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Abstract

The thesis compares GARCH volatility models and its extensions EGARCH,

TGARCH, APARCH and Stochastic Volatility (SV) models with Student’s t

distributed errors and its empirical forecasting performance of Value at Risk

on five stock price indices: S&P, NASDAQ Composite, CAC, DAX and FTSE.

It introduces in details the problem of SV models Maximum Likelihood ex-

aminations and suggests the newly developed approach of Efficient Importance

Sampling (EIS). EIS is a procedure that provides an accurate Monte Carlo eval-

uation of likelihood function which depends upon high-dimensional numerical

integrals.

Comparison analysis is divided into in-sample and out-of-sample forecasting

performance and evaluated using standard statistical probability backtestig

methods as conditional and unconditional coverage.

Based on empirical analysis thesis shows that SV models can perform at

least as good as GARCH models if not superior in forecasting volatility and

parametric VaR.
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Abstrakt

Práca porovnáva GARCH modely volatility a ich rozš́ırenia EGARCH, TGARCH,

APARCH a modely Stochastickej volatility so študentovým t rozdeleńım a ich

empirickú schopnost́ predpovedania Value at Risk na piatich akciových index-

och: S&P, NASDAQ Composite, CAC, DAX a FTSE. Detailne predstavuje

problém vyrátania metódy maximálnej vierohodnosti pre Stochastickú volatil-

itu a navrhuje nedávno vyvinutú metódu tzv. Efficient Importance Sampling.

Táto metóda poskytuje vělmi primerané Monte Carlo odhady vierohodnostnej

funkcie, ktoré sú závislé na numerických integráloch vysokéhu rádu.

Komparat́ıvna analýza je rozdelená na predpovedaćı výkon v prvom obdob́ı

zo vzorky a v druhom obdob́ı mimo vzorku. Tie sú vyhodnotené na základe

štandardných štatistických a pravdepodobnostných backtestových metódach

ako je tzv. podmienený a nepodmienený coverage.

Na základe empirickej analýzy táto práca ukazuje, že SV modely môžu

fungovat́ aspoň tak dobre ako GARCH modely, ak nie k nim byt́ nadradené pri

predpovedańı volatility a následne parametrického Value at Risk.

Klasifikácia JEL F12, C22, C52, C53, G15
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Topic characteristics Value at Risk (VaR) has over time evolved to one of

the most popular comprehensive tools used to estimate exposure to market

risks. VaR claims the maximum loss of portfolio, expressed in its units, with

certain probability during given period. It works with the distribution of loss

and profit. With zero mean only standard deviation of the loss matters. A

time horizon and a confidence level are chosen and a cumulative distribution

function is assumed.

Because volatility is a key input to VaR models, the characterization of

asset or portfolio volatility is of great importance when implementing and test-

ing VaR models. The correct choice of volatility model is one of the most

important factors in determining the effectiveness of VaR. Volatility modeling

is nowadays dominated by three families of models: the Conditional Volatil-

ity ARCH/GARCH models developed by Engle (1982) and Bollerslev (1986),

respectively; Stochastic Volatility (SV) models, which specifies a stochastic

process for volatility, first introduced by Taylor (1982); and Realized Volatility

(RV) models. This paper will consider first two methods of estimating volatil-

ity, while GARCH and SV are two competing, well-known, often-used models

to explain volatility of financial series.

ARCH/GARCH models have subsequently led to a huge family of autore-

gressive conditional volatility models. Its popularity is attributed to the fact

of easy to implement, bringing great results and having large ability to cap-

ture several stylized facts of financial returns, such as time-varying volatility,

persistence and clustering of volatility, and asymmetric reactions to positive
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and negative shocks of equal magnitude. The ARCH/GARCH family proved

to be a rich framework and many different extensions and generalizations of

the initial ARCH/GARCH models have been proposed.

SV models have been until nowadays extremely time consuming to esti-

mate. But it is not longer a case since the strong evolution of simulation based

econometric methods in last years. Problem of difficult estimation is handled

with lot of algorithms developed recently: Generalized Methods of Moments,

the Quasi Maximum Likelihood method, Simulated Maximum Likelihood tech-

nique, the Markov Chain Monte Carlo method. The idea behind the family of

SV models is that the volatility is driven by a latent process representing the

flow of price relevant information

Both GARCH and SV models take account the important volatility cluster-

ing of financial returns. But the main difference is that in SV model the volatil-

ity is a latent variable with unexpected noise, while in the GARCH model, the

volatility one period ahead is observable given todays information.

However, VaR models are useful only if they predict future risks accurately.

In order to evaluate the quality of the VaR estimates, the models should always

be backtested with appropriate methods. Backtesting is a statistical procedure

where actual profits and losses are systematically compared to corresponding

VaR estimates. The objective of this paper will be the theoretical and empirical

comparison and evaluation of GARCH and SV models for forecasting of VaR.

Empirical part will be applied on 4 different western European stock indices

Hypotheses

1. SV is better (less forecast errors) than GARCH in estimating asset volatil-

ity

2. SV model captures more aspects of volatility than the GARCH model

due to its sources of variability

3. SV model is more flexible than the GARCH model in the sense that it

is able to generate series with properties more in compliance with the

properties often observed in real financial time series.

4. Best model for volatility forecasting also is the best model for VaR fore-

casting.
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Methodology The paper will start with theoretical introduction to risk man-

agement measure VaR and its different types of modeling. We consider impor-

tant aspect in VaR modeling: volatility modeling methods. We discuss all the

three used nowadays. Conditional variances, stochastic volatility and realized

volatility methods. More in details we devote to GARCH family and SV fam-

ily. Here we examine the importance of the choice of distribution. We will use

three different distributions: the normal distribution, the student t distribution

and the skewed t distribution and consider heaviness of theirs tails. Coming to

the empirical part we run GARCH models and SV models with some its exten-

sions on our data sample and we forecast the volatility and VaR, respectively.

GARCH will be estimated using QMLE (quasi-maximum likelihood estimate)

and SV through Kalman Filter or Markov Chain Monte Carlo method. Good

VaR estimates should have correct unconditional coverage: fraction of VaR

violation should be equal to the nominal coverage probability. Therefore VaR

forecasts are evaluated using the LR Kupiec test for correct unconditional cov-

erage, and a Markov test for correct conditional coverage. But it is implicitly

assumed that Var is independent, while VaR estimates should have indepen-

dence. VaR violations should be spread out over the sample and not come

in clusters. So another test will be used to check for the independent VaR

violations, proposed by Christoffersen (1998).

Outline

1. Risk management - VaR

2. VaR forecasting

3. Comparison of GARCH vs SV methods

4. Empirical analysis

5. Backtesting of models

6. Conclusion
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Chapter 1

Introduction

Behavior of financial time series is a hot topic considering unexpected extreme

events of price movements. Recent global financial crises 2008 as well as the

former market crash in October 1987 and many others are perpetual triggers

to further search for more efficient and exact predicting instruments. All of

these crisis are characterized by the substantial increase in market volatility.

Volatility in finance is a variable with ability to characterize the variations of

returns in time. The point of the interest is therefore highly precise estimate

of this volatility and its subsequent prediction. By virtue of its fundamentals

it is also a cynosure of risk management and its measures for risk evaluations.

One of the most widely known measure in use of risk management de-

partments across industry is the popular Value at Risk (VaR). For financial

institutions it is also required by market risk framework accord Basel II to re-

port 10-day ahead VaR at 95% level. VaR is simply defined as a measure of

potential loss of some risky value associated with general market movements

over a defined period of time with a given confidence interval.

It is now obvious that by our thesis we will contribute to works that study

volatility models and consequently evaluate them in purpose of VaR predic-

tions. Considering a bulk of aforementioned literature we find out that there

is still not much written and examined on topic of Stochastic Volatility (SV)

models, firstly introduced by Taylor (1982). That is why we choose it as cen-

ter point of our thesis. Contrary to Stochastic Volatility models there are

very popular and nowadays widely employed General Autoregressive Condi-

tional Heteroskedasticity (GARCH) models established by Bollerslev (1986).

To deviate from the majority of GARCH models analysis we therefore choose

comparison of GARCH models with SV models and evaluate them in sence
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of parametric VaR predicting ability. From the group of SV models we chose

autoregressive SV model of order one and collaterally GARCH(1,1) both with

Student’s t distributions.

SV models and GARCH models are very similar and well established in fi-

nancial econometrics. Both distinguish of time-varying and persistent volatility

as well as of the leptokurtosis in financial return series (Liesenfeld & Richard

2003). Generally, excepting the calculation methods, SV is treated as adequate

substitution for GARCH models. However, the advantage of SV models is also

the ability to account for leverage effect.

Literature discussing SV is more or less analyzing the Gaussian Stochastic

Volatility. The one discussing GARCH models with its modifications and ex-

tensions is very far-reaching. From the theoretical papers comparing these two

models are worth noticing, e.g, Carnero et al. (2004), Gerlach & Tuyl (2006)

and Bai et al. (2003). These paper will be also the fundamentals for our thesis.

The reason why SV models did not gain on popularity as GARCH models

did is simply in its estimation procedure. While GARCH is easily estimated via

Maximum Likelihood Estimator, calculation of likelihood value for SV model

is very complicated and time consuming. Here it comes to the need of integra-

tions trough high-dimensional integrals. This cannot be done analytically and

some more complex numerical methods are required. The main reason is that

SV volatility enters the model nonlinearly, as log-volatility and is explained,

except its lagged variable, by random error process. So the SV model has two

random error terms1 and can be more flexible in explaining price movements.

Nevertheless this implies that volatility in SV is latent process that cannot be

measurable.

For estimation of SV model many procedures have been proposed. From

methods of moments, trough maximum likelihood to Monte Carlo Markov

Chain simulations. In our thesis we adopt a relatively new procedure of Efficient

Importance Sampling (EIS) Monte Carlo (MC) based on paper by Liesenfeld &

Richard (2003). Importance sampling is a tool which provides an estimate of a

high-dimensional numerical integrals and so on the value of likelihood function.

It is ideally suited for SV differential equations computations.

Aim of this paper is to find out whether SV models with t-distribution can

be alternative or superior to GARCH-t models in predicting risk measures.

These two models when calculated, will be compared to each other for five

different world indices in empirical part of this thesis. As we already men-

1GARCH has only one error term in return equation.
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tioned, we calculate VaR measure from estimated volatilities and subsequently

we test these risk measures by backtesting procedures. We choose particular

backtests based on our data analysis. The most decision power is ascribed to

unconditional and conditional coverage.

The thesis is organized as follows. In Chapter 2 we introduce the risk

management popular measure Value at Risk together with its many different

approaches of calculations. We go in details trough parametric method, the

one used for our computations. In Chapter 3 we analyze volatility forecasting

and review SV and GARCH models. Here we also describe common Maximum

Likelihood Estimator in a nutshell and EIS procedure in details. 4th Chapter is

dedicated to introduction of backtesting methods used for evaluation. Finally,

Chapter 5 is an empirical study of two competing models with resume of results.

Conclusion of whole work is in the last but not least Chapter 6.

The Rigorous Thesis Extension

The presented Rigorous Thesis is the direct extension of the Diploma Thesis

submitted and defended in September 2012 at the Institute of Economic Stud-

ies (IES), Charles University in Prague submitted under the same title. The

Diploma Thesis deals with the comparison of two competing models GARCH

and Stochastic Volatility on the field of one-day-ahead VaR calculations. The

main difficulty is in the SV calculation heftiness; the model that is much more

complicated to estimate but the goodness of fit results should have been sig-

nificantly better that of the simple GARCH.

This Rigorous Thesis extends this comparison by three other models, con-

cretely extensions of GARCH as it was also suggested by opponent of the

Diploma Thesis. The Exponential GARCH, Threshold GARCH and Asym-

metric Power GARCH are introduced. All three models keeps the simplicity of

GARCH estimations although they dissolve some of the GARCH model draw-

backs. All these three models deal with stylized fact of financial time series;

the asymmetry effect (leverage effect) of the positive and negative shocks in

error terms. The APARCH model furthermore accounts for the long memory

property.

These three models are estimated, evaluated, one-day-ahead VaR predic-

tions are calculated and they are backtested subsequently. They are compared

among each other and also the current models GARCH snd SV are added and

evaluated. The same datasets of five stock indices are used.



Chapter 2

Value at Risk

The concept of value at risk (VaR) emerged as the one way of measuring the

uncertainty in the future value of different financial instruments that a financial

institution faces. Its fundamental purpose is to summarize the potential for

deviations from a target or expected value and to define a loss that we are sure

at some confidence level (1−α) will not be exceeded over some period of time t.

VaR gives us possibility to easily capture this risk by one formula. Three major

components of risk that financial institution faces1 are besides market risk also

credit risk and operational risk. As there are several sources of risk, in our

thesis we consider only market risk, while VaR is generally preferred approach

for measuring it. However the concept is also applicable to other types of risk.

Reasons to be one of the most popular comprehensive tools in this area can

be summarized as follows: It is easy to implement and understand; it simply

claims the maximum possible loss with some chosen probability; is measurable

at any level, from an individual trade or portfolio, up to a single enterprise-wide

VaR measure covering all the risks in the firm as a whole; it is expressed in its

units during given period; is a universal metric that applies to all activities and

to all types of risk and can be compared across markets and different exposures;

and last, but not least, it is used for risk assessment as well as for setting margin

requirements.

Following the lead from main regulators and large international banks dur-

ing the mid-1990s, almost all financial institutions nowadays use some form of

VaR as a risk metric (Alexander 2009). As popularity of VaR rises its criti-

cism widely spreads in recent years, also encouraged by global financial crisis

2008 and many modifications of fundamental VaR have been proposed so far.

1In fact, it faces many more risks as e.g. systemic risk, pension risk, concentration risk,
strategic risk, reputation risk, liquidity risk, legal risk.
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Between classical modifications of VaR belongs mean-conditional VaR (CVaR)

introduced by Rockafellar & Uryasev (2000) that exclusively incorporate the

negative tail risk while it focuses not only on frequency but also on the size

of losses when extreme event occurs and can involve discreetness. Good com-

parison study on VaR vs. CVaR provides Sarykalin et al. (2008). Another

modification is implementation of Cornish-Fisher Expansion (CFVaR). This

method takes into account the higher skewness and kurtosis and is used when

dealing with returns wit not normal distribution. For more details see Maillard

(2012). Extreme Value Theory(EVT) is a risk capital measure similar to VaR,

but it accounts only for the tails of distribution where extreme values lies. VaR

looks at whole distribution, see e.g. McNeil & Frey (2000).

2.1 Brief History of VaR

It is known that history of risk measurement VaR is traced since 1980s, when

firms began to quickly develop, rise and became more complex. All they were

in need of suitable management and measures for handling their internal risk.

Thorough, the mathematics that underlie VaR were largely developed already

in the context of portfolio theory i.e. by Leavens (1945), Markowitz (1952) and

Roy (1952), even their efforts were led towards a different ends, concretely to

devising optimal portfolios for equity investors (Damodaran 2007).

However, the main trigger for the first VaR theory boost is assigned to

stock market crash in 1987. Later there was also contribution in the rest of

the world occurring as Mexican (1994-1995), Asian (1997-1998) and Japanese

(1990) crises. Those years are also known for the increase of the off-balance-

sheet products and disastrous derivatives trading techniques e.g. Long-Term

Capital Management in 1998 and Orange County in 1994. All these affairs

lead to a great need of sophisticated risk management between and within

banks and financial institutions. The thing of matter is also the extending

volume of trading portfolios with its growing volatilities. The first regulatory

measures that evoke VaR, were initiated in 1980, when the Securities Exchange

Commission (SEC) tied the capital requirements of financial service firms to the

losses that would be incurred, with 95% confidence over a thirty-day interval, in

different security classes. At that time historical returns were used to compute

these potential losses.

Latter regulatory frameworks for reliable financial risk management and

regulation of financial institutions are Basel Capital Accords. Beginning with
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Basel I (1988), Basel II (2004) with its many updates by the Basel Committee

on Banking Supervision (BCBS) under the Bank of International Settlements

(BIS) or Capital Adequacy Directive 1 (93/6/EEC) and (98/31/EEC) of the

European Economic Community. BASEL II requires reporting 10-day VaR at

95% level. In 2010-2011 there was agreed BASEL III, as a result of recent

financial crises. It strengthens bank capital requirements and introduces new

regulatory requirements on bank liquidity and bank leverage. It should be

brought into effect in 2013.

At about the same time in 1994 J.P.Morgan releases its RiskMetricsRM sys-

tem, where the term of VaR is used. System allows the access of public to data

on the variances of and covariances across various security and asset classes,

that it had used internally for almost a decade to manage risk, and allowed

software-makers to develop a new software to measure risk. (Damodaran 2007)

Since then, as we already mentioned, VaR has gained lot of popularity

between banks, regulators, financial institutions and lately also between non-

financial service firms as commodity and energy merchants, and other trading

organizations.

2.2 Mathematical Definition of VaR

According to Jorion (2006) for a given portfolio, probability and time horizon,

VaR is defined as a threshold value such that the probability that the mark-

to-market loss on the portfolio over the given time horizon exceeds this value

(assuming normal markets and no trading in the portfolio) is the given prob-

ability level. In other words, VaR is measure of potential loss of risky value

associated with general market movements over a defined period of time for a

given confidence interval. In statistics, VaR represents a one-side quantile from

a return distribution observed over a particular time horizon for a defined time

period. When estimating VaR, we work with the distribution of loss and profit

and two basic parameters, mentioned confidence level and time horizon. Impor-

tant issue is to find most suitable cumulative distribution function (CDF) for

given financial returns. As we will mention later, they are usually not normal

distributed while they feature fat tails, higher kurtosis, etc..

For mathematical definition of VaR we use one by McNeil et al. (2005):

Definition 2.1 (Value at Risk). Given some confidence level α ∈ (0, 1). The

Value-at-Risk VaR of our portfolio at the confidence level α is given by the
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smallest number l such that the probability that the loss L exceeds l is no

larger than (1− α). Formally,

VaRα = inf{l ∈ R : P (L > l) ≤ 1− α} = inf{l ∈ :FL(l) ≥ α}. (2.1)

First equation is definition of VaR and second presents the probability dis-

tribution of profit and loss, where FL(l) is its cumulative distribution function.

The minus sign presents VaR only as a positive value.

As we already mentioned, VaR is a one-side quantile function, represented

by an inverse function to CDF. To be precise, we define quantile function as:

Definition 2.2 (Generalized Inverse and Quantile Function).

(i) Given some increasing function T : R→ R, the generalized inverse function

of T is defined by T←(y) := inf{x ∈ :T (x) > y}, where we use the

convention that the infimum of an empty set is ∞.

(ii) Given some df F , the generalized inverse F← is called the quantile function

of F . For α ∈ (0, 1) the α-quantile of F is given by

qα(F ) := F←(α) = inf{x ∈ :F (x) > y}. (2.2)

If F is continuous and strictly increasing, then qα(F ) = F−1(α), where F−1

is the ordinary inverse of F . Figure 2.1 graphically shows the 95% VaR for

standardized normally distributed profit and loss.

2.3 VaR Approaches

Popularity of VaR and its many forms cause that there are known many dif-

ferent approaches for VaR calculations. There is no single universal method

to obtain perfectly suitable result, but they all follow a common general struc-

ture and result from the characteristics of financial data. This structure can be

summarized in three points: first to mark-to-market the portfolio, second to es-

timate the distribution of portfolio returns and last to compute the VaR of this

portfolio. For more details see Engle & Manganelli (2004). We will introduce

briefly the main methods that are classified into three broad categories:

• Parametric methods (the one we are going to use in our thesis)

• Nonparametric methods (usually simulations)
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Figure 2.1: 95% VaR of normal distributed returns

Source: Dowd (2005).

• Semi-parametric methods

Parametric method involve GARCH and SV methods as well as RiskMetricsRM

method, that is actually one case of Exponentially Weighted Moving Av-

erage (EWMA) method. This is the approach we are going to use in our

thesis. These methods do make assumptions about the distribution of

returns, which is their weaker point. Also to provide accurate estima-

tions, they need data sets with enough observations in order to estimate

parameters. Advantages of these methods are concerned to be that they

provide straightforward VaR formulas for calculations.

The connection between our analyzed SV and GARCH volatility models

and α-percentage value at risk at time t is straightforward

V aRα,t = µt + htqα(F ), (2.3)

where µt and ht are mean and standard deviation of given loss distribution

F , respectively, and qα(F ) is the α-quantile of given distribution. ht will

be the point of our interest. The goal of this thesis will be the comparative

study of SV and GARCH volatility estimation in VaR performance. We

will discuss it in more details in next chapter. Here is also crucial the right
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choice of financial returns distribution. It is widely known that time series

returns does not behave according to normal distribution. Their known

characteristics, as fat-tailness and leptokurtosis, are better described with

Students-t, or skewed-t distribution, as well as with generalized error

distribution (GED). In this thesis we consider Students-t distribution

that has cumulative distribution function (cdf)

p = F (x|ν) =

∫ x

−∞

Γ
(
ν+1
2

)
Γ
(
ν
2

) 1√
νπ

1(
1 + t2

ν

) ν+1
2

dt, (2.4)

where ν denotes the degrees of freedom (for ν → ∞, the t-distribution

approaches the normal distribution) and the gamma function is Γ(ν) =∫∞
0
e−xxν−1dx. Degree of freedom represents a parameter to be estimated.

This distribution is symmetric around zero and for ν > 4 the conditional

kurtosis equals 3(ν − 2)(ν − 4)−1.

Nonparametric method is for example very known and easy to implement His-

torical Simulation (HS), where no distributional assumption are needed.

It reduces the risk measure estimation problem to one-dimensional prob-

lem and uses a simple concept of rolling windows. But as it is also un-

conditional method and has one implicit assumption, that distribution

of portfolio return doest change over time, this method does not provide

very creditable results. On the other hand Alexander (2009) claims that

HS method is becoming more and more popular because of its limitations,

that are actually advantages. He states that historical VaR does not have

to make an assumption about the form of the distribution and dependen-

cies of the risk factors are inferred directly from historical observations

which still include the dynamic behavior of risk factors in a natural and

realistic manner. These estimates may also present predictable jumps,

due to the discreteness of extreme returns.

Monte Carlo method is rather general name for any approach based on

simulations of an explicit parametric model for risk factor changes. It is

an extremely flexible tool that has numerous applications to finance. Can

be either conditional or unconditional according to the explicit model is

dynamic time series or static distributional model. This method is gener-

ally considered as very accurate VaR estimator, however, the calculations

are very time-consuming as all simulations. It is used as method of ’last
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resort’ when analytical methods fail. We will use such a simulations in

our thesis when calculating SV volatility.

Semi-parametric method are recently developed and they gain on popularity.

They are hybrid approaches, arising from criticism of particular VaR

methods. One appreciable approach is combination of RiskMetricsRM and

historical simulation methodologies. It differs by applying exponentially

declining weights to past returns of the portfolio.

2.4 Criticism & Limitations

VaR criticism captures wide area of its characteristics from very different points

of view. Common drawback of many risk measures and is not unique for VaR,

is that their estimates can be subject to errors. VaR systems can be subject to

model risk, the risk of errors arising from inappropriate assumptions on which

model was based, or implementation risk, the risk of errors arising from the

way in which the systems are implemented.

More peculiar drawbacks are analyzed e.i. in Dowd (2005) or McNeil et al.

(2005). One is that it does not give us any information about how much we

can loose if certain probability is over-crossed, i.e. when loss really occurs. It

tells us only the bottom bound of the loss and the probability with which it

wont occur during certain period.

Another limitation is that VaR doesn’t satisfy the risk diversification prin-

cipal and has poor aggregation properties. Mathematically, it is not a coherent

risk measure as Artzner et al. (1999) firstly showed in his work, that VaR of

the diversified portfolio is larger than the VaR of the undiversified portfolio.

Often highlighted limitation of VaR is that it disobey the feature of sub-

additivity. A risk measure ρ(.) is said to be sub-additive if the measured risk of

the sum of positions A and B is less than or equal to the sum of the measured

risks of the individual positions considered on their own, ρ(A + B) ≤ ρ(A) +

ρ(B). It means that cumulating individual risks does not increase overall risk,

what is highly desirable from a risk measure.

Based on this criticism alternative risk measures have been developed as

Expected Shortfall (ES) and Extreme Value Theory (EVT), demonstrably su-

perior. ES, also called Conditional VaR, is the expected loss conditional that

the loss is greater than some q percentile of the loss distribution, certain VaR.

It is clear that ES is more precise on the tails of distribution than normal VaR.
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On the other hand, EVT is more recent approach in economics, even it was

already widely used in other sciences. This approach considers only extreme

risk events that are rare and have catastrophic impact. This approach does not

need any assumptions about return distribution. It considers only distribution

of tails and can fit on this tail any probability distribution.

The question arises why to bother with VaR predictions when other nowa-

days methods are superior in many different manners. As Dowd (2005) answers:

”Part of the answer is that there will be a need to measure VaR for as long as

there is a demand for VaR itself: if someone wants the number, then someone

has to measure it, and whether they should want the number in the first place

is another matter.” Another reason is that VaR is simply the quantile of some

distribution what is still desirable when calculating other risk measures, e.g.

ES.



Chapter 3

Modeling Volatility

The main characteristic of any financial asset is its return that is considered

to be a random variable. This random variable can be partly described with

assets volatility, which describes the spread of outcomes of this variable and

can be used to value a market risk.1

It is now widely agreed that financial asset return volatilities and correla-

tions (henceforth volatilities) are time varying, with persistent dynamics. (An-

dersen et al. 2007). Even some believes that volatility as a random future

event is unpredictable, there are some stylized facts about financial volatility,

that can disaffirm this thinking. Return series are generally found to have

their marginal distributions leptokurtic. They feature fatter tails than normal

distribution and excess kurtosis. Very familiar pattern that volatility exhibits

is volatility clustering. As noted by Mandelbrot (1972), large changes tend

to be followed by large changes, of either sign, and small changes tend to be

followed by small changes, meaning that while returns themselves are uncorre-

lated the absolute and squared returns display a positive, significant and slowly

decaying autocorrelation function. Fact, that volatility tends to increase when

prices decrease (price movements are negatively correlated with volatility) is

called leverage effect. This has been documented for the first time by Black

(1976). There are also known patters that volatilities of different time series

are mutually correlated and there are co-movements of these volatilities. These

correlations are explained by multivariate group of models.

Modeling volatility is crucial issue to risk management and always been of a

big importance, since volatility is considered to be a measure of risk. Banks and

1Although volatility is related to risk, it is not exactly the same. Risk is uncertainty
of a negative outcome of some event (e.g. stock return); volatility measures the spread of
outcomes (Ladokhin 2009).
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many other financial institutions assess risks by VaR models based on volatility

estimates as it was explained in previous chapter. In other words, modeling and

forecasting the covariance structure of asset returns is very crucial for managing

risk and relevant models (Tersvirta 2009).

In this chapter we will analyze and compare two, on the first sight, very sim-

ilar models for volatility predictions. We consider popular General Autoregres-

sive Conditional Heteroskedasticity model against less known Autoregressive

Stochastic Volatility model. Both for modeling time varying volatility, capable

to capture the volatility clustering. Further, we will use these models for mod-

eling volatility and VaR, respectively, and we analyze their performance in the

sense of VaR predictions.

Nevertheless, todays widely used approach for modeling volatility is concept

of Realized Volatility (RV) that takes advantage of intra day information and

analysis the high-frequency data. This method is quickly developing in recent

years due to extensive databases and booming evolution of computer sciences.

It is confirmed by many works that RV can outperform GARCH volatility ap-

proaches while it provides far more accurate calculations and has the advantage

of being a non-parametric approach. However, this is not subject of our thesis

it can be analyzed in further research.

3.1 Overview: GARCH vs. SV

When talking about modeling volatility two similar approaches were developed

synchronously among many others, but only one of these gained the popularity,

especially, when it comes to empirical examinations.

Since 1982, when Engle (1982) introduced his first Autoregressive Condi-

tional Heteroskedasticity (ARCH) model and consecutively his student Boller-

slev (1986) upgraded it to the General Autoregressive Conditional Heteroskedas-

ticity (GARCH) model, these methods attracted plenty of attention. Lot of

work has been dedicated to research these practices, many extensions of the

ARCH/GARCH models have been developed and the method is widely used

nowadays.

Collaterally, in 1986 another method for modeling volatility has been sug-

gested, called the Autoregressive Stochastic Volatility (ARSV) or simply Stochas-

tic Volatility (SV) model by Taylor (1986). It is at large considered to be a

successful alternative to the class of ARCH models in distinguishing of the

time-varying and persistent volatility as well as of the leptokurtosis in finan-
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cial return series (Liesenfeld & Richard 2003). Even the distinct advantage

of stochastic volatility models is the incorporation of leverage effect, at least

at the univariate level (McAleer 2009) and also the possibility to capture the

main empirical properties often observed in daily series of financial returns in

a more appropriate way (for more details, see Carnero et al. (2004)), there is

still much less literature on this topic. The main reason of being not such a

favorite method is its complexity and difficulty of estimations, mainly its com-

putations. Basically, the trouble stems from the core of the SV model, where

volatility is modeled as an unobserved latent variable and while it assumes two

error processes compared to the GARCH that assumes only one.

Our analysis will be based on several papers trying to provide the compar-

ison of SV and ARCH/GARCH family of models, mentioned subsequently.

The theoretical examination of GARCH and SV comparison provide Carnero

et al. (2001). They show that SV models better explain the excess kurtosis,

low first order autocorrelation and high persistence of volatility. They also

show that SV model is less dependent on the choice of returns distribution.

So et al. (1999) compare the predictive performance of both models analyzing

returns of five exchange rates. They conclude that both models have similar

performance in terms of the Mean Square Prediction Error and Mean Absolute

Prediction Error. Only in two of the all series considered, the ARSV predictions

of volatility outperform the GARCH predictions. Carnero et al. (2004) shows

the different relationship between kurtosis, persistence of shocks to volatility,

and first-order autocorrelation of squares in GARCH and ARSV models. While

parameters explaining these moments are closely linked in GARCH model, they

can be modeled independently in SV model and better represent observed pat-

terns of financial time series. Study of Yu (2002) examined nine univariate

models to forecast volatility of index NZSE 402 and considers SV model to be

superior according to three different asymmetric loss function and Root Mean

Equare Error (RMSE) testing. In the paper Mapa et al. (2010) they compare

basic GARCH volatility forecasts with one from SV model, computed trough

Kalman Filter or Markov chain Monte Carlo (MCMC) method. They conclude

that SV model captures more aspects of volatility than GARCH model due to

its sources of variability and produces lower forecast errors. Bai et al. (2003)

study volatility clustering and conditional non-normality and its implications

2New Zeland index, one of the least regulated economies and freest share markets in the
world
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to leptokurtosis for both GARCH and ARSV models. They compare this two

models using kurtosis autocorrelation relationship. Gerlach & Tuyl (2006) also

confront the empirical fit of both model and presents MCMC and importance

sampling techniques for volatility estimation.

According to reviewed literature we assume, that ARSV models are ade-

quate substitutes to GARCH models, when omitting their calculation difficul-

ties, if not superior. In our thesis we will try to testify this affirmation in our

empirical part. However, as noticed by Hafner & Preminger (2010), the two

models are non-nested and this can complicate the model comparison. Models

can be rejected or accepted against each other and no one can be superior.

3.2 Stochastic Volatility Models

The origins of SV models are diminish. We can say they date back 40 years

when Clark (1973) introduced Bochner’s (1949) time-changed Brownian motion

into financial economics. Initiatory published paper considering real volatility

clustering and introducing bases of SV models is considered to be the one by

Taylor (1982). Later in Taylor (1986) he expands his theory and defines the

first SV model in context of Financial Econometrics3. The key feature of SV

models, the possibility to deal with the leverage effects of financial time series,

is discussed afterwards in paper of Hull & White (1987).

In our thesis we will stem from the later work of Taylor (1986) where the ba-

sic model of SV is defined. It is also called log-normal autoregressive stochastic

volatility ARSV(1) model, while he suggests to model the logarithm of volatil-

ity as AR(1) process. This model is used to account for the well documented

autoregressive behavior in the volatility of financial return series and represents

an alternative to the ARCH/GARCH models (Liesenfeld & Jung 1997). To de-

mark the family of SV models, we can say, that these models have the volatility

driven by a latent process representing the flow of price relevant information.

The corresponding log-normal ARSV model is given by

rt =
√
htεt (3.1)

lnht = γ + δ lnht−1 + ρηt, (3.2)

where rt is return observed at time t, {εt} and {ηt} are mutually independent

and identically distributed (i.i.d.) random variables, and at the same time {ηt}
3Taylor (1982) and Taylor (1986) did not discussed leverage effect, so far
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is standard normal. Assumption of {ηt} normality is validated by Andersen

et al. (2003) who show that log-volatility process can be well approximated

by a Normal distribution. {εt} in the basic Taylor’s model is also standard

normal, but as we already mentioned, in this thesis we will work with Student’s

t distribution of returns, {εt} ∼ tν . Vector θ = (γ, δ, ρ)′ ∈ Θ of parameters is to

be estimated, where δ measures the persistence of the latent volatility process

lnht, while ρ measures the standard deviation of volatility shocks. For |δ| < 1

returns rt are strictly stationary, ρ is assumed to be greater than zero. And as it

was mentioned before, the log-volatility lnht as latent variable is unobservable,

contrary to the GARCH model volatility.

Autocorrelation function (ACF) of squared returns, variance and kurtosis

of returns can be expressed as a function of parameters vector θ. φ(τ, θ), ψ(θ)

and κ(θ) are ACF, variance and kurtosis, respectively, and for the Gaussian

ARSV(1) model holds

φ(τ, θ) =

exp

(
ρ2

1−δ2 δ
τ

)
− 1

κ− 1
, τ ≥ 1 (3.3)

ψ(θ) = exp

(
γ

1− δ
+

ρ2

2(1− δ2)

)
(3.4)

κ(θ) = 3 exp

(
ρ2

1− δ2

)
. (3.5)

The latent volatility ht enters the SV model nonlinearly, which leads to

a likelihood function that depends on high-dimensional integrals, from where

the problem of computations results. Many papers concentrate on finding the

most appropriate way how to overcome the hassle of estimating the stochastic

volatility parameters. The paper of Broto & Ruiz (2004) provides very clear

review of so far known methods for estimations. They divide these methods

onto the two main groups. First group is based on statistical properties of rt

and second group uses linearized SV model and subsequently the estimation is

based on logarithm of squared returns. In our thesis we will be interested only

in the first group.

Estimating SV parameters based on rt

To present at least the basics of these estimators we start with the simplest

procedures called Method ofMmoments (MM), also used by Taylor (1986) in

his early works. Later, Melino & Turnbull (1990) apply Generalized Method
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of Moments (GMM) and coincidently, at the same time Duffie & Singleton

(1990) propose the Simulated Method of Moments (SMM). These methods

are generally considered to be easy to implement but have poor finite sample

properties. The GMM is based on convergence of selected sample moments to

their unconditional expected values and the later one simply replaces analytical

moments by simulated processes.

Maximum Likelihood (ML) methods are considered to be better while their

efficiency is superior with respect to MM. In order to derive likelihood from the

equation, the vector of unobserved volatilities has to be integrated and this is

the already mentioned problem. Harvey et al. (1994) and Ruiz (1994) suggest

potential Quasi-Maximum Likelihood (QML) approach but do not solve the

computational difficulty.

MCMC estimators are firstly and independently proposed by Jacquier et al.

(1994), Kim et al. (1998) and have been followed by many other authors in the

context of SV parameters estimations. Jacquier et al. (1994) also show that

it is more efficient method that both QML and MM estimators. Concurrently

the numerical methods based on important sampling and MCMC procedure are

developing and the first authors that used these procedures are, for example,

Shephard et al. (1995) and Sandmann & Koopman (1998). The big advantage

of this importance sampling over MCMC algorithm is that it is less computation-

ally demanding and avoids convergence problems (Broto & Ruiz 2004). In our

thesis we are going to follow the method used in Liesenfeld & Richard (2003),

the ML estimation which is based on the Efficient Importance Sampling (EIS).

This technique was firstly proposed by Richard & Zhang (1996) for computing

high-dimensional integrals. Recently elaborated summarizing work in details

on EIS is presented by Richard & Zhang (2007).

An optional method is an estimation procedure by means of auxiliary model.

One known method is Efficient Method of Moment (EMM), used by Gallant

et al. (1997) or Jiang & Van Der Sluis (1999), and another is Indirect Infer-

ence method proposed by Gourieroux et al. (1993), They also show that these

two estimators are asymptotically equivalent. The idea is in the right choice

of an auxiliary model that is easy to estimate. It is clear that efficiency of

these methods strongly depends on the choice of auxiliary model and the main

drawback is the expensiveness in computational terms.

In the following subsection we will introduce the technique of EIS and its

implementation to SV model and its extensions.



3. Modeling Volatility 18

3.2.1 Efficient Importance Sampling

EIS is relatively new method developed by Richard & Zhang (1996), Liesenfeld

& Richard (2003) and Richard & Zhang (2007). Essentially, it is a strategy

to build a sampling density containing a huge number of parameters and ide-

ally suited to provide extremely accurate estimates of some high dimensional

integrals (Pastorello & Rossi 2010). For explanation of EIS we rewrite the SV

model so that we replace lnht with λt, that will represent log volatility. Then

we have

rt = β exp(
λt
2

)εt {εt} ∼ tν (3.6)

λt = δλt−1 + ρηt, (3.7)

where ν are degrees of freedom and t = 1...T , {ηt} ∼ (0, 1) and β is a scale

parameter that removes the necessity of including a constant term γ in the

log-volatility equation. According to Liesenfeld & Richard (2003) we denote

rt an n-dimensional vector of observable random variable and sequence R =

{rt}Tt=1, along with λt a q-dimensional vector of latent variable and sequence

Λ = {λt}Tt=1. We let f(R,Λ; θ) to represent a joint density of R and Λ, then

we can write the likelihood associated with observable R as

L(θ;R) =

∫
f(R,Λ; θ)dΛ. (3.8)

This can be factorized to

L(θ;R) =

∫ T∏
t=1

f(rt, λt|Λt−1, Rt−1, θ)dΛ (3.9)

and the right side of the equation can be further factorized to

f(rt, λt|Λt−1, Rt−1, θ) = g(rt|λt, Rt−1, θ)p(λt|Λt−1, Rt−1θ), (3.10)

where g(.) denotes the conditional density of rt given (λt, Rt−1)associated with

εt in (3.6) and p(.) the conditional density of λt given (Λt−1, Rt−1) associated

with AR process of the latent variable.

The problem of SV models estimations is obvious from the likelihood equa-

tion (3.9) where we have to integrate over the latent factor a T dimensional in-

tegral. This can not be solved analytically, so the numerical simulation method

is required. But the natural MC estimator is highly inefficient in this case, ac-
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cording to the dramatic increase of the MC sampling variance with the sample

size T , plus it ignores the relation of observation of R and the underlying latent

process λt. For more details see Danielsson & Richard (1993).

Here comes the EIS technique to solve this struggle. It searches for such a

sequence of samplers which takes into account that rt’s are conveying the sam-

ple information on λt’s. Therefore, we denote a sequence of auxiliary samples,

{m(λt|Λt−1, at)}Tt=1 indexed by A = {at}Tt=1, the auxiliary parameters. Now for

any A the integral in likelihood equation (3.9) can be rewritten as

L(θ;R) =

∫ T∏
t=1

[
f(rt, λt|Λt−1, Rt−1, θ)

m(λt|Λt−1, at)

] T∏
t=1

m(λt|Λt−1, at)dΛ (3.11)

with its corresponding importance sampling MC estimate

L̃N(θ;R,A) =
1

N

N∑
i=1

{ T∏
t=1

[
f
(
rt, λ̃

(i)
t (at)|Λ̃(i)

t−1(at−1), Rt−1, θ
)

m
(
λ̃
(i)
t (at)|Λ̃(i)

t−1(at−1), at
) ]}

, (3.12)

where {λ̃(i)t (at)}Tt=1 is the trajectory of importance sampler m.

EIS tries to minimize the MC sampling variance of (3.12) by choosing such

a values of auxiliary parameters A that will provide a good match of product

in nominator and denominator of equation. While it is a high-dimensional

minimization problem, when solving for all relevant θ’s, Liesenfeld & Richard

(2003) breaks it down to separate low-dimensional subproblems. They draw

up a functional approximation k(Λt; at) for the density f(rt, λt|Λt−1, Rt−1, θ),

called density kernel for m, that will be analytically integrable with respect to

λt as

m(λt|Λt−1, at =
k(Λt; at)

χ(Λt−1, at)
, where χ(Λt−1, at) =

∫
k(Λt; at)dλt. (3.13)

Now finding parameters of auxiliary sampler is solving low-dimensional least

squares problem

ât(θ) = arg min
at

N∑
i=1

{
ln
[
f
(
rt, λ̃

(i)
t (θ)|Λ̃(i)

t−1(θ), Rt−1, θ
)
.χ
(
Λ̃

(i)
t (θ); ât+1(θ)

)]
− ct − ln k(Λ̃

(i)
t (θ); at)

}2

, (3.14)

for t : T → 1, based on natural samplers.

Finally, the EIS estimate of likelihood in (3.12) is obtained by substituting
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{ât(θ)}Tt=1 for {at(θ)}Tt=1. ML-EIS estimates of θ are obtained by maximizing

importance sampling MC estimate of likelihood in (3.12) with respect to θ,

using an iterative numerical optimizer. Estimates of θ are obtained by maxi-

mizing L̃N(θ;R,A), (3.12), with respect to θ, using an iterative numerical op-

timizer. As Liesenfeld & Richard (2003) declare, EIS turns out to be provider

of very flexible and numerically extremely efficient procedure for the likelihood

evaluation oh high-dimensional nonlinear latent variable models such as SV.

In our case of standard normal ηt and Student’s t εt, the densities g, p will

be given by

g(rt|λt, θ) ∝ exp(−λt/2)

{
1 +

r2t exp(−λt)
ν − 2

}−(ν+1)/2

, ν > 2, (3.15)

p(λt|λt−1, θ) ∝ exp

{
− 1

1ρ2
(λt − δλt−1)2

}
, (3.16)

where multiplicative factors not depending on λt are omitted. To calculate

the EIS estimate of likelihood we first use the natural samplers p to draw N

trajectories. Then we use these draws to solve the sequence of least-squares

problems in (3.14) and finally we use the EIS samplers {m(λt|Λt−1, ãt(θ))}Tt=1

to draw N trajectories {λ̃(i)t (ãt(θ))}Tt=1 from which EIS estimate of likelihood

is calculated via (3.12).

Filtering, Smoothing and Predictions

As the parameters of SV are estimate, we can get estimate of λt in two forms.

An estimate based on all observations up to, and possibly including, the one at

time t is called filtered λt|t−1. Contrary, an estimate based on all observations

in the sample including those which came after time t is called smoothed λt|t.

(Ghysels et al. 1996). For a one-step-ahead volatility prediction for time t we

then calculate

β̂ exp(E(λ̂t|t−1/2)). (3.17)

3.3 GARCH models

General Autoregressive Conditional Heteroskedasticity model was introduced

in the seminal work of Bollerslev (1986) as generalization of ARCH(p,q) model,

that has has shown to need high q in order to obtain estimates of conditional

variance properly. This extension allows the past conditional variance to be
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considered in the present conditional variance estimate and extends the AR pro-

cess equation to an ARMA process equation. Independently to Taylor (1982)

another non-linear models considering volatility clustering were introduced. In

other word, these models allow for heteroskedasticity and are able to model this

changing conditional volatility in time. AS these models are very popular we

are not going to analyze them in such details as SV models. Here we provide

the fundamentals of the basic GARCH(p,q) model, that is Bollerslev (1986) is

defined as

εt =
√
htzt (3.18)

where εt|Ft−1 ∼ N(0, ht), (3.19)

ht = a0 +
∑q

i=1 aiε
2
t−i +

∑p
i=1 bjht−j, (3.20)

where εt is mean-corrected return εt = yt−µ, ht > 0 is conditional variance of εt

(conditional on the information available in t) and zt is i.i.d. standard normally

distributed random variable, p ≥ 0 and q ≥ 0. Vector θ2 = (a0, ai, bj) ∈ Θ2

are parameters to be estimated. To ensure that conditional variance of εt

is stationary, a0 > 0, ai ≥ 0 for i = 1, 2...q, bj ≥ 0 for j = 1, 2...p and∑max(p,q)
i=1 (ai + bj) < 1 have to hold. Last constraint is necessary and sufficient

condition for the second-order stationarity of the Bollerslev (1986) model. It

implies that the unconditional variance of εt is finite, whereas its conditional

variance h2t evolves over time.4 Following Theorem 3.3.1 summarizes all previ-

ous restrictions of wide-sense stationarity.

Theorem 3.3.1 (Bollerslev (1986)). The GARCH(p,q) process as defined in

(3.18) is wide-sense stationary with E(εt) = 0, var(εt) = a0∑q
i=1 ai+

∑q
i=1 bi

and

cov(εt, εs) = 0 for t 6= s if and only if
∑q

i=1 ai +
∑q

i=1 bi < 1.

For the GARCH(1,1) model with parameters θ2 = (a0, a, b) ∈ Θ2 we can

write ACF, variance and kurtosis, φ(τ, θ2), ψ(θ2) and κ(θ2), respectively, as

follows

φ(1, θ2) =
a(1− b(a+ b))

1− b2 − 2ab
(3.21)

φ(τ, θ2) = (a+ b)φ(τ − 1), τ ≥ 2 (3.22)

ψ(θ2) = a0/(1− a− b) (3.23)

κ(θ2) = 3 +
6a2

1− 3a2 − 2ab− b2
. (3.24)

4The addition to mentioned ARCH model is that GARCH allows the conditional variance
to be modeled by past values of itself in addition to the past shocks.
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The special case of GARCH(p,q) is the Exponentially Weighted Moving

Average (EWMA). This models is authorized and used by RiskMetricsTM

company for VaR calculations. The variance ht is modeled as exponentially

declining process ht = aht−1 + (1 − a)ε2t−1, the special case of GARCH(1,1).

RiskMetricsTM has standardized wights of a = 0.94 for daily data and go

75 data points backward in their estimation (Angelidis et al. 2004). Be-

tween preferred extensions of GARCH(p,q) belongs EGARCH(p,q) by Nel-

son (1991), TGARCH(p,q) by Zakoian (1994), APARCH(p,q) by Ding et al.

(1993), FYGARCH(p,d,q) by Baillie et al. (1996) and many others. EGARCH

and TGARCH account for missing asymmetry due to some extra parameters.

Later one allows a response of volatility to good and bad news with different

coefficients. APARCH and FY-GARCH encompass asymmetry, leverage effect

and also the long memory property. We will not examine these models neither

compare them with SV. This will be left for the further research together with

extensions of SV.

When talking about comparison of two models, the main difference com-

pared to SV models is that volatility in GARCH models is measurable with

respect to the information set in t− 1 (Hafner & Preminger 2010). The basic

GARCH model is symmetric in the sense that positive shocks has the same

impact on volatility as negative and does not account for leverage effect. And

the huge difference important for practical usage is the estimation of GARCH

models that is much less complicated than for SV models. Usually it is done

by Maximum Likelihood Estimator, or Quasi-maximum Likelihood Estimator

for non-normal innovations either when the conditional distribution is not per-

fectly known. The QMLE estimates are in general less precise than those from

MLE, provided that the zt are indeed Gaussian (Fabozzi et al. 2008). We will

analyze it in details in following subsection 3.25.

As we already noted, for our thesis we will assume only Student’s t distribu-

tion of {εt} ∼ tν in (3.18), where ν > 2 are degrees of freedom and as ν →∞
Student’s t distribution approximates to Normal Distribution. If {εt} ∼ tν ,

so the random variable zt will have standardized Student’s t distribution with

ν > 2. Formula of density function of this distribution is in (2.4).

3.3.1 Maximum Likelihood Estimator

Maximum Likelihood Estimation (MLE) is commonly used approach for esti-

mating GARCH models, which provides an asymptotically efficient estimates.
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Under the assumption of independently and identically distributed standard-

ized innovations, zt, and its density function D(zt; ν) the log-likelihood function

of {yt(θ)} for a sample of T observations is defined as

LT ({yt}; θ) =
T∑
t=1

[
ln [D(zt(θ); ν)]− 1

2
ln
(
ht(θ)

)]
(3.25)

where θ is parameters vector that ought to be estimated for the conditional

mean, variance and density function. This estimates of θ̂ we obtain by numer-

ically maximizing the log-likelihood function, (3.25), using iterative optimiza-

tion methods.5 For our Student’s t distribution we will have

LT ({yt}; θ) = T

[
ln Γ

(
ν + 1

2
− lnΓ

(
ν

2

)
− 1

2
ln[π(ν − 2)]

]
− 1

2

T∑
t=1

[
ln(ht) + (1 + ν) ln

(
1 +

z2t
ν − 2

)]
, (3.26)

where all parameters are defined as in model GARCH(p,q) in (3.18). For more

details and other distributions see Angelidis et al. (2004).

3.4 Extensions of GARCH Model

Introduction of ARCH/GARCH models also enhanced the researchers to sug-

gest improvements to existing models. One of the drawbacks of GARCH model

is that it does not take into account the asymmetric effect between negative

and positive residuals. This behavior of especially stock returns was already

noticed by Black (1976): ”..a drop in the value of the firm will cause a negative

return on its stock, and will usually increase the leverage of the stock. [...] That

rise in the debt-equity ratio will surely mean a rise in the volatility of the stock”.

In other words a negative correlation between asset returns and volatility of

returns was empirically observed.

We will discuss three important GARCH extensions that allow for this

asymmetric response of volatilities: Exponential GARCH (EGARCH), Thresh-

old GARCH (T-GARCH, TARCH, GJR-GARCH) and Asymmetric Power

GARCH (APARCH).

5Marquardt algorithm written by Marquardt (1963) in software Matlab
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3.4.1 EGARCH

Exponential GARCH was introduced by Nelson (1991) in his work. The vari-

ance equation is extended by asymmetric term and the general EGARCH(p,q)

equation is:

lnht = ω +

q∑
i=1

φ1,j
|εt−i|√
ht−i

+

q∑
i=1

φ2,j
εt−j√
ht−j

+

p∑
j=1

βj lnht−j, (3.27)

where φ1,j and φ2,j are terms of leverage effect. If φ2,j = 0 the model

treats the positive and negative residuals identically. Vice-versa, if φ2,j < 0

(φ2,j > 0) the jth last negative shock has greater (smaller) effect on volatility

than last positive shock. Additionally, behalf of logarithmic transformation

of variance the restrictions ω > 0, αi ≤ 0 and βj ≤ 0 can be levied. It

also ensures the non-negativity of conditional volatility ht. For the stationarity

conditions see (Nelson 1991). For our empirical analysis we will use basic model

EGARCH(1,1) with Student-t distribution of error terms:

lnht = ω + φ1
|εt−1|√
ht−1

+ φ2
εt−1√
ht−1

+ β lnht−1 (3.28)

3.4.2 TARCH

Another extension that describes the asymmetric behavior of stock returns

is Threshold GARCH introduces by Zakoian (1994) and independently by

Glosten, Jagannathan and Runkle in Glosten et al. (1993) also called GJR-

GARCH. These two models are very closely related even, unconventionally,

Zakoian (1994) estimates conditional standard deviation instead of conditional

variance. The general equation of TGARCH(p,q) is:

√
ht = ω +

q∑
i=1

αiε
2
t−i +

r∑
k=1

I(εt−k)αk(εt−k<ξ)ε
2
t−k +

p∑
j=1

βj
√
ht−j, (3.29)

where I(εt−k) is an indicator function that equals 1 or 0 depending on the

threshold ξ (most often set to 0). (εt−k < ξ) indicates the mentioned function

to be equal one and αk(εt−k<ξ) is then the parameter explaining the impact of

negative shock on volatility. For our analysis we assume TARCH(1,1) model:
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√
ht = ω + αε2t−i + I(εt−1)α(εt−1<ξ)ε

2
t−1 + β

√
ht−1. (3.30)

In Equation 3.30 the threshold ξ dispense the residual parameter onto α in

case of past positive shock and to α + α(εt−1<ξ) otherwise.

3.4.3 APARCH

Nowadays frequently employed Asymmetric Power GARCH model was intro-

duced by Ding, Granger, Engle (1993). In fact, this model nests minimum seven

other ARCH-type models as special cases including basic GARCH, TGARCH

and GJR-GARCH. These special cases and also higher moments of APARCH

model investigates He & Tersvirta (1999) in his work. APARCH accounts for

leverage effect and moreover it also considers the long memory property. Ding

et al. (1993) proved that sample autocorrelations of ε2t decline at a hyperbolic

rate and not at exponential what is the case of for example GARCH. General

equation for (p,q) lags is:

√
ht
δ

= ω +

q∑
i=1

αi
(
|εt−i| − γiεt−i

)δ
+

p∑
j=1

βj
√
ht−j

δ
, (3.31)

where δ > 0 plays the role of a Box-Cox transformation of the conditional

standard deviation
√
ht = σt and the γi is the parameter for the leverage effect.

In our thesis we will work with APARCH (1,1) with Student-t distribution of

error terms:

√
ht
δ

= ω + α
(
|εt−1| − γεt−1

)δ
+ β

√
ht−1

δ
. (3.32)



Chapter 4

Backtesting the Accuracy of VaR

Models

For the verification or rejection of our assumptions about VaR predicting per-

formance of the two models that are stated at the beginning of this paper,

with certain confidence, we will use different quantitative, mostly statistical,

methods called backtesting. However, the important part is also the data anal-

ysis and graphical analysis of observed returns with its corresponding VaRs,

backtesting methods will give us the means to conclude the accuracy of our

different VaR models and their performances. Under the word of accuracy we

will understand how well does the model predicts a particular percentile or

the entire distribution of returns, how well does it capture possible losses on

given confidence level and how well does it predict the size and frequency of

possible losses. There exists no uniform backtesting method with correct reli-

able results. The task is to choose such an appropriate method that balances

out its performance in measuring power, its drawbacks and its appropriateness

for our data. In this section we will introduce three promoted wide groups of

statistical backtesting procedures known nowadays.

Since late 1990’s there have been published many papers and studies that

propose variety of backtesting methods and analyze which method is more ap-

propriate. We will try to go over this literature and highlight the important

ones. In details we describe only those methods that will be used in our empir-

ical part. The choice of such a methods will be done based on summarization

of pros and cons of each method in combination with the data analysis and

the most suitable ones will be chosen. Quick overview of such an analysis is

described below.
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Preliminary Data Analysis

As we mentioned before, the indispensable part of the verification is also the

analysis of the data. Our data should be, first, cleaned from all components

that are not directly related to current or earlier market risk-taking. When

we have the ”cleaned” data, we can now plot the realized and forecast values

and examine the obvious statistics. Very helpful is the construction of back-

testing charts where observations are superimposed with corresponding VaR

forecasts, histograms of distributions and quantile-quantile (QQ) charts of re-

alized against forecast distributions of returns. On these graphs the behavior

of the outliers, exceptions and violations of VaR is nicely visually performed

and we are able to create a preliminary image of performance of our models.

According to Dowd (2002) there are few common facts that we can use for

interpretation in graphical analysis:

• A relatively high or low number of cases when losses are exceeding the

VaR line indicates that our risk measure is likely to be too low, high

respectively.

• If the VaR line seems to be too flat or smooth, probably our model is not

adjusting adequately.

• Rapid changes in VaR line suggest considerable changes in volatilities or

in the way Var is estimated.

• Also the major differences between high and low exceptions can indicate

the biasedness of the risk measure.

4.1 Statistical Backtesting

All statistical tests are based on hypothesis-testing paradigm. This consists of

specifying the null hypothesis and possible alternative hypothesis, selecting the

significance level on which the null can be rejected or accepted and estimating

the probability, p-value, associated with null being ”true”. Naturally we accept

the null hypothesis if its p-value exceeds the significance level and otherwise.

When testing the hypothesis in statistics, we can make two types of er-

rors that can be very costly for risk management: Type I occurs when falsely

rejecting an accurate model and Type II error occurs when we fail to reject

(incorrectly accept) the wrong model. The choice of significance level should
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be well consider, because it can weight out the likelihoods of occurring Type

I or II errors. The higher significance level, more likely we are to accept null,

what indicates lower likelihood of rejecting the true model (Type I) but higher

likelihood of accepting a false model (Type II) and vice versa. A test can be

said to be reliable if it is likely to avoid both types of error when used with

an appropriate significance level (Dowd 2002). In our thesis we will work with

widely adopted significance level (1− α) = 5% for testing the hypothesis.

In the following sections we will discuss three main groups of backtesting

methods. The most popular and easy to implement test group is the one inves-

tigating the sequences of VaR violations. For example the binomial backtesting

proposed by Kupiec (1995), also the only current approach in Basel Accord and

interval forecast backtesting approach of Christoffersen (1998). Second group

are statistical backtest of VaRs at multiple confidence levels or also called den-

sity forecasts backtesting methods. These methods were firstly proposed by

Crnkovic & Drachman (1997) and Diebold et al. (1998a) and later modified by

Berkowitz (2001). The basic idea of this group is that conditional and uncondi-

tional property of an accurate VaR model should hold over all confidence levels

at the same time. The last group, that we will present, is not based on hypoth-

esis testing, instead, the forecast distribution transforms what might happen in

the future into probability forecasts (Lopez 1999). Here the alternative evalu-

ation method is proposed and its called probability forecast backtesting. Loss

function, score function and benchmark are determined and it allows also for

ranking the alternative models and diagnostic purposes. We use this method

to decide between two models when other test results seem to be the same.

On the Basel II Backtesting Requirements

• Ultimate goal of Basel II Framework is to promote adequate capitalization

of banks and to encourage improvements in risk management.

• Banks are allowed from Basel II to compute capital requirements on their

own, using IRB (Internal Rating Based) approach.

• Backtesting must be be done over the longer look back period and on

other confidence intervals than 99% interval required.

• ”Traffic light” approach to backtesting is the only assessment of VaR

accuracy prescribed in the current regulatory framework.
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• ”Traffic Light” approach by Basel Committee on Banking Supervision

1996: The three zones have been delineated and their boundaries chosen

in order to balance the type I and type II error (Green zone, Yellow zone,

Red zone).

• The results of these backtests are used by supervisors to assess the risk

models, and to determine the multiplier (or hysteria) factor to be applied:

if the number of exceptions during the previous 250 days is less than 5,

then the multiplier is 3; if the number of exceptions is 5, the multiplier is

3.40, and so forth; and 10 or more exceptions warrant a multiplier of 4.

• Backtesting must be performed daily.

• Banks must identify the number of days when trading losses, if any exceed

the VaR.

4.2 Exceedance-Based Methods

The idea of these tests is to focus on numbers and frequencies of exceedance

observations. Let define them as xt,t+1 realized during the certain time interval.

They are also called the tail losses and stay for the violations of forecast VaRs

by realized returns. We obtain them when we define a hit sequence It+1 as:

It+1(α) =

1 if xt,t+1 ≤ −V aRt(α),

0 if xt,t+1 > −V aRt(α).
(4.1)

Now we are able to check whether our hit sequence It+1 satisfies two prop-

erties of exceedance-based backtests: unconditional coverage property (number

of violations follows a binomial distribution) and independence property (vio-

lations do not come in clusters). In principle, a particular VaR model could

result in a hit sequence that satisfies the unconditional coverage property but

not the independence property and in reverse. Only hit sequences that sat-

isfy both properties can be described as evidence of an accurate VaR model.

Each property characterizes a different dimension of an accurate VaR model

(Campbell 2005).



4. Backtesting the Accuracy of VaR Models 30

4.2.1 Unconditional Coverage

Testing unconditional coverage also called binomial backtesting method pro-

posed by Kupiec (1995) is focused exclusively on this one property. It tests

whether the observed frequency of tail losses that exceed VaR is consistent

with frequency predicted by the model. Under the null hypothesis (model is

accurate) the frequency of violations follow binomial distribution with proba-

bility p, where p is tail probability, also p = (1− α). Given x violations and n

observations we calculate the probability of this case:

Pr(x | n, p) =

(
n

x

)
px(1− p)n−x (4.2)

Our model predicts np violations under H0 : p = (1 − α) and alternative

hypothesis is specified as H1 : p > (1 − α). We will accept the null if test

p-value will be larger than certain significance level. The most suitable test for

comparing a theoretical and realized value is the likelihood ratio test LRPOF .

This test computes a test statistic for each number of realized exceptions. Also

related approach is the time-to-first-tail-loss test (or TUFF test) under which

the probability of a tail loss is p, the probability of observing the first tail loss

in period T is p(1 − p)T−1, and the probability of observing the first tail loss

by period T is 1− (1− p)T which obeys a geometric distribution. This test is

inferior to binomial backtest and can be used as supplementary to other tests.

If we have sufficiently large number of observations n we can approximate

our binomial distribution of x with approximately normal with mean np and

variance np(1 − p). It implies that variable z = (x − np)/
√
np(1− p) is dis-

tributed as standard normal. Here we can simply test whether variable ”z” has

N ∼ (0, 1) distribution. The ”z” statistic is actually the Wald variant of the

likelihood ratio statistic proposed by Kupiec (1995). One potential advantage

of the Wald test over the likelihood ratio test is that it is well-defined in the

case that no VaR violations occur (Campbell 2005).

This test is easy to understand and requires knowledge of easily obtainable

variables, however, it has its shortcomings:

• Low ability to identify incorrect models when having small sample sizes.

• Ignores the independence property of violations.

• Discards the volume of singe violations.
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4.2.2 Independence

Besides the binomial distribution of frequency of violations we should test also

for the independence. Independence property restrict any temporal pattern

in the series, i.e., the probability of the next observation being an exceedance

should be independent of whether any previous observation was an exceedance

or not (Dowd 2008). Simple test for independence is a runs test and more so-

phisticated tests are suggested by Engle & Manganelli (2004)1 or Christoffersen

& Pelletier (2004)2. Other very popular test will be introduced below and its

author is Christoffersen (1998).

Independence tests provide very important informations about the pre-

dicted risk measures but they have one principal disadvantage. They all have

the assertion that any accurate VaR measure will result in a series of inde-

pendent hits. Accordingly, any test of the independence property must fully

describe the way in which violations of the independence property may arise3.

Intuitively, the violations of the independence property which are not related

to the set of anomalies defined by the test will not be systematically detected

by the test (Campbell 2005).

4.2.3 Conditional Coverage

For testing the property of conditional coverage we will use likelihood ratio

tests as suggests the author of this backtesting method Christoffersen (1998).

To form a complete test he uses an LR test of correct unconditional coverage,

an LR test of independence, and an LR test that combines the two.

Given x/n observed violations and predicted probability of violations p,

under the null of correct unconditional coverage, the test statistic

LRUC = −2ln
[
(1− p)n−xpx

]
+ 2ln

[
(1− x

n
)n−x(

x

n
)x
]

(4.3)

has distribution χ2(1).

Moving further, Christoffersen (1998) tests independence against an explicit

first-order Markov chain alternative. He considers a binary first-order Markov

1They regress the hit sequence It+1 against possible explanatory variables and subse-
quently test for joint insignificance of the these variables.

2Idea of this test is that VaR violations should not exhibit any kind of, so called, duration
dependence. It means that the amount of time that elapses between violations should be
independent of the amount of time that has elapsed since the last violation

3The alternative hypothesis must be completely specified
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chain, {It}, with transition probability matrix

Π =

[
1− π01 π01

1− π11 π11

]

where πij = Pr(It = j | It−1 = i) and where nij is the number of observations

with value i followed by j4.

Then he considers the output sequence, {It}, from an interval model, es-

timates a first-order Markov chain model on the sequence and tests the hy-

pothesis that the sequence is independent, having that Π2
5 corresponds to

independence6.

Under the null the LR test of independence

LRind = −2ln
[
(1− π̂2)n00+n10 π̂2

n01+n11
]

+ 2ln
[
(1− π̂01)n00 π̂01

n10(1− π̂11)n10 π̂11
n11
]

(4.4)

will have χ2(1) distribution where nij is the number of observation with state

i followed by j.

Now we combine the two hypothesis of correct unconditional coverage (4.3)

and independence (4.4) to one, the hypothesis of unconditional coverage. The

test statistic

LRcc = LRuc + LRind (4.5)

is distributed as χ2(2). If the tested model is accurate, then the violations

should be Bernoulli variables7.

Advantages of this method are that it is easy to implement and understand

and it can identify the source of failure, while at the same time it enables to

test both coverage and independence properties. Drawbacks of this method is

that

• While joint tests have the property that they will eventually detect a

VaR measure which violates either of these properties, this comes at the

4The approximate likelihood function for this process is L(Π1; I1, ...IT ) =

(1− π01)n00π01
n01(1− π11)n10π11

n11 , where parameters are Π̂1 =

[ n00

n00+n01

n01

n00+n01
n10

n10+n11

n11

n10+n11

]
.

5Π2 =

[
1− π2 π2
1− π2 π2

]
6The likelihood under the null becomes L(Π2; I1, ...IT ) = (1 − π2)(n00+n10)π2

(n01+n11)

and the Maximum Likelihood estimate is Π̂2 = π̂2 = (n01 + n11)/(n00 + n10 + n01 + n11)
Christoffersen (1998).

7Bernoulli variables are components of Bernoulli process and are identical and independent
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expense of a decreased ability to detect a VaR measure which only violates

one of the two properties (Campbell 2005).

• The test does not include the information about the accuracy of model

on other confidence levels than determined by VaR measure.

• It also discards the information of magnitude of potential losses.

4.3 Density Forecast Backtesting Methods

Al the tests mentioned so far focus only on one confidence level, but the two

properties of unconditional coverage and independence should hold over all

confidence levels at the same time. Main authors that contributed to these

methods of testing are Crnkovic & Drachman (1997) and Diebold et al. (1998a)

and later extension by Berkowitz (2001).

Diebold et al. (1998a) furthermore adopt less formal, but more revealing,

graphical methods. They suggest visual assessment using obvious graphical

tools, a density estimate. Simple histograms - regards unconditional uniformity

- and simple correlograms - regard evaluation whether a random variable is iid.

Testing Uniformity

Both Diebold et al. (1998a) and Crnkovic & Drachman (1997) suggest that

if two properties should hold for any level of α that it can be formalized in

following manner. Realized values of variables whose density is being forecast

should be mapped to their probability integral transformation8 (PIT) or fore-

cast cumulative density values (the Rosenblatt transformation9). Rosenblatt

(1952) defines the transformation

Ût =

∫ yt

−∞
f̂(u)du = F̂t(yt) (4.6)

8Methods are based on the relationship between the data generating process, ft(yt), and
the sequence of density forecasts, pt(yt), as related through the probability integral transform,
zt, of the realization of the process taken with respect to the density forecast. The probability
integral transform is simply the cumulative density function corresponding to the density
pt(yt) evaluated at yt (Diebold et al. 1998a).

9Rosenblatt (1952) described a transformation mapping a k-variate random vector with a
continuous distribution to one with a uniform distribution on the k-dimensional hypercube
(Brockwell 2007)
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where yt is ex post realized profit or loss and f̂(.) is the ex ante forecast loss

density. He also showed that if F̂t(.) is correctly defined, then Û is iid and

distributed uniformly on (0,1)

Ût
i.i.d.∼ U(0, 1). (4.7)

Now the task of validating the Var model accuracy boils down to task of testing

for uniformity and independence. Here we can apply conventional tests as

Kolmogorov-Smirnov (KS) test for uniformity, where test statistic D10,

D = max
∣∣F (yt)− F̂ (yt)

∣∣,
is compared to the relevant critical value and the null is accepted or rejected

accordingly. The KS statistic is easy to calculate but has its drawback that it

tends to be much more sensitive around the median value of the distribution

and less sensitive around the extremes what is crucial for our case. Alternative

test is Kuiper test with test statistic D∗11,

D∗ = max
∣∣F (yt)− F̂ (yt)

∣∣+
∣∣F̂ (yt)− F (yt)

∣∣,
that is much more sensitive to deviations on the tails. However, Crnkovic

& Drachman (1997) also report that the Kupier test statistic is very data-

intensive. Another option is to use chi-squared goodness-of-fit test, χ2, sug-

gested by Diebold et al. (1998b).

Berkowitz Transformation and Testing Standard Normality

While testing the iid uniform distribution hypothesis can be technically de-

manding, Berkowitz (2001) suggests to transform the classified observations,

Ût, to standard normal, Ẑt. We obtain them by applying an inverse cumulative

distribution function, Φ−1

Ẑt = Φ−1(Ût) = Φ−1
(∫ yt

−∞
f̂t(u)du

)
= Φ−1

(
F̂t(yt)

)
.

10KS test statistic represents the maximum distance between the predicted cumulative
density F (y) and the empirical cumulative density F̂ (y)

11Kuiper test statistic is the sum of the maximum amount by which each distribution
exceeds the other.
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Now we can apply more powerful statistical tool as data follow standard normal

distribution under the null. Berkowitz (2001) suggest to nest the null hypoth-

esis within the first-order autoregressive process with a possible different mean

and variance and construct the LR test statistic that under null is distributed

as χ2(3). The drawback of this method is that it focuses only on the first two

moments of the distribution and has very little detecting power in the higher

moments.

Another way is to divide the test to two subgroups of tests. One is to test

whether Ẑt is N(0, 1) assuming it is iid. Here we can use several tests. If Ẑt is

standard normal, then it should have zero mean, µ = 0, variance of 1, σ2 = 1,

zero skew and kurtosis of 3. If we assume Ẑt is iid, we can apply z -test or t-

test to test µ = 0, variance ratio test for variance predictions and Jarque-Bera

test for skewness and kurtosis predictions. JB test can be regarded as test of

normality itself and has very good power properties.

Second group tests whether Ẑt is iid. Common one are runs tests, binary

regression tests or we can estimate the autocorrelation structure of Ẑt observa-

tions or fit an ARMA process to them. All the parameters in an autocorrelation

function o r an ARMA process should be insignificant, and we can test for their

insignificance using standard tests such as Box-Pierse Q test (Dowd 2008). Or

having enough data, we can also use BDS (Brock, Dechert and Scheinkman)

test.

4.4 Probability Forecast Backtesting Methods

This method is alternative to the previous two, and it does not examine the

behavior of the hit sequence, (4.1), neither test any hypothesis. This method

is able to provide the information about magnitude of exceedance, to give

every model a score in term of some function and to label the model that

most closely approximate the true data. Lopez (1999) suggests the backtesting

method based on binomial loss function, defined in 4.8. It is called second,

size-adjusted, loss function and measures how well certain model predicts losses

when they occur and describes observed exceedances of VaR.

L(V aRt(α), xt,t+1) =

1 +
(
xt − V aRt(α)

)2
if xt ≤ −V aRt(α)

0 if xt > −V aRt(α)
(4.8)
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, where xt is the actual realized return and V aRt(α) is the corresponding cal-

culated VaR of in-sample subset, or forecast VaR for time period t based on

the information set available at time t − 1 for out-of-sample subset. Here the

task is to determine what would be expected when the reported VaR accurately

reflects underlying risk. Lopez (1999) therefore defines the sample average loss,

L̂ =
1

T

T∑
t=1

L
(
V aR(α), xt,t+1

)
, (4.9)

. But the degree to which the observed average loss is still consistent with an ac-

curate VaR model has to be still assessed. Here comes the informational burden

associated with determining whether the average loss, L̂, is ”too large relative

to what would be expected” and so it is necessary to understand the stochastic

behavior of the loss function, L(V aRt(α), xt) (Campbell 2005). What is more,

the mentioned loss function does not penalize possible overestimation of the

VaR.

In our thesis we will use loss functions that are more commonly used in prac-

tice for evaluation of both in-sample and out-of-sample forecasts. As mentioned

by Lopez (2001), it is not outright which loss function is more appropriate than

other. So we will use six different accurate statistics or loss functions as deci-

sion criteria. As we are interested in accurate forecasting of VaR a high-level of

volatility will be our cynosure. It implies Mean Square Error (MSE),Mean Ab-

solute Deviation (MAD), Mean Log-absolute Error (MLAE), Heteroskedasticity-

adjusted Mean Square Error (HMSE), R2LOG and QLIKE12 are appropriate

criterion for our thesis.

MSE: L(σ̂2
t , V aRt|t−1) =

1

a

a∑
t=1

(σ̂2
t − V aRt|t−1)

2 (4.10)

MAD: L(σ̂2
t , V aRt|t−1) =

1

a

a∑
t=1

|σ̂2
t − V aRt|t−1| (4.11)

MLAE: L(σ̂2
t , V aRt|t−1) =

1

a

a∑
t=1

log |σ̂2
t − V aRt|t−1| (4.12)

HMSE: L(σ̂2
t , V aRt|t−1) =

1

a

a∑
t=1

(
1− σ̂2

t

V aRt|t−1

)2
(4.13)

12The metric QLIKE is the loss implied by a Gaussian likelihood, while the R2LOG loss
function penalizes volatility forecasts asymmetrically in low volatility and high volatility
periods.(Lorde & Moore 2008)
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R2LOG: L(σ̂2
t , V aRt|t−1) =

1

a

a∑
t=1

log
[ σ̂2

t

V aRt|t−1

]2
(4.14)

QLIKE: L(σ̂2
t , V aRt|t−1) =

1

a

a∑
t=1

(
log ht +

σ̂2
t

V aRt|t−1

)
(4.15)

where a is the number of predicting data. All functions or statistics are based

on comparing predicted Value at Risk V aRt|t−1 with true realized variance

σ2
t , that is hardly observable. That is why conditionally unbiased volatility

proxy σ̂2
t is used instead. Patton (2011) shows that squared returns rt

2 are

good volatility proxy of realized variance under three different distributional

assumption of rt: Student’s t (0, σt
2, ν); N (0, σt

2) ; Ft (0, σt
2), where Ft

is unspecified distribution with referenced mean and variance. In all cases it

is clear that Et−1(r
2
t ) = σ2

t . Good review of most of them provides above

mentioned Patton (2011), Wei et al. (2010) and Lopez (2001).

4.5 Use of Backtests for Empirical Analysis

Based on the characterization of individual backtesting methods we choose few,

that will be directive for our conclusions. We will widely apply exceedance-

based methods and as the most conclusive we consider conditional coverage. It

will be examined also separately and we calculate statistics for its individual

parts independence and conditional coverage. As supplementary we use also

TUFF test. For more precise analysis we state after what period the first

violation occurred and failure rate of particular model. Probability forecast

backtesting method will be call on when we wont be able to decide on previous

results about models performance.



Chapter 5

Empirical Research

In this chapter we are going to fit the above mentioned models and methods

to calculate VaR on real datasets and evaluate theirs performance. VaR cal-

culations are done by parametric method mentioned earlier in Chapter 2 both

by GARCH and SV volatility estimates. Evaluation of their performance will

be done by statistics values of several backtests, which are described in Chap-

ter 4. Analysis will be executed separately on two subsets of data, in-sample

and out-of-sample. Later one provides more precise assessment of performance

of certain models, while it is calculated on other sample then subsequently

evaluated.

The chapter is organized as follows. First we provide analysis of data that

we are going to work with. Secondly, we use our two groups of models to make

volatility prediction for both subsamples with its diagnostics. In the third

section we calculate VaR and backtest the results. Last section is dedicated

to overall performance of modes and theirs summarized results. We try to

conclude whether our assumption that SV models with t-distribution can be a

good alternative if not superior to GARCH-t models in predicting VaR measure

holds.

5.1 Data Analysis

We are going to analyze dataset that contains of 5 different financial indices

obtained from Yahoo Finance. Each series involves 1000 daily observations

of closing prices that are divided into two subsets. Indices S&P, NASDAQ,

DAX, CAC and FTSE are market-value wighted indices and measure change

in market price whilst DAX considers also the dividends payment and reflects
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the effect of dividend reinvestment. This can bias our analysis of DAX index as

prices can contain a discontinuous jumps not caused by actual price movements.

• S&P 500 (GSPC): 5/14/08 - 7/18/11 - 5/1/12

• NASDAQ Composite (IXIC): 5/14/08 - 7/18/11 - 5/1/12

• FTSE 100 (FTSE): 5/19/08 - 7/19/11 - 5/1/12

• CAC 40 (FCHI): 6/10/08 - 7/21/11 - 4/30/12

• DAX 30 (GDAXI): 6/9/08 - 7/20/11 - 4/30/12

These daily closing prices St, at time t, are in our purpose transformed to

daily continuously compounded returns rt = ln(St/St−1). For general intention

of our thesis and to refrain of regional characteristics these worldwide known

indices were chosen, two American and three European. As long as the trading

dates are not internationally standardized the beginning date of all samples

vary across indices. This does not constitute a problem for us while we do not

combine indices into portfolio or we do not study their relative correlations.

The important part of choosing suitable datasets is to opt its appropriate

length. Although, generally holds the longer period, the better results, we

had to satisfy ourselves with only less then 3-year periods. The reason is the

heftiness of empirical calculations of parameters when numerical examining SV

by EIS.

As we already mentioned, for more precise evaluation of models we divide se-

ries into two sub datasets; in-sample (first 800 observations) and out-of-sample

(remaining 200 observations). Former one will be used for parameters, likeli-

hood and volatility estimations and then both will be used for evaluation of

its performance. For out-of-sample subset parameters of certain model will

be recalculated every 20 observations and volatility will be obtained as one-

day-ahead forecast. This will enable us to make better decisions about models

performances by reason that the situation is happening analogously as in the

real-life context. Here we are able to test the predictive power of the model on

200 real observations backward.

In the Figure 5.1 we can see closing prices of all indices. Dashed vertical line

at 800th observation divide our sample into in-sample subset and out-of-sample

subset. Indices behave alike, as the beginning of our observable period is mid

of year 2008 when all the prices have declining tendencies due to contemporary
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economic and financial crises. Only after 200 observation the market firstly

reinforce and prices start to rise again. The whole sample is quite volatile

for all indices by virtue of impact of mentioned crises which consequences are

fading away very slowly. From the Figure we are not able to capture any

stronger correlations between indices. Although, there is similar evolution of

FTSE and DAX index for the first subset and for out-sample there seems to

be some relations between FTSE and CAC, even CAC index has much lower

prices (the whole index is moved down by constant).

Figure 5.1: Closing Prices
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Figure 5.2: CAC Log-Returns
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Source: author’s computations in Matlab.

What we are going to work with and analyze are aforementioned log-returns

of closing prices and their properties. Since the evolution of closing prices is

non-stationary, log-returns usually transform the series to stationary. Figure

5.2 shows Log-Returns of CAC index for the whole period. We chose example

of CAC in behalf of it seems to be average volatile from all five indices. On this

plot we can compare volatility of both subsets. In-sample subset seems to reach

higher volatilities and volatility clustering is nicely observable. Later subset is

generally more volatile taking as a whole, even it does not reach such a high

volatility. Volatility clustering is also obvious, though, in its weaker form.

Now and then, we are going to study sub-samples and their characteristics

only separately. Daily Log-Returns are depicted in Figure B.1 in appendix.

For all five indices in main period the volatility clustering is very clear while

one period is concentrated around year 2009 and second, less volatile, in mid

2010. So, from the graphical analysis we can deduce the heteroskedasticity of

this sub-sets. Further Figures B.2 and B.3, histograms of log-returns and theirs

qq-plots against normal distribution, respectively, imply the non-normality of
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log-returns distribution. This is validated also by descriptive statistics of series

in Table A.1. Kurtosis of each series is approximately three times higher than

3 what is kurtosis of normal distribution. Negative skewness is present in S&P,

NASDAQ and FTSE indices around -0.2 and positive skewness in remaining

two around 0.28. Aforementioned together with histograms, B.2, confirms the

assumption about fat-tails of financial time series and leptokurtic distribution.

The normality of series is tested also by Jarque-Bera test statistic and we can

reject the null of normality at all significance levels for each series. Minimum

and maximum for all indices are very similar and fall in the claims of highly

volatile period. We investigated stationarity of our series by two different tests.

Familiar Augmented Dickey-Fuller test (ADF) rejects the unit root for all

series. As well, the less known but stricter Kwiatkowski-Phillips-Schmidt-Shin

test (KPSS) cannot reject null hypothesis of trend stationarity for all five series.

From both tests the stationarity of in-sample subset is presumed.

Compared with in-sample, out-of-sample subset will have quite different

characteristics. From the first sight, the main odds will be that series quite

appear like a normal distribution. The one reasonable explanation is that the

subset has only 200 observation what is not sufficiently long for stylized facts of

financial volatilities to become evident and for us to make a precise judgments.

Moreover, volatility clustering is seem-able very barely as depicted in Figure

B.6 of log-returns. Looking at histograms and qq-plots of our indices, B.7 and

B.8 respectively, we see that normal distribution fit is much closer to realized

returns that was the case of in-sample subset. Table of descriptive statistics A.2

move towards our normality presumptions. It is confirmed for CAC and DAX

index for which Jarque-Bera test null cannot be rejected at 5% significance level

and for DAX neither at 10% level. Their kurtosis is very close to 3 and have

very small negative skewness. S&P, NASDAQ, FTSE indices have kurtosis

around 5, are also negatively skewed and the fat-tailness is present. For all

indices ADF and KPSS tests affirm stationarity.

Based on the former survey we chose for our research the assumption of

Student’s t distribution of errors. This distribution is symmetric and fat-tailed.

Parameter ν, degrees of freedom, will be estimated by both models for both sub-

samples and for all indices. These estimates will also affirm that some indices

have very close to normal distribution. ν will be assigned by significantly high

numbers, occasionally around 20, 30 and 40 degrees of freedom.

The analysis of dependence structure in log-returns nods to our previous

conclusions. Autocorrelation Function (ACF) B.4 and B.9 of in-sample and
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out-of-sample subsets, respectively, does not indicate strong or considerable

autocorrelation up to 30th lag, except the first lag. As financial time series are

often characterized by high persistence in squared observations so it is in our

graphs of squared returns ACF, B.5 and B.10, where there is only very slow

decay.

5.2 Models Application

Hereafter we apply our two competing models to estimate parameters and

volatilities of in-sample and out-of-sample datasets. To compare Stochastic

Volatility with GARCH models we chose basic form of both models, mean-

ing SVAR(1) and GARCH(1,1). The selection of GARCH(1,1) is supported,

first, by our own calculations and comparison of Akaike information criteria

for GARCH(p,q), where p = {1, 2} and q = {1, 2} as presented in Table A.3.

Even GARCH(2,2) has for two indices lower AIC, we consider the parsimony

rule and choose simpler model. Second, by the common practice and favorable

results of many research papers and third, regarding the selection of ARSV(p).

As a consequence of SV’s difficult numerical calculations the only option to

consider was the ARSV(1) model for our thesis.

As we conclude in the above section the in-sample sets of all five indices are

fat-tailed and leptokurtic we will assume Student’s t distribution of errors. For

GARCH(1,1)-t we estimate parameters â0, â, b̂ and ν̂ by maximum likelihood

estimator as described in Section 3.3. All calculations from now on are executed

in software Matlab. The results of ML for GARCH-t model are presented in

Table 5.1. Each parameter has significant estimates and degrees of freedom are

approximately around value of 8.5 for every index. Immediately we are able to

calculate GARCH volatility as
√
ĥt.

For SVAR(1) calculations we estimate parameters β̂, δ̂, ρ̂, ν̂ with efficient

importance sampling Monte Carlo numerical method as explained in details in

Section 3.2. ML-EIS estimations of parameters of SV-t are presented in Table

5.2 below. Also for this model all parameters are significant where the slightest

significance inhere ρ estimates. However it is still sufficient at 95% confidence

level for all indices. Degrees of freedom are higher than for GARCH model.

Estimates move around 40 degrees of freedom what indicate more Gaussian

shape of distribution.
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Table 5.1: ML estimation results for GARCH(1,1)-t model

â0 â b̂ ν̂ LL

S&P
0.0183 0.1022 0.8956 6.7005

-1361.21
(1.0824e-04) (4.9855e-04) (3.8595e-04) (3.5287)

NASDAQ
0.0228 0.0896 0.9042 8.7955

-1426.69
(1.6447e-04) (4.2269e-04) (3.8833e-04) (8.5439)

DAX
0.0255 0.0727 0.9180 8.5403

-1423.89
(2.2700e-04) (3.7611e-04) (4.1700e-04) (8.6266)

CAC
0.0483 0.0801 0.9034 9.3977

-1488.89
(5.4949e-04) (4.9187e-04) (5.8381e-04) (9.4592)

FTSE
0.0296x 0.0825 0.9029 11.0852

-1350.65
(9.4592) (3.9920e-04) (4.6025e-04) (18.9197)

Standard errors are calculated in brackets.

Source: author’s computations.

Table 5.2: ML-EIS estimation results for ARSV(1)-t model

β̂ δ̂ ρ̂ 1/ν̂

S&P
1.6732 0.9982 0.2350 0.0279

(2.0509e-05) (4.2116e-04) (0.0250) (0.0958)

NASDAQ
1.6732 0.9982 0.2003 0.0309

(2.2295e-05) (3.7560e-04) (0.0097) (0.2083)

DAX
1.6731 0.9977 0.1778 0.0183

(2.3240e-05) (4.0517e-04) (0.0143) (0.0826)

CAC
1.6731 0.9985 0.1593 O.0207

(1.8172e-05) (3.0210e-04) (0.0108) (0.0833)

FTSE
1.6731 0.9982 0.1794 0.0245)

(1.9528e-05) (2.4680e-04) (0.0078) (0.0973

MC numerical standard errors are in brackets.

Source: author’s computations.

In this model we will be working only with filtered estimate1 of λ̂t and we

get volatility as β̂ exp(E(λ̂t/2)). When the parameters of models are estimated

and particular volatilities predicted we can forecast the out-of-sample subset.

For the first 20 observations we do one-day-ahead forecast for time (t) where we

use parameters estimated on in-sample subset and returns observed at (t− 1).

For next 20 observations we recalculate parameters and again do one-day-ahead

forecast with one-day back observations. This procedure is repeated ten times

1Existence of smoothed estimates of lambda, for more details see Section 3.2.1.



5. Empirical Research 44

until we have predicted 200th observation.

Estimated volatilities of particular indices for in-sample set are depicted

in Figure B.11. We can see that volatilities calculated by SV are over the

GARCH volatilities for all indices. The only time that SV volatility meets

GARCH volatility predictions is when volatility is at its peaks, i.e. year 2008-

2009 the period of global financial crises strong impact. But as the volatility

is unobservable we can say nothing about the fits of these two models to the

data. Therefore we take a quick look on analysis of normalized residuals z∗ and

their squares.

Diagnostics for SV-t model are summarized in Table 5.3 and plotted in

Figure B.12 with its qq-plots against N(0,1) in B.13. If model is correctly

specified distribution of z∗ should be standard normal. We provide values

of skewness and kurtosis, Kolmogorov-Smirnov z-statistics KS(z∗) and Ljung-

Box Q-statistics Q20(z
∗), Q20(z

2∗) with its particular p-values. For all indices is

residual kurtosis around 3 what is kurtosis of normal distribution and negative

skewness just very slight. Q-statistic of residuals indicates that they exhibit

no autocorrelations up to 20th lag, although squared residuals exhibit serial

correlations and suggest a failure to account for some dynamics. On the other

hand, standard normal distribution is tested by KS(z∗) and for all series it

cannot be rejected that residuals are standard normal at 1% significance level.

Table 5.3: Diagnostics for the SV(1)-t model normalized residuals

Skewness Kurtosis Q20(z
∗) Q20(z

2∗) KS(z∗)

S&P -0.2751 3.1904
20.50 195.46 0.0520

(0.4270) (0.0000) (0.0253)

NASDAQ -0.2444 3.2551
17.53 255.88 0.0513

(0.6180) (0.0000) (0.0285)

DAX -0.0482 3.5684
20.67 204.62 0.0435

(0.4163) (0.0000) (0.0937)

CAC -0.0003 3.5895
20.09 151.82 0.0289

(0.4520) (0.0000) (0.5056)

FTSE -0.1119 3.2551
29.70 314.97 0.0351

(0.0749) (0.0000) (0.2709)

p-values are calculated in brackets.

Source: author’s computations.

Diagnostics for GARCH model normalized residuals are in Table 5.4. Fig-

ures of plotted residuals and their qq-plots, B.14 and B.15 respectively, are
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presented in appendix. Correspondingly to SV diagnosis, values of kurtosis are

very close to 3 and skewness differs weakly from zero. Although in the case of

GARCH residuals is the skewness higher. Ljung-Box Q-statistic for both nor-

malized residuals and its squared values indicates no residual autocorrelations

in not even one case. On the other hand, KS(z∗) test rejects standard normal

distribution in case of S&P and NASDAQ index on all significant levels. For

the rest three indices null cannot be rejected on 1% level.

Table 5.4: Diagnostics for the GARCH(1,1)-t model normalized resid-
uals

Skewness Kurtosis Q20(z
∗) Q20(z

2∗) KS(z∗)

S&P -0.4357 3.6922
19.03 6.7005 0.0762

(0.5200) (0.0707) (0.0001)

NASDAQ -0.4186 3.7004
14.11 8.7955 0.0591

(0.8248) (0.2787) (0.0071)

DAX -0.1217 3.5854
14.61 8.5403 0.0516

(0.7984) (0.1712) (0.0273)

CAC 0.0296 3.9474
13.70 9.3977 0.0389

(0.8456) (0.3342) (0.1738)

FTSE -0.1177 3.6063
14.82 11.0852 0.0439

(0.7868) (0.2302) (0.0987)

p-values are calculated in brackets.

Source: author’s computations.

Nevertheless, the point of our interest is to decide which model has better

predicting performance of VaR measure and therefore we move on to VaR

predictions and its subsequent backtesting.

5.3 VaR Calculations and Backtesting

This part is the aim of our empirical study. Here we use above calculated

volatilities of both sub-samples to calculate one-day-ahead parametric VaR

predictions for three confidence levels α = {90%, 95%, 99%}. This calculation

method is illustrated in Chapter 2. For each index separately we compare the

results from both models and based on backtesting procedure we will define

better performing one for in-sample and out-of-sample subsets. We will consider

out-of-sample results as more conclusive while as it was mentioned, testing
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data out-of-sample gives us more real-life conclusions. Summarization of these

results is provided in next section.

In-Sample

For graphical illustration we calculated one-day-ahead 95% VaR and plotted it

in Figure 5.3. Result seems to be in accord of the volatility estimates plotted

in Figure B.11 when SV was mainly above the GARCH volatility. As we

consider only long position of VaR, the one calculated from SV model is in

most under the VaR calculated by GARCH model. From the first sight it looks

that VaR(SV) overstates the risk and so it is more safer. But for the financial

institutions this can be very costly to keep correspondent reserves. Vice versa,

in the period of crises VaR(SV) seems to less overvalue the negative returns

and particular risk of losses than VaR(GARCH). To valuate it more accurately

we have to use backtesting methods described in Chapter 4. Every index has

it own table of particular backtesting results in appendix.

We analyze first S&P 500 index which results are presented in Table A.4

starting with 90% confidence interval. This one-day-ahead VaR(GARCH) and

VaR(SV) are both in the Red zone of traffic light approach. According to Basel

II framework, this would indicate the need of recalculations of both models and

the use of particular multiplicators to reestimate them for more secure ones.

Considering the percentage of failure the SV model has only 3.13% what can

be little strict when calculating VaR at 90% confidence level. On the other

hand, VaR by GARCH has 8.38% failure rate, presumably more accurate. But

the accuracy of an ex-post loss exceeding probability of VaR is the subject

of unconditional coverage. For the most crucial tests we therefore consider

unconditional and conditional coverage and independence tests. Conditional

coverage contains the likelihood ratio of unconditional coverage and indepen-

dence so it evaluates model more generally. 90% VaR is fairly rejected by

unconditional and conditional coverage for both methods of calculations while

ex-post exceedances of VaR are not consistent with its α coverage rate. As a

supplementary test we have used TUFF test that assumes the first failure to

occur in 1/(1−α) days. Same for GARCH and SV models TUFF test together

with independence test accept the models.

For 95% VaR the 4.5% failure rate of VaR(GARCH) will be more accurate

what is also accepted by unconditional coverage. But according to Basel II

Backtesting Framework the model should be recalculated as long it is still in
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Figure 5.3: 95% VaR Calculations: In-Sample
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Source: author’s computations in Matlab.

the Red zone. Comparing the results of all backtests, VaR(GARCH) appears

to be superior for this index and confidence level. GARCH model is accepted

by all four tests based on their p-values. VaR(SV) is again as for the 90% level

rejected by unconditional and conditional coverage. It has failure rate of 0.05%

and can be too strict and expensive, however it is recommended by Basel II

traffic light approach where it is in the Green zone.

Last but not least, 99% VaR has reversed conclusion. SV model is accepted

by all four test whereas GARCH model is accepted only by independence test.

Its failure rate seems to be accurate, 0.38%, but is not promoted by uncondi-

tional test. In favor of this model is Basel II framework for which is the model
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in the Green zone. But closer look on VaR(SV) reveals that model has not

even one violation and this can cause problems when evaluating it. In this case

our backtests assume one violation instead of zero to avoid calculation errors

and one violation is just approved by every test.

For index NASDAQ, backtests presented in Table A.5, and 90% VaR seems

to be very accurate model calculated by stochastic volatility. It is accepted

by all four tests, failure rate seems to be adequate and first violation comes

after common 17 periods. However, it is again in the Red zone. But this

framework takes into account the 90% confidence level what is not in accord of

its manner in itself. VaR(GARCH) model is here rejected by conditional and

unconditional coverage and is also in the Red zone.

95% VaR which was earlier displayed in Figure 5.3 is accepted for GARCH

calculated model by all four tests and for model calculated by SV only by

independence test. It is apparent from the plot how VaR(SV) overrates the

risk what is for α = 95% unnecessarily too much. But this come in favor of

Basel II framework and the SV is in the Green zone, meaning expensive but

safe. Big difference is also in the period when first exceedance occurs what is

17 periods for GARCH and 88 for SV. It is quite big contrast and VaR(SV)

may seem to be more reliable model from the beginning. Though at large this

tells us nothing about its general performance and so this is the task for TUFF

test which rejects the model, too.

For most rigid 99% VaR is the overstating risk by SV model calculations

suitable and so it is validated by all four tests p-value. However we are

facing again the problem of no violations and cannot evaluate it reliably.

VaR(GARCH) is for this index accepted only by TUFF test and independence

test.

Next two indices, DAX presented in Table A.6 and FTSE presented in

Table A.8, has very similar results and we analyze them together. Their 90%

VaR of both SV and GARCH models is accepted only by TUFF test and

independence test. First violation comes already after second period for FTSE

index and tenth in DAX. All four fall into the Red zone. Percentage of failure

of GARCH model is around 9% and seems to be accurate, however it is not

affirmed by unconditional and conditional test for either index. Unconditional

coverage as a part of conditional coverage rejects the model due to inequality

between probability of ex-post loss exceedance and defined rate α.

Similarly to previous indices 95% VaR performs very well also for DAX and

FTSE when volatility was estimated by GARCH model and is little overstated
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when predicted by SV. Latter VaR is accepted by TUFF , independence test,

has only 0.38% and 0.75% percentage of failure, respectively, and is in the

Green zone. VaR(GARCH) has accurate 6% of failure for both indices.

As desired stochastic volatility VaR is very suitable for 99% confidence

predictions and adhere the high demand of safeness. It is accepted by all four

tests in case of DAX when again no violations were occurred. For FTSE it is, on

the other hand, accepted for the first time only by independence test. Here the

first violation occurred after 99 periods and failure rate is 0.13% but was not

supported by backtests. GARCH model is at this confidence VaR performing

also very poorly. It is accepted by independence test for both indices and by

conditional coverage for FTSE what is more desirable. All four models are in

the Green zone.

For the last fifth index CAC, results presented in table A.7, common conclu-

sion holds. SV models is performing well for 90% VaR and GARCH model for

95% VaR. Complements to them are accepted only in two cases of independence

and TUFF test. According to Basel II only one model is in the Green zone, the

95% VaR(SV). For the most strict risk measure are models performing same

and both are rejected by unconditional and conditional coverage tests. Very

similar is also the percentage of failure around value of 0.2 and first violation

after approximately 90 periods.

For all indices the results were constitutive. Models that were calculated

based on volatility estimated by GARCH perform well for 95% confidence in-

terval of one-day ahead Value at Risk. Contrary, for more strict confidence

interval of 99% Value at Risk, models calculated from volatility estimated by

SV seem to be very accurate, even it does not have to hold in cases with no

violations. For 90% VaR, SV model comes out as superior for two of five indices.

And still there is another methodology of backtesting as it is described in

Chapter 4.4, not based on testing hypothesis. Loss functions are the mean

to rank the model, while they take into account the size of the losses. We

employed six different loss functions. Based on them it can help us conclude

which methods is more suitable. MSE, MAD and MLAE for all five indices

acquire values in favor of GARCH model, although HMSE states for SV model.

This diversification is caused by different evaluation of VaR violations.
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Out-of-Sample

Out-of-sample subset analysis was carried out as comparison of one-day ahead

forecasts with involved observed returns. Plots of return observations against

both calculated 95% VaR models are in the Figure 5.4. It is clear that SV copy

the financial returns movements up and down more precisely than GARCH

which is flatter. But also it is obvious how again SV overstates the risk more

than GARCH model, what mainly holds for FTSE and NASDAQ index,.

Figure 5.4: 95% VaR Calculations: Out-of-Sample
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Source: author’s computations in Matlab.

Looking at outcomes from backtests of out-of-sample data, we will get more

realistic view on performance of two models than from in-sample. We are
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actually comparing the predictive ability of models with reality. All results

are summed again in five tables consisting of VaR with α = {90%, 95%, 99%}
confidence level and its loss functions according to particular index.

S&P index is summarized in Table A.9. For the first 90% VaR we have very

good results for both models. All four tests accept both models and the only

difference is the one regarding the Basel II framework. VaR(GARCH) is in the

Red zone whilst VaR(GARCH) is in the Yellow zone. We consider Yellow zone

as very appropriate middle way as it is neither very expensive either not so

risky. Percentage of failure for the former model is 7.54% and the other model

only 2.51%.

However, for the left two VaRs of 95% and 99% are results contradictory.

All tests accept GARCH model for convenient 95% confidence interval and the

model is also in the Yellow zone. SV model is in the Green zone and can be

too strict for given level. It is also rejected by unconditional and conditional

coverage. As VaR(SV) was always little overstate the risk, result for 99% VaR

are very pleasant. Model is accepted by all four tests and there is zero failure

rate. This means no violations but very high reserves. Model by GARCH is at

this level rejected by coverage tests.

For index NASDAQ the results come out bit better for SV computed models

as presented in Table A.10. Thorough for 90% VaR is this SV model rejected

by unconditional coverage, for the rest levels of VaR it is accepted by all four

tests. The problem is again that they exhibits no exceedances and this results

do not have to be reliable. On the other hand, GARCH model is still very

good for 90% and 95% VaR and actually it is also in the Yellow zone for the

latter one. 99% VaR(GARCH) is rejected commonly by unconditional and

conditional coverage.

Table A.11 displays DAX evaluations and it is clear from the first sight that

GARCH models do not perform good as before. For the less strict VaR the per-

centage of failure is 11.6% what can be over the feasible level. It is also rejected

by independence test and conditional coverage test. For the same confidence

VaR(SV) performs similarly. It is rejected by same tests but at least failure

rate is 3% less than GARCH. For 95% VaR GARCH performs well as usually

however is in the Red zone. Otherwise, SV is rejected by unconditional test

and belongs to Yellow zone. Comparing the last 99% VaRs, SV model seems to

be perfectly applicable but again there is a problem that risk is overstated and

it embodies no exceedances. We can just hardly conclude about the accuracy

of the model. GARCH for this case has also very little failure rate of only 0.5%
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but it is appropriate for the strict risk management tool. Worst thing is that

it is rejected by three of four tests, except independence.

The result of CAC index are in Table A.12. SV calculated model for the

index performs very well for 90% and 95% level. For both it is accepted by

all tests and additionally, the latter one is in the Yellow zone. The case of

the strictest VaR is rejected by unconditional and conditional coverage for

both models. For VaRs calculated via GARCH, the best performing one is on

95% confidence level. Feasible is also 90% VaR where it is rejected only by

unconditional coverage. The worst performing from GARCH models is for the

index the 99% VaR, rejected by all tests except independence.

For FTSE is better accuracy of SV more distinctive. Last index has its

results in Table A.13 and for 95% VaR, SV is superior while it is accepted

by all four tests and fall into Yellow zone. Contra to this, GARCH model is

rejected by independence test but performs also adequately. For 90% VaR, SV

model outperforms GARCH while it is accepted expect TUFF and indepen-

dence test in addition by conditional coverage. 99% VaR has the worst results

for both models and is rejected by conditional and unconditional coverage and

for VaR(SV) model also by TUFF test.

5.4 Results Summary

Looking at overall VaR predicting performance of both models we can make

some interesting conclusions. For in-sample subset the VaR calculated trough

GARCH model is accepted by all four tests in case of 95% confidence level and

there is one case when it is accepted only by two backtests, but one of them is

conclusive conditional coverage. Considering Stochastic Volatility calculations

of VaR, by all four tests there was accepted three times 99% VaR and two

times 90% VaR. It is obvious that as it was noticed trough analysis, VaR(SV)

overstates risk more than GARCH models, however it is also more flexible

and copy the evolution of returns in time more resembling way compared to

GARCH calculated risk measure that is much more flatter curve. This is also

confirmed by six loss statistics that measure the difference between observed

returns and calculated VaRs.

For out-of-sample subset of our 200 observations were GARCH VaR models

accepted by all four tests four times on 95% confidence level and two times on

90% level. On the other hand, SV VaR models were accepted by all backtests

once for 90% VaR, three times for 95% VaR and four times for 99% VaR. By
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three tests out of four were GARCH models accepted once at 90% and once

at 95% confidence interval. For SV models it was two times for 90% VaR and

once for 95%. Both models were accepted by two tests on 90% level out of

one it was conditional coverage test, that we consider as the most important

one. Here it seems that VaR(SV) performs a lot better at the strictest level

of confidence. Nevertheless, we have to remember that not even once there

was any exceedance and the calculations of statistics are zeros then. And

also our calculations show acceptance by all four tests and do not have to be

definitely right. Except this, are both models very comparable while GARCH

performs little more accurate for 95% VaR and SV model for 90% VaR. Here

the overstating of risk is not so significant as the forecast is calculated from the

lagged value of real observation for each day ahead.

According to Basel II regulatory framework, were models 90%, 95% and

99% VaR in Red, Green, Green zones for all SV in-sample models and Red,

Red, Green zones for all GARCH in-sample models, respectively. As it was

already mentioned Green zone is although very safe, but very expensive for

financial institutions, indeed. For out-of-sample subset were for this three dif-

ferent confidence levels VaR models also in Yellow zone. Stochastic volatility

models were two times in Yellow, Green, Green and three times in Red, Yellow,

Green zones and GARCH models two times in Red, Yellow, Green and three

times in Red, Red, Green zones. Again SV(VaR) comes out as preferable in

compliance with Basel II which first place merit is safeness.

We can now confirm our assumption that SV models perform at least as

good as GARCH models in predictive performance of VaR measures. In our

analysis they were superior to GARCH models as well as they were inferior. It

has depended on what confidence level was calculated for what index. DAX

index is quoted as total return and is affected by divided payouts and results

might be distorted. For 99% VaR we could not conclude many results, because

the overstating of risk caused zero exceedances. In this case our backtests

replace zero with one violations which passes all tests on highly significant

levels.

The problem that stays unsolved remains the comparison of SV and GARCH

models performance when taking into account the calculation heftiness of both

models. This is space for further research when some decision rule should be

set to compare the two models in all of their aspects. One of the papers trying

to do so is work of Hafner & Preminger (2010).



Chapter 6

Empirical Research: GARCH

Extensions

In this section we extend our analysis and apply three other GARCH extension

models on our five financial time series. We will subsequently compared them

to former GARCH and Stochastic Volatility models on the level of goodness-of-

fit to data and also on the level of VaR calculations. We calculate EGARCH,

TGARCH and APARCH models that are introduced in Section 3.4. All esti-

mates are calculated by Maximum Likelihood Estimator in software Matlab.

6.1 Models Application

Results of parameter estimates with its significance levels are presented in Table

6.1, 6.2 and 6.3 for model EGARCH, TGARCH and APARCH, respectively.

For model EGARCH(1,1) we have estimates of all parameters ω̂, φ̂1, φ̂2, β̂

and ν̂ significant at 95% confidence level. The estimate of degrees of freedom

for the Students-t distribution is highest for FTSE index and equals 20.98.

For remaining indices it moves around value 8. Estimates of TGARCH(1,1)

parameters, ω̂, α̂, η̂, β̂ and ν̂, are also significant at least at 95% confidence

level. Parameter estimates ω̂, α̂, γ̂, β̂, δ̂ and ν̂ are all significant except the case

of S&P and NASDAQ indices that point very low significance in estimates of γ̂

and δ̂ parameters. Degrees of freedom are around 20 for CAC and FTSE index

in both TGARCH and APARCH models and around 7 for remaining indices.

For analyzing the fit of the model to our data we again explore normalized

residuals (z∗) and theirs squares (z2∗). Correctly specified model should have

standard normal distribution of its residuals. Tables 6.4, 6.5 and 6.6 provides
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Table 6.1: ML estimation results for EGARCH(1,1)-t model

ω̂ φ̂1 φ̂2 β̂ ν̂ LL

S&P
–0.0942 0.12513 -0.1435 0.9863 6.2627

-1342.28
(0.026552) (0.036289) (0.030451) (0.004782) (1.705026)

NASDAQ
-0.0815 0.1126 -0.1461 0.9833 8.0933

-1405.01
(0.027238) (0.036382) (0.026776) (0.004992) (2.581626)

DAX
-0.0755 0.1133 -0.1492 0.9814 11.2808

-1400.88
(0.024529) (0.031717) (0.026724) (0.005193) (5.950682)

CAC
-0.0680 0.1185 -0.1989 0.9710 18.5118

-1456.52
(0.028765) (0.034998) (0.027746) (0.007129) (13.16612)

FTSE
-0.0837 0.1191 -0.1466 0.9797 20.977

-1323.35
(0.028624) (0.035375) (0.023767) (0.005673) (17.38760)

Standard errors are calculated in brackets.

Source: author’s computations.

Table 6.2: ML estimation results for TARCH(1,1)-t model

ω̂ α̂ η̂ β̂ ν̂ LL

S&P
0.0319 -0.0074 0.1734 0.9133 7.430

-1345.86
(0.0069) (0.0046) (0.0081) (0.0019) (4.542)

NASDAQ
0.0381 -0.0099 0.1677 0.9127 10.20

-1409.42
(0.0009) (0.0041) (0.0078) (0.0021) (13.584)

DAX
0.0322 -0.0417 0.2062 0.9262 12.94

-1400.04
(0.0093) (0.0210) (0.0390) (0.0162) (7.928)

CAC
0.0659 -0.0429 0.2764 0.8899 17.04

-1459.88
(0.0188) (0.0185) (0.0447) (0.0196) (10.965)

FTSE
0.0380 -0.0262 0.1973 0.9082 17.62

-1324.93
(0.0109) (0.0200) (0.0362) (0.0184) (12.305)

Standard errors are calculated in brackets.

Source: author’s computations.

values of third and fourth moments and p-values of Kolmogorov-Smirnov z-

test (KS(z∗) statistic) and Ljung-Box Q-test (Q20(z
∗) and Q20(z

2∗) statistics)

of residuals for EGARCH, TGARCH and APARCH, respectively. For all three

models the residuals are slightly negatively skewed and the kurtosis differs from

kurtosis of normal distribution (3) only in decimal numbers. Hypothesis of

Kolmogorov-Smirnov test, the normal distribution of EGARCH and APARCH

residuals, cannot be rejected at 1% significance level. Normality of TGARCH
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Table 6.3: ML estimation results for APARCH(1,1)-t model

ω̂ α̂ γ̂ β̂ δ̂ ν̂ LL

S&P
0.0.0237 0.0747 1.0000 0.9180 1.1372 6.83

-1340.66
(0.0072) (0.2345) (5.3707) (0.0181) (0.3023) (2.137)

NASDAQ
0.0316 0.0799 1.0000 0.9179 0.9450 8.87

-1402.82
(0.0079) (0.0174) (0.1546) (0.0184) (0.2431) (3.0841)

DAX
0.0306 0.0739 0.9999 0.9193 1.1061 12.78

-1400.47
(0.0092) (0.0725) (1.5857) (0.0180) (0.3127) (7.6194)

CAC
0.0391 0.0911 0.9995 0.9143 0.7517 20.94

-1456.99
(0.0111) (0.0138) (0.0565) (0.0179) (0.2066) (17.242)

FTSE
0.0287 0.0007 0.1395 0.9237 0.8296 21.81

-1330.10
(0.0007) (0.0001) (0.0011) (0.0002) (0.0489) (90.12)

Standard errors are calculated in brackets.

Source: author’s computations.

Table 6.4: Diagnostics for the EGARCH(1,1)-t model normalized
residuals

Skewness Kurtosis Q20(z
∗) Q20(z

2∗) KS(z∗)

S&P -0.5902 4.1217
18.48 45.27 0.0558

(0.5553) (0.0010) (0.0133)

NASDAQ -0.5323 3.8356
14.98 31.29 0.0416

(0.7774) (0.0515) (0.1224)

DAX -0.2840 3.4009
17.59 26.76 0.0443

(0.6139) (0.1419) (0.0843)

CAC -0.1985 3.3045
17.07 25.56 0.0322

(0.6480) (0.1808) (0.3732)

FTSE -0.2076 3.2377
15.34 29.82 0.0285

(0.7565) (0.0728) (0.5276)

p-values are calculated in brackets.

Source: author’s computations.

residuals is rejected by K-S test in case of S&P and NASDAQ index. Ljung-

Box Q-statistic for both normalized residuals and its squared values indicates

no residual autocorrelations in not even one case of TGARCH and APARCH

model. In EGARCH and S&P index the Ljung-Box test of squared residuals

indicates serial correlations and suggests a failure to account for some dynamics.

Comparing models based on goodness-of-fit measure considering the Akaike

Information Criteria in Table A.14 we have best performing model EGARCH
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Table 6.5: Diagnostics for the TARCH(1,1)-t model normalized resid-
uals

Skewness Kurtosis Q20(z
∗) Q20(z

2∗) KS(z∗)

S&P -0.4801 3.8179
19.81 34.58 0.0695

(0.4695) (0.0224) (0.0008)

NASDAQ -0.5029 3.7133
14.41 25.77 0.0585

(0.8087) (0.1735) (0.0080)

DAX -0.3026 3.3147
18.03 25.65 0.0433

(0.5848) (0.1776) (0.0980)

CAC -0.2175 3.3501
16.62 28.75 0.0340

(0.6775) (0.0927) (0.305)

FTSE -0.2420 3.3019
14.48 27.16 0.0286

(0.8049) (0.1306) (0.5224)

p-values are calculated in brackets.

Source: author’s computations.

Table 6.6: Diagnostics for the APARCH(1,1)-t model normalized
residuals

Skewness Kurtosis Q20(z
∗) Q20(z

2∗) KS(z∗)

S&P -0.5280 3.8455
15.80 36.60 0.0482

(0.7288) (0.0131) (0.0133)

NASDAQ -0.5026 3.7518
13.50 26.54 0.0375

(0.8547) (0.1486) (0.2073)

DAX -0.2685 3.3434
16.53 26.10 0.0442

(0.6827) (0.1623) (0.0860)

CAC -0.1676 3.2556
15.54 22.32 0.0316

(0.7504) (0.3232) (0.3961)

FTSE -0.1905 3.2127
14.84 31.55 0.0321

(0.7850) (0.0483) (0.3741)

p-values are calculated in brackets.

Source: author’s computations.

and APARCH in two cases and TARCH in one case. However, compared to

GARCH(p,q) models where p = (1, 2) and q = (1, 2) simple GARCH outper-

forms its extensions in three cases.
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6.2 VaR Calculations and Backtesting

In this section we shift to second part of our analysis, particularly VaR cal-

culations and its subsequent backtesting. Equally, as in previous chapter we

use volatilities from the three competing models and calculate one-day-ahead

parametric VaR predictions on three confidence levels α = {90%, 95%, 99%}.
This method is described at large in Chapter 2.

For illustration we plotted 95%VaR by three new models EGARCH, TGARCH,

APARCH and two current models GARCH, SV for all five indices, Figure 6.1.

Graph shows only the negative returns that are, in fact, what matters when

compared to VaR of long position. We can see that our three new models be-

have very similar and GARCH model also draw near. The model that differs

from others is VaR(SV) which again, as in previous Chapter 5, seems to over-

state the risk more than others. It can appeal as more safe but for the financial

institutions also much more costly to keep correspondent reserves. Contrary, in

the period of crises VaR(SV) seems to less overvalue the negative returns and

particular risk of losses than VaR calculated by GARCH and its extensions.

To more accurate evaluation of models performance we use loss functions

evaluation and backtesting methods that are described in Chapter 4.

Table 6.7 provides the values of aforementioned loss functions. We compare

three new models among each other and also add current GARCH and SV mod-

els. For the first index S&P the best performing model seems to be APARCH

that has minimal value of loss function in three cases of six. Also TARCH

and SV performed well. For index NASDAQ the TARCH and APARCH mod-

els perform best and SV has again minimal Heteroskedasticity-adjusted Mean

Square Error function. EGARCH model fits best in the case of CAC index as

it has four of six minimal loss functions and also for DAX index but in only

two of six loss functions. The case of FTSE index is equal for EGARCH and

APARCH models and similarly to other indices SV model has again the lowest

HMSE. To sum up, we can say that APARCH and EGARCH outperforms SV

and that GARCH model is the weakest considering the loss functions values.

Evaluations of all backtesting methods for all new models and all indices

separately are in particular tables in Appendix. Results for S&P index are in

the Table A.15. For all three models we see that 90%VaR is in the Red zone of

traffic light approach. According to Basel II framework both models need the

recalculations and use of particular multiplicators to reestimate them for more

secure ones. Contrary, the 99%VaR seems to be very safe and expensive as it
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is in the Green zone for all models and in the case of EGARCH and APARCH

does not even violates in first 500 observations. For 95%VaR the conditional

and unconditional coverage is rejected in case of EGARCH and APARCH while

ex-post exceedances of VaR are not consistent with its α coverage rate. Con-

ditional coverage contains the likelihood ratio of unconditional coverage and

independence so it evaluates model more generally. For S&P index we can just

say that TARCH model has weakest performance.

Backtesting results for NASDAQ are presented in Table A.16. The traffic

light approach indicates very similar situation as in the previous case. 90%VaR

is to risky and 99%VaR too costly. According to this measure the best model

from 95%VaR is EGARCH. But considering the conditional and unconditional

coverage tests the 95%VaR(EGARCH) performs as weakest while both are

rejected. For the model TARCH the coverage tests are not rejected only in the

case of 95%VaR and for the model APARCH only in 90%VaR.

CAC index as showed in Table A.17 has same results from the traffic light

approach as previous indices. Conditional and unconditional coverage are not

rejected in the cases of 90%VaR by all three models and 99%VaR by EGARCH

and TARCH models. APARCH seems to be the model that performs as the

weakest.

According to Basel II framework the best performing model for the index

DAX, Table A.18, is TARCH model. The 99%VaR is again too safe and too

expensive for all three models as it has 0.00% percentage of failure and no

violation in first 500 observations. The 95%VaR has rejected conditional and

unconditional coverage for all three models and from the 90%VaR seems to be

best performing the EGARCH model that cannot reject unconditional coverage

only at 99% confidence level otherwise unconditional coverage as a part of

conditional coverage rejects the model due to inequality between probability of

ex-post loss exceedance and defined rate α. TARCH and APARCH models has

rejected both conditional and unconditional coverages.

Last index FTSE has results displayed in Table A.19. According to traffic

light approach the worst performing is the APARCH model. Considering cov-

erage tests the APARCH model is not rejected only in the case of 95%VaR but

still has quit high percentage of failure that equals 5.39. For EGARCH and

TARCH models conditional and unconditional coverages cannot be rejected

only in the cases of 90% and 99%VaR.

To sum up, we can say that from our analysis the APARCH model performs

best for 95%VaR and EGARCH and TARCH models are more suitable for
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Table 6.7: Loss Function Values

MSE MAD MLAE HMSE R2LOG QLIKE
S

P

EGARCH 1960.22 1.8031 0.0055 1.6846 -2.5431 0.3662
TARCH 1964.45 1.7751 0.0329 1.9694 -2.4699 0.2900

APARCH 1952.25 1.8039 0.0036 1.7119 -2.5517 0.3596
GARCH 2001.42 1.8076 0.0871 1.9399 -2.3932 0.3234

SV 3495.15 2.1805 0.4311 1.3827 -1.7913 0.6799

MSE MAD MLAE HMSE R2LOG QLIKE

N
A

S
D

A
Q

EGARCH 2069.97 1.8769 0.0838 1.6843 -2.5445 0.4501
TARCH 2085.39 1.8456 0.0861 1.9501 -2.4789 0.3747

APARCH 2073.61 1.8832 0.0693 1.6931 -2.5488 0.4497
GARCH 2114.58 1.8711 0.1380 1.9333 -2.3833 0.4054

SV 3651.08 2.2506 0.4651 1.4109 -1.7993 0.7439

MSE MAD MLAE HMSE R2LOG QLIKE

C
A

C

EGARCH 2242.91 1.9848 0.2022 1.7828 -2.9775 0.4743
TARCH 2304.70 2.0063 0.2424 1.7949 -2.9606 0.4770

APARCH 2253.34 1.9848 0.2106 1.8039 -2.9736 0.4675
GARCH 2368.68 1.9949 0.2646 2.0263 -2.7735 0.4384

SV 3928.42 2.3579 0.5321 1.5196 -2.2757 0.7472

MSE MAD MLAE HMSE R2LOG QLIKE

D
A

X

EGARCH 1884.08 1.8238 0.1237 1.7542 Inf 0.4164
TARCH 1893.99 1.8347 0.1445 1.7711 Inf 0.4135

APARCH 1895.68 1.8295 0.1148 1.7700 Inf 0.4130
GARCH 1979.77 1.8406 0.1978 1.9629 Inf 0.3867

SV 4332.89 2.4302 0.6241 1.3620 Inf 0.8333

MSE MAD MLAE HMSE R2LOG QLIKE

F
T

S
E

EGARCH 1594.88 1.6654 0.0233 1.7795 -3.2308 0.3048
TARCH 1623.26 1.6738 0.0161 1.7847 -3.2210 0.3038

APARCH 1622.29 1.6500 0.0377 2.0025 -3.1503 0.2415
GARCH 1682.36 1.6837 0.0953 1.9987 -3.0750 0.2757

SV 3347.47 2.1551 0.4919 1.4355 -2.3593 0.6882

Source: author’s computations.

90% and 99%VaR, although, EGARCH outperforms TARCH. Compared to our

previous models GARCH and Stochastic Volatility we can say that extensions

of GARCH outperforms GARCH almost in all fields when considering loss

functions as well as different backtesting methods while we confined mainly in

coverage test. Considering Stochastic Volatility model we cannot decide which

model performs best. There is no extension of GARCH that would considerably
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outperform SV in our analysis neither we can say that SV outperforms any of

new models. But what we can conclude is that time consumed by computations

of SV models is still substantially exceeding time needed to calculate GARCH

or any of it extensions.
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Figure 6.1: 95% VaR Calculations for S&P
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Source: author’s computations in Matlab.



Chapter 7

Conclusion

This thesis compares five competing volatility models that are able to predict

time-varying volatility considering its clustering. Subsequently, it evaluates

them in accordance with theirs predicting performance of risk measure Value

at Risk. For our analysis we chose widely used and known GARCH model with

Student’s t distribution and its three extensions EGARCH, TGARCH and

APARCH models contra to less popular Autoregressive Stochastic Volatility

model, also t distributed. We did not analyze models with Normal distribution

in behalf of two reasons. First, many papers, that are mentioned in our thesis

and serve as the base for our research, compare just right models with Gaussian

distribution. Second, distribution of financial returns is generally no longer

assumed to be normal, as it ordinarily inherent fat tails and leptokurtosis.

The aim of this thesis was to show that SV models can in aforementioned

purpose perform at least as good as GARCH models with its extensions and

perhaps to be superior. The main challenge was in choosing of the suitable

process for SV’s likelihood calculations where analytical methods are insuffi-

cient. In our thesis we propose method of Efficient Importance Sampling Monte

Carlo Simulations based on paper of Richard & Zhang (2007). This provides us

estimates of high-dimensional integrals necessary for SV parameters estimates.

Paper is divided into two parts, theoretical and empirical. In the first part

we offer background of both volatility models, its calculation methods and used

distribution. Likewise we introduce Value at Risk measure and its subsequent

backtesting methods. In the empirical part we run our analysis on the five

world-wide stock indices splitted into two sub-analysis. One of in-sample data

set and other for more precise and real-life results on out-of-sample subset.

Our empirical analysis confirms our assumptions about SV models and their
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performance. From the backtests they come out as comparable with GARCH

models and for stricter confidence level of 99% VaR even superior. SV VaRs

curves are unambiguously more capable to imitate the shape of indices returns

than GARCH models. They also incorporate the leverage effect at least at the

univariate level. On the other hand, they have tendency to overstate risk what

can be uselessly expensive for financial institutions. But compared to extension

of GARCH models SV is not so unambiguously over-performing. These models

are capable to incorporate volatility properties as asymmetry, leverage effect,

long memory, respectively, and are still computationally simple compared to

SV. APARCH and EGARCH models likewise outperform SV in many cases.

Although, considering calculation heftiness both groups of models, new

questions about adequacy of models arises. Does the estimation process of

SV model worths its results? It could be reevaluated with application of some

decision rule based on how much better the results should be to redeem SV

models. However, SV has also its own extensions with which its accuracy rises

apart from multivariate extensions of both groups of models. This could be

proposes to further research in this topics.
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Appendix A

Tables

Table A.1: Descriptive Statistics: In-Sample Subset

Statistics S&P NASDAQ CAC DAX FTSE

min -9.4695 -9.5877 -9.4715 -7.3355 -9.2646
max 10.9572 11.1594 10.5946 10.7975 9.3842
median 0.1025 0.1258 0.0027 0.0439 0.0311
mean -0.0080 0.0140 -0.0307 0.0069 -0.0114
var 3.3392 3.4873 3.4973 3.0598 2.6716
st.dev. 1.8273 1.8674 1.8701 1.7492 1.6345
skewness -0.2156 -0.1668 0.2640 0.3110 -0.0345
kurtosis 9.7463 8.2820 8.7458 9.4753 9.5109

Jarque-Bera test 1 1 1 1 1
p-value 0.0010 0.0010 0.0010 0.0010 0.0010
test statistic 1523.30 933.68 1109.76 1410.53 1413.21

ADF test 1 1 1 1 1
p-value 0.0010 0.0010 0.0010 0.0010 0.0010
test statistic -31.90 -31.23 -29.70 -28.75 -29.32

KPSS test 0 0 0 0 0
p-value 0.1000 0.1000 0.1000 0.1000 0.1000
test statistic 0.0824 0.0947 0.0780 0.0824 0.1019

Source: author’s computations.
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Table A.2: Descriptive Statistics: Out-on-Sample Subset

Statistics S&P NASDAQ CAC DAX FTSE

min -6.8958 -7.1489 -5.6346 -5.9947 -4.7792
max 4.6317 5.1592 6.0891 5.2104 3.9414
median 0.0927 0.0599 -0.0255 -0.0388 -0.0019
mean 0.0330 0.0447 -0.0779 -0.0309 0.0051
var 2.4825 2.8543 4.0564 4.2552 2.0574
st.dev. 1.5756 1.6895 2.0140 2.0628 1.4344
skewness -0.5295 -0.4361 -0.1356 -0.1164 -0.2808
kurtosis 5.5663 5.2605 3.7644 3.4704 4.0015

Jarque-Bera test 1 1 0 0 1
p-value 0.0010 0.0010 0.0536 0.2643 0.0120
test statistic 64.2282 48.9221 5.4821 2.2955 10.9850

ADF test 1 1 1 1 1
p-value 0.0010 0.0010 0.0010 0.0010 0.0010
test statistic -16.0225 -15.5921 -13.1309 -12.4469 -12.7127

KPSS test 0 0 0 0 0
p-value 0.1000 0.1000 0.1000 0.1000 0.1000
test statistic 0.0478 0.0457 0.0908 0.1102 0.0529

Source: author’s computations.

Table A.3: Akaike Information Criteria for GARCH(p,q)

(p,q) S&P NASDAQ CAC DAX FTSE

(1,1) 2736.3 2866.7 2989.7 2860.1 2711.5
(1,2) 2740.3 2870.7 2993.7 2864.1 2715.5
(2,1) 2738.4 2868.5 2990.0 2861.8 2712.5
(2,2) 2727.4 2862.5 2989.7 2853.8 2709.5

Source: author’s computations.
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A. Tables XIII

Table A.14: Akaike Information Criteria for Garch Extensions Models

(p,q) S&P NASDAQ CAC DAX FTSE

EGARCH 3377.4 3538.8 3667.9 3528.5 3334.2
TARCH 3376.3 3536.7 3676.4 3526.4 3338.1
APARCH 3375.8 3535.9 3671.6 3530.0 3335.5

Source: author’s computations.
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B. Figures XX

Figure B.1: Log-Returns of Indices: In-Sample
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Source: author’s computations in Matlab.



B. Figures XXI

Figure B.2: Histograms of Log-Returns with a fitted normal distribu-
tion: In-Sample
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Source: author’s computations in Matlab.



B. Figures XXII

Figure B.3: QQ Plots: Empirical cdf compared with theoretical nor-
mal cdf: In-Sample
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Source: author’s computations in Matlab.



B. Figures XXIII

Figure B.4: Sample ACF for Returns: In-Sample
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Source: author’s computations in Matlab.

Figure B.5: Sample ACF for Squared Returns: In-Sample
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B. Figures XXIV

Figure B.6: Log-Returns of Indices: Out-of-Sample
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B. Figures XXV

Figure B.7: Histograms of Log-Returns with a fitted normal distribu-
tion: Out-of-Sample
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Source: author’s computations in Matlab.



B. Figures XXVI

Figure B.8: QQ Plots: Empirical cdf compared with theoretical nor-
mal cdf: Out-of-Sample
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Source: author’s computations in Matlab.



B. Figures XXVII

Figure B.9: Sample ACF for Returns: Out-of-Sample
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Source: author’s computations in Matlab.

Figure B.10: Sample ACF for Squared Returns: In-Sample
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Source: author’s computations in Matlab.



B. Figures XXVIII

Figure B.11: Volatility Predictions: In-Sample
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Source: author’s computations in Matlab.



B. Figures XXIX

Figure B.12: Normalized Residuals of SV-t model
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Source: author’s computations in Matlab.

Figure B.13: QQ plots of normalized residuals: SV-t model
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Source: author’s computations in Matlab.



B. Figures XXX

Figure B.14: Normalized Residuals of GARCH-t model
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Source: author’s computations in Matlab.

Figure B.15: QQ plots of normalized residuals: GARCH-t model
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Source: author’s computations in Matlab.
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