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Abstract:
The goal of this thesis is to design and implement a RCU (Read-Copy-Update)

synchronization mechanism for OpenSolaris.
The main purpose of the RCU mechanism is to increase concurrency in readers-

writers synchronization scenarios, especially in SMP (Symmetric Multiprocessing) en-
vironments. This improvement is achieved by keeping multiple versions of the protected
data which enables readers and writers to run in parallel. The RCU synchronization has
already been implemented multiple times and is used in the Linux kernel.

The thesis includes analysis of existing RCU implementations, possible benefits of
RCU in the ONNV (OpenSolaris) kernel and a prototype implementation in ONNV.
It also suggests possible applications of RCU where lockless synchronization is already
applied. The prototype implementation is compared with its counterpart in the Linux
kernel.
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Abstrakt:
Cílem práce je návrh a implementace mechanismu RCU (Read-Copy-Update) pro

OpenSolaris.
Hlavním účelem mechanismu RCU je zvýšení souběžnosti (paralelismu) při syn-

chronizaci mezi čtenáři a zapisovateli, zejména u víceprocesorových systémů. Tohoto
zlepšení se dosáhne udržováním několika verzí chráněných dat, což umožňuje čtenářům
i zapisovatelům pracovat souběžně. Synchronizace typu RCU už byla několikrát imple-
mentována a používá se v kernelu Linux.

Tato práce zahrnuje analýzu stávajících implementací RCU, možných výhod RCU
pro kernel ONNV (OpenSolaris) a prototypovou implementaci pro ONNV. Zároveň
navrhuje možnosti využití RCU v místech, kde se již používá neblokující sychronizace.
Srovnává prototypovou implementaci s odpovídající částí kernelu Linux.
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Chapter 1

Introduction to RCU

This chapter gives a description of the RCU synchronization mechanism. It also mentions
the main advantages and disadvantages of RCU when compared to synchronization based
on mutual exclusion.

1.1 What Is RCU (and What It Is Not)

RCU is a means of waiting for procedures or computations (such as loads from and
stores to a certain area of memory) to finish. [11] It is not a synchronization primitive
based on mutual exclusion. In fact avoiding mutual exclusion is its main purpose. It
is a framework useful for designing parallel algorithms. The RCU API defines three
entities: readers, writers and reclaimers.

1.1.1 RCU Writers

Writers are entities that modify a data structure. For example, they add new items to
linked lists or hash tables. Using the RCU API, writers can run in parallel with readers,
as long as they follow certain constraints. First, the RCU API does not provide any
means of synchronization among writers. Consequently, writers must use other synchro-
nization primitives (based either on mutual exclusion or on non-blocking synchroniza-
tion) to make sure the data structure is in a consistent state after their modifications.
Second, concurrently running readers must always see a consistent state of the data
structure. This implies that all assignments made by writers and visible to readers
must be atomic. [12]

The second constraint mentioned above has important implications. Only word-sized
assignments are atomic on current processors. This is why data structures protected by
RCU mostly use the Read-Copy-Update data manipulation, which gave RCU its name.
For example, when the writer needs to make (non-atomic) changes to a data structure
accessible through a pointer, it must make sure the changes appear to occur atomically,
as observed by readers. This is achieved by copying the whole data structure to a location
out of reach of the readers. The copy can be safely modified, since only the writer can
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access it. When all the modifications are complete (and globally visible), the writer can
replace the pointer to the original data structure with a pointer to the copy. Word-
aligned pointer assignments are atomic, which guarantees that readers will always see
a consistent state of the data structure.

1.1.2 RCU Readers

Readers can be perceived as threads accessing data without modifying its structure.
They never need to block when entering their critical sections. They are guaranteed to
see a consistent state of the data structure, provided that they follow certain rules when
reading the data. For example, a reader iterating over a doubly linked list protected
by RCU is not allowed to change the direction of iteration. Most importantly, readers
can run in parallel with writers. Furthermore, they need not acquire any locks. In some
cases, readers even do not need to use atomic instructions and memory barriers. Some
implementations even need not access any shared data (as far as the locking API itself
is concerned).

As Paul McKenney points out, the lack of atomic instructions, memory barriers
and shared data accesses is crucial for SMP scalability. [3] According to McKenney’s
benchmarks, cache misses and pipeline stalls can waste hundreds of times more clock
cycles than an average CPU instruction would take. Pipeline stalls are related to memory
barriers and atomic instructions. Cache misses are related to accessing (non-constant)
shared data, no matter if atomic instructions are used.

1.1.3 RCU Reclaimers

Reclaimers can run either in the same context as writers, or in a separate thread.
When a writer replaces a part of a data structure (such as a linked list item) with
a new one, there can still be readers accessing the original list item. It is necessary to
wait for a certain period of time before the removed data item can be freed, so that
all concurrent readers are guaranteed to access valid data. This period of time is called
a grace period. [11] A grace period is a time interval during which all possible readers
pass through a quiescent state at least once. A quiescent state of a reader is a moment
when no references to the shared data structure are kept. More precisely, all of the
reader’s local variables possibly containing copies of the shared data are dead, meaning
that they will not be read before (re-)fetching their values from the shared memory. [3]

The definition of reclaimers summarizes the main purpose of the RCU infrastructure:
Observation of quiescent states and detection of grace periods based on the observation.
Algorithms based on RCU are useful in read-mostly scenarios. They make the situation
slightly more difficult for writers, who have to care about synchronization of their ac-
cesses and cooperate with reclaimers. On the other hand, RCU favors readers to ”the
logical extreme“. [14] (For example, RCU readers need not perform any locking oper-
ations whatsoever, not even a simple assignment, when they run on a non-preemptive
kernel and are not allowed to block.)
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1.1.4 Semantics of RCU

To sum up, atomic assignment and deferred destruction guarantee that readers
always see consistent data and writers can run concurrently with readers. Readers never
need to block.

The definition of grace periods implies that extending the grace period interval
also yields a grace period. Grace periods detected by different reclaimers on the same
system may overlap. Grace period detection does not impose a rendezvous. Quiescent
states can occur at any time within the grace period and they may or may not overlap.
(Theoretically, quiescent states can have zero duration.)

Last but not least, it is important to note that RCU does not depend on type-safe
memory in any way. That said, reclaimers can free removed data as soon as a full grace
period elapses, using any standard memory allocator. The corresponding memory area
can be reused for a different purpose.

The theoretical background of RCU and numerous design patterns related to both
RCU and algorithms based on it have been described in detail by McKenney. [3]

1.2 RCU and Locking

RCU is optimized for situations where readers prevail over writers. Unlike locking,
RCU does not enforce mutual exclusion. Readers can run concurrently and writers can
run concurrently with readers. It is the writers’ responsibility to use other means of
synchronization and keep the data structure consistent.

For example, readers-writer locks have some similarity with a special version of
RCU. In this ”poor man’s RCU“, all quiescent states are forced to overlap and last
until the end of the writer’s operation. This has a couple of disadvantages. Unlike real
RCU, readers may block. This approach is therefore prone to deadlock scenarios. On
the other hand, the grace period detection takes precisely zero time (in theory), since
the reclaimer can proceed immediately after the last reader has released its read-side
lock.

Despite the numerous advantages, RCU has some important limitations. It is not
a drop-in replacement for other means of synchronization, no matter if they are lockless
or blocking. It can be used directly in some specific situations, but most algorithms must
be modified in order to tolerate some unusual situations that could never occur with
mutual exclusion. In some cases, mutual exclusion might be desirable. More importantly,
RCU readers can access stale data items that are about to be removed or have already
been removed from the publicly accessible data structure during the time the reader
accesses them. Most real-life algorithms converted to benefit from RCU, such as the
directory entry (on Linux) or concurrent hash tables (on K42) had to be modified so
that they can safely tolerate stale data. [3, 19].
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1.3 Basic RCU Interfaces

This is the standard interface used in most RCU implementations, presented in the form
similar to the prototype UTS version of RCU. The RCU API has been implemented
in many different forms and first formally described by Paul McKenney. [14] Some
operating system kernels use a similar mechanism called generations, referring to the
fact that multiple versions of each data item can exist (and be accessed by readers) at
any given time.

• rcu_read_lock() starts a read-side critical section. These calls can be nested. The
function never blocks. Its complexity ranges from no-op to atomic instructions and
memory barriers, depending on the type of RCU algorithm.

• rcu_read_unlock() terminates a read-side critical section. The protected data
must not be referenced after this call.

• rcu_synchronize() waits until at least one full grace period has elapsed. This call
is used when writers and reclaimers execute from the same context. It separates
the writer code from the reclaimer code.

• rcu_call() enqueues a callback function that will be executed no sooner than
after the end of the following grace period. This call is non-blocking and allows
writers and reclaimers to run independently in different contexts. Writers may not
need to block at all when using the callback API.

• rcu_call_synchronize() waits until all currently running and waiting callbacks
finish. This call can be used to ensure that no callbacks are accessing a shared data
structure that is about to be freed. It is a slow-path call that should be avoided
whenever possible.

• rcu_access() documents the fact that a variable has to be accessed by the rules
of RCU. It may include memory barriers on some CPU architectures [3, 5, 6].
However, it is important to note that OpenSolaris does not run on such architec-
tures.

• rcu_assign() documents the fact that a variable has to be accessed by the rules
of RCU. It includes a memory barrier to make sure all preceding stores become
visible before the variable assignment. (The variable might represent a pointer or
a lock.)
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Chapter 2

RCU Algorithms Classification

RCU has been implemented in a number of both production and research kernels (IRIX,
K42, Linux). [2, 3] Many different forms of the RCU mechanism have been discovered. Some
of them track CPUs as read-side entities, whereas others track threads. Both approaches
have their specific advantages and drawbacks, described in this chapter. Most algorithms
are designed for shared-memory SMP systems. This thesis does not include algorithms for
distributed environments.

2.1 CPUs as Readers

This section describes the best known type of RCU, which tracks CPUs as readers. This
means that only one reader can run on a CPU at any given time and readers must not
block, sleep or be preempted. On the other hand, this form of RCU is very flexible in
terms of batching callback requests, which completely separates writers, readers and
reclaimers. Writers and reclaimers can run in parallel and in different contexts.

2.1.1 Toy RCU with Forced Preemption

This illustrates the basic concept of RCU. Readers need to disable preemption during
their critical sections. Disabling preemption is a simple assignment of a CPU-local vari-
able. Grace periods are detected by forcing a thread to be context-switched on and off
all the available processors.

The prototype RCU implementation in the UTS kernel, presented in this thesis,
is based around a similar principle. However, unlike the trivial algorithm, the UTS
implementation provides a multithreaded callback mechanism with separate reclaimers.
Reclaimers can wait for grace periods and handle batches of callbacks in parallel. The
algorithm also avoids the need for forced context switches by observing CPU context
switch counters, CPU states and the occurrence of RCU API calls. Context switches are
used only as a means of forcing a quiescent state when all other detection techniques
fail. Unlike the Linux implementation, the UTS RCU is completely independent of clock
tick processing and does not require any dispatcher instrumentation.
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The new RCU implementations in UTS are described in detail in Chapter 5.

2.1.2 The Classic Linux RCU

Although this implementation is not part of the latest Linux kernels any longer, it
clearly demonstrates the ideas behind RCU. It is based on observing naturally occurring
quiescent states, such as context switches. Readers are not allowed to sleep or block,
which guarantees that context switches imply quiescent states.

Processors requiring RCU attention (those that have unprocessed callbacks in their
local queues) raise a flag that can be seen by other CPUs. Quiescent states are detected
by observing the number of context switches on the current CPU. When all CPUs reach
a quiescent state, a grace period ends and waiting CPU-local callbacks can be processed
by each CPU as needed.

A global counter of elapsed grace periods is maintained. Processors compare the
counter to their local snapshot and process callbacks based on the number of observed
grace periods. All the passive RCU processing, such as quiescent state requests, quies-
cent state announcements, grace period detection, grace periods counting and callback
processing is initiated from the clock tick handler and from the scheduler (instrumented
to handle quiescent state announcement on each context switch).

Most data structures are allocated per CPU and each CPU only handles callbacks
enqueued by threads that were running on it in the moment of the callback request.
This reduces the amount of locking and atomic instructions, since processors always
observe their own operations in the code order. [5] Furthermore, callbacks are likely to
access locally cached data.

All callback functions are eventually invoked from a tasklet, which is a short-lived
CPU-bound execution entity running in a software interrupt context. There have been
multiple similar implementation experimenting with other execution entities, but none
of them was accepted into the mainline kernel.

The common characteristic of all the RCU implementations derived form this one is
the ”peer-to-peer“ relationship of processors. Any processor can advance the RCU state
machine by either requesting a grace period observation or reacting to other processors’
requests. There is no processor and no execution entity with special purpose or privilege.

As with any other synchronization algorithm, the design and implementation of the
Classic RCU are complex matters that can not be explained within the scope of this
thesis in detail. Readers interested in the the Linux RCU internals are encouraged to
read the appropriate chapters of Paul McKenney’s dissertation. [3]

The Classic RCU algorithm suffered from a famous race window related to read-side
critical sections inside interrupt handlers running on offline or idle processors. The RCU
implementation in UTS has a problem similar to this one, but related only to the special
case of offline CPUs handling interrupts. Details and proposed solutions are described
in section 8.1.
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2.1.3 Overlapping Grace Periods and the Counter Ring

The counter ring implementation attempts to eliminate the need for a global ”giant“
mutex used by the Classic RCU algorithm. CPUs observe and increment a ring of
counter pairs on each quiescent state they pass through.

In the simplest variant of the algorithm, there is only one counter (instead of
a counter pair). The current processor’s local counter is incremented to the neighbor’s
counter value plus one by the scheduler and by the the idle loop when there are pending
callbacks. A shared atomic variable is used as a counter of pending callbacks.

When the message conveyed by counter increments circulates around all the proces-
sors, a grace period boundary is observed by the current processor. Two grace period
boundaries (two full ring circulations) guarantee that a full grace period has elapsed.
Each processor keeps two lists of callbacks, which is an approach similar to other grace
period detection algorithms. One of the lists contains callbacks waiting for the nearest
grace period boundary. Callbacks on the second list will have to wait for the subsequent
boundary.

The algorithm has been enhanced [3] to support CPU hotplugging. A single counter
has been replaced with a pair of counters. The first member of the counter pair is set
to the neighbor’s first member plus one. The second member is set to the new value of
the first one plus the number of active CPUs. A grace period boundary occurs once the
neighbor’s first counter exceeds the value of the current CPU’s second counter. This
prevents new processors from causing grace periods to end prematurely.

This algorithm is important from the theoretical point of view: Firstly, as many
overlapping grace periods as the number of CPUs can be observed during each ring
circulation. This avoids the possible ”thunderig herd“ problem that could occur when
grace periods do not overlap and callbacks are handled in systemwide bursts. Secondly,
the way this algorithm handles dynamic CPU reconfiguration is not only lockless, but
also much less complex than other implementations. Most other RCU algorithms need
up to hundreds of lines of purely technical code to handle CPU hotplug events, whereas
the counter ring algorithm works without even responding to these events explicitly.

With the advent of dynamic clock ticks in CPU idle mode, most advantages of the
original algorithm were lost. Current Linux RCU algorithms are designed to avoid any
globally shared data (such as a shared atomic callback counter) and to restrain from
waking up idle processors. The counter ring algorithm (in its basic form) does not meet
these requirements.

The counter ring algorithm was designed and implemented by Rusty Russell. [1]

2.1.4 Hierarchical RCU

This type of RCU can be found in today’s Linux kernels. It reduces lock contention by
removing the RCU giant lock and introducing a tree-like locking hierarchy with at most
four levels. CPUs are represented by leaves of a tree, stored in a compact array. The
implementation is tuned so that at most 64 CPUs compete to obtain a lock related to

16



RCU. When a lock in an internal node is obtained and a grace period (confirmed by all
inferior nodes) is detected, the message is propagated up the tree.

This RCU algorithm includes many complicated technical details to deal with CPU
offlining, NMI handlers and other kernel mechanisms related to SMP systems. Linux
uses dynamically scheduled clock ticks on idle CPUs. Since most (if not all) global RCU
algorithms on Linux were originally based on clock tick handlers and the context switch-
ing code instrumentation, it was a technically challenging task to guarantee bounded
grace periods even in situations where most CPUs are idle. Presumably, interrupt han-
dlers and NMI handlers running on idle CPUs need a possibility to announce their
activity, so that read-side critical sections can safely occur in their code.

The way callbacks and grace period announcements are handled for offline CPUs is
very similar to the algorithms designed for UTS and presented in this thesis. Orphaned

callbacks (enqueued on an inactive CPU) can be ”adopted“ by any other CPU. (In the
UTS implementation, offlined CPUs are always assigned one online CPU to which their
callbacks will be relayed. This can form a singly linked list of CPUs when more of them
are offlined, but the last member of the list is always an online CPU capable of handling
callbacks.)

Interestingly, callback processing includes batch size throttling to avoid long-running
batches that would cause noticeable delays. (On UTS, all callbacks are handled from
standard thread context rather than interrupt context. Since the callback handling
threads are all members of the System Duty Cycle scheduling class, there is no need for
explicit batch size throttling.)

RCU readers can be made preemptible, which yields a modification of the algorithm
that would fall into the ”Threads as Readers“ category. This is useful especially in real-
time kernels. In fact the hierarchical RCU structure combines multiple RCU algorithms
to benefit from their specific features and share data among them.

The hierarchical RCU algorithm does not require idle processors to be woken up on
each grace period detection. This removes yet another drawback and scalability limita-
tion of the classic RCU algorithm. (The RCU implementation in UTS never needs to
wake up idle processors, since idle processors handling interrupts can be safely distin-
guished from idle processors doing nothing at all.)

Although hierarchical RCU solves most of the problems related to using RCU from
interrupt contexts, it is worth noting that IRQ handlers, NMI handlers and all code
dealing with CPU idle states must be instrumented to announce RCU state changes.
For IRQs and NMIs, these computations occur no matter if the handler actually contains
an RCU read-side critical section or not. Some of these issues and possible solutions are
discussed in section 8.1.

2.1.5 Tiny RCU for Uniprocessors

Some Linux developers requested a small and efficient RCU algorithm that would only
work on uniprocessors. Although uniprocessors are hard to find among contemporary
laptops, desktops or servers, many embedded devices still use this architecture. The

17



RCU algorithm for uniprocessors has a smaller memory footprint and works faster than
other types of RCU on the same hardware. [18]

The ”bloatwatch“ RCU algorithm exploits the fact that every quiescent state of the
(one and only) CPU is a grace period boundary. A simple linked list of callbacks is
maintained and three pointers are used to access it: (1) a pointer to the beginning, (2)
a pointer to the end of the current batch and (3) a pointer to the end of the list.

When a grace period ends, which happens each time the scheduler code runs,
a tasklet is scheduled to handle the callbacks. It runs all callbacks starting at the first
pointer up to the second pointer. Callbacks beyond the second pointer may have been
enqueued from the code interrupted by the tasklet, which means they can not be exe-
cuted immediately and must wait for a subsequent grace period boundary. The second
pointer is then set to the value of the third one. The first pointer is set to point at the
first unhandled callback.

No atomic operations are necessary to keep the list consistent. Disabling interrupts
is sufficient to protect the list when new elements are appended. Integration with the
dynamic tick idle mode is much simpler than in hierarchical RCU. This is not surprising,
since when the only processor runs idle, there are no other processors that could possibly
miss read-side critical sections occurring in interrupt handlers. NMI handlers need not
be considered at all in this case.

2.2 Threads as Readers

The introduction of real-time and tickless kernels required new RCU implementations
where preemption or even sleeping in read-side critical sections would be possible. Fur-
thermore, it is sometimes useful to detect quiescent states and grace periods locally,
without changing (or depending on) the state of threads and CPUs not involved in
RCU processing and unrelated to the protected data. All this requires every single RCU
reader thread to be tracked separately.

2.2.1 Toy RCU with Readers-Writer Locks

This is a trivial (and severely limited) implementation that illustrates one of the basic
ideas of RCU — the grace period detection. However, it does not provide any of the
major advantages of scalable RCU implementations. First, readers may block. The ba-
sic requirement behind the RCU API definition is to guarantee non-blocking readers.
This toy RCU implementation may block, which makes it virtually impossible to use
read-side critical sections in interrupt contexts. Second, RCU should allow readers to
start and finish independently, so that read-side critical sections running on different
processors (or in different threads, when considering preemptible RCU) can overlap with
no limitations. This implementation introduces a barrier point that ”stops the world“
each time a grace period needs to be detected.

Readers lock and unlock the read-side lock. Writers acquire the write-side lock and
release it immediately. All the readers possibly accessing stale data will have finished
once the write-side lock is acquired. All quiescent states are forced to occur at the same
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time. The writer code acts as a barrier before which all the preceding readers will have
finished and for which all the subsequent readers will have to wait.

This toy implementation has been introduced into the UTS kernel by the accom-
panying project of this thesis in order to compare the performance of various RCU
implementations to this naïve approach.

2.2.2 Preemptible RCU and the State Machine

Making RCU read-side critical sections preemptible can improve the overall responsive-
ness of a heavily loaded or real-time kernel. On the other hand, readers are not bound
to CPUs any more, so a different approach must be taken when detecting grace periods.
[10]

This RCU implementation uses a pair of per CPU counters. Readers increment
them when they start and decrement them once they finish. There is no need for atomic
instructions and the use of per-CPU data avoids cache misses caused by shared data
manipulation. The data structures include a shared global grace period counter and
pairs of CPU-local counters. The global counter is manipulated by the grace period
detection mechanism. The CPU-local counters are incremented and decremented by
the readers as they enter and exit critical sections. The value of the global counter is
used to decide which of the CPU-local counters will be used by a reader.

The grace period detection works in four steps. The global grace period counter
is incremented and all processors must confirm that they have seen the increment.
(1) Based on the global counter increment, all read-side critical sections that start
subsequently will manipulate a different set of per-CPU counters than the ones read by
the detector. The original counters can now be only decremented. Some of them can
be even decremented below zero, due to the fact that readers can migrate randomly.
However, their sum will eventually reach zero. (2) Once this happens, all CPUs are asked
to issue a memory barrier and announce it. (3) Once all announcements are observed,
a grace period has been detected. (4)

The RCU read-side API is extended so that readers use the same counter index when
they start and when they finish. The rcu_read_lock() function returns the index and
the rcu_read_unlock() function accepts it as an argument.

The whole four-stage algorithm runs on all CPUs in parallel and is entered from the
clock tick handler. Key parts are serialized using a spinlock. Any CPU can advance the
state machine if it detects that all preconditions have been met.

Readers are never forced to issue a memory barrier. On CPUs that aggressively
reorder memory accesses, this could reorder load instructions before the beginning or
past the end of a read-side critical section. [3, 5, 6] This is why the grace period detection
algorithm forces all CPUs to issue a memory barrier in the last step.

As described in detail in Paul McKenney’s paper, [10] this algorithm could (in
theory) allow two global counter flips to occur during one single read-side critical section.
This might happen on out-of-order CPUs once they acquire stale data (that could be
reclaimed at the end of the current grace period) by reordering a load operation to
a moment before rcu_read_lock() actually fetches the global counter and increments
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the corresponding local counter. The race condition occurs if the global counter changes
between the reordered early load operation related to RCU-protected data and the
load operation fetching the global counter in rcu_read_lock(). As a consequence,
observing two global counter flips might not guarantee that a whole grace period has
elapsed. Moreover, the latest references to RCU-protected data might be reordered to
occur behind rcu_read_unlock() and the local counter decrement operation.

To cope with these improbable, yet possible situations, the algorithm requires three
global counter increments to occur between the time a callback has been added and the
moment it can be executed. Paul McKenney gives a proof of correctness based on the
periodic memory barriers the grace period detector asks all CPUs to issue. [10]

This algorithm is an interesting illustration of how memory barriers are used (and
misused) in various synchronization primitives. For example, an algorithm based on
readers-writer locks always contains two barriers per read-side critical section, no mat-
ter if there are writers or not. This could degrade performance, since memory barrier
instructions are at least one order of magnitude more expensive than standard loads
and stores done by RCU read-side primitives. The preemptible RCU algorithm only
forces memory barriers to occur when a grace period is actually waited for. Readers do
not have to issue these barriers explicitly.

The global RCU implementation for UTS, presented in this thesis, uses a similar
notion of ”on-demand memory barriers“ to optimize grace period detection. Readers
only issue a memory barrier when they observe a grace period counter flip. This approach
helps to avoid forced context switches when writers are active, but removes the need
for memory barriers completely during periods with no writers.

2.2.3 Sleepable RCU

The original sleepable RCU algorithm introduced into the Linux kernel uses a mecha-
nism very similar to preemptible RCU described above. There are two per-CPU counters
incremented and decremented by readers. The counter index is flipped on every grace
period request, so that one of the counters can only be decremented from that moment
on. This follows from the fact that any subsequent read-side critical sections will in-
crement (and decrement) the other counter, whereas currently running critical sections
will decrement the current (observed) counter once they finish. Differences between the
preemptible and sleepable RCU algorithms are summarized in the following paragraphs.

First, this algorithm requires readers to issue memory barriers. This adds some
overhead on the read side, but the reclaimers can be much simpler. Readers can not
access data speculatively before reading the global counter index and incrementing their
local counter or after decrementing their local counter. This is why two global counter
flips always imply that a full grace period has elapsed.

Second, there is no callback API. This algorithm only implements the blocking API.
Sleeping readers could cause an inordinate amount of pending callbacks to accumulate
if writers did not have to block. This is why writers and reclaimers must run in the
same thread and wait after the writer phase.
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Third, the sleepable RCU implementation does not provide a global state machine.
Instead, multiple instances of the RCU mechanism with completely separate grace pe-
riod detection can be created on demand. This makes it possible to keep the grace
period detection local, tightly bound to a subsystem, a CPU locality group or a pro-
cess group. Tracking sleeping readers and detecting grace periods globally could become
a scalability issue even with tens of CPUs.

The Linux kernel implements a strong synchronization primitive that waits until
all currently running code sections with disabled preemption terminate. The SRCU
algorithm is based around this mechanism. Readers disable preemption when manipu-
lating the counters. It is therefore guaranteed that all the subsequent readers will see
all preceding changes to global data once all CPUs with disabled preemption re-enable
it.

2.2.4 QRCU — Sleepable RCU Friendly to Writers

The QRCU algorithm has been designed by Oleg Nesterov in cooperation with Paul
McKenney, [9] who introduced a lockless fast path improvement. The improved QRCU
algorithm has also been formally verified by McKenney, using the Promela language.

QRCU is optimized to decrease the overhead of writers (when compared to other
RCU implementations) at the cost of slightly increasing the readers’ overhead.

The basic principles are very similar to the Sleepable RCU algorithm. There is no
rcu_call() functionality and no global RCU state. However, there is only one global
counter pair instead of local per-CPU counter pairs. This counter pair is incremented
and decremented by readers in a way very similar to Sleepable RCU. Presumably, atomic
instructions are required to manipulate the shared counters.

Initially, the current counter (referenced by a global index) is set to 1 and the second
one is initialized to 0. During the grace period detection, the new counter is incremented,
followed by flipping the global index and decrementing the old counter. Once the old
counter reaches zero, the current grace period has ended.

Writers can follow two carefully designed fast paths. One of them does not include
any locking at all. Both of them do not require the counters to be flipped. Only when
these two possibilities fail will the slow path described above be taken. The fast paths
can only occur under special circumstances when either no readers are active or a well-
defined race with other reclaimers is detected. A description of the algorithm and a proof
of correctness can be found in McKenney’s paper on QRCU verification. [9]

Starting readers can only increment counters that have a nonzero value. Otherwise
they spin, re-reading the global index and retrying the increment operation until they
atomically increment a value that was originally nonzero. This avoids the need for mem-
ory barriers on the read side. When a reader obtains an old global index speculatively,
it may still increment a nonzero value, which is benign, just prolonging the grace pe-
riod. It is vital that a reader never increment a counter that has already reached zero.
Despite the fact that the old counter is not guaranteed to decrease monotonically, it is
guaranteed to remain zero once it is decremented to zero.
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Finishing readers decrement the same counter they originally incremented, which is
enforced using the same read-side API extension as in the preemptible and sleepable
RCU variants described above.

The QRCU algorithm has been ported to the OpenSolaris kernel by the author
of this thesis to provide an alternative to the global RCU implementation. Chapter 7
describes a benchmark of multiple RCU algorithms running in the UTS kernel.
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Chapter 3

RCU Implementation in Linux

This chapter gives a brief summary of the RCU algorithms used in the Linux kernel. The
original RCU implementation was enhanced and extended during the past couple of years.
Support for sleeping readers has been added and attempts were made to provide bounded
grace period duration where expedient callback handling is necessary. Both of these features
are vital in realtime kernels.

3.1 History of RCU in Linux

The first Linux RCU implementation appeared in the 2.5 kernel. (There had been RCU
patches for 2.4 kernels, but 2.5 was the first mainline kernel to include RCU.) During
the years to come, at least five alternative implementations emerged. Once the first
implementation, ”RCU Classic“, was accepted into the kernel, some key subsystems
and algorithms were modified to benefit from RCU. Some of them are listed in section
3.4, but this is definitely not a complete list. RCU has been mostly applied where exis-
tence locking was required and where read-mostly data structures needed a scalability
improvement.

Requirements specific to real-time kernels lead to the development of preemptible
and sleepable variants of RCU. The original preemptible RCU algorithm is not a part
of the kernel any more, but many of its original ideas are used in the current tree-based
hierarchical RCU code. The sleepable algorithm has remained part of the mainline kernel
up to the time of this writing.

3.2 RCU Algorithms Used in Linux

The hierarchical RCU algorithm (see subsection 2.1.4) has been introduced in 2008 by
Paul McKenney. [16]. It is currently the default RCU algorithm used in the Linux kernel.
It replaced the original ”RCU Classic“ algorithm (described in subsection 2.1.2). Linux
includes multiple variants of the algorithm, useful for real-time kernels, uniprocessor
machines and other special situations. As already mentioned in subsection 2.1.4, this
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algorithm is supposed to scale to thousands of processors. Contention is reduced by
using a hierarchical locking structure.

A special RCU implementation that can handle blocking readers and can be instan-
tiated multiple times to keep grace period detection local has always been kept in the
Linux kernel. Currently, the standard sleepable RCU (as described in subsection 2.2.3)
is the algorithm of choice. It is used rather rarely. Among the users of sleepable RCU,
the BtrFS file system and the KVM code (both host and guest) are the best known
ones.

3.3 Other RCU Algorithms

Multiple different flavors of RCU have been implemented in the Linux kernel, based on
research in the area and on the needs of some special projects, such as the real-time
extensions. [3] Numerous experimental implementations were either not accepted into
the mainline kernel, or removed after a few releases.

The counter ring algorithm (described in subsection 2.1.3) and the original pre-
emptible RCU algorithm based on a global state machine (described in subsection 2.2.2)
are the best known examples. There have been experimental algorithms testing and
benchmarking callback handling from various execution entities and contexts (theads,
tasklets, interrupt handlers, scheduler code). [3] Readers interested in the details of the
alternative algorithms are encouraged to read Paul McKenney’s notes on the RCU API
and other papers referenced there. [14]

The QRCU algorithm has been originally discovered by Oleg Nesterov and published
on the Linux kernel mailing list. It is a simplified (and very elegant, from the author’s
point of view) implementations of the original Paul McKenney’s sleepable RCU al-
gorithm. (Both algorithms are described in subsections 2.2.3 and 2.2.4, respectively.)
Despite being ”ack’d“ by Paul McKenney, QRCU has never been accepted into the
mainline kernel.

3.4 Use of RCU in Linux

Numerous core kernel algorithms were migrated from mutual exclusion and readers-
writer locks to RCU. Most of them had to be transformed so that they can tolerate
stale data and other situations specific to RCU, which can not occur under mutual
exclusion. These transformations are described by Paul McKenney. [3] McKenney also
gives a formal description of design patterns that can be applied to make algorithms

”RCU-tolerant“.
RCU is used extensively in code where readers prevail over writers, such as network

protocols, network interfaces and packet filtering tables. For example, the route cache
or data structures describing VLANs, virtual interfaces and IP address configurations
have one common characteristic: Millions of packets might be transferred between two
modifications of these data structures. It is therefore beneficiary to allow readers to
proceed as fast as possible, without using expensive atomic instructions, at the expense
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of slightly slower updates. Since these updates are rare, this approach leads to measur-
able performance benefits. [3] Furthermore, the fault-tolerant nature of most network
protocols makes it easy to cope with stale data and other RCU-specific phenomena.

Exploring the current Linux source code (version 2.6.34.1 at the time of this writing)
revealed the fact that RCU is becoming increasingly popular. Besides the example algo-
rithms described by Paul McKenney, uses of RCU can be found in numerous subsystems,
namely:

• core kernel algorithms (scheduler, CPU related data, performance events)

• virtually all levels of memory management

• auditing and accounting

• security subsystems, SELinux

• the procfs pseudo-filesystem

• I/O schedulers, especially CFQ

• the DM (LVM2) subsystem

• the VFS infrastructure (generic file system cache, directory entry cache, event
framework)

• some file system drivers (reiser4, ext4, btrfs)

• the KVM virtualization subsystem, both host and guest

• core input device drivers

• some network adapter drivers (ath9k, iwlwifi)

• virtual network device drivers (TUN/TAP, VLAN)

• NFS and NFSv4 implementations

• most network protocol implementations

All the subsystems mentioned above have a counterpart in UTS. Most of these
subsystems could be improved by introducing RCU into the UTS kernel. But as already
mentioned, RCU is not a drop-in replacement for readers-writer locks or any other types
of locking. Replacing mutual exclusion with RCU always requires careful consideration
of all the possible states that could arise from the absence of mutual exclusion and take
measures to handle these new states gracefully. A cautious incremental approach with
thorough testing is required.

Unfortunately, the unit tests used internally by Oracle are not publicly available. It
is therefore practically impossible for an individual outside Oracle to migrate a kernel
subsystem from mutual exclusion to RCU and test the new algorithm properly.
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Chapter 4

Synchronization and Scheduling
in UTS

This chapter lists selected UTS built-in synchronization primitives, as described in Solaris
Internals. [7] The listing is only limited to facts relevant to the RCU implementation. Readers
interested in a more detailed description can read the chapters on synchronization in Solaris
Internals. Similarly, facts about scheduling mentioned in this chapters are limited to kernel
processes and one specific scheduling class, the System Duty Cycle. More details about
scheduling classes and the behavior of kernel processes can be found in Solaris Internals.

4.1 Overview of the UTS Synchronization Primitives

Although read-side critical sections of RCU are completely non-blocking in most im-
plementations, writers mostly use heavy-weight synchronization. The prototype RCU
implementation uses the standard high-level locking mechanisms implemented in the
UTS kernel to implement its write-side functions. This section lists the most frequently
used synchronization primitives and their interfaces.

4.1.1 Mutexes and Condition Variables

Both mutexes and spinlocks are available using the same API in the UTS kernel. By
default, all mutexes are adaptive. When explicitly required at initialization or when
initialized from an interrupt context, a mutex will become a spinlock.

Adaptive mutexes can spin or block based on the state of the mutex owner. When
the owner is on a processor, waiters will spin for some time. Else they will block. When
blocking, mutexes use turnstiles, a special form of sleep queues that implement priority
inheritance. A thread holding a mutex will have its priority increased to the highest
priority found on the list of waiters.

When a mutex is unlocked, all the waiting threads are woken up and have to com-
pete again. (Condition variables provide an API that can control this behavior more
precisely.)
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#include <sys/mutex.h>

void mutex_init(kmutex_t *, char *, kmutex_type_t, void *);

void mutex_enter(kmutex_t *);

int mutex_tryenter(kmutex_t *);

void mutex_exit(kmutex_t *);

int mutex_owned(const kmutex_t *);

struct _kthread *mutex_owner(const kmutex_t *);

void mutex_destroy(kmutex_t *);

Figure 4.1: The mutex API

#include <sys/condvar.h>

#include <sys/mutex.h>

void cv_init(kcondvar_t *, char *, kcv_type_t, void *);

void cv_wait(kcondvar_t *, kmutex_t *);

clock_t cv_timedwait(kcondvar_t *, kmutex_t *, clock_t);

clock_t cv_reltimedwait(kcondvar_t *, kmutex_t *, clock_t, time_res_t);

void cv_signal(kcondvar_t *);

void cv_broadcast(kcondvar_t *);

void cv_destroy(kcondvar_t *);

Figure 4.2: The condition variable API

Figure 4.1 shows the mutex API functions. Unlike semaphores, mutexes are based
around the notion of the owner thread. Names of the API functions are self-explanatory.
The last two arguments to mutex_init() distinguish between standard mutexes and
spinlocks. (In fact only the very last argument is used by the current implementation.)
Further details can be found in the UTS source code comments.

Figure 4.2 lists the condition variable API functions. Condition variables in the UTS
kernel are very similar to POSIX condition variables. This overview does not list all the
API functions. Condition variables provide numerous special variants of the blocking
functions that can wait for signals and other events, often related to userspace threads
and system call implementation.

4.1.2 Readers-Writer Locks

Readers-writer locks use a special policy to reduce the probability of starvation. This
policy can split the set of waiting readers and grant the lock to only some of them when
necessary.

Writers have priority over readers when readers are in progress and writers are
waiting. In such case, all further readers attempting to enter their critical section have
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#include <sys/rwlock.h>

void rw_init(krwlock_t *, char *, krw_type_t, void *);

void rw_enter(krwlock_t *, krw_t);

int rw_tryenter(krwlock_t *, krw_t);

void rw_exit(krwlock_t *);

void rw_downgrade(krwlock_t *);

int rw_tryupgrade(krwlock_t *);

int rw_read_held(krwlock_t *);

int rw_write_held(krwlock_t *);

int rw_lock_held(krwlock_t *);

int rw_read_locked(krwlock_t *);

int rw_iswriter(krwlock_t *);

struct kthread *rw_owner(krwlock_t *);

void rw_destroy(krwlock_t *);

Figure 4.3: The readers-writer lock API

to block. The lock is then granted to the highest-priority waiting writer once all the
remaining readers finish.

When a writer finishes and both readers and writers are waiting, then the readers’
priority is inspected. When readers with higher priority than the highest-priority writer
are waiting, the read-side lock will be granted to these high-priority readers. The waiting
writers (as well as other, low-priority readers) will have to wait for the high-priority
readers to finish. Once they finish, a writer will proceed again.

This summary does not list all the possible situations and details on how they are
dealt with. Implementation details can be found in both Solaris Internals and UTS
source code comments.

Figure 4.3 gives a summary of the readers-writer lock API. Again all the function
names are self-explanatory. Lock upgrades from shared to exclusive can only be achieved
in a non-blocking manner (using rw_tryupgrade()), which avoids the well-known dead-
lock scenario.

4.1.3 Semaphores

Unlike POSIX semaphores, a kernel semaphore manipulates only one counter at a time.
Since semaphores are never owned by a thread (or a group of threads), they do not im-
plement priority inheritance. Threads waiting on a semaphore use a sleep queue rather
than a turnstile. Semaphores always wake up at most one thread per sema_v() opera-
tion.

Figure 4.4 lists the semaphore API functions. The sema_p_sig() function blocks
the thread at an interruptible priority. The return value of 1 indicates that a signal
occurred. Else the semaphore has been granted. The sema_tryp() and sema_held()
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#include <sys/semaphore.h>

void sema_init(ksema_t *, uint32_t, char *, ksema_type_t, void *);

void sema_v(ksema_t *);

void sema_p(ksema_t *);

int sema_p_sig(ksema_t *);

int sema_tryp(ksema_t *);

int sema_held(ksema_t *);

void sema_destroy(ksema_t *);

Figure 4.4: The semaphore API

functions can be used to inspect the state of the semaphore with or without actually
trying to decrement it, respectively. Both of them are non-blocking.

4.1.4 Shuttles

A shuttle blocks one thread and borrows its scheduling context to another, waiting
thread. This approach is much more efficient than standard sleep/wakeup mechanisms,
such as turnstiles and sleep queues.

Shuttles are used to implement door call servers. After a server thread is chosen
from a thread pool, the shuttle freezes the caller and lets the server thread run on the
caller’s behalf. The server will be halted again (in a well-defined state) after processing
the request and the client will resume.

A shuttle is somewhat similar to a pair of binary semaphores in a producer-consumer
scenario, but it is much more efficient than semaphores.

Shuttles are not used by the current RCU implementation, so they will not be
described here in detail.

4.2 Other Means of Synchronization

This section gives a basic overview of atomic instructions and memory barriers, both of
which are not synchronization primitives in the most common sense. They neither block
nor enforce mutual exclusion. However, they are vital for algorithms where blocking has
to be avoided, such as RCU.

4.2.1 Atomic Instructions

Unlike Linux, the UTS kernel does not define any ”atomic data type“ (which is in most
cases just a structure containing a volatile integer). The UTS kernel defines atomic
operations as functions that accept a pointer to a standard integer variable as their first
argument. Atomic operations are implemented separately for integers of all sizes and
for pointers.
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#include <sys/atomic.h>

void atomic_inc_32(volatile uint32_t *);

void atomic_dec_32(volatile uint32_t *);

void atomic_add_32(volatile uint32_t *, int32_t);

void atomic_or_32(volatile uint32_t *, uint32_t);

void atomic_and_32(volatile uint32_t *, uint32_t);

uint32_t atomic_inc_32_nv(volatile uint32_t *);

uint32_t atomic_dec_32_nv(volatile uint32_t *);

uint32_t atomic_add_32_nv(volatile uint32_t *, int32_t);

uint32_t atomic_or_32_nv(volatile uint32_t *, uint32_t);

uint32_t atomic_and_32_nv(volatile uint32_t *, uint32_t);

uint32_t atomic_cas_32(volatile uint32_t *, uint32_t, uint32_t);

uint32_t atomic_swap_32(volatile uint32_t *, uint32_t);

Figure 4.5: Atomic instructions

The RCU implementation uses atomic instructions to manipulate pointers and 32-bit
integers. The API listing in figure 4.5 only lists functions manipulating 32-bit integers.
All the other functions can be derived from this listing or found in the corresponding
header file.

The functions with the _nv suffix return the new value. All atomic operation are
coded in assembler and can be found in the platform-dependent atomic.s files.

4.2.2 Notes on Memory Barriers

The approach to memory barriers is not the same in OpenSolaris and Linux. OpenSolaris
has stronger assumptions about memory ordering than Linux. Consequently, memory
barriers used by the UTS kernel (and globally defined in OpenSolaris) are much weaker
than those used in Linux.

The different approach of the two kernels to memory ordering can be explained by
the fact that the UTS kernel relies on the TSO (Total Store Ordering) processor mode,
whereas Linux assumes that SPARC CPUs will run in the RMO (Relaxed Memory
Ordering) mode, no matter if they actually implement this mode. (As far as the author
knows, the most recent SPARC chips only implement the TSO mode.) This is why the
memory barriers defined in Linux have to be stronger than those defined in UTS.

Recent Intel processors can run in out-of-order store mode. [23] This mode could
theoretically allow the CPU to optimize the instruction flow by reordering memory
accesses more aggressively.

The current UTS kernel uses Total Store Ordering (or its Intel equivalent) all the
time. However, as some OS/Net developers already noted, ”this will certainly change in
the future“. [13] This means that future-proof algorithms should not rely on the TSO.
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#include <sys/atomic.h>

void membar_producer();

void membar_consumer();

void membar_enter();

void membar_exit();

void membar_sync();

void membar_full();

Figure 4.6: Memory barriers

Some parts of the UTS kernel use a strong memory barrier that forces all operations
(even those not related to memory access) to finish before those that occur after the
barrier. This barrier is used in code related to hardware drivers and clock tick process-
ing. However, a standard ”full“ memory barrier (which forces ordering of all memory
accesses, both loads and stores, but does not force all other operations to stop) was
not defined so far. The RCU algorithm includes fast-path cases that require such a full
memory barrier, through which neither writes nor reads can be reordered. For this rea-
son, a new memory barrier function called membar_full() has been introduced. Figure
4.6 lists memory barrier functions.

It is worth noting that most memory barrier considerations are related to SPARC
processors. (Similarly, Linux memory barriers are based on Alpha processors, which
implement the most relaxed memory model of all the supported platforms. [5] [6])
Unlike SPARC processors that implement 15 fine-grained memory barriers (and some
other barriers related to non-memory operations), [17] Intel processors only provide
three memory barriers. [6]

Memory barriers around standard mutual-exclusion critical sections in the UTS
kernel are based on two important assumptions:

1. When a load instruction occurs before a critical section entry point, it is legal to
reorder the load operation to happen inside the critical section.

2. When a load instruction occurs after a critical section exit point, it is legal to
reorder the load operation to happen inside the critical section.

For mutual exclusion or readers-writer locks, both of these implications hold. The
corresponding memory barriers (membar_enter() and membar_exit()) are defined ac-
cordingly, so that they allow the processor to optimize memory accesses. Unfortunately,
both optimizations are illegal when it comes to RCU read-side critical sections and some
other members of the RCU API. This is the main reason why membar_full() had to
be introduced.
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4.3 UTS Scheduling Features Used by RCU

This chapter describes how RCU benefits from a recently introduced System Duty Cycle

scheduling class and task queues based on this class.

4.3.1 System Duty Cycle Scheduling Class

The classic Solaris 10 kernel (as described in Solaris Internals [7]) did not offer much
flexibility in scheduling kernel threads and processes. Kernel threads were never limited
by time quanta. A kernel thread would run until it got preempted by a higher-priority
thread, blocked or preempted itself voluntarily. This simple approach was suitable in
most cases, as long as the kernel was not required to perform computationally-intensive
or batched work.

Computationally intensive kernel threads might occur in ZFS. The filesystem pro-
vides transparent checksumming, compression and software RAID features, all of which
might require computations on large data. These computations could theoretically delay
userspace threads for a very long time, causing delays noticeable by humans. This is
why the System Duty Cycle scheduling class had to be introduced. Further details can
be found in the UTS source code.

The System Duty Cycle class switches a kernel thread’s priority between the lowest
possible and the highest possible priority based on the amount of time the thread spends
on the CPU. Furthermore, clock tick handler methods of this class can preempt kernel
threads of the same class, moving them to the tail of the dispatch queue of their processor
and priority. This provides simple implicit time quanta and a round-robin scheduling
behavior.

Each thread specifies a percentage of time it needs to spend on a CPU (when not
sleeping). If a runnable thread spends more time on a CPU, its priority is dropped
to the lowest possible priority, letting other threads (including userspace processes) to
run. When the time recently spent on a CPU is too low, the priority of the thread is
boosted above all userspace and most kernel threads. This is done by the clock tick
handler callback implemented in the system duty cycle class. Presumably, the sum of
system duty cycle percentage of runnable threads might (and often does) exceed 100%.
The source code comments give a detailed summary of how the scheduling algorithm
behaves in such cases.

The project related to this thesis modified the system duty cycle thread initialization
so that the ”low“ and ”high“ priorities can be specified explicitly instead of using the
default values of 0 (the lowest priority) and 99 (the highest priority of a standard
kernel thread). For example, an algorithm might need a system duty cycle thread whose
priority must never exceed the priority of another thread. In fact this is what the RCU
implementation needs in order to work properly. Reclaimer threads must never exceed
the priority of the detector thread. (These threads are described in chapter 5.)

The RCU implementation uses the System Duty Cycle class for batched callback
handling. All threads that handle callbacks are therefore guaranteed to run with a high
priority as long as they stay below their duty cycle percentage or there is nothing else
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to do. On the other hand, they will never block the whole system and cause noticeable
delays when processing large batches.

4.3.2 System Duty Cycle Task Queues

Task queues provide a unified implementation of thread pools that can be used to handle
various deferred tasks. They are a means of avoiding deadlocks and performing possibly
blocking operations from contexts that must not block. Task queues can run under the
System Duty Cycle scheduling class. These special task queues are used by RCU to
implement the support for blocking callback functions.

Task queues used by RCU are dynamic, which means that they create worker threads
on demand and avoid contention during dispatching operations by maintaining per CPU
data structures and thread pools. (The UTS kernel also contains an older and simpler

”static“ task queue implementaion. Task queue type can be chosen at queue instantiation
time.)

Unfortunately, the current task queue implementation has two major drawbacks.
First, threads entering the SDC class must have an associated LWP. (This in fact applies
to threads of all scheduling classes except for the standard ”system“ class.) However,
the thread pool is populated by raw threads for the sake of efficiency and fast thread
spawning. This is why only the main dispatcher thread of the SDC task queue actually
runs under the SDC class, whereas the worker threads are standard system class threads.
This limitation is likely to be removed in the future, as soon as microstate accounting

information is moved from LWPs into kernel threads.
The second limitation is related to the blocking nature of the task queue dispatch

mechanism. The API does not require the callers to provide an allocated data structure.
Consequently, the task queue may need to allocate memory when big bursts of tasks are
dispatched. The dynamic task queue implementation uses per CPU buckets to store the
task data and manage worker threads, which avoids contention as long as all callbacks
can be handled in time. However, once too many callbacks accumulate and most buckets
are overfilled, most threads start to compete for a global task queue lock in order to
extend their per CPU data structures or relay some work to another bucket. This
degrades the performance to a scenario similar to a livelock. Most threads spin on
mutexes all the time and useful work is only done by chance. The author observed
the rate of executed tasks dropping from tens of thousands per second to a frequency
suspiciously close to clock ticks. This might mean that all useful work was only due to
the randomness induced by interrupts.

For the reasons mentioned above, it is recommended to use the standard RCU
mechanism for non-blocking callbacks wherever possible. This mechanism guarantees
full callback handling performance, no matter how many callbacks are added. It also
guarantees that all callbacks are always handled by system duty cycle threads.
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Chapter 5

RCU Implementation in UTS

The RCU implementation discussed in this chapter has been contributed by the project this
thesis is based on. All the implemented variants of RCU and their interfaces are listed. The
description focuses on the algorithms rather than technical implementation details. Readers
interested in these details are encouraged to read the full source code and comments.

5.1 The Global RCU Implementation

This section describes the system-wide RCU implementation that provides the full RCU
API, both blocking and callbacks. It also includes some extra features, such as waiting
for all pending callbacks to finish.

5.1.1 Features and Characteristics

A detector thread checks the state of processors and provides one global source of grace
period events. This means that grace period boundaries are announced globally and
never overlap. It is important to distinguish between grace period boundaries and grace

periods. Unlike grace period boundaries, grace periods might overlap, as observed by
threads waiting for them to elapse. To detect a full grace period, at least two grace
period boundaries must be observed.

Each CPU has a bound reclaimer thread for callback processing. Callbacks can
be either processed directly by the reclaimer or offloaded to a task queue. Callbacks
processed by the task queue can sleep and block, whereas those processed by reclaimer
threads are not allowed to do so. Threads waiting for a grace period to elapse use exactly
the same mechanism as the reclaimer threads to communicate with the detector thread.

Reclaimers always wait for one grace period boundary to occur and keep two lists
of waiting callbacks — those waiting for the next boundary and those waiting for the
subsequent one. This makes it possible to process callbacks as often as possible, on every
single boundary observed by the reclaimer. Other threads (calling the RCU blocking
API, but unrelated to the RCU internals) always wait until two boundaries are observed,
which is necessary to guarantee that a full grace period has elapsed.
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Besides the reclaimer threads processing non-blocking callbacks, the RCU imple-
mentation includes a possibility to block and sleep in callback handlers. Callbacks that
can block are handled separately, using a system-wide task queue. However, as already
described in subsection 4.3.2, serious performance issues can arise if callbacks marked
as blocking are produced irresponsibly. Producing an inordinate amount (such as bursts
of millions) of blocking callbacks is strongly discouraged. Non-blocking handlers should
be used whenever possible.

The RCU implementation responds to CPU hot(un)plug operations by initializing
or stopping corresponding reclaimer threads and by reallocating the callback handling
task queue so that its capacity grows and shrinks with the number of available CPUs.
This has some important implications when considering interrupt handlers and interrupt
threads running on offline processors. (Such a situation is perfectly legal in UTS.) These
details are discussed in chapter 8.

Quiescent states are both observed and forced. Observed quiescent states include
the idle thread, user-mode execution, context switches, the CPU offline state and the
use of RCU primitives. Some RCU API functions observe the RCU global counter
state. When a new grace period is detected (the global counter has changed), they issue
a memory barrier and announce the counter state they observed in the per CPU data
structures of the processor they run on. This means that no barriers are needed in the
absence of writers and in cases when read-side sections start and finish during the same
grace period. This opportunistic grace period observation reduces the number of forced
context switches on SMP systems. Only processors that did not observe the latest global
counter state during the whole grace period (and are neither idle nor in userspace) will
need forced rescheduling.

5.1.2 The RCU API

Figure 5.1 shows the interface of the global RCU implementation.
The first two functions start and end a read-side critical section. The rcu_call*()

family of functions enqueues a callback. Either standard or exclusive (sleepable) call-
backs can be enqueued. Producing callbacks at high interrupt levels is handled by the
two functions containing excl in their names. They behave exactly the same way as
their ”non-exclusive“ counterparts when running on an online CPU. On offline CPUs,
they relay the callback to another (online) CPU. (Inserting a callback into an offline pro-
cessor’s queue would cause the callback to wait indefinitely, as discussed in the following
subsections.)

rcu_synchronize() and rcu_synchronize_shared() are part of the blocking RCU
API. They block until at least one grace period elapses.

The rcu_call_synchronize() function waits until all callbacks enqueued up to
this moment terminate. It is necessary to stress that only callbacks enqueued before
this function is invoked will be waited for. There are no guarantees related to callbacks
produced by other threads during the time the current thread blocks and waits.

The last function returns the current state of the grace period counter, for the sake
of testing and statistics.
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void rcu_read_lock();

void rcu_read_unlock();

void rcu_call(rcu_cb_t callb, rcu_t *arg, rcu_weight_t weight);

void rcu_call_excl(rcu_cb_t callb, rcu_t *arg, rcu_weight_t weight);

void rcu_call_high(rcu_cb_t callb, rcu_t *arg, rcu_weight_t weight);

void rcu_call_excl_high(rcu_cb_t callb, rcu_t *arg, rcu_weight_t weight);

void rcu_synchronize();

void rcu_synchronize_shared(uint32_t);

void rcu_call_synchronize();

uint32_t rcu_get_gp();

Figure 5.1: The RCU API

5.1.3 Read-Side Algorithms

As already mentioned, the global RCU algorithm is based on tracking processors as read-
ers. This means that all read-side critical sections are not allowed to block and have
to run with disabled preemption. The weaker (and more flexible) thread_nomigrate()

and thread_allowmigrate() primitives are not sufficient to guarantee correct opera-
tion of the RCU algorithms and reasonably bounded grace periods. However, interrupts
can stay enabled throughout the whole read-side critical section.

At the beginning of the read-side critical section, preemption has to be disabled first.
This is a simple assignment to a CPU-local variable. Once preemption is disabled, the
local per CPU grace period counter snapshot is compared to the global one. If the global
counter is greater than the local one, the local one is assigned and a full memory barrier
is issued. This opportunistic grace period observation brings two important advantages.
First, the memory barrier instruction need not be used in the absence of grace period
observation activity. Second, observing the grace period provides a means of avoiding
forced context switches. The detector thread can find out whether a CPU has already
observed the current grace period or not. The fact that the current global counter state
has been observed implies that the observing CPU also issued a full memory barrier
during the current grace period. This in turns implies that it can not be accessing stale
data from the preceding grace period. The last implication tells us that the current
grace period can end without forcing the observing CPU to perform a context switch.

5.1.4 Read-Side Code Walkthrough

Listings 5.1 and 5.2 show the source code of the read-side primitives. The rcu_nesting

variable is a per CPU counter that makes nested read-side critical sections possible.
Without the nesting counter, an opportunistic grace period observation could occur
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too early, at the end of the innermost read-side critical section. Presumably, this could
lead to data corruption in many cases. It is important to stress that read-side section
nesting can occur both intentionally (in a function call hierarchy, for example) and
unintentionally (due to read-side critical sections in interrupt handlers). Since the
rcu_nesting variable is only accessed by the local CPU, it can never get clobbered,
even when the standard RISC load—modify—store sequence is used.

Listing 5.1: Beginning of a read-side critical section
1 void

2 rcu_read_lock ()

3 {

4 cpu_t *cp;

5
6 kpreempt_disable ();

7 cp = CPU;

8 rcu_announce_qs (cp);

9 ++ RCU_CPU (cp , rcu_nesting );

10 }

Listing 5.2: End of a read-side critical section
1 void

2 rcu_read_unlock ()

3 {

4 cpu_t *cp = CPU;

5
6 --RCU_CPU (cp , rcu_nesting );

7 rcu_announce_qs (cp);

8 kpreempt_enable ();

9 }

Listing 5.3: The opportunistic grace period observation
1 static inline void

2 rcu_announce_qs (cpu_t *cp)

3 {

4 ASSERT (curthread -> t_preempt );

5
6 if (! RCU_CPU (cp , rcu_nesting )) {

7 if ( RCU_GP_GT ( rcu_cb . rcu_gp_ctr , RCU_CPU (cp , rcu_gp_ctr ))) {

8 gp_t gp_ctr = rcu_cb . rcu_gp_ctr ;

9 membar_full ();

10 RCU_CPU (cp , rcu_gp_ctr ) = gp_ctr ;

11 }

12 }

13 }

Listing 5.3 shows the opportunistic grace period announcement. It is important to
read the global counter value before the memory barrier and assign it after the barrier.
We must make sure no RCU protected data from the preceding grace period is accessed
before announcing the new one (as observed by other processors). Furthermore, we must
guarantee that we do not read any data belonging to the new grace period sooner than
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the global counter is loaded from memory. Else another thread could increment the
global counter between the time we obtain the first item of RCU protected data and
the time we load the global counter. This would cause the reader to announce a grace
period it has not yet observed, as perceived by other CPUS.

All the notes on possible instruction reordering include the (implicit or explicit)

”as seen by other CPUs“ epilogue. This topic deserves a couple of notes. Processors
always perceive their own operations in the instruction code order. [5] Reordering of
memory accesses is a ”team sport“ in the sense that multiple parties must be involved
for this phenomenon to be actually noticed. This can be either multiple processors or
a processor and a memory-mapped device. Furthermore, it is important to stress that
a memory barrier is in no way related to global data visibility. Specifically, a store
barrier is not a ”commit“ operation and a load barrier will not force unfinished memory
operations to become visible. A barrier merely instructs a processor to make sure that
global visibility of operations that occur before the barrier does not precede the global
visibility of those that occur thereafter. It does not enforce any limitations on when
exactly the data will be (physically) fetched or stored. For example, if instructions
following a barrier include one hour of register-only operations, the processor would
be within its rights to postpone some of the memory operations preceding the barrier
almost indefinitely, from a machine’s perspective.

5.1.5 Write-Side Algorithms

First of all, writers have to make sure their changes will not be reordered unexpectedly.
This can be done using the standard rcu_assign() macro, by issuing a memory barrier
explicitly or by using a non-blocking data structure that protects its data by atomic
instructions. (The third approach is taken in the RCU benchmarking code contributed
as part of this thesis. Some of the RCU testing code also uses the first method.)

Once ordering issues are resolved, writers have to wait until all the readers that
may have observed the old state of the modified data structure finish. Since there is no
way to find out which of the currently running readers are using stale data, the easiest
way is to wait for all currently existing read-side critical sections to terminate. Again,
detecting such an event would be rather complicated. (However, the QRCU algorithm
described in section 5.2 in fact does this.) To simplify the detection, writers ask a central
grace period detector thread to wake them up as soon as at least one full grace period
elapses. This isolates them from the complexity of the actual grace period detection at
the expense of a slightly longer grace period duration.

Writers that have removed a data item have two options: They can either wait
for a grace period to elapse and become reclaimers, or register a callback handler to
do the reclamation work. The second method is non-blocking. The callback handler is
guaranteed to be invoked no sooner than after a full grace period.

Callbacks are handled by CPU-bound reclaimer threads. They act just like any other
threads waiting for grace period boundaries. As already mentioned in subsection 5.1.1,
they wait for every single grace period boundary and keep multiple lists of waiting
callbacks. This guarantees that callbacks can be processed on every observed grace
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period boundary when necessary, but every single callback will wait for at least two
boundaries (a complete grace period) to pass by. These threads will be described in
detail later on.

5.1.6 Write-Side Code Walkthrough

Listing 5.4 shows the blocking API function. It is used by writers that want to become
reclaimers and safely free the resources they had made inaccessible during the writer
phase.

Line 6 guarantees that the grace period counter observation will not take place too
early, possibly before the last access to the protected data. Lines 10–13 take a short
path if this thread has waited long enough to acquire the mutex. Waiting for at least
two grace period boundaries guarantees that a full grace period has elapsed and there
is no need to interact with the detector thread directly.

The following code on lines 14 and 15 announces a high water condition. The exact
meaning of this flag is discussed in subsection 5.1.7, which describes the reclaimer code.
This causes the detector thread to behave aggressively and announce a grace period
boundary as soon as possible. The rcu_synchronize_common() function invoked on
line 16 waits for two grace period boundaries to elapse.

Listing 5.4: Waiting for a grace period to elapse
1 void

2 rcu_synchronize ()

3 {

4 gp_t gp_ctr ;

5
6 membar_full ();

7 gp_ctr = rcu_cb . rcu_gp_ctr ;

8
9 mutex_enter (& rcu_cb . rcu_gp_mutex );

10 if ( rcu_cb . rcu_gp_ctr - gp_ctr >= 2) {

11 mutex_exit (& rcu_cb . rcu_gp_mutex );

12 return ;

13 }

14 ++ rcu_cb . rcu_hiwater ;

15 cv_signal (& rcu_cb . rcu_hiwater_cond );

16 rcu_synchronize_common (2);

17 --rcu_cb . rcu_hiwater ;

18 mutex_exit (& rcu_cb . rcu_gp_mutex );

19 }

Listing 5.5 shows the ”patient“ version of the RCU blocking API. The basic idea
behind the standard rcu_synchronize() function is as follows: There is a thread that

can free some resources and continue running, as soon as we detect a grace period. So

let us detect it as quickly as possible. This simplified approach may not be suitable in
all cases. Perhaps the thread has a very low priority and blocking it for a long time is
not a problem. Or perhaps the thread is bound to exit right after its reclaimer phase,
which also does not justify aggressive grace period detection.
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The function shown in listing 5.5 takes an argument specifying how many threads
can be waiting for a grace period. If fewer threads are waiting, then the grace period
detection will be delayed by a constant amount of time, which allows the opportunistic
grace period observation to serve its purpose. Once too many threads are waiting, a high

water state is announced, just like in listing 5.4.
Presumably, this algorithm can be inaccurate in a case when many threads with

a high maxw value start waiting for a grace period. In such case, nobody will notify the
sleeping threads that the number of waiters has been exceeded. Maintaining a maximum
value of maxw could be a solution, but the problem of updating this value as threads
wake up would have to be solved correctly. Resolving this issue is left to future work.

Listing 5.5: ”Patient“ waiting for a grace period to elapse
1 void

2 rcu_synchronize_shared ( uint32_t maxw)

3 {

4 gp_t gp_ctr ;

5
6 membar_full ();

7 gp_ctr = rcu_cb . rcu_gp_ctr ;

8
9 mutex_enter (& rcu_cb . rcu_gp_mutex );

10 if ( rcu_cb . rcu_gp_ctr - gp_ctr >= 2) {

11 mutex_exit (& rcu_cb . rcu_gp_mutex );

12 return ;

13 }

14 ++ rcu_cb . rcu_wait_ctr ;

15 if ( rcu_cb . rcu_wait_ctr > maxw) {

16 ++ rcu_cb . rcu_hiwater ;

17 cv_signal (& rcu_cb . rcu_hiwater_cond );

18 rcu_synchronize_common (2);

19 --rcu_cb . rcu_hiwater ;

20 } else {

21 rcu_synchronize_common (2);

22 }

23 --rcu_cb . rcu_wait_ctr ;

24 mutex_exit (& rcu_cb . rcu_gp_mutex );

25 }

As already mentioned, the rcu_synchronize_common() function communicates with
the detector thread. It is shown in listing 5.6. Lines 9–12 wake up the detector thread
when necessary. Lines 14–16 wait until the requested number of grace period boundaries
elapses. Since threads can be waiting for either one or two boundaries to elapse, two
condition variables are used to announce them, in order to avoid spurious wake-ups.

Listing 5.6: Blocking for a number of grace period boundaries
1 static void

2 rcu_synchronize_common (gp_t periods )

3 {

4 gp_t gp_ctr = rcu_cb . rcu_gp_ctr + periods ;

5
6 ASSERT ( MUTEX_HELD (& rcu_cb . rcu_gp_mutex ));
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7 ASSERT ( RCU_CPU (CPU , rcu_nesting ) == 0);

8
9 if ( rcu_cb . rcu_gp_wanted < periods ) {

10 rcu_cb . rcu_gp_wanted = periods ;

11 cv_signal (& rcu_cb . rcu_wanted_cond );

12 }

13
14 while ( RCU_GP_GT (gp_ctr , rcu_cb . rcu_gp_ctr ))

15 cv_wait (& rcu_cb . rcu_elapsed_cond [ gp_ctr & 0x1],

16 & rcu_cb . rcu_gp_mutex );

17 }

The basic form of the RCU callback API is shown in listing 5.7. Line 4 initializes
the RCU structure, which must be allocated on the heap and provided by the caller.
Exclusive callbacks are added the same way, but initialized with the RCU_CB_EXCL value.
The other two forms of the callback API (which can be called from a high interrupt level)
are similar. They include some technical code to check whether the current processor is
offline and take the necessary steps if so.

Listing 5.7: Producing RCU callbacks — the interface
1 void

2 rcu_call ( rcu_cb_t callb , rcu_t *arg , rcu_weight_t weight)

3 {

4 rcu_init_arg (callb , arg , weight , RCU_CB_DEFAULT );

5 rcu_call_common (arg , weight );

6 }

The rcu_call_common() function is shown in listing 5.8. Line 6 guarantees that the
caller’s operations on the shared data will be visible earlier than the first subsequent
store operation. Line 7 disables preemption. If we enqueued the first callback to a re-
claimer’s list on line 9, we must wake up the reclaimer by incrementing a semaphore.
(Else someone has already done so.) We then add the weight value to the per CPU
weight sum (line 11) and announce a grace period observation when applicable. The
meaning of this value will be discussed in subsection 5.1.7.

Listing 5.8: Producing RCU callbacks — the internals
1 static void

2 rcu_call_common (rcu_t *arg , rcu_weight_t weight )

3 {

4 cpu_t *cp;

5
6 membar_exit ();

7 kpreempt_disable ();

8 cp = CPU;

9 if ( rcu_enqueue_callback (cp , arg , &arg -> rcu_next ))

10 sema_v (& RCU_CPU (cp , rcu_queue_sema ));

11 RCU_ADD ( RCU_CPU (cp , rcu_weight ), weight );

12 rcu_announce_qs (cp);

13 kpreempt_enable ();

14 }
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Callbacks are enqueued using an atomic operation that advances the list end pointer
at the same time. This can be seen in listing 5.9. There is an obvious race window
between appending to the list atomically (lines 6–7) and bridging the gap between the
new element and the previous end of the list (line 8). This is never a problem when
this code runs on the same processor as the reclaimer thread, thanks to the disabled
preemption.

The special case when this code is invoked from an interrupt handler running on
an offline CPU could theoretically lead to problems. Since the list will not be traversed
before at least two grace period boundaries are detected, it is highly improbable that
an inconsistent state of the list could ever be observed. Unfortunately, it is still the-
oretically possible. Resolving this issue is left to future work. Details and suggested
solutions are mentioned in section 8.1. The problem is related to the fact that offline
CPUs currently can not influence the grace period detection mechanism. This feature is
vital for both readers and writers to operate safely from high interrupt level contexts.

Let us emphasize that producing callbacks on online processors is always safe (from
any context), since online processors will never observe a grace period before all the list
operations are complete, no matter how many interrupts occur and how deeply they
are nested. The atomic append operations guarantees that the list is consistent and
that callback handling will not take place before the new tail is connected properly.
The problem mentioned above is only related to the very special case when a processor
is offlined, but its callback handling duties persist for some hardware-related technical
reasons.

Listing 5.9: Producing RCU callbacks — appending to the list
1 static inline int

2 rcu_enqueue_callback (cpu_t *cp , rcu_t *append , rcu_t ** append_tail )

3 {

4 ASSERT (curthread -> t_preempt );

5
6 rcu_t ** oldtail = atomic_swap_ptr (

7 & RCU_CPU (cp , rcu_nexttail ), append_tail );

8 * oldtail = append ;

9 return ( oldtail == & RCU_CPU (cp , rcu_nextlist ));

10 }

5.1.7 Reclaimer Algorithms

Instead of waiting for one grace period and becoming reclaimers, writers can proceed
immediately and without blocking. This functionality is implemented using a callback
mechanism. The callback handler containing the reclaimer code is guaranteed to be run
no sooner than before at least one grace period elapses.

Most callback handlers should be related to freeing memory and these standard
handlers never need to sleep. However, it is still possible to think of a handler acquiring
a mutex or performing another blocking action. To make this possible, callbacks are
handled using two different mechanisms.
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Callback handling starts with a per CPU callback list. Callbacks produced on the
same CPU are added to the list. Each CPU has a CPU-bound reclaimer thread that
takes care of callback processing. When no activity related to RCU takes place, the
reclaimer thread sleeps. It is woken up when callbacks are added to its first callback
list, called the nextlist. The reclaimer thread than asks the detector thread to announce
a grace period boundary and waits exactly the same way as other threads waiting for
grace periods. When a boundary is announced, all the callback records from nextlist are
moved to another list, called curlist in the source code. And all the former members of
curlist are processed. This is how the reclaimer threads make sure each callback waits
for at least two grace period boundaries. At the same time, callback processing can take
place on every single grace period boundary (when waiting callbacks are available),
saving considerable time and effort spent in the grace period detector thread.

Standard callbacks are not allowed to sleep and the reclaimer threads execute them
directly. Other callbacks (called exclusive in the source code) could potentially sleep
and must be processed separately. Instead of executing them, the reclaimer thread
inserts them into a system-wide dynamic task queue. This is how callback handlers
allowed to sleep can be used without stopping the whole reclaimer thread. Since direct
callback handling is several (decadic) orders of magnitude faster than the task queue,
it is recommended to avoid sleepable callbacks when possible. On the other hand, the
possibility of blocking (and locking adaptive mutexes, for example) in callback handlers
might be useful or inevitable in some cases.

Each callback has an unsigned integer value called weight. Instead of tracking the
number of pending callbacks, the reclaimers watch the weight sum. Each callback can
have a different weight (importance), based (for example) on how much memory or other
resources it will free. The weight estimate should be computed by the RCU_WEIGHT()

macro, which takes two arguments — the number of kmem_free() invocations and the
number of bytes to free. The result is a combination of these two values, so that callbacks
that either free a huge number of buffers or free a large area of memory are considered
more important.

When the callback weight sum on a processor exceeds a predefined value (which
is a tunable value, roughly corresponding to thousands of kmem_free() invocations or
units of megabytes of memory to be released), the reclaimer thread sets a high water

mark and signals the detector thread. The high water mark causes the detector thread to
behave aggressively, not attempting to wait a couple of clock ticks for the opportunistic
counter observation announcements or for naturally occurring context switches. Instead,
all CPUs are forced to context-switch to the detector thread. Presumably, some proces-
sors will announce a grace period counter observation or pass through a natural context
switch during the detector’s operation. These processors will not be interrupted in any
way during the current boundary detection.

The high water flag speeds up the grace period detector when one or more threads
require that a grace period boundary be announced as soon as possible. Reclaimers that
currently do not wait for a grace period (which means they are either idle or processing
callbacks) have their high water flags cleared. (It would not make sense to announce
grace period boundaries expediently when nobody is listening.)
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In UTS, writers producing callbacks can run on offline CPUs. An interrupt handler
or an interrupt thread running on an offline (yet not quiesced) processor can enqueue
an RCU callback. Since the reclaimer threads are standard threads, they never run on
offline CPUs. This means that callback processing can not take place on offline CPUs.
These issues are resolved by relaying the callbacks to another (online) CPU, chosen when
the offline CPU changed its state. A CPU from the local processor partition is looked
up. If there is no such online CPU, then the locality group is traversed to find one. If this
fails as well, an online CPU is chosen at random. When the CPU to which callbacks can
be relayed becomes offline, exactly the same mechanism is used. This means that offline
processors are on singly-linked lists terminated by an online processor that receives and
handles callbacks produced on its predecessors.

The handover process had to be be carefully designed to avoid losing callbacks
produced during the CPU state change phase. This required adding a new CPU state
event (CPU_POSTOFF) that triggers after a processor has been successfully offlined. By
that time, the reclaimer thread bound to the offline CPU does not run any more, which
means that all the callbacks that possibly exist on the CPU’s nextlist become orphaned,
as expressed in the Linux parlance. (Callbacks from the curlist are always handled
by the reclaimer thread before it dies.) The CPU to which callbacks will be relayed
has been chosen and assigned before actually offlining the offline CPU. (Another CPU
event handler does this.) We can therefore be sure that no further callbacks will be
enqueued on the offline CPU. (They will be immediately relayed to the chosen online
CPU instead.) This implies that the CPU_POSTOFF event handler can safely manipulate
the offline CPU’s nextlist and append it to the related online CPU’s nextlist. This is
how the orphaned callbacks are handled.

5.1.8 Reclaimer Code Walkthrough

The reclaimer threads all run the loop shown in listing 5.10. Lines of purely technical
code have been omitted from the listing for the sake of readability.

Line 4 checks whether there are callbacks to process. If not, line 6 handles the case
when a rcu_call_synchronize() request has to be answered. It calls a handler function
that decrements a global counter. If this reclaimer was the last one to announce an idle
state, it wakes up the thread waiting for this announcement. This procedure is described
in subsection 5.1.9.

Line 8 checks whether this reclaimer should die. It may be requested to terminate
when a processor is offlined. Lines 10 and 14 are related to the Checkpoint Resume
subsystem. Line 12 waits for callbacks to be enqueued.

Lines 21–42 communicate with the detector thread. They are almost identical to the
rcu_synchronize_shared() function shown in listing 5.5. Lines 27–34 are related to
the CPR subsystem and described in subsection 5.1.12.

Listing 5.10: The RCU reclaimer thread
1 mutex_enter (& RCU_CPU (cp , rcu_cpr_mutex ));

2 /* ... */

3 for (;;) {
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4 if (!( RCU_CPU (cp , rcu_nextlist ) || RCU_CPU (cp , rcu_curlist ))) {

5 do {

6 if ( RCU_CPU (cp , rcu_sync ))

7 rcu_handle_sync (cp );

8 if ( RCU_STOP == RCU_CPU (cp , rcu_thread_state ))

9 goto reclaimer_terminate ;

10 CALLB_CPR_SAFE_BEGIN (& cprinfo );

11 mutex_exit (& RCU_CPU (cp , rcu_cpr_mutex ));

12 sema_p (& RCU_CPU (cp , rcu_queue_sema ));

13 mutex_enter (& RCU_CPU (cp , rcu_cpr_mutex ));

14 CALLB_CPR_SAFE_END (& cprinfo ,

15 & RCU_CPU (cp , rcu_cpr_mutex ));

16 } while (! RCU_CPU (cp , rcu_nextlist ));

17 } else {

18 membar_consumer ();

19 }

20
21 gp_ctr = rcu_cb . rcu_gp_ctr ;

22
23 mutex_enter (& rcu_cb . rcu_gp_mutex );

24 if ( rcu_cb . rcu_gp_ctr - gp_ctr >= 2) {

25 goto elapsed ;

26 }

27 while (* rcu_cb . rcu_cpr_events & CALLB_CPR_START ) {

28 mutex_exit (& rcu_cb . rcu_gp_mutex );

29 CALLB_CPR_SAFE_BEGIN (& cprinfo );

30 delay ( rcu_gp_max );

31 CALLB_CPR_SAFE_END (& cprinfo ,

32 & RCU_CPU (cp , rcu_cpr_mutex ));

33 mutex_enter (& rcu_cb . rcu_gp_mutex );

34 }

35 if ( RCU_CPU (cp , rcu_weight ) > rcu_weight_max ) {

36 ++ rcu_cb . rcu_hiwater ;

37 cv_signal (& rcu_cb . rcu_hiwater_cond );

38 rcu_synchronize_common (1);

39 --rcu_cb . rcu_hiwater ;

40 } else {

41 rcu_synchronize_common (1);

42 }

43 elapsed :

44 mutex_exit (& rcu_cb . rcu_gp_mutex );

45 rcu_advance_callbacks (cp);

46 }

The function for advancing callbacks is shown in listing 5.11. It first attempts
to enqueue or execute callbacks in the same order as they appear on the list. The
taskq_dispatch() operation may fail. If this happens, all the nonblocking callbacks
are handled expediently, skipping the blocking ones. Finally, the skipped blocking call-
backs are enqueued using a blocking invocation of taskq_dispatch(), which may sleep,
waiting for sufficient resources to become available. (Such a situation should occur rarely.
It can be caused by memory pressure or by a flood of sleepable callbacks. The second
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case can happen when the task queue is heavily contended, as already described in
subsection 4.3.2.)

Atomic operations are used so that interrupt handlers interrupting the reclaimer
thread and producing callbacks concurrently can not cause any problems.

Lines 6–66 handle all the callbacks waiting for the current grace period boundary, as
described above. The weight values are taken into account and subtracted from the per
CPU weight sum. Lines 68–74 advance the nextlist callbacks by moving them into the
curlist. Note that the curlist will not be terminated correctly after this function exits.
In fact it would be unsafe to terminate it, since assigning the trailing NULL pointer
could race with a thread still appending to the former nextlist. Terminating the list is
postponed until the next iteration and occurs on line 14.

The RCU_VOL macro generates volatile casts necessary to prevent the compiler from
local variable elimination and code reordering. Details of these possible optimizations
that could clobber the shared data in SMP environments have been described by Paul
McKenney in his paper on preemptible RCU for Linux. [10]

Listing 5.11: Advancing callbacks
1 static void

2 rcu_advance_callbacks ( cpu_t *cp)

3 {

4 rcu_t *list = RCU_CPU (cp , rcu_curlist );

5
6 if (list) {

7 taskq_t *taskq ;

8 rcu_t *next;

9 rcu_t * failed_list = NULL;

10 rcu_t ** failed_end = & failed_list ;

11 uint32_t weight_sum = 0;

12
13 taskq = RCU_VOL ( taskq_t *, rcu_cb . rcu_taskq );

14 * RCU_CPU (cp , rcu_curtail ) = NULL;

15 do {

16 next = list -> rcu_next ;

17 weight_sum += list -> rcu_weight ;

18
19 switch (list -> rcu_type ) {

20 case RCU_CB_DEFAULT :

21 list -> rcu_func (list );

22 break ;

23 case RCU_CB_EXCL :

24 if (! taskq_dispatch (taskq ,

25 ( task_func_t *)list ->rcu_func , list ,

26 TQ_NOSLEEP | TQ_NOQUEUE )) {

27 * failed_end = list;

28 failed_end = &list -> rcu_next ;

29 list = next;

30 goto failure ;

31 }

32 break ;

33 default :
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34 panic ("rcu_reclaimer:␣unknown␣callback␣type");

35 break ;

36 }

37 } while (( list = next) != NULL );

38
39 goto out;

40 failure :

41 for (; list; list = next) {

42 next = list -> rcu_next ;

43 weight_sum += list -> rcu_weight ;

44
45 switch (list -> rcu_type ) {

46 case RCU_CB_DEFAULT :

47 list -> rcu_func (list );

48 break ;

49 case RCU_CB_EXCL :

50 * failed_end = list;

51 failed_end = &list -> rcu_next ;

52 break ;

53 }

54 }

55
56 * failed_end = NULL;

57 do {

58 next = failed_list -> rcu_next ;

59
60 (void) taskq_dispatch (taskq ,

61 ( task_func_t *) failed_list ->rcu_func ,

62 failed_list , TQ_SLEEP );

63 } while (( failed_list = next) != NULL );

64 out:

65 RCU_SUB ( RCU_CPU (cp , rcu_weight ), weight_sum );

66 }

67
68 RCU_CPU (cp , rcu_curlist ) = RCU_VOL ( rcu_t *, RCU_CPU (cp , rcu_nextlist ));

69 if ( RCU_CPU (cp , rcu_curlist )) {

70 RCU_VOL (rcu_t *, RCU_CPU (cp , rcu_nextlist )) = NULL;

71 RCU_VOL (rcu_t **, RCU_CPU (cp , rcu_curtail )) =

72 atomic_swap_ptr (& RCU_CPU (cp , rcu_nexttail ),

73 & RCU_CPU (cp , rcu_nextlist ));

74 }

75 }

5.1.9 Waiting for Callbacks to Finish

As already mentioned, line 6 in listing 5.10 checks whether a request to announce the
end of callback processing has been placed. This functionality can be accessed using
the rcu_call_synchronize() API function. This function blocks until all previously
enqueued callbacks have been processed.

The function consists of two calls, as shown in listing 5.12. First of all, reclaimer
threads are all asked to announce an idle state as soon as all their callback lists become
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empty. This happens on line 4. (Waiting for the announcements might take an un-
bounded amount of time on a system constantly loaded with RCU callback processing.
Improving the algorithm to achieve a reasonably fast response on extremely loaded
systems is future work.)

Once all the reclaimer threads have gone through an idle state with empty callback
lists, one can be sure that all the previously enqueued standard callbacks have been
processed and all the exclusive callbacks have been dispatched. Line 5 waits for all the
dispatched exclusive callbacks to finish. This functionality is provided by the task queues
in UTS.

Listing 5.12: Waiting for callbacks to finish
1 void

2 rcu_call_synchronize ()

3 {

4 rcu_call_synchronize_common ();

5 taskq_wait ( rcu_cb . rcu_taskq );

6 }

Listing 5.13 shows how reclaimers are asked to announce an idle state and how the
announcements are waited for. Lines 12–15 take a short path if the thread was blocking
on the mutex for a sufficiently long period of time. Blocking for the duration of two
counter flips guarantees that all the callbacks produced before the call must have been
already processed. A pointer to a local counter is set in all the per CPU data structures
and all the reclaimer threads are notified by incrementing their queue semaphores. This
is what lines 16–24 do. The semaphore increment wakes up the reclaimers in case they
were sleeping. Lines 27–28 wait until all the reclaimer threads announce an idle state
by decrementing the counter. Since the counter was set to the number of online CPUs,
all the reclaimers will have gone through an idle state as soon as the counter reaches
zero.

There are many technical subtleties regarding the behavior of the algorithm in cases
when concurrent CPU-related events happen. Curious readers can read the source code
comments around the rcu_cpu_event() function.

Listing 5.13: Asking reclaimers for an idle state
1 static void

2 rcu_call_synchronize_common ()

3 {

4 uint32_t counter ;

5 cpu_t *cp;

6 gp_t sync_ctr ;

7
8 membar_full ();

9 sync_ctr = rcu_cb . rcu_sync_ctr ;

10
11 mutex_enter (& rcu_cb . rcu_sync_mutex0 );

12 if ( rcu_cb . rcu_sync_ctr - sync_ctr >= 2) {

13 mutex_exit (& rcu_cb . rcu_sync_mutex0 );

14 return ;

15 }
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16 mutex_enter (& cpu_lock );

17 counter = ncpus_online ;

18 membar_producer ();

19 cp = cpu_active ;

20 do {

21 RCU_CPU (cp , rcu_sync ) = & counter ;

22 sema_v (& RCU_CPU (cp , rcu_queue_sema ));

23 } while ((cp = cp -> cpu_next_onln ) != cpu_active );

24 mutex_exit (& cpu_lock );

25
26 mutex_enter (& rcu_cb . rcu_sync_mutex1 );

27 while ( counter )

28 cv_wait (& rcu_cb . rcu_sync_cond , & rcu_cb . rcu_sync_mutex1 );

29 mutex_exit (& rcu_cb . rcu_sync_mutex1 );

30 ++ rcu_cb . rcu_sync_ctr ;

31 mutex_exit (& rcu_cb . rcu_sync_mutex0 );

32 }

Listing 5.14 shows how the reclaimer threads react to an idle state request. (The
function is called in listing 5.10 on line 7.) First of all, line 7 invalidates the per CPU
counter pointer and line 8 forces this change to occur before subsequent memory stores.
The memory barrier is a price that must be paid for keeping the function lock-free for
all reclaimer threads but one. Only one of the reclaimers actually acquires the mutex
and notifies the waiting thread.

Line 9 contains an atomic operation that decrements the shared counter. This im-
plementation speeds up the fast path (decrementing the counter to a nonzero value) at
the expense of possible spurious wake-ups of the waiting thread, a memory barrier and
an explicit atomic instruction. The spurious wake-up events are benign, as discussed in
the source code comments. The lock-free fast path avoids lock contention by requiring
only one reclaimer per idle state request to acquire the mutex, no matter how many
processors the system may have.

Listing 5.14: Handling an idle state request
1 static void

2 rcu_handle_sync (cpu_t *cp)

3 {

4 uint32_t * rcu_sync ;

5
6 rcu_sync = RCU_CPU (cp , rcu_sync );

7 RCU_CPU (cp , rcu_sync ) = NULL;

8 membar_producer ();

9 if (! atomic_dec_32_nv ( rcu_sync )) {

10 mutex_enter (& rcu_cb . rcu_sync_mutex1 );

11 cv_signal (& rcu_cb . rcu_sync_cond );

12 mutex_exit (& rcu_cb . rcu_sync_mutex1 );

13 }

14 }
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5.1.10 The Detector Algorithms

When there is no activity related to RCU, the grace period detector thread sleeps. Once
some of the RCU reclaimers or other threads want to observe a grace period boundary,
they have to wake up the detector and wait for its announcement.

The detector first takes a snapshot of some CPU related data, such as the last
observed grace period counter and the context switch counter. It excludes processors
that will not need attention, such as the current processor or those that have already
observed the current grace period counter state. Then, if high water is not announced,
the detector sleeps for a couple of clock ticks.

After waking up, the detector rescans the remaining processors, verifying that they
have already become aware of the current grace period. If some of them remained in
an unknown state, the detector thread has to force a context switch on those processors
to make sure any read-side critical sections running on them have terminated. (Since
all read-side sections run with disabled preemption, context-switching the detector to
the CPUs guarantees that all of them have ended.)

5.1.11 Detector Code Walkthrough

The detector thread’s main loop is shown in listing 5.15. Unlike the reclaimer threads,
the detector never exits.

Obviously, a grace period boundary will be announced without being actually ob-
served right after the detector wakes up. This is perfectly legal, based on the following
two facts. First, the detector always observes one extra full grace period boundary before
going to sleep. Second, callbacks are only processed after two grace period boundaries
are announced (which can not happen without observing a full grace period) and threads
waiting for grace periods to elapse also require two boundaries to be announced.

Listing 5.15: Grace period detector’s main loop
1 mutex_enter (& rcu_cb . rcu_gp_mutex );

2 /* ... */

3 for (;;) {

4 while (! rcu_cb . rcu_gp_wanted ) {

5 CALLB_CPR_SAFE_BEGIN (& cprinfo );

6 cv_wait (& rcu_cb . rcu_wanted_cond , & rcu_cb . rcu_gp_mutex );

7 CALLB_CPR_SAFE_END (& cprinfo , & rcu_cb . rcu_gp_mutex );

8 }

9
10 --rcu_cb . rcu_gp_wanted ;

11 ++ rcu_cb . rcu_gp_ctr ;

12 cv_broadcast (

13 & rcu_cb . rcu_elapsed_cond [ rcu_cb . rcu_gp_ctr & 0x1 ]);

14
15 mutex_exit (& rcu_cb . rcu_gp_mutex );

16 rcu_wait_and_force ();

17 mutex_enter (& rcu_cb . rcu_gp_mutex );

18 }
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Listing 5.16 shows the algorithm that detects processors requiring attention (lines
11–23) and waits for a bounded period of time (lines 30–40) in case if a high water state is
not reported. Last, it forces some of the processors into a context switch when necessary
(lines 44–54). The processor running the current thread, processors running userspace
code and processors that have already observed the current grace period counter are
excluded (lines 15–17). They will not need attention during this boundary detection.

After the waiting phase, some processor-related data must be rechecked, since re-
leasing and reacquiring the cpu_lock mutex opens a race window in which processors
could be added or removed. As cpu_t structures are never freed, the list of processors
can still be safely traversed. Only the cpu_next pointer and the CPU_ONLINE flag have
to be reexamined to make sure the CPU has not been removed or set offline (line 46).

New CPUs that were added during the waiting phase do not need any attention,
since all the possible read-side sections running on them obviously started no sooner
than after the preceding grace period boundary, which means they need not be waited
for. Of course, the new processors will need (and receive) attention once a subsequent
grace period boundary is detected.

Lines 12 and 13 do a simple housekeeping. Processors whose observed grace period
counters are too far from the current counter value have their observed counters reini-
tialized. This may be necessary for processors that spent a considerable amount of time
offline. The global grace period counter may have overflowed during that time. This
assignment makes sure such a situation is always benign. (Else it could be harmful in
one case out of 232. Failures would be highly improbable, but theoretically possible.)

Listing 5.16: Observing a grace period
1 static void

2 rcu_wait_and_force ()

3 {

4 cpu_t *cp , * first ;

5 cpu_t * list_first ;

6 cpu_t ** list_tail = & list_first ;

7
8 mutex_enter (& cpu_lock );

9 first = CPU;

10 cp = first ;

11 do {

12 if ( RCU_GP_GT ( RCU_CPU (cp , rcu_gp_ctr ), rcu_cb . rcu_gp_ctr ))

13 RCU_CPU (cp , rcu_gp_ctr ) = rcu_cb . rcu_gp_ctr - 1;

14 if (

15 rcu_cb . rcu_gp_ctr != RCU_CPU (cp , rcu_gp_ctr ) &&

16 cp -> cpu_mstate == CMS_SYSTEM &&

17 cp -> cpu_thread != curthread

18 ) {

19 RCU_CPU (cp , rcu_pswitch ) = CPU_STATS (cp , sys. pswitch );

20 * list_tail = cp;

21 list_tail = & RCU_CPU (cp , rcu_next_cpu );

22 }

23 } while ((cp = cp -> cpu_next_onln ) != first );

24 * list_tail = NULL;

25
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26 if ( rcu_cb . rcu_hiwater ) {

27 membar_consumer ();

28 } else {

29 mutex_exit (& cpu_lock );

30 mutex_enter (& rcu_cb . rcu_gp_mutex );

31 if (! rcu_cb . rcu_hiwater ) {

32 clock_t timeleft = rcu_gp_max ;

33 do {

34 timeleft = cv_reltimedwait (

35 & rcu_cb . rcu_hiwater_cond ,

36 & rcu_cb . rcu_gp_mutex , timeleft ,

37 TR_MILLISEC );

38 } while (!( -1 == timeleft || rcu_cb . rcu_hiwater ));

39 }

40 mutex_exit (& rcu_cb . rcu_gp_mutex );

41 mutex_enter (& cpu_lock );

42 }

43
44 for (cp = list_first ; cp; cp = RCU_CPU (cp , rcu_next_cpu )) {

45 if (

46 cp -> cpu_next && cpu_is_online (cp) &&

47 cp -> cpu_mstate == CMS_SYSTEM &&

48 rcu_cb . rcu_gp_ctr != RCU_CPU (cp , rcu_gp_ctr ) &&

49 RCU_CPU (cp , rcu_pswitch ) == CPU_STATS (cp , sys. pswitch )

50 ) {

51 affinity_set (cp -> cpu_id );

52 affinity_clear ();

53 }

54 }

55 mutex_exit (& cpu_lock );

56 }

5.1.12 Kernel Integration: Interfacing with CPR

The Checkpoint/Resume subsystem provides a possibility to quiesce a running system
and stop all threads in a consistent state. This has to be done before the machine can
be switched to a low-power state, migrated to another physical host and the like. All
threads are expected to either terminate or reach a CPR-safe state when a checkpoint
is requested.

The detector thread announces a CPR-safe state when it sleeps, waiting for grace
period requests to come. The situation is slightly more complicated for the reclaimer
threads. They announce the safe state each time they sleep on their per CPU semaphores,
waiting for callbacks to emerge. However, this is not sufficient to prevent checkpoint
failures caused by RCU. When the reclaimer is waiting for an announcement from the
detector, it could wait forever in case if the detector had been asked to reach a CPR-safe
state and reached it. Consequently, the waiting reclaimer would not reach a CPR-safe
state and cause the checkpoint request to fail.

As far as the author knows, the current CPR code does not include a mechanism
that could construct a dependency DAG of threads and request safe states in the correct
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order. This is why an RCU-specific solution had to be found. Before waiting for the
detector, reclaimers verify (under a mutex) whether the detector was asked to quiesce
itself. If so, reclaimers suspend themselves for a standard grace period duration, in
anticipation of receiving a CPR request as well. Before waiting, they announce a CPR
safe state. They repeat this process as long as needed, which can be seen in listing 5.10
on lines 27–34.

It is possible that the reclaimer threads could be marked as CPR-safe, in which
case they would not have to reach a CPR-safe state. The current approach, however,
guarantees that a batch of callbacks (a set of callbacks waiting for the same grace period
boundary) will not be split across a low power state.

Testing the cooperation of RCU with CPR is future work. This would require access
to the standard unit tests used by Oracle, so that all the aspects of the required behavior
could be verified.

5.1.13 Kernel Integration: Interfacing with CPU Hotplug

The RCU implementation exports a rcu_cpu_event() function, which is used as a call-
back handler reacting to various CPU-related events. This function initializes the RCU
data stored in cpu_t structures and performs the necessary maintenance when new pro-
cessors are detected (on boot or due to a hotplug event) and when processors are onlined
and offlined. Specifically, a reclaimer thread must be spawned for each new processor
and bound to that processor. If the number of available processors changes substantially
(by a binary order of magnitude), the system-wide RCU task queue is reallocated to
reflect the change.

Testing the reaction to CPU onlining and offlining thoroughly is future work. There
are still some open questions, as described in section 8.1. It is necessary to choose
a solution to the problems concerning offline processors that can handle interrupts.
Once a solution is chosen, the code dealing with some of the CPU-related events might
be rewritten or become obsolete. In either case, unit tests used by OS/Net developers
would be very helpful, if not necessary.

5.1.14 Kernel Integration: The Big Image

The RCU algorithm is closely bound to the core kernel data structures and stores its data
directly in the cpu_t data structure. It must be usable early during boot, even during
the uniprocessor stage. Callbacks can be produced almost from the very beginning of
the kernel’s main() function. Threads related to RCU (the detector and reclaimers) are
spawned as soon as the cache for proc_t structures becomes available.

For the reasons mentioned above, the author decided not to even attempt isolat-
ing the global RCU implementation into a loadable kernel module. Instead, the RCU
implementation is linked with the genunix module. Since RCU causes precisely zero
overhead when not used, this should not be an issue.

The RCU source code can be found in uts/common/os/rcu.c,
uts/common/sys/rcu.h and uts/common/sys/rcu_impl.h.
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5.1.15 Comparison of the UTS RCU to the Linux RCU

The current Linux RCU algorithm is much more scalable than the prototype implemen-
tation in UTS. Details about the hierarchical tree-based RCU algorithm used on Linux
are described in subsection 2.1.4.

The Linux RCU provides multiple variants of the RCU algorithm, such as preemtible
readers, and other advanced features. It has to cope with (or possibly take advantage of)
some Linux specifics, such as optional kernel preemption and numerous other compile-
time options.

As long as RCU readers behave responsibly, the UTS prototype implementation can
provide an upper bound on grace period duration on non-real-time systems.

The prototype RCU implementation in UTS does not depend on clock tick
processing in any way. This is probably the main difference. There are two main
reasons for this design decision:

• All modern kernels are heading towards a tickless design. Idle states on Linux are
already tickless and there are ongoing efforts to eliminate even regular scheduler
ticks under load, making the operating system similar to a discrete simulation
algorithm. Algorithms strongly based on clock ticks are not future proof and have
to cope with CPU idle states.

• The UTS kernel uses a completely different clock tick handling mechanism than
Linux does. On Linux, all CPUs receive clock interrupts when they are not idle.
This is not the case on UTS. On Solaris 10 (as described in Solaris Internals [7]),
there used to be only one processor handling clock ticks. The current OpenSolaris
implementation has multithreaded clock tick processing, so that data locality and
scalability requirements are met. However, this does not mean that clock ticks are
processed by all CPUs. In fact the number of CPUs processing clock ticks is much
lower than the total number of CPUs.

Instead of instrumenting the clock tick thread with code run on every single tick,
it seems better to provide a regular thread with a high priority instead. This is
the detector thread. Its priority is such that it can preempt most other threads,
with the exception of interrupt threads and real-time threads. The most impor-
tantly, it can sleep (causing exactly zero overhead) when no RCU-related activity
is observed. The possibility of replacing the RCU detector and reclaimer threads
with execution entities closer to interrupt threads and possible benefits of this
approach are discussed in chapter 8.

The prototype RCU implementation in UTS does not instrument or modify
the scheduler code in any way and does not require any explicit actions to be taken
on every context switch. Instrumenting the scheduler code in UTS does not make sense:

• The UTS kernel can (under certain circumstances) schedule huge time quanta
(more than a second) to low-priority threads in the Fair-Share scheduling class.
[7] This implies that RCU needs to use different techniques of limiting the grace
period duration.
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5.2 The QRCU Implementation

The QRCU algorithm has been ported from Linux, with all the necessary changes
related to the different semantics of some synchronization primitives on both kernels.
The original version of the algorithm was designed by Oleg Nesterov in 2007. Paul
McKenney improved the algorithm and added a lockless fast path. He then prove the
correctness of his approach both formally and using the Promela language. Both proofs
of correctness and other details can be found in [9].

5.2.1 Read-Side Algorithm

Readers increment an atomic variable based on the state of a global counter, as long as
the atomic variable is not zero. In the latter case, the reader has to re-read the global
counter and retry the increment with its new value, possibly referencing a different
atomic variable. At the end, the reader decrements the same atomic variable it had
originally incremented. Further details about this algorithm are mentioned in subsection
2.2.4.

5.2.2 Read-Side Code Walkthrough

The read-side locking function is displayed in listing 5.17. It uses the increment if not

zero primitive, which had to be ported from the Linux kernel together with the QRCU
algorithm. (More precisely, QRCU has never been accepted into the mainline kernel,
but can be obtained from a patch against the 2.6.19 version.) The Linux kernel contains
numerous ”do if not something“ atomic operations, but this project did not attempt to
port more of them and provide a library. Instead, only the needed one, shown in listing
5.18, was included directly into the QRCU source code.

Listing 5.17: Starting a QRCU read-side critical section
1 int

2 qrcu_read_lock ( qrcu_t *qrcu)

3 {

4 for (;;) {

5 int idx = QRCU_VOL (uint32_t , qrcu -> qrcu_ctr ) & 0x1;

6 if ( qrcu_inc_nz (& qrcu -> qrcu_rlock [idx ]))

7 return idx;

8 }

9 }

Listing 5.18: Incrementing a nonzero counter
1 static inline uint32_t

2 qrcu_inc_nz ( uint32_t * atomic )

3 {

4 int old;

5 int aux = QRCU_VOL (uint32_t , * atomic );

6
7 while (aux && aux != (old = atomic_cas_32 (atomic , aux , aux + 1)))

8 aux = old;
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9 return aux;

10 }

The read-side critical section epilogue can be seen in listing 5.19. The mutex used
to notify the waiting reclaimer should be initialized as a spinlock in cases when readers
are required to be non-blocking. The current implementation uses a standard adaptive
mutex for the sake of simplicity. Presumably, when readers at high interrupt levels are
expected, initializing qrcu_mutex1 as a spinlock is the only viable solution.

Listing 5.19: Ending a QRCU read-side critical section
1 void

2 qrcu_read_unlock ( qrcu_t *qrcu , int idx)

3 {

4 if (! atomic_dec_32_nv (&qrcu -> qrcu_rlock [idx ])) {

5 mutex_enter (&qrcu -> qrcu_mutex1 );

6 cv_signal (& qrcu -> qrcu_cond );

7 mutex_exit (&qrcu -> qrcu_mutex1 );

8 }

9 }

5.2.3 Write-Side Algorithm

Readers interested in the intricacies of the write-side algorithm and the proof of its
correctness are encouraged to read the whole paper by Paul McKenney. [9]

The fast path algorithm is designed so that a writer will either avoid racing with
both readers and other writers, or race with other writers in a precisely defined manner.
(The former implies that all threads are in a quiescent state. The latter implies that
at least two grace period boundaries have elapsed.) In both cases, the reclaimer can
proceed without acquiring the mutex and without interacting with other threads.

The slow path first tries the standard optimization seen in listing 5.4, lines 10–13.
Blocking for at least two counter flips (or grace period boundaries in the standard RCU
parlance) guarantees that a full grace period must have elapsed. In such cases, it is not
necessary to increment the global counter or wait.

When all the optimizations above fail, the counters are swapped, as described in
subsection 2.2.4, and the writer has to wait for the old counter to become zero. Once
this happens, the writer becomes a reclaimer and can be sure no readers can access the
old data it is about to remove.

5.2.4 Write-Side Code Walkthrough

The code separating writers from reclaimers is shown in listing 5.20. Line 6 forces
ordering of the preceding memory operations before the subsequent fastpath tests. Lines
7–15 implement Paul McKenney’s fast path. Line 10 forces load ordering so that the two
tests of counters are independent. Lines 19–23 check whether the thread has blocked
long enough for a full grace period to elapse.

The slow path flips the counter on lines 25–28. The new counter must be incremented
before decrementing the old one. This guarantees that the new counter will not be
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decremented to zero during the grace period to follow, until a subsequent reclaimer
flips the counter again. Without this assumption, spurious wake-ups could occur and
in some very special cases (of aggressively reordering CPUs), data consistency could be
compromised.

Last but not least, lines 31–32 wait for all the readers to terminate. Once the counter
reaches zero, no more readers will be able to increment it. This implies that subsequent
readers will eventually notice that the counter has been flipped (possibly by retrying
the counter index computation) and preceding readers have already finished. A grace
period has ended.

Listing 5.20: Waiting for the QRCU readers to finish
1 void

2 qrcu_synchronize ( qrcu_t *qrcu)

3 {

4 int idx;

5
6 membar_full ();

7 if ( QRCU_VOL (uint32_t , qrcu -> qrcu_rlock [0]) +

8 QRCU_VOL (uint32_t , qrcu -> qrcu_rlock [1]) <= 1) {

9 membar_consumer ();

10 if ( QRCU_VOL (uint32_t , qrcu -> qrcu_rlock [0]) +

11 QRCU_VOL (uint32_t , qrcu -> qrcu_rlock [1]) <= 1) {

12 membar_full ();

13 return ;

14 }

15 }

16
17 mutex_enter (&qrcu -> qrcu_mutex0 );

18 idx = qrcu -> qrcu_ctr & 0x1;

19 if ( QRCU_VOL (uint32_t , qrcu -> qrcu_rlock [idx ]) == 1) {

20 mutex_exit (&qrcu -> qrcu_mutex0 );

21 membar_enter ();

22 return ;

23 }

24
25 atomic_inc_32 (&qrcu -> qrcu_rlock [idx ^ 0x1 ]);

26 membar_producer ();

27 ++ qrcu -> qrcu_ctr ;

28 atomic_dec_32 (&qrcu -> qrcu_rlock [idx ]);

29
30 mutex_enter (&qrcu -> qrcu_mutex1 );

31 while (qrcu -> qrcu_rlock [idx ])

32 cv_wait (&qrcu ->qrcu_cond , &qrcu -> qrcu_mutex1 );

33 mutex_exit (&qrcu -> qrcu_mutex1 );

34 mutex_exit (&qrcu -> qrcu_mutex0 );

35
36 membar_enter ();

37 }
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5.2.5 Kernel Integration

The QRCU algorithm is implemented as a loadable kernel module called misc/qrcu.
If it is ever needed early on boot, it could either become part of the core kernel

(the genunix module) or be loaded on demand using the modstubs.s mechanism. (The
latter solution is used for scheduling classes and some other modules known in advance
at compile time. The kernel implements function stubs with names identical to the
interface provided by a loadable module. Invocation of one of the stubs causes the
corresponding skeleton module to get loaded and service the request.)

The source code of QRCU can be found in uts/common/qrcu/qrcu.c and
uts/common/sys/qrcu.h.

5.3 The DRCU Implementation

DRCU stands for ”Dummy RCU“ and implements the core part of the RCU API using
a readers-writer lock. This algorithm has been implemented for benchmarking purposes
only. It is prone to various deadlock scenarios if invoked from interrupt context. It also
suffers from severe performance issues and does not guarantee readers to never block.
It documents the relationship between RCU and other types of locking and was one of
the ”toy“ RCU implementations originally presented by Paul McKenney. [12]

5.3.1 DRCU Code Walkthrough

Listings 5.21 and 5.22 show the read-side primitives. Listing 5.23 shows the blocking
API. This implementation does not provide a callback API. As described in the 2.2.1
subsection, the algorithm is interesting from the theoretical point of view rather than
for practical qualities. As observed in chapter 7, it has a catastrophic SMP performance,
problematic even with as few as eight processors.

Listing 5.21: Starting a DRCU read-side critical section
1 void

2 drcu_read_lock ( drcu_t *drcu)

3 {

4 rw_enter (&drcu -> drcu_rwlock , RW_READER );

5 }

Listing 5.22: Ending a DRCU read-side critical section
1 void

2 drcu_read_unlock ( drcu_t *drcu)

3 {

4 rw_exit (&drcu -> drcu_rwlock );

5 }

Listing 5.23: Waiting for DRCU readers to finish
1 void

2 drcu_synchronize ( drcu_t *drcu)
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3 {

4 rw_enter (&drcu -> drcu_rwlock , RW_WRITER );

5 rw_exit (&drcu -> drcu_rwlock );

6 }

5.3.2 Kernel Integration

The DRCU algorithm is implemented as a loadable kernel module called misc/drcu.
The source code of DRCU can be found in uts/common/drcu/drcu.c and
uts/common/sys/drcu.h.

5.4 Summary of RCU Algorithms

Table 5.1 summarizes the features, characteristics and limitations of the presented RCU
algorithms. Some of the boolean values are commented in more detail.

DRCU QRCU RCU

readers can sleep YES (1) YES NO
readers in interrupt contexts NO YES YES (2)

blocking API YES YES YES
callback API NO NO YES

callbacks can sleep — — YES (3)
callbacks from interrupt contexts — — YES

bounded grace period NO NO YES (4)
local, multiple instances YES YES NO

Table 5.1: Summary of RCU algorithms

1. This depends on the limitations of a readers-writer lock implementation on the
particular platform. Many implementations do not allow readers to block or sleep
when holding the lock.

2. Although this RCU algorithm is designed to support all of its non-blocking oper-
ations in interrupt contexts, there are technical difficulties that have to be dealt
with first. Section 8.1 summarizes the problem and possible solutions.

3. This feature is available and fully functional, but should be used with care and
avoided when possible, for performance reasons. Sleepable callbacks are handled
by a much less efficient mechanism than the non-blocking ones.

4. Grace periods are bounded as long as there is no extreme real-time or interrupt
workload and all read-side sections take a bounded amount of time.
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Chapter 6

Other Contributions to UTS

The prototype implementation of RCU for the UTS kernel, described in chapter 5, is the
main contribution of this thesis. There are also other contributions related to benchmarking
the RCU algorithms and an example application of the RCU API. This chapter describes
the related work, focusing on a non-blocking hash table implementation based on RCU.

6.1 The Non-Blocking Hash Table

Paul McKenney describes a non-blocking hash table algorithm in his Ph. D. thesis. [3]
McKenney’s algorithm has been implemented from scratch by this author and works
in the UTS kernel. According to McKenney, non-blocking hash tables are used in the
K42 kernel. The new implementation in UTS has been written without reading the K42
sources and does not use any code from K42. The hash table supports the standard
three hash map operations — mapping, unmapping and retrieval of data objects by
keys. All the three operations are non-blocking.

All the table operations (and especially the non-blocking removals) are based on the
notion of existence locks. [3] The table requires a mechanism that prevents data items
from being removed in a moment when they are accessed. RCU provides such a mech-
anism. Performing all the operations inside RCU read-side critical sections guarantees
that hash chain traversals will always see valid data. Threads can possibly access stale
data, but they will never access invalid data, as long as they play by the rules.

The non-blocking nature of the hash table makes it possible to run read and insert
operations concurrently with no synchronization at all. In these special cases, there is
no need for RCU. However, when all the three possible operations (including removals)
can run concurrently, all of them must be protected by RCU read-side critical sections
to prevent stale hash chain items they might encounter from being reclaimed too early.
Furthermore, threads that remove an item from a hash chain must wait for at least
one grace period before they can safely reclaim the item. This can be done either
synchronously, or using the RCU callback mechanism.

The hash table algorithm must guarantee that when multiple threads insert a key
concurrently, at most one of them will succeed. More precisely, exactly one of them will
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succeed if and only if the hash table did not contain the inserted key yet. Similarly,
when multiple threads remove a key concurrently, at most one of them can succeed.
Exactly one will succeed if and only if the table contained the removed key. These rules
are obeyed with the help of atomic instructions.

The standard non-blocking list manipulation algorithms had to be modified so that
they can tolerate stale data, as described by McKenney. [3] New elements can only
be added to the head of the hash chain. Successors of removed elements can only be
connected to valid predecessors.

The insert operation first takes a snapshot of the head of the hash chain, then verifies
whether the hash chain contains the new key. Finally, when no conflicting key is found,
it connects the new element using an atomic compare and swap instruction. Adding new
elements or removing the first element in the mean time will cause the atomic operation
to fail and the hash chain will have to be traversed again. As long as the operation runs
in an RCU read-side critical section, all the elements of the traversed hash chain are
guaranteed to remain valid.

The remove operation first searches the hash chain to find the element with the
requested key. If found, the element is invalidated atomically. This is done by setting
the lowest-order bit of its next pointer to 1 using an atomic operation. This guarantees
that each element can only be invalidated once. And even more importantly, a concurrent
removal of the successor will either terminate before this atomic invalidation, or spin
until the current removal has completed. This is guaranteed by using the the lowest
order bit of the next pointer as the ”stale flag“.

After invalidating the removed element atomically, the removal operation proceeds
to assigning the next pointer of the current element to the predecessor’s next pointer.
Again, an atomic CAS operation is used. Since the CAS operation expects a valid pointer
(with zero lowest-order bit) to be replaced, the successor will always be connected to
a valid predecessor. If the CAS operation fails, the hash chain must be traversed again
to find a new valid predecessor. This is repeated until either a valid predecessor is found
and successfully connected to the successor, or the current element can not be found
on the hash chain any more. The second case can happen as a result of racing with
concurrent insert operations, as described in the code walkthrough below.

Since the hash table search operation is trivial, we will only give a brief description
of how elements are inserted and removed. Listing 6.1 shows the insert operation. Line 8
takes a snapshot of the hash chain head in such a way that it is fetched from the memory
only once. Otherwise the compiler could eliminate the first and retfirst variables
and read the memory location multiple times. Obtaining first during or after the
actual chain traversal, as seen by other CPUs, could result in a successful insertion of
multiple elements with the same key.

The ht_get_valid() function on line 11 returns a reference to a valid item with
a matching key into prev and stores a reference to the first valid item into next. The
next pointer is then used to reduce contention by circumventing all invalid elements
at the beginning of the list (if any). This avoids further racing with threads that are
concurrently removing the leading invalidated elements, reducing the probability of
starvation. [3]
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Once the item is initialized properly, line 15 will make sure that all these changes
will be visible before the item becomes accessible to other threads. The atomic operation
on line 16 attempts to connect the item to the head of the list, using the snapshot kept
in first. If this fails, someone has modified the hash chain head concurrently and the
operation will have to be retried.

On success, null is returned. Else line 13 returns a reference to the conflicting item
with the same key.

Theoretically, the algorithm could circumvent all the leading invalid items even
when a conflicting valid item is found. However, the author has chosen not to take this
approach in order to keep the code simple. Furthermore, it does not seem reasonable to
race with concurrent insert and remove operations when the current insert operation is
about to fail and does not add anything to the hash chain.

Listing 6.1: The non-blocking hash table insert operation
1 ht_t *

2 ht_add ( ht_map_t *map , ht_key_t key , ht_t * value )

3 {

4 _ht_bucket_t * bucket = HT_HASH (map , key );

5 ht_t *prev , *first , *retfirst , *next;

6
7 value -> ht_key = key;

8 retfirst = HT_VOL (ht_t *, bucket -> ht_first );

9 do {

10 first = retfirst ;

11 prev = ht_get_valid (first , key , &next );

12 if (prev)

13 return (prev );

14 value -> ht_next = next;

15 membar_producer ();

16 } while (( retfirst = atomic_cas_ptr (& bucket ->ht_first , first , value )) !=

17 first );

18
19 return (NULL );

20 }

The remove operation, displayed in listing 6.2, starts with a hash chain traversal
on line 8. A reference to a valid item with a matching key is returned into dead and
a reference to its predecessor is stored into pred. When no valid matching item is found,
the function takes the short path.

Lines 12 and 13 read the original pointer and make sure the local copy is valid. The
valid pointer is stored in newnext and its invalidated form (with the lowest-order bit
set to 1) is stored in newnext. The atomic operation on line 14 attempts to change
the valid pointer to its invalid counterpart atomically. If someone connected a different
successor concurrently, the algorithm spins. If someone else invalidated the current item
concurrently, the short path is taken and a failure is reported as if no matching item
was found.

The memory barrier on line 22 guarantees that the invalidation will reach global
visibility before the invalidated item is disconnected. The comments in the full source
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code describe why this is crucial for keeping the hash chain consistent. The atomic oper-
ation on line 24 tries to disconnect the current item from the hash chain by connecting
its successor to a valid predecessor. If the predecessor was invalidated concurrently, line
25 repeats the lookup and finds a new predecessor. If no predecessor is found, then the
current item is no longer a member of the hash chain. This can happen due to a race
with an insert operation that circumvented leading invalid items, as already described.
In such case, the removal operation succeeds, since the invalidation was successful, but
it does not need to disconnect the item.

Listing 6.2: The non-blocking hash table remove operation
1 ht_t *

2 ht_del ( ht_map_t *map , ht_key_t key)

3 {

4 _ht_bucket_t * bucket = HT_HASH (map , key );

5 ht_t *dead , *oldnext , *newnext , * retnext ;

6 ht_t ** pred;

7
8 dead = ht_get_pred (& bucket ->ht_first , key , &pred );

9 if (! dead)

10 return (NULL );

11
12 oldnext = HT_PTR ( HT_VOL (ht_t *, dead -> ht_next ));

13 newnext = HT_INVAL_PTR ( oldnext );

14 while (( retnext = atomic_cas_ptr (& dead ->ht_next , oldnext , newnext )) !=

15 oldnext ) {

16 if (! HT_VALID_PTR ( retnext ))

17 return (NULL );

18 oldnext = retnext ;

19 newnext = HT_INVAL_PTR ( retnext );

20 }

21
22 membar_producer ();

23
24 while ( atomic_cas_ptr (pred , dead , oldnext ) != dead) {

25 pred = ht_find_pred (& bucket ->ht_first , dead );

26 if (! pred)

27 return (dead );

28 }

29 return (dead );

30 }

The hash table algorithm is implemented as a loadable kernel module. The mod-
ule is called misc/htab. The source code can be found in uts/common/htab/htab.c,
uts/common/htab/htab_impl.h and uts/common/sys/htab.h.

6.2 The SMP Barrier

For the sake of benchmarking, an SMP barrier primitive was needed to control multi-
threaded benchmarks. The benchmarking code uses barriers extensively. Since no suit-
able implementation was found in the core UTS kernel, one has been created, based on
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mutexes and condition variables. Both testing and benchmarking modules described in
chapter 7 depend on it.

The barrier implementation is provided in the form of a loadable kernel module called
misc/barrier. The source code can be found in uts/common/barrier/barrier.c and
uts/common/os/barrier.h.

6.3 RCU Code Examples and Tests

The RCU algorithms have been tested and benchmarked using the misc/rcutest and
misc/rcudemo loadable kernel modules. The source code of these two modules can
be found in uts/common/rcutest/rcutest.c and uts/common/rcudemo/rcudemo.c,
respectively. The purpose and function of these modules are described in chapter 7.

The rcutest module contains sanity checks and stress tests for the non-blocking
hash table insert operation and for the RCU implementations.

The rcudemo module provides an abstraction over the three different RCU APIs
implemented in UTS and uses this abstraction to benchmark the RCU algorithms.
The benchmarks simulate a real-life workload by using RCU to perform concurrent
operations on a non-blocking hash table. All the inserted and retrieved data objects are
read and overwritten multiple times to simulate standard memory operations and to
verify the correctness of RCU at the same time.

The abstraction used by rcudemo to hide the differences between the three imple-
mentations of RCU is good for code reusability, but bad for readability. The rcudemo

module could be hard to understand for readers unfamiliar with RCU. To overcome this
inconvenience, a complete set of code examples demonstrating the cooperation of RCU
with the non-blocking hash table can be found in appendix A.
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Chapter 7

Testing and Benchmarking RCU
in UTS

All the three RCU algorithms were tested and benchmarked using specialized kernel modules
described in this chapter. The benchmarking algorithm is described here as well. Finally,
results of the benchmark are listed. Three different multiprocessor machines were used for
the experiments.

7.1 Testing RCU and the Hash Table

The misc/rcutest kernel module provides basic sanity checks of all the three RCU
algorithms. It also tests the insertion algorithm of the non-blocking hash table. The
module spawns a kernel process, which performs the following tests in a sequence:

• 3 * ncpus threads are spawned, all of them producing millions of callbacks for the
global RCU. The callback functions decrement counters atomically. This verifies
that the callback framework works and all callbacks are eventually executed. One
callback in 256 is enqueued as exclusive, which means that the reclaimer threads
will dispatch it into a task queue instead of executing it directly. (Stressing the task
queue more intensively might expose the contention issues mentioned in subsection
4.3.2.)

• 3 * ncpus threads are spawned, all of them inserting items into a shared non-
blocking hash table. The maximum average chain length is approximately 16 (but
can slightly vary on machines where the number of processors is not a power of 2).
The ranges of inserted keys overlap, so that all the threads have an opportunity
to test both successful and unsuccessful insertions and race with each other. The
test is repeated a number of times and consistency of the table is verified after
each iteration.

• For each RCU implementation, 3 * ncpus readers and one writer are spawned.
This is often called the dual buffer test in papers related to RCU. The writer
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swaps (pointers to) two buffers repeatedly, waiting for a grace period after each
swap operation and rewriting the buffer twice afterwards, verifying its contents
before each rewrite. Readers perform exactly the same procedure when accessing
the buffer under a read-side critical section. They overwrite it twice, verifying
that values they read could only result from racing with other readers, not the
writer. (Presumably, the writer expects and verifies that it has exclusive access to
the buffer after waiting for a grace period.) Four different buffer sizes are tested
(512 kB, 32 kB, 2 kB and 128 B) for each RCU algorithm and millions of reader
iterations are performed.

The testing module requires approximately 2 gigabytes of available physical memory
per 8 processors. The number of test iterations and other constants have to be tweaked
on machines with a high number of processors and insufficient amount of memory.

The code used for buffer consistency checking is almost identical for both the
misc/rcutest module and the misc/rcudemo module (described in the following sec-
tion 7.2). The rcudemo module omits a memory barrier that rcutest uses to separate
the two buffer overwrites (and make race conditions more probable), but this is the only
difference. Since rcudemo is designed to simulate a standard workload with common op-
erations on RCU protected data, it does not use memory barriers and other expensive
operations explicitly.

Listing 7.1 shows how readers access the buffer they obtain. During the first iteration
(lines 9–21), the reader could be accessing a buffer not yet touched by other readers,
in which case the writer’s second (WRITER2) pattern would be observed. Otherwise
this reader could be racing with other readers, in which case some of the two readers’
patterns can be seen. Observing the writer’s first (WRITER1) pattern is a bug which has
to be reported immediately. Similarly, observing any of the writer’s patterns during the
second iteration (lines 23–34) is a bug, since only readers should be allowed to access
the buffer and the current reader has already overwritten any possible writer’s patterns.

The return value of the function is used to compute statistics on how often stale data
was observed before the two iterations (early stale data) and thereafter (late stale data).
Ideally, fresh data should be observed at least an order of magnitude more frequently
than late stale data. Furthermore, early stale data is expected to occur less frequently
than late stale data. The reader threads print out stale data statistics when they finish.

Listing 7.1: Reader’s buffer access
1 static uint32_t

2 check_db_reader_verify ( buffer_t *buf)

3 {

4 const uint32_t * const end = buf -> b_data + buf -> b_size ;

5 uint32_t *cur;

6 uint32_t stale1 = rcu_access (uint32_t , buf -> b_stale );

7 uint32_t stale2 ;

8
9 for (cur = buf -> b_data ; cur < end; ++ cur) {

10 switch (* cur) {

11 case WRITER2 : /* FALLTHROUGH */
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12 case READER1 : /* FALLTHORUGH */

13 case READER2 :

14 break ;

15 default :

16 panic ("\tReader␣error␣at␣%ld:␣Found␣pattern␣%x.\n",

17 (long )( cur - buf -> b_data ), *cur );

18 break ;

19 }

20 *cur = READER1 ;

21 }

22 membar_full ();

23 for (cur = buf -> b_data ; cur < end; ++ cur) {

24 switch (* cur) {

25 case READER1 : /* FALLTHROUGH */

26 case READER2 :

27 break ;

28 default :

29 panic ("\tReader␣error␣at␣%ld:␣Found␣pattern␣%x.\n",

30 (long )( cur - buf -> b_data ), *cur );

31 break ;

32 }

33 *cur = READER2 ;

34 }

35
36 stale2 = rcu_access (uint32_t , buf -> b_stale );

37 if ( stale1 && ! stale2 ) {

38 panic ("\tReader␣error:␣Stale␣data␣became␣fresh .\n");

39 }

40
41 return ( stale1 + stale2 );

42 }

Listing 7.2 shows how writers access the buffer. During the first iteration (lines 16–
21), the writer should see either the readers’ second pattern (which must have been
eventually set by one of the preceding readers), or its own second pattern (in case if no
readers accessed the buffer since the last buffer flip). In either case, the same pattern is
expected to occur during the whole first iteration (line 6), since the writer must have
an exclusive access to the structure. (This is guaranteed by waiting for at least one grace
period after flipping the buffers.) The second iteration (lines 23–28) writes the second
writer’s pattern and expects to find the first pattern all the way long.

The writer operates in the reverse order with respect to readers, which increases the
probability that racing on the same buffer will be noticed.

Listing 7.2: Writer’s buffer access
1 static void

2 check_db_writer_verify ( buffer_t *buf)

3 {

4 const uint32_t * const end = buf -> b_data - 1;

5 uint32_t *cur;

6 uint32_t expected = rcu_access (uint32_t , *buf -> b_data );

7
8 switch ( expected ) {
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9 case READER2 : /* FALLTHROUGH */

10 case WRITER2 :

11 break ;

12 default :

13 panic ("\tWriter␣error␣at␣0:␣Found␣pattern␣%x.\n", expected );

14 }

15
16 for (cur = buf -> b_data + buf -> b_size - 1; cur > end; --cur) {

17 if (* cur != expected )

18 panic ("\tWriter␣error␣at␣%ld:␣Found␣pattern␣%x.\n",

19 (long )( cur - buf -> b_data ), *cur );

20 *cur = WRITER1 ;

21 }

22 membar_full ();

23 for (cur = buf -> b_data + buf -> b_size - 1; cur > end; --cur) {

24 if (* cur != WRITER1 )

25 panic ("\tWriter␣error␣at␣%ld:␣Found␣pattern␣%x.\n",

26 (long )( cur - buf -> b_data ), *cur );

27 *cur = WRITER2 ;

28 }

29 }

Racing one writer against multiple readers on two buffers should provoke most of the
possible race conditions. The RCU API provides no guarantees related to the interaction
of writers. This is why a single writer is sufficient to verify that the tested RCU algorithm
works as expected.

Since all the threads run under the SDC (System Duty Cycle) scheduling class, all of
them can be (and actually are) preempted during their operation, simulating a standard
preemptible kernel workload. The SDC class provides basic support for time quanta and
a round-robin scheduling behavior. (Normally, preempted kernel threads are pushed to
the front of the corresponding per processor per priority queue. The SDC class appends
them to the end of the queue instead, which provides the round-robin characteristics.)

All the threads of the testing process print out statistics. For instance, the RCU
dual buffer tests print out how many writer iterations have elapsed. There is a constant
number of reader threads performing a constant number of reader iterations, whereas
the writer runs as long as there are unfinished reader threads. Presumably, the DRCU
algorithm achieves the highest number of writer iterations, due to the characteristics of
the readers-writer lock, described in subsection 4.1.2. QRCU holds the second place. It
is not surprising that the RCU writer is two orders of magnitude slower in this specific
scenario. However, it shines in other workloads (much closer to a ”real-life“ situation),
as shown in the following section 7.2.

Both QRCU and RCU beat DRCU as far as the total duration of the test is con-
cerned, especially with small buffers. This is related to the high overhead caused by
readers-writer locks under heavy contention and to their ”fairness“ policy.
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7.2 Benchmarking the RCU Algorithms

The benchmarking code creates a hash table and then spawns 2 * ncpus threads that
insert, remove and retrieve the hash table items concurrently. All the three operations
are performed under an RCU read-side lock. Deleted items are only reclaimed after
a grace period has elapsed, so that other concurrent operations do not access inconsistent
data.

All the threads access and modify the hash table items in a way similar to what
rcutest does. Items accessed or removed by the benchmark undergo the read-side or
write-side verification procedure, as described in the preceding section 7.1. This also
simulates standard data manipulation typical for real workloads.

Each thread running in this benchmark retrieves, inserts and removes hash table
items. The ratio between the number of read-only operations (hash table item retrievals)
and modifying operations (inserting or removing hash table items) varies between 1:1
and 511:1. The benchmark is run repeatedly with different reader:writer ratios. Each
thread first inserts a set of keys from a shared interval (racing with other threads),
then inserts another set of keys from a unique interval. Adding the unique keys does
not race with anyone when it comes to key conflicts, but there are still races related
to the structure of the hash table chains. Following the insertion phase, the thread
attempts to remove (possibly unsuccessfully) all the keys from the shared range and
then removes its unique keys, reporting an error when any of the latter removals fail.
Read-only operations and removals are interleaved. At a ratio of 31:1, for example, 31
read-only operations occur between every two modifying operations.

Each benchmark has two phases. In the first phase, an SMP barrier (contributed by
this thesis and described in section 6.2) is used to force all the benchmarking threads
to wait for each other after each iteration. (One iteration is the procedure described in
the previous paragraph.) This approach is intended to force as many threads as possible
to race against each other by performing the same operations simultaneously. The hash
table is inspected after each iteration. It must be empty and in a consistent state. In
the second phase, all the threads are allowed to perform a certain number of iterations
without waiting for each other. Without the barrier after each iteration, threads can
race in a less predictable manner closer to real-life situations.

The number of iterations is balanced with respect to the reader:writer ratio, so
that the total number of operations (retrievals, insertions and removals) is the same for
each run. Since all the operations must compute the hash function, use read-side RCU
primitives and traverse a hash chain, this balancing approach is not completely wrong.
On the other hand, the modifying operations might be much more time-consuming than
retrievals under heavy contention. This implies that it is only meaningful to compare
the presented RCU implementations with each other under the same reader:writer ratio.
It does not make much sense to compare the results for one RCU implementation and
different ratios. Nevertheless, in the context of multiple RCU implementations (and
multiple experimental machines), the latter comparison might give a rough estimate of
how the reader:writer ratio can influence the performance and scalability of an RCU
algorithm.
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Payload sizes of the hash table items are chosen pseudo-randomly, varying from 32
bytes to 512 bytes. Short items are much more likely to occur, so that the performance
is bound by the RCU primitives rather than by overwriting the payload.

The rcudemo module runs the benchmark for each type of RCU and for each of the
following five reader:writer ratios: 1:1, 7:1, 32:1, 127:1 and 511:1. On testing machines
with more than 8 processors (16 and 24), DRCU caused so much contention that the
benchmark had to be tweaked to avoid combining the first three ratios with DRCU. The
other two RCU algorithms were benchmarked with all the five ratios on all the three
experimental machines.

Total execution time is measured for both phases of each benchmark (the first one
with regular rendezvous and the second one with fully parallel execution). However,
results are only kept and evaluated for the second (”unsynchronized“) phase, since its
behavior is expected to be closer to a normal workload. The first phase took a shorter
time to complete in most cases, possibly due to the fact that the intensity of races
periodically drops near the regular rendezvous. Only the QRCU algorithm (surpris-
ingly) proceeds slightly faster in the absence of rendezvous, especially under the lowest
reader:writer ratios.

Admittedly, the QRCU algorithm would perform much better if a separate QRCU
instance was created for each hash bucket to protect only one hash chain. However,
this would mean that instead of allocating only one pointer per hash bucket, an extra
qrcu_t structure would have to be allocated for each bucket. It may be interesting to
compare such a solution with the global RCU. As this would require changes to both
the hash table and the rcudemo module, such an experiment is future work. The main
purpose of the current benchmark is to test the RCU implementations under heavy con-
tention. Using multiple QRCU instances would reduce the contention, so a performance
improvement would not be surprising. (The same experiment could be carried out with
DRCU, which could also be instantiated for each hash bucket.)

7.3 Results of the Benchmark

The benchmark has been run on three different multiprocessor machines.
Unfortunately, the lack of time and resources did not make it possible to gather

statistically relevant benchmarking data. As the benchmarks take rather long to run and
can make the machine almost unusable for tens of minutes to hours (based on processor
speed and other factors), it was impossible to perform proper testing in an isolated
environment. All the testing machines are shared with many other people and had to
stay accessible from the Internet all the time. This limited both the amount of gathered
data and the precision of the results.

Furthermore, the benchmark was most frequently run under the DEBUG kernel, so
that any possible memory consistency and locking issues become obvious as soon as
possible. Surprisingly, the performance difference between a DEBUG and a non-DEBUG

kernel was less than 10% on x86_64, but more than 30% on SPARCv9. Obviously,
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data gathered on the DEBUG kernels can not be reasonably compared side-by-side across
multiple platforms due to this fact.

The following tables show the results of two consecutive runs of the benchmark on
three different computers running a non-DEBUG kernel, build onnv_145. There are two
tables for each machine. The first table lists average values computed from the two runs.
The second table contains ratios between corresponding pairs of values. The purpose of
the second table is merely to show there seems to be no ”striking dissimilarity“ between
the two sets of results. As already mentioned, there was not enough data to compute
confidence intervals and other statistics.

Types of RCU are denoted as follows:

DRCU The Dummy RCU algorithm using a readers-writer lock instead of a ”real“
RCU implementation.

QRCU A variant of the Sleepable RCU algorithm ported from Linux. It was initially
created by Oleg Nesterov and improved by Paul McKenney.

RCUs The global RCU implementation contributed to the UTS kernel by this thesis.
The blocking API is used.

RCUc The global RCU implementation contributed to the UTS kernel by this thesis.
The callback API is used.

7.3.1 8 Processors, x86_64

$ psrinfo -pv

The physical processor has 4 cores and 8 virtual processors (0-7)

The core has 2 virtual processors (0 1)

The core has 2 virtual processors (2 3)

The core has 2 virtual processors (4 5)

The core has 2 virtual processors (6 7)

x86 (GenuineIntel 106E5 family 6 model 30 step 5 clock 1733 MHz)

Intel(r) Core(tm) i7 CPU Q 820 @ 1.73GHz

Figure 7.1: Testing machine with 8 processors

Configuration of the testing machine can be found in figure 7.1. Results can be seen
in table 7.1. DRCU can still be benchmarked on 8 processors, but the other algorithms
outperform it in most cases.

Table 7.2 shows the ratios between the first and the second set of measured values.
This gives a basic idea of how the consecutive two measurements varied on this particular
x86_64 machine with 8 processors.
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R:W Type Ticks

1:1 DRCU 63233
1:1 QRCU 9653
1:1 RCUs 9687
1:1 RCUc 2839

7:1 DRCU 33888
7:1 QRCU 7192
7:1 RCUs 4353
7:1 RCUc 2365

31:1 DRCU 21322
31:1 QRCU 6225
31:1 RCUs 2971
31:1 RCUc 2239

127:1 DRCU 10064
127:1 QRCU 5990
127:1 RCUs 2624
127:1 RCUc 2183

511:1 DRCU 7117
511:1 QRCU 5945
511:1 RCUs 2271
511:1 RCUc 2081

Table 7.1: RCU benchmark results on an x86_64 machine with 8 processors

R:W DRCU QRCU RCUs RCUc

1:1 1.0036 1.031 1.005 1.008
7:1 1.0047 1.014 1.006 1.005

31:1 .99789 1.010 1.006 1.009
127:1 .94071 1.004 1.009 1.007
511:1 1.0123 .9988 1.004 .9895

Table 7.2: Ratios of benchmark results from the 8-CPU x86_64 testing machine
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$ psrinfo -pv

The physical processor has 4 cores and 8 virtual processors (1 3 5 7 9 11 13 15)

The core has 2 virtual processors (1 9)

The core has 2 virtual processors (3 11)

The core has 2 virtual processors (5 13)

The core has 2 virtual processors (7 15)

x86 (GenuineIntel 106A5 family 6 model 26 step 5 clock 2533 MHz)

Intel(r) Xeon(r) CPU E5540 @ 2.53GHz

The physical processor has 4 cores and 8 virtual processors (0 2 4 6 8 10 12 14)

The core has 2 virtual processors (0 8)

The core has 2 virtual processors (2 10)

The core has 2 virtual processors (4 12)

The core has 2 virtual processors (6 14)

x86 (GenuineIntel 106A5 family 6 model 26 step 5 clock 2533 MHz)

Intel(r) Xeon(r) CPU E5540 @ 2.53GHz

Figure 7.2: Testing machine with 16 processors

7.3.2 16 Processors, x86_64

Configuration of the testing machine can be found in figure 7.2. Results can be seen in
table 7.3. With 16 processors, two DRCU benchmarks had to be omitted to conserve
time. QRCU seems to be inconvenienced by the increased contention when compared
to the 8-CPU machine, but both RCUc and RCUs still perform well.

Table 7.4 shows the ratios between the first and the second set of measured values.
This gives a basic idea of how the consecutive two measurements varied on this partic-
ular x86_64 machine with 16 processors. Since all the testing machines were exposed
to unpredictable network activity, no statistical conclusions can be drawn from these
numbers.

7.3.3 24 Processors, SPARCv9

Configuration of the testing machine can be found in figure 7.3. Results can be seen
in table 7.5. The 24-thread SPARCv9 machine could not run the first three three of
the DRCU benchmarks in a reasonable time. Surprisingly, QRCU became slower with
the decreasing amount of concurrent modifications. Both RCUs and RCUc still seem to
scale well on 24 SPARCv9 processors.

Table 7.6 shows the ratios between the first and the second set of measured values.
This gives a basic idea of how the consecutive two measurements varied on this particular
SPARCv9 machine with 24 processors. As already mentioned, the measurement could
have been influenced by network activity and other unpredictable events.
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R:W Type Ticks

1:1 DRCU —
1:1 QRCU 18677
1:1 RCUs 19275
1:1 RCUc 2900

7:1 DRCU —
7:1 QRCU 12540
7:1 RCUs 7178
7:1 RCUc 2288

31:1 DRCU 49534
31:1 QRCU 11498
31:1 RCUs 4241
31:1 RCUc 2159

127:1 DRCU 26900
127:1 QRCU 11146
127:1 RCUs 2665
127:1 RCUc 2095

511:1 DRCU 16025
511:1 QRCU 11070
511:1 RCUs 2413
511:1 RCUc 1972

Table 7.3: RCU benchmark results on an x86_64 machine with 16 processors

R:W DRCU QRCU RCUs RCUc

1:1 — .95397 1.004 .9952
7:1 — .89105 .9942 1.006

31:1 1.0173 .87914 .9946 .9821
127:1 1.0000 .88620 .9777 1.018
511:1 .99000 .88965 .9242 1.010

Table 7.4: Ratios of benchmark results from the 16-CPU x86_64 testing machine
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R:W Type Ticks

1:1 DRCU —
1:1 QRCU 91235
1:1 RCUs 35918
1:1 RCUc 15649

7:1 DRCU —
7:1 QRCU 86749
7:1 RCUs 19649
7:1 RCUc 12679

31:1 DRCU —
31:1 QRCU 98763
31:1 RCUs 14089
31:1 RCUc 12138

127:1 DRCU 56531
127:1 QRCU 105143
127:1 RCUs 13006
127:1 RCUc 11859

511:1 DRCU 40505
511:1 QRCU 108676
511:1 RCUs 12516
511:1 RCUc 11412

Table 7.5: RCU benchmark results on a SPARCv9 machine with 24 processors

R:W DRCU QRCU RCUs RCUc

1:1 — 1.0046 .85156 1.0843
7:1 — 1.0080 .86609 1.1154

31:1 — 1.0239 .99398 1.1170
127:1 .99605 1.0585 .99402 1.1084
511:1 1.0056 1.0286 1.0004 1.1173

Table 7.6: Ratios of benchmark results from the 24-CPU SPARCv9 testing machine
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$ psrinfo -pv

The physical processor has 6 cores and 24 virtual processors (0-23)

The core has 4 virtual processors (0-3)

The core has 4 virtual processors (4-7)

The core has 4 virtual processors (8-11)

The core has 4 virtual processors (12-15)

The core has 4 virtual processors (16-19)

The core has 4 virtual processors (20-23)

UltraSPARC-T1 (chipid 0, clock 1000 MHz)

Figure 7.3: Testing machine with 24 processors
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Chapter 8

Future Work

The RCU algorithm implementation is a work in progress. Despite the fact that the RCU
algorithm runs and can be benchmarked, there are still issues that need to be dealt with
and features that must be added in order to make the algorithm usable in a production
environment.

8.1 Read-Side Critical Sections on Offline CPUs

The callback processing (reclaimer) threads are currently common kernel LWPs. These
LWPs are CPU-bound, which implies that they must be dynamically spawned and
destroyed as CPUs are onlined or offlined. And this is exactly what the current im-
plementation does. This approach would work flawlessly if all the offlined CPUs were
also quiesced. Unfortunately, this is not the case in the UTS kernel. It can happen
that a CPU being offlined is the last CPU on the system that can process certain I/O
interrupts. The offline operation can succeed even in this special case. The offline pro-
cessor can not run any threads, but it can run interrupt handlers. Interrupt handlers
can produce RCU callbacks and contain RCU critical sections.

As already described earlier, the former problem (callbacks produced by interrupt
handlers and interrupt threads running on offlined CPUs) has been resolved by choosing
an online CPU to which the callbacks produced by the offline one will be relayed. (The
offline CPU can not run any threads except interrupt threads, so an RCU reclaimer
or detector thread can not run on it.) The chosen online CPU might become offline as
well, which forms a singly linked list of offline CPUs with one online CPU at the end.
Callbacks produced by all the offline CPUs are relayed to the online CPU at the end of
their list.

The latter problem (read-side critical sections in interrupt handlers and interrupt
threads running on offline CPUs) has not been resolved yet. The QRCU algorithm
can handle this situation due to the absence of centralized callback handling. (In fact
QRCU does not provide any callback API.) The RCU algorithm is based on disabling
preemption during read-side critical sections. This does not help on offline CPUs, since
they are never checked for quiescent states and the detector automatically considers
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them to be quiesced. (Else the detector would need the possibility to force a context
switch on them, which can not happen, since offline CPUs can run no standard threads.)

There are multiple possible solutions to the second problem. Linux uses a complex
mechanism that instruments interrupt and NMI handlers so that they announce the
activity of the CPU they run on. However, due to the big differences in the scheduler
and clock interrupt handling design (described in subsection 5.1.15), this approach can
not be taken in UTS.

A naïve solution would introduce a special semaphore for each CPU. The semaphore
would be initialized to 1 and it would remain untouched as long as the CPU is online.
For offline CPUs, the RCU read-side critical sections would decrement the semaphore
(possibly by spinning around sema_tryp()) and increment it once they are finished.
The detector thread would decrement and immediately re-increment the semaphores of
offline CPUs on each grace period boundary. Unfortunately, semaphores are not owned
by a thread and do not implement priority inheritance. The high-priority interrupt
thread should have the possibility to boost the detector thread’s priority in the rare
case when it happens to wait for it. This can not be accomplished with semaphores
alone.

A better solution would include a transformation of the detector thread and all the
CPU-bound reclaimer threads into a form closer to interrupt threads. These threads
would be allowed to run on all offline CPUs which are not quiesced, just like inter-
rupt threads. This would solve the problem with read-side critical sections occurring in
interrupt handler code.

Interestingly, a race window related to offline (or idle) CPUs executing interrupt
handlers with read-side critical sections has existed in the Linux kernel for years. [16]
The problem has been resolved with the advent of the hierarchical RCU algorithm. It
took years of research to find a solution.

8.2 Removing the Giant Lock

The RCU algorithm should be modified to avoid the centralized global RCU lock used
for communication between the detector thread and the reclaimer threads. Although this
approach might scale well to tens of CPUs (as long as callback batches take much longer
than waiting for the global lock), it would definitely fail on machines with thousands
of processors. On these systems, a hierarchical approach would have to be taken. For
example, detector threads could be bound to locality groups and announce the detected
grace periods in a way similar to the hierarchical RCU algorithm described in subsection
2.1.4. Idle locality groups would not need any RCU-related activity at all, just as idle
CPUs in the current implementation.

Since the UTS kernel does not handle scheduling clock ticks on every single CPU,
none of the current scalable Linux algorithms can be ported directly. The grace pe-
riod detection must be based on active detector threads, rather than passive clock tick
handler or context switching code instrumentations.
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Chapter 9

Conclusion

9.1 Benefits of the Thesis

The accompanying project of this thesis contributed the following:

• A prototype implementation of the RCU mechanism for the UTS kernel, working
and fully documented

• A port of the sleepable and preemptible RCU variant called QRCU [9] and a naïve
RCU-like algorithm called DRCU for performance comparison

• A non-blocking hash table based around the RCU mechanism, implemented from
scratch based on Paul McKenney’s description of the algorithm [3]

• Two testing modules that demonstrate the use of RCU and the non-blocking hash
table and run performance benchmarks

• Comparison of three variants of RCU running in the UTS kernel on three different
multiprocessor machines (x86_64 and SPARCv9)

Additionally, the text of this thesis:

• provides a detailed overview of contemporary RCU algorithms. (chapter 2)

• documents the new implementation of RCU for UTS and compares it with algo-
rithms used in the Linux kernel. (chapter 5)

• describes the non-blocking hash table algorithm (invented by McKenney) and its
implementation in UTS. (section 6.1)

• lists a complete set of code snippets using RCU and the non-blocking hash table.
(Appendix A)
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Appendix A

Using RCU

This chapter lists some elementary code snippets that clarify the relationship between RCU
and the protected data structure. They perform operations on a non-blocking hash table
protected by RCU. Only QRCU and the global RCU implementation are considered here.
DRCU is not useful for anything but benchmarking.

A.1 Common Data Structures

All the examples are based on the data structure definitions shown in figure A.1. For
simplicity, the container_of() macro known from the Linux kernel is used in the
following examples. (No such macro is defined in UTS.) This macro casts a pointer
to a structure member (the first argument) to a pointer to the containing structure.
The type of the containing structure is specified by the second argument. The third
argument contains the name of the member the first argument points at.

typedef struct scompound {

ht_t s_ht; /* hash table binding */

payload_t s_payload; /* user-defined payload data */

} scompound_t;

typedef struct ccompound {

ht_t c_ht; /* hash table binding */

rcu_t c_rcu; /* RCU callback binding */

payload_t c_payload; /* user-defined payload data */

} ccompound_t;

Figure A.1: Data structures used in the examples

The ht_t and rcu_t data structures are part of the non-blocking hash table and
RCU API, respectively. The payload_t type identifier stands for an arbitrary user-
defined data type.
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int read(ht_map_t *map, ht_key_t key, payload_t *result);

int insert(ht_map_t *map, ht_key_t key,

const payload_t *source, payload_t *result);

int remove(ht_map_t *map, ht_key_t key, payload_t *result);

Figure A.2: Transparent mapping operations

A.2 Operation Definitions

The hash map operations shown in this section are listed in figure A.2.
The read() operation looks up key in a hash table map. A nonzero value is returned

when key is found, zero otherwise. When a matching key is found and result is not
null, the data mapped to key is copied into the area referenced by result.

The insert() operation attempts to establish a mapping of key to the data refer-
enced by source in the hash table map. A nonzero value is returned when key is not
found (and the operation succeeds), zero otherwise. When a conflicting key is found
and result is not null, the data mapped to the conflicting key is copied into the area
referenced by result.

The remove() operation removes the mapping of key from the hash table map.
A nonzero value is returned when key is found (and the removal succeeds), zero other-
wise. When a matching key is found and result is not null, the data mapped to key is
copied into the area referenced by result.

A.3 Hash Table Operations with RCU

Listings A.1, A.2, A.3 and A.4 show the three basic operations on a hash table with the
assistance of RCU. Note that all the manipulation with structures accessible from the
hash table can only happen under protection of the read-side RCU primitives.

There are two versions of the remove() operation. The first one uses the block-
ing API and the second one enqueues a callback and proceeds immediately. Only one
version of the other two operations is shown. In a real implementation, references to
scompound_t in the read() and insert() functions would have to be replaced with
ccompound_t to match the type of hash table items. The rest of the source code would
be identical.

The insert() and remove() functions could be optimized to avoid copying the
data. In that case, the caller would have to be aware of how the data records are stored.

Listing A.1: The read() operation with global RCU
1 int

2 read( ht_map_t *map , ht_key_t key , payload_t * result )

3 {

4 int index ;

5 ht_t * retval ;

6 payload_t *data;
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7
8 rcu_read_lock (); // <<< LOCK

9 retval = ht_get (map , key );

10 if (! retval ) {

11 qrcu_read_unlock (qrcu , index );

12 return (0);

13 }

14 if ( result ) {

15 data = & container_of (retval , scompound_t , s_ht)-> s_payload ;

16 bcopy (data , result , sizeof ( payload_t ));

17 }

18 rcu_read_unlock (); // <<< UNLOCK

19
20 return (1);

21 }

Listing A.2: The insert() operation with global RCU
1 int

2 insert ( ht_map_t *map , ht_key_t key , const payload_t *source , payload_t * result )

3 {

4 int index ;

5 ht_t * retval ;

6 scompound_t * record ;

7 payload_t *data;

8
9 record = kmem_alloc ( sizeof ( scompound_t ), KM_SLEEP );

10 bcopy (source , &record ->s_payload , sizeof ( payload_t ));

11
12 rcu_read_lock (); // <<< LOCK

13 retval = ht_add (map , key , &record ->s_ht );

14 if ( retval && result ) {

15 data = & container_of (retval , scompound_t , s_ht)-> s_payload ;

16 bcopy (data , result , sizeof ( payload_t ));

17 }

18 rcu_read_unlock (); // <<< UNLOCK

19
20 if ( retval ) {

21 kmem_free (record , sizeof ( scompound_t ));

22 return (0);

23 }

24 return (1);

25 }

Listing A.3: The remove() operation with global RCU (using the blocking API)
1 int

2 remove ( ht_map_t *map , ht_key_t key , payload_t * result )

3 {

4 int index ;

5 ht_t * retval ;

6 scompound_t * record ;

7 payload_t *data;

8
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9 rcu_read_lock (); // <<< LOCK

10 retval = ht_del (map , key );

11 rcu_read_unlock (); // <<< UNLOCK

12
13 if (! retval ) {

14 return (0);

15 }

16 record = container_of (retval , scompound_t , s_ht );

17 rcu_synchronize (); // <<< SYNCHRONIZE

18 if ( result ) {

19 data = &record -> s_payload ;

20 bcopy (data , result , sizeof ( payload_t ));

21 }

22 kmem_free (record , sizeof ( scompound_t ));

23 return (1);

24 }

Listing A.4: The remove() operation with global RCU (using the callback API)
1 void

2 reclaim ( rcu_t *rcu) {

3 ccompound_t record ;

4
5 record = container_of (rcu , ccompound_t , c_rcu );

6 kmem_free (record , sizeof ( ccompound_t ));

7 }

8
9 int

10 remove ( ht_map_t *map , ht_key_t key , payload_t * result )

11 {

12 int index ;

13 ht_t * retval ;

14 ccompound_t * record ;

15 payload_t *data;

16
17 rcu_read_lock (); // <<< LOCK

18 retval = ht_del (map , key );

19 rcu_read_unlock (); // <<< UNLOCK

20
21 if (! retval ) {

22 return (0);

23 }

24 record = container_of (retval , ccompound_t , c_ht );

25 if ( result ) {

26 data = &record -> c_payload ;

27 bcopy (data , result , sizeof ( payload_t ));

28 }

29 rcu_call ( // <<< CALLBACK

30 reclaim , &record ->c_rcu ,

31 RCU_WEIGHT (1, sizeof ( ccompound_t ))

32 );

33 return (1);

34 }
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A.4 Hash Table Operations with QRCU

Listings A.5, A.6 and A.7 show the three basic operations on a hash table with the
assistance of QRCU. Note that all the manipulation with structures accessible from the
hash table can only happen under protection of the read-side lock.

The insert() and remove() functions could be optimized to avoid copying the
data. The caller would have to be aware of how the data records are stored.

Listing A.5: The read() operation with QRCU
1 int

2 read( qrcu_t *qrcu , ht_map_t *map , ht_key_t key , payload_t * result )

3 {

4 int index ;

5 ht_t * retval ;

6 payload_t *data;

7
8 index = qrcu_read_lock (qrcu ); // <<< LOCK

9 retval = ht_get (map , key );

10 if (! retval ) {

11 qrcu_read_unlock (qrcu , index );

12 return (0);

13 }

14 if ( result ) {

15 data = & container_of (retval , scompound_t , s_ht)-> s_payload ;

16 bcopy (data , result , sizeof ( payload_t ));

17 }

18 qrcu_read_unlock (qrcu , index ); // <<< UNLOCK

19
20 return (1);

21 }

Listing A.6: The insert() operation with QRCU
1 int

2 insert ( qrcu_t *qrcu , ht_map_t *map , ht_key_t key ,

3 const payload_t *source , payload_t * result )

4 {

5 int index ;

6 ht_t * retval ;

7 scompound_t * record ;

8
9 record = kmem_alloc ( sizeof ( scompound_t ), KM_SLEEP );

10 bcopy (source , &record ->s_payload , sizeof ( payload_t ));

11
12 index = qrcu_read_lock (qrcu ); // <<< LOCK

13 retval = ht_add (map , key , &record ->s_ht );

14 if ( retval && result ) {

15 data = & container_of (retval , scompound_t , s_ht)-> s_payload ;

16 bcopy (data , result , sizeof ( payload_t ));

17 }

18 qrcu_read_unlock (qrcu , index ); // <<< UNLOCK

19
20 if ( retval ) {
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21 kmem_free (record , sizeof ( scompound_t ));

22 return (0);

23 }

24 return (1);

25 }

Listing A.7: The remove() operation with QRCU
1 int

2 remove ( qrcu_t *qrcu , ht_map_t *map , ht_key_t key , payload_t * result )

3 {

4 int index ;

5 ht_t * retval ;

6 scompound_t * record ;

7 payload_t *data;

8
9 index = qrcu_read_lock (qrcu ); // <<< LOCK

10 retval = ht_del (map , key );

11 qrcu_read_unlock (qrcu , index ); // <<< UNLOCK

12
13 if (! retval ) {

14 return (0);

15 }

16 record = container_of (retval , scompound_t , s_ht );

17 qrcu_synchronize (qrcu ); // <<< SYNCHRONIZE

18 if ( result ) {

19 data = &record -> s_payload ;

20 bcopy (data , result , sizeof ( payload_t ));

21 }

22 kmem_free (record , sizeof ( scompound_t ));

23 return (1);

24 }
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Appendix B

Building OS/Net with RCU

This chapter is a brief manual that provides instructions on building the modified UTS kernel
from source and installing it. Readers are expected to be familiar with the OS/Net source
tree and the build process.

B.1 Patching the OS/Net Sources

The OS/Net source code can be downloaded from a Mercurial repository and the RCU
patch can be applied using the hg import command. Preferably, a tagged build should
be used rather than the tip revision. Figure B.1 shows how the patch can be applied to
build 145. The patch can be found on the DVD supplied with this thesis.

$ mkdir onws && cd onws

$ hg clone ssh://anon@hg.opensolaris.org/hg/onnv/onnv-gate osnet145

$ cd osnet145

$ hg update -r onnv_145

$ hg import - < /path/to/rcu.patch

Figure B.1: Patching the OS/Net source code

B.2 Building the Modified Kernel

The OS/Net build process is described in [21]. It is always recommended to build the
full OS/Net to make sure all the userspace tools are fully compatible with the modified
UTS kernel.

When the modified OS/Net is successfully installed using the onu script and booted,
a message saying RCU: detector starting will appear on the console during the boot
process.

At the time of this writing, the OS/Net build process still requires two packages of
closed-source binaries. [21, 22] It is advisable to download the version of binaries that
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matches the chosen OS/Net build. Closed-source binaries are released for each build.
Nightly snapshots matching the repository tip revision are also available for download.
Furthermore, it is necessary to install numerous other software packages and compile
the latest packaging bits. [21]

The DVD supplied with this thesis contains helper scripts that can be used to
obtain a usable build environment from a fresh source code checkout. Directories with
the OS/Net source trees cloned from Mercurial are expected to be located in the same
directory as the scripts. Figure B.2 is based on this assumption.

The updateclosed script in figure B.2 downloads the latest nightly build of closed
binaries (both DEBUG and non-DEBUG versions) and extracts them into the required
subdirectory (osnet) containing an OS/Net source tree. It also updates the source tree
to the latest revision (hg pull; hg update).

When using revisions other than the tip revision (such as a tagged build, onnv_145

for instance), it is necessary to download and install the matching binary files manually
and the updateclosed command must not be run.

The bootstrap script compiles and installs the latest build tools and scripts that
run the whole build process. The opensolaris.sh file is called an environment file and
specifies your local paths and other settings. The Developer’s Reference [21] describes
what this file has to contain and where to obtain a usable template.

$ cd onws

$ ./updateclosed osnet

$ ./bootstrap osnet osnet/opensolaris.sh

Figure B.2: The ”bootstrap“ procedure

Both scripts mentioned in figure B.2 have been created by the author of this the-
sis. They are provided for reference only. They might be bound to the author’s local
workspace and unusable on other machines. They can be either used as human-readable
task lists or customized to match other users’ directory structure and working environ-
ment.

After installing the official OS/Net Build Environment, installing all the neces-
sary packages (especially developer/opensolaris/osnet), checking out and patching
the source code, installing the closed-source binaries, creating an environment file and

”bootstrapping“ the build tools, the modified OS/Net can be compiled.
Details about the build process, a complete list of prerequisites and links to other

sources of information can be found in the README file on the DVD supplied with this
thesis.

The DVD also contains pre-built binary packages for both SPARC and x86.
These packages are stored in the form of an IPS repository directory. They can be
installed using the onu script.
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