular, we do not know whether there dtg-free homotens graphs. By [51],
a randomiK 4-free graph is a.a.8-partite, hence not chromatically 3-connected,
hence by Theorem 2.2.16 ndthomotens. Still, it is possible thdt,-free Z-
homotens graphs exist, promising candidates are Knesphgfé(4n — 1,n),
which are for large: chromatically 3-connected [28].

Question 2.2.20ls the Kneser grapli (4n — 1, n) left Z-homotens, if: is large
enough?

2.3 Right homotens graphs

In this section we complement Section 2.2 by study of gragfishywhen used as
target graphs, make existenceldt’ mappings and of homomorphisms coincide.
Recall (Definition 2.1.4) that a grapt is called rightA/-homotens if the exis-
tence of al'Tyy mapping from an arbitrary graph & implies the existence of a
homomorphism. Right homotens graphs (in comparison witthiemotens ones)
provide more structure; in this section we characterizentbg means of special
Cayley graphs and state a question aiming to find a betteacteaization.
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2.3.1 Free Cayley graphs

Free Cayley graphs were introduced by Naserasr and Tadlif§&e also thesis
of Lei Chu [16]) in order to study chromatic number of Caylegghs. They will
serve us as a tool to studyl’ mappings, in particular we will use them to study
right homotens graphs and to prove density in Section 3.1.3.

Let M be a ring, letH be a graph. For a vertex € V(H) we lete, :
V(H) — M be the indicator function, that is, (u) = 1 if v = w ande,(u) = 0
otherwise. We define grapi ,(H) with verticesM Y (), where(f, g) is an
edge iffg — f = e, — ¢, for some edgéu, v) € E(H). We can see thak,(H)
is a Cayley graph, it is called tHeee Cayley graplof H. We begin our study of
free Cayley graphs with a simple observation and with a u$efoma, which is
due to Naserasr and Tardif (for a proof, see [16]).

Proposition 2.3.1 Graph A, (H) containsH as an induced subgraph.

Proof: Take functionge, | v € V(H)} CV(An(H)). O

Lemma 2.3.2 Let M be a ring, H a Cayley graph om\/* (for some integek)

andG an arbitrary graph. Then any homomorphigin™?™ H can be (uniquely)
extended to a mappiny,, (G) — H that is both graph and ring homomorphism.

The next lemma appears in [19] (although without mentiogiraphsA ;).

Lemma 2.3.3 G~ H is equivalent withG' 2™ Ay (H).

Note that Lemma 1.3.1 is a special case of Lemma 2.3.3, ahgaf7)
defined in Section 2.1.2 are isomorphic4e,(G). Lemmata 2.3.2 and 2.3.3
have as immediate corollary an embedding result that nicetgplements The-
orem 2.2.15. In contrary with Theorem 2.2.15 though, oureuling is not func-
torial, it is just embedding of quasiord@s, <%,) in (G, <»)-

Corollary 2.3.4 G 222, H is equivalent withA ; (G) 22 Ay (H).

8More precisely, we defind 5, (H) to be a directed graph. However,(ﬁis a symmetric orienta-
2
tion of an undirected grapH, thenA 5, ( H) is a symmetric orientation of some undirected gr&ph
we may letA ; (H) = H'. The whole Section 2.3.1 may be modified for undirected ggdgytrsimilar
changes.
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Proof: If G 2% H then by Lemma 2.3.3 we have hom, Ap(H) and by

Lemma 2.3.2 the result follows. For the other implicatiop,Rroposition 2.3.1
graph G maps homomorphically tad\,;(H), and application of Lemma 2.3.3

yieldsG 7™, . O

We remark that Corollary 2.3.4 provides an embedding ofgmateof 77,
mappings to category of Cayley graphs with mappings thatbath ring and
graphs homomorphisms.

2.3.2 Right homotens graphs

We start our description of right homotens graphs by two &mpservations con-
cerning right homotens graphs. The first one is a charaatéiz of right ho-
motens graphs by means 4fy;. It does not, however, give an efficient method
(polynomial algorithm) to verify whether a given graph ight homotens, nei-
ther a good understanding of right homotens graphs. Heneayilvseek better
characterizations (compare with Corollary 2.3.7 and Qoe<.3.12).

Proposition 2.3.5 A graph H is right M-homotens if and only i\, (H) hom,

H.

Proof: For the ‘only if’ part it is enough to observe that,,(H) T, H for
every graphH: clearly Ay, (H) hom, Ay (H) and we use Lemma 2.3.3. For the

other direction, ifG =2, H then by Lemma 2.3.3 we havg Jiom, An(H)
and by composition we havg 2™ . O

hom

Lemma 2.3.6 Assumed " i’ and H' T2, H.If H is right M-homotens
thenH' is right M-homotens as well.

hom

Proof: If H is right M-homotens, thed\,,;(H) —— H. By Corollary 2.3.4

from H' ™, H we deduce that , (H') hom, A (H). By composition,

AA](H/) hom AA](H) hom H hom H/

3

henceH' is right M-homotens. O
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hom

Corollary 2.3.7 Let H, H' be homomorphically equivalent graphs (i.8.,—

H' and H' °™ H). ThenH is right M-homotens if and only ifl’ is right
M-homotens.

Note that7T)s-equivalence is not sufficient in Corollary 2.3.7: each grap
H is TTy-equivalent withA ,(H) and the latter is always a rigii’-homotens
graph (for each\/), as we will see from the next proposition. Also note that the
analogy of Corollary 2.3.7 does not hold for left homoteregpins.

Next, we consider a class of right-homotens graphs that is central to this
topic. We will say thatH is an M-graphif it is a Cayley graph on some power
of M (Z»-graphs are also called cube-like graphs; they have bemdinted by
Lovéasz (cf. [35], see also Lemma 5.4.5) as an example ofgrdpr which every
eigenvalue of the adjacency matrix is an integer).

Proposition 2.3.8 Any M -graph is rightA/-homotens.

hom

Proof: Let H be anM-graph. AsH —— H, by Lemma 2.3.2 we conclude that
YANY: (H) ho_m) H. O

In analogy with chromatic number we define &), numbery..,, (G) to be

the minimumn for which there is a grapli/ with n vertices such thatr KEL'N

H. As any homomorphism inducesZdl,; mapping, we see that,,,, (G) <
x(G) for every graphG. Continuing our project of finding similarities between
TT)r mappings and homomorphisms, we prove thatffig,; number cannot be
much smaller than the chromatic number. Note that the seclamd of the next
result is proved (essentially by the same method) in [55].

Corollary 2.3.9 LetG be a graph M aring of characteristip, andq the smallest
prime dividingp.

1. Ifp > 0thenl < x(G)/xzr, (G) < q.

2. Ifp = 0thenx(G)/xrr, (G) = 1.

Proof: Firstwe prove thai(G) < ¢-x+r,, (G) for any finite ring)M of sizeq. To
this end, consider a Cayley graph df* with the generating set/* \ {0}—that
is a complete grapk’» with every edge in both orientations. This is &frgraph,
hence by Proposition 2.3.8 it is right -homotens.
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Now, choose so thatg* ! < xrr,, (G) < ¢*. It follows thatG EELNR Kx,

hom

and asK ;x is right M-homotens(G —— K. Therefore,x(G) < & <q-
X1y, (G).

Next, if p > 0 is the characteristic a¥/ andq dividesp, thenM containsz,
as a subring. This by Lemma 7.2.2 implies that diy, mapping is'17,, thus
Xrry, (G) > X1y, (G), and the result follows.

For the second part suppoger,, (G) = n. Note that a ring of characteristic
containsZ. We use Lemma 7.2.2 again to infer that &y, mapping isI'1z,, .

As above, complete graphi,, is rightZ,-homotens, hence the mappiﬁgﬂ
K, isinduced, thereforg(G) < n as required. O

How good is the bound given by Corollary 2.3.9 is an intergstind difficult
guestion. Even in the simplest cake = Z, this is widely open; perhaps surpris-
ingly it is related to the quest for optimal error correctitmges (see Section 7.1
for details). Another corollary of Proposition 2.3.8 is aachcterization of right
homotens graphs.

Corollary 2.3.10 A graph is rightM-homotens if and only if it is homomorphi-
cally equivalent to ar/-graph.

Proof: The ‘if’ part follows from Corollary 2.3.7 and Proposition®8. For the
‘only if’ part, notice thatA,(H) is aM-graph,H C Ay (H), and if H is right

hom

M-homotens thed\ ,,(H) — H. O

Corollary 2.3.10 is not very satisfactory, as it does nowijate any useful al-
gorithm to verify if a given graph is right homotens. Indedds more a char-
acterization of graphs that are hom-equivalent to sdmhgraph, than the other
way around: Suppose we are to test whether a given graph iselgoimalent
to some (arbitrarily large)M-graph. It is not obvious if there is a finite pro-
cess to decide this; however Corollary 2.3.10 reducesdBistb decide whether

hom

Apn(H) — H. The latter condition can be checked by an obvious bruteefor
algorithm.

We hope that a more helpful characterization of right hometgraphs will
result from considering the core of a given graph. As a cora gfaphH is
hom-equivalent withH, it is right homotens if and only if{ is. Therefore, we
attempt to characterize right homotens cores, leading t@aag proposition and
an adventurous question. We note that one part of the prdefagosition 2.3.11
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is basically the well-known fact that the core of a verteaasitive graph is vertex-
transitive, while the other part is a generalization of aguarent used by [34] to
prove thatk, is right Z,-homotens (or, in the language of [34], that the injective
chromatic number of the cul#g,, is n) if and only if n is a power of 2. However,
we include the proof for the sake of completeness.

Proposition 2.3.11 Let H be a rightAM/-homotens graph that is a core. Then
e |V(H)|is a power of M|, and

e H is vertex transitive. I/ = Z,, then for every two vertices @f, there is
an automorphism exchanging them.

Proof: For a functiong € MV () we let H, denote the subgraph af,,(H)
induced by the vertex séiy + e,;v € V(H)}. Observe that eacH, is isomor-
phicwith H. Let f : Ay (H) — H be a homomorphism and for eagte V (H),
defineV,, = {v € V(Anm(H)); f(v) = u}. Now f restricted toH, is a homo-
morphism fromH, to H. As H is a core, every homomorphism frofh to H is

a bijection. Consequently, for evegythe graphi, contains precisely one vertex
from eachV,,. By considering all graphH, we see that all sefig, are of the same
size|M|IVUDI /| (H)|. Therefore|V (H)| is a power of M|, as claimed.

hom

For the second part let, v be distinct vertices off. We knowA ;(H) —
H. As H = Hjy (0 being the identical zero), we have a homomorphism

hom

Ay (H) — Hg. As H is a core, we know thaf restricted toHj is an au-
tomorphism of H5. By composition with the inverse automorphism, we may
suppose thaf restricted toHj is the identity. Next, consider the isomorphism

v Ay (H) om, Ay (H) given byg — g + e, — e,. A composed mapping
hom

f o @ is a homomorphisnily — Hj (therefore an automorphism) that maps
tov. Moreover, ifM = Zs thenf o ¢ mapsv to u as well. a

The previous proposition suggests that a stronger resghtrbe true, and that
this may be a way to a characterization of right homotenshgaim particular, we
ask the following question, which is of independent interes

Question 2.3.12 1. Supposéd is a right M/-homotens graph and a core. 1
an M-graph?

2. Is the core of each/-graph anM -graph?
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We note that even the (perhaps easier to understand)£aseZ, is open. But
one can see easily that 1 and 2 in Question 2.3.12 are equiivilied is a right
M-homotens core, theH is the core of thel/-graphA(H); hence 2 implies 1.
Conversely, letiX’ be anM-graph andH its core. Graphk is right M -homotens
by Proposition 2.3.8, therefore by Corollary 2.3.7 its cHrés right AM/-homotens.
If 1is true, thenH is anM-graph, as claimed in 2.
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Figure 2.2: Petersen grapRt, and the prismR of Cs—two TTs-equivalent
graphs used in the proof of Proposition 2.1.10. Below is plgtaat we use as a
‘frame’ to hold one of the two graphs above, and an examplaé@tbnstruction

forn=4,t=(1,0,1,1).
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Figure 2.3: Illustration of proof of Lemma 2.2.5, Theorer.2.and 2.2.3.

Figure 2.4: The grapH used in triangle-based replacement (proof of Theo-
rem 2.2.15).
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Chapter 3

T'T mappings &
homomorphisms: structural
properties

In this chapter we compare homomorphisms did mappings from a different
perspective: we prove that partial orders defined by exégte@fa homomorphism

(a T'Ty; mapping respectively) share several important properiiés start with
the density and give two proofs, one using a new structuraiseg theorem, and
another by aA(G) construction. Then we provide an embedding of homomor-
phisms toT'T> mappings. Unlike the proof in previous chapter (where weduse
nice graphs), we restrict to the cake = Z,; on the other hand, we use triangle-
free graphs in our construction, an impossibility with tipgebach via nice graphs.
We finish by several smaller results on the structuré’tforders.

3.1 Density

To recall, we say that a partial orderis dense, if for every, B satisfyingA < B
there is an elemertt for which A < C < B.

It is known [40, 88, 72] that the homomorphism order (withfaim-equiva-
lence classes of finite graphs as elements and with theaelatj) is dense, if we
do not consider graphs without edges. The parallel resuthfoorder defined by
TT); mappings is given by Corollary 3.1.7. In fact we prove a syerproperty

53



54 CHAPTER 3. STRUCTURAL PROPERTIES

(proved in [68]) that every finite antichain in a given intalcan be extended
(Theorem 3.1.6), density is the special case0.

The usual proofs of density of the homomorphism order relyhenfact, that
the category of graphs and homomorphisms has products. &Ve pr Proposi-
tion 3.1.12, that this is not true faF' T, mappings; therefore another approach
is needed. In Section 3.1.1 we develop a new structural Ratgpe theorem to
overcome the non-existence of products and in Section @& .2pply it. Finally,
in Section 3.1.3 we use the constructifiy, for a different (and shorter) proof of
density.

3.1.1 A Ramsey-type theorem for locally balanced graphs

In Section 3.1.1 we deal with undirected graphs only. We pr@\Ramsey-type
theorem that will be used in Section 3.1.2 as a tool to stuy (on directed
graphs).

An ordered graphis an undirected graph with a fixed linear ordering of its
vertices. The ordering will be denoted ky, an ordered graph byG, <), or
shortly by G. We say that two ordered graphs asemorphic if the (unique)
order-preserving bijection is a graph isomorphism. An eedegraph(G, <) is
said to be asubgraphof (H, <’), if G is a subgraph off, and the two orderings
coincide onV (G).

A circuit C = vy, ..., v in an ordered graph isalancedff

|{i;vi < U(i mod l)+1}| = |{Zv vy > v(i mod l)+1}| .

This can be reformulated using the notion preceding Lem24Q. LetG be a di-
rected graph with/(ﬁ) =V(G) andE(E')) = {(u,v);uv € E(G) andu < v}.
(We can say that all edges are oriented ‘up’.) Then a cirouit is balanced iff the
corresponding circuit irG is Z-balanced. Note that a circuit i@ is Zo-balanced
iff its length is even.

Denote byCyc, the set of all ordered graphs that contain no odd circuit of
length at mosp. Denote byBal, the set of all ordered graphs that contain no
unbalanced circuit of length at mgst

NeSetfil and Rodl [69] proved the following Ramsey-tyheorem.

Theorem 3.1.1Let k, p be positive integers. For any ordered grapfi, <) €
Cyc, there is an ordered graph, <) € Cyc, with the following property: for
every coloring ofF(H) by k colors there is a monochromatic subgrag’, <),
isomorphic to(G, <).
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We will need a version of this theorem fBal,,. By the discussion above, this
means that we consid&rbalanced (instead @f,-balanced) circuits.

Theorem 3.1.2Let r, p be positive integers. For any ordered grapfi, <) €
Bal, there is an ordered grapfH, <) € Bal,, with the the following property: for
every edge coloring off by r colors there is a monochromatic subgrafi, <),
isomorphic toG. This conclusion will be shortly written d$7, <) — (G, <)2.

Proof: The proof of Theorem 3.1.2 uses a variant of the amalgamatiethod
(partite construction) due to the first author and Rodl (geg., [70, 66]), which
has many applications in structural Ramsey theory.

For the purpose of this proof we slightly generalize thegrotf ordered graph.
We work with graphs with a quasiorderirgof its vertices; such graphs are called
guasigraphs< is called the standard ordering 6f Alternatively, a quasigraph
(G, <)isagraphG = (V, E) with a partitionV; UV, U --- UV, of V: eachV; is
a set of mutually equivalent vertices BfandV; < V5 < --- < V,. The number
a of equivalence classes &f will be fixed throughout the whole proof. In this
case we speak aboatquasigraphs |t will be always the case that evely is an
independent set af.

An embeddingf : (G, <) — (G’,<’) is an embedding (i.e. an isomorphism
onto an induced subgrapty) — G’ which is moreover monotone with respect to
the standard orderingsand<’. Explicitly, such an embeddinfjis an embedding
of G to G’ for which there exists an increasing mapping {1,2,...,a} —
{1,2,...,a"} such thatf(V;) C V/; fori=1,....a. (HereVy < Vj <.-- <
V!, are equivalence classes of the quasiorde}J By identifying the equivalent
vertices of a quasigrapfi we get a grapl; and a homomorphism : G — G;
graphG is called theshadowof G, mappingr is calledshadow projection

We prove Theorem 3.1.2 by induction pn The case = 1 is the Ramsey
theorem for ordered graphs and so we can use Theorem 3.1pl=fot. In the
induction stepf — p + 1) consider arbitrary ordered graghy, <), let G =
(V,E), |V] = n, andG € Bal,;. By the induction assumption there exists an
ordered grapliK, <) € Bal, such that

K — (G)2.
Let V(K) = {21 < -+ < z,} andE(K) = {ey,...,ep}. In this situation
we shall construct (by induction)-quasigraphs?, P!, ..., P (called usually

‘pictures’). Then the quasigrapR® will be transformed to the desired ordered
graph(H, <) € Bal, satisfying

(H,<)— (G, <)}
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We proceed as follows. LéP°, <) € Bal,; bea-quasiordered graph for which
for every induced subgrap®’ of K, such thatG’, <) is isomorphic to(G, <),
there exists a subgragh, of P° with the shadowG’. Clearly (P°, <°) exists,
as it can be formed by a disjoint union ();;) copies of G with an appropriate
quasiordering.

In the induction steg — k + 1 (k > 0) let the picture( P*, <*) be given.
Write P* = (V¥ E¥) and letV}* < Vi < ... < V¥ be all equivalence classes
of <. Consider the edge;1 = {zi,,, ...} of K (%;,,, < j,,,). TO
simplify the notation, we will write = 43,1, j = jri1. Let BX = (VF UV/“, FFk)
be the bipartite subgraph éf* induced by the set;* UV}*. We shall make use of
the following lemma.

Lemma 3.1.3 For every bipartite graphB there exists a bipartite grapB’ such
that
B' — (B)2.

T

(The embeddings of bipartite graphs map the upper part tagper part and the
lower part to the lower part.)

This lemma is easy to prove and it is well-known, see for eXarfg6].
Continuing our proof, let
B" — (B); (3.1)

be as in Lemma 3.1.3 and put explicity/* = (V;**' U V/*! F*+1). Letalso
B;. be the set of all induced subgraphsif, which are isomorphic t&*. Now
we are in the position to construct the pictres 1, <k+1),

We enlarge every copy dB* to a copy of(P*, <*) while keeping the copies
of P* disjoint outside the set;**' U V**'. The quasiorderx*+! is defined
from copies of quasiordet” by unifying the corresponding classes. While this
description perhaps suffices to many here is an explicit itiefinof P+*+1:

PutP+l = (Vk+1 pk+1) ‘whereV**+! = V¥ x B/~. The equivalence is
defined by

(v,B) ~ (v,B) = wv=0v eVFu ij“ or v=v"andB =B
Denote by[v, B] the equivalence class ef containing(v, B). We define the edge
set by putting{[v, B],[v', B']} € E*lif {v,v'} € E¥ andB = B’. Define
quasiordex*+1 by putting

[v, B] <M [/ B <= v <P
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It follows that <**! hasa equivalence classég" ™ < --- < V *1. (Note that
this is consistent with the notation of classés™, V' of B'¥)

Continuing this way, we finally define the pictuf®?, <?). Putd = P’ and
let < be an arbitrary linear ordering that extends the non-symmpart of the
quasiorder<’. We claim that the grap/ has the desired properties. To verify
this it suffices to prove:

(i) (H,<) e Bal,y; and
(i) (H,<)— (G, <)}
The statement (i) will be implied by the following claim.
Claim3.1.4 1. (P° <°) e Bal,,,.
2. If (P*,<¥) € Baly; 1, then(P*+1 <k+1) ¢ Bal, ;.

Proof of Claim: The first part follows from the construction. In the second,pa
suppose thaP**+! contains an unbalanced circdit = u,, uo, . .., u; of length
I <p+1. Letr : V(P*1) — V(K) be the projection, that is far € V}+!
we haver(u) = xs. From the construction it follows that is a homomorphism

Pr+1 o™ 1 in other words thak is the shadow ofP*+1.

Consider the closed walk;, = 7(uy), w(uz2),...,m(w;) in K. As Cr is un-
balanced closed walk, it contains an unbalanced circuiength!’ < I. Since
K € Bal,,we havd’ =1 =p+ 1, thatism(u1),...,m(up+1) are all distinct. Let
us = [vs, Bg]. If By = By = --- = By, that is the whole&”' is contained in one
copy of P*, we have a contradiction &" € Bal, ;.

Now we use the construction @t**+! as an amalgamation of copies Bf*:
If B; # Byy1 (indices moduld), thenn(u;) € {x,,,,7;,,,}. As the vertices
m(u1),...,m(u;) are pairwise distinct, this happens just for two values @on-
sequently, the whol€” is contained in two copies d?* and there are indices,
@ such thatr(uq ) = x4, ,, andm(ug) = xj, , , .

The circuitC is a concatenation o’ and P”’—two paths between,, and
ug, each of them properly contained in one copyft. No copy of P* contains
whole C, therefore bothP’ and P” have at least two edges, hence at most 1
edges. Let”’, P” denote the shadows & andP”. Both P’ U {ex1} andP” U
{ex+1} are closed walks id{ containing at mosp edges. AK€ Bal,, both of
them are balanced, €0 is balanced as well, a contradiction. O

We turn to the proof of statement (ii). We use a standard aeguithat is the
core of the amalgamation method. LB{H) = E(P?) = A; U---U A, be a
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fixed coloring. We proceed by backwards inductior~ b — 1 — --- and we
prove that there exists a quasisubgrdgjhof P® isomorphic toP* such that for
anyl > k, any two edges of’} with shadowe; get the same color. This is easy
to achieve using the Ramsey properties (3.1) of graplis Finally, we obtain a
copy P9 of P? in P® such that the color of any of its edges depends only on its
shadow (inK). HoweverK — (G)2 and as for any copys’ of G in K there
exists a subgraptyy of P such that its shadow i€’ we get that there exists a
monochromatic copy of' in P?. This concludes the proof. a

3.1.2 Density: first proof

In this section we prove the density ©f'y, order. For this we first prove the
‘Sparse Incomparability Lemma’, Lemma 3.1.5 (analogoatestent for homo-

morphisms was proved in [71, 73], it is stated here as LemthA4 B). The proof

follows similar path as in the homomorphism case, the maip & consider-

ably harder, though. To overcome the nonexistence of ptednche category
of T,y mappings, we use the Ramsey-type theorem from the prevéatiss.

Lemma 3.1.5 Let M be aring, let, ¢t > 1 be integers. Let1, Go, ...,Gy, H be

graphs such that/ 7TTﬂ> G, for everyi and at least one oF(G;) is nonempty.
Then there is a graplir such that

1. all circuits in G shorter thanl are M -balanced, and

2. G <%, H, moreovelG <, H,

3. GﬂGiforeveryz’: 1,...,t

Proof: Choose an odd integerlarger thanmax{|E(H)|,l}. Pick any linear
ordering of V(H) to makeH into an ordered graphH, <) and subdivide each
edge to increase the girth. More precisely, we replace exdgge of H by an
oriented pathP(e) = ey, €2, . . ., €,; the ordering ol (H) is extended to the new
vertices so, that; goes up iffj is odd, see Figure 3.1. When we do this for
every edge off, we forget the orientation of the edges and(lgt, <) denote the
resulting ordered graph. It i{g’, <) € Bal,.

Putr = max; | E(G;)|PUD!. Using Theorem 3.1.2 we find a grapR, <) €
Bal, satisfying(R, <) — (H’,<)2. As every circuit of( R, <) is balanced, it is
also M -balanced.
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H

\~~-:_"4

R

Figure 3.1: An illustration of the proof of Lemma 3.1.5 (here- 5). Only a part
of the graphG = H x R is shown.

We orient all edges aR up (that is towards the vertex larger<r), and setG =
H x R (see Figure 3.1). Formally;(G) = V(H) x V(R), and for edges = uv
of H ande’ = /v’ of R we have an edge froifu, u’) to (v, v’) (this edge will be
denoted by(e, ¢')).

Now G 1M, R (there is even a homomorphism—the projection), so by

Lemma 1.2.10 there is no sha¥f-unbalanced circuit inG. This gives part 1
of the statement. The other projection@fgivesG T, H, and indeed even

hom

G —— H. This proves part 2, it remains to prove part 3.
TTw

For the contrary, suppose there is an indaxd alI'Ty; mappingf : G ——
G;. As G = H x R, this induces a coloring of edges ofR by elements
of E(G;)PU) (wherec(e’) sendse to f((e,€’))). As we have choseR to be
a Ramsey graph foH’, there is a monochromatic copy &f in R. To ease the



60 CHAPTER 3. STRUCTURAL PROPERTIES

notation we will suppose this copy is just’, let g be the color of edges dff’.
We will show thatg is a 7Ty, mappingH — G;, and this will be our desired
contradiction.

We will use Lemma 1.2.9, hence for any flaw: E(H) — M we need to
show thatp, is a flow. Clearly itis enough to verify this for being an elementary
flow, as elementary flows generate theflow space ond. So letC be a circuit
in H that is the support ap. The corresponding circui in H x R has edge set

E(C) = J{{e} x P(e),e € E(C)}.

Let @ be the elementary flow oA x R corresponding te. Explicitly,

3¢ (e e5) o p(e), if iisodd,
PG —p(e), ifiiseven.

As H' is g-monochromaticf ((e, e;)) = g(e) for everyi. Consequently, = @y,
S0y, is a flow. O

Theorem 3.1.6 Let M be aring, lett > 0 be an integer. Lefs, H be graphs such
thatG <, H andE(G) # 0. LetGy, G, ..., G, be pairwise incomparable (in
<% ,) graphs satisfyingz <%, G; <, H for everyi. Then there is a graptik’
such that

1. G<b, K<, H,
2. K andG; are T'Ty;-incomparable for every=1, ..., t.

If in addition G <, H then we have eve& <, K <, H. If we consider
undirected graphs, then we get undirected grdph

Proof: Choosé > max{|E(H)|,|E(G;)|,i=1,...,t}. We use Lemma3.1.5t0
get a graphG’ without short unbalanced circuits such tiet 0" |, G 7T&>
G; andG’ 7TT&> G, then we putk = G + G'. EasilyG <, K <%, H and
K % G;, K % G (asG’ has this property). It remains to shcﬁ\/% K
for F € {H,Gy,...,G:}. Note that it is not enough to sho# % G and
F 7T£> G, we have to proceed more carefully.
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So suppose we have &l mappingf : F IT, G + G'. Pick an edge
eo € E(G), and defingy : E(F) — E(QG) as follows:

o) = {f<e>, it f(e) € B(G)

€g, otherwise.

We prove thay is T'Ty; which will be a contradiction. So let be an)M -tension

on G, we are to prove thatg is an M-tension onF'. By the choice of, graph
f(F) NG’ doesn’t contain ad/-unbalanced circuit (there is no that short unbal-
anced circuit inG’), hence any constant mapping is &fttension. So we may
choose a tension’ on G + G’ that equals a constamteg) on f(F) N G’ and
extendsr. Clearlyrg is the same function as f, hence it is a tension.

hom

For the last part of statement of the theore}’n}“’—m> G+ G’ — H follows
immediately (using Lemma 3.1.5, part 2). If we h&d"°™ K or K ™ @,
then by Lemma 2.1.2 the homomorphism inducé&s’a, mappingH KLUy '
(or K T2, @, respectively), which we already excluded.

To prove the result for undirected graphs, we have two opti@me of them is
to use Lemma 3.1.10 from the next section that improves Le@uh&. Another
is to modify the above proof as follows. We apply Lemma 3.bbsdymmetric
orientationsﬁ, EZ‘, ? that is we replace each edge of the undirected graph by a
directed 2-cycle. LeG’ be the graph we get ar@ be its underlying undirected
graph. Again, we puk = G + G'. NowG T, K is immediate X~ H
follows by Proposmon 1.2. 2(a§’ TTu ’) If G T, X (for X € {G,G;})
thenG’ L, ‘G Tha, % (again Proposition 1.2.2), a contradiction with the
choice of G'. It remains to show that foF & {H,G;} we haveF ANy S
Suppose the contrary, it follows that for some orientaﬁ_ﬁrand the (given) orien-
tation G’ there is an orientatiod such thatf® ~*, G + G'. Now F contains
an M-unbalanced circuit (otherwise ——= KEL'N G, a contradiction) whileG’ does
not contain such sho®/-unbalanced circuits (by Lemma 3.1. 5) Therefore we

may proceed as above for the case of directed graphs andidericl ~2 Ef a
contradiction. O

To state Theorem 3.1.6 in a concise form we define open anddtiogervals
in order<’,. Let (G,H)m = {G' | G <%, G' <%, H} and[G,H]|y =
{G"] G <Y, G <4, H}. Similarly, define(G, H),, and[G, H],—intervals in
order <. Lemma 2.1.2 implies thdG, H];, C [G, H]a for any ring M. On
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the contrary, none of the two possible inclusions betw@erd ), and(G, H)
is valid for everyG, H. Therefore the additions in the following corollaries do
indeed provide a strengthening, we will use this strengtigeim Section 3.3.3.

Corollary 3.1.7 Supposé&r <, H and E(G) # (. Then(G, H) s is nonempty.
If in addition G <, H then(G, H) N (G, H)y, is nonempty.

Corollary 3.1.8 Supposes <%, H and E(G) # (. Then in partial order<?,
restricted to(G, H), any finite antichain can be extended. If in addit@n<;, H
then any finite antichain of’,, restricted to(G, H) s N (G, H);, can be extended.

Remark 3.1.9 Throughout this section we need to assum€&’) # (: for exam-
—
ple in Corollary 3.1.7 there is no grapR satisfyingk; <%, K <%, K (if K has

no edge then it maps t&’q, otherwisefg maps to it). We may say thék’;, }2)
is agapof the partial order<®,.

3.1.3 Density: second proof

In this section, we give a different proof of Theorem 3.1.6;io fact, only of
Lemma 3.1.5, that was the key step of the proof. We prove hexe a slightly
stronger version:

Lemma 3.1.10 (Sparse incomparability lemma fofl'T),) Let M be an abelian
group (not necessarily a finitely generated one)/Jeét> 1 be integers. Let,

Gy, ..., Gy, H be (finite directed non-emglygraphs such thatf 7T&> G, for
everyi. Then there is a graptr such that

1. ¢(G) > [ (that isG contains no circuit shorter thai),

2. G—<hH,

T

3. G /= G;foreveryi =1,....t.
(For undirected graphs we get undirected gra@h)

In the proof we will use variant of Sparse incomparabilitynlea for ho-
momorphisms in the following form (it has been proved for ivected graphs
in [71, 73], the version we present here follows by the samefpr

1that is with non-empty edge set
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Lemma 3.1.11 (Sparse incomparability lemma for homomorprems) Let

l,t > 1 beintegers, leH, G4, ..., G, be (finite directed nhon-empty) graphs such
that H Qﬂ G, for everyi. Letc be an integer. Then there is a (directed) gragh
such that

e ¢(G) > [ (thatisG contains no circuit shorter thaf,
e G < H,and

o G 2™, G, for everyi.
(For undirected graphs we get undirected gra@h

Proof of Lemma 3.1.10: First, suppose tha¥ is a finite ring; by Lemma 2.3.3

we know thatd Q& A (G;) for everyi. Therefore, we may use Lemma 3.1.11
to obtainG’ of girth greater thari such thatG’ <, H andG’ £, A (G;).
Consequentlys’ 7T£>M G, for everyi.

Next, let M be an infinite, finitely generated group, that is a ring. Then
M =~ 7 x [[r_, ZJ for some integers, n;, 3, « (this classical result is stated
as Theorem 7.2.1). A31 is infinite, we havenr > 0, thereforeM > Z. By
Lemma 7.2.2 we conclude that for any mapping it is equivalebe T, and to
beTTy, hence we may suppodd = Z. By Lemma 7.2.8, there is only finitely
many integers for which holdsH I, G, for somei or H I, fg. Pick
somen for which neither of this holds. By the previous paragraphrfng Z,
we find a graphG’ such thatz’ 7TL> G, forevery: = 1,...,t. It follows from
Lemma 7.2.2 that als6’ 7T&> Gi.

Finally, let M/ be a general abelian group. For each mapgingZ(H) — X
(whereX € {G,...,G:})there is amM-tensionyx on X which certifies thayf
is not al'Ty; mapping. Letd = {ox(e) | e € E(X),X € {Gy,...,G;}} bethe
set of all elements a¥/ that are used for these certificates. Létbe the subgroup

of M generated by; by the choice ofA we haveH % G;. By the previous
paragraph there is a graghl that meets conditions 1, 2, arf@ LT G, for
every:. Consequenthy(’ 7T&> G, for everyi, which concludes the proof. O

We finish this section by a proposition explaining why proéfdensity for
TT); mappings has to follow different path than in the case of hoiorgphisms.
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Proposition 3.1.12 CategoryGrr,, of (directed or undirected) graphs arfdl ',
mappings does not have products for any ring

Proof: We will formulate the proof for the undirected version, altigh for the
directed version the same proof goes through. We show tkeat ik no product
C3 x C3. Suppose, to the contrary, th&tis the productCs x Cs. Letwy, 75 :

p 1L C3 be the projections, 1eE(C3) = {e1, e2, e3}.

We look first at mappingg; : fg — (3 sending the only edge d_fg toe;.

If we consider mappingd; to the first copy ofC's and f; to the second one, by
definition of the product there is exactly one edge E(P) such thatr;(e) = ¢;
andma(e) = e;. We lete; ; denote this. So, E(P) consists of nine edges ;,
for1 <i,j5 <3.

As 71, mo areTT mappings, by Lemma 1.2.9 there are no loop®inThere
are no parallel edges either: suppesg are parallel edges i®?. Then without
loss of generalityr; (e) # 71 (f), hence we get a contradiction by Lemma 1.2.9.

Finally, forap € Sz let f, : C3 — C3 sende; to e,(;). Using the definition
of product for mappingfiq and f,, Lemma 1.2.9, and the fact that there are no
parallel edges inP we find thatE, = {e1 ,(1),€2,,(2),€3,(3)} are edges of a
cycle. Considering = id andp = (1, 3, 2) we find that part ofP looks as in the
Figure 3.2 (in the directed case, the orientation may berargj if M = 7Z5).

Figure 3.2: Proof of Proposition 3.1.12.

Consider the first case. AB, is a cycle forp = (2,3,1), the edges; »
ande; ; are adjacent. By taking = (2,1,3), we find thate; » ande, 3 are
adjacent. As there are no parallel edgesfinwe havee; = zy ore;» =
yx. Hence,e; 2, es3, ea2 forms a cycle. Asr is TT mapping, we obtain a
contradiction by Lemma 1.2.9. In the second case we prooghd same way with
edgee, 1, We prove that it is adjacent witty » andes 3 and yield a contradiction
with 7, being aI"'T' mapping. a
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3.2 Universality of 7T, order

In this section we restrict our attention #d7> mappings and consequently to
undirected graphs. We first construct a particlgr,-rigid graph. (By Corol-
lary 2.2.14 such graph exists, but we need some additionglepties.) Then we
use this graph to provide an embeddingtis,on, t0 Grarr,. Another proof of
this result (for general’T,; mappings) was given in Section 2.2.2 as an applica-
tion of study of homotens graphs.

Figure 3.3: AT'T5-rigid graph

Lemma 3.2.1 Let S be the graph in Figure 3.3.
1. S'isTT>-rigid, i.e. the onlyT'T> mappingS — S is the identity.

2. Supposé&; is a graph that contains edge-disjoint copies9f Sy, ..., S;.
Supposé&; does not contain triangles nor pentagons, except thosegens
that are contained in somg;. Then the onlyl"T; mappingS — G is the
identity mapping to soms;.

Proof: We will prove the second part, which implies the first (by takz = S).
Consider al'T, mappingf : S — G. Let pentagons irf be denoted”!, ...,
C? as in the figure, note that there are no other pentagoss iAs there are no



66 CHAPTER 3. STRUCTURAL PROPERTIES

triangles inG and the only pentagons are contained in séfjpieve can deduce by
Lemma 1.2.9 that eadfi* maps to a pentagon in song (possibly different: for
differents).

PentagorC* shares an edge with” iff i and; differ by 1 (modulo 9). As
sharing an edge is preserved by any mapping and since diffeopies ofS
in G are edge-disjoint, we conclude that there is a copy @f G (to simplify
the notation, we will identify this copy witt$) and a bijectiorp : [9] — [9]
such thatf (C?) = CP( for eachi; moreoverp preserves the cyclic order. Next
we note that the size of the intersection of neighboring gguons is preserved
too. There are exactly three pairs of pentagons that sharedges:{C*, C?},
{C3,C*}, {C5,C7}. As the pairs(C*t, C?} and{C?, C*} are adjacent, the pairs
{C5,C%} and {C3,C*} have a common neighboring pentagon, while the pairs
{C5,C%} and{C*, C?} do not, we see thatis the identity; that isf (C?) = C*
for each.

We still have to prove thaf does not permute edges in the respective pen-
tagons. LetC? be the outer cycle and note it is the only 9-cycleSithat shares
exactly one edge with eaclf. Hence,f is an identity onE(C?). This means that
f can only permute two edges that share an endpoint of some &dbes:, b,
andc.

Edgea is a part of a 7-cycl€’® that has four edges in common wiftf. Now,
C° is preserved by, and there is no other 7-cycle Fwith the same intersection
with C°. Thus,C® is preserved as well, in particulatand the edges incident with
it are preserved. Eddeis a part of a 7-cycle’® that intersect€®, C6, C7, C®
andC?. Since the edges it has in common with, C”, andC?® are preserved by
(at least set-wise), and there is no other 7-cycle incluttiege edges;” is pre-
served too, in particuldrand the edges incident with it are preserved. Similarly,
is contained in aB-cycle that has five of its edges fixed, hence it is fixedfbyd

Theorem 3.2.2 There is a mappind’ that assigns (undirected) graphs to (undi-
rected) graphs, such that for any grapfis H (we stress that we consider loopless
graphs only) holds

hom TTs
—

G g — F(G) F(H).

Moreover F' can be extended on mappings between graphsf if G — H
is a homomorphism, theR(f) : F(G) — F(H) is aTT mapping and any
TT mapping betweerd'(G) and F(H) is equal toF(f) for some homomor-

phismf : G fom, (In category-theory termg’ is an embedding of the cate-
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gory of all graphs and their homomorphisms into the categurgll graphs and
all T'Ty>-mappings between them.)

(wp) (u,q) (u,r) (#:5)

Figure 3.4: Example of construction 6fG) for G = P,. The 7-cycle used in the
proof of Theorem 3.2.2 is emphasized.

Proof: Let S be the graph from Lemma 3.2.1, Igt ¢, r, s be its vertices as
denoted in Figure 3.3. For a graph let the vertices of'(G) be(V (G) x V(S))U
(E(G) x{1,2}). On each sefv} x V(S) we place a copy af, it will be denoted
by S,. For an edgewv of G we introduce edge@:, p)(v, q), (u, q)(v, p) (we refer
to them as t@dd-on edgesand paths of length two frorfu, ) to (v, s) and from
(u, s) to (v, r) (we refer to these as to add-on paths, the middle verticdseskt
paths arduv, 1) and(uv, 2)). There are no other edgesi(G). See Figure 3.4
for an example of the construction. As we wish to apply Lemn#al3 we first
show thatF'(G) contains no triangles and only those pentagons that araiceat
in somesS,,. Suppos&” is a cycle violating this. I{C' contains some add-on path,
it is easy to check that the length 6f is at least six. If it is not thei®’ has to
contain some add-on edges (s triangle-free). If it contains only add-on edges
and copies of the edge then it has even length; otherwise it has length at least
seven.

It is clear how to defineF'(f) for a homomorphisny : G — H: map-
ping F'(f) sends eact$, in G to Sy, in H in the only way, the edges be-



68 CHAPTER 3. STRUCTURAL PROPERTIES

tween different copies of are mapped in the ‘canonical’ way. Cleardy(f)
is aTT mapping induced by a homomorphism.
TT

The only difficult part is to show, that for every: F(G) — F(H) there

isanf : G hom, i1 such thaty = F(f). So letg be such a mapping. By
Lemma 3.2.1 each copy & is mapped to a copy df, to be precise, there is a
mappingf : V(G) — V(H) such thaty mapsS, to Sy,). Letuv be an edge
of G. First, we show thaf (u) # f(v). Suppose the contrary and consider the
7-cycle(u,p), (u,q), (u,r), (u,s), z, (v,r), (v,q) (x is the middle vertex of an
add-on path). Sinc# is rigid, edgegu, q)(u, ) and(v, ¢)(v,r) map to the same
edge, hence the algebraical image of the other five edgey@a elowever, there
is no cycle of length at most five containing edgesandrs, a contradiction.
Considering again the image of the same cycle showsfthatand f (v) are
connected by an edge &f, which finishes the proof. a

Remark 3.2.3 It is worth noting that graphd"(G) are all triangle-free. We be-
lieve that the construction from Theorem 3.2.2 can be matiifievork for other
rings thanZ,, some modification can possibly produce even graphs of girth
leastg, for any giveng. If we consider graphs containing complete graphs then
the situation becomes easier, which allowed us to prove ddibg result for a
general ring in Chapter 2 (Theorem 2.2.15).

3.3 Miscellanea

3.3.1 Complexity

Let TTy, (H) denote the problem of decision, whether for a given gr@pthere

is aT Ty mappingG TTM, 17, The complexity of the related problem HQ¥)
(that is the testing of the existence of a homomorphisi yas now well under-
stood, at least for undirected graphs: HQM) is NP-complete if and only if{
contains an odd circuit, otherwise itis in P (as it is equéwato decide whethe¥
is bipartite), see [39]. In the same spirit, we wish to deiaaithe complexity of
the problem T, (H).

Theorem 3.3.1Let H be an undirected graph. ThérT, (H) is NP-complete if
H contains an odd circuit; otherwise it is polynomial.

Proof: By Theorem 1.3.1, problems TTH) and HOMA(H)) have the same
answer for any grap&', hence they have the same complexity. Observe/ljat)
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is bipartite iff H is bipartite: H and A(H) areTT, equivalent and any graph
—

is bipartite iff it admits aI'T> mapping toK»>. Consequently, TI(H) is NP-

complete iff H contains an odd circuit. O

For M +# 7, (or Z%), we may still reduce TT; (H) to HOM(H') for a suitable
graphH’. However, now we deal with directed graphs, where the coxitplef
HOM is not characterized. Another obstacle is that fér= 7Z the graphH’
is infinite. (For infinite graphH, the complexity of HOMH ) was investigated
in[9].)

We can also study the complexity of the decision problem fibleotypes
of XY mappings. Fofl'F; mappings we can again reduce the,TH) prob-
lem to HOM, yielding that it is polynomial precisely H is Eulerian. And, again,
in this case the problem is trivial—equivalent to decisibthie given graph is
Eulerian.

On the other hand, the situation féfI" and F'F' mappings is unclear. Their
existence is equivalent to the existence of certain flowshengiven graph. The
complexity of determining, whether a given graph admit$/ah B)-flow is, how-
ever, not well-understood, compare [50] for a partial answe

Question 3.3.2Let H be a graph. What is the complexity of decision, for a given
graphG, whetherGG g (G FF, H, respectively)?

3.3.2 Dualities in theT'T order

Dualities were introduced as an example of good charaet@sizwhich can help
to solve HOM H) for some graph#f. We say that a tupléfy, ..., F;; H) forms
a duality if for everyG

G g e (Yie{1,... t})F G

It is well-known thatG has a homomorphism t@n (transitive tournament with
—
n vertices) iff it does not contai®, 1, (path withn + 1 vertices). Hence, the pair

—

(]_5n+1; T,) is a duality. If(Fy,..., F;; H) is a duality, we can solve HOM{)

in polynomial time; moreover, it means that the class of gsapdmitting a ho-
momorphism toH is first-order definable. Dualities are studied in a sequeifice
papers, see [72], [40] and references there. We present@esafresults:

o for undirected graphs there are only trivial dualitiés; K1) and(K; Ko).
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o for directed graphs, for anyand any trees1, ..., F;, there is and such
that(Fi, ..., Fy; H) is a duality; there are no other dualities.

¢ similarly as for directed graphs, it is possible to chanazésall dualities for
arbitrary relational systems.

Here we adopt proof of the homomorphic case (for undirecteglts) to char-

acterize dualities fof T, that is we characterize all tuplésgy, ..., F;; H) for
which
G H «— (ie{l,...th)F 4G, (3.2)

We supposé/ # 7, to avoid trivialities.

Theorem 3.3.3 For every ringM, there are no dualities in th&T,, order, up to
—
the trivial ones, that iff ~, K; and for some we haveF; ~, K.

Proof: Let(Fy,..., Fy; H) be aduality. Puy = max{g, (F1),..., 9. (F})}. If

g = oo, then there is amsuch thatF; ITn, fg. In this case, the right-hand side

of (3.2) holds iff G is edgeless. This is equivalent RELUNY exactly when
H is edgeless, that iH ~}, K;.
If ¢ is finite, we consider a grapf such thaty(G) > ¢ (c will be specified

later) and all circuits inG are longer thary. (Such graphs exist by the celebrated
theorem of Erd8s.) We orient the edges(dfarbitrarily. Now F; ﬂ G by

Lemma 1.2.11, it remains to prove 7T&> H. So suppose the contrary; by
Lemma 7.2.4 and 7.2.2 we may suppdsgeis finite. By Theorem 1.3.1 (and the

remarks following it), there is a finite directed graph such tha(d I, f iff

hom

G — H'. Hence itis enough to choose= x(H’). O

We remark that there may be more ‘restricted dualities’. é&@mple Conjec-
ture 4.1.4 may be expressed as the duality

G2 0y — 03 X2 G

for G that has maximum degree at most 3.

3.3.3 Bounded antichains in thel'T" order
In [19], the following question is posed (faf = Z-) as Problem 6.9.
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Problem 3.3.4 ([19]) Is there an infinite antichain of ordex®,, that consists of
graphs with bounded chromatic number?

One motivation for this question stems from the fact thad iasy to produce
infinite antichain of unbounded chromatic number (simyléol Proposition 2.1.7).
More importantly, the unsolved analogy fa:r& (Problem 6.1.8) is relevant for
Jaeger’s conjecture 6.1.7. Our approach provides a stfarglard answer in a
very strong form.

Corollary 3.3.5 For everyM, there is an infinite antichain in the ordey},, that
consists of graphs with chromatic number at most 3.

Proof:
Let G = K, and choose a 3-colorablé such thatfl =t K»: we can take

H = 5)3 whenever! is not a power ofZ3. In that case we choodé = 65.
Denotel = (G, H), N (G, H) . By Corollary 3.1.7, is nonempty, hence
chooseGy € I. Now we inductively find (using Corollary 3.1.8) grapfis, G-,

... from I such that for every, Gy, ..., Gy is an antichain in the ordex?,.
Hence{G.,,n > 0} is an infinite antichain, and as for evenyG; 2™ H, every
G, is 3-colorable. O

Remark 3.3.6 An alternative proof is provided by Theorem 2.2.15: the homo
morphism order is known to have infinite antichain of bouncle@matic number,
this is mapped to an infinite antichain i, of boundedyrr,, hence of bounded
chromatic numberx < ¢, xrr,,, See Corollary 2.3.9).

In contary with this, in the presented proof we obtain 3-calide graphs for
everyM . Moreover, we can choodé more carefully, namely we can &t = 5;
wherep is a large enough prime (so thﬁp 7T&> }2). In this way, we obtain for
any givere > 0 an infinite antichain of<’, that consists of graphs with circular
chromatic number bounded Byt ¢.
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Chapter 4

Cut-continuous mappings of
high-girth cubic graphs

In this chapter we give a (computer assisted) proof that tiye® of every graph
with maximum degree 3 and girth at least 17 may be 5-coloresgsiply improp-
erly) so that the complement of each color class is biparktguivalently, every
such graph admits a homomorphism to the Clebsch graph @ibaj, and a cut-
continuous mapping t@’s.

Hopkins and Staton [42] and Bondy and Locke [13] proved thatye(sub)cu-
bic graph of girth at least 4 has an edge-cut containing at ?af the edges. The
existence of such an edge-cut follows immediately from thistence of a 5-edge-
coloring as described above, so our theorem may be viewedias af coloring
extension of their result (under a stronger girth assumgptio

Every graph which has a homomorphism to a cycle of length fagegm above-
described 5-edge-coloring; hence our theorem may alsodveed as a weak ver-
sion of NeSetfil's Pentagon Problem: Every cubic grapbudficiently high girth
maps toC’s.

4.1 Introduction
Throughout this chapter all graphs are assumed to be finigirected and sim-
ple. Recall that ifG is a graph and/ C V(G), we puté(U) = {uv € E(G) :

u € U andv ¢ U}, and we call any subset of edges of this forrua The maxi-
mum size of a cut of7, denotedMAXCUT(G) = maxycy [0(U)] is a parameter

73
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which has received great attention. Next, we normalize afithel

_ MAXCUT(G)
"9 =g

Determiningb(G) (or equivalentyM AXCUT(G)) for a given graplhG is known

to be NP-complete, so it is natural to seek lower bounds. dhisasy exercise to
show that(G) > 1/2 for any graphG andb(G) > 2/3 wheneveld is cubic (that

is 3-regular). The former inequality is almost attained bgrge complete graph,
the latter is attained fof = K,: any triangle contains at most two edges from
any bipartite subgraph, and each edgédsafis in the same number of triangles
(namely in two). This suggests that triangles play a speolal, and raises the
question of improving this bound for cubic graphs with higbieth. In the 1980’s,
several authors independently considered this problen42,393], the strongest
results being

e b(G) > 4/5 for G with maximum degree 3 and no triangle [13]
e b(G) > 6/7 — o(1) for cubicG with girth tending to infinity [93]

On the other hand, cubic graphs exist with arbitrarily higtihgand satisfying
b(G) < 0.94 (see Section 4.2).

Define a set of edges from a graphz to be acut complemerit C' = E(G) \
0(U) for someU C V(G). Then the problem of finding a cut of maximum size
is exactly equivalent to that of finding a cut complement ohimium size. A
natural relative of this is the problem of finding many disfotut complements.
Indeed, packing cut complements may be viewed as a kind ofioglversion of
the maximum cut problem.

There are a variety of interesting properties which areedgeint to the exis-
tence of2k + 1 disjoint cut complements, so after a handful of definitioreswiil
state a proposition which reveals some of these equivadenthis proposition
is well known, but we have provided a proof of it in Section fodthe sake of
completeness. For every positive integemwe let@,, denote thex-dimensional
cube, so the vertex set ¢f,, is the set of all binary vectors of length and two
such vertices are adjacent if they differ in a single cocatiin Then-dimensional
projective cubé, denotedPQ,,, is the simple graph obtained from tle + 1)-
dimensional cub&),,.; by identifying pairs of antipodal vertices (vertices that
differ in all coordinates). Equivalently, the projectivele P(Q),, can be described
as a Cayley graph, see Section 4.4.

Lsometimes called folded cube
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Recall that a mapping: E(G) — E(H) is cut-continuousf the preimage of
every cut is a cut. An alternative term for a cut-continuowpping isT7T> map-
ping, but we will not use this shorter name in this chapterwNee are ready to
state the relevant equivalences.

Proposition 4.1.1 For every graphG and nonnegative integek, the following
properties are equivalent.

1. There exisRk pairwise disjoint cut complements.

2. There exiskk + 1 pairwise disjoint cut complements with unidi{G).

hom

3. G —— PQ3 (G has a homomorphism tBQy,).

4. g I, Cor+1 (G has a cut-continuous mapping &y 1).

Perhaps the most interesting conjecture concerning tHermgpof cut comple-
ments—or equivalently homomorphisms to projective cubescontinuous map-
pings to odd circuits—is the following conjectured genization of the Four
Color Theorem. Although not immediately obvious, the fofation we give here
is equivalentto Seymour’s conjecture on edge-coloringarfigrr--graphs for odd
values ofr.

Conjecture 4.1.2 (Seymour)Each planar graph in which all odd cycles have
length at leasRk + 1 has a cut-continuous mapping €1 (2 homomorphism
to PQQk:)-

Since the grapt@- is isomorphic toK 4, thek = 1 case of this conjecture is
equivalent to the Four Color Theorem. The= 2 case of this conjecture concerns
homomorphisms to the grapRQ, which is also known as the Clebsch graph
(see Figure 1.2). This case was resolved in the affirmatividdserasr [63] who
deduced it from a theorem of Guenin [31]. The following thexaris the main
result of this chapter; it shows that graphs of maximum dethieee without short
cycles also have homomorphismsitd),. Thegirth of a graph is the length of its
shortest cycle, oso if none exists.

Theorem 4.1.3 Every graph of maximum degree 3 and girth at letBtadmits
a cut-continuous mapping t0'5. Equivalently, it has a homomorphism Q)4
(also known as the Clebsch graph), and 5 disjoint cut comefegm Furthermore,
there is a linear time algorithm which computes the cut-cardus mapping, the
homomorphism, and the cut complements.
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Clearly no graph with a triangle can map homomorphicalhwttiangle-free
Clebsch graph (equivalently, hagalisjoint cut complements), but we believe this
to be (for cubic graphs) the only obstruction. We highlighistand one other
guestion we have been unable to resolve below.

Conjecture 4.1.4 Every triangle-free cubic graph has a homomorphisn@,.

Problem 4.1.5 What is the largest integérwith the property that all cubic graphs
of sufficiently high girth have a homomorphismit@s;.?

As we mentioned before, there are high-girth cubic graphis W) < 0.94.
Such graphs do not admit a homomorphisnPQ,,. for anyk > 8, so there is
indeed some largest integem the above problem. At present, we know only that
2<k<T.

Another topic of interest for cubic graphs of high girth isccilar chromatic

number, a parameter we now pause to define. For any gkapte letG=F de-
note the simple graph with vertex Sé{G) and two nodes adjacent if they have
distance at least in G. Thecircular chromatic numbeof G, is x.(G) = inf{ :
G has a homomorphism G2*}. Every graph satisfieBy.(G)] = x(G) so the
circular chromatic number is a refinement of the usual nadiochromatic num-
ber. The following curious conjecture asserts that cubaphs of sufficiently high
girth have circular chromatic number 2 (sinceCoy1 2 C3 ).

Conjecture 4.1.6 (N&efil's Pentagon Conjecture [67]) If G is a cubic graph of
sufficiently high girth then there is a homomorphism fiGrnto C5.

It is an easy consequence of Brook’s Theorem that the abavjectare holds
with C5 in place ofCs (every cubic graph of girth at leasis 3-colorable). On the
other hand, it is known that the conjecture is false if weaepl’; by C11 [52],
consequently it is false if we repla¢g by anyC,, for oddn > 11. Later, it was
shown that the conjecture is false also €&r[87] andC; [36] in place ofCs.

An important extension of Conjecture 4.1.6 is the problendétermine the
infimum of real numbers with the property that every cubic graph of sufficiently
high girth has circular chromatic number ». The above results show that this
infimum must lie in the interva]Z, 3], but this is the extent of our knowledge. It
is tempting to try to use the fact that girth 17 cubic graphs map to the Clebsch
graph and girth> 4 cubic graphs map t@’s to improve the upper bound, but
the circular chromatic numbers 6%, the Clebsch graph, and their direct product
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are all at least thregso no such improvement can be made. Neither were we
able to use our result to improve upper bounds on fractidmalroatic numbers of
cubic graphs. This is conjectured to be at miaists for triangle-free cubic graphs
(Heckmann and Thomas [38]), and proved to be at riost3/64 (Hatami and
Zhu [37]).

Itis easy to prove directly that Conjecture 4.1.6, if trueplies Theorem 4.1.3
(perhaps with a stronger assumption on the girth). Thiofal from part 4 of
Proposition 4.1.1 and from Lemma 2.1.2.

In Chapter 2 we did study when existence of a cut-continucajgrimg fromG
to H implies the existence of a homomorphism fréfio H. It was proved there
that this happens for most grapigTheorem 2.2.9) but for no triangle-free ones
(Corollary 2.2.17). Therefore these techniques can notdeel to extend Theo-
rem 4.1.3 to attain Conjecture 4.1.6.

We finish the introduction with another conjecture due tes&tél (personal
communication) concerning the existence of homomorphfsmsubic graphs of
high girth.

Conjecture 4.1.7 For every integek there is a graphi of girth at leastk and an
integer N, such that for every cubic grapH with girth at leastV we have

a hom .

Our theorem shows this conjecture to be truekox 5, but the other cases
remain open.

4.2 Bipartite density of random cubic graphs

The aim of this short section is to show that there exist cgbéphs of arbitrary
high girth with bipartite density bounded from 1. This reésués announced by
McKay (and is referred to as [61] by [93]); however, it nevppaared in print.
Althought nowadays proof of this is more an exercise in the afsrandom reg-
ular graphs, we include it for completeness as this projositields a limit to
extension of Theorem 4.1.3. We present only a straightfafwalculation, more
careful approach yields better bounds, see thesis of IR’

Proposition 4.2.1 There iss > 0 such that for every cubic graphG exists that
contains no circuit shorter thahand satisfie$(G) < 1 —«.

2The only nontrivial case is the produBtQ4 x K3. By a theorem of [29] this graph is uniquely
3-colorable; consequently.(PQ4 x K3) = 3.
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Proof: We will use thepairing model(introduced by Bollobas [10] and also
called configuration model) of random cubic graphs. Thatvistake a random
perfect matching offin] x [3] (with n even) and project it ton]. The resultis a
cubic multigraph om vertices—a sample frorg;, ;. Conditioned that the result
is a simple graph (which has probability tending:td?), we obtain an element of
Gn,3, that is a uniformly random cubic graph. For more detailddbutuction to
the use of this model we recommend [91].

Let ¢ > 0 be sufficiently small (to be specified later). We will provath
b(Gr3) < 1—ceforG,3 € G,3 a.a.s. As random regular graphs have girth
greater thary with a positive probability (for every), this will prove our claim.
Equivalently, we want to prove(G;, ;) < 1 —efor Gy, ; € G; ;a.as. aas. To
this end, we put = (1—¢)2n and usef (t) for the number of perfect matchings on
t vertices. We will work withG?, 5 instead ofG,, 3, as this allows us to calculate
in fact with random matching/ on [n] x 3.

Prib(Gr 5) 2 1—¢] =
= Prg-[(3AC V) |6(4)| > 1]
< Y Pre[ls(A) =]

ACV,|A|<n/2

= Z Prys[number of edges af/ leaving A x [3] is at least]
ACV

_ n\ [3a S(n—a)) Elf(3a —k)f(3(n—a) — k)
g;/gkg <a> <k> ( k f(3n)

If we show that the limit of the last sum is O (agrows tooo), we are done. To
do that, we need two estimates. The first one is the folklatienage of binomial
coefficient (note that the(1) term can be chosen independentlypand thatp

can depend on):
"\ _ gn(H(p)+o(1))
pn

Next, we observe that (for eveh f(t) = W Using Stirling formula, we

find thatf () = v/t! - 2°(*) (the error term is in fact roughly /%)
Now, we can manipulate part of the estimated sum:

3a (3a)! o(3a—k 3a\ (3a)! 30—k
(b= g = ()5 2
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After handling similarly the other binomial coefficient, \get

Prib(G}s) > 1—¢] < ZZ

a<n/2 k>l

§ =
1—e <6< ac<l. Definep(a,d) = 3¢H(L) +3(1 — 2)H(32) — H(2).

Note that only terms witlk < 3a are nonzero. Lety = We have

n/2' 3n/2

2—a 2
Also suppose thap(a,0) < —o < 0foralll —e < ¢ < a < 1. If we replace
each of the terms in the estimated sum by the maximal one, weemthat

Prib(G3) >1—¢] <n®- g~ n(e/2+e(1))

Clearly, the last term converges to 0.

As ¢ is a continuous function and ag1,1) = —1, we see that for small
enoughe, we get the desired result. Numerical computation gives0.0614, or
1 — ¢ <0.9386. (McKay and Hladky report — e < 0.9351.) O

4.3 The proof

The goal of this section is to prove the main result of thispteg Theorem 4.1.3.
We begin with a lemma which reduces our task to cubic graphs.

Lemma 4.3.1If Theorem 4.1.3 holds for every cubi¢ then it holds for every
subcubiaG, too.

Proof: Let G be a subcubic graph of girth at least 17. We will find a cubic
graphG’ such that girth of&’ is at least 17 and? O G. The lemma then fol-

lows, as restriction of any homomorphissi fom, PQ4 to V(G) is the desired

homomorphisnG 2" PQ,.

To constructy’, putr = 3° ) (3 — deg(v)). Let H be anr-regular graph
of girth at least 17 (it is well-known that such graphs exisez, e.g., [8] for a nice
survey). We takeéV (H)| copies ofG. For every edgew of H we choose two
vertices of degree less than 3, one from a copg-aforresponding to each af
andv; then we connect these by an edge. Clearly, this procesteaillto a cubic
graph containing and with girth at most equal to the minimum of girths@f
andH. O
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To show that cubic graphs of girth 17 have homomorphism to the Clebsch
graph, we shall use property 1 from Proposition 4.1.1. Adicgly, we define a
labelingof a graphG to be a four-tupleX = (X, X», X3, X4) so that eaclX; is
asubset of?(G). We call a labelingX acut labelingif every X is a cut, and &ut
complement labeling every X; is a cut complement. IX; N X; = () whenever
1 <i < j <4 we say that the labeling isonderful

Define functiona : {0,1,...,4} — Z bya(0) = 0, a(1) = 1, a(2) = 10,
a(3) = 40, anda(4) = 1000. Now, for any labelingX, we define thenark of an
edgee (with respect taX) to bemx (e) = {i € {1,2,3,4} : e € X, }, theweight
of e to bewx (e) = |mx(e)|, and thecostof e to becostx(e) = a(wx (e)).
Finally, we define theostof X to becost(X) = }_  p(q) costx (e).

The structure of our proof is quite simple: we prove that amyoomplement
labeling of minimum cost in a cubic graph of girth 17 is wonderful. To show
that such a labeling is wonderful, we shall assume it is mat,then make a small
local change to improve the cost—thus obtaining a conttaaicThe observation
below will be used to make our local changes. For any defs we letA A B =
(A\ B)U (B \ A) be the symmetric difference. K = (X;,..., X4) andY =
(Y1,...,Y,) are labelings, then we X AY = (X1 AY:, ..., X4 AYy). We
say we obtainX' A'Y from X by switchingY'.

Observation 4.3.21f C'is a cut andD is a cut complement, theti A D is a cut
complement. Similarly, i is a cut complement labeling aiidis a cut labeling,
thenX A Y is a cut complement labeling.

Proof: LetC = §(U)andD = E(G)\ 6(V). ThenCAD = E(G) \
BU)AIV)) = E(G)\ d(UAV) so itis a cut complement. For labelings
we consider each coordinate separately. |

The graphs we consider will have high girth, so they will Idi&l trees locally.
Our proof will exploit this by using the above observatiomtake changes on a
tree. To state our method precisely, we now introduce a jeofiifooted trees. Let
T; denote a rooted tree of ‘depthin which all vertices have degrees 1 and 3, and
the root vertex, denoted has degree 1. Explicitly, we I&f; be an edge (with
one end being the root). Having definéd we formT;,, by joining two copies
of T} by identifying their root vertices and then connecting tosnmon vertex to
a new vertex, which will be the new root. The unique edge ieictdvith the root
we shall call theoot edge We let2T; denote the tree obtained from two copies
of T; by identifying their root edges in the opposite directidme(tesulting edge
will be called thecentraledge of2T;). A vertex of T; or 2T; is interior if either it
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has degree 3, or it is the root @f. A cutC' (cut labelingX) of T; or 2T; is called
internalif C = 6(2) (X = (6(Z41),...,6(Z4))) for some set (setsZy, ..., Zy)
of interior vertices. Now we are ready to state and prove arlarthat forms the
first step of the proof: it will be used to show that any cut céenpent labeling of
minimum cost has no edges of weight2.

Figure 4.1: lllustration of definitions, root vertex/cealtedge are emphasized.

Lemma 4.3.3 Let X be a labeling of the tre@T, and assume that the weight of
the central edge is- 2. Then there exists an internal cut labeliligof 275 so that
cost(X AY) < cost(X).

Proof: Lete be the central edge, letbe a vertex incident with, let f, g be the
other edges incident with, and letA = mx (e), B = mx(f), andC = mx(g).
We will construct a cut labeling” = (§(Z1), ...,9d(Z4)) (where eacl¥; is either
) or {z}) so thatcost(X AY) < cost(X). For convenience, we shall say that we
switcha set/ C {1,2,3,4} if we setZ; = {z} if i € I andZ; = () otherwise.

If S = An BnC isnonempty then we may switch, thereby reducing the
cost of each o€, f, g. Hence we may supposggis empty.

Case 1.|4| = 4: If B = C = 0 then we switch{1} decreasing the cost
from a(4) to a(3) + 2a(1). Otherwise we switclB U C; this leads to a mark
{1,2,3,4} \ (BUC) one, C on f andB ong, reducing the cost again.

Case 2. |A| = 3: We may supposel = {1,2,3} and|A4| > |B| > |C|
Moreover,|C| < 3 for otherwiseA N B N C is nonempty. IfB and A have a
common element, then we switch it. This changes the weidghadges inl" from
3,|B|,|C|t02,|B] —1,|C|+1and as|C| < 3, this is an improvement in the
total cost. It remains to consider the cases when Bb#mdC are subsets of4}.

In each of these cases we switth}, this reduces the cost from at lea$8) to at
most3a(2). O

The next lemma, which provides the second step of the preai@logous to
the previous one, but is considerably more complicateddweer
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Lemma 4.3.4 Let X be a labeling of the tre2Ty and assume that every edge has
weight< 2 and that the central edge has weight exactly 2. Then thestsean
internal cut labelingY” of 2T, so thatcost(X AY) < cost(X).

Before discussing the proof of this lemma we shall use it tivgrthe main
theorem.

Proof: It follows from Lemma 4.3.1 and Proposition 4.1.1 that itfegs to
prove that all cubic graphs with girth at ledst have wonderful cut complement
labelings. LetG be such graph and leX’ be a cut complement labeling of
of minimum cost. It follows immediately from Lemma 4.3.3 thevery edge of
G has weight< 2. Suppose there is an edgeof weight2. Then it follows
from our assumption on the girth that contains a subgraph isomorphic2@y
(possibly with some of the leaf vertices identified) wheris the central edge.
Now Lemma 4.3.4 gives us anternal cut labelingY” of 27y (hence a cut labeling
of G) such thatcost(X AY) < cost(X). This contradiction shows thaX is
wonderful, and completes the proof.

Next we give a short description of a linear-time algorithrattfinds the parti-
tion. We start with a cut complement labelitg(G), E(G), E(G), E(G)). Then
we repeatedly pick a bad edge—that is an edge for whiclw(e) > 1. By
Lemma 4.3.3 and 4.3.4 we can decrease the total cost by $wgtehcut label-
ing that contains only edges at distance at most 8 feor/e can therefore find
the cut labeling in constant time (we can even use brute fdreee do not try to
minimize the constant)—we only have to use efficient repreg®sn of the graph,
namely a list of edges, list of vertices, and pointers betwtbe adjacent objects.
As the cost of the starting coloringdig4) - | E(G)| and at each step the decrease is
at least by 1, it remains to handle the operation ‘pick a bagbeid constant time.
For this, we maintain a linked list of bad edges, for each eletrof the list there is
a pointer from and to the corresponding edge in the mainflistiges. This allows
us to change the list of bad edges after each switch in cartstan(although, we
repeat, the constant is impractically large). a

It remains to prove Lemma 4.3.4, and our proof of this requaeomputer.
Unfortunately, both the number of labelings and the numligrossible cuts is
far too large for a brute-force approach: There 22 — 1) — 1 edges of2Ty,
which means more thaii 1°%° labelings, even if we use Lemma 4.3.3 to eliminate
labeling with edges of weight 3 or 4. Moreover, there are hiy>2")* internal
cut labelings in2Ty, hence we cannot use brute-force even for one labeling. To
overcome the second problem we shall recursively comput #he necessary
information, called a ‘menu’ on the subtrees, leading toféinient algorithm for
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a given labeling. To solve the first problem, instead of emanirgg all labelings
of 275 and computing the menu for them, we will iteratively find aknus cor-
responding to all labelings &f;, T, ..., Ts. This way we avoid considering the
same ‘partial labeling’ several times. To further redueedbmputational load, we
will consider only ‘worst possible menus’ in ea€h Now, to the details.

If S C{1,2,3,4}, we define an internal cut labeliig of T; to be aninternal
S-swapif Y = (6(Z1),...,d(Z4)) where everyZ; is a set of interior nodes (note
that the root is interior) and = {i € {1,2,3,4} : r € Z;}. Informally, an
internalS-swap ‘switchesS between the root and the leaves’n#fenus a mapping
M : P([4]) — Z. If T; is a copy of a rooted tree with rootand X is a labeling
of T; then themenu corresponding t& is defined as follows

Mx (S) = min{cost(X AY) — cost(X) : Y is an internalS-swag .  (4.1)

Thus, the mend/x associated witlX is a function which tells us for each subset
S C{1,2,3,4} the minimum cost of making an internsitswap. This is enough
information to check whether we can decrease the cost ofemdabeling: if7y,
Ty, T5 are trees meeting at a vertex afigis the restriction of a labeling to 77,
then we can decrease the cost by a local swap if we have(S) + Mx, (S) +
Mx,(S) < 0forsomeS € P([4]).

For menusM/, N and a sel? C {1,2,3,4} we letParent_ menu(M, N, R) :
P([4]) — Z be the following mapping:

Parent_menu(M, N, R)(S) =

Qin (M(Q)+N(©Q) +a(lRASAQ) - a(R)).  (42)

The motivation for this definition is the following obseriat, which is the key to
our recursive computation.

Observation 4.3.5Let X be a labeling of the tre&; wherei > 2. Assume that
T; is composed of the root edgeand two copies df;_; denotedl” and7T"”, and
let X’ and X" be the restrictions of the labeling to the treesI” and7T"”’. Then

Myx = Parent_ menu(Mx/, Mx»,mx(e)).

Proof: Let v be the end of the edgewhich is distinct fromr and pickS, @ €
P([4]). Now choose a cutlabelifg = (6(Z1),...,d(Z4)) so thakost(X AY)—
cost(X') is minimal subject to the following constraints

() Z;isinternalforl <i <4,



84 CHAPTER 4. HIGH-GIRTH CUBIC GRAPHS

(i) S={ie{1,2,3,4}:r€ Z;},and
(i) Q={ie{1,2,3,4}:v e Z;}.
Thenmx Av(e) = mx(e) A S AQ and we find that

cost(X AY) — cost(X) = Mx/(Q) + Mx~(Q)
+almx(e) ASAQI) — a(jmx(e)]).

It follows from this thatM x = Parent_menu(Mx, Mx», mx(e)) as desiredd

Using the above observation, it is relatively fast to coreptiie menu asso-
ciated with a fixed labeling of a trég. However, for our problem, we need to
consider all possible labelings @f. Accordingly, we now define a few collec-
tions of menus which contain all of the information we needdmpute to resolve
Lemma 4.3.4. Prior to defining these collections, we neeatimduce the fol-
lowing partial order on menus: #/; and M, are menus, we writd/; < M, if
Mi(s) < My(s) for everys € P([4]).

We let M; be the set of allMx, where X is a labeling ofT;, and every
e € E(T;) satisfieswx (e) < 2. We letW; denote the set of maximal (‘worst’)
elements (with respect tg) of M,. Further, we define two subsets of these sets:
M/ denotes the set of menus corresponding to those labetingfsl; where each
edge is of weight at most 2 and where the root edge is markdd [®}. Finally,
W/ is the set of maximal elements #ft;. The following observation collects the
important properties of these sets.

Observation 4.3.6 For everyi > 2 we have
1. M; = {Parent menu(M, N, s) | M, N € M,_1,s € P([4]),|s| <2}

2. W; = max{Parentomenu(M, N,s) | M,N € Wi_1,s € P([4]),]s| < 2}
in <

3. W= mai({Parent_menu(M, N,{1,2}) | M,N € Wi_l}
in <

Proof: Part 1 follows immediately from Observation 4.3.5. The setpart
follows from this and from the fact that the mappiRgrent_menu is monotone
with respect to the orde¢ on menus. Part 3 follows by a similar argument.O

Next we state the key claim proved by our computer check.
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Claim 4.3.7 (verified by computer) For everyW; € W), and Wy, W3 € Ws
there existsS € P([4]) such thatiV, (S) + Wa(S) + W3(S) < 0.

We use the Observation 4.3.6 to give a practical scheme fopating the
collectionsWg andW; followed by a simple test for each possible triple. Further
details are described in Section 4.5. With this, we are firralady to give a proof
of Lemma 4.3.4.

Proof of Lemma 4.3.4: Let X be an edge labeling &7y as in the lemma; we
may suppose the central edge is labeled by{1,2}. Let T, T2, T° be the
three distinct maximal subtrees 8Ty which havev as a leaf, and assume that
T contains the central edge. L&t denote the restriction oX to 77, and write
M; = Mx,. ChooséV; € Wy, W, W3 € Wg so thatM; < W; holds for each
j. By Claim 4.3.7, we may choosg& € P([4]) for which W (S) + Wa(S) +
W3(S) < 0 and by definition of we haveM;(S) + M(S) + M3(S) < 0,
too. LetX; be the internab-swap for which the minimum in the definition of;
(equation (4.1)) is attained. Théh = X; A X2 A X3 is an internal cut labeling
of 2Ty andcost(X AY) — cost(X) = M;(S) + Ma(S) + M3(S) < 0. This
completes the proof. O

Remark 4.3.8 In the definition of cost of a coloring, the values of paranmeet€:)
can be chosen in a variety of ways—provided we do penalizeseofgweight 1.
Perhaps it seems more natural to has@) = 0 but this straightforward approach
does not work. Consider the edge labeling2af, the upper part of which is
depicted in Figure 4.2. It is rather easy to verify, that slvihg any local cut
labeling does not get rid of edge of weight 2. Moreover, thiseling can be
extended to arbitrar2T,, by the ‘growing rules’ depicted in the figure,(b, ¢, d
stand for{1}, {2}, {3}, {4} in any order). On the other hand, by switchifig}
and {3} on the cuts depicted in the figure, we decrease the cost ofolbery

bya(1).

Remark 4.3.9 Note that it is possible to prove Lemma 4.3.3 by the same mhetho
as Lemma 4.3.4; in fact a simple modification of the code weerifioth of these
lemmata at the same time. The reason we put Lemma 4.3.3 selgdsathat it
allows for an easy proof by hand, and this hopefully makespthef easier to
understand.

Another remark is that an easy modification of our method tify€laim 4.3.7
could decrease the running time by 30%. We did not want towbdte main
proof for this relatively small saving, but we wish to mentibe trick here. In the
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Figure 4.2: A difficult labeling off’;.

process of enumerating the sét§, we can throw away all menu¥ that satisfy
M (D) < 0. Itis not hard to show that we still consider all ‘hard cases’

Remark 4.3.10 The necessity to use computer for huge amount of checkirg is n
entirely satisfying (although this point of view may be mthistorically condi-
tioned aesthetic criterion). It would be interesting to fagroof of Lemma 4.3.4
without extensive case-checking, perhaps by a carefukttgm of the setV;.

4.4 Some equivalences

The goal of this section is to prove Proposition 4.1.1 fromltitroduction (restated
here for convenience as Proposition 4.4.2), which giveersdgraph properties
equivalent to the existence of a homomorphism to a projeaitbePQ5;. To

prove this, it is convenient to introduce another family ofghs first. For every
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positive integem, let H,, denote the graph with all binary vectors of length
forming the vertex set and with two vertices being adjadahiy agree in exactly
one coordinate (note th&f,, is a Cayley graph of7).

For oddn, the graphi,, has exactly two components, one containing all ver-
tices with an even number afs, and the other all vertices with an odd number of
1's; we call the component§ and H?, respectively.

Observation 4.4.1 For everyk > 1 we haveHs, . | = H3, | = PQay.

Proof: The mapping that sends each binary vector to its complememator
gives an isomorphism betweéis, ., and H5, . Thus, the simple graph ob-
tained fromHsy, 1 by identifying complementary vectors is isomorphidig, ., ,
(and toH3, ;). However, this graph is also isomorphic Rf)2, since viewing
the vertices of each as a pair of complementary vectors, wéhedu, andv will

be adjacent if and only if one vector associated withnd one vector associated
with v differ in exactly 1 coordinate. O

Now we are ready to prove the proposition.

Proposition 4.4.2 For every graphG and nonnegative integek, the following
properties are equivalent.

1. There exisRk pairwise disjoint cut complements.
2. There exisek + 1 pairwise disjoint cut complements with unidi{G).
3. G has a homomorphism BQ2y.

4. G has a cut-continuous mapping €&y, 1 .

Proof: We shallshowl — 2 — 3 — 4 — 1.

Toseethat = 2,letSy, Ss, ..., S be pairwise disjoint cut complements,
and for everyl < i < 2kletW; = E(G) \ S;. Now settingSai+1 = E(G) \
Ulgiggksi = E(G) \ Ai<i<or Wi we have 2.

Next we shall show that — 3. Let 51,59,...,52k+1 be2k + 1 disjoint cut
complements with unio'(G) and for everyl < i < 2k + 1 chooseU; C V(G)
so thatS; = E(G) \ 6(U;). Now assign to each vertexa binary vector:” of
length2k + 1 by the rulez} = 1if = € U; andz} = 0 otherwise. This mapping
gives a homomorphism fror¥ to Hox11, SO by Observation 4.4.1 we conclude
thatG has a homomorphism tBQ)oy.
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Next we prove thaB — 4. Since the composition of two cut-continuous
mappings is cut-continuous, it follows from Lemma 2.1.2 @fwkervation 4.4.1
that it suffices to find a cut-continuous mapping fréfg,1 to Coxy1. TO con-
struct this, we letE(Cary1) = {e1,ea,...,ea+1} and define a mapping :
E(Hsi41) — E(Car41) by the rule thay(uv) = e, if w andv agree exactly in
coordinatei. We claim thaty is a cut-continuous mapping. To see this, lebe
acut ofCopy, letJ = {i € {1,2,...,2k + 1} : ¢; € R}, and note thatJ| is
even. Now letX be the set of all binary vectors with the property that theeecza
even number of’s in the coordinates specified b} Theng=!(R) = §(X) so
our mapping is cut-continuous as required.

To see thatt — 1, simply note that the preimage of any edge(f,+1 is
a cut complement, so the preimages of 2het+ 1 edges ar@k + 1 disjoint cut
complements. ]

We can extract the key idea of the above proof as follows H;et E(Hap11)
be the set of edgesv such that, andv agree in exactly thé-th coordinate® The
setsEn, ..., Eap41 form a partition ofE( Hay11) into disjoint cut complements.

4.5 Code listing

In this section we present the code used to verify Claim 4.8.i& written in C
and can be downloaded!aitp://kam.mff.cuni.cz/"samal/papers/

clebsch/ . It runs for about 30 minutes on a 2 GHz processor. We havedest
it with compilers gcc (version 3.0, 3.3), Intel C, and Bodab++ on several com-
puters to minimize the possibility of error in the proof dwevirong computer
hardware/software.

We use Observation 4.3.6 to iteratively computg,; from W;, this is accom-
plished by functiorw_update By the same function we compui&, from Ws. Fi-
nally, we use final_test to check whether all triples of menus satisfy the inequality
of Claim 4.3.7. To simplify and speed up the code, we usecstitia structures
for W;'s—that is, the elements of the 98f; are stored awv[i][j] — with a limit
MAX=20000 on the number of elements, if this number turned out to be nealls
the program would output an error message (this does noemdpp

Marks of edges, that is elements/f[4]) are represented as integers from O up
to 15. For convenience variables that hold marks haveiypt (which is a new
name forshort). Symmetric difference of marks corresponds to bitwise-xor.

3If you think of H,, as of a Cayley graph, theR; consists of edges corresponding to thii
element of the generating set. We thank to Reza Naseragrigacdmment.
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Cost of edges are stored in variables of tgpst (a new name foint). From equa-
tion (4.2) it is easy to deduce thBarent_menu(M, N, R)(S) < M(S) + N(9).
Consequently, the largest coordinate of an elemenvpis at mosi~'a(4), and

as we only use setd); for i < 9, we will not have to store larger numbers than an
int can hold. Other new data types anenu (array of 16cost's used to represent

a menu), andomparison—variables of that type are assigned values -1, 0, 1, or
INCOMP=2if the result of a corresponding comparison (of two menus),is-, >~

or incomparable.

When we need to comput®/ = Parent_menu(M;, Mo, ¢), this is imple-
mented asddmenus(M1,M_2,child); pmenu(child, parent, M) Here child corre-
sponds to the sum/; + M, parentis a menu corresponding to coloring of the
single edge ofl} by colorc. Then we insert the menu in the 34t (arraywl[i])
by callinginsertmenu Note that if we implemented the deletion of ‘small’ menus
in this function in a more straightforward manner (‘move rgtieing left’), the
running time would approximately double.

#include <stdio.h>
#define MAX 20000 /!l limit on size of the sets W

typedef short mark;
typedef int cost;
typedef cost menyl16];

cost a[5]={0,1,10,40,1000;

cost markcost[16];

/l cost of edge marked by each possible mark

menu one-mark[1];

/I W_1, i.e. onemark[0] corresponds to T1 marked by1,2}
menu W[ 9][MAX];

menu Wprime [MAX]; [l W’'_9

int Wsize[10];

/1 Wsize[i] is the number of elements of WJi]

int Wprimesize; // the number of elements of Wprime

typedef short comparison;
comparison INCOMP = 2;

void menufrom_mark (mark Q, menu M) {

/I M will be the menu corresponding to T1l marked by Q
mark s;
for (s=0; s<16; s++)
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M[s] = markcost[Q ~ s]— markcost[Q];

}

void init_variables () {
mark s;
for (s=0; s<16; s++)
markcost[s] = a[(s&l) + ((>>1) & 1) +
((s>>2) & 1) + ((s>>3)&1)];
/I the right hand side is a[n], where n is the number of ones
/I in binary representation of s

menuwfrom_mark (3,onemark[0]);

Wsize [1]=0;
for (s=0; s<16; s++)
if (markcost[s]< a[3])
menuwfrom_mark (s W[1][++Wsize[1]]);

}
void add-menus fmenu M1, menu M2, menu sum) {
mark s;
for (s=0; s<16; s++)
sum[s] = M1[s]+M2[s];
}

comparison sign(int n) {
if (n> 0) return 1;
if (n< 0) return —-1;
return O;

}

comparison comparemenus fnenu M1, menu M2) {

/Il returns -1, 0, 1, INCOMP, depending on

/I whether MXM2, M1=M2, M1> M2, or they are incomparable
mark s;
comparison t, current=0;

for (s=0; s< 16; s++) {
t = sign (M1l[s] — M2[s]);
if ((t!= 0) & (t == —current)) return INCOMP;
if (current == 0) current = t;

}
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return current;

}

void p_menu(menu child, menu parent, menu output) {
/1 child is the sum of two childs
/I parent corresponds to the new edge

mark s, q;

cost new, currentbest;

for (s=0; s<16; s++) {
currentbest = a[4];
for (g = 0; g< 16; gq++) {
new = child[g] + parent[s ~ q];
if (new< currentbest) currentbest = new;
}
output[s] = currentbest;
}
}

void insert.menu (menu xbook, int xbooksize , menu M) {
/!l book is an array of menus
/Il booksize is the number of elements of book
/I we are inserting M
int i;
mark s;
comparison t=0;

for (i=0; i < xbooksize; i++){
t = comparemenus (M, book[i]);
if (t <= 0) return; [// we will not insert small menu
if (t == 1) break; I/ we will delete book[i]

}

/I we will delete all elements of book that are= M
if (t==1) // i.e. M> book]i]
for ( ; i < xbooksize; i++){
while (i < xbooksize &&
comparemenus (M, book[i])==INCOMP)
i++;
while (xbooksize> i &&
comparemenus (bookf{booksize—1] M) <= 0 )
(xbooksize}—; // we abandon small menus at the end
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if (xbooksize <= i) break;
// and move big menu from end to the place of book[i]:
(xbooksize}—;
for (s = 0; s<16; s++)
book[i][s] = book[xbooksize][s];
}

/I we insert M as the last element of book
if (xbooksize == MAX) printf(”"too.short.array\n”);
else {
for (s = 0; s<16; s++)
book [« booksize][s] = M[s];
(xbooksize)++;
}
}

void W_update fnenu xoldW, int oldsize , menu xroot_edge ,
int rootsize , menu xnewW, int xnewsize) {
menu N, child;
int i, j, k;

xnewsize = 0;
for (i=0; i < oldsize; i++)
for (j=i; j < oldsize; j++){
add-menus (oldW[i],oldW[j], child);
for (k=0; k < rootsize; k++) {
p-menu(child ,rootedge [k],N);
insertmenu (newW, newsize, N);
}
}

int final_test(menu «C, int Csize, menu %P, int Psize) {
int i, j, k;
mark s;
int counter=0;
menu child;

for (i=0; i < Csize; i++)
for (j=i; j < Csize; j++){
addmenus (C[i],C[j], child);
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for (k=0; k < Psize; k++){
counter ++;
for (s=0; s<16; s++)

if (child[s]+P[k][s] < 0) { counter——; break;}

/I Claim 2.7 holds for C[i],C[j],P[k]
/I we proceed by testing another triple

}

}
return counter;

}
int main() {
int i;
init_variables ();
for (i=1; i<8; i++) {
W _update W[i],Wsize[i] W[1],Wsize[1] W[i+1],&Wsize[iH]);
printf("The.size.of \W%d.is: %d\n",i+1,Wsize[i+1]);
}
W _update (W[8] , Wsize [8] ,onanark ,1 ,Wprime,&Wprimesize);

if (final_-test(W[8],Wsize[8],Wprime,Wprimesize) == 0)
printf ("\nProof.is_finished \n\n");

return O;
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Chapter 5

Cubical coloring (Fractional
covering by cuts)

In this chapter we introduce a new graph invariant that measwactional cover-
ing of a graph by cuts. Besides being interesting in its owis, iiseful for study
of T'T; mappings and homomorphisms. We pursue connections wittidnel
chromatic number and with bipartite subgraph polytope tResake of simplicity
we restrict to the case dff = Z,. For other rings, we may proceed similarly;
compare Lemma 2.2.4 and 2.2.5.

5.1 Introduction

All graphs we consider are undirected loopless; to avoidalities we do not
consider edgeless graphs in this chapter. Recall that fet @'sC V(G) we let
d(W) denote the set of edges leavilig and that we call any set of fora{V) a

cut

Definition 5.1.1 Let us call (cut):/k-cover ofG ann-tuple(X,, ..., X, ) of cuts
in G such that every edge 6f is covered by at least of them. We define

Xq(G) = inf{% | existsn/k-cover ofG}

and callx,(G) thecubical chromatic numbef G. (Motivation for this terminol-
ogy will be given in the discussion preceding Lemma 5.1.2.)

95



96 CHAPTER 5. CUBICAL COLORING

First recall that ift = 1, i.e. if we want to cover every edge by some cut
then we need at leagtog, x(G)] of them (see, e.g., [19]). Here we consider a
fractional version. In this context we may find it surprisigt x,(G) < 2 for
everyG (Corollary 5.2.3).

From another perspectivg,(G) is the fractional chromatic number of a cer-
tain hypergraph: it ha&(G) as points and odd cycles 6f as hyperedges. This
suggests that,(G) is a solution of a linear program, see Lemma 5.1.3.

As the last of the introductory remarks, we note thatG) is a certain type of
chromatic number, but instead of complete graphs (or Krgrsgrhs or circulants)
which are used to define chromatic (fractional resp. circal@omatic) number
it uses another graph scale. L@}, denote a graph wit§0,1}™ as the set of
vertices, wherery forms an edge iftl(z,y) > k (hered(x,y) is the Hamming
distance ofr andy). It is easy to see tha¥# hasn/k-cover if and only if it is
homomorphic taQ,, /. That means that an alternative definition is

Let % denote the graph with verticds(H) and edgeswv for anyu,v €
V(H) with distance inH at leastk. Further let@,, denote then-dimensional

cube. TherQ,,/, = Qi’“. This corresponds to the definition of circular chromatic

number, where the target grapm§k’. To stress this similarity we use the term
cubical chromatic number and notatigp(G).

The original motivation for study of,(G) was the following lemma, we use
it in the next section to prove non-existence of cerfdify mappings.

Lemma5.1.2 LetG, H be graphs. Thelid <t H = x,(G) < x4(H).

Proof: It suffices to show that whenevéf has ann/k-cover,G has it as well.
So letf be somél'T; mapping fromG to H and letX, ..., X,, be ann/k-cover
and consideX/—a preimage of a cuX; underf. By definition, X! is also a cut.
If e is an edge of7, f(e) is an edge off hence it is covered by at leastof the
cutsX;. Thuse is covered by at leadt of the cutsX. O

Note that grapld),, ;. are Cayley graph on some powerZy, henceZ,-graphs
in terminology of Section 2.3.2. Proposition 2.3.8 impliest these graph are right

hom

Zy-homotens, that i&; —— Q,,/, andG I, Qn,, are equivalent properties
for every graphz. Consequently, we may as well usd> mapping toQ,,;, in
equation (5.1). This provides an indirect proof of LemmaZ.1



5.2. BASIC PROPERTIES Okq(G) 97

The next lemma provides another characterization of cubfm@matic num-
ber, analogical to fractional chromatic number.

Lemma 5.1.3 The parametery,(G) is the solution of the following linear pro-
gram (C denotes the family of all cuts @).

minimize» ~ w(X) subject to: for every edge Y w(X) > 1
Xec X,eeXeC

Proof: Letz(G) be the optimal solution to the linear program. For every:-
cover there is a feasible solutianof the linear program which assigns valug:
to each of the given cuts aridto all other cuts. This shows(G) < x,4(G). To
prove the converse inequality, recall that any linear peoghas optimal solution
with rational coordinates, let be this solution and write)(X) = ¢(X)/N, with
¢(X) being a (non-negative) integer. If we takeX ) copies of every cul, we
obtain a(}" y ¢(X))/N-cover. Asy_ y ¢(X)/N =3y w(X) = z(G), we get
Xq(G) < (G). =

We conclude that we can replaiaég by min in the definition ofy,(G)—the
infimum is always attained. We can also consider the dualrprog

maximize ) y(e) subjectto: foreverycuk, Y y(e)<1. (5.2)
ecE(G) e,e€X

This program is useful for computation §f,(G) for someG. Moreover, in Sec-
tion 5.5 we use this dual program to discuss yet another tiefindf x,(G) in
terms of bipartite subgraph polytope.

There is another possibility to dualize the notion of fractl cut covering,
namelyfractional cycle covering Bermond, Jackson and Jaeger [5] proved that
every bridgeless graph has a cy@let-cover, and Fan [24] proved that it has a
10/6-cover. An equivalent formulation of Berge-Fulkerson @mtirre (Conjec-
ture 6.1.5) claims that every cubic bridgeless graph hgslecover. On the other
hand, Edmonds characterization of the matching polytopdiés that every cubic
bridgeless graph has3# /2k-cover (for some).

5.2 Basic properties ofy,(G)

As in Chapter 4 we [eMAXCUT(G) be the number of edges in the largest cut
in G and writeb(G) = MAXCUT(G)/|E(G)].
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Lemma 5.2.1 For any graphG, x,(G) > 1/b(G). If G is edge-transitive, then
equality holds.

Proof: Supposex,(G) = n/k and letX;, ..., X,, be ann/k-cover. Then
S 1Xi| < n-b(G)|E(G)|, on the other hand this sum is at least| E(G)|, as
every edge is counted at ledstimes. This proves the first part of the lemma. To
prove the second part, l&t = {X,..., X,,} be all cuts of the maximal size (i.e.

| X:| = b(G)|E(G)]). From the edge-transitivity follows that every edge iseed
by the same number (s&y of elements oft. Now k - |[E(G)| = >, | X;| =

n - b(G)|E(G)|, which finishes the proof. O

Corollary 5.2.2 1. xq(Kon) = xq(K2n—1) =2—-1/n
2. Xq(Cagy1) = 14+ 1/(2k)
3. xq(Pt) =5/4

Corollary 5.2.3 For any graphG,

1

1
R  FETEI

go(G) -1

In particular, x,(G) € [1,2).

Proof: Letl = ¢,(G), i.e.,C} is the shortest cycle that is a subgraplGofThen
by Lemma5.1.2 and Corollary 5.2.2 we havel/(I—1) < x,(G). For the upper
bound, note thatr maps toK', () homomorphically, thus also by&T> mapping.

By Lemma 5.1.2 and 5.2.2 we hayg(G) < x4(Ky ) =2 — 1/[@] ]

The above results imply that the functig% more resembles a version
of chromatic number— fofs,, it equalsn or n + 1; this partly explains Theo-
rem 5.2.7. However, we prefer to work with a function that ha®r properties
(among else is a solution of a linear program).

By combining Lemma 5.1.2 and Corollary 5.2.2 we get the feifg theorem.

It is surpassed by results of Chapter 2, still it presentswgla and direct proof of
a reasonable result (previously, it was only known that ysdp,~ form a strictly
increasing chain). In fact, the proof of Lemma 2.2.4 (a siegpptone towards
Corollary 2.2.12) implicitly uses cubical chromatic numbed Lemma 5.1.2.
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Theorem 5.2.4 GraphsK5,, form a strictly ascending chain in the ordet... In
other words Ko <4 Ky <4 K¢ <& --- .

The nextlemma shows thgi, enjoys some of the properties of other chromatic
numbers. G; 0G4 denotes the cartesian product of grafghisx G the categorial
one.)

Lemmab5.25 1. x,(G) = max{x4(G’) | G' is a component of'}

2. x4(G) = max{x4(G’) | G'is a2-connected block ¢f} for a connected
graphG.

3. x¢(G10G2) = max{x4(G1), x4(G2)}
4. Xq(G1 x G2) <min{x4(G1), xq(G2)}

Proof: We will prove that ifG’, G’ are graphs that share at most one vertex,
thenx,(G' U G”) = max{x,(G’), xq(G")}. Clearly, this proves 1 and 2. Let
X1, ..., X/ be an optimal cover of’, X{, ..., X, an optimal cover of7”,
thus x,(G’") = n/k, andx,(G"”) = m/l. Consider the collection ofxn cuts
{X/UX7} (these are cuts, indeed,@sandG" share at most one vertex). An edge
of G’ is covered at leastk times, an edge af” atleast:/ times. Hence, (G) <
mmtmiy = max{ g, 4t} = max{xq(G’), xq(G")}. Onthe other hand, botH’
andG” are subgraphs d@¥, hence by Lemma 5.1.2 the other inequality follows.

Part 3 follows from Lemma 5.1.2, &8, 0G-, is T'T-equivalent to the disjoint
union of G; andGs.

Part 4 follows from Lemma 5.1.2 as there are homomorphisns tfzerefore

TT mappings)zi, Go — Gy X Gs O
We close this section by a study of cubical chromatic numbexralom graphs.

Lemma5.2.6Letc > 0, let p, § be functions of. such thatp,é € [0,1] and
§%p = Q(n°~1). Thenb(G(n,p)) < 3 (1+ O(1/n) + O(8)) a.a.s. In particular

1+ O0(—5=)

b(G(n,1/2)) < :

a.a.s.

Proof:
Claim 1. If §2p > 1/n? then|E(G(n,p))| > (1 —0)p(}) a.a.s.
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To prove this we use Chernoff inequality (as stated in CarglR.3 of [47])
for random variableX = |E(G(n, p))|. It claims

2
Pr[X < EX — EX] < 2¢~ 5EX

And asEX = p(3), Claim 1 follows.

Claim 2. If 62p = Q(n°~1) thenMAXCUT(G(n,p)) < (1+ 6)p™ a.a.s.

For a setd C V(G(n,p)) we let X4 be the random variable that is equal to
the number of edges leaving leta = |A| < n/2. By another variant of Chernoff
inequality

Pr[X4 > EX 4 + 0EX 4] < 2¢~ 5 X4
and substitutin®X = pa(n — a) we get

52pan
6

2
Pr[Xs > (1+8)pn?/4] < 2 Fraln—a) < 9o—
It remains to estimate the total probability of a large cut:

n/2 R
Pr[(3A)X 4 > (1 +6)pn?/4] < Z <n> 9~ B
a
a=1

(52pn

<2[(1+e s

)t =1l

For§%p = Q(n°~1) the last expression tends to zero, which finishes the praof.

Theorem 5.2.7 For anyc > 0,

2-0 (%) < Xa(G(n,1/2) <20 (loff‘) aas.

Proof: The lower bound follows by Lemma5.2.6, the upper one by atiGgmn
of Corollary 5.2.3 and the well-known fact thatG(n,1/2)) = O(n/logn). O

Note that we could use the known result on clique number ohda® graph
for a direct proof of the lower bound in Theorem 5.2.7, bus thwiay we would
obtain onlyy,(G(n,1/2)) > 2—0O(1/logn). On the other hand, by more careful
computation we could obtain slightly sharper lower boundhms same method,
but still far from the optimal one. It would be interestingdetermine precisely
the asymptotic behaviour of,(G(n, 1/2)).
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5.3 Cubical coloring and other graph parameters

In this section we relate,(G) to various other graph parameters, we start by
X r(G)—the fractional chromatic number 6f. This may be defined by ;(G) =

inf{n/k | G 22 K(n,k)}, whereK (n, k) is theKneser graph Its vertex set
consists of alk-element subsets ¢f] = {1, 2, ...,n}, two vertices are connected
iff they are disjoint subsets ¢f].

Lemma 5.3.1 Letk, n be integers such that < n. Thenthereis a cutii (n, k)
with (;~1) (".*) edges. Consequently,K (n, k)) > 2k/n.

Proof: WeletU = {S C [n] | 1 € S}. Clearly,§(U) contains(7_}) (".*) edges.
m

Corollary 5.3.2 For 2k < n we havey,(K(n,k)) < n/2k. Consequently, for
any graphG we havey,(G) < 3x5(G).

Proof: As Kneser graphs are edge-transitive, Lemma 5.2.1 and impl§

__ ! ;W) _m

The rest follows by Lemma 5.1.2 and the definition of fracsibchromatic num-
ber. O

Corollary 5.3.3 For everye > 0 and every integeb there is a graph= such that

Xq(G) <1+e and x(G)>b.

Proof: LetG = K(n,k), forn = 2k +t, k = 2t andt large enough. Then by
Corollary 5.3.2¢,(G) < n/2k = 1+t/2!"1 and by [59] andy(G) = n—2k+2 =
t+2. O

By Corollary 5.2.3, we can view Corollary 5.3.3 as a strergthg of the well-
known fact that there are graphs with no short odd cycle atidaiarge chromatic
number. It also shows that the converse of Lemma 5.1.2 isdar being true: just
takeG from the corollary and letl = K /. Theny,(G) is close to 1 ang(, (H )
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close to 2 (that is as far apart as these values can be), wtihkapplication of
Corollary 2.3.9 we don’t havé' <4 H.

It is interesting to find how various graph properties affegtG). We saw
already, that smal{ (G) makesy,(G) small, while largey(G) does not force it to
be large. Also smal,(G) makesy,(G) large. In this context we ask:

Question 5.3.4Let G be a cubic graph with no cycle of length ¢. How large
cany,(G) be?

Forc = 3, it follows from Brook’s theorem tha, (G) < x,(K3) = 3/2. For

¢ = 17 we saw in Chapter 4 that I, ¢, hencey,(G) < x4(C5) = 5/4. On
the other hand, there is> 0 such that cubic graphs of arbitrary high girth exist
such thab(G) < 1 — ¢ (by a result of McKay, see Section 4.2 for further details),
hence withy,(G) > 1 +¢.

We finish by a result explaining why we in Question 5.3.4 festo cubic
graphs. Note that much sharper resultsMAXCUT of graphs without short
cycles were conjectured in [23] and (some of them) proved,i2].

Theorem 5.3.5For anye > 0 and integer there is a graphG such thaty,(G) >
2 — ¢ and G contains no circuit of length at moé&t

Proof: We mimic the famous Erdés’ proof of existence of high-gigtiaphs of
high chromatic number. Let = n®~! (wherea < 1/1) and consider random
graphG(n, p).

The expected number of circuits of length at mdstO((pn)') = o(n), there-
fore by Markov inequality with probability at least 1/2 theaghG(n, p) contains
at mostn circuits of length at most We delete one edge from each of them and
let G’ be the resulting graph. We use Lemma 5.2.65fes n~ /3 andc < /3,
note that by Claim 1 from proof of Lemma 5.2.6, the number afe=dofG(n, p)
is a.a.sQ(n'*®), hence the deletion of edges creates only anoth@r+ o(1))
factor in the estimate fdr(G(n, p)). An application of Lemma 5.2.1 and a choice
of sufficiently largen finishes the proof. a

5.4 Measuring the scaleX,(Q,))

In this section we will discuss the ‘invariance propertytobical chromatic num-
ber. In analogy withy(K,,) = n, Xc(Ci’“) = n/k and ‘dimension of product
of n complete graphs ia’ we would like to prove thaty,(Q,,/r) = n/k. The
following lemma shows, that the situation is not that sinfpley,.
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Lemma5.4.1Letk < n be integers. Then we hawg (Q., /) < %. If kis odd,

Proof: For the first part, it suffices to consider the identical horogohism

hom .
Qn/k — Qnyi- For the second part, mapping(Q,/x) — V(Qn+1)/(k+1))
givenby(x1,...,2,) — (Z1,...,Zn, 1 + -+ + 2, mod 2) is @a homomorphism
whenever is odd. o

Another complication is that by Corollary 5.2.3 we haygG) < 2 for any
graphG. Butwe conjecture that with this exception, Lemma 5.4.&githe correct
answer.

Conjecture 5.4.2 Letk, n be integers such that < n < 2k. Thenx,(Q,. ) = %
if k is even andy, (Qn/x) = 757 if k is odd.

We present two arguments in support of Conjecture 5.4.2t,Fibserve that
K (n,r) is a subgraph of),, />,. By Lemma5.1.2 and 5.2.1 we have

1
Xq(@Qnj2r) > xq(K(n,7)) > WK
In[74]itis claimed that i2r < n < 3r then Lemma 5.3.1 gives the correct size of
MAXCUT(K (n,r)), i.e.b(K(n,r)) = 2r/n. This would imply the conjecture
for evenk less thar8/2 - n; unfortunately the proof in [74] seems incomplete.
Another promising approach to Conjecture 5.4.2 is to uselalmcal graph
theory. The following results appear as Lemma 13.7.4 antl23f [27].

Lemma 5.4.3 LetG be a graph withm vertices andn edges, lef\,, be the largest
eigenvalue of the Laplacian 6f. Thenb(G) < Z 2z,

Lemma 5.4.4 Let G be anr-regular graph withn vertices, let eigenvalues 6f
be©; > 6, > --- > ©,. Then the eigenvalues of the Laplaciantdfre given
by)\l =7 — @i-

We will also use an expression for spectra of graphs withsttiae automor-
phism group ([58], see also Problem 11.8 in [60]).

Lemma 5.4.5 LetG be a graph whose automorphism group contains a commuta-
tive subgroud”. Supposé’ is regular, that is for each pait,y € V(G) there is
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exactly one element, , € I' that moves: to y. Lety be a character of” andu
any vertex o¥/. Then
Z X(Yu,0)

v;uveE(G)
is an eigenvalue aff; moreover all eigenvalues are of this form.

By Lemma 5.4.5 we find that eigenvalues@f are>"}_(—1)*(?) (7-7) for
anyz € {0,1,...,n}. Thisis in fact the definition of Krawtchouk polynomial
K7} (x), which enables us to use various known results on Krawtcholynomials
(recurrence relations etc.). None of these methods, hawexss sufficient to
prove the following desirable inequality. From numericgberiments, however,
this inequality is well-justified (in particular it is truehenevem < 1000).

Conjecture 5.4.6 Let k, n be integers such thdt < n < 2k andk is even, let
x be an integer such that< x < n. Then

Sev() ()= (00-2).

By Vandermonde’s identity an equivalent formulation is

T\ [n—=x n—1
> (G2 =(0)
oaar \! N N
Theorem 5.4.7 Conjecture 5.4.6 implies Conjecture 5.4.2.

Proof: Suppose first that is even. By Lemma 5.1.2 and 5.2.1 we have that
Xq(Qni) = xq(QF) = 1/b(QF). By Lemma5.4.3 and Lemma 5.4.4 itis enough
to determine the smallest eigenvalB®f QF. As Q¥ is (})-regular, we have

L E@Y 4 2
QY ~ V@) -6 (H-e

Now we use Lemma 5.4.5. We suppogéQ®) = Z» and takel' ~ Z3;
thereforey, ,, corresponds ta + v (operation modulo 2 in each coordinate) and
the characters arg, : v +— (—1)Zi=1%¥: for eachy € Z3. Now putu = 0 and
suppose that weight af is = (that isy; = 1 for exactlyz values ofi). The sum
from Lemma 5.4.5 becomes

> )= i(_m@ (Z - f)

v of weightk t=0
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(heret is the number of bits that andv have in common). By using the conjec-
tured inequality, we obtaig, (Q,,/,) > n/k as desired.
For odd values of: we cannot use the same method, as hénis bipartite,

henceb(QF) = 1. However, observe tha®,.1),(x+1) fom, Qn k., hence by
Lemma 5.1.2 and the result for (evén} 1 we have

Xa(@n/k) = Xq(Qnt1y/(k+1)) = (n+1)/(k+1).

5.5 Bipartite subgraph polytope

For a bipartite subgrapB C G, let ¢ be the characteristic vector &f(B). Bi-
partite subgraph polytopBs (G) is the convex hull of pointsg, for all bipartite
graphsB C G. The study of this polytope was motivated by the max-cut (@b

to look for a weighted maximum cut @ simply means to solve a linear program
over Pg(G). Thus, for graphs wherBz (G) has simple description, we can have
polynomial-time algorithm for max-cut; this in particulbappens for weakly bi-
partite graphs (which include planar graphs), see [30]. W#yaPs to yield yet
another definition of,,.

Theorem 5.5.1 x4 (G) = max{}_ . p() Ve | y - ¢ < 1 defines a facet aPp (G)}

Proof: By LP duality x,(G) is a solution to the program (5.2). This means, that
we are maximizing over sucly, that for each cufX satisfyy - cx < 1. As the
convex hull of vectorg x is Pg, we are maximizing the sum of coordinates of an
element ofPj. This maximum is attained for some vertex®f, that is fory such
thaty - ¢ < 1 defines a facet aPp. O

‘Natural’ facets of Pz (G) are defined b}ZeeE(H) ye < MAXCUT(H) for
someH C G. (For other subgraphd, this inequality is satisfied too, but defines a
face of smaller dimension.) This proves the following ola@on (we add a direct
proof, too).

Lemma 5.5.2 x,(G) > 1/(mingcq b(H))
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Proof: Let H C G. ThenH I1s, G, which by Lemma 5.1.2 and 5.2.1 implies

1/b(H) < Xq(G). o

Let us return to Lemma 5.2.1 for a while. In geneyalG) and1/b(G) can be
as distant as possible: Létbe a disjoint union of &, and Ky n. Now x4 (G)
is close to 2 (becaus@ is homomorphically equivalent t&’,,, hencey,(G) =
Xq(Kr)) andb(G) is close to 1 (provided is sufficiently large). This motivates
Lemma 5.5.2, which improves the original bound. A naturadsiion is, whether
this improvement gives the correct sizexgf.

For some graphs there are other facetsPgfthan the natural ones. In [4]
graphs with several other types of facets are constructeds{fme of them, the
ratio between distinct nonzero coefficients of the faceté esder|V (G)|?). How-
ever, none of these constructions yields a facet with the gfurpefficients larger
than one of the natural facets. Hence, a conjecture emerges.

Conjecture 5.5.3 x4(G) = 1/(mingcg b(H))

Perhaps more importantly we ask, whetkefG) can be computed or approx-
imated efficiently (at least for some graph class). Lemma25can be used as
a ‘no-homomorphism lemma’, therefore this may be of intefesthe study of
homomorphisms, too.



Chapter 6

FF FT & CDC

In this chapter we are going to discuss possible usEBfand F'T' mappings to
handle various problems dealing with cycle structure ofegbr particularly Cycle
double cover (CDC) conjecture (Conjecture 6.1.3). In thet §ection we start by
summarizing Jaeger’s [43] approach to these conjectu#sdevelopment by
DeVos, NeSetfil, and Raspaud [19]. In the second sectieioak more closely

at the relation between CDC arfdl’ mappings. It the last section we exhibit a
way how to construcF'T" mappings from elementary ones, thereby allowing for
illustrative proofs of various results about CDC. We explabw this approach
was (implicitly) taken by, e.g., [83, 33].

6.1 [F'F and Petersen coloring

We start by a list of several important conjectures thatlaegdpic of this section
and in fact of this entire area of discrete mathematics. Fooee detailed presen-
tation of these conjectures and proofs of the results wermglhtion we refer the
readerto[12, 79, 92, 46, 45].

By anowhere-zeré-flowin a directed (or undirected) graph we meaifow
in the graph (or any of its orientations) that attains onlpea+1, £2, ..., +(k—
1). Surprisingly, by a result of Tutte the existence of such flsvequivalent to
existence of amowhere-zeral/-flow (that is of an(M, M \ {0})-flow) whenever
M is aring withk elements.

The following conjectures of Tutte [85, 86] are a core parthe study of
nowhere-zero flows.

107



108 CHAPTER 6. FF, FT & CDC

Conjecture 6.1.1 (Tutte’s 5-flow conjecture) Every bridgeless graph has a no-
where-zero 5-flow.

Conjecture 6.1.2 (Tutte’s 3-flow conjecture) Every 4-connected bridgeless cu-
bic graph has a nowhere-zero 3-flow.

Motivation for the next two conjectures stems from the obaon that in
a bridgeless planar graph the face-boundaries are cintusitscover every edge
precisely twice. Such system of circuits obviously doesaxadt if the graph con-
tains a bridge. On the other hand, Seymour [78] and Szek@&tésdependently
conjectured that planarity is not needed. (According td,[itls conjecture was
known to Tutte already in 1950’s.) Celmins [15] and Preissmg5] conjecture
that five cycles suffice for each graph.

Conjecture 6.1.3 (Cycle double cover conjecture) For every bridgeless graph
there is a list of cycles such that each edge is containedegipely two of them
(so-called cycle double cover, or CDC of the graph). Morec#jmally, at most

5 cycles suffice.

The following yet stronger conjecture is due to [3, 46].

Conjecture 6.1.4 (Orientable cycle double cover conjecta) For every bridge-
less directed graph there is a list of cyclés, ..., C; with splittings(C;", C;")
such that each edge 6f is in exactly one of the sets;” and one of the set§; .
(Such list of cycles is called orientable cycle double came®©CDC of the graph).
More specifically, at most 5 cycles suffice.

The following conjecture was made independently by Berge anFulker-
son [25]. It may be viewed as a fractional relaxation of 3edgloring.

Conjecture 6.1.5 (Berge-Fulkerson conjecture) For every bridgeless cubic
graph there is a list of six perfect matchings so that everyeeid contained in
exactly two of them.

Jaeger [43] observed that each of these conjectures mayubaktly stated
as a conjecture about existence of a certdifi B)-flow and defined a mapping
between graphs that ‘preserves flows’. The mapping he defirredexactly a
surjectiveF' F> mapping. We state here a variant of Jaeger’s result as fatedil
in [19] and prove part of it for the reader’s convenience.

Proposition 6.1.6 Let G, H be graphs.
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e Suppose&r I g Conjecture 6.1.3 (or 6.1.5) is valid fdd then it is

valid for G as well.

e SuUpposE&r I fof Conjecture6.1.4 (or 6.1.1, 6.1.2) is valid féf then
it is valid for G as well. (For the latter two conjectures it is sufficient if

Ga £, H,orG LNy S respectively.)

Proof: Letf:G L2, | and letCy, ..., C, be a CDC ofH. By definition of

FF mapping,f~1(C;) are cycles inG. If e is an edge ofs then f(e) (as an edge
of H) is covered by exactly two af’;, hencee is covered by two of the preimages.
For Conjecture 6.1.5 we observe that equivalent formulatisks for a list of six
cycles such that every edge appears in exactly four of thehpeoteed as above.
We omit the other two proofs. O

Proposition 6.1.6 explains the motivation to stud¥’ mappings. Indeed, sup-
pose we find classe4 and of graphs such that

o for every grapmd € A there is a grapt? € B for which A kN B, and

e some of the above conjectures is true for any graph ffom

Then the same conjecture is true for any graph fréms well. In particular, all of
these conjectures would be resolved if the following cotujecholds true. (The
first part is due to Jaeger, the second one to DeVos, Raspaditlesetfil).

Conjecture 6.1.7 ([43], [19]) Any bridgeless graph admits
1. anF'F, mapping to the Petersen graph.
2. anF Fz mapping to the Petersen graph or k0.

Itis proved by Jaeger [43] that the first part of the conjextiam be reduced to
the case of cubic graphs and that for such graphs existerarefof, mapping to
the Petersen graph is equivalent to existence of so-cadiest$&n edge-coloring:
coloring of edges of a cubic graph by edges of Petersen g@afas any three
neighboring edges are mapped to three neighboring edgbe éfdtersen graph.
In the next section we will show an equivalent formulationpaft 1 of Conjec-
ture 6.1.7 in terms of a certain cycle cover.

In the rest of this section we mention more conjectures dsagrthe struc-
ture of I'F mappings. Some of them have direct implication for the abbigg
conjectures, and a solution to any of them would bring lighthis area of graph
theory.
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Problem 6.1.8 ([19]) Is there an infinite antichain for orders, </? Explicitly,
is there an infinite set of graphs with foF;, (F'Fz) mapping between any two of
them?

An affirmative answer to this problem would apparently makerder to find
a small class of graphs to which every other graph maps. Nhatiearbitrarily
large finite antichains are known to exist B, mappings [19]. On the positive
side, Rizzi [76] made a conjecture about pacKifigpins, an equivalent formula-
tion (according to [19]) is as follows. Note thaty denotes an undirected graph
with two vertices anch parallel edges between them. Also recall Lemma 1.2.11

which particularly implies that fo(2k + 2)-edge-connected grapfi we have
F,Fy

K22k+1 7@ G.

Conjecture 6.1.9 (Rizzi [76]) Supposé&~ is a graph andk > 0 an integer. If

K21 B2, G then £E2 K21 In other words, no graph is incomparable
with K2¥+1in <7,

This conjecture is immediate fdr = 0; for k£ = 1 if follows from Jaeger’s
construction of a nowhere zero 4-flow in each 4-edge-coedegtaph. For gen-
eralk, an approach to it is a result of Jaeger [44] and its stremiiigeby DeVos
and Seymour [20].

Theorem 6.1.10Let G be a graph andk > 0 an integer. IfG is 4k-edge-
connected (or jusk ¢! 222, @) thenG 2225 K2+,

Note thatG' =22 K21 is equivalent withG =22 Cyyyy (Lemma 1.2.4);

in Theorem 4.1.3 we proved that under certain conditiend ™2 Cs, which may

be viewed as a dual form of Theorem 6.1.1040¢ 2.
Related notion (defined by Jaeger [44]) is thatafdular(2k + 1)-orientation

that is such orientation for which a constans aZ.x1-flow. It is known that a

graphG admits a modulaf2k+1)-orientation iffG ——= K25+ so the following

conjecture is a natural strengthening of Theorem 6.1. Mastproposed by Jaeger,
the extension is suggested in [19].

Conjecture 6.1.11 Let G be a graph andk > 0 an integer. IfG is 4k-edge-

connected (or jusk¥~1 2% @) thenG 22 K24+,

The general setting df ' mappings enables us to state a whole scale of claims
between the known and the open ones (we follow [19] in thisgm&ation). For
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Figure 6.1: The graphs.

example, lefis be the graph in Figure 6.1. It is possible to shaW < Vs <Z
K,4. By aresult of Jaeger, every 4-edge-connected graph haﬂlwem-zercm-
flow, therefore admits ah'F, mapping toK 4. On the other hand, if every highly-
connected graph maps IF, to K3, then a (weak but still open) version of case
k = 1 of Conjecture 6.1.11 is true; this would also be a weakeri@ersf Tutte’s
3-flow conjecture (Conjecture 6.1.2) with stronger conégtrequirement.

Thus, the following is a reasonable approach to a longstaratben problem.

Conjecture 6.1.12 ([19]) Is there an integek such that anyk-edge-connected
bridgeless graph admits aR 7, mapping tolVg?

6.2 FT and CDC

In this section we are going to inquire the intimate relatetween cycle covering
problems andt"T" mappings. Although we do not solve any of these problems,
hopefully the presented way to view CDC problems sheds saghé dn some

of the folklore observations. Moreover, in Theorem 6.2.7psesent an equiva-
lent formulation of Jaeger’s conjecture (Conjecture §,which seems not to be
known before. We start by a definition of (orientable) cyadeers.

Definition 6.2.1 LetG be a graph, leC = (C4, ..., C}) be a collection of cycles
in G. We sayC forms acycle double covefshortly CDC) ofG, if each edge off
is contained in exactly two of the cyclé§. We say that forms anorientable
cycle double covefshortly OCDC) ofG, if there is (for some orientation af if

G is undirected) a splittindC;", C;) of each cycle such that each edgeis in
exactly one of the sets;" and one of the se§; .
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We define a certain dual graphi® of G based on this cycle cover. The vertices
of G¢ are{1,...,t}. Incase of CDC we lefi, j} be an edge if2(C;) N E(C;) #
0. Inthe OCDC case(i, j) is an edge iff£(C;) N E(C]) # 0.

We say a CDC (OCDCY is a circular CDC (OCDC)if G€ is a circuit (an
orientation of circuit).

The following lemmata exhibit the relation @fT" mappings to cycle double
covers (the first one appears—ilrbeing a complete graph—already in [82]).

Lemma6.2.2 Let G, H be graphs, letd be loopless. Then the following are
equivalent:

1.6 F
2. Thereis a CD@ of G, such thaiG¢ c H.

In particular:

e Thereis a-CDC, iff ¢ 22 K.

e There is a circularn-CDC, iff G o, C;.

Lemma 6.2.3 Let G, H be graphs, letd be loopless. Then the following are
equivalent:

1.6 g

2. Thereis an OCDC of G, such thatz¢ c H.

In particular:

e There is a-OCDC of@, iff ¢ 2% K,.

e There is a circular-OCDC ofG, iff G o, C;.

Proof of Lemma 6.2.2 and 6.2.3: LetC = (C4,...,C;) be an (O)CDC of an
orientationG of G. Let ©; be the flow determined bg;, that isp;(e) = 1 if
e€ Crandp;(e) = —1if e € C; . If p;(e) = 1andy;(e) = —1 then we define
f(e) =ij. (In case of CDC we compute if, so—1 = 1 and we may not—and
don't need to—specify orientation ¢f(e).) We definedf : E(G) — E(GC). If
7; IS a vertex-tension o{ determined by vertexthenr; o f = ¢;, thusf is
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indeed an/’T mapping, provin@g = 1. The reverse implication is easy: take
vertex-tensions;, and letC; be the support of the flow; o f. a

A corollary of these results (and of Lemma 1.2.4) is that ddegnodular
(2k+1)-orientation (discussed before Conjecture 6.1.11) cpomeds to a circular
(2k + 1)-OCDC.

As an application of our formulation of CDC problems we regrthe follow-
ing well-known property of cycle double covers.

Proposition 6.2.4 Any graph with a 4-CDC admits a 3-CDC as well.

Proof: If G admits a 4-CDC, the& o, Ky ASKy I, K3 (see Section 1.3),
we yield by compositiorts I, K5 which we wanted to prove. O

The fact thatK, 5& K3 (Lemma 2.2.5) clearly explains, why there is no

analogue of Proposition 6.2.4 for oriented covers.

Next, we turn our attention to graphs embedded on surfabes¢ader may
consult [62] for an introduction to graph embeddings). We saLemma 1.2.4
that duality forms arF'T" andT'F mapping between a plane graph and its dual.
The following result generalizes this for a general surface

Lemma 6.2.5 Let G be an undirected graph embedded on a surfdi@nd letG*
be its dual. Then

1. ¢ £, ¢+, and

2. ¢ =, G+ if Sis orientable.

Proof: Letd be the mapping that assigns to an edgd# GG an edgec* of G*
which connects the faces thatseparates; if5 is an orientable surface, then we
choose such orientation 6f andG* that each edge af* connects the face to the
left of e to the one to the right of (not excluding the possibility tha&* contains
loops, in which case the two above-mentioned faces are iretaal).

Suppose that this is the case; we will prekies F'T7 by using Lemma 1.2.9.
Let 7 be an elementar¥-tension determined by a vertexof G. Suppose for the
ease of notation that all edges adjacent &rve oriented out of it, so thafe) = 1
if e is adjacent ta andr(e) = 0 otherwise. By definition of the dual graphy is
aZ-flow, andd is F'T7,.
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If Sis anon-orientable surface, then we cannot choose ornient@itG andG*
as above. Still, an image of&-tension is &@.-flow, as in this case change of
sign does not matter. a

Lemma 6.2.5 explains, why the next conjecture is a genat#iz of Conjec-
ture 6.1.3 and 6.1.4. Indee@; is loopless if the embedding 6f is circular.

Conjecture 6.2.6 ([32, 56, 45])Any 2-connected graph admits a circular 2-cell
embedding on an (orientable) surface; that is such embeddimhich each face
is homeomorphic to a disc and its boundary is a circuit.

Another easy consequence of Lemma 6.2.5 (remarked alrgaf82}) is the
fact that planar graphs admit a 4-OCDC: by the 4-color thadbree planar dual of
a graphG admits a homomorphism (and therefor@&; mapping) toK 4, so we
have

FT, TTy

Figure 6.2: Duality ofKs and the Petersen graph on projective plane.

There are more interesting applications, though. Fromreigu2 it follows

that K¢ and the Petersen graph are dual on projective plafiais implies that

pt 72, Kg, consequenthPt (and by composition any graph that admits an

F F» mapping toPt) admits a 6-CDC (confirm Proposition 6.1.6). This is in itsel

not exceedingly interesting, & admits even a 5-CDC and therefdpPe I,

Ks5. By a closer look, we can however find the following reforntigia of the
first part of Conjecture 6.1.7. This in particular means thtite CDC conjecture

1The author is thankful to Matt DeVos for making him aware o #mbedding.
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was resolved in the stronger formulation given by the nexbtbm, then Berge-
Fulkerson conjecture would follow from it.

Theorem 6.2.7LetV (Kg) = {1,2,...,6}. The following are equivalent.
1. ¢ = py

2. there is a mapping : G 25 K such thatf~1({12, 23,34, 45,51})is a
cycle.

3. there is a 6-CDC by cycles,, ..., Cgs such that
(C1NCy)U(CanC3)U (CsnNCy)U(CanNCs)U(Cs5NCYh)

is a cycle, too.

Proof: Letd : Pt 222 K¢ be the duality mapping, Ief be the cycle space of

Pt and7 the cutspace oK. Asdim F = 6 while dim 7 is only 5,d is notT F5.
Indeed, the non-contractible circuit 8t (emphasized in Figure 6.2) is mapped
by d to the emphasized 5-circuit dfs. With proper notation, the edge set of
this circuit of K is A = {12,123, 34,45,51}, we let7’ be the space generated by
TU{xa}. By considering the dimension we see that the bijecfisandsF to 7.
As it is enough to verify the condition of Definition 1.2.1 grfbr generators of
the whole space, equivalence of 1 and 2 follows.

If fisamapping from part 2, then preimages of the elementatgx«tensions

satisfy conditions of 3. In the other direction, the CDC deti@es a mapping

T2, K4 (as in Lemma 6.2.2) and the extra condition in 3 exactly psdbe

extra condition in 2. O

We finish this section by a conjecture @1¥" mappings. We saw in Proposi-
tion 1.2.12 that ifH = Cay(M, B) is a Cayley graph, thefiT); mappings taH
precisely correspond tQM, B)-tensions, justifying the terni/-valued tensions
from Section 1.1. The dual version is trueHf is an odd cycleK 3 or K, and if
Conjecture 6.2.8 holds generally (or at leastfbe= Kg) then Cycle double cover
conjecture follows from it.

Conjecture 6.2.8Let H = Cay(M, B) be a Cayley graph. Then the following
are equivalent.

1. g

2. G has an(M, B)-flow
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6.3 Building F'T" mappings from elementary ones

In this section we develop a method to constructFdi mapping as a sum of
‘elementaryF"T" mappings’ (Theorem 6.3.2), in a similar way as a flow is a sum of
elementary flows (see Section 1.2.1) To be able to do this, ust farther extend
the notion of F'T" mappings.

We say a mapping is an F'T; mapping fromG to H if f mapsE(G)
to M) and for every cu€ = (C+, C~) the mapping

Y = > fle) (6.1)

eeCt ecC—

is anM-flow on H. (For M = Z, this may be expressed shortly; . f(e)is a
cycleinH.)

If his an edge off then we lety;, € MF(1) be the characteristic function cor-
responding tdi, thatisx,(¢’) = 1if ¢/ = h andx,(e’) = 0 otherwise. Suppose

g:G T, i and putf(e) = xg4e)- If 7 is cut-tension corresponding to a ault
then the expression (6.1) is exactly the imagehence a flow by Lemma 1.2.9.
ConsequentlyF'T" mappings are a special caseld” mappings; or, in the other
way around /T mappings form an ‘algebraical extension’ Bf" mappings, i.e.,
they form a structure that allows adding and multiplying byoastant. In Theo-
rem 6.3.3 we will see the converse reduction: how to obtaif@mapping from
FT mapping.

We let ( denote the zero oM #(1) and we define operations for functions
from E(G) to M F(H) coordinate-wise. The following lemma shows ti4k map-
pings form the same structure as flows, namelyy&module. We lef'T (G, H)
denote the set of al"T; mappings fronG to H.

Lemma 6.3.1 LetG, H be directed graphsy/ a ring. The sett'Ty, (G, H) is an
M-module.

Proof: Clearly ((MPUD)EE) 4 ((S)) is anM-module, so we only have to
show thatF'T,, (G, H) is closed on addition and multiplication by elementd/6f
This follows directly from the fact that whenevét g are M-flows on H and
m € M thenf 4+ g andm - f are M -flows as well. a

Pick a circuitC = (C*,C~) of G and an edgér € E(H). We define a



6.3. BUILDING F'T MAPPINGS FROM ELEMENTARY ONES 117

mappindfc,» by
Xn, ifeeCt
fqh(e) =< —xnp, feeC™
0, otherwise.

Further, pickg € E(G) and a circuitD = (D*,D~) in H. Letyp be an
elementary flow aroun®, thatispp(e) = 1if e € DT, pp(e) = —1if e € D™
andyp(e) = 0 otherwise. We define a mappifigp by

oty = {20 o=
& 0, otherwise.

It is easy to verify that mapping&: , andf, p are F'T), mappings from&
to H. We call each such mapping aementaryf'T,, mapping The following
theorem finishes the parallel between flows &Mmappings.

Theorem 6.3.2 Supposé&~, H are directed graphs, and/ a ring. Then the mod-
ule FTy (G, H) is generated by elementafyT,; mappings. Explicitly, for every
f € FTu(G, H) there arek,l > 0, edgesy; € E(G), h; € E(H), circuits C;
of G and D; of H and finallya;, b; € M (wherel < i < kandl < j <) such
that

k l
F=Y aig.p, + Y bifc,n, - (6.2)
i=1 j=1

Proof: We use induction by the number of edgesbflLet f be anF"T), mapping.
First supposg (e) = 0 for somee € E(G). Thenf(e) contributed) to each term
of expression (6.1), thus the restrictionofo G \ e is an F'T), mapping, too. So
we may assume thaft(e) # 0 for everye. Pick onee € E(G). We distinguish
two cases.

Case leisacutofG:
In this case f(e) is a flow of H, therefore we can writg(e) as) _, m:pp, for
some circuitsD, of H and corresponding flowgp,. Now f — >, mufc p, is an
FT) mapping that is zero on, therefore it is arf"T,; mapping onG \ e and we
may use induction.

Case 2.cis part of a circuit C of G:
[ =2 herm(f(e))(h) - fo,n is anF Ty mapping that is zero oa, therefore we
may use induction as in Case 1. O
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So far, we have shown how to generatef@hmapping from elementary ones.
Now we are going to see how can we obtain ‘nornfél” mappings (and thereby
CDC's) from F'T mappings. This is of course not possible for ed¢h map-
ping (as, e.g., the contant mappingds an F'T mapping between any pair of
graphs); we have to restrict the considefédl mappings somehow. We will say

that a mapping’ : G 224 H is simpleif for every e € E(G) the mapping
f(e) is a characteristic mapping of some edgec E(H), thatisf(e) = xu,-

Furthermore, we say a mappirfg: G I, 17 is almost simplef for every e
mappingf (e) differs from a characteristic function of an edge by some flinat
is for some edgé. € E(H) and M-flow ¢, on H we havef(e) = xn, + @e.
(Remark that in the caskl = Z, this simply means thaf(e) is a characteristic
function of a postman join.) We definée) = h..

Theorem 6.3.3Let G, H be directed graphs)M a ring. Then the following are
equivalent.

1. There is a mapping’ v, g,
2. Thereis a simple mapplr@ H.

3. There is an almost simple mapp@g—» H.

4. There are circuit€’; of G, edges:; of H andb; € M such that the mapping
Zj b; - fc; n, is almost simple.

Proof: Suppose 1 and take some: G —— TV, H. The mappingf : e —
Xg(e) 1S FTr (by Lemma 1.2.9) and simple, proving 2. By the same argument,
mappingg = f is FThy; wheneverf is a simpleF'T,; mapping, so 1 and 2 are
equivalent. Implicatiore — 3 is obvious, for the reverse one we only observe
thatif f : G 22 H is almost simple andf(e) = >eme(e) - ¢p,(e then

[ =22 imi(e) - fp,(c) is simple andF'T. Finally, 4 = 3 follows by
Theorem 6.3.2. For the converse itis enough to considemnaostisimple mapping
expressed in form (6.2): as the first sum assigns a flow to agw efd~, the second
sum is almost simple, finishing the proof. a

We illustrate use of Theorem 6.3.3 by two applications. Thst fine is the
following well-known result.

Proposition 6.3.4 Any hamiltonian graph has a 3-CDC.
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Proof: Let GG be a hamiltonian graph ar@ a Hamilton circuit in it. According

to Lemma 6.2.2 we need to sha —2 Kj. Let E(K3) = {a,b,c}. For

every edgee € E(G) \ C we letC, be a circuit containing and no other edge
of E(G) \ C. We define

f=1fca+ Z fo.n-

e€E(G)\C

For anye € E(G) we havef(e) = xq Of X + Xb, thereforef is an almost simple
FT, mapping. An application of Theorem 6.3.3 finishes the proof. a

This easy proposition was extended in various ways: Ta@2] §#&d God-
dyn [26] proved that graphs with a Hamilton path admit a 6-C306ddyn [26]
and Haggkvist, McGuinness [33] construct a CDC, among, ésgraphs which
have a spannig subgraph that is a Kotzig graph. We want tesstinat the original
proofs of these theorems give the same list of cycles as otlratde Still, we be-
lieve that our approach explains better the structure cfelpeoofs; we attempt to
exhibit this on a more complicated case below.

We say that a graph iskotzig graphif it is possible to properly color its edges
so that each pair of colors induces a Hamilton circuit. Famegle, it is easy to

provide such coloring of3 and K. More generally, if am-regular grapn (for

oddr) is Kotzig, thenH Fh, K% (but the converse implication is false).

Proposition 6.3.5 Let G be a cubic graph and{ its spanning subgraph, so that
H is a subdivision of a cubic Kotzig graph. Théhadmits a 6-CDC.

Figure 6.3: lllustration of proof of Proposition 6.3.5.



120 CHAPTER 6. FF, FT & CDC

Proof: We are going to construct an almost simpl&, mapping toKg (with
edges denoted as in Figure 6.3). Consider the Kotzigiangé-edloring of the
cubic Kotzig graph and extend it fd. So obtained coloring is not proper, but still
each pair of colors induces a Hamilton circuit. Supposestiiee colors are, b,
andc and definef (e) for e € E(H) accordingly to obtain a simplET,,; mapping

from H to K3. We extend it to a mapping : G T2, K3 by puttingf(e) = 0 for
e € E(G) \ E(H) (hencef is not simple anymore). Next, we aim to modifyto
. . FT
get an (almost) simple mappirg — K.
To this end, for each edgec E(G) \ E(H) we letC. be some circuit con-
taininge, such that all edges ii. \ e are elements of/( H) which use only two
of the colorsa, b, ¢, say, they do not use for this choice ofe. Putg, = fc_ 4.

Now,
f+ > g

c€E(G)\E(H)

is almost simple: edges outsideMfare mapped to characteristic function{of},
{B}, or{C}, and edge off which was colored, say, by the Kotzigian coloring
is mapped to characteristic function of one{ef}, {a, B}, {a,C}, {a, B,C}. It
remains to look at Figure 6.3 to see that each of these sefgistman join. O



Chapter 7

Miscellanea

7.1 Codes andy/xrr

In this section we study the relationship betwé&&h, mappings and homomor-
phisms by comparing the ‘chromatic numbers’ that these mnggpdefine. Sur-
prisingly, error correcting codes come into play. Recadl tkefinition of a notion
parallel tox (G) that we started to study in Section 2.3.2,
xr7r(G) = min{n; G T2, K,}

(we concentrate on the cadé = Z, in this section). For random graphs, Corol-
lary 2.2.9 implies thakrr(G) = x(G) a.a.s.

For general grapliz, Lemma 2.1.2 impliecrr(G) < x(G), on the other
hand by Corollary 2.3.9 we haverr(G) > x(G)/2. More precise information

about behavior ok (G)/x1r(G) is desirable.

Consequently, leg,, = {G | G EELN K, } and studyx(G) for G € G,,.. By

Lemma1.3.1( € G, is equivalent ta hom, A(K,). In other words,

e A(K,) € G,; and

hom

o foreveryG € G,, we haveG — A(K,,).
This reduces the problem of behaviongfr(G)/x(G) to special values off.
Problem 7.1.1 Study the sequeneg = x(A(K,,))/n, in particular determine

its limes superior.

121
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The chromatic number oA(K,,) was studied (with the same motivation)
in [55]. In [34], the connection with injective chromatic mber of hypercubes
is presented. In [22] graphs(K,,) are studied (as a special type of graphs arising
from hypercubes) in the context of embedding of trees. Ifagmted there that
X(A(Ky)) > 13 (a result that follows by Delsartes’ LP bound for size of erro
correcting codes, [18]). There is also a section on the top[d8] (‘chromatic
number of cube-like graphs’).

If we view the vertices ofA(K,,) as{0,1}" then an independent set forms a
‘code’—a set where no two elements have Hamming distanceith. 8&me more
work we can use results from theory of error-correcting soddis approach was
taken in [55] and [34]. After using [7] they obtained the @wlling result.

X(A(K,))=2F  for2¥ —3 <n<2Fandk > 2 (7.1)

In [34] an observation on covering by codes is used to showfahewing

bound:
X(A(K2nt1)) < 2x(A(Kny1)) . (7.2)

According to [48], Gordon F. Royle did shop(A(Ky)) < 14 by a computer
search. By relation (7.2), this impliegA(Kyx 1) < 2% . 7/4. Consequently
Tok11 S 7/4

On the other hand, Best conjecture [6] claims a result extentthat of [7],
namely that shortened Hamming code of siz&s optimal wheneves/4 - 2F <
n < 2F (‘half of the time’). This would imply an extension equalify.1), namely
that for suchn, x(A(K,,)) = 2*. Consequently for minimal such we would
haver,, = 4/3. On the other hand;;» = 1 for everyk. In this context, we can
speculate: i$imsupr, = 4/3?

We add a new piece of information to the picture: if we restiar attention
to sparse graphs we see the same set of valge$G)/x(G).

Lemma7.1.2 Letn, [ be integersp > 3. There isG € G, such thaty(G) =
X(A(Ky)) andg(G) > L.

Proof: Suppose((A(K,,)) = t, henceA (K 7L> K; 1. Lemma3.1.11 gives

usG with g(G) > I such thatG hom, A(K, andG Qﬂ K,_;. HenceG € G,
andy(G) >t — 1. On the other hang(G) < x(A(K,,)) =t. O

Remark 7.1.3 In [55] (and Corollary 2.3.9) it is proved that if we defingr, by
means ofl Ty, mappings, therrr, (G) = x(G) for every graph. On the other
hand, for finite ringsM the behaviour ofyrr,, /x should be similar to the case
M = Zs.
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7.2 Influence of the ring

In this section we study how the notion &fY,,; mapping (and also af/-homo-
tens graph) depends on the ring. Although the existence ak'Y,, mappings
seems to be strongly dependent on the choic@d/ofwe prove here (in Theo-
rem 7.2.5) that this dependence relates only to the cydtcatture of)M .

Throughout this sectior;, H will be directed graphsf : E(G) — E(H) a
mapping, andV/, N finitely generated rings. We start, however, by explanation
why we can restrict to finitely generated rings instead ofigigas usual in study
of flows and tensions on graphs) abelian groups.

Most of the time we study finite graphs so we can restrict otengéibn to
finitely generated groups—clearfyis XY, iff itis XYy for every finitely gen-
erated subgroup a¥/. Consequently, we can use the classical characterization o
finitely generated abelian groups (see, e.g., [54]) givethbynext theorem and, in
particular, we can define a ring structure on each of the densil groups.

Theorem 7.2.1 For a finitely generated abelian grould there are integers, k,
Bi,mi (i=1,...,k)so that

k
M~z x [[z. (7.3)
i=1

For a ringM in the form (7.3), denote (M) = oo if > 0, otherwise let
n(M) be the least common multiple §f1, ..., 74}

As afirst step to complete characterization we consider @alpsed question:
given anX'Y); mapping, when can we conclude that itNig" as well?

Lemma7.22 1. If fis XYz thenitisXY), foranyM.

2. LetM be a subring ofV. If fis XYy thenitisXY),.

Proof: 1. This appears (fdf'T" and F'F' mappings) as Theorem 4.4 in [19], the
proof there works fofl' F* and F'T', too.

2. Lett be anM-tension/flow onH. — By this we mean that it = T
thent is a tension, ifY = F thenr is a flow. We will use this slightly am-
biguous expression throughout this chapter instead ofgusirms F-mappings
andT'-mappings (to mean flows and tension). The latter approasdd(in Sec-
tion 1.2) is formally more correct, on the other hand nondsad and so perhaps
confusing. — AsM < N, we may regard as an/N-tension/flow, hence f is an
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N-tension/flow onGG. As it attains only values in the rangeofhence inM, it is
an M -tension/flow, too. a

Lemma 7.2.3 Let M1, M> be two rings. Mapping is XY, and XY, if and
only if it is X Yr, x as, -

Proof: As M;, M, are subrings of\/; x Ms, one implication follows from part 2
of Lemma 7.2.2. For the other implication lebe anM; x M,-tension/flow onA.
Write 7 = (71, 72), wherer; is an M;-tension/flow onH. By assumptiony; f is
an M;-tension/flow on, consequently f = (71 f, 72 f) is a tension/flow too. O

The following (somewhat surprising) lemma shows that we i&strict our
attention to cyclic rings only.

Lemma7.24 1. Ifn(M) = ocothenfis XYy, ifand only if itis XY7.
2. Otherwisef is XY)y if and only if itis XY, (as).

Proof: By previous lemmata. Note thdk, ,) is a subrings of\/ = Hle Zf;;.
a

By a theorem of Tutte (see [21]), the number of group-valuadhere-zero
flows on a given graph does depend only on the size of the gthapis§, surpris-
ingly, it does not depend on the structure). Before procegiti the main direction
of this section, let us note a consequence of Lemma 7.2.£hwbian analogy of
the Tutte’s theorem.

Theorem 7.2.5Given graphs7, H, the number oX'Y;, mappings fronG to H
depends only on(M).

Lemma 7.2.4 suggests to define for two graphs the set
XY (G,H)={n>1|thereisf : E(G) — E(H) such thatf is XY,,}
and for a particulaf : E(G) — E(H)
XY(f,G,H)={n>1]| fisXY,}.

Remark that most of these sets contairZ1:is a trivial ring, so any mapping
is XY,. Thereforel € XY (f,G, H) foreveryf : E(G) — E(H), whilel €
XY (G, H) iff there exists a mapping(G) — E(H). This happens precisely
whenE(H) is nonempty ot (G) is empty.
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Lemma 7.2.6 Either XY (f, G, H) is finite or XY (f, G, H) = N. In the latter
casef is XYz.

Proof: It is enough to prove thaf is XYz if it is XY, for infinitely many
integersn. To this end, take #&-tension/flowr on H. As 7, : e — 7(e) mod n is
aZy-tension/flow;r,, f = 7f mod n is aZ,-tension/flow whenevef is XY,,. To
showr is aZ-tension/flow consider a circuit/cat and lets be the %-sum’ (inZ)
along/acrosg’. As s mod n = 0 for infinitely many values of:, we haves = 0.
O

Any f induced by a homomorphism provides an example wiigref, G, H)
is the wholeN. WhenG, H are planar graphs, using duality (Lemma 1.2.4) pro-
vides us with instances of Y (f, G’, H') = N for every type ofXY mapping.
For finite sets, the situation is more interesting. By thetribgorem the sets
XY (f,G, H) are precisely ideals in the divisibility lattice.

Theorem 7.2.7 LetT be a finite subset df. Then the following are equivalent.
1. There are, H, f suchthatl’ = XY (f,G, H).

2. There ish € N such thatT is the set of all divisors af.

Proof: First we show that 1 implies 2. The sEthas the following properties

(i) If a € T andb|a thenb € T. (We use the second part of Lemma 7.2.2 if
dividesa, thenZ;, < Z,.)

(ii) If a,b € T then the least common multiple af b is an element of". (We
use Lemma 7.2.2 and Lemma 7.2.3l i lcm(a, b) thenZ; < Z, x Zy.)

Denoten the maximum ofl". By (i), all divisors ofn are inT. If there is
ak € T that does not divide: thenlcm(k, n) is element ofl” larger thann, a
contradiction.

For the other |mpI|cat|on lef be the only mapping fronC to KQ Then
we haveTT(f, Cn, Kg) T mappingf is T'Ty, iff for any a € Zj, the constant
mappingE( n) — a iS aZg-tension; this occurs precisely whérdividesn. For
otherX'Y mappings we again consider the corresponding dual graphs. O

Let us turn to description of sef§Y (G, H). We stress here th&t, H are
finite graphs—in contrary with most of other results, thig @not true for infinite
graphs.
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Lemma 7.2.8 Let G, H be finite graphs Then eitheXY (G, H) is finite or
XY (G, H) = N. In the latter case’ % H.

Proof As in the proof of Lemma 7.2.6, the only difficult step is to shitnat if

G 2, H for infinitely many values of:, thenG 2 H. AsG andH are

finite, there is only a finite number of possible mappings leetwtheir edge sets.
Hence, there is one of them, sgy: E(G) — E(H), that isXY,, for infinitely

many values of.. By Lemma 7.2.6 we havé : G -2 H. O

We start the characterization of s&f&” (G, H) by observing that the analogue

of Lemma 7.2.3 does not hold: there is &fi,; mapping froma; to 87 for
M = Zs (mapping induced by a homomorphism of the undirected dstaind
for M = Zs (e.g., a constant mapping), but not the same mapping for hettte
there is naX'Yz, xz, mapping. We will see that the selsY (G, H) are precisely
down-sets in the divisibility poset. First, we prove a lemthat will help us to
construct pairs of graph§, H with a givenXY (G, H). Integer cone of a set
{51,...,8:} C Nistheset{>!_, a;si | a; € Z,a; > 0}.

Lemma7.2.9 LetA B be non-empty subsets®fa € N, defineG = J,., C fe}
andH = Uy Cb. Then there is afi'T;, mapping fromG to H if and only |f

A is a subset of the integer coneBfU {n} .

Proof: We use Lemma 1.2.9. Consider a flgyy attaining value 1 oral and 0
elsewhere. Algebraical image of this flow is a flow, hence ({m®dulon) a sum

of several flows along the cycle@b, implying « is in integer cone ofB U {n}.
On the other hand i, = >, b; + cn then we can map anyedges ofC|, to one

(arbitrary) edge offf, and for each any (‘unused’)b; edges bijectively toa,i.
After we have done this for eache A we will have constructed af’7;, mapping
from G to H. a

Theorem 7.2.10LetT be a finite subset @f. Then the following are equivalent.
1. There areiz, H suchthatl' = XY (G, H).
2. There is a finite set/ C N such that

T ={keN;(3m e M)klm}.
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Proof: If T is empty, we také/ empty. In the other direction, ¥/ is empty we
just consider graphs such that /) is empty andt'(G) is not. Next, we suppose
M is nonempty.

By the same reasoning as in the proof of Theorem 7.2.7 we s¢& the T
andb|a thenb € T. Hence, 1 implies 2, as we can také = T (or, to makeM
smaller, letM consist of the maximal elementsBfin the divisibility relation).

For the other implication we again suppas&” = T'T, for otherXY map-
pings we take duals of the (planar) graphs we will constrie pick a prime
p > 4max M and letp’ € (1.25p, 1.5p) be any integer. Ledt = {p,p’} and

B={p—-mimeM}u{p'—m;me M};

note that every element a8 is larger thanﬁp. As in Lemma 7.2.9 we define

G =Uaca Co H = Uben C),. We claim thatXY (G, H) = T. By Lemma7.2.9
itis immediate thaiX'Y (G, H) 2 T For the other direction take € XY (G, H).
By Lemma 7.2.9 again, we can expresandyp’ in form

t
> biten (7.4)
=1

forintegerse,t > 0, andb; € B.

e If ¢ > 2 then the sumin (7.4) is at leakHp; hence neithep norp’ can be
expressed with > 2.

e If t =1 then we distinguish two cases.

e p = (p—m)+ cn, hencen dividesm andn € T'.

ep=(p —m)+cn, hencep’ —p < m. Butp’ —p > 0.25p > m, a
contradiction.

Considering’ we find that eithen € T orp’ = (p — m) + cn.

e Finally, considett = 0. If p = cn then eithem =1 € t orn = p. (We
don’t claim anything abouyt’.)

To summarize, i € XY (G, H)\ T then necessarily = p. Forp’ we have only
two possible expressions, = cn andp’ = (p—m)-+cn. We easily check that both
of them lead to a contradiction. The first one contradicsp < p’ < 1.5p. Inthe
second expressian= 0 impliesp’ < p whilec > 1impliesp’ > 2p—m > 1.75p,
again a contradiction. O
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In contrast with the results above, if we put extra condgion the mapping
then the influence of the ring is supressed. We will find thet nesult useful in
Section 7.4.

Lemma7.2.11Let G, H be directed graphs and{ a ring that is not a power
of Z,. Suppos¢ : E(G) — E(H) is a bijective mapping that (87, and F F;.
Thenf isTTy, and F'Fy,.

Proof: First, we observe that maps blocks of7 to blocks of H. This is im-
mediate if the block is a bridge. It remains to prove thafifis a 2-connected
subgraph of then f(E(G")) induces a 2-connected subgraphfbfi.e. that any
two of its edges are contained in a common circuit. Rickes € F(G’), consider
a circuitC' that contains both of them and tfi¢-flow ¢ determined byC'. Map-
ping f is T'Tys and sopy is anM -flow. Consequently there is no bridge fiC).

If f(C)is 2-connected then we are done. Otherwisg;ldte a 2-connected com-
ponent and observe that restrictionyf to C’ is anM-flow. Now ¢ o f is the
restriction ofp to f~1(C"), hence it is not a flow, a contradiction.

We proved that the image of a block 6f is a part of a block ofH. By
using f~! we prove the converse, so we may consider restrictiofi of these
blocks separately and suppose thatH are 2-connected for the rest of the proof.
(If both G and H are a single edge then the statement is immediate.)

As M is not a power 0¥, there is & > 3 such thatV/ > Zj, hencef isTT},
and F'F. To provef is F'Fy, we proceed by Lemma 1.2.9. Takes V(G) and
let 7 be elementaryZ-tension determined by. We may suppose that all edges
are oriented out ob. Sincer is aZ-tension,; is aZi-tension, as well. Let
p: V(H) — Zj be such that; = op. We letE; = {zy € E(H) | p(z) =
p(y) —1 =1} (fori € Zy)andZ = {xy € E(H) | p(x) = p(y)}. It follows
that each edge adjacentitds mapped to some&; and the other edges are mapped
to Z. Now consider edges;, e; adjacent ta and a circuitC' containing both of
them. Lety be the elementarg,-flow determined by’. As f is T'T}, the image
@y is aZy-flow and sincek > 3 this implies that botfe; ande, map to the same
setE;, suppose tdFy. As this applies for all edges adjacentutpit follows that
the potentiap is such thatFy U Z covers all edges off. Consequently, if we let
7' = §zp be the difference o in Z (we are not counting modulo), then in fact
7' = 74, hencery is aZ-tension, as required. To prove thais 777 we consider
the inverse mapping and show (as above) thatitis,. O

We finish this section by a result that relates the properbeaig)/-homotens
for different ringsiM.
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Theorem 7.2.12Let G be a finite graph.
1. Gis leftZ-homotens if and only if it is leff,,-homotens for some.

2. If G is right Z,,-homotens for some then it is rightZ-homotens.

Proof: By Lemma 7.2.2 any"T7 mapping isI'T,, for eachn; this proves part 2
and one implication of part 1. To prove the other, détbe left T'Tz-homotens
graph and suppose, for the sake of contradiction,¢hat not7'7,,-homotens for
any n. By Proposition 2.1.6 this means that for a fixed finite grdpland for

everyn there areél'T,, mappingsy,, : G TTn, | that are not induced. AS, H
are finite, there is a mapping: £(G) — E(H) thatis equal tg,, (and so isI'T},)
for infinitely many values ofi; henceyg is 7Ty, by Lemma 7.2.6. This impliegis
induced, a contradiction. O

7.3 T'T-perfect graphs

For every graplt, its chromatic numbeg(G) is at least as big as the size of its
largest cliquew(G). Recall, that a graphy is calledperfectif x(G') = w(G’)
holds for every induced subgragH of G. A graph is calleBergeif for no odd

1 > 5 doesG containC; or C; as an induced subgraph. It is easy to see that being
perfect implies being Berge; the so-called Strong perfeaply conjecture (due to
Claude Berge) claims that the opposite is true, too. Pedexgths have been a
topic of intensive research that recently lead to a proof §ifThe Strong perfect
graph conjecture.

As a humble parallel to this development we define a gré@pto be 77T-
perfect if for every induced subgrapf’ of G we haveyr,(G’) < w(G’) (defi-
nition of x ., (G’) appears before Corollary 2.3.9). Equivalenlyis T'T-perfect
if each of its induced subgraplt& admits al'T» mapping to its maximal clique.

Note that we cannot require,(G’) = w(G’) sincek, T, Ks, and there-
fore xrr(K4) = 3, whilew,(K4) = 4.

As any homomorphism inducegd mapping (see Lemma 2.1.2),-(G’) <
x(G’) holds for every graplir’. Consequently, every perfect grapi/i¥’ perfect.
The converse, however, is false. For exampledet C;. GraphG itself is
not perfect. On the other hang.~(G) = 3 and every induced subgraph &f
is Berge, hence perfect, hen¢d -perfect. Let us stud{'T-perfect graphs in a

Imore precisely]"T»-perfect, but we consider onliyT, mappings in this section
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similar manner as Strong perfect graph theorem does foegegfaphs. To this
end, we define a grapf to becritical if G is notT'T-perfect, but each induced
subgraph of7 is. We start our approach by a technical lemma.

Lemma 7.3.1Let/ > 3 be odd. Cycle”; is notTT-perfect. GraphC) is T'T-
perfectifand only if = 7.

Proof: Clearly x++(C;) = 3 > w(C;). GraphC; was discussed abové;s
is isomorphic toCs. As X( ) = 5 and asK}, is right Z.-homotens, being a
Zy-graph, we havey.(Cy) = 5 > w(Cy). Itis easy to verify that graph§
for I > 13 are nice. Thus they are homotens and TiGt-perfect, since they are
not perfect. The only remaining case is the gr&ph. This is not nice, on the
other hand, every edge is contained Kgand all K5's are ‘connected’'—there is
a chain of all 11 copies af5 such that neighboring copies intersect ika. It

follows thatC'; is homotens, in particula®’; ﬂ» Ks. O

Corollary 7.3.2 For every odd > 3 graph C; is critical; if [ # 7 thenC| is
critical, too. Moreover graphss;, G, andGjs in Figure 7.1 are critical.

Proof: We sketch the proof off; being critical. We havg (G,) = 1+ x(C7) =
5, therefore Corollary 2.3.9 impliegrr(G1) = 5 > w(G1) andG; is notT'T-
perfect. LetG” be an induced subgraph 6%. If G’ = C’; thenG’ is TT-perfect;
otherwise, it is a routine to verify thdt’ is Berge, consequently perfect and-
perfect. a

We do not know how many other critical graphs there are, nehéithere is
an infinite number of them.

7.4 TT and FF mappings as invariants

In this section we will study how can the numberddf (or F'F') mappings serve

as asystem of invariants-that is, to what extent do these numbers determine the
graph. (We will consider any finitely generated ring throughout this section
and omit the subscript itX Y},.) Our guidepost will be the following theorem of
Lovasz [57].

Theorem 7.4.1LetG, H be directed graphs such that
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Figure 7.1: Several critical graphs that are not cyclesheeitomplements of cy-
cles. The dashed lines denote preciselyrtbr-edgesof the graph.

1. for every graphF’ the number of homomorphisms frafhto G and to H
equal;or

2. for every graphF’ the number of homomorphismskbfrom G and fromH
equal.

ThenG and H are isomorphic.

Lovasz did use his theorem to find ‘cancelation propertasgraphs: he
proved (among else) that the gralis determined by’ x G wheneveC contains
a loop; so we may, in a sense, divide by such graphOur results have to wait
for such spectacular application (remember that in Prdijpos8.1.12 we proved
that the categorgrarr does not have products). Still, it provides an interesting
comparison of homomorphisms afid” mappings.

We start by considering what is the proper measure of ‘bé&iegame graph’in
our situation, that is which relation should replace isgamism in the conclusion
of Theorem 7.4.1. We writ&/ = H if there is a surjectivd”l’ mapping fromG
to H and fromH to G. We let M (G) be the cycle matroid of a graph. The
following lemma lists several important equivalent pradjesy.

Lemma 7.4.2 The following are equivalent for graplis, H.

1. G = H, i.e., there is a surjectiv@ T mapping fromG to H and fromH
to G;

2. there is an injective"T’ mapping fromG to H and fromH to G;

3. there is a bijectionf : E(G) — E(H) such that bothf and f~! are
TT mappings;
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1'. there is a surjectivéd” F' mapping fromG to H and fromH to G,
2'. there is an injectivd” F' mapping fromG to H and fromH to G;

3. there is a bijectionf : E(G) — E(H) such that bothf and f~! are
FF mappings;

4. M(G) and M (H) are isomorphic; ifM is not a power o, then orienta-
tion of edges is preserved by this isomorphism.

Proof: Assume 1, and take surjective mappings G AN | andg : H 1T,
G. It follows that|E(G)| = |E(H)|, hencef andg are in fact bijections. Let
Xe € MFP(G) pe the set of all\/-tensions on, similarly Xz. By definition
of T'T mappings,f~! maps elements of ;; to X and it is an injection (ag is a
surjection), thu$X 5| < | X¢|. Similarly, g~! gives us| Xz | > | X¢|. Therefore
| X | = |X¢|andf~1is abijection ofX ;; and X, sof~!isTT and 3 is proved.
The reverse implication is trivial (we can take= f~'). Equivalence of 2 and 3
is proved in exactly the same way.

The equivalence of 1'-3’ follows as for 1-3. By Lemma 1.2.9ijdtive
mapping isT'T iff its inverse isF'F, therefore 3 and 3’ are equivalent, too.

Finally, 3 and 4 are equivalent. i/ = Z, (or Z%) then by Lemma 1.2.9 the
condition in 3 is equivalent tg' being isomorphism betweeW (G) and M (H).
For otherM the condition 4 implies 3 fof'7z mappings, hence f&F'T,, as well.
For the remaining implication we use Lemma 7.2.11.

If G, H are undirected, we proceed similarly, we present the onhtrivaal
part: 1 = 3. By Proposition 1.2.2 we have orientatio$ of G and H', H"
of H such that there are surjective (thus bijective) mappifigsG’ ITv, g
andg : H" T2, G'. As in the directed case we find thiat /| < | Xg/| <
| Xz |. The number ofM/-tensions depends only on the number of vertices and
of components. SpX /| = | Xy | and we as in the directed case conclude that
f_1 isTTy. O

Corollary 7.4.3 For any ring M the equivalences, is either
e =, if M is a power ofZ, or
e =y otherwise.

Moreover,G =z H impliesG =2 H and, conversel\i; =, H implies@> =y ﬁ
— —
for some orientatiorG of G and H of H.
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The above lemma allows us to use Whitney’s 2-isomorphisiordra [89, 90]
to understand the equivalenee Prior to stating this result, we must define three
graph operations. AVhitney twistconsists of decomposing a graph along a 2-
vertex cut-sefu, v} into partsG; andG; and then identifying vertex in G, with
v in G2 and vice versa.Vertex identificatiorconsist of identifying two vertices
from distinct components of the grapbertex cleavings the inverse operation.
In particular adding/deleting isolated vertices (excedpd@eting the only vertex
of K; and adding vertex to an empty graph) are instances of velsaxiog/i-
dentification. We call two graph&-isomorphicif one can be transformed to the
other by a sequence of Whitney twists, vertex identificadiod vertex cleaving.
It is easy to verify that 2-isomorphic graphs have isomarphatroids, Whitney’s
result claims that the converse is true, too.

Theorem 7.4.4Let G and H be undirected graphs such thaf(G) and M (H)
are isomorphic. Ther and H are 2-isomorphic. Explicitly:

e if G is 3-connected the@@ and H are isomorphic.

e if G is 2-connected then it is possible to transfoghto H by a sequence of
Whitney twists.

e it is possible to transforndz to H by a sequence of Whitney twists, vertex
identification and vertex cleaving.

For directed graphs we define oriented Whitney twist as Velyitaist above,
with the addition that we change orientation of each edg&'of The following
corollary of Whitney's result is easy to prove. In fact Tha@sen [84] gives a much
stronger version: he proves the same conclusion for mappiirag are only known
to preserve directed cycles (for strongly connected ghaphs

Corollary 7.4.5 LetG and H be directed graphs such thaf (G) and M (H) are
isomorphic and this isomorphism preserves orientatiomefddges. Then

e if G is 3-connected the@ and H are either isomorphic or ‘antisomorphic’:
that is there is a bijectiorf : V(G) — V(H) such that bothf and f~! are
a homomorphism or an antihomomorphism.

e if G is 2-connected then it is possible to transfoghto H by a sequence of
oriented Whitney twists.

e it is possible to transfornds to H by a sequence of oriented Whitney twists,
vertex identification and vertex cleaving.



134 CHAPTER 7. MISCELLANEA

We now digress from the main course of this section to ingasti a parallel
of the notion of core, which was introduced to the theory ahbmorphisms in-
dependently by several researchers (see [40]).d,ell be graphs. We say that
His

T

o aTTy-coreiff (Vee E(H)) H H\ e, and

o aFFy-coreiff (Ve € E(H)) H 25 Hpe.

Further, we sayH is the X X,,-core of G if it is an X X,-core andH C G

[
(if X = T)or H C G (if X = F). In the next proposition we prove that
the X X,,-core is uniquely determined (up te,;). Perhaps surprisingly, this
equivalence=), is the same, regardless if we speakldf,,;- or of F'F;-cores.

Proposition 7.4.6 Let X beT or F, let G, G2 be X X,-equivalent graphs and
let H; be theX X ,-core of G;. ThenH; =), Ho.

In particular, any twaX X ,,-cores of a given graph are equivalent with respect
to=yuy.

Proof: By definition, H; andG; are X X,-equivalent, so there are mappings

fi H 22 myoand fy 0 He 22 Hy. As foo fris XXay and H, is

X X j-core, mappingfs is surjective. Similarly,f; is surjective, so it remains to
use Lemma 7.4.2. ]

Now we are in position to explore the use of numberXdK mappings as
invariants. We letG, H)7r denote the number &fT mappings fromG to H
and (G, H))rr the number of surjective such mappings. Furttig¥, H)rr de-
notes the number of injectivET mappings that are an ‘embedding’: there is a

subgraphH’ C H such that the considered mapping is a bijecﬁbnﬂ H

and its inverse ig'T as well. (In category theory terms, we count the number
of so-called extremal monomorphisms.) In the same way weeléfi, H) pr,

(G, H) pr and(G, H) pr (the last one counts equivalences to a contractidii)of
for the number ofF' ' mappings. LetAut;r(G) be the set of all'T” permu-
tations onE(G) (it is easy to verify thatAut,r(G) is in fact a group and that
Autrr(G) = Autpr(Q)). By the next lemma, the pairs of graphs characterized
in Theorem 7.4.4 and 7.4.5 are the limit of what @&h or F'F' mappings (used as
invariants) distinguish. In the sequ¥l stands forF" or T'.
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Lemma 7.4.7 LetG = H be graphs. Then for every gragh

<F,G>XX :<G,F>Xx, <F,H>XX :<H,F>XX
(F,G)xx =(G F)xx, (FFH)xx ={H F)xx
(F.G)xx =(F H)xx, (G,F)xx =(HF)xx.

Proof: This immediately follows from parts 3 and 3’ of Lemma 7.4l2 obnly
difficult case is(F, G) xx = (F, H) xx. To prove this, it is sufficient to provide
a bijection between the subgraphs/contractiGhof G and H' of H such that

G’ = H' holds for corresponding graphs. So Jet G XX, Hbea bijection such
Cc
that f~! is X X as well. Asf is a bijection on edges, to aty C G (G’ C G)
[
correspond$i’ C H (H' C H). Now G’ SNy RSN £ (by Lemma 1.2.5 and
by assumptions of the theorem), &6 X, Hand consequentig’ RENY & (by
Lemma 1.2.7). Clearly, this mapping is a bijection. By chagghe roles ofG
andH in this argument, we obtain a bijectivéX mappingH’ XX, G’, finishing
the proof. O

The rest of this section is devoted to proving the conversetoma 7.4.7. We
start with the easy cases.

Proposition 7.4.8 Let G, H be graphs such that
1. for everyF we havelG, F)) xx = (H, F))xx; or
2. for everyF we have(G, F)xx = (H, F)xx; or

3. for everyF we have(F,G)) xx = (F, H)) xx; or

=
4. for everyF we have(F,G)xx = (F, H)xx.

ThenG = H.
Proof: We prove 1, proof of the other cases is almost identical. BsttAi = G.
As identity is anX X mapping, we havéH,G)xx = (G,G)xx > 1, hence

there is a surjectivé& X mapping fromH to G. By putting /' = H we obtain a
surjective mapping in the other direction, herice= H by Lemma 7.4.2. O

Theorem 7.4.9LetG, H be graphs such that
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1. for everyF we haveG, F)xx = (H, F)xx; or
2. foreveryF we havelF,G)xx = (F,H)xx.
ThenG = H.

Proof: We aim to use Proposition 7.4.8.
For part 1 it is easy to verify that the assumption of part 1roj@sition 7.4.8
is satisfied: By inclusion-exclusion principle we know that

(G, F)xx =(G.F)xx+ > (DTG F\T)xx,
0ATCE(F)

consequentlyG, F)) xx = (H, F)) xx.

For the second part, we use induction to verify assumptibpar 4 of Propo-
sition 7.4.8. We letZ — H mean that there is a surjectivéX -mapping fromG
to H, and extend the order to a linear order. A&7 — H implies that E(G)| >
|E(H)|, there are only finitely many (up to isomorphism, therefqréa=) graphs
that precede a given graph4n. Consequently, we can choose a linear extension
that is a well-ordering (ofs-equivalence classes). Pick one element from each
equivalence class (at), to obtainFy, F», ... SO0 we have a representative of each
=-equivalence class in such order, tifgt — F}; implies: > j. We will use
the following ‘factorization formula’, which may be thougbf as a quantitative
version of Proposition 1.2.6.

(Fy E ) xx (Fy, G x x

(F,G)xx = Z | Aut x x (F})|

B F—>F;

(7.5)

Before we prove this equality, we use it to finish the proof.lBynma 7.4.7 it is
enough to verify condition of part 4 of Proposition 7.4.&ifis one of theF;’s.
Thatis, we prove (by induction e that(F;, G) x x = ((F;, H)x x. Suppose this

is true whenever we replaééy j < i, we prove it fori. Consider formula (7.5)
for G and for H in place ofG. The left-hand sides are the equal (by assumption
of the theorem) and all terms on the right-hand sidesjfer i are equal (by the
induction hypothesis). Therefore, also the remaining tani = j) is the same
for G and forH, hence(F;, G)xx = {(F;, H)x x, as claimed.

It remains to prove formula (7.5). Consider a mappjhg F RENYe) By
Proposition 1.2.6 there is a gragh such thatf = fyo f1, f1 : F XX, G,
fo: G XX q, f1 is surjective, andfs injective. In fact, we can také&’
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as a subgraph/a contraction 6f hencef, is identical mapping. Obviously,
there is a unique choice of suéll, f1, and f, for every f. We chooseg such
that G’ = F; and group allXX mappings counted byF, G)xx according
to G'. By Lemma 7.4.7 we know thatF, G')) xx = (F, F;)) xx. By definition
of (F},G)xx we see that this quantity equaldutx x (F;)| times the number
of G’ that are a subgraph/a contraction®aind satisfyG’ = F}.

By application of all the facts above, we conclude thatjttle term of the sum
in (7.5) counts precisely the number &X mappings fromF’ to G with image
=-equivalent taF}. o

Remark 7.4.10 Relation 7.5 holds more generally for any factorizatiorntegsof
any category, so what we proved can be reformulated: epihisngs with extremal
monomorphisms form a factorization system in categbty,r. We avoided this
more general way of stating (and proving) our result to kdep giresentation on
the combinatorial side of the border with category theory.
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