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Study programme: Physics

Specialization: Mathematical and Computer Modelling

Prague 2012



I would like to thank my supervisor, prof. Ing. Frantǐsek Marš́ık, DrSc., for his
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support of the New Technologies – Research Center in Plzeň is also acknowledged:
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fáźı, materiálová anizotropie a asymetrie odezvy v tahu a tlaku. Evolučńı úloha
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teploty byla formulována a analyzována v rámci konceptu tzv. energetických
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Supervisor: Prof. Ing. Frantǐsek Marš́ık, DrSc., Mathematical Institute of
Charles University
Abstract: This thesis presents a new thermomechanical three-dimensional con-
stitutive model of NiTi-based shape memory alloys. The model was formulated
within the framework of generalised standard models and it features a novel form
of the dissipation function, which combines contributions stemming from the
phase transformation between austenite and martensite and from the reorienta-
tion of martensite. The change in the material response associated with the phase
transformation between austenite and R-phase as well as material anisotropy and
tension-compression asymmetry are also covered. The time-evolutionary problem
of a quasistatic mechanical loading of a NiTi body with prescribed temperature
evolution was formulated and analyzed within the framework of energetic so-
lutions. The corresponding time-incremental minimization problem provided a
conceptual algorithm utilized in the numerical treatment. The constitutive mod-
el was implemented into the finite element package Abaqus. Several numerical
simulations were performed and compared with experiments.
Keywords: shape memory alloys, constitutive model, generalized standard mod-
els, martensitic phase transformation



Contents

Preface 3

1 Introduction to Shape Memory Alloys 8
1.1 Martensitic phase transformation . . . . . . . . . . . . . . . . . . 8
1.2 Shape memory effects . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 NiTi-based shape memory alloys . . . . . . . . . . . . . . . . . . . 15

2 Framework of Generalized Standard Models 18
2.1 Elements of continuum thermodynamics . . . . . . . . . . . . . . 18
2.2 Irreversible processes in solids . . . . . . . . . . . . . . . . . . . . 20
2.3 Generalised standard model . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Rate-independent processes within GSM . . . . . . . . . . 24

3 Modeling of Shape Memory Alloys 25
3.1 Overview of macroscopic thermodynamics-based models . . . . . . 27
3.2 A remark on contributions to the energy function . . . . . . . . . 31

4 Description of the Constitutive Model 33
4.1 Description of state of the material; choice of internal variables . . 33
4.2 Formulation of Helmholtz free energy . . . . . . . . . . . . . . . . 35
4.3 Derivation of dissipation function . . . . . . . . . . . . . . . . . . 36
4.4 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5 Alternative approach to derivation of the proposed dissipation func-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Mathematical Analysis of the Constitutive Model 48
5.1 Basic assumptions and data qualification . . . . . . . . . . . . . . 49
5.2 Existence of solutions of time-disretized problem . . . . . . . . . . 51
5.3 Energetic formulation . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3.1 Reformulation of time-incremental problem and properties
of its solutions . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3.2 Construction of interpolants; a priori estimates . . . . . . . 62
5.3.3 Selection of subsequences . . . . . . . . . . . . . . . . . . . 65
5.3.4 Stability of the limit functions . . . . . . . . . . . . . . . . 66
5.3.5 Energy estimates and proof of energy balance . . . . . . . 69
5.3.6 Further properties and concluding remarks . . . . . . . . . 76

1



6 Numerical Implementation of the Constitutive Model 78
6.1 Specification of the transformation strain domain . . . . . . . . . 78
6.2 Numerical solution of the constrained minimization problem . . . 80
6.3 Implementation of the constitutive model into the finite element

package Abaqus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.4 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . 83

6.4.1 Specification of material properties . . . . . . . . . . . . . 83
6.4.2 Sensitivity to the increment size . . . . . . . . . . . . . . . 84
6.4.3 Simulated stress-temperature phase diagrams . . . . . . . 85
6.4.4 Proportional and nonproportional loading tests . . . . . . 87
6.4.5 Example of finite elements-analysis . . . . . . . . . . . . . 89

Conclusions 92

A Elements of Convex Analysis 94

Nomenclature 97

Bibliography 99

2



Preface

Shape memory alloys (SMA) are metallic materials exhibiting unusual proper-
ties of being able to sustain and recover large strains and to “remember” the
initial configuration and return to it with temperature change. These properties
arise from a rearrangement of the crystal lattice associated with the so-called
martensitic phase transformation, which can be induced by variation of temper-
ature and/or variation of the applied mechanical load. Moreover, specific types
of internal structure of the martensitic phase can develop depending on the load-
ing conditions. These phenomena give rise to a very complex thermomechanical
behavior, which classifies SMA into the group of so-called smart materials and
makes them attractive for utilization in applications. Many products made of
SMA polycrystals are already used or developed; they can be found, for instance,
in aerospace industry (e.g. self-erecting space antennae, helicopter blades), in
medicine (e.g. surgical tools, reinforcement for arteries and veins), in automotive
industry (e.g. mirror actuators), in civil engineering (e.g. tightening rings, seis-
mic dampers), in textile industry (adaptive textiles), or as devices of the everyday
life (e.g. thermostatic valves, thermal switches), etc. For reliable performance of
such products, a proper post-processing treatment and design is essential.

If computational models are employed in the process of products development
and testing, they can substantially reduce costs and time. Commercially available
finite element packages are particularly suitable for simulations of whole products
with complex geometries. However, constitutive models provided by them cover
only a limited number of types of materials. Particularly, none of them is designed
for simulations of SMA under complex thermomechanical loading conditions.

A number of macroscopic constitutive models was proposed in literature to
fill this gap. Performance of several of them was compared within a unique
activity called “Roundrobin SMA modeling”. Assessment of the results revealed
that there exist particular phenomena which are still not satisfactorily covered in
these models when they are applied to the NiTi alloy. Here should be emphasized
that the most commercially successful types of SMA are based on this alloy.

First, pronounced imperfections were identified in simulations of the response
of the material during a general (non-proportional) thermomechanical loading
involving phase transformation and deformation in martensite. Since multiple
deformation mechanisms come into play, their interaction leads to a “puzzling”
behavior very sensitive to changes in loading conditions. Another troublesome
phenomena is the presence of the so-called R-phase, which is actually another
phase occurring specifically in NiTi-based SMA. If it is neglected, substantial
deviations of predicted thermal and mechanical response from reality occur. Last
but not least, influence of the anisotropy associated with strong texture was
stressed. Texture is induced in the materials during processing and it is inherited
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by final industrial products, thus, it must be inevitably considered when realistic
simulations of such products are to be performed.

All these findings have highlighted a need for development of a computational
model which would be tailored for polycrystalline NiTi-based SMA and which
would be easily implementable into a finite element package. Naturally, thermo-
dynamical consistency and mathematical rigor are essential requirements for such
a model. However, practical reasons impose further, often contradictory demands
on its form. On the one hand, the constitutive model should be simple enough
to be effective, on the other hand it should be accurate enough in reflecting the
key physical phenomena to reliably predict response of SMA in various opera-
tion modes. The number of input parameters should be minimized in order to
facilitate the experimental effort prior to simulations, but the model should still
provide freedom for adaptation to the properties of the material which can differ
due to variation in composition or processing. Last but not least, the numerical
implementation of the model should provide fast computational response, thus
being time-effective, still it should be reliable from the point of view of numerical
stability and robustness.

Development of a computational model capable to deal with the sketched ob-
stacles became a challenge for the modeling community and the main motivation
for this work.

Aims of the thesis

Reflecting the motivation above, the particular aims of this thesis are formulated
as follows:

• To formulate a three-dimensional, thermodynamically consistent, rate-in-
dependent constitutive model for NiTi-based SMA which covers both the
common shape memory effects and also the two-stage phase transformation
with intermediate R-phase, anisotropy of transformation properties due to
texture and tension-compression asymmetry.

• To express the general problem of a quasistatic mechanical loading of a NiTi-
based SMA body with prescribed temperature evolution as a mathematical
time-evolutionary problem within a suitable framework and establish prop-
erties of its solutions.

• To develop a ready-to-use software suitable for implementation into com-
mercially available finite element package taking the results of mathematical
analysis into account. The implementation should allow for easy modifica-
tion of input the parameters in order to adjust the model to any particular
NiTi-based alloy.

Overview of the thesis

Let us briefly characterize the main parts of this thesis:

Chapter 1 In the first chapter, we introduce the shape memory effects and
their roots at the microscopic level – martensitic phase transformation and
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reorientation. Furthermore, based on a review of experimental findings on
NiTi-based SMA polycrystals, we identify the key phenomena which should
be covered in the constitutive model.

Chapter 2 We present the concept of so-called generalized standard models
(GSM), which provides a suitable framework for a systematic development
of constitutive models within continuum thermodynamics. If the described
approach is followed, it assures thermodynamical consistency of the model
(the second law of thermodynamics is automatically satisfied), albeit pro-
viding enough freedom for proposing novel types of models.

Chapter 3 The chapter exposes the state of the art in the field of macroscopic
modeling of SMA polycrystals. It provides an overview of some tools and
approaches utilized so far and helps to identify the most successful and
effective of them.

Chapter 4 In the crucial part of the thesis, we finally develop the constitutive
model by defining the Helmholtz free energy and dissipation functions as re-
quired by GSM. A novel form of the dissipation function is formulated based
on a careful analysis of experimentally determined phase diagrams. An al-
ternative approach for derivation of dissipation function, which is based
on a set of modeling assumptions, is also presented. Let us note that the
chapter is mostly based on results already published in (Sedlák et al., 2012).

Chapter 5 We utilize the mathematical concept of energetic solutions to analyze
the time-evolutionary problem of quasistatic mechanical loading of a NiTi
SMA body with prescribed temperature evolution. Existence of solutions to
the constitutive model is established in several steps imposing only natural
restrictions on basic physical parameters of the model, which makes the
model rather appealing from the experimental point of view. Due to the
temperature dependence of the dissipation function, a slight modification
of the approach presented in (Francfort and Mielke, 2006) is needed. The
approach also provides a conceptual algorithm for numerical treatment of
the model in a form of a constrained minimization problem.

Chapter 6 The last chapter of the thesis deals with the numerical implementa-
tion of the model into the finite element package Abaqus. A script written
in C++ programming language solves a part of the aforementioned con-
strained minimization problem by the Nelder-Mead minimization method
and establishes a transfer of the results to the main program, where the the
solving procedure is completed. A comparison of experimental and simulat-
ed results of the “Roundrobin SMA modeling” activity show exceptionally
good agreement confirming predictive abilities of the proposed model. Let
us note that this chapter is also mostly based on results published in (Sedlák
et al., 2012).

Conclusions We summarize the main achievements of the thesis.

Appendix A In the Appendix, a short overview of basic concepts of convex
analysis can be found.
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Overview of further activities related to this the-

sis

The present work originates in development of a constitutive model applicable
for simulations of NiTi wires. Their thermomechanical behavior in applications
as intervascular stents, adaptive textiles or actuating elements embedded in com-
posites is under study within a long-term extensive research on SMA conducted
at the Institute of Physics and the Institute of Thermodynamics of the Czech
Academy of Science.

Initially, a one-dimensional phenomenological constitutive model was formu-
lated. It covered the full two-stage phase transformation sequence between austen-
ite, R-phase and reorientation of martensite. It addressed particular type of
hierarchical hysteretic behavior and captured also the non-linear hyperelastic
response observed in experiments. Differences in properties of the material in
tension and compression reflected in the model allowed to apply it also to simple
planar wire-structures deformed in bending. Such an approach was utilized in
simulations of deformation of microhooks employed in SMA fasteners published
in (Vokoun et al., 2009, 2011). The model itself was published in the work (Frost
et al., 2010).

Analysis of the extensive set of experimental data obtained within ‘Roundrobin
SMA modeling” activity has motivated a simple extension of the concept to com-
bined tension-torsion type of loading. Simulations of the experiments revealed
a significant influence of the texture on the thermomechanical response, since it
gives rise to anisotropy of some material properties. This was reflected in the
modified model and described in papers (Frost and Sedlák, 2009; Sedlák and
Frost, 2009).

In addition, practical experience acquired when martensite stabilization effect
was studied by means of thermal and mechanical experiments was useful for
considerations in the present stage of modeling. The results were published in
(Frost and Rudajevová, 2009).
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Chapter 1

Introduction to Shape Memory
Alloys

Intermetallic alloys exhibiting the unique shape memory effects (e.g. superelas-
ticity, one-way shape memory effect) are known as shape memory alloys (SMA).
Although these effects were firstly observed at AuCd alloy in 1951, the research
has intensified after 1963, when the commercially most successful NiTi shape
memory alloys were discovered (Otsuka and Wayman, 1998). In this section, we
will briefly introduce martensitic phase transformation, which is the key physi-
cal phenomenon for SMA, describe the basic shape memory effects and provide
more details for NiTi-based SMA, the particular type of SMA on which this work
focuses.

1.1 Martensitic phase transformation

The key physical process for understanding of all shape memory effects is the
martensitic phase transformation (MT): a first-order solid-to-solid phase transi-
tion from the parent phase, which is referred to as austenite, to the less-ordered
product phase, martensite. The mechanism of this type of transformation con-
sists of a regular rearrangement of the crystal lattice in such a way that relative
displacement of neighboring atoms does not exceed the interatomic distances and
the atoms do not interchange places. This “shearing of the parent lattice into the
product” is sometimes referred as lattice-distortive transformation.1

In general, MT is diffusionless and athermal , i.e. the amount of martensite
formed during cooling is a function only of temperature and not of length of time
at which the alloy is held at that temperature. Furthermore, MT is thermoelastic
phase transformation in the case of SMA, which indicates that (Otsuka and Ren,
2005):

i. the thermodynamic driving force for the phase transformation is rather
small, which prevents introduction of irreversible process such as slip,

ii. phase boundaries are very mobile and their motion is reversible,

1Let us recall that the first-order phase transitions exhibit a discontinuity in the first deriva-
tive of the thermodynamic potential with respect to the thermodynamic variable, e.g. a dis-
continuity in strain, in entropy, etc.
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iii. the product phase stays coherent with the parent phase,

iv. the group of symmetry of the product phase is a sub-group of the group of
symmetry of the parent phase.

Thus, in an ideal case, the transformation as a crystal lattice distortion is fully
reversible.

MT in SMA can be initiated and driven either by change of temperature,
either by change of external stresses or by simultaneous change of stresses and
temperature. Usually, the transformation is nucleated heterogeneously by for-
mation of thin plates of parent/product phase in the matrix of product/parent
phase forming a two-phase austenite-martensite zone. If there is no “preferred
direction”, martensite forms in a series of crystallographically equivalent vari-
ants. The product phase growing into a platelet shape is then termed twinned or
self-accommodated martensite and is characterized by a twinned microstructure,
which minimizes the misfit between the martensite and surrounding austenite.
On the other hand, if there is a “preferred direction”, e.g. imposed by stress,
growing martensite tends to be formed into the favorable variant(s) with respect
to the external condition. The product phase is then termed detwinned or fully
oriented martensite. See (Bhattacharya, 2003) for details.

Microstructure observation reveals (Liu et al., 1999), that several types of
structure rearrangement may be involved in evolution of martensite under applied
stress. All such processes are related to existence of twins within the material
and all of them contribute to change of the total strain of the specimen. Since
this work focuses on description on the macroscopic scale, if there is no special
concern in distinguishing between them, all such microstructural processes will
be referred to as reorientation of martensite and the correspondig structure will
be termed reoriented martensite, hereinafter.

Let us emphasise that, apart from the thermoelastic nature of MT, twinning
as a deformation mode of martensite is a necessary condition for shape memory
effects to occur. In fact, strain attained by twinning/detwinning is easily re-
covered upon the reverse transformation which makes the shape memory effects
possible (see the next section).

As briefly sketched, crystallographic considerations play a key role in under-
standing of MT and martensite structure evolution at the microstructural scale.
Mathematical theories allowing rigorous determination of twinning modes or con-
ditions of compatibility for a phase interface in single crystals have been presented
in (e.g. Ball and James, 1987; Bhattacharya, 2003).

As experimentally observed, MT and martensitic structure evolution are ac-
companied by a dissipation of energy, which gives rise to hysteretic properties
of SMA. For instance, due to dissipation, the temperature of the forward phase
transformation (austenite to martensite) is different from the temperature of the
reverse one. The essential contributions to dissipation are associated with inter-
facial friction, defect production and acoustic emission caused by nucleation and
growth of martensite structure and interaction of interface with defects during
transformation and reorientation (Bekker and Brinson, 1997; Sun and Li, 2002).
Generally, several dissipative mechanisms can operate at different time (intrin-
sic relaxation time scale, the time scale of external loading) and length scales
(interface thickness, grain size, sample dimension) and contribute to macroscopic
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hysteresis of a real polycrystalline SMA material (see e.g. Ort́ın and Delaey, 2002;
Petryk and Stupkiewicz, 2010; Sun and He, 2008).2

1.2 Shape memory effects

Nowadays, SMA applications are already used or developed in aerospace indus-
try (Hartl et al., 2009) (e.g. self-erecting space antennae, helicopter blades),
in automotive industry (Williams and Elahinia, 2008)(e.g. mirror actuators), in
medicine (Machado and Savi, 2003) (e.g. surgical tools, reinforcement for arteries
and veins), in civil engineering (Wilson and Wesolowsky, 2005) (e.g. self-locking
valves, seismic dampers), or as devices of the everyday life (Otsuka and Way-
man, 1998)(e.g. thermostatic valves, thermal switches), etc. These applications
make profit from the unique properties of SMA, sometimes generally called shape
memory effects.

To briefly introduce them, let us restrict ourselves to combined thermal and
mechanical loading in one dimension. In that case, the generic stress-strain re-
sponse of a polycrystal is, at least from the macroscopic point of view, very
similar to the one of a single crystal. The initiation and propagation of a phase
boundary and formation and evolution of internal martensitic structure in a sin-
gle crystal have been very well experimentally examined (Ball et al., 2011) and
theoretical explanation of the basic shape memory effects is generally accepted
(Otsuka and Ren, 2005). However, the issue is much more complex in polycrystal
specimens because of mutual interaction between phase interfaces, martensitic
variants, grain boundaries and other crystallographic defects, and the situation
is “far from being fully understood and quantified” (Sun and Li, 2002). Thus,
for easier understanding of the microstructural background of observed polycrys-
talline sample response, the single crystal terminology is often adopted. We
will follow that approach keeping the aforementioned applicability limitations in
mind.

In the range of mechanical loading frequencies, where the isothermality as-
sumption is valid, SMA behave in a rate-independent manner (Sadjadpour and
Bhattacharya, 2007b). Indeed, based on set of sophisticated experiments per-
formed for complex loading paths and complex NiTi SMA specimen geometries,
Grabe and Bruhns (2008) confirmed that “the material shows no strain rate de-
pendence within the regime of quasi-static processes”. Evolution of stress for
strain loading at various strain rates coincided under isothermal conditions in
their experiments and different, rate-dependent responses reported by some au-
thors, e.g. (Nemat-Nasser et al., 2005), were attributed to temperature effects3,
which are absent for isothermal tests. Throughout this work we will strictly
adhere to the assumption of rate-independence of isothermal response of SMA

2An interesting property of hysteresis in SMAs is so-called return point memory (or proper-
ty). After a cyclic variation of the driving, the system follows exactly the same trajectory that
it would have followed if the cyclic variation had not taken place. In this way, a hierarchy of
“subloops” within hysteretic loops may be formed. This feature was studied and discussed in
author’s previous works (Frost, 2007; Frost et al., 2010).

3If latent heat of a phase transformation is not absorbed by environment completely, it
increases temperature of a specimen, which then conversely changes transformation conditions
within the specimen.
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Figure 1.1: A simplified generic stress-temperature phase diagram of SMA. See
text for details.

and, particularly, results of all experiments introduced here are supposed to be
rate-independent, too.

The phase space parameterized by stress and temperature is commonly used
to introduce shape memory effects. A generic form of such a diagram is depicted
in Fig. 1.1. Regions of austenite and martensite denoted by A and M, respectively.
Full black lines mark increasing dependence of stress needed for initialisation of
forward and reverse phase transformation on temperature (stress induced trans-
formation at constant temperature), so-called phase boundaries. Approximate
linearity of this dependence is related to the Clausius-Clapeyron relationship (see
below). Dashed line marks stress level at intensive reorientation initiates when
martensite is loaded at constant temperature.

Depending upon the path within the phase diagram, various types of response
is observed. If austenite is cooled to low enough temperature at zero applied
stress (path 0 → 1 in Fig. 1.1), austenite transforms into martensite with zero
net macroscopic shape change of the specimen (neglecting thermal expansion)
since emerging variants of martensite tend to average the overall deformation to
zero by formation of a twinned microstructure. If the material is subsequently
mechanically stressed (path 1 → 2), the twinned microstructure will reorient in-
to an arrangement which is preferred by the direction of applied loading. This
process is manifested by a plateau-like response in stress-strain dependence. How-
ever, based on microstructural observations in NiTi polycrystals, Liu et al. (1999)
pointed out that martensite structure reorientation may start even before the on-
set of this plateau, i.e. during the initial stage of deformation. Upon removal of
the mechanical load (path 2 → 1), a permanent deformation is retained in the
specimen. This is usually called pseudoplasticity or quasiplasticity.

If the material is now heated above a particular temperature (path 1 → 0), it
completely reverts to austenite and fully recovers its original shape. The whole
cycle is the so-called one-way shape memory effect , see the red curve in Fig. 1.2.

When the specimen is kept at a temperature at which austenite is a stable
phase under stress-free condition and then loaded mechanically above a certain
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Figure 1.2: A simplified generic stress-strain-temperature phase diagram of SMA.
See text for details.

critical stress level (path 0 → 3), austenite starts to transform into marten-
site. With respect to the direction of loading, a large macroscopic strain, so-
called transformation strain, is induced. It originates in lattice deformation due
to formation of reoriented martensite in the material and leads to a plateau in
stress-strain response. The dependence of the critical stress inducing the phase
transformation on temperature may be determined with the Clausius-Clapeyron-
type equation in a very good approximation. In one-dimensional setting, it has
the form:

dσ

dT
=

∆sAM

εtr
=

h

Tεtr
, (1.1)

where σ denotes (one-dimensional) stress, T is temperature, ∆sAM denotes spe-
cific entropy change per unit volume due to phase transition, εtr is the transfor-
mation strain in the loading direction and transformation latent heat is denoted
h := T∆sAM . When the entropy change and transformation strain are assumed
to be temperature independent, then relation between the critical stress and tem-
perature is linear. However, more general considerations may be done, see e.g.
(Frost, 2007; Liu et al., 2008).

Now, if the mechanical load is removed in a reverse process (path 3 → 0), the
strain of the specimen is recovered, since martensite is not stable at low stress and
high temperatures and it transforms back into austenite. Typically, this type of
process is called superelasticity (or pseudoelasticity), since the behavior is similar
to elasticity—the material returns to its initial configuration upon removal of the
loading, see the blue curve in Fig. 1.2.

Although Clausius-Clapeyron relation predicts the same slope of the phase
boundary both for forward and reverse phase transformation, it is often not the
case in experiments (see e.g. Shaw and Kyriakides, 1995, or results in Section
6.4). As stated by Lagoudas et al. (2012), different dissipation could be associ-
ated with transformation induced at different stress and temperature conditions.
Moreover, temperature induced transformation usually occurs in a temperature
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Figure 1.3: An example of determination of transformation temperatures from the
measurement of the heat flow in NiTi SMA by Differential Scanning Calorimetry.
(HI denotes transformation latent heat.) Reprinted from (Zanotti et al., 2010).

interval rather than in a single temperature instance. For transformation from
austenite to martensite under stress-free condition, limiting temperatures be-
tween which (most of) transformation occurs are usually denoted Ms and Mf ,
with subscripts denoting “start” and “finish” of the process. Analogous mean-
ing for transformation from twinned martensite to austenite have the symbols
As and Af . These temperatures can be determined by the Differential Scanning
Calorimetry (DSC) measurements, see Fig. 1.3, where the phase transformation
manifests itself by pronounced peaks.

Superelastic and pseudoplastic responses exhibit “hardening-like” effect in
the sense that the plateaux are “inclined” with respect to constant stress lines as
schematically sketched in Fig. 1.2. We will address this issue in Section 3.2.

Of course, more complex loading paths combining temperature and general
stress states are possible which leads to a broad variety of responses combining
the aforementioned types. For instance, when reoriented martensite is present
in a specimen with fixed elongation, very large macroscopic stress upon heating
commonly called the recovery stress can develop (see Šittner et al., 2000, for
instance).

An interesting phenomenon called martensite stabilization effect has also been
observed both in single crystals and in polycrystals of SMA, e.g. (Frost and
Rudajevová, 2009; Liu and Favier, 2000; Liu and Tan, 2000; Piao et al., 1993).
Liu and Favier (2000) systematically investigated the influence of transformation
strain on the transformation behaviour of a polycrystalline NiTi sample. The
sample was deformed up to different levels of deformation in martensitic state,
then unloaded to a stress-free state and thermally cycled, i.e. heated and cooled
to induce MT. A simple shear deformation was chosen in order to avoid localised
deformation behaviour. The following phenomena were observed for deformation
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up to the end of the reorientation plateau (∼ 6% strain):

1. Both the critical temperature and the endothermic heat of the first reverse
transformation (i.e. transformation of deformed martensite to austenite)
increased as compared to an undeformed specimen. Such behaviour may
be viewed as a “stabilisation” of martensite, which is more “resistant” to
induction of phase transformation.

2. With increasing deformation the shift of the reverse transformation tem-
perature and corresponding transformation heat increased.

3. During subsequent thermal cycles, the deformed specimen was found to
behave practically in the same manner as an undeformed specimen.

Although a complete explanation of the effect has not been reached yet, Liu and
Favier admit that different martensitic structure induced by different deformation
level may be responsible for the observed effects through its influence on both
the energy stored in the specimen and the energy dissipated during the reverse
transformation. They also note that the quantitative analysis seems to suggest
the change in stored energy is insufficient for explanation of observed results. In
this work, we will formulate a specific function determining dissipation which will
be able to explain the results of the experiments not only qualitatively, but also
quantitatively.4

Finally, let us mention so-called two-way shape memory effect . It is a phe-
nomenon of spontaneous direct and backward change of the sample shape with
thermal cycling in the temperature range of martensitic transformation, even if
no loading or constraint are applied on the specimen. The sample then exhibits
two “natural” configurations, one at low temperatures, the other at high tem-
peratures. It is believed that dislocation arrays, retained martensite and residual
stress fields are necessary to obtain some two-way shape memory effect, but the
details about the internal mechanism are still not clear (Otsuka and Ren, 2005).
Because of the necessity of permanent internal structure changes to occur in the
material in that case two-way shape memory effect is not covered in this work.

Let us further note that since we will restrict ourselves to modeling of (ideal)
thermoelastic MT within this work, process connected to plastic slip, creep, long-
term cycling microstructure evolution, fatigue, etc. will be also not taken into
account. Therefore, they are not described herein, even though they are also of
high importance in material research on SMA.

Many alloys exhibiting shape memory effects due to MT have been discov-
ered since 1950s. With respect to type of crystal lattice of martensite, we can
distinguish SMA with tetragonal lattice (e.g. Ni2MnGa5, NiAl, FePt), with or-
thorombic lattice (e.g. AuCd, CuNiAl), with monoclinic lattice (e.g. CuAlZn,
NiTi) or with rhomboedral lattice (e.g. R-phase in NiTi). Only some of these
can be easily produced and manufactured and, hence, are suitable for commercial
applications. Most of SMA products are based on NiTi-based alloy at the present
time.

4We will restrict ourselves to strain levels where the influence of plastic deformation may be
neglected, i.e. we will not try to explain the phenomena obtained for deformations behind the
transformation plateau in (Liu and Favier, 2000).

5Recent results by Straka et al. (2011) indicate that this alloy could have the monoclinic
lattice.
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1.3 NiTi-based shape memory alloys

NiTi SMA was discovered in 1963 at the Naval Ordnance Laboratory (NOL),
hence the often referred acronym NiTiNOL.

Although reversibility of MT in NiTi is essentially guaranteed for the alloy of
nominally stoichiometric composition, small additional increase in nickel is ad-
missible and it has an important effect of decreasing the temperature at which
MT is initiated Otsuka and Wayman (1998). Moreover, the effective behavior of
NiTi binary alloy can be modified by substituting some amount of one of con-
stituent elements by another element producing a ternary alloy. As an example,
substitution of manganese, aluminium for titanium or cobalt or iron for nickel
lowers the transformation temperatures (see Otsuka and Wayman, 1998, and ref-
erences therein). If such modified alloys still preserve the basic shape memory
characteristics, they are sometimes broadly termed as NiTi-based SMA.

For a NiTi single crystal, the maximum value of recoverable strain has been
computed theoretically and it was found that it strongly depends on crystallo-
graphic orientation of the specimen with respect to loading direction. For in-
stance, the value for reversible elongation varies between 10.7% and 2.7% as has
been also experimentally confirmed (Otsuka and Wayman, 1998). The direct re-
lation between transformation strain (and some other transformation features)
in NiTi polycrystals and crystallography of MT at a single crystal level has been
demonstrated by simulations of Šittner and Novák (2000). However, transforma-
tion strain is usually considered as a material parameter in macroscopic models
of SMA polycrystals and the same approach will be adopted in this work. For
full MT the usual maximum recoverable strain reachable in experiments on NiTi
polycrystals is about 8% (Shu and Bhattacharya, 1998). It shall be also noted
that, as reported by Brinson et al. (2004), martensitic plates formation at micro-
scopic scale can occur in NiTi polycrystal both before and after the “macroscopic”
transformation stage conventionally defined by presence of plateau in stess-strain
dependence. Such effects have been phenomenologically addressed in (Frost et al.,
2010) by introduction of a particular hysteresis operator, but it will be neglected
in this work.

NiTi-based SMA may transform from (cubic) austenite into (monoclinic)
martensite either directly or via an intermediate phase. For some specific compo-
sition and metallurgical treatment, an intermediate (rhomboedral) phase known
as R-phase occurs (Otsuka and Ren, 2005). The associated transformation pro-
cess between austenite and R-phase will be called R-phase transformation here-
inafter. Since this transformation is thermoelastic and R-phase is prone to twin-
ning, shape memory and superelasticity effects are exhibited. The transformation
can occur in a possibly wide temperature range (Olbricht et al., 2011). Never-
theless, small hysteresis is observed indicating low associated dissipation. Also
a quite small transformation strain (∼ 0.8%) is associated with the transforma-
tion between austenite and R-phase. Since the changes in transformation strain
occur gradually in a wide interval of transformation temperatures it is usually
difficult to detect the presence R-phase directly from measured stress-strain de-
pendency. However, the transformation may be characterized, e.g., by detection
of associated latent heat and/or sharp change of electrical resistivity in experi-
ments (Novák et al., 2008). The latent heat associated with austenite-to-R-phase
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transformation was found to be about 1/5 ∼ 1/3 of the latent heat of direct
austenite-to-martensite transformation (Airoldi and Rivolta, 1988).

It shall be noted that a lattice distortion also accompanies R-phase-to-marten-
site transformation and usually no R-phase occurs when martensite transforms
back to austenite in experiments. R-phase appears in most of the commercial-
ly available cold worked/annealed NiTi wires (Šittner et al., 2006) and affects
considerably the mechanical response of particular structures as springs, stents
and knitted NiTi textiles since large macroscopic changes occur in them even for
small strains accompanying the transformation from austenite to R-phase. This
is mainly the reason why R-phase transformation is covered in this work.

Due to the lattice-distortive origin of MT, elasticity of SMA plays an im-
portant role in understanding of microscopic background of the transformation
phenomena (Ren and Otsuka, 1998). The elastic properties of austenite have
been experimentally investigated in many works, see the references in the paper
of Ren and Otsuka (1998).

The elastic properties of NiTi undergoing R-phase transformation were experi-
mentally examined by ultrasound measurements and neutron diffraction methods
by Šittner et al. (2006). It was observed that Young and shear moduli substan-
tially decrease during that transformation.

Due to experimental difficulties, the coefficients of elasticity tensor of marten-
site single crystal has not been measured yet. However, based on results of
theoretical study performed by Wagner and Windl (2008) and recent research on
elastic properties of polycrystalline NiTi specimen by Qiu et al. (2011), it seems
that martensite exhibits elastic anisotropy. In addition, comparison of results in
the former work with those in (Šittner et al., 2006) suggests that the value of
bulk moduli of all the phases are very close to each other. Findings of Qiu et al.
(2011) confirmed that reorientation processes in pseudoplasticity occur even at
low stresses where macroscopic stress-strain dependence appears linear, which
results in more than 50% difference between (macroscopically) apparent and real
Young’s moduli of martensite.

Let us now summarize some further experimental findings on NiTi polycrystals
which have to be taken into account when a macroscopic constitutive model is
developed. The relative volume change associated with MT in thermoelastic
alloys is usually small, according to theoretical calculation of order 10−3 for both
austenite-to-martensite and austenite-to-R-phase transformation in case of NiTi
(Otsuka and Ren, 2005). Experimental data confirmed these estimates (Funakubo
and Kennedy, 1987; Jacobus et al., 1996). The assumption of zero net relative
volume change, sometimes termed as volume preserving property of MT, is thus
often made in SMA modelling and it is also the case for the model introduced in
this work.

The difference between heat capacity of martensite and austenite at constant
volume are also found negligibly small in the literature (Lagoudas and Bo, 1999).
Regarding coefficient of thermal expansion, although the values for the three
phases considerably differ, the highest value of them is of order 10−5 K−1 (Uchil
et al., 1999) which represents strain about 10−3 for temperature variation within
a range of 100K, i.e. one order less than typical maximum transformation strain
which is the salient contribution to thermomechanical response that SMA models
concentrate on. In other words, thermal expansion becomes relevant only for
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thermal loading at zero or rather small applied stress which is not a mode that
SMA application are usually constructed to operate on. That is the reason why
it will be neglected here, albeit its adoption does not pose any obstacle.

In a typical superelastic loading-unloading experiment under tension and com-
pression, so-called tension-compression asymmetry demonstrates itself: under
compression, the transformation strain induced by phase transformation is lower
and the absolute value of stress level required to start the forward phase transfor-
mation is higher than in experiments in tension6 (Gall et al., 1999; Grolleau et al.,
2011; Liu et al., 1998; Mao et al., 2010; Orgéas and Favier, 1999). When a full
hysteresis loop is exhibited, it is shorter along the strain axis and wider along the
stress axis in compression than in tension. Let us note that more explanations of
such phenomena at microscopic level were suggested.

Many applications utilize SMA wires or plates, since they are generally the
least expensive and most readily available form. Since a strong texture7 is usual-
ly induced during manufacturing of these products, a pronounced dependence of
transformation characteristics on mechanical loading direction is observed. The
transformation strain anisotropy (Sedlák et al., 2010; Sun and Li, 2002) was ob-
served experimentally in NiTi textured polycrystalline material. Based on crys-
tallographic and microstructural calculations, Shu and Bhattacharya (1998) have
shown that in NiTi alloy, the texture developed by rolling, extrusion or drawing is
favourable for large transformation strains. They pointed up that in wires, rods
and tubes, the maximum value of transformation strain in torsion is typically
significantly lower than in tension and it may further decrease with increasing,
simultaneously applied uniaxial tension for some textures. We will introduce
material anisotropy and tension-compression asymmetry into the model.

A particular type of processing (e.g. the combination of cold-working and
subsequent annealing) has been explored as a way to further improve NiTi char-
acteristics (Otsuka and Wayman, 1998). Depending on composition and heat
treatment, it is possible to obtain NiTi alloy for which the properties associated
with the transformation stabilize after few training cycles. For example, Delville
et al. (2010) utilized non-conventional pulsed electric current method to yield
heat-treated NiTi wires with various microstructures and functional superelastic
properties. At specific conditions, nanosized microstructure with optimal grain
size may be developed. After about 10 cycles-training, the wire exhibited high
transformation strain and excellent stability (negligible irreversible strains). Such
a stability of the material is highly desired in applications, thus it is reasonable
to assume it also in development of a constitutive model in next chapters.

For sake of completeness, let us note that NiTi-based alloys exhibit excellent
corrosion-resistance and fulfil severe biocompatibility requirements (Machado and
Savi, 2003; Shabalovskaya, 1995), which makes them suitable for medical appli-
cations.

6Note that the Clausius-Clapeyron relation predicts the latter fact if the former one is
accepted.

7Texture is the distribution of crystallographic orientations of a polycrystalline sample. If
the crystallographic orientations are not random, but exhibit pronounced preferred orientation,
the texture is termed strong.
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Chapter 2

Framework of Generalized
Standard Models

As described in the previous chapter, during general response of SMA, mutual
interaction between multiple dissipative processes may be awaited. Continuum
thermodynamics together with the concept of generalised standard models (also
called generalised standard materials) (GSM) developed by Halphen and Nguyen
(1975) provide a powerful framework for description and modeling of thermome-
chanical response of SMA. In this chapter, this framework will be briefly intro-
duced in a way which allows to utilize it successfully for development of the model
introduced in Chapter 4. Our starting point will be the continuum thermody-
namics.

2.1 Elements of continuum thermodynamics

In order to fully determine a system of equations describing the time evolution
of a thermodynamical system (e.g. solid body), the balance laws must be com-
pleted by a proper constitutive relation. From the point of view of continuum
thermodynamics, construction of a constitutive relation is essentially restricted
by the laws of thermodynamics.

An elementary term of the theory of continuum is a material point, a small
enough elementary particle of solid or fluid, whose state represents the local
state of material. A basic assumption of the (local equilibrium) thermodynamics
of continuum is then that “the (continuum mechanical) system is composed of
infinitesimal sub-systems in slow evolution such that each sub-system can be
always considered as almost in thermodynamic equilibrium at any time” (cf. e.g.
Nguyen (2000)). Any material point is then assumed to be composed of one of
these infinitesimal subsystems. The internal physical state of a material point
in equilibrium can be characterized by the present value of a set of variables
called as state variables. The set of state variables includes the temperature,
T , and other physical variables suitable for the investigated system. The above
postulate allows to introduce locally the entropy and thermodynamic potentials
as functions of state variables, even in a case when the system as a whole is not
necessary in equilibrium.

Important examples of state variables come from description of kinetics of con-
tinuum. Having now a body occupying a domain Ω ⊂ R3 in a reference configura-
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tion, a smooth injective vector function y(t) : Ω → R3 satisfying det∇y(x, t) > 0
is then called deformation; t and x denote time and space coordinates. The ten-
sor ∇y(x) is called deformation gradient and it is of high importance in solid
mechanics. We omit the explicit dependence on time and space in notation for
simplicity in the rest of this chapter, since all variables introduced in what follows
are time- and space-dependent.

Defining the right Cauchy-Green deformation tensor as

C := (∇y)⊤∇y, (2.1)

one possible measure of strain is then given by the (Green-)Lagrangian strain
tensor in the form:

G :=
1

2
(C − I), (2.2)

where I is the identity tensor.
By geometric linearization of G we obtain the small strain tensor

ε :=
1

2
[∇u+ (∇u)⊤], (2.3)

where u denotes displacement of a material point. A direct relation between
deformation and displacement is given by

u(x) = y(x)− x. (2.4)

Since we aim to formulate a constitutive model in the small strain setting, we
restrict ourselves to this setting in what follows.

The local version of the first law of thermodynamics, i.e. conservation of the
overall (total) energy, may be written in the following form Nguyen (2000):

σ : ε̇− div(q) = u̇X , (2.5)

where uX is the internal energy of material per unit volume, which, in line with
the local state postulate, is supposed to be a function of the entropy (considered
per unit volume), s, and strain, ε. The Cauchy stress tensor1 is denoted by σ,
whereas q denotes the heat flux.2

The local form of the second law of thermodynamics states that the production
of entropy in time is always non-negative Nguyen (2000):

ṡ− div
( q
T

)
≥ 0, (2.6)

Equivalently,

T ṡ+ div(q)− q

T
∇T ≥ 0. (2.7)

Combining inequality (2.7) with the local form of the first law of thermody-
namics (2.5) we obtain an equivalent form of the second law, which is sometimes
referred to as the Clausius-Duhem inequality:

T ṡ− u̇X + σ : ε̇− q · ∇T
T

≥ 0. (2.8)

1Let us note that since we are working in the small strain setting, the Cauchy stress tensor is
equivalent to the Piola-Kirchhoff stress tensors, which are the primary measures of stress state
in Lagrangian setting commonly used in modeling of solids.

2We omitted change of energy due to radiation for simplicity
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We also introduce the Helmholtz free energy, f , more convenient for further
development, as a Legendre transformation of internal energy:

f(T, ε) := uX(s, ε)− sT. (2.9)

Thus, the Clausius-Duhem inequality takes the form:

σ : ε̇− ḟ − sṪ − q · ∇T
T

≥ 0. (2.10)

Let us investigate a process for which equality is imposed in the previous
equation:

σ : ε̇− ∂f

∂ε
: ε̇− ∂f

∂T
Ṫ − sṪ − q

T
· ∇T = 0. (2.11)

Such a process is called reversible. Introducing the following notation:

σel :=
∂f

∂ε
, (2.12)

and applying standard thermodynamic arguments, i.e. mutual independence of
state variables (and also ∇T ), we arrive at a set of equations:

σ − σel = 0, (2.13)

s+
∂f

∂T
= 0, (2.14)

q = 0. (2.15)

Let us note that (2.14) is often called the Gibbs relation and the system describes
so-called hyperelastic behavior. However, many inelastic processes can be found
in the nature (viscosity, plasticity, etc.), thus, it is beneficial not to limit the
theory to be able to capture such effects, too.

2.2 Irreversible processes in solids

We introduce a possibility to describe a wider class of materials than only hy-
perelastic ones, i.e. where non-zero dissipation occurs. To do so, lets turn our
attention to the Clausius-Duhem inequality (2.10) once again. The term

Dmech := σ : ε̇− ḟ − sṪ (2.16)

is called a mechanical dissipation, the last term on the left-hand side of (2.10)
is often called a thermal dissipation in the literature Houlsby and Puzrin (2000);
Nguyen (2000). It is usually reasonable to adopt the Fourier law for the heat
conduction, i.e. to assume the heat flux density, q, is proportional to a negative
gradient of temperature, −∇T , with an appropriate proportionality coefficient so
that the thermal dissipation is always non-negative. Requiring the mechanical
dissipation itself be non-negative (Nguyen, 2000)

ṡT + div(q) = Dmech = σ : ε̇− ḟ − sṪ ≥ 0 (2.17)
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together with the Fourier law is a slightly more stringent condition than formula
(2.10). However, it is a widely accepted assumption in the literature on con-
stitutive modelling (Helm and Haupt, 2003; Houlsby and Puzrin, 2000; Nguyen,
2000), thus it will be applied within this work.

We now introduce the concept that the thermodynamic state of the material
depends, together with strain and temperature, on further, internal variables to
capture dissipative processes. With respect to the model introduced in Chapter
4, let us restrict ourselves to one additional scalar, ξ, and one additional tensor,
κ, as additional internal variables, albeit more internal variables of various types
are possible, see (Houlsby and Puzrin, 2001).

Introducing f(ε,κ, ξ, T ) into (2.17) we obtain

σ : ε̇− ∂f

∂ε
: ε̇− ∂f

∂T
Ṫ − ∂f

∂ξ
ξ̇ − ∂f

∂κ
: κ̇− sṪ ≥ 0. (2.18)

Motivated by (2.12), we introduce the decomposition σdis := σ − σel in order
to include strain rate-dependent processes (Nguyen, 2000). Applying a strategy
known as the Coleman-Noll procedure (Coleman and Noll, 1963) to (2.18), one
obtains the following system:

σ − σdis −
∂f

∂ε
= 0, (2.19)

s+
∂f

∂T
= 0, (2.20)

σdis : ε̇− ∂f

∂κ
: κ̇− ∂f

∂ξ
ξ̇ ≥ 0. (2.21)

The equation (2.18) may be understood as a restriction imposed by the second
law of thermodynamics on time-evolution of state variables, particulary to the
(so far) formally introduced additional internal variables. System (2.19)–(2.21)
may be viewed as a set of sufficient condition to satisfy that restriction3, useful
for construction of a constitutive model.

We define A := (σdis,−∂f/∂κ,−∂f/∂ξ) and α := (ε,κ, ξ). It is common to
refer to any member of the vector A as a generalized force and to correspond-
ing member of α̇ as a generalized flux in irreversible thermodynamics literature
(Nguyen, 2000). The entropy production equation (2.21) then takes the form:

A · α̇ ≥ 0. (2.22)

For meaningful utilization of the concept, it is necessary to choose appropriate
internal variables with respect to the nature of the involved physical processes.
Usually, internal variables are introduced to account for microscopic phenomena
at the macroscopic level, where they manifest themselves by dissipation.4 Then,
it remains to prescribe the relation between generalized forces and fluxes such
that (2.22) is satisfied, i.e. to establish the constitutive law. Such a relation then

3Coleman and Noll (1963) even argue that these conditions are necessary.
4However, this is not necessarily always the case. As will be demonstrated on the example

of the volume fraction of R-phase in Chapter 4, it is also possible to introduce non-dissipative
variables in order to distinguish different microscopic contributions to reversible processes at
the macroscopic level, for instance.
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defines the irreversible behavior of the material under study and together with
balance laws characterise its time-evolution.

Various methods how to establish the constitutive relations can be found in the
literature Ziegler (1983). They are often based on an extremum principle applied
to a physical entity related to entropy production.5 Among the most well-known
are the principle of maximum dissipation (rate), whose roots may be dated back
to Onsager, and the minimum principle for the dissipation potential. Although
there can be often found appropriate forms of extremalized entities such that
both principles lead to the same evolution equations for the internal variables,
e.g. in case of rate-independent processes, as shown by Hackl and Fischer (2008),
such an equivalence is not valid generally. In the following, we will introduce a
simple concept based on the work of Nguyen (see e.g. Nguyen, 2000) with is most
cases equivalent to the minimum principle for the dissipation potential.6

2.3 Generalised standard model

“By definition, a model of material behaviour is a generalized standard model if it
is defined by two potentials, the energy potential, f , and the dissipation potential,
d. The energy is a function of state variables and the dissipation potential is a
convex function of flux and may eventually depend on the present state” (Nguyen,
2000). Moreover, the dissipation potential is supposed to be nonnegative and
to be zero for zero fluxe and the relation between the generalised flux and the
dissipation potential is established by the following inclusion:

A ∈ ∂α̇d(T, α, α̇). (2.23)

Since d is considered not necessarily smooth, the sub-differential notation of a
convex function is used, see Appendix A. Let us note the nomenclature “poten-
tial” is motivated by the fact that its derivative7 corresponds to the generalized
force (Nguyen, 2000). The term dissipation function is also used in the literature
as a synonym and will be mostly utilized in this work.

A GSM framework automatically ensures satisfaction of the inequality (2.22)
related to the second law of thermodynamics, since

A · α̇ ≥ d(T, α, α̇)− d(T, α, 0) = d(T, α, α̇) ≥ 0, (2.24)

where we used in turn convexity, “zero in zero” and nonnegativity properties of
d.

A simple scheme for a formal construction of a constitutive model8 within the
GSM framework may be summarised as follows (Nguyen, 2000):

5The question on conceptual relation between such principles is still open in some cases
(Svoboda et al., 2005).

6Particularly it is the case if the free energy function is convex in state variables and the
dissipation function is convex in their rates.

7Or, generally, “one of its subderivatives”.
8Of course, there are other conditions a physically relevant model should satisfy; e.g. the

so-called axioms of constitutive theory Coleman and Noll (1963), which express some “natural”
requirements as frame indifference, material symmetry, casuality, etc., and which are satisfied
for common models of solids.

22



σdis κ ξ f d Constraint(s), comments

Maxwell visco-elasticity

1 0 0 1
2
ε : C : ε 1

2
ε̇ : D : ε̇ ⇒ σdis = D : ε̇

Kelvin-Voight visco-elasticity

0 1 0 1
2
(ε− κ) : C : (ε− κ) 1

2
κ̇ : D : κ̇ κ represents viscous strain

Perfect Von-Mises plasticity

0 1 0 1
2
(ε− κ) : C : (ε− κ) Y ∥κ̇∥ dev(κ) = 0, κ represents

plastic strain

Very simple one-dimensional SMA superelasticity

0 0 1 1
2
E(ε− ξΛ)2 Y |ξ̇| 0 ≤ ξ ≤ 1, ξ represents

+C(T ) + 1
2
k|ξ|2 volume fraction of mar-

tensite

Table 2.1: Simplified examples of mechanical constitutive models within GSM for
isothermal evolution. The simplified superelasticity model in tension is based on (Au-
ricchio and Sacco, 1997). The first three columns indicate if the correpondig type of
internal variable is employed. The fourth-order tensors C and D represent the tensor of
elastic constants and the tensor of viscous moduli, respectively. Y and k are constants
reflecting the onset of dissipation process and the “rate of hardening” of the mechani-
cal response, respectively. The constant Λ denotes the maximum transformation strain
in the direction of loading, E is the Young modulus and C(T ) is a positive constant
depending linearly on temperature. Further restrictions may apply to these constants
due to their physical meaning.

A. Choice of the set of state variables with respect to the nature of the system
and behavior to be modeled.

B. Definition of the energy function.

C. Dissipation analysis, i.e. definition of dissipation function as a function of
flux and, possibly, of the present state.

As pointed up in (Nguyen, 2000), a good knowledge of both reversible and irre-
versible mechanisms operating within the considered material is needed to con-
struct a physically meaningful model.

Examples of some types of very simple material models can be found in Ta-
ble 2.1.9 As widely discussed in (Collins and Houlsby, 1997; Houlsby and Puzrin,
1999), by a suitable choice of free energy and/or dissipation functions, further
types of common models, e.g. visco-plasticity, kinematic or isotropic hardening
plasticity, models of soils, etc., may be derived.

The final form of governing equations for the introduced class of models based
on GSM framework when neglecting inertia, assuming small strain setting and

9In that table we utilize the common mechanical engineering notation for matrix products,
i.e. it holds x : M : x := Mx · x with respect to our standard notation.
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positivity of thermal dissipation, follows:

div(∂εf + ∂ε̇d) ∋ 0, (2.25)

∂αf + ∂α̇d ∋ 0, (2.26)

∂ε̇d : ε̇+ ∂α̇d · α̇ = Dmech = T ṡ+ div(q), (2.27)

where f is assumed to depend on T, ε and a set of internal state variables α.
The first relation corresponds to the balance of momentum and the third to the
entropy balance. The second one provides relation between forces and fluxes due
to (2.23).

2.3.1 Rate-independent processes within GSM

A special class of dissipative processes represent rate-independent processes as
plasticity or dry friction. They are associated with a particular type of dissipation
function, which is positively homogeneous of degree one with respect to fluxes, i.e.

d(T, α, Cα̇) = Cd(T, α, α̇) ∀C > 0. (2.28)

The force-flux relationship (2.23) is in the rate-independent setting equivalent
to the relation10

α̇ ∈ ∂AIK(T, α,A). (2.29)

where K is a convex set called the domain of admissible forces (Nguyen, 2000).
With respect to Example A.0.5, we then obtain so-called “normality law” for
A ∈ ∂K:

α̇ ∈ NK(T, α,A), (2.30)

which states that α̇ must be an external normal to the admissible domain at the
present state of the force A (Nguyen, 2000). This formulation is widely used
in “generalized standard models of plasticity” in small strain setting (Nguyen,
2000), where the set K is referred to as an elasticity domain, d∗ is called yield
function and the relation (2.29) is known as so-called flow rule.11 Moreover, it
can be shown12 that

d(T, α, α̇) + IK(T, α,A) = A · α̇. (2.31)

Then, we obtain13

A · α̇ = d(α, α̇). (2.32)

Hence, (2.27) gives in that case

d = Dmech, (2.33)

i.e. value of (prescribed) dissipation function is equal to the (real) mechanical
part of dissipation of energy.

10Actually, (2.23) is equivalent to the dual relation α̇ ∈ ∂Ad
∗(T, α,A), where the dual dissi-

pation potential, d∗, is given by the Legendre-Fenchel transform of d, see Appendix A. It is also
shown there (see Lemma A.0.10), that, in the rate-independent setting, the dual dissipation
potential is equal to the indicator function of a convex set, K.

11In perfect plasticity setting, stress σ plays the role of the force A.
12One utilizes the Lemma A.0.10 and relation (A.9) in Appendix A.
13We suppose that A is the admissible force, i.e. it is “inside” or on “the boundary” of the

elasticity domain.
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Chapter 3

Modeling of Shape Memory
Alloys

In the last three decades, continuously increasing effort in modeling of shape
memory effects can be observed. The modeling is attractive both for physi-
cists, who are interested in confirmation of the proposed explanation of some
underlying phenomena, for engineers, demanding accurate prediction of SMAs
thermomechanical behavior needed in new products development, and even for
mathematicians, who are motivated by further development of advanced mathe-
matical concepts. However, due to the different objectives, these groups usually
elaborate their modeling concepts at various levels compromising rigor with phe-
nomenology. A scale transition between neighbouring modelling levels often poses
a challenge in mathematical modeling (Benešová, 2012; Patoor, 2009; Roub́ıček,
2004).

One of possible classification motivated by Roub́ıček (2004) is the following
one, see also Fig. 3.1:

1. Atomic level: the description counts barycenter of particular atoms and
inter-atomic potentials, tools of the quantum mechanics or the molecular
dynamics are employed (e.g. Entel et al., 2000)

2. Microscopic level: continuum mechanics is used to describe deformation,
stress, strain, temperature field, etc. at material points, microstructure in-
side the specimen is fully resolved (e.g. Stupkiewicz and Petryk, 2010)

3. Mesoscopic level: the state of the material is described by “averaged” de-
formation gradients and volume fractions of phases or phase variants, the
system is treated by tools of continuum mechanics (e.g. Benešová, 2012)

4. Macroscopic level: macroscopic deformation and volume fractions of phas-
es are used to describe configuration at given material point, information
about the microstructure is encompassed by so-called internal variables

Let us note that especially the second and the third levels are used for single
crystals modelling, whereas the last one is used for polycrystalline models. A
number of models based on various approaches at all the levels has appeared, see
e.g. following review papers (Khandelwal and Buravalla, 2009; Lagoudas et al.,
2006; Patoor et al., 2006; Roub́ıček, 2004).
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Figure 3.1: A schematic representation of the different scales of an SMA. Reprint-
ed from (Roub́ıček, 2004).

Thanks to simple numerical implementation, less time-consuming calculations
and the possibility to be adjusted for the particular material easily, macroscopic
thermodynamics-based models appear to be a very powerful tools for simulation
of behavior of polycrystalline SMA applications. Derivation of such a type of
models in case of SMAs may be summarized into three fundamental steps similar
to those introduced in Section 2.3:

A. Choice of internal kinematic variable(s).

Physical motivation usually leads to the introduction of volume fraction of
martensite for description of proceeding phase transformation and a ten-
sorial variable for description of inelastic deformation processes in marten-
site. Such a strongly simplified description of complicated martensitic mi-
crostructure is motivated by the aim to obtain fast, efficient models with
a low number of fitting parameters. Several authors extend the simplified
description by using additional variables as volume fraction of twinned/de-
twinned martensite1 (Leclercq and Lexcellent, 1996; Panico and Brinson,
2007; Popov and Lagoudas, 2007), twins accommodation strain (Chemisky
et al., 2011), plastic strain (Auricchio et al., 2007; Hartl et al., 2010; Zaki
et al., 2010), various “material memory variables” (Chemisky et al., 2011;
Rajagopal and Srinivasa, 1999; Saint-Sulpice et al., 2009), etc.

B. Choice of a suitable energy function.

Both prescription of the Helmholtz and the Gibbs free energies can be
found in derivation of constitutive equations of SMAs, see the review of
Khandelwal and Buravalla (2009). The free energy has two fundamental
contributions – the (thermo)elastic energy and the chemical energy related
to the change of entropy associated with the phase transformation. Elastic
isotropy of phases is mostly assumed in the models, different material pa-
rameters for austenite and martensite are considered only in some of them
(e.g. Moumni et al., 2008; Popov and Lagoudas, 2007). The mechanical
and chemical contributions are commonly supplemented by interaction or
interfacial energies (Chemisky et al., 2011; Moumni et al., 2008; Peultier
et al., 2006).

C. Formulation of the dissipation mechanism.

1Often the terminology “stress-induced” and “temperature-induced” martensite is used.
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A proper formulation of the dissipation mechanism, which describes how
much energy the system should “pay” for the change of internal variables,
is a crucial, and often the least developed, part of SMA-model formula-
tion. The main peculiarities of SMA behavior as path-dependent response,
switching between transformation-reorientation processes, etc. are related
to dissipation. Insufficiently captured dissipation could lead to incorrect
simulations of path-dependent material responses under general multiaxial
loadings.

In a common approach a yield surface is constructed as a function of the gen-
eralized stress and separates the thermoelastic and trans-for-ma-tion/reo-
rien-ta-tion regions (e.g. Auricchio and Petrini, 2004; Hartl and Mooney,
2010; Popov and Lagoudas, 2007; Qidwai and Lagoudas, 2000b). A close-
ly related approach (see Section 2.3.1) starting by prescription of a rate-
independent dissipation function is used in works (Chemisky et al., 2011;
Moumni et al., 2008; Souza et al., 1998; Zaki et al., 2010), for instance.
However, there are also models combining the rate-independent and rate-
dependent types of response in order to extend the applicability of the mod-
el to high-frequency loading or elevated temperature when viscosity effects
are not negligible, e.g. (Hartl et al., 2010; Sadjadpour and Bhattacharya,
2007a; Saleeb et al., 2011).

Also, there is a subgroup of macroscopic models, often referred to as phe-
nomenological in literature, which differs from the above approach by establishing
the transformation kinetics separately and focuses on mechanical loading in one
dimension. The phase evolution and transformation conditions are derived using
empirically determined stress-temperature phase diagrams and the phase frac-
tion, derived out of the explicit evolution kinetics, is incorporated into a simple
constitutive relation. Although there are many examples of this approach (e.g.
Bekker and Brinson, 1997; Gao et al., 2007; Zhou and Yoon, 2006), possibilities
of its extension to general loading cases seems to be limited. Hence, such models
are not considered in what follows.

3.1 Overview of macroscopic thermodynamics-

based models

Three-dimensional rate-independent continuum thermodynamics-based models
for polycrystalline SMAs represent a salient subgroup of SMA models. With
respect to the final aim of this work, in following review, we will focus on the
most prominent models, which represent a distinct directions in the SMA mod-
eling field. We will mainly try to pinpoint their features that are relevant for the
ability to reliably simulate NiTi-based SMA response to general thermomechan-
ical loadings involving complex loading paths.

Thus, we will omit models intended only for superelastic temperature range
modelling. Those are usually the pioneering works (Boyd and Lagoudas, 1996;
Liang and Rogers, 1990; Raniecki and Lexcellent, 1998), which served as a basis
for recent, more developed models, or works, which have traded universality for
elaboration of particular, interesting phenomena of the SMA response in more
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detail, e.g. internal loops evolution (Bouvet et al., 2004; Saint-Sulpice et al.,
2009), cycling behavior (Saint-Sulpice et al., 2009), temperature effects (Thiebaud
et al., 2007), etc.

The type and the number of internal variable(s) will be chosen as an auxiliary
classifying criterion, since it provides a hint for discovering common features of
models. Further, we will mention the particular form of dissipation function.
Importance of both aspects for constitutive model construction was sketched in
Chapter 2. Throughout this section, we will use a unified notation for the most
common parameters utilised in modeling of SMA, i.e. the (total) strain, ε, the
stress, σ, the temperature, T , and a simplified notation of particular parameters,
whose exact form can be found in referred works.

In all following models a general assumption of additivity of strains is adopted
(i.e. small strain setting), ε = εel + εin, where εel denotes the (thermo)elastic
contribution to the total strain of the material and εin represents an inelastic
strain related to changes of martensitic structure which can be fully released by
completed transformation back to austenite.

In simple models, only a single bounded scalar internal variable representing
the volume fraction of martensite, ξ, is introduced. By relating the transformation
induced strain with the volume fraction of martensite through a constant, e.g.
ε̇in = Λξ̇, where Λ denotes a constant material parameter called transformation
direction tensor, it would not be possible to capture the temperature induced
transformation, i.e. transformation with zero net macroscopic shape change.
Thus, some three-dimensional models, e.g. (Hartl and Mooney, 2010; Qidwai and
Lagoudas, 2000b), force Λ to depend on stress, i.e. Λ(σ). If disappearance of
martensite is appropriately treated, this simple approach covers both proportional
loading in pseudoelasticity and the one-way shape memory effect, therefore, it is
efficient for many practical applications. However, it is not sufficient for general
loadings leading to more complex evolution of martensite.

In an attempt to extend the applicability of such a type of models, some
authors (e.g. Leclercq and Lexcellent, 1996; Lexcellent et al., 2006; Popov and
Lagoudas, 2007) introduce two “types” of martensite.2 Popov and Lagoudas
(2007) conceptually distinguish twinned martensite, which is assigned zero trans-
formation strain, and detwinned martensite, which exhibits non-zero macro-
scopic strain. In the model, they use three scalar internal variables describing
the amount of twinned and detwinned martensite transformed from austenite,
ξ1, ξ2, and the amount of detwinned martensite produced from twinned one, ξ3.
By introduction of two different transformation surfaces for transition between
twinned/detwinned martensite and austenite, the effect of martensite stabilisation
is captured. The formulation inherits problems with absence of the transforma-
tion strain evolution for general mechanical loading after complete transforma-
tions to detwinned martensite, i.e. if

ξ̇2 = ξ̇3 = 0, (3.1)

it is necessarily
ε̇in = Λt(σ)ξ̇2 +Λd(σ)ξ̇3 = 0 (3.2)

2It should be noted this idea is widely used in one-dimensional modeling of SMAs (Lagoudas
et al., 2006).
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and, thus, the model does not reflect change of external mechanical loading mode
(tension-shear-compression for instance). Λt(σ),Λd(σ) denote the transforma-
tion direction tensors. Moreover, the two independent transformation surfaces
may lead to a two-step reverse transformation demonstrated by two distinguish-
able peaks at differential calorimetry measurements, which is actually in not
observed in experiments investigating martensite stabilisation by reorientation
(Liu and Favier, 2000; Popov and Lagoudas, 2007).3

Souza et al. (1998) chose a single traceless tensorial internal variable, which
is interpreted as the mean strain of the mixture of a generic parent phase, i.e.
austenite or temperature-induced martensite, and a generic product phase, i.e.
martensite formed in a non-zero stress field. Following this interpretation and
physical limitation of transformation strain, the tensorial internal variable is de-
fined as symmetric tensor with bounded norm. The chosen dissipation potential
is prescribed in a very simple form: R∥ε̇in∥, where R is a positive material pa-
rameter. As a consequence, total dissipation in a full mechanical loading cycle
is constant, independent on temperature. The original model was refined and
numerically implemented by Auricchio and Petrini (2002) and further modified
to cover tension-compression asymmetry in papers (Auricchio and Petrini, 2004;
Evangelista et al., 2009).

Recently, Arghavani et al. extended the previous concept. In their work
(Arghavani et al., 2010), the measure of the amount of stress-induced martensite
is chosen ro be a scalar internal variable, q, while the average direction of differ-
ent variants (or preferred direction of variants) is chosen as a tensorial internal
variable, N . The tensor is considered to be traceless and have a constant norm
(∥N∥ = 1). The evolution of q and N are treated independently, which brings
more flexibility to the model. The transformation strain tensor is obtained as
a product of the internal variables, εin = qN , which implies ∥εin∥ = q. Thus,
in fact, the situation effectively corresponds to only one tensorial internal vari-
able, εin, in the model. It describes the state of martensite and its evolution is
driven by two contributions: a “transformation one” due to evolution of q and
a “reorientation one” due to evolution of N . Since there is no representation of
twinned martensite, absence of dissipation in the transition between austenite and
martensite in absence of a stress field still remains an inherent disadvantage of the
aforementioned approach. As the authors admit, both physically distinguishable
phases (austenite, twinned martensite) correspond to one generic parent phase in
the model. Based on given standard yield functions (Arghavani et al., 2010), the
dissipation function can be derived:

d = r1(q)∥q̇∥+ r2(q)∥Ṅ∥, (3.3)

with r1, r2 being positive functions of q.
A direct relation between the martensite volume fraction and the norm of

the internal tensorial variable εin can be also found in the work of Panico and
Brinson (2007). The evolution of εin is driven, similarly to Arghavani et al. (see
an interesting comparison of simulations there), by two driving forces related

3For the sake of completeness, we should mention experiments on martensite stabilisation
due to deformation via stress-induced transformation conducted by Liu and Tan (2000) where
a two-step transformation to austenite was observed. They suggest that this effect may be
related to the altering of the variant structure within martensite due to localisation.
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to two transformation surfaces. A scalar variable is added for description of
twinned martensite, but, as far as also thermal loading is concerned, the model
was formulated only for the case of pure thermal loading at constant stress.

Zaki and Moumni (Moumni et al., 2008; Zaki and Moumni, 2007b) utilised one
traceless tensorial and one scalar internal variables. Since the scalar, ξ, represents
volume fraction of martensite and the tensor, εtr, represents the local martensite
orientation strain tensor, the following term for the inelastic strain is obtained:

εin = ξεtr. (3.4)

Authors define dissipation potentials separately: p(ξ)|ξ̇| for dissipation related to
evolution of martensite volume fraction and Y ξ2∥ε̇tr∥ for dissipation related to
changes of martensite orientation. p(ξ) is a linear function and Y is a positive
constant. No explicit motivation is provided for the particular (quadratic in
volume fraction of martensite) form of the latter part of the dissipation function.
In later works, the model was extended to capture cyclic behaviour (Zaki and
Moumni, 2007a), tension-compression asymmetry (Zaki, 2010) or plasticity (Zaki
et al., 2010).

The same definition of internal variables was used by (Peultier et al., 2006,
2008) and their work was then substantially extended by Chemisky et al. (2011).
Dissipation related to the increase of martensite volume fraction in a full trans-
formation cycle is defined via

ξ̇ ≥ 0 : dtr =
(
h1(T )−H∥εtr∥

)
ξ̇, (3.5)

and for decrease of volume fraction of martensite via

ξ̇ < 0 : dtr =
(
h2(T )−H∥εtr∥

)
ξ̇, (3.6)

where h1(T ), h2(T ) are temperature dependent functions and H is a positive
constant. A novel term, H∥εtr∥, was added to capture the martensite stabilisation
effect.4 Dissipation related to changes of martensite orientation has the form
dreo = Fξ∥ε̇tr∥ with a positive constant F . In contrast to the model of Zaki and
Moumni (2007b), the dependence on ξ is linear. All together, the dissipation
function can be rewritten in the following form

dChem(T, ξ, ξ̇, εtr, ε̇tr) =

{
h1(T )ξ̇ −H∥εtr∥|ξ̇|+ Fξ∥ε̇tr∥ if ξ̇ ≥ 0,

h2(T )ξ̇ +H∥εtr∥|ξ̇|+ Fξ∥ε̇tr∥ if ξ̇ < 0.
(3.7)

Chemisky et al. (2011) also address the description of internal loops (partial
transformation) by further modification of the dissipation terms (3.5) and (3.6)
with incorporated internal memory variables. To sum up, to the author’s knowl-
edge, their model exhibits the most complex and the most elaborated form of
dissipation function within the group macroscopic thermodynamics-base models
of SMA.

Another novel feature of their work is the introduction of a tensorial variable
representing the mean strain due to a specific process within twinned martensite

4However, its relevance to dissipation in the case of forward transformation is not clarified
at least from the physical point of view.
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variants (they call it “twin accommodation” referring to the work of Liu et al.
(1999)). This variable is of hyperelastic nature, since the process is assigned no
dissipation in the model. Such an approach is used for modification of deformation
properties (apparent elasticity) of martensite at low stress.

Although a considerable influence of R-phase transformation on the mechan-
ical behavior of certain NiTi structures is widely accepted, there have been on-
ly sparse attempts to tackle this issue in macroscopic models for NiTi so far.
The models considering it usually adopt modeling techniques developed for sin-
gle martensitic phase transition, therefore, they remain restricted only to phase
transformation between austenite and R-phase (Langelaar and van Keulen, 2004;
Lexcellent et al., 1994). The full transformation sequence between austenite, R-
phase and martensite is covered by models of Chan et al. (2012) and Sengupta
and Papadopoulos (2009). Nevertheless, the former one concentrates on localiza-
tion behavior in one-dimensional setting, the latter one develops a constitutive
model for stress-induced transformation in a single crystal and adopts a multi-
scale finite element-based method to simulate a textured NiTi polycrystal. Both
models are formulated only for the superelasticity temperature range.

Macroscopic SMA models taking account of material anisotropy are also rare
in the literature, e.g. the works Sadjadpour and Bhattacharya (2007a); Saleeb
et al. (2011), even though, as shown by Taillard et al. (2008), isotropic approxi-
mation appears insufficient for textured materials. The anisotropy is captured by
an appropriate form (“shape”) of either the yield surface of the transformation
or the transformation strain domain in the aforementioned works.

3.2 A remark on contributions to the energy

function

The chosen forms of two dominant contributions to the energy function, i.e. the
(thermo-)elastic and the chemical parts, do not differ much within the SMA
models examined above. Most of them may be easily shown to be a specific case
of a unified thermodynamical framework presented by Lagoudas et al. (2006).
This general framework utilizes the rule of mixtures applied to the free energies
of phases considered as linear thermoelastic materials.5 Such an approach will be
used in the next chapter, too.

In addition, there may be found other energy contributions related to the het-
erogenity of material caused either by its multiphase state and/or by its polycrys-
talline nature. Contributions associated with multiphase composition, sometimes
generally called “energy of mixing” (Lagoudas et al., 2006), are of importance in
SMA modeling since they influence transformation kinetics. Their general form
depends on the chemical composition, heat treatment, mechanical training, etc.
Hence, some authors follow rather phenomenological approach and choose a par-
ticular form to fit experimental observations (Hartl and Mooney, 2010; Lagoudas
et al., 2012; Popov and Lagoudas, 2007).

5Actually, the conventional definition of linear thermoelastic material usually assumes en-
tropy as a quadratic function of temperature Coleman and Noll (1963), whereas a logarithmic
dependence is assumed in (Lagoudas et al., 2006) as well as many SMA models.

31



Other authors (Chemisky et al., 2011; Peultier et al., 2006) set out from mi-
cromechanical homogenisation considerations and arrive at energetic terms cov-
ering inter-granular, intra-granular and inter-variant strain incompatibilities. On
the macroscopic scale, the resulting contributions also demonstrate themselves as
a “hardening” during phase transformation and reorientation and also as a hyper-
elastic contribution considered in one-dimensional model of Frost et al. (2010).

Some examples of the generic terms (C denotes a generic constant which is
ξ- and εtr-independent constant and can be temperature-dependent and whose
physical meaning and unit differs in each particular case) include:

• 1
2
Cξ(1− ξ)∥εtr∥2 accounts for interaction between austenite and martensite

in models (Morin et al., 2011; Moumni et al., 2008) and also in (Leclercq
and Lexcellent, 1996; Lexcellent et al., 2006) if the transformation strain is
considered as a material constant. Note that the term is proportional to a
product of volume fractions of the two interacting phases.

• 1
2
Cξ2 measures the inter-variant interaction energy within martensite re-

gardless of their orientation in (Chemisky et al., 2011; Moumni et al., 2008;
Peultier et al., 2006).

• 1
2
Cξ2∥εtr∥2 represents interaction between oriented martensite variants in

models (Moumni et al., 2008; Peultier et al., 2006). Note that considering
εin = ξεtr in the kinematic hardening term in “classical” plasticity leads to
the same type of expression. Based on such similarity, this kind of term
is also introduced in works (Arghavani et al., 2010; Auricchio and Petrini,
2004; Souza et al., 1998).

• 1
2
Cξ∥εtr∥2 corresponds to intergranular and intragranular incompatibilities

in the material in (Chemisky et al., 2011). Note the difference in the power
of ξ with respect to the previous term.

Let us make a note how these terms influence the macroscopic response of
models. If one assumes a state-independent form of dissipation function, i.e.
d(ξ̇, ε̇tr), than all these types of terms except for the second one lead to a hard-
ening type of behavior in superelastic and pseudoplastic responses. On the other
hand, only the second one implies temperature intervals in stress-free phase trans-
formation (and also the first one if εtr is considered as a constant). However, the
same type of behavior can be obtained if the dissipation function depends also on
state of internal variables, i.e. d(ξ, εtr, ξ̇, ε̇tr), and the free energy function con-
sists only of (thermo-)elastic and chemical terms.6 Such a situation will naturally
appear in the next chapter.

Ultimately, with respect to variety of proposed forms, it should be empha-
sised that “the exact form of the interaction energy remains an open problem”
(Lexcellent et al., 2006). It shall be also noted that, due to their physical origins,
a change of any of them owing to a change of internal variables is relatively small
in comparison with the change of the (thermo-)elastic and chemical terms in the
energy function caused by the same change of internal variables.

6These consideration poses a natural question of the physical origins of (contributions to)
the dissipation within the polycrystalline SMA material, which to the author’s knowledge has
not been fully resolved yet.
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Chapter 4

Description of the Constitutive
Model

In this chapter, we will formulate a three-dimensional thermoemchanical consti-
tutive model of SMA. We will follow the framework of GSM, introducing in turn
internal variables describing the material, Helmholz free energy function and dis-
sipation function, all motivated by experimental observations. We will derive a
set of governing equations and formulate a quasi-static time-evolutionary prob-
lem of an SMA specimen under mechanical and temperature loading. In the last
section, we propose an alternative way, how to derive (a particular part of) the
dissipation function from a set of assumptions based on a simplified notion of
martensitic structure evolution.

4.1 Description of state of the material; choice

of internal variables

Adopting the small strain continuum mechanics formalism, the total strain, ε,
representing the total deformation of the material, and temperature, T , are chosen
as state variables in present formulation. A general assumption of additivity of
strains is adopted in the form:

ε = εel + εin, (4.1)

where εel denotes the elastic contribution to the total strain of the material and
εin represents the inelastic strain related to changes of martensite structure which
can be fully released by complete transformation to austenite.1

We choose a common way for description of martensite at macroscopic level
(see Section 3.1), by one scalar internal variable, ξ, representing the volume frac-
tion of martensite in the material and one tensorial variable, εtr, describing the
mean transformation strain of martensite.

The inelastic strain is then given by relation:

εin = ξεtr, (4.2)

1As mentioned before, we do not include plasticity processes in the present formulation of
the model.
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The scalar variable, ξ, is naturally constrained as follows:

0 ≤ ξ ≤ 1. (4.3)

In a reasonable approximation, the martensitic phase transformation preserves
volume of NiTi SMA, therefore we put

tr(εtr) = 0, (4.4)

where tr(x) denotes the trace of a tensor x.2 There exists a maximum value of
attainable transformation strain stemming from crystallographic considerations.
Thus, the value of the mean transformation strain is assumed to lie in a bounded
convex set defined by the following inequality:

⟨εtr⟩ ≤ 1, (4.5)

for some, positively 1-homogenous convex function ⟨·⟩ : R3×3 → R+
0 satisfying the

condition ⟨εtr⟩ = 0 ⇒ εtr = 0. Its particular form will be specified later. Note
that the transformation strain is allowed to take all values within this convex
set, which allows to capture effects such as formation of twinned martensite. By
a particular choice of the function in the model tension-compression asymmetry
and anisotropy of the material behavior will be captured in Chapter 6.

For description of R-phase, we introduce only one scalar variable, η, repre-
senting the volume fraction of R-phase within the material. A natural constraint
reads as follows:

0 ≤ η ≤ 1− ξ. (4.6)

As a result of the above definitions, the actual volume fraction of austenite within
the material is given by the difference (1 − ξ − η). Introduction of η allows to
simulate two important phenomena associated with the phase transition between
austenite and R-phase – the dramatic change of elastic behavior and the distinct
entropy change. However, we neglect the R-phase transformation strain. This
simplification still leads to reasonable results since

• during early stage of austenite-to-R-phase transformation the change of
elasticity associated with the austenite-to-R-phase transformation has a
larger impact on the overall strain than the transformation strain of R-
phase itself (Šittner et al., 2006),

• the R-phase transformation strain increase with decreasing temperature
reaching in maximum roughly only 1/10 of the transformation strain of
martensite (Lexcellent et al., 1994), whereas the change of entropy in au-
stenite-to-R-phase transformation is about 1/3 of entropy change in au-
stenite-to-martensite transformation. Thus, for the transformation driving
forces the entropy change is dominant.

2Models taking into account effects related to relative volume change associated with phase
transformation were presented by Qidwai and Lagoudas (2000b).
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4.2 Formulation of Helmholtz free energy

To establish the specific free energy of a polycrystalline SMA material, f , a
mechanistic decomposition to two dominating contributions, elastic energy, f el

and chemical energy, f chem, is used3:

f = f el + f chem. (4.7)

Following the general scheme summarized by Lagoudas et al. (2006), the rule of
mixtures is employed to determine the free energy contributions f el and f chem, i.e.
we consider a mixture of austenite, R-phase and martensite and the total value of
the free energy contribution is considered as a weighted sum of the contributions
of all phases. The respective phases – austenite, R-phase and martensite – are
denoted by superscripts – A,R and M – in following.

Elastic energy

To derive the elastic energy contribution, we assume the polycrystalline material
is elastically isotropic4 with a homogeneous distribution of stresses in austenite,
R-phase and martensite. Motivated by the work of Wagner and Windl (2008),
the same bulk modulus, K, for all three phases is assumed and the total shear
modulus of mixture, G(ξ, η), is determined from the Reuss model, i.e.:

K = KA = KR = KM , (4.8)

1

G(ξ, η)
= (1− ξ − η)

1

GA
+ η

1

GR
+ ξ

1

GM
. (4.9)

Let us note that this approach results in additive decomposition of the elastic
strain into three parts corresponding to elastic strains of the three aforementioned
phases.

Neglecting thermal expansion and considering condition (4.4), the elastic en-
ergy term follows:

f el(ε, εtr, ξ, η) =
1

2
Ktr(ε)2 +G(ξ, η)∥dev(ε)− ξεtr||2, (4.10)

where dev(x) denotes the deviatoric part of a tensor x.

Chemical energy

We assume the chemical energy contribution in the following form

f chem(T, ξ, η) = (1− ξ − η)fA(T ) + ηfR(T ) + ξfM(T ), (4.11)

where fA(T ), fR(T ) and fM(T ) are specific free energies of pure phases at stress-
free conditions, respectively. Utilizing a standard form (e.g. Lexcellent et al.,

3Actually, we are motivated by the form of the free energy for a linear thermoelastic material.
However, we will neglect the thermal expansion contribution, see Section 1.3

4To the author’s knowledge, very limited experimental data related to the form of possible
elastic anisotropy of textured polycrystalline SMA materials are available in the literature.
Extension of the model to elastic anisotropy is straightforward.
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2006; Panico and Brinson, 2007), assuming constant heat capacities ci of individ-
ual phases, we may write:

f i(T ) = ui0 − si0T + ci
[
(T − T0)− T ln

(
T

T0

)]
(4.12)

for i ∈ {A,R,M}. ui0 and si0 denote the specific internal energy and entropy of the
corresponding phase at some fixed temperature T0. In our case, T0 is chosen such
that fA(T0) = fM(T0) holds, i.e. T0 = ∆uAM/∆sAM where ∆uAM = uA0 − uM0
and ∆sAM = sA0 − sM0 . Expanding the right-hand side of Eq. (4.11), f chem reads:

f chem(T, ξ, η) = uA0 − sA0 T + cA
[
(T − T0)− T ln

(
T

T0

)]
− (∆cAMξ +∆cARη)

[
(T − T0)− T ln

(
T

T0

)]
︸ ︷︷ ︸

(⋆)

+ ∆sAM(T − T0)ξ +∆sAR(T − TR
0 )η, (4.13)

where ∆sAR = sA0 − sR0 , ∆c
AM = cA − cM and ∆cAR = cA − cR. It is known that

∆cAM ≪ ∆sAM . We make the same assumption on the relation between ∆cAR

and ∆sAR, thus, we can neglect the term (⋆). In Eq. (4.13), TR
0 = ∆uAR/∆sAR

is, due to the previous assumption, close to the equilibrium austenite-R-phase
temperature. To account for a possibly wide temperature range in which the
austenite-to-R-phase transformation takes place, TR

0 is considered to depend (in
first approximation linearly) on the concentration of R-phase in austenite, η/(1−
ξ), i.e.

TR
0 (ξ, η) := Rs +

η

1− ξ

Rf −Rs

2
, (4.14)

where Rs and Rf denote the initial and final temperature of the transformation
from austenite to R-phase, i.e. Rs > Rf .

4.3 Derivation of dissipation function

As already mentioned, we consider the formulation of the dissipative mechanism
to be of key importance in SMA model derivation and hence it is given a special
attention here.

Since the phase transformation between austenite and R-phase has a very nar-
row hysteresis, we neglect the associated dissipation. Moreover, it is assumed that
the same amount of energy is dissipated when austenite transforms to martensite
through R-phase as when it transforms directly. Thus, the dissipation function
will not depend on variables η and η̇, i.e.

d = d(T, εtr, ξ, ε̇tr, ξ̇). (4.15)

In following, the dissipation function will be sequentially formulated by con-
sidering several loading cases. First, we consider special loading processes for
which only one internal variable evolves. These findings are generalized to the
coupled evolution, then.
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Figure 4.1: The evolution of volume fraction of martensite with temperature
under stress-free condition when only the transformation dissipation is considered
in the model.

Dissipation during stress free thermal cycles

During cooling, martensite phase transformation starts at temperature Ms and
finishes atMf . The reverse transformation occurs in a temperature range from As

to Af . To capture this transformation hysteresis, we propose a simple dissipation
function in the form

ξ̇ ≥ 0 : dtr = ∆sAM [(T0 −Ms) + ξ(Ms −Mf)]ξ̇, (4.16)

ξ̇ < 0 : dtr = ∆sAM [(T0 − Af) + ξ(Af − As)]ξ̇. (4.17)

Such a type of transformation dissipation was analytically studied by Bernardini
and Pence (2002) (see the model M2 there). Proposed form sets the appropriate
transformation temperatures for initialisation and termination of transformation
process under stress-free condition and leads to a linear evolution of volume frac-
tion of martensite in between, see Fig. 4.1.

Dissipation during mechanical loading in full martensite state

The dissipation by reorientation of martensite is related to moving of twin inter-
faces and can be described similarly as plastic deformation. Adapting von Mises
plasticity-type term leads to:

d = σreo∥ε̇in∥, (4.18)

where σreo is the reorientation stress measured in tension multiplied by
√

3
2
.

It is usually experimentally observed (see dash line in Fig. 4.2) that the stress
needed for initialization of martensite reorientation decreases with increasing tem-
perature; this is probably related to changes of mobility of twin boundaries with
temperature. We included this phenomenon by assuming parameter σreo to be
a decreasing linear function of temperature in the temperature range of interest,
i.e.

σreo ≡ σreo(T ) = σreo
0 + Σreo (T − T0), (4.19)

where σreo
0 and Σreo are material parameters.
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Figure 4.2: Stress-temperature phase diagram for forward transformation and
martensite reorientation. Experimental transformation stresses obtained from
results of loading at constant temperature are marked by diamonds, transforma-
tion temperatures obtained from results of cooling at constant load by circles.
See text for details.

Dissipation during austenite-to-martensite transformation under gen-
eral stress and temperature change

The description of the dissipation mechanism in forward transformation was mo-
tivated by several experimental stress-temperature phase diagrams on NiTi-based
SMA.

A typical one is shown in Fig. 4.2 (compiled from results published by Frost
et al., 2010, measurements were performed on a trained NiTiCu memory wire
with Af = 65 ◦C and Ms = 47 ◦C). Note that from this phase diagram we may, in
particular, deduce the following points:

1. We need not to distinguish between stress- and temperature-induced trans-
formation. Indeed, assume that the material held at a constant tempera-
ture T ∗ transforms to martensite when the applied stress reaches the value
σ∗. Then, when the material is held at the stress σ∗, it will transform to
martensite at temperature T ∗.

2. The transformation temperature of the forward transformation depends lin-
early (cf. dash-dot line in Fig. 4.2) on the external tensile stress provided
this stress is higher than σreo. Moreover, in this case, the slope of the
phase boundary is predictable from the Clausius-Clapeyron relation. Thus,
we can assume that the dissipation during this process is independent or
“weakly” linearly dependent on the applied temperature/stress.

3. For stress lower than σreo, the transformation temperature is almost inde-
pendent of the applied stress (cf. solid line in Fig. 4.2). Martensite formed
under such stress appears in a twinned form with negligible transformation
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strain. Dissipation for transformation at a stress lower then σreo is thus
described by Eq. (4.16).

4. There is no discontinuity of the transformation temperature at stress σreo.
This observation is consistent with the assumption of existence of the so-
called “triple point” in the stress-temperature phase diagram made by sev-
eral authors (e.g. Juhasz et al., 2002; Lexcellent et al., 2006). This implies
that the energy dissipated in forward transformation at stresses higher than
σreo is raised only by a contribution due to martensite reorientation.

These observations are consistent with the following formulation of dissipation
in forward transformation:

ξ̇ ≥ 0 ⇒ d(T, εtr, ξ, ε̇tr, ξ̇) = ∆sAM [(T0 −Ms) + ξ(Ms −Mf)]ξ̇

+ σreo∥ε̇in∥
= ∆sAM [(T0 −Ms) + ξ(Ms −Mf)]ξ̇

+ σreo∥ξ̇εtr + ξε̇tr∥ (4.20)

Indeed, note that in a process in which austenite transforms to self-accom-
modated martensite, during which the change of the inelastic strain is negligible,
essentially only the term ∆sAM [(T0 −Ms) + ξ(Ms −Mf)]ξ̇ in (4.42) is important;
this is consistent with point 3. above. If it is not the case, then the term σreo∥ε̇in∥,
corresponding to martensite reorientation, contributes to the dissipation as well
(consistently with point 4 above).

Dissipation during martensite to austenite transformation under gen-
eral stress and temperature change

Dissipation in the martensite-to-austenite transformation cannot be simply de-
scribed by (4.17) because the dissipated energy must depend on the actual trans-
formation strain of martensite. Direct experimental evidence of this fact is the
“martensite stabilization”, see Section 1.3. Experiments by Liu and Favier (2000)
show that with increasing martensite deformation the reverse transformation tem-
perature increases, too. Based on these results, we suggest to describe this addi-
tional dissipation by the term

drev = σreo|ξ̇| ∥εtr∥. (4.21)

Note that, σreo∥εtr∥ is the minimal energy needed for previous reorientation of
the disappearing martensite. As shown in Fig. 4.3, simulations based on the
assumption correspond well to experimental data by Liu and Favier (2000).

Therefore, in the general case of reverse transformation including stress-induced
evolution of martensite, one obtains the following expression of dissipation:

ξ̇ < 0 ⇒ d(T, εtr, ξ, ε̇tr, ξ̇, ) = ∆sAM [(T0 − Af) + ξ(Af − As)]ξ̇

+ σreo
[
|ξ̇| ∥εtr∥+ ξ ∥ε̇tr∥

]
,

= ∆sAM [(T0 − Af) + ξ(Af − As)]ξ̇

+ σreo

[
∥ ξ̇
ξ
εin∥+ ∥ε̇in − ξ̇

ξ
εin∥

]
, (4.22)
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Figure 4.3: Data from simulation and experiment of the martensite stabiliza-
tion effect induced by shear predeformation. The shift of As temperature was
computed with respect to As of the undeformed specimen. Input parameters for
simulations adopted from (Liu and Favier, 2000).

where term σreo|ξ̇| ∥εtr∥ corresponds to the martensite stabilization (as described
above), whereas term σreoξ ∥ε̇tr∥ captures the dissipation due to possible reorien-
tation of the remaining (not yet transformed) martensite (cf. Eq. (4.18)).

Final remarks on the dissipation function

(a) The form of proposed dissipation function was developed based on experi-
mental stress-strain-temperature records reflecting the progress of transfor-
mation in dependence on temperature and stress. An possible alternative
view on it is introduced in Section 4.5.

(b) The dissipation function is asymmetric from the point of view of the for-
ward/reverse relation (cf. (4.45) and (4.42)). Moreover, due to coupling
of internal variables in forward transformation (see (4.42)) it is in general
not possible to split the dissipation potential into two additive terms corre-
sponding to time evolution of variables ξ̇ and ε̇tr, respectively. This is in a
pronounced contrast to separation of the two processes commonly used in
SMA modeling.

(c) It is apparent that the derived dissipation function is non-negative, 1-
homogeneous in the rate of internal variables (ε̇tr, ξ̇) and it is equal to
zero, when the rates are zero. Since it is also convex in the rate variables
(see proof of Proposition 5.2.2), we may employ the result in Section 2.3
and conclude that the Clausius-Duhem inequality is fulfilled.
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4.4 Governing equations

A standard formulation of the model is finished by explicit specification of the
governing equations, which are usually used in numerical procedures.

Making use of relation (4.2), the derived free energy function and dissipation
function take the form:

f(T, ε, εin, ξ, η) =
1

2
Ktr(ε)2 +G(ξ, η)∥dev(ε)− εin∥2

+ ∆sAM(T − T0)ξ +∆sAR(T − TR
0 (ξ, η))η

+ uA0 − sA0 T + cA
[
(T − T0)− T ln

(
T

T0

)]
(4.23)

d(T, εin, ξ, ε̇in, ξ̇) =



∆sAM [T0 −Ms + ξ(Ms −Mf)]ξ̇

+ σreo(T )∥ε̇in∥ if ξ̇ ≥ 0

∆sAM [T0 − Af + ξ(Af − As)]ξ̇

+ σreo(T )
[
∥ ξ̇
ξ
εin∥+ ∥ε̇in − ξ̇

ξ
εin∥

]
if ξ̇ < 0

(4.24)

In order to satisfy constraints (4.3), (4.5) and (4.6), one may introduce the
indicator function I(εin, ξ, η):

I(εin, ξ, η) =
{

0 if 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1− ξ and ⟨εin⟩ ≤ ξ,
+∞ else,

(4.25)

and subsequent reformulation of the free energy function as follows:

F(T, ε, εin, ξ, η) = f(T, ε, εin, ξ, η) + I(εin, ξ, η). (4.26)

Repeating standard thermodynamic arguments introduced in Chapter 2, the gen-
eralized thermodynamic forces π, P and X associated to the internal variables
ξ, η and εin, respectively, may be derived:

σ = ∂F
∂ε

= Ktr(ε)I + 2G(ξ, η)(dev(ε)− εin), (4.27)

s = −∂F
∂T

= sA0 + cA ln

(
T

T0

)
−∆sAMξ −∆sARη, (4.28)

X = − ∂F
∂εin

= 2G(ξ, η)(dev(ε)− εin)− ∂εinI(εin, ξ, η), (4.29)

π = −∂F
∂ξ

= −2
∂G(ξ, η)

∂ξ
∥dev(ε)− εin∥2 −∆sAM(T − T0)

+ ∆sAR∂T
R
0 (ξ, η)

∂ξ
η − ∂ξI(εin, ξ, η), (4.30)

P = −∂F
∂η

= −2
∂G(ξ, η)

∂η
∥dev(ε)− εin∥2 +∆sAR∂T

R
0 (ξ, η)

∂η
η

− ∆sAR(T − TR
0 (ξ, η))− ∂ηI(εin, ξ, η), (4.31)

∂αI denoting the subderivative of the indicator function with respect to the vari-
able α, see Appendix.

Now let us consider an SMA body occupying a domain Ω ⊂ R3 in space. Our
aim is to determine the evolution of the system in time t within a time interval
[0, T ]. We suppose
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• the influence of inertia may be neglected, i.e. quasistatic approximation,
and

• temperature field T (t) is prescribed within all the body over the whole time
interval, i.e. approximation of isothermal processes.

Next,

• volume forces, Fvol(t), acting within the body,

• surface forces, Fsurf(t), acting over a body surface ΓN,

• displacement, U(t), on the rest of the body surface, ΓD,

are also supposed to be prescribed within the time interval as well as

• initial values of internal variables, εin(0), ξ(0), η(0), and displacement, u(0),
prescribed within the whole body.

Under this conditions, we assume the evolution is fully resolved if time evolution
of displacement, u(t), and internal variables, εin(t), ξ(t), η(t), are known.

Utilizing constitutive relations developed within the framework of GSM in
Section 2.3, the problem can be formulated as follows (cf. (2.25) and (2.26)):

−div (σ(t)) = Fvol(t) inΩ, (4.32)

σ(t)n = Fsurf(t) on ΓN, (4.33)

u(t) = U(t) on ΓD, (4.34)

X(t) ∈ ∂ε̇ind(t) inΩ, (4.35)

π(t) ∈ ∂ξ̇d(t) inΩ, (4.36)

N(t) = 0 inΩ, (4.37)

along with initial conditions

u(0) = u0, ε
in(0) = εin0 , ξ(0) = ξ0, η(0) = η0 in Ω, (4.38)

where we remind the relation ε(t) = 1
2
(∇u(t) + (∇u(t))⊤).

An natural discrete analogy to dissipation function in case of rate-independent
framework of energetic solutions (e.g. Francfort and Mielke, 2006; Mielke et al.,
2002, see the next chapter for details) is dissipation distance, δ. It measures the
dissipated energy between two arbitrary chosen physical states of a material in
the following sense: Let us consider a time increment with a small change between
an initial and a final internal variables state denoted by αA and αB, respectively.
Then the dissipated energy between αA and αB is given by dissipation distance
δ(αA, αB).

When we introduce the dissipation distance as follows

δ(T, εinA , ξA, ε
in
B , ξB) =


∆sAM [T0 −Ms + ξ(Ms −Mf)]|ξB − ξA|
+ σreo(T )∥εinB − εinA∥ if ξB ≥ ξA,

∆sAM [Af − T0 + ξ(As − Af)]|ξB − ξA|
+ σreo(T )

[
∥ ξB
ξA
εinA∥+ ∥εinB − εinA − ξB

ξA
εinA∥

]
if ξB < ξA,

(4.39)
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then, making profit of following relation (see Mielke, 2006)

d(α, α̇) = lim
ϵ→0

1

ϵ
δ(α, α + ϵα̇), (4.40)

it is easy to verify, that the dissipation distance actually correspond to the dissi-
pation functions defined in previous sections.

Prior to mathematical treatment of the model, where the dissipation distance
will be employed, we introduce an alternative approach for its derivation.

4.5 Alternative approach to derivation of the

proposed dissipation function

In this section, we introduce a set of assumptions which may be used to deriva-
tion of explicit forms of dissipated energy when the material transits between
two states with a different phase fraction and/or a different state of martensite
structure. The assumptions are based on a simplified modeling notion of evolu-
tion of the internal structure of the material during the transformation processes.
However, it should be emphasised that the real situation in polycrystals is very
complex, since many different physical phenomena on various levels come into
the play. Thus, proposed modeling notion must be considered as a useful, albeit
not rigorous enough (in the sense of physics) approximation.

There are two main reasons, why such an approach is introduced in this work:

• based on the proposed notion, we may formulate a set of several model-
ing assumptions which lead to a an explicit form of the energy dissipated
between two different material states,

• the link between the assumptions and the resulting formulas is clear and
easy to understand,

• we directly obtain the formulation in terms of dissipation distance.

Within this section, the ideas will be first presented in form of five assumptions
mainly supported by some physical observations. These assumptions will be then
used for derivation of the reorientation dissipation distance.

Assumptions of a two-step transformation

During a forward MT a specific form of internal structure of martensite which
is compatible with the structure of austenite must be formed nearby the phase
interface (Otsuka and Ren, 2005). Requirements of crystallographic coherence
between the parent phase and the product phase impose some conditions on the
crystallographic structure of the formed martensite and application of an external
load leads to further (usually complex) evolution of this structure. Extending this
observation for any material element, we formulate the first assumption as follows:

(A1) Austenite transforms to martensite always through formation of transforma-
tion favorable martensite (TFM) structure. This structure has zero macro-
scopic strain at the moment of creation and its possible reorientation de-
pends on applied external stress.
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We once again recall a series of experiments on a NiTiCu alloy carried out in
Frost et al. (2010), which were used for construction of the stress-temperature
phase diagram in Fig. 4.2. There, transformation from austenite to a reoriented
martensite was initiate both by cooling a specimen and subsequent loading and
by loading it and subsequent cooling. It was observed that the strain achieved
in both cases was the same. Based on this observation, we assume that there are
two separated processes involved in the experiments. The first one is the phase
transformation from austenite to a specific form of martensite which exhibits
no macroscopic strain and which is called transformation favourable martensite
(TFM). The second considered process is a subsequent structure evolution of
martensite stimulated by an applied external load. Thus, one assumes that cool-
ing of the (initially austenitic) SMA at constant applied load occurs by concurrent
formation of TFM with zero macroscopic strain and evolution of the structure of
entire martensite. The evolution is macroscopically demonstrated by the mean
strain evolution.

The idea of TFM is now extended to the reverse transformation, i.e. we
suppose that TFM is also always present during disappearance of martensite:

(A2) A necessary condition for initialisation of a reverse transformation in any
amount of martensite is formation of TFM within it.

The formulation emphasizes that if the actual structure of martensite does not
meet the requirement of TFM, then the structure of the disappearing martensite
is adjusted first ; only then the reverse transformation may proceed.

Now we can assign two additive contributions to dissipation during thermome-
chanical loading of SMAs. The first one is connected with phase transformation
between austenite and TFM and we call it transformation part of dissipation.
The second contribution is connected to structure evolution of martensite and it
is called reorientation part of dissipation. dtr is assumed to be given by formulas
(4.16) and (4.17) and it is not further discussed in this section.

Together, we established contributions to the irreversible transformation en-
ergy mentioned by Liu and Favier, see Subsection 1.2, and we can attempt to
reinterpret their experimental observations within our simple concept in the fol-
lowing way:

(a) To start the reverse transformation in a deformed specimen a TFM structure
must be formed first. To initiate this process, a higher driving force for
reorientation must be reached with respect to undeformed specimen, which
is demonstrated by higher value of critical temperature for start of the
reverse transformation. Moreover, an additional energy must be dissipated
due to formation of more TFM. Thus, the total transformation heat is
increased by the contribution of reorientation dissipation.

(b) Increasing amount of reoriented martensite transforming to TFM implies
increase in reorientation dissipation. As a direct consequence, the total
transformation heat increases with increasing deformation.

(c) After cooling, the TFM structure is formed and the response of the sample
in subsequent cycles coincides with the response prior to the deformation.
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To sum up, as proposed in Assumptions (A1) and (A2), we assume that it is
possible to split the martensite formation or disappearance during MT into two
processes, no matter if induced by temperature, stress or both of them.

Assumption of a linear dependence of dissipation on transformation
strain difference

In this notion, a natural way for description of martensite at the macroscopic level
is the mean transformation strain of martensite, εtr, and martensite volume frac-
tion, ξ, as introduced in Section 4.1. We suppose that in a good approximation,
the dissipation is proportional to the (norm of) difference between transformation
strain states.

(A3) If an amount of martensite is subject to reorientation, the corresponding
dissipation distance is proportional to the norm of the difference between its
initial and final transformation strain.

Assumption of the inelastic strain of mixture

We make an assumption on the state of mixture of reoriented martensite and
TFM when forward phase transformation is in progress:

(A4) At the moment of formation of TFM at presence of some reoriented marten-
site, the emerging mixture preserves the inelastic strain of the present mar-
tensite.

Hence, we suppose that the transformation strain is distributed homogenously
when the mixture is formed.

Assumption of temperature dependence of dissipation

Let us now recall a simplified SMA stress-temperature phase diagram in Fig-
ure 1.1. As noted in Section 1.2, decreasing dependence of stress needed for ini-
tialisation of martensite reorientation (at constant temperature) on temperature
is often observed. The phase boundaries (solid lines in the figure) are diverging,
which indicates that the total dissipated energy in a completed transformation
cycle is lower at higher temperatures.

Based on these observations, an assumption of temperature dependence of
dissipation is expressed as follows:

(A5) Dissipation accompanying reorientation processes is temperature-dependent.

Reorientation part of the dissipation function

In order to derive the reorientation-induced dissipation, we now follow the as-
sumptions formulated above. We suppose that the material evolves from an initial
thermomechanical state, A, to a terminal state, B, and distinguish corresponding
variables by subscripts.

When austenite to martensite transformation occurs (i.e. ξA < ξB), a mixture
of present martensite and newly appearing TFM is formed. Due to Assumption
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(A4), at the moment of formation, the mixture preserves the inelastic strain of
the present martensite. The mean transformation strain of the mixture reads

εtrmix :=
εtrAξA
ξB

(4.41)

Depending on the external conditions, the whole mixture can change the inelastic
strain immediately. The dissipation distance between the two states takes the
following form:

δreo(εA, ξA, εB, ξB) = σreo(TB)ξB∥εtrB − εtrmix∥ = σreo(TB)ξB∥εtrB − εtrAξA
ξB

∥

= σreo(TB)∥ξBεtrB − ξAε
tr
A∥, (4.42)

where σreo(T ) represents the dependence of stress needed for initialisation of
martensite reorientation on temperature as proposed in Assumption (A5). An
analogous consideration leads to extending the definition also for pure reorienta-
tion, i.e. ξB = ξA.

When martensite disappears (i.e. ξA > ξB), the disappearing and remaining
martensite shall be treated separately. In line with Assumption (A2), disappear-
ing martensite forms TFM, which is characterised by zero mean transformation
strain. Thus, considering the temperature dependence as above, the dissipation
distance reads

δreo1 (εA, ξA, εB, ξB) = σreo(TB)∥(ξB − ξA)ε
tr
A − 0∥

= σreo(TB)|ξB − ξA| ∥εtrA∥. (4.43)

ξA ξB

εtrB

εtrmix

εtrA

ξA ξB

εtrB

εtrmix

εtrA

ξ ξ

εtrεtr

ξAξB

εtrB

εtrA

ξ

εtr

ξAξB

εtrB

εtrA

ξ

εtr

(a) (b)

(c) (d)

Figure 4.4: Dissipation schema when one-dimensional internal variable εtr is con-
sidered. a) ξA ≤ ξB and εtrA ≤ εtrB, b) ξA ≤ ξB and εtrA > εtrB, c) ξA > ξB and
εtrA ≤ εtrB, d) ξA > ξB and εtrA > εtrB. Value of the reorientation part of the
dissipation distance for σreo = 1 is equal to the shaded areas in each picture.
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Moreover, the remaining martensite can reorient, which adds the second term

δreo2 (εA, ξA, εB, ξB) = σreo(TB)ξB∥εtrB − εtrA∥. (4.44)

The total dissipation is then given by the sum

δreo(εA, ξA, εB, ξB) = σreo(TB)
[
∥(ξB − ξA)ε

tr
A∥+ ξB∥εtrB − εtrA∥

]
. (4.45)

In a simple illustrative case in which transformation strain tensor is reduced
to a scalar, one can sketch a simple two-dimensional “dissipation” schema, see
Fig. 4.4. The reorientation part of the dissipation distance for σreo = 1 is then
represented by the areas shaded in the picture.

If we now suppose that σreo in the form (4.19) and employ the relation εin =
ξεtr, we obtain exactly the terms for the reorientation dissipation distance in
(4.39). However, we note again that the treatment of this section is in no way
intended as a justification of the dissipation function introduced in Section 4.3.
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Chapter 5

Mathematical Analysis of the
Constitutive Model

In this chapter, we will utilize the mathematical theory for rate-dependent pro-
cesses developed and continuously extended by A. Mielke and coworkers in the
last two decades (e.g. Mielke et al., 2009; Mielke and Theil, 2004; Mielke et al.,
2002). The theory is based on the concept of so-called energetic solutions. Loose-
ly speaking, such a solution is required to satisfy the first law of thermodynamic
in an integral form for any time interval [0, t], t ≤ T and the so-called stability
condition in any time t, which may be understood as an independent consti-
tutive assumption similar in its nature to well-known extremum principles of
thermodynamics as the maximum dissipation principle or the minimum principle
for dissipation potential formulated in Section 2.3. In (Mielke et al., 2002) the
stability condition is derived from the so-called postulate of realizability, whose
essence is the following: as soon as some dissipative process can occur from the
point of view of thermodynamics, it will occur.

The framework of energetic solution has proved to be useful and general
enough so that it has been already extensively used for analysis of models for
phase transition both in single crystals (Mielke et al., 2009, 2002) and poly-
crystals (Auricchio et al., 2008) of shape memory alloys, but also for models of
plasticity (Mielke, 2003), damage and fracture (Bouchitté et al., 2009) and other
rate-independent systems (Mielke and Theil, 2004). Thus, the effort to include
our model to this family is the first motivation for exploiting the framework in
the following mathematical analysis.

Another reason is that within a general formulation the notion of dissipation
distance is employed, which exactly matches with derivations in Section 4.5.

An important step of the analysis within the framework is investigation of
properties of a time-incremental minimization problem. Since the numerical
treatment introduced in Chapter 6 is based on such a kind of minimization pro-
cedure, a side benefit of the analysis will be a rigorous proof of existence of a
numerical solution in each time step, although a slightly modified (regularized)
form of Helmoholz free energy will be considered.

Last but not least, the framework is subject of further development, e.g. (Bar-
tels et al., 2012), and such extensions may be advantageously utilized for possible
future extensions of our model.

In this chapter, we first establish the basic mathematical assumptions on
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imposed loading and material parameters considered in the system (4.32)–(4.38).
Then we formulate a time-incremental minimization problem corresponding to
the system and show it has a solution. This is useful both for the numerical
treatment described in the next chapter and for the last section of this chapter,
where the existence of an energetic solution of a regularized evolutionary system
is proven.

5.1 Basic assumptions and data qualification

Let Ω ⊂ R3 be the domain of the specimen at reference configuration, assumed
to be connected and with Lipschitz boundary. The Lebesgue R3-measure of Ω is
denoted |Ω|. We focus on the evolution of the specimen in a time interval [0, T ] ⊂
R. For brevity, we will usually omit the notation of spatial dependence, x, of
variables and parameters in the following. Let us suppose that ∂Ω = ΓD∪ΓN∪Γ0,
where Lebesgue R2-measure of Γ0 is zero and it is positive for ΓD denoting the
part with Dirichlet boundary condition, U(t), prescribed.

We will consider temperature as a prescribed loading in time, since we do not
include full thermomechanical coupling in present formulation of the model. In
line with this assumption, energy and dissipation functions are considered to be
dependent on variables as follows:

f(t, ε, εin, ξ, η), d(t, εin, ξ, ε̇in, ξ̇). (5.1)

Let us note the time variable may also enter f through the (time-dependent)
Dirichlet boundary condition.

Hereinafter, we call the internal variables admissible if it satisfy (in an appro-
priate sense specified later) all applicable internal constraints:

0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1− ξ, ⟨εin⟩ ≤ ξ. (5.2)

Since we suppose that the function ⟨·⟩ is convex, positively 1-homogenous and it
holds

⟨εin⟩ = 0 ⇒ εin = 0, (5.3)

it is possible to find positive constants C,C∗ such that for all εin it holds

C∥εin∥ ≤ ⟨εin⟩ ≤ C∗∥εin∥. (5.4)

To simplify the notation, C will denote a generic constant whose value is
changing from equation to equation. If an explicit dependence on a particular
variable, v, is to be emphasised, we use the notation C(v).

Now we will more specify the qualification of material parameters and loading
and boundary conditions so that we will be able to smoothly follow the theory of
energetic solutions. Let us emphasize that we do not attempt to formulate the
least restricting requirements, but restrict ourselves to physically well-acceptable
ones.
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Boundary conditions and temperature loading

For the volume and surface forces we choose the following regularity:

Fvol ∈ C1([0, T ],L2(Ω,R3)), (5.5)

Fsurf ∈ C1([0, T ],L2(ΓN,R3)). (5.6)

For definitions of respective function spaces see the nomenclature.
Let us assume there exists an extension of the Dirichlet boundary condition,

U(t), to all Ω, still denoted U(t) so that

U ∈ C1([0, T ],W1,2(Ω,R3)), (5.7)

and its trace on ΓD is equal to prescribed U(t) for all t ∈ [0, T ].
Also temperature is considered as a prescribed loading in the present formu-

lation of the model. In this chapter it will be concerned homogeneous within
the body at any time instance t – which is the case of all numerical simulations
presented in the next chapter – i. e. we assume

T ∈ C1([0, T ],R). (5.8)

Parameters of energy function and dissipation function

The chosen formula for the shear modulus of a phase mixture

1

G(ξ, η)
= (1− ξ − η)

1

GA
+ η

1

GR
+ ξ

1

GM
, (5.9)

implies that G(ξ, η) is obviously positive for any admissible pair (ξ, η) if we nat-
urally assume Gi > 0, ∀ i ∈ A,R,M . It can be rewritten into the form

G(ξ, η) =
GAGRGM

GRGM + ξ(GA −GM)GR + η(GA −GR)GM
(5.10)

and we can conclude that the denominator thus must be positive. We also assume
thatK,GA, GR, GM are chosen such that the corresponding fourth-order isotropic
elasticity tensor of a mixture1, C(ξ, η), is positive definite for any admissible pair
(ξ, η).

Since austenite is the high temperature phase we may assume ∆sAR > 0, thus

R := ∆sARRs −Rf

2
> 0. (5.11)

due to the definition Rs > Rf . For the same reason ∆sAM > 0, and we will
require

Mf ≤Ms < T0 < As ≤ Af . (5.12)

so that transformation part of the dissipation function is positive whenever ξ̇ ̸= 0.

1Due to definitions of the bulk modulus, K, and the shear modulus, G(ξ, η), of the phase
mixture, we can construct a fourth-order isotropic elasticity tensor, C(ξ, η), for any ξ, η satis-
fying 0 ≤ η ≤ 1− ξ > 0.
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After possible rescaling of uA0 , we may assume

uA0 − sA0 T (t) + cA
[
(T (t)− T0)− T (t) ln

(
T (t)

T0

)]
> 0 ∀ t ∈ [0, T ]. (5.13)

We will also suppose that parameters σreo
0 > 0 and Σreo < 0 of the linear

function σreo(T ) and the temperature range of the problem are such that there is
a constant s∗:

σreo(T (t)) ≥ s∗ > 0 ∀ t ∈ [0, T ]. (5.14)

5.2 Existence of solutions of time-disretized prob-

lem

To obtain a time discretization of the model suitable for implementation into a
finite element software, we introduce a partition of the time interval from time 0
to T in the form 0 = t0 ≤ t1 ≤ . . . ≤ tN = T . Let us introduce a simplification
of notation: for a time-dependent function g(t) we denote gk := g(tk).

If we directly proceed by semi-implicit discretization of the governing system
(4.32)–(4.37) in time by replacing derivatives with differences, we obtain:

−div (σk) = Fvol,k inΩ, (5.15)

σk n = Fsurf,k onΓN, (5.16)

uk = Uk onΓD, (5.17)

Xk ∈ ∂ε̇ind(tk, ε
in
k−1, ξk−1,∆kε

in,∆kξ) inΩ, (5.18)

πk ∈ ∂ε̇ind(tk, ε
in
k−1, ξk−1,∆kε

in,∆kξ) inΩ, (5.19)

Nk = 0 inΩ, (5.20)

where we defined

∆kε
in :=

εin(tk)− εin(tk−1)

tk − tk−1

, (5.21)

∆kξ :=
ξ(tk)− ξ(tk−1)

tk − tk−1

. (5.22)

To motivate a more general formulation, let us introduce the dissipation func-
tional as:

D(t, εin(t), ξ(t), ε̇in(t), ξ̇(t)) :=

∫
Ω

d(t, εin(t), ξ(t), ε̇in(t), ξ̇(t)) dV (5.23)

and, motivated by variational formulation of elasticity, the functional of (Gibbs
free) energy in the form:

Ẽ(t, u(t), εin(t), ξ(t), η(t)) :=

∫
Ω

f(t, ε(u(t)), εin(t), ξ(t), η(t)) dV

−
∫
Ω

Fvol(t)u(t) dV −
∫
ΓN

Fsurf(t)u(t) dS. (5.24)
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A direct computation then shows (cf. Francfort and Mielke, 2006) that the
system (5.15)–(5.20) together with initial conditions (4.38) is a necessary first
order optimality condition for finding a minimum of the following sum

Ẽ(tk, v, ε
in, ξ, η) + (tk − tk−1)D

(
tk, ε

in
k−1, ξk−1,

εin − εink−1

tk − tk−1

,
ξ − ξk−1

tk − tk−1

)
= Ẽ(tk, v, ε

in, ξ, η) +D(tk, ε
in
k−1, ξk−1, ε

in − εink−1, ξ − ξk−1) (5.25)

when it is considered in the weak sense. We employed positive 1-homogeneity
of the dissipation function in rate variables in (5.25). Moreover, due to the
convexity of both functions (see below), the discrete system would be a necessary
and sufficient condition for finding a global minimum of (5.25). Hence, in the
numerical implementation of the model, instead of solving a system of inequalities
and activation conditions – well-known from numerical procedures in classical
plasticity – we shall solve a time-incremental minimization problem (TIP) defined
below.

For convenience, let us introduce the following notation:

⟨l(t), u(t) + U(t)⟩ :=
∫
Ω

Fvol(t)(u(t) + U(t)) dV

+

∫
ΓN

Fsurf(t)(u(t) + U(t)) dS, (5.26)

⟨m(t), ξ(t)⟩ :=
∫
Ω

∆sAM(T (t)− T0)ξ(t) dV, (5.27)

⟨q(t), η(t)⟩ :=
∫
Ω

∆sAR(T (t)−Rs)η(t) dV, (5.28)

⟨w(t), 1⟩ :=
∫
Ω

uA0 − sA0 T (t) + cA
[
(T (t)− T0)− T (t) ln

(
T (t)

T0

)]
dV,

(5.29)

and let us notice that the time-dependence of m(t), q(t), w(t) is because of tem-
perature-dependence of these terms only. Introducing an additive decomposition
u(t) := v(t)− U(t), we also set

E( t, u(t), εin, ξ(t), η((t)) := Ẽ(t, u(t) + U(t), εin, ξ(t), η(t))

=

∫
Ω

f(t, ε(u+ U(t)), εin(t), ξ(t), η(t)) dV − ⟨l(t), u(t) + U(t)⟩. (5.30)

Now we are ready to formulate the time-incremental minimization problem
and its solution. They play a key role not only in the numerical implementation in
Chapter 6, but also, as will be seen, in mathematical analysis of time-evolutionary
problem.

Definition 5.2.1 (Time-discrete solution). Let u0, ε
in
0 , ξ0, η0 be the initial condi-

tions of the rate-independent evolution satisfying constraints (5.2). Let boundary
conditions and temperature be prescribed in accordance with data qualifications
in Section 5.1 at time points tk, k = 1, . . . , N . Then we call the quadruplet
(uk, ε

in
k , ξk, ηk) ∈ W1,2

0 (Ω;R3)×L2(Ω;R3×3
sym,0)×L∞(Ω;R)×L∞(Ω;R) that satisfies

the boundary conditions and constraints

0 ≤ ξk(x) ≤ 1, 0 ≤ ηk(x) ≤ 1− ξk(x) and ⟨εink (x)⟩ ≤ ξk(x) for a.a. x ∈ Ω
(5.31)
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a time-discrete solution of the specimen evolution at time tk if it solves the fol-
lowing time-incremental minimization problem

Minimize E(tk, u, ε
in, ξ, η) +D(tk, ξk−1, ε

in
k−1, ξ − ξk−1, ε

in − εink−1)

subject to

(u, εin, ξ, η) ∈ W1,2
0 (Ω;R3)× L2(Ω;R3×3

sym,0)× L∞(Ω;R)× L∞(Ω;R). (TIP)

In the above definition, the explicit form of the (discretized) energy functional is

E(tk, u, ε
in, ξ, η) =

∫
Ω

f el(tk, u+ U(tk), ε
in, ξ, η)

+
Rη2

1− ξ
+ w(tk) +m(tk)ξ + q(tk)η − l(tk)(u+ U(tk)) dV (5.32)

and (discretized) dissipation functional is

D(tk, ε
in
k−1, ξk−1, ξ− ξk−1, ε

in − εink−1) =

∫
Ω

d(tk, ε
in
k−1, ξk−1, ξ− ξk−1, ε

in − εink−1) dV

(5.33)
where the discretized version of dissipation potential is obtained as:

d(tk, ε
in
k−1, ξk−1, ξ − ξk−1, ε

in − εink−1)

=



∆sAM [T0 −Ms + ξk−1(Ms −Mf)] · |ξ − ξk−1|
+ σreo(T (tk))∥εin − εink−1∥ if ξ ≥ ξk−1

∆sAM [Af − T0 + ξk−1(As − Af)] · |ξ − ξk−1|
+ σreo(T (tk))∥ ξ−ξk−1

ξk−1
εink−1∥ if ξ < ξk−1

+ σreo(T (tk))∥εin − εink−1 −
ξ−ξk−1

ξk−1
εink−1∥

(5.34)

Note that ξ < ξk−1 implies ξk−1 > 0 and all the terms in (5.34) are well-defined.

Proposition 5.2.2 (Existence of a discrete solution). Let ξk−1 ∈ L∞(Ω;R),
εink−1 ∈ L2(Ω;R3×3

sym,0). Let material parameters, boundary conditions and tem-
perature loading be given in accordance with data qualifications in Section 5.1.
Then there exists a solution of the time-incremental problem (TIP).

Proof. We will utilize the direct method of calculus of variations (cf. e.g. Da-
corogna, 2008). Denoting the functional to be minimized as J : B → {R ∪∞},
where B is a functional space we work on, we want to find a minimizer, i.e. χmin ∈
B such that J(χmin) ≤ J(χ) for all χ ∈ B. If the functional is bounded from be-
low, there must be a minimizing sequence, χn ∈ B, so that limn→∞ J(χn) =
infχ∈BJ(χ). If B is a closed bounded subset of a reflexive Banach space and the
minimizing sequence is bounded, we can choose a subsequence, χnk

, with a weak
limit, χ0 ∈ B, i.e. χnk

⇀ χ0. Finally, if J is weak lower semi-continuous, it holds
that χnk

⇀ χ0 ⇒ lim infk→∞ J(χnk
) ≥ J(χ0). Of course, J(χ0) ≥ infχ∈BJ(χ).

Thus,
inf
χ∈B

J(χ) = lim
n→∞

J(χn) = lim
k→∞

J(χnk
) ≥ J(χ0) ≥ inf

χ∈B
J(χ), (5.35)

and we may conclude that χ0 is a minimizer.
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To follow this approach, we need to satisfy four conditions mentioned above.
First, due to choice of reflexive functional spaces in which the solution is searched,
and since constraints (5.31) delimit closed convex sets in them, we work in a closed
subset of a reflexive Banach space. Note that since closed convex subsets are also
weakly closed (i.e. closed for a weak convergence), the minimizer found by the
above proceeding will also satisfy the constraints (5.31).

Second, we will show that if the energy functional in (TIP) is bounded for
any admissible sequence, then the sequence itself must be bounded. This spe-
cially means that any minimizing sequence is bounded. Actually, we will show
the contrapositive statement, which may be formulated as follows: if we take
a sequence of admissible quadruplets (u, εin, η, ξ) converging in the norm to ∞
(tk, ε

in
k−1, ξk−1, ηk−1 are fixed), then, necessary, E +D → ∞.

Property (5.4) of the function ⟨·⟩ particularly assures that there exists a con-
stant, ρ > 0, such that

⟨εin(x)⟩ ≤ 1 ⇒ ∥εin(x)∥ ≤ ρ for a.a. x ∈ Ω. (5.36)

And, owing to constraints imposed on ξ, η, norms of all internal variables are
bounded. Hence D is bounded from above, and it is enough to show that if
∥un∥W1,2(Ω) → ∞, n ∈ R then E → ∞.

The specific form of the elastic energy (4.10) may be represented by a quadrat-
ic form ⟨C(ξ, η)(ε− εin), (ε− εin)⟩ with a positive definite fourth order elasticity
tensor C(ξ, η). Thus, there is a positive constant2 independent on ξ, η such that
⟨C(ξ, η)(ε− εin), (ε− εin)⟩ ≥ C⟨ε− εin, ε− εin⟩. Then∫
Ω

f el(tk, u, ε
in, ξ, η) dV

≥ C∥ε(u+ Uk)− εin∥2L2(Ω)

≥ C(∥ε(u) + ε(Uk)∥2L2(Ω) − 2∥ε(u) + ε(Uk)∥L2(Ω) ∥εin∥L2(Ω)︸ ︷︷ ︸
≤ρ

+ ∥εin∥2L2(Ω)︸ ︷︷ ︸
>0

)

≥ C
(
∥ε(u)∥2L2(Ω) + 2∥ε(u)∥L2(Ω)∥ε(Uk)∥L2(Ω) + ∥ε(Uk)∥2L2(Ω)

− 2ρ∥ε(u)∥L2(Ω) − 2ρ∥ε(Uk)∥L2(Ω)

)
≥ C

(
∥u∥2W1,2(Ω) − 2[ρ− ∥ε(Uk)∥L2(Ω)]∥u∥W1,2(Ω) − 1

)
(5.37)

for any (u, εin, η, ξ). We utilized a variation of the first Korn’s inequality in the
last step.

Making profit of boundedness of internal variables, there is (maybe a negative)
constant so that integral of all but the last term in (5.32) may be bounded from
below. Then, due to data qualification (5.5)–(5.7) and Hölder inequality, we get∫

Ω

Fvol,k · (u+ Uk) dV +

∫
ΓN

Fsurf,k · (u+ Uk) dS

≤ ∥Fvol,k∥L2(Ω)∥u∥L2(Ω) + ∥Fsurf,k∥L2(ΓN )∥u∥L2(ΓN ) + ∥Fvol,k∥L2(Ω)∥Uk∥L2(Ω)

+ ∥Fsurf,k∥L2(ΓN )∥Uk∥L2(ΓN )

≤ ∥lk∥L2(Ω)∥u∥L2(Ω) + C

≤ ∥lk∥L2(Ω)∥u∥W1,2(Ω) + C (5.38)

2Let us note that in our case the constant may be chosen as 2min {G(ξ, η) : ∀ ξ, η : 0 ≤ η ≤
1− ξ ≥ 0}.
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Finally,

E(tk, u, ε
in, ξ, η) ≥ C(∥u∥2W1,2(Ω) − 2ρ̃∥u∥W1,2(Ω))− ∥lk∥L2(Ω)∥u∥W1,2(Ω) − C

≥ ∥u∥2W1,2(Ω)

(
C︸︷︷︸
>0

− 2ρ̃

∥u∥W1,2(Ω)

− ∥lk∥L2(Ω)

∥u∥W1,2(Ω)

)
− C, (5.39)

where the last constant depends on wk,mk, qk. It is easy to see the term on right
hand-side of (5.39) converges to ∞ if ∥un∥W1,2(Ω) → ∞, n ∈ R.

Third, from (5.39) (and recalling that D is constructed to be always non-
negative, i.e. bounded from below by 0) it can be also seen that E + D is
bounded from below at tk for any quadruplet (u, εin, η, ξ) satisfying constraints
(5.31) under aforementioned data qualifications.

Finally, due to the particular form of our functional E + D, it is enough to
verify that the discretized integrands f and d in (5.32) and (5.33), respectively,
are convex functions with respect to minimized variables for any admissible fixed
tk, ε

in
k−1, ξk−1, ηk−1. Then, we obtain sequential weak lower semicontinuity of the

functional E +D due to its convexity (Dacorogna, 2008).
Concerning E, w(tk) is a constant and the last three terms in (5.32) are

linear, thus the first two terms really matter. It is easy to show the convexity of
a function h(y, z) = Cy2/z for C > 0, y ∈ R and 0 ≤ z ∈ R (the image of the
function is considered in R∪∞). This result can be directly used for the second
term in (5.32). As far as elastic energy is concerned, the first term in (4.10) makes
no trouble; for the shear energy term we employ convexity of h(y, z) making use
of the explicit form in (5.10).3

With regard to d, it is enough to use the mid-point convexity criterium (recall
d is continuous for fixed εink−1, ξk−1), which takes the particular form:

d(tk, ε
in
k−1, ξk−1,

εinA + εinB
2

− εink−1,
ξA + ξB

2
− ξk−1)

≤ 1

2
d(tk, ε

in
k−1, ξk−1, ε

in
A − εink−1, ξA − ξk−1)

+
1

2
d(tk, ε

in
k−1, ξk−1, ε

in
B − εink−1, ξB − ξk−1). (5.40)

This relation may be proven by computation of four cases implied by the partic-
ular forms of dissipation function in (5.34). Actually, they are consequences of
triangle inequalities for (Euclidean) norms.

By the above time discretization we obtained a conceptual numerical al-
ghorithm through (TIP). The full numerical treatment will be described in detail
in Chapter 6.

5.3 Energetic formulation

We are going to follow a general proceeding of the work by Francfort and Mielke
(2006) and show that there is an energetic solution based on an energy E and a

3Let us recall that convexity is not affected by an affine mapping.

55



dissipation distance D. However, to be able to smoothly follow the theory, we
will introduce a regularization term in the form of a gradient of the dissipative
variables into the Helmohltz free energy. This term may be avoided in the theory
only in some special cases (see Mielke and Theil, 2004, for details). However, the
term may be introduced multiplied by an arbitrary small parameter (constant).

In their paper, Francfort and Mielke (2006) utilize a dissipation distance as
the primary entity responsible for dissipation processes. Thus, we can take ad-
vantage of derivations in Section 4.4 and employ the derived dissipation distances
in the analysis. By this way, we will obtain existence of solution for the evolution-
ary problem where regularized energy and dissipation distances are considered.
Additionally, since there is a direct relation between the dissipation distances and
dissipation function, see (4.40), we will be able to establish existence of energetic
solutions when dissipation function is considered instead.

There are two reasons, why we present the whole theory here and do not
only rely on referencing to the aforementioned paper. First, our form of the
dissipation distance is more general than the form considered there: in addition
to being asymmetric and state-dependent (which is considered in (Francfort and
Mielke, 2006)), it also depends on time through the external loading by tempera-
ture. Therefore, we have to slightly modify the form of the total dissipated energy
functional and show some estimates on (both integrated and total) dissipation
distance explicitly. Second, we also introduced another non-dissipative variable
(η) into the energy function and we want to assure ourselves that procedures of
the proof are not affected by that extension.

We recall the simplified notation of dissipative internal variables:

α := (εin, ξ).

Let us define a regularized energy function:

ψ(t, v(t), α(t), η(t)) := f(t, ε(v(t)), α(t), η(t)) + ν∥∇α(t)∥2, (5.41)

where ν > 0 is a (small) positive regularization constant, and a regularized energy
functional:

E(t, u(t), α(t), η(t)) := E(t, u(t), α(t), η(t)) +

∫
Ω

ν∥∇α(t)∥2 dV

=

∫
Ω

f(t, ε(u+ U(t)), α(t), η(t)) + ν∥∇α(t)∥2 dV − ⟨l(t), u(t) + U(t)⟩. (5.42)

We also introduce the integrated dissipation distance (recall (4.39)):

D(t, α, α̃) := Dtr(t, α, α̃) +Dreo(t, α, α̃)

:=

∫
Ω

δtr(t, α, α̃) dV +

∫
Ω

δreo(t, α, α̃) dV (5.43)

Owing to the time-dependence of the dissipation distance through function
σreo(T (t)), we introduce the (total) dissipation for all t ∈ [0, T ] as:

DissD(α, [0, t]) := Disstr(α, [0, t]) + Dissreo(α, [0, t]). (5.44)
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Hereinafter, the abbreviation “a.p.p.” will denote “all possible partitions”. For
all t ∈ [0, T ] we define

Disstr(α, [0, t]) := sup
N∈N

{
N∑
i=1

Dtr(α(ti−1), α(ti)) :

a.p.p. 0 = t0 ≤ t1 ≤ . . . ≤ tN = t}. (5.45)

where explicit time-dependence of Disstr was omitted since its form actually de-
pends on time only through internal variables (it is even independent on εtr),
and

Dissreo(α, [0, t]) :=

∫ t

0

σreo(T (s)) dµα(s). (5.46)

Here we denoted by µα the measure defined on [0, T ] by prescribing its values on
every closed set S = [s, z] ⊂ [0, T ], as

µα(S) := sup
N∈N

{
N∑
i=1

Dreo
(α(ti−1), α(ti)) : a.p.p. s = t0 ≤ t1 ≤ . . . ≤ tN = z

}
.

(5.47)
Dreo

(ti, α(ti−1), α(ti)) is defined as Dreo(ti, α(ti−1), α(ti)) for σ
reo(T ) ≡ 1, i.e. we

suppressed the explicit time-dependence through σreo(T (t)) – the dependence is
recovered in (5.46). Hence, due to its definition, Dreo

is also dependent on time
only through internal variables.

Finally, let us remind the following definition of total variation:

VarL1(α, [0, t]) := sup
N∈N

{
N∑
i=1

∥α(ti−1)− α(ti)∥L1(Ω) :

a.p.p. 0 = t0 ≤ t1 ≤ . . . ≤ tN = t}. (5.48)

Let us note that again all possible partitions of the respective time interval are
considered in definitions (5.47) and (5.48).

Based on the aforementioned framework (Francfort and Mielke, 2006) and
with respect to our case we define:

Definition 5.3.1 (Energetic solution). Let E ,D be given by definitions (5.42)
and (5.43) with data qualifications in Section 5.1 and let

U := W1,2
0 (Ω,R3), (5.49)

V := {εin ∈ W1,2(Ω,R3×3
sym,0) : ⟨εin(x)⟩ ≤ ξ(x) for a.a. x ∈ Ω}

× {ξ ∈ W1,2(Ω,R) : 0 ≤ ξ(x) ≤ 1 for a.a. x ∈ Ω} (5.50)

Z := {η ∈ L∞(Ω,R)) : 0 ≤ η(x) ≤ 1 for a.a. x ∈ Ω}. (5.51)

If ∂tE(t, u(t), α(t), η(t)) ∈ L1((0, T ),R), then the triplet (u(t), α(t), η(t)) : [0, T ] →
U × V × Z such that η(x) ≤ 1− ξ(x) for a.a. x ∈ Ω satisfying for all t ∈ [0, T ]

• Stability condition:

E(t, u(t), α(t), η(t)) ≤ E(t, ũ, α̃, η̃) +D(t, α(t), α̃) ∀ (ũ, α̃, η̃) ∈ U × V × Z
(5.52)
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• Energy balance:

E(t, u(t), α(t), η(t)) + DissD(α, [0, t])

= E(0, u(0), α(0), η(0)) +
∫ t

0

∂tE(s, u(s), α(s), η(s)) ds. (5.53)

is called an energetic solution of the rate-independent problem associated with E
and D.

The final aim of this chapter is to prove the following theorem:

Theorem 5.3.2 (Existence of an energetic solution). Let E ,D be defined by (5.42)
and (5.43), let data qualifications in Section 5.1 hold true and let initial conditions
(u0, α0, η0) ∈ U ×V ×Z satisfy η0(x) ≤ 1− ξ0(x) for a.a. x ∈ Ω and the stability
condition (5.52). Then there exists an energetic solution of the rate-independent
problem associated with E and D.

Outline of the proof of Theorem 5.3.2. To prove the theorem, we will follow the
rather standard approach of Francfort and Mielke (2006) consisting of 6 steps,
which will be described in following subsections:

Subsection 5.3.1 First, we choose a partition 0 = t0 ≤ t1 ≤ . . . ≤ tN = T of the
time interval [0, T ]. We formulate a time incremental minimization problem
and show, in a very similar fashion to the proof of Proposition 5.2.2, that it
has a solution for any time step of a chosen discretization. Moreover, such
a discrete solution satisfies the stability condition and a modification of the
energy balance.

Subsection 5.3.2 Having a sequence of solutions corresponding to a sequence
of time points ti, 0 ≤ i ≤ N , we may construct interpolating functions
on [0, T ] which are piece-wise constant and equal to the last time-steps
solution between the time points. We will obtain some useful estimates on
such interpolants.

Subsection 5.3.3 With respect to the estimates, we will select some special sub-
sequences of the interpolants. Their limits form a triplet of key importance:
it will be proven to be the desired energetic solution.

Subsection 5.3.4 To confirm that the triplet is an energetic solution, we will
utilize the stability of discrete solutions to show that the obtained limits
satisfy the stability condition.

Subsection 5.3.5 Finally, we will show the upper and the lower energy inequal-
ity to prove that the triplet satisfies also the energy balance.

Subsection 5.3.6 We will show some further properties of the entities related
to the solution and discuss further generalizations of the result.

To avoid a sequence of technical manipulations and lengthy terms in what
follows, we will suppose that U(t) = C ≡ 0 on ΓD in Sections 5.3.1–5.3.5, i.e.
we will employ time-independent Dirichlet condition. In Subsection 5.3.6, we
discuss the consequences for the proof if time-dependent Dirichlet condition is
considered.
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Prior to the first step of the proof, we formulate two simple, albeit useful
lemmas:

Lemma 5.3.3 (Coercivity of integrated dissipation distance). For any αA, αB ∈
L1(Ω) there is a constant c∗ > 0 independent on t ∈ [0, T ] such that:

D(t, αA, αB) ≥ c∗∥αA − αB∥L1(Ω). (5.54)

Proof. Employing data qualification (5.12), we observe that for any two states
αA = (εinA , ξA) and αB = (εinB , ξB) the following inequalities hold true:

|ξB − ξA| · [T0 −Ms + ξA(Ms −Mf)] ≥ |ξB − ξA|(T0 −Ms), (5.55)

|ξB − ξA| · [As − T0 + (1− ξA)(Af − As)] ≥ |ξB − ξA|(As − T0), (5.56)

and

∥ξB − ξA
ξA

εinA∥+ ∥εinB − εinA − ξB − ξA
ξA

εinA∥ ≥ ∥εinB − εinA∥. (5.57)

Then, recalling (5.12) and (5.14), it is enough to define

c∗ := min{∆sAM(T0 −Ms),∆s
AM(As − T0), s

∗} > 0, (5.58)

note that it is time-independent.

Lemma 5.3.4 (Dissipation triangle inequality). The integrated dissipation dis-
tance defined in (5.43) satisfies the triangle inequality in the form:

D(t, αA, αC) ≤ D(t, αA, αB) +D(t, αB, αC) (5.59)

for any three states αA, αB and αC from L1(Ω).

Brief sketch of the proof. Due to definition (5.43) and positivity of dissipation
distance, one may investigate the inequality for the dissipation distance at an
arbitrary point x ∈ Ω. Because of the different definition of forward and reverse
cases and 3 different states A,B,C considered, there are 6 different possible
situations (e.g. ξA ≤ ξB ≤ ξC , ξA ≤ ξC ≤ ξB, . . . ) to be examined. By
lengthy but straightforward calculations based mostly on triangle inequality for
Euclidean norms, it is possible to show that the triangle inequality even holds for
the transformation and reorientation parts of dissipation distance separately.

5.3.1 Reformulation of time-incremental problem and pro-
perties of its solutions

The initial step of the proof is the formulation of a discrete problem and investi-
gation of its solution. Hence, we define:

Definition 5.3.5 (Regularized time-incremental problem). Let u0, α0, η0 be the
initial conditions of the rate-independent evolution satisfying constraints (5.2).
Let boundary conditions and temperature be prescribed in accordance with da-
ta qualifications in Section 5.1 at time points tk, k = 1, . . . , N . We solve the
following problem at tk:

Minimize E(tk, u, α, η) +D(tk, αk−1, α− αk−1)

subject to (u, α, η) ∈ U × V × Z and 0 ≤ η(x) ≤ 1− ξ(x) for a.a. x ∈ Ω.
(RTIP)
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Similarly to proceeding in Section 5.2 we formulate a proposition of existence
of a solution:

Proposition 5.3.6 (Existence of a discrete solution of (RTIP)). Let αk−1 ∈ V.
Let material parameters, boundary conditions and temperature loading be given
in accordance with data qualification in Section 5.1. Then there exists a solution
of the time-incremental minimization problem (RTIP) at the time tk.

Proof. We could exactly follow the direct method used in the proof of Proposition
5.2.2. Since we minimize on a closed convex subset of a reflexive Banach space,
we need to assure that the functional in (RTIP) is bounded from below (i.e. there
is a infimizing sequence), coercive (in the sence that any infimizing sequence is
bounded) and weak lower semicontinuous. Then, taking an infimizing sequence,
the coercivity allows us the to find a subsequence which has a weak limit and the
lower semicontinuity assures that the limit is indeed a minimizer.

An important fact is that the dissipation distances introduced in Section 4.5
exactly match the discretization of the dissipation function used in the minimiza-
tion problem (TIP) and Proposition 5.2.2 (cf. (5.34) and (4.39)). Thus, the only
difference between minimized functionals in (TIP) and (RTIP) is the regulariza-
tion term ∥∇α∥2 added to f . However, it actually does not restrict utilization of
the key ingredients used in proof of Proposition 5.2.2 if α is now considered in
W1,2(Ω,R3×3

sym,0)×W1,2(Ω;R). Indeed, due to its quadratic form, the convexity is
preserved. Coercivity now demands to be E +D → ∞ whenever ∥un∥L2(Ω) → ∞
or ∥∇α∥L2(Ω) → ∞ (recall that ∥α∥L2(Ω) is bounded). This is immediately seen
if we add the term ∥∇α∥2L2(Ω) to both sides of (5.39). And we also obtain the
following bound on the energy:

∃C(tk) : E(tk, uk, αk, ηk) ≥ −C(tk) for a time-discrete solution (uk, αk, ηk),
(5.60)

which, together with positivity of D, implies that the functional E +D in (RTIP)
is bounded from below.

Moreover, owing to chosen form of the energy and dissipation functionals, the
time-discrete solution at tk depends only on αk−1 (and not on uk−1, ηk−1). Since
the constraints on αk−1 are time-independent, we may – with regard to (5.39) –
conclude that for any time-discrete solution of (RTIP), the energy functional E
is t-independently bounded from below, i.e. the constant in (5.60) may be found
time- and discretization-independent.

Moreover, the discrete solution satisfies a discrete version of the stability con-
dition and a modified energy balance:

Theorem 5.3.7 (Discrete version of stability condition and energy balance). Let
the initial condition (u0, α0, η0) ∈ U×V×Z satisfies the discrete stability condition
defined below. Then every solution (uk, αk, ηk) ∈ U × V × Z, k ∈ {1, . . . , N} of
(RTIP) satisfies the discrete stability condition and energy inequlatities in the
form:

• Stability condition:

E(tk, uk, αk, ηk) ≤ E(tk, ũ, α̃, η̃) +D(tk, αk, α̃) ∀ (ũ, α̃, η̃) ∈ U × V × Z
(5.61)

60



• Energy inequalities:∫ tk

tk−1

∂Et(s, uk(s), αk(s), ηk(s)) ds

≤ E(tk, uk, αk, ηk) +D(tk, αk−1, αk)− E(tk−1, uk−1, αk−1, ηk−1)

≤
∫ tk

tk−1

∂tE(s, uk−1(s), αk−1(s), ηk−1(s)) ds (5.62)

Proof. Let us (within this proof) denote ek := E(tk, uk, αk, ηk) and bk := D(tk,
αk−1, αk).

The any solution of (RTIP) is a minimizer, for any k ∈ {1, . . . , N} and for
any (ũ, α̃, η̃) ∈ U × V × Z we have:

ek + bk ≤ E(tk, ũ, α̃, η̃) +D(tk, αk−1, α̃). (5.63)

Using the triangle inequality D(tk, αk−1, α̃) ≤ bk+D(tk, αk, α̃) (see Lemma 5.3.4)
at the right-hand side of (5.63), we obtain

ek + bk ≤ E(tk, ũ, α̃, η̃) + bk +D(tk, αk, α̃)

ek ≤ E(tk, ũ, α̃, η̃) +D(tk, αk, α̃). (5.64)

But this is actually the stability condition (5.52) for a solution (uk, αk, ηk) of
(RTIP), which had to be proven.

Testing (5.63) with the triplet (ũ, α̃, η̃) := (uk−1, αk−1, ηk−1) gives:

ek + bk ≤ E(tk, uk−1, αk−1ηk−1) +D(tk, αk−1, αk−1)︸ ︷︷ ︸
=0

= E(tk, uk−1, αk−1, ηk−1)− E(tk−1, uk−1, αk−1, ηk−1)︸ ︷︷ ︸
=
∫ tk
tk−1

∂tE(s,uk−1,αk−1,ηk−1) ds

+E(tk−1, uk−1, αk−1, ηk−1)

i.e.

ek + bk − ek−1 ≤
∫ tk

tk−1

∂tE(s, uk−1, αk−1, ηk−1) ds. (5.65)

which is the upper estimate of energy balance. Due to data qualifications (5.5)–
(5.8), the derivative ∂tE is well-defined:

∂tE(t, uk−1, αk−1, ηk−1)

= ⟨l̇(t), uk−1⟩+ ⟨m′(T )Ṫ (t), ξk−1⟩+ ⟨q′(T )Ṫ (t), ηk−1⟩+ ⟨w′(T )Ṫ (t), 1⟩, (5.66)

where the prime, ′, denotes derivation with respect to temperature, T .
The lower estimate is obtained in the same manner by testing the solution at

tk−1 with (ũ, α̃, η̃) := (uk, αk, ηk).

Now, summation of (5.65) for k = 1, . . . , l for any l ∈ {1, ..., N} gives the
following inequality:

E(tl, ul, αl, ηl)− E(0, u0, α0,η0) +
l∑

k=1

D(tk, αk−1, αk)

≤
l∑

k=1

∫ tk

tk−1

∂tE(s, uk−1, αk−1, ηk−1) ds (5.67)
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5.3.2 Construction of interpolants; a priori estimates

Based on solutions of (RTIP) established in the previous subsection, we are going
to introduce piece-wise constant interpolation functions at [0, T ] and show some
estimates on them.4

Let us define the piece-wise constant interpolants

uN(t) : [0, T ] → W1,2
0 (Ω,R3), ηN(t) : [0, T ] → L∞(Ω,R),

αN(t) : [0, T ] → W1,2(Ω,R3×3
sym,0)×W1,2(Ω,R)

as follows:
uN(t) := uk if t ∈ [tk, tk+1) and u

N(T ) := uN (5.68)

αN(t) := αk if t ∈ [tk, tk+1) and α
N(T ) := αN (5.69)

ηN(t) := ηk if t ∈ [tk, tk+1) and η
N(T ) := ηN (5.70)

For further proceedings, we need to prove the following lemma:

Lemma 5.3.8. Let uN , αN , ηN be defined as above. Then

∥uN∥L∞([0,T ],W1,2(Ω)) ≤ C, ∥ηN∥L∞([0,T ],L∞(Ω)) ≤ C,

∥αN∥L∞([0,T ],W1,2(Ω)) ≤ C, VarL1(Ω)(α
N , [0, T ]) ≤ C.

Proof. First, rewriting (5.67) one obtains:

E(tl, uN(tl), αN(tl), η
N(tl)) +

l∑
i=1

D(ti, α
N(ti−1), α

N(ti))︸ ︷︷ ︸
(LHS)

≤ E(0, uN(0), αN(0), ηN(0)) +

∫ tl

0

|∂tE(s, uN(s), αN(s), αN(s))| ds︸ ︷︷ ︸
(RHS)

(5.71)

Let us denote
E0 := E(0, uN(0), αN(0), ηN(0)),

uNl := uN(tl), αN
l := αN(tl), ηNl := ηN(tl)

and
θN := ∂tE(t, uN(t), αN(t), ηN(t)).

4The interpolation functions are actually simple functions. We say that function g : [0, T ] →
V , V is a Banach space, is simple, if it takes only finite number of values vi ∈ V and Ai :=
u−1(vi) is Lebesgue measurable.
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Due to data qualification (5.5)–(5.8) and since components ξk, ηk of any solution
of (TIP) are bounded, ∀ t ∈ [0, T ]:

|θN(t)| ≤ |⟨l̇(t), uN(t)⟩|+ |⟨m′(T )Ṫ (t), ξN(t)⟩|+ |⟨q′(T )Ṫ (t), ηN(t)⟩|
+ |⟨w′(T )Ṫ (t), 1⟩|

≤
∫
Ω

|Ḟvol(t)u
N(t)| dV +

∫
ΓN

|Ḟsurf(t)u
N(t)| dS + ∥m′(T )Ṫ (t)∥L2(Ω)

× ∥ξN(t)∥L2(Ω) + ∥q′(T )Ṫ (t)∥L1(Ω)∥ηN(t)∥L∞(Ω) + |Ω| |w′(T )Ṫ (t)|
≤ ∥Ḟvol∥L2(Ω)∥uN(t)∥L2(Ω) + ∥Ḟsurf∥L2(ΓN)∥uN(t)∥L2(ΓN)

+ C∥Ṫ (t)∥L2(Ω)(∥ξN(t)∥L2(Ω) + ∥ηN(t)∥L2(Ω) + 1) (5.72)

≤ 1

2

(
∥Ḟvol∥2L2(Ω) + ∥uN(t)∥2L2(Ω)

)
+

1

2

(
∥Ḟsurf∥2L2(ΓN) + ∥uN(t)∥2L2(ΓN)

)
≤ C(1 +

1

2
∥uN(t)∥2W1,2(Ω)) (5.73)

≤ C(1 + ∥ε(uN(t))∥2L2(Ω)) (5.74)

Hölder’s inequality was used to get inequality (5.72), Young’s inequality to get
the penultimate inequality (5.73) and a modification of Korn’s first inequality to
get the last one. Note that the constant may be chosen time-independent due to
the data qualifications (5.5) and (5.6). Therefore, the right-hand side of (5.71)
may be estimated

(RHS) ≤ E0 +
∫ tl

0

C(1 + ∥ε(uN(s))∥2W1,2(Ω)) ds. (5.75)

Now let us turn attention to the left-hand side of Eq. (5.71). Since the
integrated dissipation distance is always non-negative, we may estimate

l∑
i=1

D(ti, α
N(ti−1), α

N(ti)) ≥ 0.

We need the following estimate of energy:∫
Ω

ψ(uNl , α
N
l , η

N
l ) dV =

∫
Ω

f el(uNl , ε
in,N
l , ξNl , η

N
l ) dV

+

∫
Ω

R
(ηNl )2

1− ξNl︸ ︷︷ ︸
≥0

+ν ∥∇αN
l ∥2 dV + ⟨mN

l , ξ
N
l ⟩+ ⟨qNl , ηNl ⟩+ ⟨wN

l , 1⟩,

and finding Tmin := mint∈[0,T ]T (t) (due to data qualification (5.8)) we can estimate

⟨mN(t), ξN(t)⟩ ≥ −C, ⟨qN(t), ηN(t)⟩ ≥ −C and ⟨wN(t), 1⟩ ≥ −C (5.76)

Thus,∫
Ω

ψ(uNl , α
N
l , η

N
l ) dV ≥

∫
Ω

f el(uNl , α
N
l , η

N
l ) dV + ν∥∇αN

l ∥2L2(Ω) − C (5.77)

We recall the extended Young’s inequality for 0 ≤ a, b ∈ R with γ > 0

ab ≤ γa2

2
+
b2

2γ
(5.78)
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and utilize it in coercivity inequality of the elastic contribution to energy derived
in (5.37) so that:∫

Ω

f el(t, uNl , α
N
l , η

N
l ) dV

≥ C
(
∥ε(u)∥2L2(Ω) − 2ρ∥ε(u)∥L2(Ω) + ρ2

)
≥ C

(
∥ε(ul)∥2L2(Ω) − 2

γ1∥ε(ul)∥2L2(Ω)

2
− 2

ρ2

2γ1
+ ρ2

)
(5.79)

Also, after applying Hölder inequality,

⟨lNl , uNl ⟩ ≤ ∥Fvol,l∥L2(Ω)∥uNl ∥L2(Ω) + ∥Fsurf,l∥L2(Γ)∥uNl ∥L2(Γ)

≤ ∥uNl ∥L2(Ω)

(
∥Fvol,l∥L2(Ω) + C∥Fsurf,l∥L2(Γ)

)
≤
γ2∥uNl ∥2L2(Ω)

2
+

∥Fvol,l∥2L2(Ω) + C∥Fsurf,l∥2L2(Γ)

2γ2

≤ C∗γ2
2
∥ε(uNl )∥2L2(Ω) +

1

2γ2

(
∥Fvol,l∥2L2(Ω) + C∥Fsurf,l∥2L2(Γ)

)
(5.80)

Now, we may choose suitable values of the positive constants γ1, γ2 so that
the left-hand side of (5.71) may be finally estimated:

(LHS) ≥ E(tl, uNl , αN
l , η

N
l ) =

∫
Ω

ψ(uNl , α
N
l , η

N
l ) dx− ⟨lNl , uNl ⟩

≥ C
(
∥ε(uNl )∥2L2(Ω) − 1

)
+ ν∥∇αN

l ∥2L2(Ω). (5.81)

Both upper and lower estimates give together:

∥ε(uN(tl))∥2L2(Ω) + ν∥∇αN(tl)∥2L2(Ω) ≤ C +
l∑

k=1

C

∫ tk

tk−1

∥ε(uN(s))∥2L2(Ω) ds

= C +
l∑

k=1

C(tk − tk−1)∥ε(uN(tk−1))∥2L2(Ω).

(5.82)

Applying a discrete form of Gronwall’s lemma5 (with gradient term on the left-
hand side omitted) one obtains the following estimates:

sup
t∈[0,T ]

∥ε(uN(t))∥2L2(Ω) ≤ C (5.83)

Korn’s inequality then implies:

sup
t∈[0,T ]

∥uN(t)∥2W1,2(Ω) ≤ C (5.84)

i.e.
uN ∈ L∞([0, T ],W1,2(Ω)). (5.85)

5Let yk and gk be nonnegative sequences, K a nonnegative constant. If yl ≤ K+
∑

0≤k<l gkyk

for l ≥ 0, then yl ≤ Kexp
(∑

0≤k<l gk

)
for l ≥ 0.
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Investigation of (5.82) in the view of (5.83) provides further result:

sup
t∈[0,T ]

∥∇αN(t)∥2L2(Ω) ≤ C, (5.86)

Due to bounds on internal variables, it is apparent that

sup
t∈[0,T ]

∥αN(t)∥2L∞(Ω) ≤ C and sup
t∈[0,T ]

∥ηN(t)∥2L∞(Ω) ≤ C (5.87)

Employing Poincaré inequality we see6

αN ∈ L∞([0, T ],W1,2(Ω)), (5.88)

and clearly
ηN ∈ L∞([0, T ],L∞(Ω)). (5.89)

Reinspecting (5.74) in view of (5.83), we discover that |θN(t)| ≤ C (independently
of time), which leads to

∂tE(t, uN(t), αN(t), ηN(t)) ∈ L∞([0, T ],R). (5.90)

The bound together with coercivity of integrated dissipation distance (5.54),
gives:

VarL1(Ω)(α
N , [0, T ]) =

N∑
k=1

∥αN
k − αN

k−1∥L1(Ω) ≤
N∑
k=1

1

c∗
D(tk, α

N
k−1, α

N
k )

≤ 1

c∗

(
e0 − eN +

∫ T

0

|θN(s)| ds
)

≤ 1

c∗
(e0 − eN + C · T ) , (5.91)

which is again a constant due to bounds (5.60) and (5.74). Thus, finally

VarL1(Ω)(α
N , [0, T ]) = ∥αN∥BV([0,T ],L1(Ω)) ≤ C, (5.92)

where the constant is discretization-independent.

5.3.3 Selection of subsequences

Now, we proceed by selecting specific subsequences of the constructed inter-
polants. Let choose a sequence of partitions ΠN = {0 ≤ tN0 ≤ · · · ≤ tNN = T }
so that ΠN ⊂ ΠN+1, N ∈ N whose fineness ∆N := max{tNj − tNj−1| j = 1, . . . , N}
tends to 0 and obtain the associated interpolants (uN , αN , ηN).

By application of a suitable version of Helly’s selection theorem (see Theorem
1.126 and Remark 1.127 in Barbu and Precupanu, 2012) and property (5.88) of
αN , one can find a subsequence αNk and a limit function α ∈ L∞([0, T ],W1,2(Ω))∩
BV([0, T ],L1(Ω)) so that

∀ t ∈ [0, T ] : αNk(t)⇀ α(t) in W1,2(Ω) (5.93)

6We have even αN ∈ L∞([0, T ],W1,2(Ω)) ∩ L∞([0, T ],L∞(Ω)).
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Due to compact embedding of W1,2(Ω) into L1(Ω) it is also true that

∀ t ∈ [0, T ] : αNk(t) → α(t) in L1(Ω). (5.94)

Reminding (5.90) and choosing a further subsequence if necessary, we may
assume

θNk
∗
⇀ θ∗ in L∞((0, T ),R). (5.95)

Defining θ(t) := lim supk→∞ θNk(t) and applying Fatou’s lemma7 (also recall
(5.90)) we know that

θ(t) ∈ L1((0, T ),R) (5.96)

and
θ∗(t) ≤ θ(t) for almost all t ∈ [0, T ]. (5.97)

In accordance with (5.85) and (5.89), for fixed t ∈ [0, T ] we can choose a time-
dependent subsequence (N t

l )l∈N of (Nk)k∈N such that

θN
t
l (t) → θ(t) for l → ∞ in R, (5.98)

uN
t
l (t)⇀ u(t) for l → ∞ in W1,2

0 (Ω), (5.99)

ηN
t
l (t)

∗
⇀ η(t) for l → ∞ in L∞(Ω). (5.100)

To sum up, we have chosen some cluster points of subsequences of piece-wise
constant sequences provided by (RTIP). It remains to show that (u, α, η) chosen
in that way is an energetic solution, i.e. it satisfies the stability condition and
energy balance.

5.3.4 Stability of the limit functions

We need to establish that the limit of the sequence of triplets (uN
t
l (t), αNt

l (t),
ηN

t
l (t)) satisfies the stability condition. We will show a slightly more general

result.
First, we recall that due to convexity of ψ in the internal variables (see the

proof of Proposition 5.3.6), the energy function E is weakly lower semi-continuous.
Moreover, E(t, ·, ·, ·) is continuous in the time variable since all respective time-
dependent terms, ⟨l(t), u⟩, ⟨m(t), ξ⟩, ⟨q(t), η⟩, ⟨w(t), 1⟩, are continuous linear
functionals for fixed (u, α, η) ∈ U × V × Z due to data qualification (5.5)–(5.8).

Thus, for any tj → t, uj ⇀ u in U , αj ⇀ α in U and ηj
∗
⇀ η in Z with each

(uj, αj, ηj) being a stable triplet at tj (i.e. satisfying inequality (5.61)) and for
any (ũ, α̃, η̃) ∈ U × V × Z, we have

E(t, u, α, η) ≤ lim inf
j→∞

E(tj, uj, αj, ηj) (5.101)

≤ lim inf
j→∞

E(tj, ũ, α̃, η̃) +D(tj, αj, α̃) = E(t, ũ, α̃, η̃) +D(t, α, α̃),

where we used in turn weak lower semi-continuity of E , stability of (uj, αj, ηj) at
tj, time-continuity of E and passed to the limit

lim
j→∞

D(tj, αj, α̃) = D(t, α, α̃). (5.102)

7Let {fn}n∈N be a sequence of real-valued measurable function defined on Ω. If there is an
integrable function g on Ω such that fn ≤ g for all fn, n ∈ N, then lim supn→∞

∫
Ω
fn dV ≤∫

Ω
lim supn→∞ fn dV .
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If the last step is proved, we may take τ tl ↗ t for l → ∞ defined as τ tl := max{t̂ ∈
ΠNt

l : t̂ ≤ t} and a sequence (uN
t
l (t), αNt

l (t), ηN
t
l (t)) and follow the previous

proceeding: since t is fixed, we know that

(uN
t
l (t), αNt

l (t), ηN
t
l (t))⇀ (u(t), α(t), η(t)) in U × V × Z (5.103)

and the triplet (uN
t
l (t), αNt

l (t), ηN
t
l (t)) satisfies the condition of stability for τ tl

due to discrete stability. Thus, we will be able to conclude that the limit (u, α, η)
satisfies the stability condition, after we prove the following lemma:

Lemma 5.3.9. Let tj → t, αj ⇀ α ∈ V and α̃ ∈ V. Then

lim
j→∞

D(tj, αj, α̃) = D(t, α, α̃).

Proof. First, let us consider the reorientation part. We observe:

0 ≤ |Dreo(t, α, α̃)−Dreo(tj, αj, α̃)|
= |σreo(T (t))Dreo

(α, α̃)− σreo(T (tj))D
reo
(αj, α̃)|

≤ σreo(T (t))
∣∣Dreo

(α, α̃)−Dreo
(αj, α̃)

∣∣
+ |σreo(T (t))− σreo(T (tj))| ·

∣∣Dreo
(αj, α̃)

∣∣
≤ σreo(T (t))

∫
Ω

∣∣∣δreo(α, α̃)− δ
reo
(αj, α̃)

∣∣∣ dV
+ |σreo(T (t))− σreo(T (tj))|

∫
Ω

∣∣∣δreo(αj, α̃)
∣∣∣ dV, (5.104)

since σreo(T ) is space-independent and positive, and it remains to show that the
right hand-side converges to zero for j → ∞.

For the first integral on the right-hand side of (5.104), we will utilize continuity
of the Nemytskĭı mapping of the function δ

reo

α̃ (x, α) := δ
reo
(α, α̃) with α̃ fixed.8

First, we need to verify that δ
reo

α̃ is a so-called Carathéodory mapping. It requires
δ
reo

α̃ (x, ·) to be continuous for almost all x ∈ Ω – this is a consequence of the
definition of the reorientation part of the dissipation distance, particulary its
continuity in α = α̃ – and, further, δ

reo

α̃ (·, α) must be measurable for all α ∈
R3×3

sym,0 × R, which is clear. Now, if there is a constant, C, and function λ(x) ∈
L1(Ω) so that

|δreoα̃ (x, α)| ≤ C∥α∥2 + λ(x), (5.105)

then the Nemytskii mapping Nδ : Ω → R defined by [Nδ(α)](x) := δreoα̃ (x, α)
is bounded continuous mapping from L2(Ω,R3×3

sym,0)×L2(Ω,R) to L1(Ω,R), which
implies:

∥αj − α∥L2(Ω) → 0

⇒ ∥δreoα̃ (x, α)− δ
reo

α̃ (x, αj)∥L1(Ω) =

∫
Ω

∣∣∣δreoα̃ (x, α)− δ
reo

α̃ (x, αj)
∣∣∣ dV → 0

(5.106)

But, due to compact embedding of W1,2(Ω) into L2(Ω), we know that αj → α in
L2(Ω) and are be able to conclude that the first term on the right-hand side of

8Let us note that we temporarily include the space-dependence of dissipation distance in
this paragraph so that application of Nemytskĭı mapping is more clear.
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(5.104) converges to zero if condition (5.105) is verified. We investigate (5.105)
for the reverse phase transformation:9

|ξ̃| < |ξ| : |δreoα̃ (x, α)| =

∥∥∥∥∥ ξ̃ − ξ

ξ
εin

∥∥∥∥∥+
∥∥∥∥∥ε̃in − εin − ξ̃ − ξ

ξ
εin

∥∥∥∥∥
≤

∣∣∣∣∣ ξ̃ξ
∣∣∣∣∣ · ∥εin∥+ ∥εin∥+ ∥ε̃in∥+ ∥εin∥+

∣∣∣∣∣ ξ̃ξ
∣∣∣∣∣ · ∥εin∥+ ∥εin∥

≤ 5∥εin∥+ ∥ε̃in∥ ≤ 5∥α∥+ ∥α̃∥, (5.107)

where we omitted the explicit dependence of internal variables on (now fixed)
x. Since α̃ ∈ L1(Ω), we may to rescale (5.107) by taking C := 5 and λ(x) :=
∥α̃(x)∥+1 to satisfy the condition (5.105). Making profit of the inequality (5.59),
we can use the same estimate for the forward transformation, i.e. |ξ̃| ≥ |ξ|.

Eventually, σreo(T (t)) is a continuous function of time due to data qualification
(5.14) and the sequence αj is bounded in L1(Ω). Hence, applying the triangle
inequality on the difference in the last term on the right-hand side of (5.104)
assures the term converges to zero.

As far as the transformation part of integrated dissipation distance, Dtr(α, α̃),
is concerned, we need to show

αj ⇀ α in W1,2(Ω)

⇒ ∥δtrα̃ (x, α)− δtrα̃ (x, αj)∥L1(Ω) =

∫
Ω

∣∣δtrα̃ (x, α)− δtrα̃ (x, αj)
∣∣ dV → 0, (5.108)

where δ
tr

α̃ (x, α) := δ
tr
(α, α̃). But this is achieved by the same approach as above.

Recalling the compact embedding of W1,2(Ω) into L2(Ω) the implication (5.105)
will be a direct consequence of continuity of the Nemytskĭı mapping chosen as
[Nδ(α)](x) := δtrα̃ (x, α) if the Carathéodory conditions and an analogy of (5.105)
are satisfied. But now

|ξ̃| < |ξ| : |δtrα̃ (x, α)| = |ξ − ξ̃| · [As − T0 + (1− ξ)(Af − As)]

≤ |ξ|[Af − T0] ≤ |ξ|max{Af − T0, T0 −Mf} (5.109)

and the last estimate be verified also for |ξ̃| ≥ |ξ|. The Carathéodory conditions
are again satisfied, which completes the proof.

We finally show several useful consequences of the so-far elaboration. We
show that

E(t, u, α, η) = lim
l→∞

E(t, uNt
l (t), αNt

l (t), ηN
t
l (t)). (5.110)

The lower estimate

E(t, u(t), α(t), η(t)) ≤ lim inf
l→∞

E(t, uNt
l (t), αNt

l (t), ηN
t
l (t)) (5.111)

9Now we will formally extend validity of δ
reo

α̃ and δtrα̃ so that both are defined for any
α ∈ R3×3

sym,0 × R. We just extend the definition (5.34) simply by replacing the conditions ξ̃ ≥ ξ

and ξ̃ < ξ by |ξ̃| ≥ |ξ| and |ξ̃| < |ξ|, respectively. Note also that continuity in α is not violated.
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is a consequence of lower semi-continuity of the (convex) function E(t, ·, ·, ·). The
upper estimate results from

E(t, u(t), α(t), η(t)) = lim
l→∞

E(t, u(t), α(t), η(t)) +D(t, αNt
l (t), α(t))︸ ︷︷ ︸
→0

≥ lim sup
l→∞

E(t, uNt
l (t), αNt

l (t), ηN
t
l (t)), (5.112)

where we employed weak continuity of D for fixed t and the stability condition –
proved in the previous subsection – tested by the triplet (u(t), α(t), η(t)).

Next, one may also observe that

lim
l→∞

∂tE(t, uN
t
l (t), αNt

l (t), ηN
t
l (t)) = ∂tE(t, u(t), α(t), η(t)). (5.113)

Indeed, recalling data qualification (5.5)–(5.8) and the fact that weak convergence
in (5.103) and compact embedding of W1,2(Ω) into L2(Ω) imply even strong con-
vergence in L2(Ω), we have

⟨l̇(t), uNt
l (t)⟩ → ⟨l̇(t), u(t)⟩ for (index) l → ∞ in R, (5.114)

⟨m′(T )Ṫ (t), ξN
t
l (t)⟩ → ⟨m′(T )Ṫ (t), ξ(t)⟩ for l → ∞ in R, (5.115)

⟨q′(T )Ṫ (t), ηNt
l (t)⟩ → ⟨q′(T )Ṫ (t), η(t)⟩ for l → ∞ in R, (5.116)

which together with (5.66) results in the claim.

5.3.5 Energy estimates and proof of energy balance

The last step of the proof of Theorem 5.3.2 is to confirm that (u, α, η) satisfies
the energy balance (5.53). We will proceed by proving two energy inequalities,
upper and lower, which together provide the required balance. Prior to it, some
consideration on the dissipation term are made.

A special attention must be paid for treating the dissipation term, since we
can follow the standard approach for time-independent transformation part and
not for time-dependent reorientation one. Let us prove a useful lemma first:

Lemma 5.3.10. Let g(t) : [0, T ] → R be a continuous function with a positive
image, i.e. g(t) > 0 for any t ∈ [0, T ]. Let µ1, µ2 be two measures defined on
[0, T ] such that for any [s, z] ⊂ [0, T ] we have

µ1([s, z]) ≤ µ2([s, z]). (5.117)

Then ∫ T

0

g(t) dµ1(t) ≤
∫ T

0

g(t) dµ2(t). (5.118)

Proof. We will construct a sequence of interpolation functions of g(t), every mem-
ber being a sum of simple functions. For n ∈ N we set an equidistant partition
0 = τ0 ≤ τ1 ≤ . . . ≤ τn = T such that τi = τ0 + ih for i ∈ {0, . . . , n} with
h := T /n; i.e. [0, T ] =

∪n−1
i=1 [τi−1, τi) ∪ [τn−1, τn] =:

∪n
i=1Ai. Then we define a

sequence of functions gn(t) : [0, T ] → R as gn(t) :=
∑n

i=1 gn(τi−1)1Ai
(t), where 1X

is the characteristic function of a set X, i.e. 1X(x) = 1 if x ∈ X and 1X(x) = 0
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elsewhere. Due to such a construction and with respect to continuity of g, we see
that limn→∞ gn(t) = g(t) for all t ∈ [0, T ] point-wise.

Further, to be able to measure also other than closed subsets of [0, T ], we
introduce an extension of measures µ1, µ2, so-called outer measures µ̃1, µ̃2. Let X
be any subinterval of [0, T ] and CX be a set of all countable collections of closed
subintervals [0, T ] whose union covers X. Then we define

µ̃j(X) := inf

{∑
B∈CX

µj(B)

}
, j ∈ {1, 2}. (5.119)

and note that new measures equal to the original ones on closed subsets.
The relation (5.117) then implies:

µ̃1(Ai) = inf

 ∑
B∈CAi

µ1(B)

 ≤ inf

 ∑
B∈CAi

µ2(B)

 = µ̃2(Ai), ∀ i ∈ {1, . . . , n}.

(5.120)
Since gn are simple functions and g(t) > 0 for any t ∈ [0, T ]:∫ T

0

gn(t) dµ̃1(t) =
n∑

i=1

gn(τi−1)µ̃1(Ai) ≤
n∑

i=1

gn(τi−1)µ̃2(Ai) =

∫ T

0

gn(t) dµ̃2(t).

(5.121)
We may take limit n→ ∞ and apply the Lebesgue’s dominated convergence the-
orem10 on both the first and the last terms since the subsequence gn is converging
point-wise to g and it is bounded from above by a constant function maxt∈[0,T ] g(t)
on [0, T ]. Hence, ∫ T

0

g(t) dµ̃1(t) ≤
∫ T

0

g(t) dµ̃2(t). (5.122)

As measures µ̃j and µj, j ∈ {1, 2} are equal on closed subintervals of [0, T ], we
obtain the claim.

Transformation part of dissipation

It is not difficult to see that for any interpolant αN(t) defined in (5.69) it holds
true:

N∑
i=1

Dtr(αN(ti−1), α
N(ti)) = Disstr(αN , [0, t]). (5.123)

We denote Disstr(αN , [0, t]) =: βN(t) ∈ R. Due to positivity of dissipation dis-
tance, we know that βN(t) ≤ βN+1(t) and {βN(t)}k∈N is a non-decreasing se-
quence of real numbers. Hence,

lim
k→∞

Disstr(αNk , [0, t]) =: β(t) ∈ R ∪ {∞}. (5.124)

Lower semi-continuity of Disstr then gives

Disstr(α, [0, t]) ≤ β(t). (5.125)

10Let fn, n ∈ N be a sequence of real-valued measurable functions on a measure space
(S,Σ, µ), fn → f point-wise and there is some integrable function h such that |fn(x)| ≤ h(x)
for all n ∈ N and a.a. x ∈ S. Then f is integrable and limn→∞

∫
S
fn dµ =

∫
S
f dµ.
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On the other hand, with respect to suprema in definitions of contributions to
the total dissipation (5.45) and (5.46), it holds true:

N∑
i=1

Dtr(α(ti−1), α(ti)) ≤ Disstr(α(t), [0, t]). (5.126)

Reorientation part of dissipation

Treating the reorientation part of dissipation requires more subtle approach. Re-
call we have defined the sequence αNk(t) → α(t) in L1(Ω) for any t ∈ [0, T ] in
Subsection 5.3.3. Now let us take any interval [s, z] ⊂ [0, T ] and define an parti-
tion s = τ0 ≤ τ1 ≤ . . . ≤ τK = z with ∆K := max{τi − τi−1 : i = 1, . . . , K}. An
important observation is that

lim
k→∞

Dreo
(αNk(τi−1), α

Nk(τi)) = Dreo
(α(τi−1), α(τi)). (5.127)

This result is a consequence of the strong convergence in (5.94) and of applying
the Nemytskĭı mapping technique introduced in the proof of Lemma 5.3.9 to
δ
reo
(x, αj, αm) := δ

reo
(αNk(τi−1), α

Nk(τi)) where αj → α(τi−1) and αm → α(τi) in
L1(Ω). The main difference with respect to that proof is that no internal variable
is fixed, now. Thus, when investigating the Carathéodory condition on continuity,
we need to employ the condition ⟨εinn ⟩ ≤ ξn for any sequence αn ∈ V , n ∈ N –
particularly εinn → 0 whenever ξn → 0 – to obtain continuity for ξj → 0∧ ξm → 0.
The inequality (5.105) may be shown in the same manner as in that proof (when
now taking C := 5 and λ(x) := 6).

Hence, after summation of (5.127) for i = 1, . . . , K and with respect to defi-
nition (5.47), we may write

K∑
i=1

Dreo
(α(τi−1), α(τi)) = lim inf

k→∞

K∑
i=1

Dreo
(αNk(τi−1), α

Nk(τi))

≤ lim inf
k→∞

sup{
K∑
i=1

Dreo
(αNk(τi−1), α

Nk(τi)) :

a.p.p. s = τ0 ≤ τ1 ≤ . . . ≤ τK = z} = lim inf
k→∞

µαNk ([s, z]). (5.128)

The measure µαNk is derived from αNk by (5.47). The last term on the right-hand
side of (5.128) is independent on partition of [s, z]. Taking suprema of both sides
we may conclude:

µα([s, z]) = sup
K→∞

{
K∑
i=1

Dreo
(α(τi−1), α(τi)) : a.p.p. s = τ0 ≤ τ1 ≤ . . . ≤ τK = z

}
≤ lim inf

k→∞
µαNk ([s, z]). (5.129)

Hence, we proved lower semicontinuity of the measure µ for any subinterval
[s, z] ⊂ [0, T ].

Making profit of Lemma 5.3.10 applied to (5.129) we obtain∫ z

s

σreo(T (t)) dµα(t) ≤ lim inf
k→∞

∫ z

s

σreo(T (t)) dµαNk (t). (5.130)
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Concerning the right-hand side of (5.130), we introduce an auxiliary time inter-
polation function σreo

Nk
(T (t)) : [0, T ] → R(Ω) of the function σreo(T (t)) motivated

by definitions in Subsection 5.3.2 as follows:

σreo
Nk

(T (t)) := σreo(T (t)) if t ∈ [tk, tk+1) and σ
reo
Nk

(T ((T )) := σreo(T (T )) (5.131)

Then,

lim inf
k→∞

∫ z

s

σreo(T (t)) dµαNk

= lim inf
k→∞

∫ z

s

[σreo(T (t))− σreo
Nk

(T (t))] + σreo
Nk

(T (t)) dµαNk

= lim inf
k→∞

∫ z

s

σreo
Nk

(T (t)) dµαNk . (5.132)

To see the second equality we observe

0 ≤ lim
k→∞

∫ z

s

|σreo(T (t))− σreo
Nk

(T (t))| dµαNk

≤ lim
k→∞

max
t∈[0,T ]

|σreo(T (t))− σreo
Nk

(T (t))|
∫ z

s

dµαNk , (5.133)

since σreo(T (t)) and σreo
Nk

(T (t)) are homogenous in space. Owing to results of
Lemma 5.3.8, ∃C : ∥αNk∥BV([0,T ],L1(Ω)) ≤ C for all the interpolants αNk . Hence,
we may obtain a bound on the last integral in (5.133) since the measure µNk

is
derived form αNk according to (5.47). Recalling construction of interpolants we
eventually see that the second equality in (5.132) is valid11

The term on the right-hand side of (5.130) is then equal to the last term on
the right-hand side of (5.132) and, recalling definition (5.46), we finally arrive at

Dissreo(α, [s, z]) =

∫ z

s

σreo(T (t)) dµα(t) ≤ lim inf
k→∞

∫ z

s

σreo
Nk

(t) dµαNk (5.134)

for any time interval [s, z] ⊂ [0, T ].
Now we are ready to prove two energy inequalities.

Upper energy inequality

The upper energy inequality is based on the discrete upper estimate (5.71). Due
to the construction of interpolants, it holds true

(uNk(t), αNk(t), ηNk(t)) = (uNk(tNk
m ), αNk(tNk

m ), ηNk(tNk
m ))

for any time t such that 0 ≤ t − tNk
m ≤ ∆Nk

m := |tNk
m − tNk

m−1|, m ∈ {1, . . . , Nk}.
Naturally, ∆Nk

m → 0 for k → ∞ (recall Subsection 5.3.3). Continuity of ∂tE
in time on the compact set [0, T ] (due to data qualification (5.5)–(5.8)) implies
Lipschitz continuity of E , hence

∃C > 0 :

|E(t, uNk(t), αNk(t), ηNk(t))− E(tNk
m , uNk(tNk

m ), αNk(tNk
m ), ηNk(tNk

m ))| ≤ C∆Nk
m .

(5.135)

11Let {ai}i∈N, {bi}i∈N are sequences of real numbers. Then if limi→∞ ai = 0, then
lim infi→∞(ai + bi) = lim infi→∞ bi.
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And, as ∂tE is bounded,∣∣∣∣∣
∫ t

0

θNk(s) ds−
∫ t

Nk
m

0

θNk(s) ds

∣∣∣∣∣ ≤ C∆Nk
m . (5.136)

Then, utilizing in turn (5.135), (5.71) and (5.136) we obtain

E(t, uNk(t), αNk(t), ηNk(t)) +
m∑
i=1

D(tNk
i−1, α

Nk(tNk
i−1), α

Nk(tNk
i ))

≤ E(tNk
m , uNk(tNk

m ), αNk(tNk
m ), ηNk(tNk

m )) + C∆Nk
m

+
m∑
i=1

D(tNk
i−1, α

Nk(tNk
i−1), α

Nk(tNk
i ))

≤ E(0, u(0), α(0), η(0)) + C∆Nk
m +

∫ t
Nk
m

0

θNk(s) ds

≤ E0 + C∆Nk
m +

∫ t

0

θNk(s) ds. (5.137)

Due to definition of interpolating functions, we can add the term D(tNk
m ,

αNk(tNk
m ), αNk(t)) = 0 to the left-hand side of (5.137) with no influence on the

inequality. Denoting tNk
M := t and M := {1, . . . ,m} ∪M , we employ (5.134) to

find out

lim inf
k→∞

∑
i∈M

Dreo(tNk
i−1, α

Nk(tNk
i−1), α

Nk(tNk
i ))

= lim inf
k→∞

∑
i∈M

σreo
Nk

(ti−1)D
reo
(αNk(tNk

i−1), α
Nk(tNk

i )) = lim inf
k→∞

∫ t

0

σreo
Nk

(t) dµαNk

≥ Dissreo(α, [0, t]) (5.138)

Thanks to the limit in (5.110), (5.124) and (5.138), we may proceed by
applying limes inferior for k → ∞ on the left-hand side of (5.137); thanks
to the weak convergence in (5.95) we may also proceed with the same limit
(k → ∞ ⇒ ∆Nk

m → 0) on the right-hand side of (5.137) with the result

E(t, u(t), α(t), η(t)) + β(t) +Dissreo(α, [0, t]) ≤ E(0, u(0), α(0), η(0)) +
∫ t

0

θ∗(s) ds

(5.139)
Reminding the result of Fatou’s lemma in (5.97) and utilizing (5.125), we finally
arrive at the upper energy estimate

E(t, u(t), α(t), η(t))+DissD(α, [0, t]) ≤ E0+
∫ t

0

∂tE(s, u(s), α(s), η(s)) ds. (5.140)

Lower energy inequality

The lower energy estimate is a direct consequence of the stability of the limit
triplet found in Subsection 5.3.4. Let 0 ≤ τ1 ≤ . . . ≤ τK = t, t ∈ (0, T ] be a
partition of [0, t] with ∆K := max{τj − τj−1 : j = 1, . . . , K}.

73



Let us define a piece-wise constant interpolant σreo
K (T (t)) : [0, T ] → P0(Ω,R)

as follows:

σreo
K (T (t)) := σreo(T (τj)) if t ∈ [τj, τj+1) and σ

reo
K (T (T )) := σreo(T (T )).

(5.141)
Due to presumed continuity of σreo on the (closed) interval [0, T ] (recall

(5.8)) providing an upper bound on σreo, we may employ Lebesgue’s domi-
nated convergence theorem again to see that for a sequence of partitions with
K → ∞ ⇒ ∆K → 0 it holds true:

lim
K→∞

∫ T

0

σreo
K (T (t)) dµα(t) =

∫ T

0

σreo(T (t)) dµα(t). (5.142)

Moreover, exploiting the definition of the interpolant σreo
K and positivity of σreo

in (5.14), we obtain the following inequality:∫ T

0

σreo
K (T (t)) dµα(t) =

K∑
j=1

∫ τj

τj−1

σreo
K (T (τj−1)) dµα(t)

=
K∑
j=1

σreo
K (T (τj−1))

∫ τj

τj−1

dµα(t)

≥
K∑
j=1

σreo
K (T (τj−1))

∫ τj

τj−1

dµ∗
α(t)

=
K∑
j=1

σreo
K (T (τj−1))D

reo
(α(τj−1), α(τj)) = Dreo(τj−1, α(τj−1), α(τj)), (5.143)

where the measure µ∗
α is defined for every closed set S := [s, z] ⊂ [0, T ] simply as

µ∗
α(S) := Dreo

(α(s), α(z)), (5.144)

and the inequality in (5.143) can be seen by comparison with the definition (5.47).
Now, testing the stability of the triplet (u(τj−1), α(τj−1), η(τj−1)) by (ũ, α̃, η̃) =

(u(τj), α(τj), η(τj)) gives

E(τj−1, u(τj−1), α(τj−1), η(τj−1))

≤ E(τj−1, u(τj), α(τj), η(τj)) +D(τj−1, α(τj−1), α(τj))

= E(τj, u(τj), α(τj), η(τj))−
∫ τj

τj−1

∂tE(s, u(τj), α(τj), η(τj)) ds

+ D(τj−1, α(τj−1), α(τj)) (5.145)

After summation over j = 1, . . . , K and applying (5.126) and (5.143) to elaborate
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the first estimate in the following, we find:

E(t, u(t), α(t), η(t)) + Disstr(α, [0, t]) +

∫ T

0

σreo
K (T (t)) dµα − E(0, u(0), α(0), η(0))

≥ E(t, u(t), α(t), η(t)) +
K∑
j=1

Dtr(α(τj−1), α(τj))

+
K∑
j=1

Dreo(τj−1, α(τj−1), α(τj))− E(0, u(0), α(0), η(0))

≥
K∑
j=1

∫ τj

τj−1

∂tE(s, u(τj), α(τj), η(τj)) ds

=
K∑
j=1

∂tE(τj, u(τj), α(τj), η(τj))|τj − τj−1| −
K∑
j=1

ϱj|τj − τj−1|, (5.146)

where we define

ϱj :=
1

|τj − τj−1|

∫ τj

τj−1

[∂tE(s, u(τj), α(τj), η(τj))− ∂tE(τj, u(τj), α(τj), η(τj))] ds.

(5.147)
The hoped-for lower energy estimate will be obtained after choosing a particular
sequence of time-partition and applying the limit K → ∞ in (5.146).

First, we utilize time-continuity of ∂tE(·, u, α, η) imposed by data qualification,
which – due to Heine-Cantor theorem – implies uniform continuity on the compact
interval [0, T ], i.e.

∃ω : [0, T ] → [0,∞) ∧ ω is non-decreasing ∧ ω(τ) → 0 for τ ↘ 0 :

∀t1, t2 ∈ [0, T ] : |∂tE(t1, u, α, η)− ∂E(t2, u, α, η)| ≤ ω(|t1 − t2|). (5.148)

where function ω is so-called modulus of continuity . Therefore,

|ϱj| ≤
1

|τj − τj−1|

∫ τj

τj−1

ω(|s− τj|) ds ≤ ω(∆K) (5.149)

and the last sum on the right-hand side of (5.146) may be then estimated from
above by ω(∆K)T → 0 when the partition is refined, i.e. ∆K → ∞.

For the first term of the right-hand side of (5.146), we will use the following
useful theorem (see Lemma 4.12 in Dal Maso et al., 2005):

Theorem 5.3.11. Let X be a Banach space and F ∈ L1((0, t), X). Then there
exists a sequence of partitions Π : 0 = sn0 ≤ sn1 ≤ . . . ≤ snk(n) = t, Sn :=

max1≤i≤k(n) |sni − sni−1|, limn→∞ Sn = 0, such that

lim
n→∞

k(n)∑
i=1

∥∥∥∥∥F (sni )|sni − sni−1| −
∫ sni

sni−1

F (s) ds

∥∥∥∥∥
X

= 0. (5.150)

By direct application to the studied case (F (s) := θ(s) ∈ L1((0, T ),R) due to
(5.90) and X := R), we may define a sequence of time-partitions 0 ≤ τ1 ≤ . . . ≤
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τK = t, t ∈ (0, T ] with K → ∞ ⇒ ∆K → 0 so that:

lim
K→∞

K∑
j=1

∣∣∣∣∣∂tE(τj, u(τj), α(τj), η(τj))|τj − τj−1| −
∫ τj

τj−1

∂tE(t, u(t), α(t), η(t))

∣∣∣∣∣ = 0,

(5.151)
and, thus, with increasing refinement (K → ∞), the first term on the right
hand-side of (5.146) represents an approximation of the Lebesgue integral via
Riemann sums. Recalling (5.142) and proceeding by the same limit (K → ∞) on
the left-hand side of (5.146), we finally obtain the lower energy estimate in the
form:

E(t, u(t), α(t), η(t))+DissD(α, [0, t])−E0 ≥
∫ t

0

∂tE(s, u(s), α(s), η(s)) ds. (5.152)

To conclude the subsection, the last result together with the upper energy
inequality (5.140) implies that (u, α, η) : [0, T ] → U × V × Z is an energetic
solution.

5.3.6 Further properties and concluding remarks

By reordering and comparing the lower energy estimate (5.152), lower semi-
continuity of dissipation (5.125), upper energy estimate (5.139) and consequence
of Fatou’s lemma (5.97), one sees

E(0, u(0), α(0), η(0)) +
∫ t

0

θ(s) ds ≤ E(t, u(t), α(t), η(t)) + DissD(α, [0, t])

≤ E(t, u(t), α(t), η(t)) + β(t) + Dissreo(α, [0, t])

≤ E(0, u(0), α(0), η(0)) +
∫ t

0

θ∗(s) ds

≤ E(0, u(0), α(0), η(0)) +
∫ t

0

θ(s) ds (5.153)

Hence, all inequalities are in fact equalities and we may refine (5.125) as

DisstrD(α, [0, t]) = lim
k→∞

DisstrD(α
Nk , [0, t]), (5.154)

and (5.97) as
θ∗(t) = θ(t) for almost all t ∈ [0, T ]. (5.155)

Employing Lemma 3.512 in (Francfort and Mielke, 2006) to the latter result even
implies

θNk → θ in L1((0, T ),R). (5.156)

Hence, after choosing a further subsequence denoted nl := Nkl , we have the
following convergences for l → ∞:

• for all t ∈ [0, T ]: αnl(t)⇀ α(t) in W1,2(Ω),

12Let {fk}, k ∈ N be a bounded sequence in L∞((0, T ),R) with fk
∗
⇀ f∗ and f sup(t) =

lim supk→∞ fk(t). If f
∗(t) = f sup(t) for a.e. t ∈ (0, T ), then ∥fk − f∗∥L1((0,T ),R) → 0.
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• for all t ∈ [0, T ]: E(t, unl(t), αnl(t), ηnl(t)) → E(t, u(t), α(t), η(t)) in R,

• for all t ∈ [0, T ]: DissD(α
nl , [0, t]) → DissD(α, [0, t]) in R,

• for a.a. t ∈ [0, T ]: θnl → θ in R.

We recall that we have also found out that

u ∈ B([0, T ],W1,2(Ω,R3)), (5.157)

εin ∈ L∞([0, T ],W1,2(Ω,R3×3
sym,0)) ∩ BV([0, T ],L1(Ω,R3×3

sym,0))), (5.158)

ξ ∈ L∞([0, T ],W1,2(Ω,R)) ∩ BV([0, T ],L1(Ω,R)), (5.159)

η ∈ L∞([0, T ],L∞(Ω,R)). (5.160)

Let us add several final remarks:

(a) Now we return to a note made in the outline of the whole proof concern-
ing the time-dependent Dirichlet boundary condition. We suppose there
exists an extension of the Dirichlet boundary condition to all Ω such that
U(t) ∈ C1([0, T ],W1,2(Ω,R3)). The function will appear in the elastic part
of free energy, ψ, and in the loading term, ⟨l(t), u(t)⟩, (cf. Section 5.2)
and, consequently, in the term ∂tE . Due to prescribed regularity, we may
then proceed be repeating the arguments used in the proof. Of course, even
less restrictive functional spaces may be considered in the data qualification
while the results is still being valid, see e.g. (Francfort and Mielke, 2006)
for details.

(b) Due to the results by Mielke and Rossi (2007), we know that if an energetic
solution is enough smooth in time, then it also solves the weak form of the
subdifferential formulation of our problem.

(c) The function u is guaranteed to be bounded, albeit not necessarily measur-
able on [0, T ] due to (5.157). As discussed in (Mielke and Rossi, 2007), if the
the functional E is uniformly convex and the integrated dissipation D sat-
isfies a particular growth condition, then (under some other conditions) we
may expect Lipschitz continuity of variables in time and uniqueness of the
solution. Then, our analysis assures convergence of the derived numerical
schema.
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Chapter 6

Numerical Implementation of the
Constitutive Model

In this chapter we present the numerical treatment of the model. We specify
the form of the material function ⟨·⟩, which has been established in Section 4.1,
introduce the approach used for numerical solution of the time-incremental min-
imization problem and show how the model is then implemented into Abaqus
finite element package. Finally, several numerical simulations are presented to
demonstrate capabilities of the constitutive model.1

6.1 Specification of the transformation strain do-

main

To capture the transformation strain anisotropy and the tension-compression
asymmetry, we specify the function ⟨·⟩ as:

⟨εtr⟩ = I2(Dεtr)
k

cos
(
1
3
arccos(1− a(I3(Dεtr) + 1))

)
cos
(
1
3
arccos(1− 2a)

) , (6.1)

where

I2(x) =

√
2

3
xijxij (6.2)

corresponds to von Mises equivalent strain and

I3(x) = 4
det(x)

(I2(x))3
. (6.3)

k is a material parameter representing the maximum transformation strain in ten-
sion and the material parameter a characterizes the tension-compression asym-
metry. The parameter a ranges between 0 (no tension-compression asymmetry)
and 1 (transformation strain in compression is a half of the strain in tension).

The linear mapping D : R6 → R6 (Voigt notation) is motivated by the work
of Taillard et al. (2008):

D =
1

ν

[
P O
O S

]
, (6.4)

1Let us note that in the numerical treatment, thus throughout this section, we use ξ, εtr as
the primary variables making profit of the relation εin = ξεtr.
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Figure 6.1: The shape of proposed transformation strain domain determined using
the parameters in Table 6.1 in the plane of strain components εtr11-ε

tr
12 compared

with von Mises domain (a = 0,D = I), tension-compression asymmetry domain
(a = 0.8,D = I) and anisotropy domain (a = 0,D according to Table 6.1). The
central curve represents the evolution of transformation strain components in a
combined tension-torsion test at −30 ◦C described in Subsection 6.4.4. (cf. also
Fig. 6.8a) and b).)

where the components of the matrix P ∈ R3×3 take the following form:

P11 :=
2A

3
cos2 φ+

2B

3
sin2 φ+

1

3
, (6.5)

P22 = P33 :=

(
A

6
+
B

2

)
cos2 φ+

(
A

2
+
B

6

)
sin2 φ+

1

3
, (6.6)

P23 = P32 :=

(
A

6
− B

2

)
cos2 φ+

(
B

6
− A

2

)
sin2 φ+

1

3
, (6.7)

P12 = P21 = P13 = P31 := −A
3
cos2 φ− B

3
sin2 φ+

1

3
, (6.8)

matrix S ∈ R3×3 has the diagonal form:

S =


√
L 0 0

0
√
M 0

0 0
√
N

 , (6.9)
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ν =

√
1

2
[(P11 − P12)2 + (P11 − P13)2 + (P12 − P13)2], (6.10)

and O ∈ R3×3 denotes a zero (null) matrix. A,B, φ, L,M,N are material-depen-
dent parameters such that D is invertible. Let us note that similar techniques
for anisotropy and asymmetry handling were utilized e.g. in works of Lexcellent
et al. (2006) or Taillard et al. (2008). The convexity of the function proposed in
(6.1) is assured due to results in (Bigoni and Piccolroaz, 2004) and the fact that
the convexity is not affected by a linear mapping. Positive 1-homogeneity can be
shown by direct computation.

The shape of proposed transformation strain domain determined by the pa-
rameters in Table 6.1 compared with three other simpler cases – the von Mises do-
main (a = 0,D = I), the tension-compression asymmetry domain (a = 0.8,D = I)
and the anisotropy domain (a = 0,D according to Table 6.1) – is shown in Fig.
6.1.

6.2 Numerical solution of the constrained min-

imization problem

In Section 5.2, we obtained the time-incremental boundary value problem (TIP)
as the time-discrete version of the evolutionary problem originally expressed by
governing system (4.32)–(4.38).

For effective solution of the boundary value minimization problem (TIP), we
will split it into two subproblems.2 The first one corresponds to minimization with
respect to strain, and may be advantageously solved numerically by employing
the finite element software. The second one corresponds to (TIP) with fixed
strain, i.e. minimization only with respect to internal variables, and represents
the constitutive relations implicitly included in the (TIP). Both problems must
be solved consecutively and the resulting solution is equivalent to the solution
of (TIP) for infinitesimally refined time discretization. In this work, the former
problem is solved by Abaqus finite element package, see the next section. This
program also provides a spatial discretization of the simulated body.

After spatial discretization, the latter subproblem leads to solving a reduced
time-incremental minimization problem in a material point in the form:

Minimize f(Tk, εk, ε
tr, ξ, η) + d(Tk, ξk−1, ε

tr
k−1, ξ − ξk−1, ε

tr − εtrk−1) + r(εtr, ξ, η)

subject to (εtr, ξ, η). (6.11)

where the regularization energy, r(εtr, ξ, η), is introduced in the model as an
approximation of the indicator function I(εtr, ξ, η) to assure that constraints
(4.3), (4.5) and (4.6) are fulfilled.

In the present work, the minimization problem (6.11) is solved by Nelder-
Mead method introduced by Nelder and Mead (1965). It is a derivative-free
optimization algorithm suitable for non-smooth functions as in our case. Let us
note that we could consider also a derivative-based optimization method (e.g.

2Such an approach is sometimes termed combined minimization principle (e.g. Hackl and
Fischer, 2008)
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Figure 6.2: An example of the dependence of energy contributions on volume
fraction of martensite for a particular choice of other parameters (ξk−1 = 0.38).

gradient descent method) for which we had to carefully treat the points of non-
smoothness. To do so, one could, for example, utilize an approach similar to the
elastic predictor-transformation corrector return mapping methods often used
in SMA modeling (Qidwai and Lagoudas, 2000a). In our case, we would have
to perform calculations for one of four distinct cases (ξ̇ = 0, ∥ε̇tr∥ = 0 or ξ̇ ̸=
0, ∥ε̇tr∥ = 0 or ξ̇ = 0, ∥ε̇tr∥ ̸= 0 or ξ̇ ̸= 0, ∥ε̇tr∥ ̸= 0). Such a decision-making
complicates the numerical implementation, therefore, using a derivative-based
algorithm, although faster in general, needs not to be more efficient.

The regularization energy is defined by the maximum number reachable in
computer precision (corresponding to +∞) whenever any of constraints (4.3),
(4.5) and (4.6) is violated. Otherwise, r takes the form r(εtr, ξ, η) = rsm(ξ, η) +
rhard(εtr, ξ), where:

rsm(ξ, η) = creg[arctanh2(2ξ − 1) + arctanh2

(
2η

1− ξ
− 1

)
(1− ξ)], (6.12)

creg is a small positive constant so that rsm smoothly approximates the indicator
function. In addition to approximating the indicator function, the term rhard also
captures the hardening-like response of martensite which can be important in
some SMA systems, e.g. in those with a higher precipitate content:

rhard(εtr, ξ) = kEintξ
⟨εtr⟩2

1− ⟨εtr⟩4
, (6.13)

where Eint denotes a positive constant, which can be obtained from experiments.
The form of this term was motivated by the work of Chemisky et al. (2011), see
Section 3.2. The convexity of r was checked numerically. It should be empha-
sized that for the admissible values of internal variables the regularization energy
is significantly lower than the free energy except for the close neighborhood of
constraints (4.3), (4.5), (4.6). An example of comparison of the regularization
energy term with the other energetic contributions is shown in Fig. 6.2.
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6.3 Implementation of the constitutive model

into the finite element package Abaqus

For development and optimal design of a general SMA structure a numerical
implementation of the model into industrial software is needed. The finite element
software Abaqus provides the tool called User MATerial subroutine (UMAT)
enabling a user to implement constitutive models which are not included in the
standard database.

The proposed model was implemented to Abaqus as a numerical subroutine
UMAT written in C++ programming language. In each computational incre-
ment, the previous values of internal variables, (εtrk−1, ξk−1, ηk−1), and the values
of desired strain, εk, and temperature, Tk, are obtained from Abaqus. The corre-
sponding values, ξk, ε

tr
k , ηk, are determined by solving (6.11) by the Nelder-Mead

minimization algorithm and, subsequently, the stress, is determined as (cf. 4.27)

σk = Ktr(εk)I + 2G(ξk, ηk)(dev(εk)− ξkε
tr
k ). (6.14)

Based on the differences between the previous and current value of internal
variables, the active processes are determined: a process is active if the corre-
sponding internal variable evolves, i.e. the difference is greater than some chosen
tolerance δ.

After solving the minimization problem, tangent operators required for im-
plementation in UMAT are to be determined additionally. Since we consider
(uniformly distributed) temperature as a prescribed parameter in the present
formulation of the model, only the mechanical tangent operator, L, is needed.
The following analytical form can be derived:

L =
dσ

dε
=
∂2eT

∂ε2
− ∂σ

∂v

[
∂2eT

∂v2

]−1 [
∂σ

∂v

]⊤
(6.15)

where e := f + d + r is the sum appearing in the minimization problem and
⊤ denotes matrix transposition. v represents the vector of all actually evolving
internal variables. Numerical derivatives (central differences) were employed in
expression (6.15) in the numerical implementation.

To account for possibility of large rigid-body rotations, the Hughes–Winget
algorithm is employed in Abaqus (ABAQUS, 2010). Abaqus provides a matrix,
Rk, representing an increment of a rigid body rotation of the local basis system, so
that vector- or tensor-valued variables can be rotated appropriately to the refer-
ence configuration in UMAT (cf. Hartl and Lagoudas, 2009). The total rotation
matrix at current step, Qk, is given by multiplication of rotational increments
from all previous steps, i.e.

Qk = Rk ·Rk−1 · · · · ·R1 = Rk ·Qk−1, (6.16)

and Qk is to be stored at the end of the increment. At the end of the UMAT,
stress and the mechanical tangent operator must be rotated back to the local
configuration before passing them to Abaqus. The schema of our final UMAT
subroutine is depicted in Fig. 6.3.

The updated internal variables, stress and the mechanical tangent operator
are sent to the main Abaqus routine in order to determine for each element the
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Figure 6.3: A schema of numerical implementation of the model to UMAT sub-
routine of finite element software Abaqus. Subscript denotes the number of the
time step.

value of the residual vector, composed of the internal and external nodal forces,
and its Jacobian. The residual vector of the whole structure and its Jacobian are
then calculated and the corresponding displacement solution is computed by the
quasi-Newton iterative scheme (see ABAQUS, 2010, for details).

6.4 Numerical simulations

Having derived the model we shall present several numerical simulations to demon-
strate its capabilities. The simulations were performed at LEM3 (Metz, France)
computation centre with the commercially available nonlinear finite element code
Abaqus utilizing parallel processing with eight processors.

6.4.1 Specification of material properties

The list of all model parameters with their respective values used in simulations is
given in Table 6.1. An advantage of the model is that the influence of most of the
parameters on the modelled behavior may be well estimated from their physical
meaning. In our experience, ∆sAM , ∆sAR, elastic moduli have to be searched in
a narrow value range. The transforation strain depends on the processing of the
specimen (e.g. thin extruded wires, rolled sheets). The most complicated issue
is to identify parameters of the dissipation function. First complication stems
from simultaneous occurrence of transformation and reorientation both leading
to dissipation. Second, when R-phase transformation is included in the model,
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Parameter Value Unit Comment

Elastic constants:
EA 71 [GPa] Elastic properties of the wire in tension and

torsion were considered as independent (not
related through the bulk modulus) because of
the strong texture in the wire. The constants
were evaluated from experimental stress-strain
curves but correspond well also to the values
obtained by ultrasound measurements (Šittner
et al., 2006).

EM 41 [GPa]
ER 41 [GPa]
GA 25 [GPa]
GM 22.3 [GPa]
GR 14.3 [GPa]

Parameters of transformation strain surface:
k 0.07 [1] Maximum transformation strain in tension.
a 0.8 [1] Parameter for tension-compression asymmetry.

[A;B;φ; . . . [1;1;0;. . . Parameters of Hill’s hyper ellipsoid, D, the
coordinate system was defined such that the wire
axis is aligned with the x-axis.

L;M ;N ] 1;1.44;1.44] [1]

Parameters of dissipation function:
T0 -20 [◦C] Equilibrium temperature of A and M. It

influences the rate of dissipated energy in
forward and reverse transformation.

Ms -22 [◦C] Ms, Mf , As and Af temperatures have the usual
meaning of transformation temperatures only if
transformation does not proceed through the
R-phase. Otherwise we should consider them
only as parameters of the dissipation function
(see σ-T phase diagrams in Section 6.4.3).

Mf -24 [◦C]
As -17 [◦C]
Af -13 [◦C]

σreo
0 160 [MPa] Reorientation stress at T0.

Σreo -0.9 [MPa/◦C] Change of reorientation stress with temperature
describing also the change of hysteresis width
with temperature.

Parameters of chemical and regularization energies:
∆sAM 0.364 [MPa/◦C] Difference between specific entropy of M and A;

the value was computed using critical
transformation slope.

∆sAR 0.121 [MPa/◦C] Difference between specific entropy of R and A;

the value was taken as a 1/3 of ∆sAM .
Rs 39 [◦C] Initial A to R transformation temperature.
Rf 1 [◦C] Final A to R transformation temperature.
creg 0.01 [MPa] Parameter of the regulariz. energy term (6.12).
Eint 30 [MPa] Parameter of the regulariz. energy term (6.13).

Table 6.1: Material parameters entering the model and their values used in sim-
ulations. A, R and M denote austenite, R-phase and martensite, respectively.

parameters Ms, Mf , As and Af do not correspond to the transformation temper-
atures (obtainable, e.g., by a DSC measurement) anymore due to a considerable
change of entropy associated with the austenite-R-phase transformation (see also
stress-temperature phase diagrams generated with identical parameters with and
without R-phase in Subection 6.4.3).

6.4.2 Sensitivity to the increment size

Figure 6.4 illustrates that there is no sensitivity to the increment size for a rea-
sonable range of this numerical parameter. A simple superelastic response with
pronounced tension-compression asymmetry was simulated. The transition from
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Figure 6.4: An illustration of increment size independence of the model.

elasticity to phase transformation and from phase transformation to saturation
are well described during forward and reverse transformation.

6.4.3 Simulated stress-temperature phase diagrams

In order to explore the general thermomechanical behavior of SMA element pre-
dicted by the model we will use one-dimensional stress-temperature phase di-
agrams generated by the model with R-phase suppressed (Fig. 6.5) and with
R-phase present (Fig. 6.6). To obtain the diagram without R-phase transforma-
tion, the transformation temperatures for transformation between austenite and
R-phase (Rs, Rf) were set below the respective temperatures for transformation
from austenite to martensite. In both figures the lines denote points where corre-
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Figure 6.5: Stress-temperature phase diagram without R-phase generated by the
model. See text for details.
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sponding transformation process starts. Note that in this subsection, martensite
is called “twinned” if the transformation strain is zero (εtr → 0) and “detwinned”
if the inelastic strain reaches the maximum value (⟨εtr⟩ → 1).

When no R-phase is present (Fig. 6.5) straight lines for the transformation
between austenite and detwinned martensite (A→Md and Md →A) are expected.
These lines are not parallel because of the temperature dependence of the param-
eter σreo(T ), which corresponds to decreasing hysteresis with increasing temper-
ature. For the temperature induced phase transformation between austenite and
twinned martensite (A→Mt and Mt →A) under low stress (< σreo

0 ), the trans-
formation temperatures are stress-independent since the formed martensite has
a zero net transformation strain.

At low temperatures the linear temperature dependence of reorientation stress,
σreo(T ), is observed in the Mt →Md transition. The model leads to the existence
of a unique triple point of possible coexistence of austenite and both twinned and
detwinned martensite. Let us note that, two limiting transformation tempera-
tures for initiation of the martensite-to-austenite transformation at zero stress are
distinguishable in the figure (corresponding to Md →A and Mt →A). Since the
transformation of detwinned martensite, having non-zero transformation strain,
dissipates more energy than of the twinned one the transformation starts at a
higher temperature. Then, if the material transforms to austenite from an inter-
mediate state between fully detwinned and fully twinned martensite, the trans-
formation temperature will lie between these two limiting values, as observed in
martensite stabilization experiments by Liu and Favier (2000).

The phase diagram including R-phase can be compared in Fig. 6.6. A wide
region of phase transformation from austenite to R-phase and vice versa occurs
and it is bordered by two lines in the figure (A↔R). Generally, due to R-phase
presence, the temperatures at which martensite starts to appear or disappear are
shifted towards lower values with respect to the phase diagram without R-phase (if
the same stress is considered). In particular, the phase boundary R→Md exhibits
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Figure 6.7: Comparison of experiments (dashed line) and simulations (full line).
Tensile tests at various temperatures a), Thermal cycling tests at various applied
stresses b).

different slope than the phase boundary A→Md. This is in a good agreement
with experiments (cf. Šittner et al., 2006).

6.4.4 Proportional and nonproportional loading tests

To further examine predictive capabilities of the presented model the following
simulations of thermomechanical loading of a NiTi wire specimen were performed
and compared with experimental data:

i. Tensile tests at various constant temperatures

ii. Thermal cycling at constant applied loads of various magnitudes

iii. Combined tension-torsion tests at a constant axial load and various constant
temperatures

iv. Combined tension-torsion tests at a constant temperature and various con-
stant axial loads

Tests iii. and iv. were performed to study the response of the SMA wire in a
general nonproportional loading. For comparison with experiments, we adopted
datasets from an extensive experimental database available at Roundrobin SMA
modeling website (Pilch et al., 2009). It is possible to find details of the uti-
lized material and experimental procedures as well as other experimental datasets
there. Let us only note the experiments were carried out on trained wires with a
stable response.

The first two tests were simulated as simple uniaxial tension tests, with dis-
placement control in i. and load control in ii., with prescribed homogenous (con-
stant or varying) temperature field using one 8-node linear brick element. The
simulations of combined tension-torsion tests were performed using four-node ax-
isymmetric bilinear elements with an additional twist degree of freedom. 500
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Figure 6.8: Comparison of experiments (dashed line) and simulations (full line).
Combined tension-torsion tests at a constant axial preload and various temper-
atures a) and b), Combined tension-torsion tests at various axial preloads and a
constant temperature c) and d).

(50x10) elements were used to represent a 1mm long segment of the wire. Ro-
tation and axial displacement were fixed at the boundary representing the upper
base of the wire segment, whereas prescribed surface load and rotation were ap-
plied on the lower base. Homogenous temperature was prescribed. The torque
in Fig. 6.8 was obtained by integration of the moment over the lower boundary
of the segment, the axial strain was obtained from the averaged value of relative
displacement over the lower boundary.

Simulations of stress-strain responses of a NiTi wire in tensile tests at three
different temperatures are compared with experimental results in Figure 6.7a).
The model captures changes of the behavior from martensite reorientation at low
temperatures (−20 ◦C) to superelastic at higher temperatures (60 ◦C). A consid-
erable change of the apparent elastic modulus of austenite in experiments, caused
by the R-phase transformation occurring at lower temperatures, is well captured
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by the model, too. A gradual nonlinear nonhysteretic response in martensite state
beyond the end of the plateau is also well reflected owing to the regularization
energy term. Instantaneous changes of the response (“steps”) in experimental
results demonstrate localisation, which is not covered in present simulation.

Simulations of thermal cycling experiments at three different constant tensile
loads (300MPa, 400MPa and 500MPa) are shown in figure 6.7b). Although the
hysteresis width is slightly overestimated, the general behavior (transition from
austenite to twinned or detwinned martensite through R-phase) is successfully
captured.

Combined tension-torsion tests performed at different temperatures (30 ◦C,
0 ◦C and −30 ◦C) and at a preload in tension of 70 MPa can be seen in boxes a)
and b) of Fig. 6.8. The evolution of the simulated torque-angular displacement
behavior exhibits a very good correspondence with experiments – a transition
from superelasticity to martensite deformation is again observed. As mentioned
in the work of Šittner et al. (2009), due to the strong texture in the NiTi wire
isotropic models may fail to properly predict the length of the transformation
plateau. This is not the case of the model introduced here since the transforma-
tion strain anisotropy was included. The increase of the hysteresis width with
decreasing temperature is successfully followed. The values of simulated axial
strain in Fig. 6.8b) generally correspond to experimental values, only at the
lowest temperature the maximum axial strain seems to be slightly overestimated.

For illustration, the evolution of axial and shear components of the transfor-
mation strain at the surface of the wire during this test at −30 ◦C was plotted
to Fig. 6.1; there the numbering of stages in the complex path corresponds to
Fig. 6.8. After initial cooling under a preload, a small amount of elastically
deformed martensite is produced. Then, between stages 1 and 2 the path corre-
sponds to detwinning of this martensite, path between stages 2 and 3 corresponds
to further formation of martensite by stress. From stage 3 onwards, the variation
of applied load further reorients the martensite reaching a stable response after
several cycles.

Finally, combined tension-torsion tests at constant temperature 40 ◦C (un-
loaded sample was fully in austenite) and three different axial preloads (200MPa,
300MPa and 400MPa) were simulated. Again, torque-angular displacement and
axial strain-angular displacement responses are presented in Fig. 6.8c) and 6.8d),
respectively. In this type of simulations, the core part of the wire is exposed
to tension whereas surface layers are exposed to a combination of tension and
shear. Besides the correct length of plateaus, the well-captured initial “virgin”
loading path at the highest preload should be noted in the left graph. The model
quantitatively predicts axial elongation at turnabouts of loading direction at all
preloads. The simulation of ratcheting at 400MPa, when stress induced trans-
formation changes to martensite reorientation processes and vice versa during
cycling, is very sensitive to model parametrisation.

6.4.5 Example of finite elements-analysis

To test the model behavior in a more complex geometry, response of a SMA plate
with a cylindrical hole, see Fig. 6.9a), subject to tension was simulated. Due to
the chosen geometry, a heterogenous stress state is expected to develop in the
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Figure 6.9: Finite elements simulation: a sketch of holed plate with simulated
part shaded (dimensions in mm) a), distribution of volume fraction of martensite
b) and volume fraction of R-phase c) at the maximum displacement.

body. The material parameters of the plate were adopted from Table 6.1; the
anisotropy axis (x-axis) is supposed to be parallel to the loading direction.

Due to the obvious symmetry, only one eight of the plate was simulated (see
shaded part in Fig. 6.9a) and appropriate symmetry conditions were prescribed.

The loading was performed at constant temperature Tsim = 40 ◦C (Tsim > Rs).
Initially, the SMA holed plate was stress free and fully in austenite. During the
simulation, the displacement in vertical direction was prescribed on the upper
face of the plate to reach, incrementally, the value of 0.12mm at maximum;
then the load was incrementally released back to zero displacement – we used
approximately 100 load increments for the whole cycle. Other faces for which
symmetry boundary conditions do not apply were let free.

The problem was solved using a hexaedral mesh with standard 8-node linear
brick elements. To find a suitable mesh density, we performed several calculations
with increasing number of elements. According to this tests, a relatively fine mesh
with 10591 uniformly distributed elements was used in the presented simulation,
even though the dependence of the total force on the displacement was obtained
within good accuracy (maximum relative error of order 10−3) using a coarser
mesh with only 2525 elements; see the inset of Fig. 6.10. For simplicity, we did
not exploit adaptive mesh refinement methods.

The first transformation process occurring in the simulation is the transforma-
tion of austenite into R-phase. The transformation starts at the bottom left-hand
corner of the simulated part of the plate (point P in Fig. 6.9). When the applied
load increases, R-phase transforms into oriented martensite. The conversion of
austenite to R-phase and subsequently to martensite is illustrated in Fig. 6.10
that shows the distribution of volume fraction of martensite and R-phase along
the thick arrow marked in Fig. 6.9b), c) in three selected points of the forward
evolution. In particular, we chose the points when the prescribed displacement
reaches one third and two thirds of the maximum displacement as well as the
turning point.

Further, the martensite and R-phase volume fraction distribution in the plate
at the maximum displacement are shown in Fig. 6.9b) and c), respectively. As
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Figure 6.10: Distribution of volume fraction of martensite (VFM; full lines) and
R-phase (VFR; dashed lines) along the thick arrow in Fig. 6.9b),c) during loading
when one third (1/3), two thirds (2/3) and full maximum displacement (3/3) were
reached. Inset: dependence of total force on displacement for 2 different mesh
densities.

can be seen there, the region nearby the point P transformed already fully to
martensite, whereas the region above the hole is dominated by austenite. More-
over, while on the line from P to the middle of the right edge of the simulated
part both martensite and R-phase evolved, in other regions with higher R-phase
concentration almost no martensite is present. Finally, after unloading, only
austenite was present in the body.
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Conclusions

In this thesis, a thermomechanical three-dimensional constitutive model of NiTi-
based SMA in small strain setting was developed and implemented into the finite
element package ABAQUS.

In the modeling part of the thesis, the following results were reached:

• The constitutive model was formulated within the framework of generalised
standard materials introducing two dissipative internal variables. Where-
as the form of the Helmholz free energy function is rather standard and
makes profit form the rule of mixtures, the rate-independent dissipation
function has a novel form, which combines contributions stemming from
the phase transformation and reorientation of martensite. The formulation
of the dissipation function was motivated by the analysis of experimentally
determined phase diagrams, but also an alternative approach based on a
set of assumption is presented.

• The change in the material response associated with the phase transforma-
tion between austenite and R-phase was covered by introducing a further,
non-dissipative internal variable. By this way, presence of R-phase influ-
ences both elastic and thermal properties of the material.

• The convex set to which is the transformation strain constrained is chosen in
a such way, that material anisotropy and tension-compression asymmetry
are covered. Both these phenomena as well as the R-phase transforma-
tion are usually exhibited in real polycrystalline products, thus, have to be
covered in the model.

• The model is able to reliably simulate the major thermomechanical phe-
nomena in SMA as superelasticity, martensite deformation in complex non-
proportional loading paths, the one-way shape memory effect, martensite
stabilization by deformation or evolution of the transformation hysteresis
with temperature.

In the mathematical part of the thesis, we obtained the following results:

• Based on the constitutive model, a time-evolutionary problem of a qua-
sistatic mechanical loading of an NiTi SMA body with prescribed temper-
ature evolution was formulated within the framework of energetic solutions
Francfort and Mielke (2006). It was proved that there exists a solution of
the problem, i.e. a time-dependent quadruplet of state variables satisfying
the energetic balance and the stability condition. The standard approach
by Francfort and Mielke (2006) was slightly modified since the dissipation
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function depends on temperature. Only natural restrictions on the basic
physical parameters of the model were needed in the proof.

• A time-incremental minimization problem corresponding to the evolution-
ary problem was formulated and it was shown to have a solution. This
discrete formulation provided a conceptual algorithm utilized in the numer-
ical treatment.

In the numerical part of the thesis, the following was presented:

• The constitutive model was implemented to the finite element package
Abaqus, which allows to solve problems with general boundary conditions
and complex geometries. It is easy to modify the set of material parameters
of the model, hence adapt it to a particular NiTi-based alloy.

• The Nelder-Mead minimization procedure was utilized in a script which
numerically solves a part of the time-incremental minimization problem and
provides the results to the main routine, which completes the computation.
The script was written in the C++ programming language and provides
also the so-called mechanical tangent operator to accelerate convergence of
the main routine.

• In order to demonstrate the performance of the implemented model, ex-
perimental results from a set of thermomechanical tests on thin NiTi wires
were checked against simulation results. The considerable agreement be-
tween them confirms very good predictive abilities of the model. A finite
element structural analysis of a NiTi bulk component was also presented.
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Appendix A

Elements of Convex Analysis

In this part, we will introduce some basic concepts of convex analysis (see e.g.
Barbu and Precupanu, 2012).

Definition A.0.1 (Convex set). Let X be a vector space. A set K ⊆ X is called
convex if for any x1, x2 ∈ K and t ∈ [0, 1] it holds

tx1 + (1− t)x2 ∈ K. (A.1)

Definition A.0.2 (Convex function). Let V be a normed vector space and f a
function such that f : V → R ∪ {+∞}. The function is said to be convex if for
any x1, x2 ∈ V and t ∈ [0, 1] it holds

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2). (A.2)

The convex function is called proper, if there is at least one x ∈ V such that
f(x) < +∞.

Definition A.0.3 (Indicator function). Let A be a subset of a set X. We define
indicator function I(x) : A→ {0,+∞} by

I(x) =
{

0 if x ∈ A,
+∞ if x ̸∈ A.

(A.3)

Definition A.0.4 (Subdifferential). Let V be a normed vector space, V ∗ be the
dual space of V and f a function such that f : V → R ∪ {+∞}. A subset ∂f of
V ∗ such that

∂f(x) := {z ∈ V ∗ : f(y)− f(x) ≥ ⟨z, y − x⟩ ∀ y ∈ V } , (A.4)

is called the subdifferential of function f at point x and any member of the set is
called a subderivative of f at x.

The notion of subderivative is a generalization of the notion of derivative to
a convex, non differentiable function.

Example A.0.5. Let K be a convex set in V . Then

∂IK(x) =


∅ if x ̸∈ K,
NK(x) if x ∈ ∂K,
{0} if x ∈ K int,

(A.5)
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where we define a cone of outer normals to K at a point x ∈ ∂K, also called
normal cone of K at x, as

NK(x) := {z ∈ V ∗ : ⟨z, y − x⟩ ≤ 0 ∀ y ∈ K}. (A.6)

Let us show the claim. The definition of the subdifferential of IK for any
x ∈ K, i.e. IK(x) = 0, gives

0 ≥ ⟨z, y − x⟩ ∀ y ∈ K, (A.7)

where z is any subderivative of IK at x. If x is inside K, i.e. x ∈ K int, then
{0} ⊆ ∂IK(x). Next, we can find 0 < ϵ ∈ R such that ∀u ∈ Bϵ := {w ∈ V :
∥w∥ ≤ ϵ} it holds x+ u ∈ K. Then take any w ∈ Bϵ. Since also −w ∈ Bϵ(x), we
may apply (A.7) both to y1 := x + w and to y2 := x− w and obtain ⟨z, w⟩ = 0.
For any z ̸= 0 we now define z̃ := ϵz/∥z∥, and since ∥z̃∥ = ϵ, i.e. z̃ ∈ Bϵ(x),
it is ⟨z, z̃⟩ = 0, hence ⟨z, z⟩ = 0, which is in a contradiction to z ̸= 0. Thus,
{0} = ∂IK(x).

If x ∈ ∂K, then the definition of the subbdifferential of IK at x and the
definition of the normal cone at x, (A.6), are equivalent.

For x ̸∈ K, (A.4) may rewritten for any y ∈ K as 0 ≥ ⟨z, y − x⟩+∞ and the
rest is clear.

Remark A.0.6. If f is as in Definition (A.0.4) and convex, then 0 ∈ ∂f(x) is
obviously a necessary and sufficient condition for x to be a minimizer of f at V .

Definition A.0.7 (Legendre-Fenchel transformation, also convex conjugation).
Let V be a normed vector space with the dual V ∗. Let f be a convex function on
V . Its Legendre-Fenchel transform, f ∗, also called convex conjugate, is defined by

f ∗(z) := sup
x∈V

{⟨x, z⟩ − f(x)}, ∀ z ∈ V ∗. (A.8)

Remark A.0.8. Let us note that the just defined convex conjugate, f ∗(z), is a
weak lower semicontinuous convex function in V ∗.

The convex conjugate of the convex conjugate, (f ∗)∗, is often called biconju-
gate. If f is a proper, weak lower semi-continuous convex function, then (f ∗)∗ = f
due to Fenchel-Morau theorem. In that case, moreover,

z ∈ f(x) ⇔ x ∈ f ∗(z) ⇔ f(x) + f ∗(z) = ⟨x, z⟩ (A.9)

for x ∈ V, z ∈ V ∗.

Definition A.0.9. (Positive homogeneity) A function g(x) : V → R is called
positive k-homogenous, k ∈ N, if for any real λ > 0 and any x ∈ V it holds

g(λx) = λkg(x). (A.10)

Lemma A.0.10. Let g be a positive 1-homogeneous convex function defined on
a normed vector space V . Then there exists a closed convex set K such that
g∗(x) = IK(x) for all x ∈ V .
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Proof. According to the definition of Legendre-Fenchel conjugate,

g∗(x) = sup
z∈V ∗

{⟨x, z⟩ − g(z)}. (A.11)

If there exists z0 ∈ V ∗ such that

⟨x, z0⟩ − g(z0) =: C > 0, (A.12)

then, thanks to positive 1-homogeneity of g,

g∗(x) ≥ sup
λ>0

{⟨x, λz0⟩ − g(λz0)} = sup
λ>0

λ{⟨x, z0⟩ − g(z0)} = sup
λ>0

λC = +∞.

(A.13)

If it is not the case, then, necessarily, for all z ∈ V ∗ it holds

⟨x, z⟩ − g(z) ≤ 0, (A.14)

thus, obviously, g∗(x) ≤ 0. Furthermore, continuity (due to convexity) and posi-
tive 1-homogeneity of g even implies g(0) = 0, hence g∗(x) = 0.

Comparing with the definition of indicator function, (A.3), it remains to show
that the set K := {x : ⟨x, z⟩ − g(z) ≤ 0 ∀ z ∈ V ∗} is convex, i.e. for any
x1, x2 ∈ K and any t ∈ [0, 1] it holds x̃ := tx1 + (1 − t)x2 ∈ K. In our setting,
we need to show, that ⟨x̃, z⟩ − g(z) ≤ 0 for all z ∈ V ∗. But this is true, since we
observe

⟨x̃, z⟩ − g(z) = ⟨tx1 + (1− t)x2, z⟩ − g(z)

= t⟨x1, z⟩+ (1− t)⟨x2, z⟩ − tg(z)− (1− t)g(z)

= t[⟨x1, z⟩ − g(z)] + (1− t)[⟨x2, z⟩ − g(z)] ≤ 0. (A.15)
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Nomenclature

[0, T ] a time-interval on which the evolutionary problem is set
Rn the Euclidean space with the norm ∥x∥ = (

∑n
i=1 x

2
i )

1/2

R3×3
sym,0 the Euclidean space of symmetric tensors x in R3×3 with zero

trace, i.e.
∑3

i=1 xii = 0
Ω an open bounded domain in R3 with Lipschitz boundary; the

reference configuration
ΓD the part of the boundary of the domain Ω where Dirichlet

boundary condition is considered
ΓN the part of the boundary of the domain Ω where Neumann

boundary condition is considered
C a generic constant; if it is dependent on some variables, it is

explicitly stated
IK the indicator function (in the sense of convex analysis) to the

set K
∥ · ∥V a norm on a Banach space V ; the subscript is omitted for the

Euclidean norm on Rn

B([0, T ], V ) the spaces of bounded not necessarily measurable functions on
[0, T ] with values in the Banach space V

BV([0, T ], V ) the space of function with bounded variation with values in
the Banach space V equipped with the norm ∥u∥BV([0,T ],V ) =

sup{
∑N

i=1 ∥u(ti+1)−u(ti)∥V ; over all partitions 0 ≤ t1 ≤ . . . ≤
tN ≤ T }

C1([0, T ], V ) the space of functions on [0, T ] with values in some Banach
space V with continuous first derivative equipped with the
norm ∥u∥C1([0,T ],V ) = supt∈[0,T ] ∥u(t)∥V + supt∈[0,T ] ∥u̇(t)∥V

Lp(Ω, V ) the space of p-integrable functions (p ∈ [1,∞)) on Ω with values
in some Banach space V equipped with the norm ∥u∥Lp(Ω) =(∫

Ω
∥u(x)∥pV dx

)1/p
L∞(Ω, V ) the space of measurable functions on Ω with values in

some Banach space V such that the norm ∥u∥L∞(Ω) =
ess supx∈Ω∥u(x)∥V <∞

Lp([0, T ], V ) the space of p-integrable functions (p ∈ [1,∞)) on [0, T ]
with values in some Banach space V equipped with the norm
∥u∥Lp([0,T ],V ) = (

∫ T

0
∥u(t)∥pV dx)1/p,

L∞([0, T ], V ) the space of measurable functions on [0, T ] with values in
some Banach space V such that the norm ∥u∥L∞([0,T ],V ) =
ess supt∈[0,T ]∥u(t)∥V <∞
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W1,p(Ω, V ) the Sobolev space of p-integrable functions (p ∈ [1,∞)) on Ω
whose distributional derivatives are also p-integrable with val-
ues in a Banach space V equipped with the norm ∥u∥W1,p(Ω) =
(
∫
Ω
∥u(x)∥pV + ∥∇u(x)∥pV dx)1/p

W1,p
0 (Ω, V ) the Sobolev space of functions from W 1,p(Ω, V ) whose traces on

ΓD vanish

A,M,R superscripts denoting the type of phase: austenite, martensite or
R-phase

α vector of internal variables
d dissipation function
δ dissipation distance
D integrated dissipation distance, see (5.43)
E regularized energy functional, see (5.42)
ε strain tensor
εin inelastic strain tensor, see (4.2)
εtr transformation strain tensor
η volume fraction of R-phase
ξ volume fraction of martensite
f Helmholtz free energy function
Fvol volume force vector acting in Ω
Fsurf surface force vector prescribed on ΓN

q heat flux vector
s entropy per unit volume
σ stress tensor
t time
T temperature
uX internal energy per unit volume
u displacement vector
U displacement vector prescribed on ΓD

x vector of spatial coordinates
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