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Abstract
We investigate the interdependence among three CEE stock markets and be-
tween CEEs vis–à–vis euro area, using daily data from 2001–2011. Initially,
we estimate bivariate ADCC models. Then, OLS regressions are employed to
understand the evolution of correlations in time and during the recent financial
crises. Finally, we examine the relationship between correlations and volatilities
using the simple OLS model and the rolling stepwise regression methodology.
Our results indicate that 3 out of 4 series exhibit asymmetries in conditional
variances, while only 1 pair out of 6 exhibit asymmetries in correlations. We
found that correlations are increased over time and during the recent financial
crises for both pairs (CEEs–CEEs and CEEs–eurozone). However, the highest
increase is observed for CEEs–eurozone. Mainly, we found a positive rela-
tionship between correlations and volatilities, even though this relationship is
niether constant in time nor strictly positive or negative during all the sample
period, but rather time–varying with periods of being higher or lower than zero.
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Chapter 1

Introduction

The investigation of international stock market linkages represents an inter-
esting and important topic not only for researchers in this field, but also for
international portfolio managers, policy makers etc. For e.g. in a monetary
union, such as the European Union, understanding the linkages between finan-
cial markets plays a crucial role in implementing an effective common monetary
policy. Also, in order to compose an optimal diversified portfolio, international
investors should have a good knowledge of market comovements. If comove-
ments are strengthened, diversification benefits are reduced and investors would
try to recompose their portfolios. These and many other examples emphasize
the importance of studying interdependeces among stock markets.

In this respect, a huge amount of research is conducted for U.S., developed
European, Asian and Latin American stock markets. Recently, a lot of atten-
tion is paid to the Central Eastern European (CEE) stock markets. After the
fall of communism, CEE countries undertook different reforms to adapt their
economies to the new market conditions. The transition from centrally–planned
economies to market economies was associated with a large-scale privatization
process, where state–owned companies were transferred to the private sector.
This process made necessary the establishment of stock exchanges, where the
ownership rights could be traded.

The growing importance of CEE markets in the region, especially after the
CEE countries joined the EU in May 2004, led to a large body of literature de-
voted to the study of interdependencies among different CEE markets (see e.g.
Kasch-Haroutounian & Price (2001), Scheicher (2001)) and between CEEs vis–
à–vis developed European, U.S. and Russian markets (see e.g. Babetskii et al.
(2007), Gilmore & McManus (2002), Horvath & Petrovski (2012), Voronkova
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(2004), Egert & Kocenda (2005), Cappiello et al. (2006a), Syllignakis & Koure-
tas (2006), Patev et al. (2006), Syriopoulos (2007), Wang & Moore (2008),
Savva & Aslanidis (2010), Egert & Kocenda (2011), Syllignakis & Kouretas
(2011), Tudor (2011)). Generally, the research methodology found in the lit-
erature is divided in two groups. One group of authors use cointegration and
causality tests, while the other uses various multivariate GARCH techniques.
The latter, substantially improved the way we measure the dergee of integra-
tion between markets. All the above–mentioned studies reveal low short–term
comovements among CEE markets and between CEEs vis–à–vis developed ones,
which probably during the recent years have been strengthened. Also, during
the different crisis (emerging market crisis, recent financial crisis etc.) increased
comovements were reported. There is a discrepancy between different studies
on the existence of a long–term relationship between these markets. Some stud-
ies detect the presence of a long–term relationship, while others conclude that
such long–term relationships do not exist.

My research will be focused on the largest CEE markets (namely Czech,
Polish and Hungarian stock markets). Besides the interlinkages among these
markets, we will study the interdependece between them vis–à–vis the aggre-
gate eurozone market. We will use daily closing price indices of three CEE
countries and eurozone, for the period from December 20, 2001 to October
31, 2011. Specifically, we will use PX index (Czech Republic), BUX (Hun-
gary), WIG (Poland) and STOXX50 (eurozone). Among the large number of
econometric techniques suitable for this purpose, we have found the dynamic
conditional correlation model of Engle (2002) as the most appropriate one. This
model allows for time–varying dependence and gives a more realistic approach
compared to VAR–CCC model applied by Scheicher (2001), or the STCC1 model
applied by Savva & Aslanidis (2010). In addition, the asymmetric DCC model
of Capiello et al. (2006b) will be employed and to my best knowledge is not yet
applied to CEE stock markets. Different authors have investigated the pres-
ence of asymmetric effects in conditional variances of CEE markets, while this
study will also investigate the presence of asymmetric effects in the correlation
dynamics. In the aforesaid literature, researchers usually use a GARCH(1,1)
specification or an assymetric GARCH specification (e.g. EGARCH(1,1)) to
model all the return series. Our model will be flexible enough to allow each
conditional variance to be given as one of the four possible GARCH specifica-
tions (GARCH, GJR–GARCH, AVGARCH, TGARCH). The best model fitting

1STCC stands for smooth transition constant correlation.
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the data will be chosen using Bayesian information criterion (BIC). Hence,
the usage of four univariate GARCH specifications and the application of the
asymmetric DCC model will differentiate our study from the previous litera-
ture. Even though visual inspection sometimes proves to be enough to draw
meaningful conclusions, we will run supplementary OLS regressions to better
understand the evolution of correlations in time and during the recent financial
crises. Of a great importance is also the relationship between conditional cor-
relations and conditional volatilities. If correlations and volatilities move in the
same direction, then long–run risks are higher than they appear in the short–
run (Capiello et al. 2006b). To estimate this relationship a simple OLS model
on the whole sample data and the rolling “stepwise” regression methodology
will be employed. In this context, we will try to answer the following questions:
Are correlations among CEE stock markets and between CEEs vis–à–vis euro-
zone high or low? Are they increased over time or during the recent financial
crises? Are correlations and volatilities positively or negatively related? Are
there asymmetric effects present in the correlation dynamics? Are there any
good possibilities for risk diversification in CEE region? Are these diversifica-
tion benefits reduced in time as a result of increased integration between the
markets?

Our results indicate that 3 out of 4 series (BUX, PX and WIG) exhibited
asymmetries in conditional variances while only 1 pair out of 6 (BUX–WIG)
exhibited asymmetries in correlations. This implies that asymmetries in con-
ditional correlations are not as widespread as in conditional variances in CEE
markets. We found that correlations are increased over time and during the re-
cent financial crises for both pairs (CEEs–CEEs and CEEs–eurozone). However,
the highest increase is observed for CEEs–eurozone pairs. Mainly, we found
a positive relationship between correlations (CEEs–eurozone) and volatilities
(eurozone), even though there exist short time periods when this relationship
becomes negative.

The rest of the thesis is structured as follows. Chapter 2 reviews the relevant
literature, chapter 3 gives a brief description of the CEE markets, chapter 4
presents the research questions we are trying to answer, chapter 5 describes the
methodology (theoretical framework), chapter 6 presents the empirical results
and finally chapter 7 summarizes the main findings of the thesis.



Chapter 2

Literature review

The focus of my thesis is to investigate the interdependence among three major
CEE stock markets (the Czech Republic, Poland and Hungary) and between
CEEs vis–à–vis the aggregate eurozone market, using multivariate GARCH
(MVGARCH) modeling. Consequently, literature review will be concentrated
on different studies analyzing stock market linkages in CEE countries. In this
context, numerous research papers make use of cointegration (Engle–Granger,
Gragory–Hansen and Johansen methodology) and causality tests to measure
short– and long–term linkages between financial markets. In addition to con-
ventional econometric methods, MVGARCH models (CCC, STCC, BEKK, DCC)
are also extensively used as a powerful tool in quantifying market comovements.
Below we will synthetize the most important workings on this topic and then
summarize the key facts.

Gilmore & McManus (2002) examined short– and long–term linkages be-
tween three CEE stock markets (the Czech Republic, Poland and Hungary)
and the US stock market, using weekly data from 1995–2001. They argued
that no long–run relationships exist between CEE markets and the US market
(employing Johansen cointegration tests). Granger causality tests reveal only
one causal relationship among the CEE markets, with the Hungarian market
Granger causing the Polish market. While, Czech market is neither Granger
caused by the other markets nor influencing them. Also, no causality effect
is observed in either direction between the CEE markets and the US market.
Overall, these results indicate the presence of good diversification benefits in
CEE stock markets, from the point of view of a US investor.

In a similar vein, Patev et al. (2006) explored short– and long–run stock
market comovements between four CEE stock markets (the Czech Republic,
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Poland, Hungary and Russia) vis–à–vis the US market, for the period from
1996–2001. They divided the sample into three sub–periods: before, during
and after the emerging markets crises. Similar to Gilmore & McManus (2002)
cointegration analysis (Johansen methodology) indicated no long–run relation-
ships among CEE stock markets and between CEEs and the US stock market.
Using causality tests and variance decompositions, they documented an in-
crease in markets interdependence during the crisis. This led to a temporary
reduction in diversification benefits. A weaken in comovements was observed
after the crisis, even though not reaching the pre–crisis levels.

Tudor (2011) studied causal relationships between six CEE stock markets
(the Czech Republic, Poland, Hungary, Romania, Bulgaria and Russia) and
the US stock market, using Granger causality tests. The data set were split
into two sub–periods, before and during the recent financial crises. The results
showed limited unilateral causal relationships among the CEE markets before
the crises, followed by an intensified interaction in the crisis period. Further-
more, unidirectional causal relationships between the US market and the CEE
markets in the pre–crisis period (with the US market Granger causing all the
CEE markets) turned out to be bidirectional during the crisis.

Unlike Gilmore & McManus (2002) and Patev et al. (2006), there are a
number of authors who claim the presence of a long–term relationship between
the CEEs and developed markets. Among which we can distinguish Voronkova
(2004), Syriopoulos (2007) and Syllignakis & Kouretas (2006).

Syriopoulos (2007) studied the interdependeces between four Central Euro-
pean stock markets (the Czech Republic, Hungary, Poland and Slovakia) and
two developed ones (Germany and the US). A long–run relationship is found
between the markets under study, attested by the existence of a one cointe-
grated vector (using Johansen methodology). In addition, both German and
the US stock markets had a substantial influence on CEE stock markets and not
vice–versa. This is well documented by Granger causality tests and forecast
error variance decompositions. Among the CEE countries, Slovakia appears to
be less related to other CEE markets and developed markets. Furthermore, a
stronger dependence is observed among CEE stock markets than between CEEs
and developed ones.

By the use of conventional cointegration tests and cointegration tests with
shifting in regimes, Voronkova (2004) investigated the interlinkages between
three emerging markets (the Czech Republic, Poland and Hungary) and four
developed ones (Germany, France, the UK and the US). Conventional cointegra-
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tion techniques (Engle–Granger tests) reveal long–run links between Polish and
Hungarian markets, and between Czech and Hungarian markets. Also, long–
run relationships exist between Polish and Czech markets vis–à–vis German,
the UK and the US markets. When using cointegration tests with shifting in
regimes (Gregory–Hansen tests), long–run linkages between Czech and Polish
markets, and between Hungarian market vis–à–vis German, French and the US
markets not detected by Engle–Granger procedure emerge. In general, there
exist certain long–run links among developing markets and between developing
markets and developed ones, but the number of cointegrating relationships is
increased when taking into account structural breaks either in the intercept or
in the slope of cointegrating vector.

Syllignakis & Kouretas (2006) analyzed comovements between seven CEE
stock markets (the Czech Republic, Poland, Hungary, Slovakia, Slovenia, Es-
tonia and Romania) and two major stock markets (Germany and the US), for
the period from 1995–2005. Their results indicate a high degree of integration
between five CEE markets (the Czech Republic, Poland, Hungary, Slovakia and
Slovenia) vis–à–vis developed ones, supported by the evidence of increased con-
ditional correlations over time. Correlations of developed markets with respect
to Estonia and Romania were found to be quite low, except for the Russian cri-
sis period. Long–term relationships were established only between the five CEE
markets mentioned above and developed ones, whereas for Estonia and Roma-
nia such relationships were not present. As such, they suggest the Romanian
and Estonian markets as good diversification possibilities in CEE region.

In addition to cointegration analysis and causality tests, a lot of papers
(e.g. Kasch-Haroutounian & Price (2001), Scheicher (2001), Savva & Aslani-
dis (2010) etc) use MVGARCH modeling to study the dependence among stock
markets. Kasch-Haroutounian & Price (2001) investigated the interdependence
among four CEE stock markets (the Czech Republic, Poland, Hungary and Slo-
vakia) employing two different multivariate GARCH approaches, such as con-
stant conditional correlation (CCC) and BEKK. Their sample covers the period
from 1994–1998 and consists of daily data. Using CCC model, they found a
positive and statistically significant correlation coefficient between Czech and
Hungarian stock markets (0.22), and between Hungarian and Polish stock mar-
kets (0.13). For the other pairs, correlations were very small and statistically
insignificant. Moreover, applying the BEKK model, they detected only one
unidirectional volatility spillover from Budapest stock market to Warsaw stock
market. Both squared lagged innovation and conditional volatility of Budapest
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stock market influencing Warsaw stock market volatility.
Also, Scheicher (2001) studied comovements between three European emerg-

ing markets (the Czech Republic, Poland and Hungary), for the period from
1995–1997, using a vector autoregression (VAR)–CCC model. They found both
regional and global spillovers in returns, while observing only regional spillovers
in volatilities. Hence, international shocks are transmitted in CEE stock mar-
kets through return shocks rather than volatility shocks. Another important
finding which is in line with Kasch-Haroutounian & Price (2001) is that the
most interconnected markets are Budapest and Warsaw stock market, with
shocks generated in Budapest stock market influenced both the returns and
volatilities in Warsaw stock market.

Although CCC model can be a good approximation, assuming constant
correlations among stock returns is too restrictive. A more realistic approach
can be the smooth transition CC model or the dynamic conditional correlation
model. The former allows for a smooth switch between two correlation regimes,
whereas the latter allows for time–varying correlations.

Savva & Aslanidis (2010) investigated the degree of stock market integration
between 5 CEE countries (the Czech republic, Poland, Hungary, Slovakia and
Slovenia) via–à–vis aggregate eurozone market, for the period from 1997–2008.
Their methodology comprises CCC model and smooth transition CC (STCC)
model. The largest CEEmarkets (namely the Czech Republic, Poland and Hun-
gary) exhibit higher correlations vis–à–vis eurozone compared to Slovenia and
Slovakia, and are also found to be the most interconnected markets in the re-
gion. Furthermore, they found increasing correlations among the CEE markets,
and between Polish, Slovenian and Czech markets vis–à–vis eurozone. While,
for the remaining pairs correlations were constant in time. The strengthen in
correlations between CEEs and eurozone occurs much earlier than among the
CEE markets itself, suggesting the influence of eurozone in inducing correla-
tion shifts among CEEs. Accordingly, this evolution in correlations structure is
mainly attributed to EU developments (all these CEE countries joined the EU
in May 2004), rather than being a broad–based phenomenon.

Using a DCC model, Wang & Moore (2008) examined the interdependence
between three major emerging markets (the Czech Republic, Poland and Hun-
gary) vis–à–vis the aggregate eurozone market. Moreover, their efforts were
concentrated in uncovering the factors that influenced the correlation dynam-
ics. The main findings are: financial crisis and the EU enlargement had a
substantial impact in increasing correlations between CEE markets and the eu-
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rozone market. The detrimental factor in shifting correlations upward seems
to be the stock market development measured by financial depth. On the con-
trary, macroeconomic and monetary convergence did not explain the increased
interdependence between CEE markets and the EU market.

Syllignakis & Kouretas (2011) using a DCC model and employing weekly
data from 1997–2009, investigated stock market correlations between three ma-
jor stock markets (the US, Germany and Russia) and those of the Central East-
ern Europe (the Czech Republic, Estonia, Hungary, Poland, Romania, Slovakia
and Slovenia). They argue a reduction in the diversification benefits in CEE
markets, supported by the evidence of increasing correlations over time. The
shift in the correlation coefficients can be mainly explained by a greater degree
of financial openness, followed by an increased presence of foreign investors in
the region, and finally the entry in EU. In contrast to Wang & Moore (2008),
they emphasized the role of macroeconomic fundamentals in explaining the
increased correlations during the recent financial crises.

So far, we have described different studies employing weekly or daily data.
Yet, there exist a number of authors which make use of ultra high frequency
data, among which Egert & Kocenda (2005) and Egert & Kocenda (2011).
Using various conventional econometric techniques, Egert & Kocenda (2005)
found no long–run relationships among the CEE markets (the Czech Republic,
Poland and Hungary) and between CEE markets and developed ones (Ger-
many, France and the UK). However, significant short–term spillover effects
were present, more pronounced from volatility–to–volatility than from returns–
to–returns.

Egert & Kocenda (2011) using a DCC model, examined comovements be-
tween three developed (France, Germany and the United Kingdom) and three
emerging stock markets (the Czech Republic, Poland and Hungary). They
found extremely low correlations among the developing markets (ranging from
0.02–0.05), and between developing markets and developed ones (ranging from
0.01–0.03). On the other hand, correlations among the developed markets ap-
pear to be large, indicating the high degree of integration of these markets.
Also, they observed an increase in correlations in CEE markets beginning in
the second half of 2004, which may be a consequence of those three countries
joining the European Union.

Cappiello et al. (2006a) and Babetskii et al. (2007) studied stock market
integration using alternative econometric techniques. Cappiello et al. (2006a)
investigated the degree of integration between 7 new EU member states (the
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Czech Republic, Poland, Hungary, Cyprus, Estonia, Latvia and Slovenia) and
euro area, using a factor model of market returns. They emphasized the exis-
tence of strong comovements among the biggest CEE stock markets (the Czech
Republic, Poland and Hungary), and between these markets vis–à–vis euro-
zone. On the other hand, the degree of integration among the smaller stock
markets (Cyprus, Estonia, Latvia and Slovenia) was assessed as low.

Babetskii et al. (2007) investigated the degree of integration between four
CEE stock markets (the Czech Republic, Poland, Hungary and Slovakia) and
the euro area, both at national and sectorial levels. They used two concepts, β–
convergence (as a measure of the speed of convergence) and σ–convergence (as
a measure of the degree of financial integration), usually found in the growth
literature. They affirm the presence of a β–convergence, both at the national
and sectorial levels. In addition, neither the EU enlargement nor the announce-
ment of it did have any influence on β–convergence. They also detected a σ–
convergence for the period from 1995–2005, followed by a divergence from the
euro area after 2005. To summarize, the degree of integration between CEEs
and euro area is increased over time.

Different authors have studied the interdependence between CEE stock mar-
kets and developed European markets, while there is a lack of literature in in-
vestigating comovements between South Eastern Europe (SEE) and Eurozone.
Horvath & Petrovski (2012) fill this gap by examining both Central (the Czech
Republic, Hungary and Poland) and South Eastern Europe (Croatia, Macedo-
nia and Serbia). Using the BEKK–GARCH model, they analyze the linkages
between CEE and SEE stock markets vis–à–vis euro area. Their results indicate
a high degree of integration between CEEs and euro area (correlations fluctu-
ate around 0.6) and a low degree of integration between SEEs and euro area
(correlations fluctuate around 0). Among the SEE markets, Croatia exhibits
the highest degree of integration. Also, they do not identify a change in market
comovements during the recent financial crises.

In summary, all the above–mentioned studies reveal low short–term comove-
ments among CEE markets and between CEEs vis–à–vis developed ones, which
probably during the recent years have been strengthened. Also, during the
different crisis (emerging market crisis, recent financial crisis etc.) increased
comovements were reported. There is a discrepancy between different stud-
ies on the existence of a long–term relationship between these markets. Some
studies detect the presence of a long–term relationship, while others conclude
that such long–term relationships do not exist.
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Market description

3.1 A short history

Budapest Stock Exchange (BSE) was established in 1864 as the Hungarian
Stock Exchange. After four years it changed to Budapest Stock and Commodity
Exchange, trading not only securities but also commodities and mainly grain.
In 1889, stocks quoted on BSE were also listed on Vienna, Frankfurt, London
and Paris, while in 1890s government bonds issued by the Hungarian authorities
were traded on Amsterdam, Berlin, London and Paris Stock Exchanges. Like
other stock exchanges in Central and Eastern Europe, BSE stopped operating
after WWII, reopening again on June 21, 1990.

Prague stock exchange (PSE) was established in 1871. In the beginning,
securities and commodities were traded in PSE. After WWI, commodity trans-
actions seized to exit. Between WWI and WWII, PSE experienced a prosperity
period and performed even better than Vienna stock exchange. During com-
munism it stopped operating, reopening again on November 24, 1992. The first
trading session was held after 5 months on April 6, 1993 with only 7 securities
listed.

Polish capital market was established in 1817 under the name of Warsaw
Mercantile Exchange. During the communist era it stopped operating, reopen-
ing again on April 12, 1991 as the Warsaw Stock Exchange (WSE). The first
trading session took place on April 16 and the number of listed companies was
5. In 2007, a new market, called NewConnect, devoted to small and medium
enterprises was created. In 2009, another market segment dedicated to bond1

trading was launched.
1Corporate, mortgage-backed, treasury and municipal bonds.
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In 2004, these CEE countries became part of EU and their stock exchanges
became a full member of Federation of European Securities Exchanges (FESE).

3.2 Market segments
In this section we will describe the market’s segments and financial instruments
traded on Prague, Budapest and Warsaw stock exchanges. In this way, we can
give a complete picture of the structure of these markets.
BSE market structure is given as below:

• Equities section – securities such as equities and investment fund shares
are traded on this market. In addition to these instruments, also struc-
tured products and special securities are traded.

• Debt securities section – instruments such as government bonds, treasury
bills, corporate bonds and mortgage bonds are traded in this market.

• Derivatives section – two types of contracts are traded on this market,
futures and options contracts.

• Commodities section – commodities, spot and derivative commodity in-
struments are traded in this market.

• BETa market was established in November 2011 and serves as an alter-
native market for European companies with a good reputation.

The WSE market structure is given as below:

• Main list – is the first market that has been operating since 1991. Dif-
ferent securities are traded on this market such as equities, bonds, future
contracts, options etc.

• New connect – is a special market devoted to start ups and developing
companies, in particular to companies investing in innovations and new
technologies. Traded securities include equities and equity–based securi-
ties.

• Catalyst – is a recently established market (2009) for debt instrument
trading. Debt instruments traded on catalyst include corporate bonds,
municipality bonds and treasury bonds.

PSE market structure is given as below:
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• Main market – is a regulated market devoted to large issues and is subject
to strict regulations.

• Free market – is also a regulated market, but in contrast to the main
market is not subject to high requirements.

• MFT market – is a non regulated market, much more flexible than the
regulated markets and with less strict requirements.

Instruments traded in these markets include bonds, shares, investment certifi-
cates, futures and warrants.

3.3 Market statistics

This section will cover some simple market statistics such as market capital-
ization, equity trading volume and the number of IPOs. Initially, we will give
a brief definition of the terms and stress their importance2.

Market capitalization – market capitalization (or market cap) of a com-
pany is defined as the total number of shares multiplied by the price of one
share. Whereas, market capitalization of an exchange is the sum of market
capitalisations of all domestic and foreign companies listed in that exchange.
Market capitalization serves as a good measure of the market size.

Equity trading volume – is equal to the number of traded shares mul-
tiplied by their relevant prices. We can refer to this indicator as a liquidity
measure.

IPOs – initial public offerings, the first time sale of stocks from an unlisted
company.

Figure 3.1 below presents market capitalization of PSE, BSE and WSE,
from 2001 to 2011. We can easily observe that WSE has the highest market
capitalization, far from PSE and BSE. Market cap ofWSE is 2.2–4.5 times higher
than market cap of PSE and 2.2–7.3 times higher than market cap of BSE. This
makes WSE the biggest market in the region. Until 2003, the second biggest
market was BSE, followed by PSE. After 2003, PSE became the second largest
market. For the period from 2001–2003, we notice a fairly constant market
cap for the three markets under study, then we can observe an increasing trend
until 2007. This prosperity period was disrupted by the recent financial crises,
with market cap figures reaching half their values in 2008. Afterwards, PSE

2For the definitions we refer to FESE statistics methodology.
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and BSE experienced a small increase, whereas WSE followed a sharp raise. In
2011, all the exchanges experienced a decrease in market capitalization.

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
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150,000
Market capitalization
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WSE

Figure 3.1: Market capitalisation. Year–end values in million Euro. Data retrieved from
Federation of Europen Securities Exchanges.
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Figure 3.2: Equity trading volume. It includes electronic order book, off–electronic or-
der book and dark pool transactions (in million Euro). Data retrieved from Federation of
Europen Securities Exchanges.

WSE has the highest trading volume of shares (see figure 3.2), which makes
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it the most liquid market in the region. In 2011, trading volume of WSE was
5.1 times higher than trading volume of BSE and 4.6 times higher than trading
volume of PSE. Only in 2004–2005, WSE was ranked as the second market in
terms of trading volume. In 2001–2002, BSE was the second most liquid market.
While, after 2002 PSE surpassed BSE. Similar to market capitalization, trading
volume follows approximately the same pattern.

Regarding the number of IPOs, still WSE is ranked first and we can compare
it to developed European stock markets. It is very active in IPOs, with 204
IPOs only in 2011.

The wide range of securities traded in WSE (debt instruments, equity in-
struments, derivatives & structured products etc.), the high number of IPOs,
the equity trading volume and market capitalisation make WSE a leader in
Central and Eastern Europe.

Budapest Prague Warsaw
2001 1 0 0
2002 0 0 0
2003 0 0 0
2004 0 0 1
2005 0 0 0
2006 0 0 27
2007 1 2 105
2008 2 1 93
2009 0 0 38
2010 0 1 110
2011 0 1 204

Table 3.1: Nr. of IPOs
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Hypotheses

In our study, we will address different research questions regarding stock mar-
ket integration in CEE region. As mentioned, we will be concentrated on the
major stock markets of Central Europe such as Czech, Polish and Hungarian
markets. As these countries joined the EU in May 2004, it is also of great inter-
est to explore the degree of integration between these markets and eurozone.
Cappiello et al. (2006a) associate the degree of stock market integration to the
strengthen of linkages between these markets, and the empirical strategy is
based on investigating comovements of financial asset returns across different
countries. The appropriate methodology, despite the existence of a wide range
of techniques, consists in estimating dynamic conditional correlation model of
Engle (2002) and its asymmetric version of Capiello et al. (2006b). By the use
of the above–mentioned models and of supplementary OLS regressions we will
try to answer the following questions:

1. Are correlations among CEE stock markets and between CEEs vis–à–vis
eurozone high or low?

2. Are correlations increased over time?
As stock markets are becoming increasingly integrated and CEE countries
are now part of EU, we expect an increase in conditional correlations over
time.

3. Are correlations increased during the recent financial crises?
We should observe an increase in correlations compared to the pre–crises
period in case of a contagion effect due to the recent financial crises.

4. Do correlations and volatilities move in the same direction (i.e. correla-
tions are strengthened when the level of risk is increased)?
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5. Are there asymmetric effects present in the correlation dynamics?
We will test whether there is a tendency of the conditional correlations
to increase more when both markets experience bad news1.

6. Are there any good possibilities for risk diversification in CEE region2?
It is very important for international portfolio managers seeking to invest
in CEE countries to have a good knowledge of time–varying correlations
among CEE stock markets and between their national or regional stock
market vis–à–vis CEEs. This information plays a vital role in composing
optimal diversified portfolios.

7. Are these diversification benefits reduced in time as a result of increased
integration between the markets?

1i.e. when both index returns happen to be negative.
2From the point of view of a European investor.
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Methodology

In order to investigate changes in comovements among CEE stock markets (the
Czech Republic, Poland and Hungary), and between CEE markets vis–à–vis
the aggregate eurozone market we will make use of DCC model of Engle (2002)
and asymmetric DCC model of Capiello et al. (2006b). As it is too restrictive
to estimate an A/DCC model for all return series at once, we will use bivariate
versions of it1. Our estimation strategy will be based on the following steps:

1. Transform prices into returns by initially taking the logarithm and then
first–differencing the data.

• Test returns for unit roots using augmented Dickey–Fuller (ADF)
test with automated lag selection. The optimal lag length will be
determined using Akaike information criterion (AIC). Generally, fi-
nancial data are integrated of order one (I(1)) and turn out to be
covariance–stationary after log first–differencing.

2. Estimate an AR(1) model for each return series in order to remove the
dependence in returns and produce the i.i.d. zero mean residuals (see
Engle & Sheppard 2001).

3. Estimate a GARCHmodel for each residual series obtained from the AR(1)
specification. For this purpose, four univariate GARCH specifications
(GARCH, GJR–GARCH, TGARCH, AVGARCH) will be employed and the
best model will be selected using BIC. Specifications up to 2 lags will be
considered.

1i.e. pair-wise conditional correlations will be calculated.
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• Test the standardized residuals (i.e. residuals divided by their condi-
tional standard deviations) for any remaining serial correlation using
Ljung–Box Q test.

• Test the squared standardized residuals for any remaining ARCH
effects using ARCH–LM test of Engle (1982).

4. Estimate DCC and ADCC models using standardized residuals.

5. Perform OLS regressions2 of dynamic correlations on a time trend and
a dummy variable for the recent financial crises. In this way, we can
understand whether correlations are increased over time and during the
crises.

6. Perform OLS regressions of conditional correlations on conditional volatil-
ities. In addition, we will employ a rolling “stepwise” regression method-
ology to study the time–varying nature of the coefficients. If volatilities
and correlations move in the same direction (i.e. correlations are strength-
ened when the level of risk is increased), then long run risks are higher
than they appear in the short run.

To estimate all the models (OLS, ARMA, GARCH and DCC), MFE Toolbox c©

made available by Kevin Sheppard will be utilized. Below we will describe the
models in details and the structure is as follows. Section 5.1.1 covers ARMA
models, section 5.1.2 GARCH models and section 5.1.3 DCC models.

5.1 Theoretical framework

5.1.1 ARMA models

Before proceeding with the description of ARMA models, it is necessary to de-
fine the concept of covariance stationarity (or week stationarity). A stochastic
process {rt} is said to be covariance stationary if:

• E [rt] = µ for t = 1, 2, . . .

• Var [rt] = σ2 for t = 1, 2, . . .

• Cov [rt, rt−s] = γs for t = 1, 2, . . . and s 6= 0
2Newey–West covariance estimator, which is robust to both heteroskedasticity and auto-

correlation, will be used.
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Simply put, covariance stationarity means that the unconditional first and
second moments of a stochastic process are finite and constant in time. So,
stationarity imposes some regularities, which are important for estimating the
model parameters.

The simplest process, upon which ARMA models are built, is the white noise
process. A sequence {εt} is said to be a white noise process if the following
properties hold:

• E [εt] = 0 for t = 1, 2, . . .

• Var [εt] = σ2 for t = 1, 2, . . .

• Cov [εt, εt−s] = 0 for t = 1, 2, . . . and s 6= 0

or equivalently expressed εt
i.i.d.∼ D

(
0, σ2) where D indicates the distribution.

If D were a normal distribution, then we would have a Gaussian white noise
process.

Basically, ARMA model is composed of the autoregressive (AR) and moving
average (MA) parts. The AR(P) model has the following form:

rt = φ0 +
P∑
p=1

φprt−p + εt (5.1)

where εt is a white noise process.
Certain conditions have to be met for the AR(P) process to be covariance
stationary. In order to define the stationarity condition, we first have to express
the AR(P) model by means of lag operators3:

(
1− φ1L− φ2L

2 − . . .− φPLP
)
rt = φ0 + εt (5.2)

Thus, for the AR(P) process to be covariance stationary, the roots of the AR
polynomial

(
1− φ1z − φ2z

2 − . . .− φP zP
)
must lie outside the unit circle.

Whereas, the MA(Q) process is given as:

rt = φ0 +
Q∑
q=1

θqεt−q + εt (5.3)

or in terms of lag operators:

rt − φ0 =
(
1 + θ1L+ θ2L

2 + . . .+ θQL
Q
)
εt (5.4)

3We can define a lag operator L as Lirt = rt−i. If rt = c, where c is a constant, then
Lc = c.
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Unlike the AR(P) process, MA(Q) process is always stationary. Invertibility is a
crucial requirement for uniquely identifying theMA process. For anMA(Q) pro-
cess to be invertible the roots of theMA polynomial

(
1 + θ1z + θ2z

2 + . . .+ θQz
Q
)

must lie outside the unit circle.
The mixture of the above mentioned models yields the ARMA(P,Q) process:

rt = φ0 +
P∑
p=1

φprt−p +
Q∑
q=1

θqεt−q + εt (5.5)

The polynomials
(
1− φ1z − φ2z

2 − . . .− φP zP
)
and

(
1 + θ1z + θ2z

2 + . . .+ θQz
Q
)

must not have any roots in common, otherwise we can reduce the model orders.
The ARMA(P,Q) model can be extended to ARIMA(P,d,Q), where I holds

for the integrated and d is the order of integration. If ∇drt is an ARMA(P,Q)
process, then rt is an ARIMA(P,d,Q) process. When d = 1, which is the case for
most financial time series, we have an ARIMA(P,1,Q) process. Specifically, if
rt = log (Pt) − log (Pt−1) follows an ARMA(P,Q) process, then log (Pt) follows an
ARIMA(P,1,Q) process.

5.1.2 GARCH models

Volatility modeling has been one of the most promising and important areas of
study over the last decades. A vast amount of literature is devoted to modeling
and forecasting the second moments of asset returns. As it was difficult to find
an asset whose volatility was constant over time, historical volatility became
irrelevant and econometricians tried to develop models which allowed for time–
varying volatility. Engle (1982) was the first to introduce the autoregressive
conditional heteroskedasticity (ARCH) model, which specifies the conditional
variance as a function of lagged squared errors.
The ARCH(P) process is given as:

rt = µt + εt (5.6)

σ2
t = ω +

P∑
p=1

αpε
2
t−p (5.7)

with parameter restrictions:

1. ∑P
p=1 αp < 1

2. ω > 0

3. αp ≥ 0 for p = 1, 2, . . . , P
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where equation 5.6 represents the model of the conditional mean. The error
term εt can be decomposed as εt = υtσt, where υt is an i.i.d. normal innova-
tion with mean 0 and variance 1. Restriction 1 ensures a covariance stationary
ARCH process, while restrictions 2 and 3 guarantee a positive conditional vari-
ance at each point in time.

A drawback of the ARCH specification is the high number of lags needed to
properly model the conditional variance. Bollerslev’s (1986) generalized ARCH
(GARCH) model solved this shortcoming, by allowing the conditional variance
to depend not only on lagged squared errors but also on lagged conditional
variances. The GARCH(P,Q) process is given as:

σ2
t = ω +

P∑
p=1

αpε
2
t−p +

Q∑
q=1

βqσ
2
t−q (5.8)

with parameter restrictions:

1. ∑P
p=1 αp +

∑Q
q=1 βq < 1

2. ω > 0

3. αp ≥ 0 for p = 1, 2, . . . , P

4. βq ≥ 0 for q = 1, 2, . . . , Q

In general, the GARCH(1,1) model sufficiently explains the conditional het-
eroscedasticity present in the data and usually every financial time series is
best described by this model. Also, it represents a parsimonious specification
since it includes estimating only three parameters and performs as good as a
high-order ARCH model (Bollerslev 1986).

The aforementioned models assume a symmetric response of the conditional
variance to both positive and negative shocks of the same magnitude. Empir-
ically, it is observed that conditional variance increases more after a negative
shock rather than a positive shock (the so called “leverage” effect). To ac-
count for this effect different models have been developed, among which the
GJR–GARCH specification of Glosten et al. (1993). The GJR–GARCH(P,O,Q)
specification is given as:

σ2
t = ω +

P∑
p=1

αpε
2
t−p +

O∑
o=1

γoε
2
t−oI[εt−o<0] +

Q∑
q=1

βqσ
2
t−q (5.9)

with parameter restrictions:

1. ∑P
p=1 αp + 1

2
∑O
o=1 γo +

∑Q
q=1 βq < 1
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2. ω > 0

3. αp ≥ 0 for p = 1, 2, . . . , P

4. βq ≥ 0 for q = 1, 2, . . . , Q

5. αq + γo ≥ 0 for q = 1, 2, . . . , Q and o = 1, 2, . . . , O

where I[εt−o<0] is an indicator function which takes on the value 1 when εt−o < 0
and 0 otherwise.

All the GARCH models mentioned above parameterize the conditional vari-
ance. In addition, specifications of the conditional standard deviation will be
employed. Among this class of models we can distinguish the absolute value
GARCH (AVGARCH) model of Taylor (1986) and threshold GARCH (TGARCH)
model of Zakoian (1994). TGARCH(P,O,Q) model is given as:

σt = ω +
P∑
p=1

αp|εt−p|+
O∑
o=1

γo|εt−o|I[εt−o<0] +
Q∑
q=1

βqσt−q (5.10)

AVGARCH model is a special case of TGARCH model when no asymmetric
terms are included (i.e. O = 0). The AVGARCH(P,Q) specification is given as:

σt = ω +
P∑
p=1

αp|εt−p|+
Q∑
q=1

βqσt−q (5.11)

Parameter restrictions applied to AVGARCH and TGARCH models are basi-
cally the same as parameter restrictions of GARCH and GJR–GARCH models,
respectively.

Estimation

GARCH models are estimated using maximum likelihood, assuming the errors
are conditionally i.i.d. normal. The likelihood function is given as:

L (θ; rt) =
T∏
t=1

(
2πσ2

t

)− 1
2 exp

(
−(rt − µt)2

2σ2
t

)
(5.12)

and the log–likelihood function takes the form:

` (θ; rt) = −1
2

T∑
t=1

log (2π) + log
(
σ2
t

)
+ (rt − µt)2

σ2
t

(5.13)

Parameters are estimated by maximizing the log–likelihood function:

θ̂ = argmax ` (θ; rt)
θ
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For this purpose, quasi–Newton methods such as the BFGS algorithm of Boy-
den, Fletcher, Goldfarb and Shannon will be used. When the distribution is
misspecified, θ̂ is interpreted as a quasi–maximum likelihood estimator.

Asymptotic theory

Parameters estimated through maximum likelihood are asymptotically nor-
mally distributed.

√
T
(
θ̂ − θ0

)
d→ N

(
0, I−1

)
(5.14)

where I is −1 times the expected value of the Hessian matrix4:

I = −E
[
∂2` (θ0; rt)
∂θ∂θ′

]
(5.15)

and can be estimated using the sample analogue:

Î = T−1
T∑
t=1

∂2`
(
θ̂; rt

)
∂θ∂θ′

(5.16)

In general, information matrix equality (I = J ) holds for maximum likelihood
estimators, where J is the outer product of scores and is given as:

J = E
[
∂` (θ0; rt)

∂θ

∂` (θ0; rt)
∂θ′

]
(5.17)

Also, it can be estimated using the sample analogue:

Ĵ = T−1
T∑
t=1

∂`
(
θ̂; rt

)
∂θ

∂`
(
θ̂; rt

)
∂θ′

(5.18)

If the distribution is misspecified (i.e. if we assume normal distribution but
the data come from another distribution5) information matrix equality does
not hold anymore. In this case, we should use the robust (or “sandwich”)
covariance estimator.

√
T
(
θ̂ − θ0

)
d→ N

(
0, I−1J I−1

)
(5.19)

Both gradients and hessians are computed through numerical approximations.
Specifically, we will use centered difference approximation in order to achieve
a higher precision.

4Hessian matrix is the matrix of second–order derivatives.
5The distribution of the errors in GARCH models usually exhibit excees kurtosis and

negativ skewness and thus is non–normal.
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5.1.3 DCC models

Engle (2002) proposed the dynamic conditional correlation (DCC) model that
is a direct generalization of the constant conditional correlation (CCC) model
of Bollerslev (1990). This specification assumes that the 1×k vector of returns6

is conditionally normally distributed with zero mean and variance–covariance
matrix Ht.

rt|Ft−1 ∼ N (0,Ht) where Ft−1 is the information set at time t− 1

The variance–covariance matrixHt can be decomposed asHt = DtRtDt, where
Dt is a diagonal matrix with the ith diagonal element corresponding to the
conditional standard deviation of the ith asset and Rt is the time–varying cor-
relation matrix.

Dt = diag {σit} where σit =
√
σ2
it

Rt = {ρij,t} where

ρij,t = 1 for i = j

ρij,t ≤ |1| for i 6= j

Our model will be flexible enough to allow each conditional variance to be
given as one of the four possible GARCH specifications mentioned in section
5.1.2. Also, it will be possible for different return series to have different ARCH,
TARCH7 and GARCH lag lengths. The best model between the four specifica-
tions will be selected using BIC. All the GARCH specifications can be expressed
in nested form as:

σδit = ωi +
Pi∑
p=1

αip|rit−p|δ +
Oi∑
o=1

γio|rit−o|δI[rit−o<0] +
Qi∑
q=1

βiqσ
δ
it−q (5.20)

where δ = 1, 2 depending on whether we parameterize the conditional standard
deviation or the conditional variance.
The correlation dynamics is given by:

Qt =
(

1−
M∑
m=1

θm −
N∑
n=1

ϕn

)
Q+

M∑
m=1

θm
(
εt−mε

′
t−m

)
+

N∑
n=1

ϕnQt−n (5.21)

and

Rt = Q?−1
t QtQ

?−1
t (5.22)

6Either demeaned returns or residuals obtained after applying ARMA filtering.
7TARCH refers to asymmetric inovation term.
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where εt = D−1
t rt (or equivalently εt = rt � σt8) are the standardized returns.

Q = E [εtε′t] is the unconditional correlation of the standardized returns and
since the expectation is infeasible, we can estimate it using the sample analogue
T−1∑T

t=1 εtε
′
t. Multiplication by Q?

t = (Qt � Ik)
−1/29 matrix guarantees that Rt

is a well–defined correlation matrix with ones along the main diagonal and each
off-diagonal element being less or equal to one in absolute value.

The variance–covariance matrix Ht = DtRtDt will be positive definite as
long as Rt is positive definite and the univariate GARCH models are correctly
specified. A necessary and sufficient condition for Rt to be positive definite
is that Qt must be positive definite (see Engle & Sheppard 2001). Parameter
restrictions which ensure a positive definite Qt matrix are:

1. ∑M
m=1 θm +

∑N
n=1 ϕn < 1

2. θm ≥ 0 for m = 1, 2, . . . ,M

3. ϕn ≥ 0 for n = 1, 2, . . . , N

Beside DCC model, the asymmetric DCC (ADCC) specification of Capiello et al.
(2006b) will be considered. ADCC model introduces asymmetries in the corre-
lation dynamics.
The dynamic correlation structure is given as:

Qt =
(

1−
M∑
m=1

θm −
N∑
n=1

ϕn

)
Q−

K∑
k=1

τkN +
M∑
m=1

θm
(
εt−mε

′
t−m

)
+

+
K∑
k=1

τk
(
nt−kn

′
t−k
)

+
N∑
n=1

ϕnQt−n (5.23)

where εt and Q are expressed exactly as in the DCC case. nt = I [εt<0]�εt, with
I [εt<0] being a 1× k indicator function which takes on the value 1 when εt < 0
and 0 otherwise. In this case, unlike in the univariate processes, the asymmetric
term is applicable when both indicators I[εit<0] and I[εjt<0]

10 are equal to 1 or
in other words when both returns happen to be negative. N = E [ntn′t] can be
estimated using the sample analogue N = T−1∑T

t=1ntn
′
t. Positive definiteness

of Qt is ensured by imposing the following restrictions:

1. ∑M
m=1 θm + δ

∑K
k=1 τk +

∑N
n=1 ϕn < 1

2. θm ≥ 0 for m = 1, 2, . . . ,M
8� denotes Hadamard devision (element–by–element division).
9� denotes the Hadamard product (element–by–element multiplication).

10I[εit<0] and I[εjt<0] where i 6= j are elements of I [εt<0].
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3. τk ≥ 0 for k = 1, 2, . . . ,K

4. ϕn ≥ 0 for n = 1, 2, . . . , N

where δ = Q
− 1

2NQ
− 1

2 can be estimated on sample data.

Estimation

The A/DCC model will be estimated via maximum likelihood assuming condi-
tional multivariate normality. Estimation of the model is done using a three
step procedure (see e.g. Engle & Sheppard 2001, Engle 2002). In the first
step we fit k univariate GARCH–type models for each return series. Then, the
unconditional correlation matrix Q (and the unconditional covariance matrix
N in case of ADCC) is estimated using the standardized returns (asymmetric
standardized returns) and finally we estimate the parameters which govern the
correlation dynamics. Although the conditional distribution is usually misspec-
ified, there still exist quasi–maximum likelihood estimators which are consistent
and asymptotically normal (Engle & Sheppard 2001).
The joint log–likelihood function is:

L (θ) = −1
2

T∑
t=1

(
k log (2π) + log (|Ht|) + r′tHtrt

)
= −1

2

T∑
t=1

(
k log (2π) + log (|DtRtDt|) + r′tD−1

t R
−1
t D

−1
t rt

)

= −1
2

T∑
t=1

(
k log (2π) + 2 log (|Dt|) + log (|Rt|) + ε′tR−1

t εt
)

and we can split it into a volatility and a correlation part. For this purpose
parameters are divided in two groups, one corresponding to univariate GARCH
parameters and the other corresponding to dynamic correlation parameters.

GARCH: φ = (φ1, φ2, . . . , φk) where φi = (ωi, αi1, . . . , αiPi , γi1, . . . , γiOi , βi1, . . . , βiQi)

DCC: ψ = (θ1, . . . , θm, τ1, . . . , τk, ϕ1, . . . , ϕn)

In the first step Rt is replaced with Ik, an identity matrix of dimension k.
Thus, the first stage quasi–likelihood becomes:

QL1 (φ|rt) = −1
2

T∑
t=1

k log (2π) + 2 log (|Dt|) + log (|Ik|)︸ ︷︷ ︸
0

+r′tD−1
t IkD

−1
t rt


= −1

2

T∑
t=1

(
k log (2π) + 2 log (|Dt|) + r′tD−2

t rt
)
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= −1
2

T∑
t=1

(
k log (2π) +

k∑
i=1

(
log

(
σ2
it

)
+ r2

it

σ2
it

))

= −1
2

k∑
i=1

T∑
t=1

(
log (2π) + log

(
σ2
it

)
+ r2

it

σ2
it

)

Indeed, the first stage quasi–likelihood is the sum of individual GARCH like-
lihoods and maximizing the joint likelihood is equivalent to maximizing each
univariate GARCH likelihood individually.

The second stage quasi–likelihood is estimated conditioning on first stage
parameters:

QL2

(
ψ|φ̂, rt

)
= −1

2

T∑
t=1

(
k log (2π) + 2 log (|Dt|) + log (|Rt|) + r′tD−1

t RtD
−1
t rt

)
= −1

2

T∑
t=1

(k log (2π) + 2 log (|Dt|) + log (|Rt|) + ε′tRtεt)

Given that we are conditioning on first stage parameters and after excluding
the constant term as its first–derivative with respect to correlation parameters
is zero, the second step quasi–likelihood becomes:

QL∗2
(
ψ|φ̂, rt

)
= −1

2

T∑
t=1

(
log (|Rt|) + ε′tRtεt

)
The second step parameters are retrieved by maximizing QL∗2 as:

ψ̂ = argmax QL∗2
ψ

As in the univariate case, BFGS algorithm will be used for the maximization
problem.

Asymptotic theory

Parameters of DCC–MVGARCH model are asymptotically normally distributed
as:

√
T
(
θ̂ − θ0

)
d→ N

(
0,A−1

0 B0A
′−1
0

)
(5.24)

with

A0 =

 ∇φφQL1 (φ0) 0
∇φψQL2 (θ0) ∇ψψQL2 (θ0)

 =

 A11 0
A12 A22

 (5.25)

and
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B0 = var

[
T∑
t=1

{
T−

1/2∇′φQL1 (rt,φ0) , T−1/2∇′ψQL2 (rt,φ0,ψ0)
}]

=

=

 B11 B12

B12 B22

 (5.26)

The asymptotic covariance matrix of the estimated parameters θ̂ is given as
A−1

0 B0A
′−1
0 . The asymptotic covariance of GARCH parameters φ̂ is given by

A−1
11 B11A

′−1
11 and is basically a block diagonal matrix, with the covariance of

the kth GARCH model in its kth diagonal bllok. Every covariance matrix is in
fact the robust (or “sandwich”) covariance matrix presented in equation 5.19.
While, the asymptotic covariance of the DCC parameters ψ̂ is quite complicated
and is explicitely expressed in Engle (2002).

Practical issues

In order to get meaningful results we have to deal with two practical issues.
First, how to handle the missing values. As we know, there exist particular
days for which some stock exchanges operate, while the others do not. As the
number of missing values in each series is small11, we will put them equal to
the previous day’s value.

Second, how to deal with estimation difficulties. When maximizing the
log–likelihood function (both for univariate and multivariate GARCH models),
we are interested in finding the global maxima. The log–likelihood function
is quite flat at the optimum and we can reach a local maxima instead of a
global one. In this case, starting values play an important role in finding the
optimum. To be sure we have found the global maximum, we will follow these
steps:

1. In the beginning, we will evaluate the GARCH (DCC) log–likelihood func-
tion using a grid search of 45 (36) points, finding in this way the appro-
priate starting values.

2. Then, we will employ a quasi–Newton method (BFGS algorithm) to find
the optimum, using the aforesaid starting values as inputs.

112.3%, 2.2%, 2.2% and 0.6% for BUX, PX, WIG and STOXX50, respectively.



Chapter 6

Data and empirical results

6.1 Data description

The data set comprises daily closing price indices of three CEE countries and
eurozone, for the period from December 20, 2001 to October 31, 2011, a total
of 2,533 observations. It consists of stock indices of the Czech Republic (PX),
Hungary (BUX), Poland (WIG) and the eurozone (STOXX50).

PX is a blue–chip price index composed of 14 shares listed on Prague Stock
Exchange (PSE). BUX and WIG are total return indices1, with the former com-
posed of 11 blue–chip shares quoted on Budapest Stock Exchange (BSE) and
the latter composed of 354 shares listed on the Main List market of Warsaw
Stock Exchange (WSE). STOXX50 is chosen as a representative index for the eu-
rozone and includes 50 blu–chip shares from 18 European countries2: Austria,
Belgium, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy,
Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland
and the United Kingdom. BUX, PX and WIG are denominated in their local
currency, while STOXX50 is denominated in Euro. Figure 6.1 presents plots of
the indices.

All the above mentioned price series Pt are transformed by taking the log
first–difference, producing the return series rt = log (Pt/Pt−1) (see figure 6.2).
Table 6.1 summarizes the descriptive statistics and a few tests performed on
index returns. Initially, we have tested for stationarity of returns using aug-
mented Dickey–Fuller (ADF) test. In all series, the null hypothesis of unit
root is rejected at 5% significance level. Furthermore, returns are found to be

1A total return index takes into account dividend payouts.
2A representation of supersector leaders in Europe.
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BUX PX WIG STOXX50

Mean 3.5275e-04 3.4042e-04 4.3087e-04 -1.6693e-04
Std. Dev. 0.0169 0.0156 0.0134 0.0143
Skewness -0.1243 -0.5846 -0.3704 0.0999
Kurtosis 9.4 16.61 6.12 9.58
Minimum -0.1265 -0.1619 -0.0829 -0.09
Maximum 0.1318 0.1236 0.0608 0.1022
Jarque–Bera stat. 4,323 19,687 1,083 4,573
Q(8) stat.a 48 44.87 25.65 66.42
ARCH–LM stat.b 328.2 511.55 245.86 449.67
ADF stat.c -20.21 -20.71 -27.62 -23.6

Table 6.1: Summary statistics. aQ stands for Ljung–Box Q test. b4 lags are used in
ARCH–LM test. cWe have employed ADF test with automated lag selection, where the
optimal lag length is determined using AIC. AIC selected a 5 lag model for BUX, PX and
STOXX50 and a 2 lag model for WIG. For all the tests a 5% significance level is used.

negatively skewed (except STOXX50 which is slightly positively skewed) and
leptokurtotic, indicating that they are not normally distributed. Also, using
Jarque–Bera test we strongly reject the null hypothesis of normality at 5% sig-
nificance level. In addition, we have tested the presence of autocorrelation and
ARCH effects in returns using Ljung–Box Q and ARCH–LM tests. The null
hypotheses of no autocorrelation and no ARCH effects are rejected for all the
series at 5% significance level. Significant autocorrelation in returns and mainly
in squared returns (indicating the presence of ARCH effects) are also observed
in the sample autocorrelation functions (ACF) and partial autocorrelation func-
tions (PACF) of (squared) returns given in the appendix B. In conclusion, all
the above–mentioned return series exhibit the standard features of a financial
time series.
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Figure 6.1: Indices. The values of BUX and WIG are given on the left y–axis and the
values of PX and STOXX50 are given on the right y–axis.
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Figure 6.2: Returns

Table 6.2 gives the Pearson correlations3 (or the unconditional correlations)
between index return series. Unconditional correlations among CEE markets
tend to be higher than the unconditional correlations vis–à–vis eurozone. The
most interconnected markets among the CEE region are Czech and Polish
markets, whereas the least interconnected are Czech and Hungarian markets.
Moreover, the Hungarian market appears to be the least correlated market with
the eurozone, while Polish and Czech markets share almost the same correlation
coefficient. This is a simplified analysis and the results should be interpreted
with caution. In order to elaborate more on this topic we will switch to dynamic
correlation models.

BUX PX WIG STOXX50

BUX 1.0000 0.5797 0.6045 0.5281
PX 1.0000 0.6366 0.5505
WIG 1.0000 0.5542
STOXX50 1.0000

Table 6.2: Unconditional correlations

3Pearson correlation is given as ρ̂ =
∑T

t=1
(xt−x)(yt−y)√∑T

t=1
(xt−x)2(yt−y)2

where x and y are the sample

means of xt and yt.
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6.2 Empirical results

6.2.1 ARMA results

In the beginning, we will filter the return series using an AR(1) model. In this
way, we can remove the dependence in returns and produce the zero–mean i.i.d.

innovation εt.

rt = φ0 + φ1rt−1 + εt

Table 6.3 presents the AR(1) results. In all cases, the intercept parameter
φ0 is statistically insignificant even at 10% significance level, while the slope
parameter φ1 is statistically significant at 5% significance level.

BUX PX WIG STOXX50

φ0 3.3757e-04 3.1314e-04 3.9621e-04 -1.8211e-04
(1.0087) (1.0126) (1.4932) (-0.64)

φ1 0.0497∗∗ 0.0815∗∗ 0.0868∗∗ -0.0397∗∗
(2.5048) (4.1093) (4.3834) (-1.9972)

Table 6.3: AR results. ∗∗Denotes statistical significance at 5% level. Numbers in paren-
theses are t-statistics.

6.2.2 GARCH results

In the second step we will fit a GARCH–type model for each residual series εt
obtained from the AR(1) specification. For this purpose four GARCH models
(GARCH, GJR–GARCH, AVGARCH and TGARCH) will be considered and the
best model will be chosen using BIC. We will use specifications up to two lags.
All the aforementioned models can be expressed in nested form using 1 lag for
each term as:

σδt = ω + α1|εt−1|δ + γ1|εt−1|δI[εt−1<0] + β1σ
δ
t−1

where δ = 1, 2 depending on whether we parameterize the conditional standard
deviation or the conditional variance.

Table 6.4 presents the GARCH results. According to BIC we select a GJR–
GARCH(1,1,1) model for BUX, PX and WIG and a GARCH(1,1) model for
STOXX50. All parameters are significant at 1% significance level. Results
confirm the presence of asymmetric effects in the conditional variances of BUX,
PX and WIG. The asymmetric innovation parameter γ1 lies between 0.046–0.13
and is larger than its symmetric counterpart α1, which lies between 0.04–0.064.
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The lagged variance parameter β1 is relatively large ranging from 0.84 to 0.92,
indicating high volatility persistence. In all the cases, models that evolved in
squares outperformed models that evolved in absolute values.

BUX PX WIG STOXX50

ω 6.7325e-06∗∗∗ 6.1022e-06∗∗∗ 2.0045e-06∗∗∗ 1.6482e-06∗∗∗
(3.605) (3.703) (2.901) (3.104)

α1 0.055∗∗∗ 0.0643∗∗∗ 0.0402∗∗∗ 0.1046∗∗∗
(4.257) (4.659) (4.778) (6.404)

γ1 0.0712∗∗∗ 0.1295∗∗∗ 0.0461∗∗∗ −
(3.179) (3.516) (2.877) (−)

β1 0.8837∗∗∗ 0.8421∗∗∗ 0.9253∗∗∗ 0.8884∗∗∗
(50.4295) (40.6234) (83.7986) (57.096)

Model GJR–GARCH GJR–GARCH GJR–GARCH GARCH

BIC -2.7942 -2.9743 -2.9978 -3.068

Table 6.4: GARCH results. ∗∗∗Denotes statistical significance at 1% level. Numbers in
parentheses are robust t-statistics.

Table 6.5 shows some diagnostic tests performed on standardized residuals
ut = εt/σt. Using Ljung–Box Q test and ARCH–LM test we do not reject the
nulls of no autocorrelation and no ARCH effects (except WIG) in standardized
residuals, which is also confirmed by sample ACFs and PACFs of (squared)
standardized residuals given in the appendix B. As mentioned above, in case of
WIG we rejected the null hypothesis of no ARCH effects and tried to estimate
models with higher orders. Again, we could not explain such ARCH effects and
in most cases the added terms turned the estimated parameters statistically
insignificant. Nevertheless, we can neglect it because it only appears to be a
marginal effect as indicated by sample ACF and PACF of squared standardized
residuals of WIG (see figure 6.3) . Moreover, Jarque–Bera tests show that
standardized residuals are highly non–normal and the use of robust standard
errors is justified.

BUX PX WIG STOXX50

Q(8) stat. 10.908 10.937 6.000 7.005
ARCH–LM stat. 1.323 3.826 19.476 7.544
Jarque–Bera stat. 79.996 288.448 86.495 124.782

Table 6.5: Diagnostic tests on standardized residuals. For all tests a 5% significance
level is used.
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Figure 6.3: Sample P/ACF of squared standardized residuals of WIG

Figure 6.4 below shows the plots of conditional standard deviations. We
can easily observe a sharp increase in volatility during the recent financial
crises. Prague and Budapest stock markets have experienced higher volatility
during the crises compared to Warsaw stock market and the aggregate european
market. As we are primarily interested in quantifying market comovements,
we will not further extend the volatility analysis and will proceed with the
correlation analysis.
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Figure 6.4: Conditional standard deviations
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6.2.3 DCC results

After having estimated the conditional variances, we will fit pairwise DCC
models on standardized residuals ut = εt � σt. This choice is made because
correlations in DCC follow a scalar BEKK–like process and it is too restrictive
to apply the model on all series at once. In addition to DCC, the asymmetric
DCC model will be employed. The ADCC(1,1,1)4 model is expressed as:

Qt = (1− θ1 − ϕ1)Q− τ1N + θ1
(
ut−1u

′
t−1
)

+ τ1
(
nt−1n

′
t−1
)

+ ϕ1Qt−1

We will divide the analysis in two parts. The first part will be devoted to
comovements among CEE stock markets and the second part to comovements
between CEEs and eurozone. Table 6.6 below presents the A/DCC results.

Among CEEs

BUX–PX BUX–WIG PX–WIG

θ1 0.0093∗∗ 0.0172∗∗ 0.0234∗∗∗
(2.3048) (2.1186) (2.5582)

τ1 − 0.0233∗∗ −
(−) (2.2579) (−)

ϕ1 0.9869∗∗∗ 0.9552∗∗∗ 0.9676∗∗∗
(143.86) (57.237) (65.431)

CEEs–Eurozone

BUX–STOXX50 PX–STOXX50 WIG–STOXX50

θ1 0.0371∗∗ 0.0222∗∗∗ 0.0136∗∗
(2.1863) (4.7938) (2.5385)

τ1 − − −
(−) (−) (−)

ϕ1 0.9354∗∗∗ 0.9665∗∗∗ 0.984∗∗∗
(25.672) (119.869) (138.922)

Table 6.6: DCC results. ∗∗Denotes statistical significance at 5% level and ∗∗∗ at 1%
level. Numbers in parentheses are robust t-statistics.

In general, asymmetries in correlations are not as widespread as in condi-
tional variances5. We have found asymmetric effects only in BUX–WIG pair,

4DCC is a special case of ADCC when τ1 = 0.
53 out of 4 series (BUX, PX and WIG) exhibited asymmetries in conditional variances

while only 1 pair out of 6 (BUX–WIG) exhibited assymetries in correlations.
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while for all the other pairs the asymmetric term was statistically insignificant
even at 10% significance level. θ1 parameter is found to be relatively small
(0.0093–0.0371), whereas ϕ1 parameter is even larger than in the univariate
case (0.9354–0.9869). All parameters are significant at 1% and 5% significance
levels.

Correlations among CEEs

Figure 6.5 shows time–varying correlations among CEE stock markets. For
BUX–PX pair, we observe low to medium correlations in a range of 0.3–0.5
until 2005, followed by two consecutive sharp increases in 2005–2006. After
2006, correlations remain comparatively high, lying between 0.5–0.7. These
findings are in line with Savva & Aslanidis (2010) that detect a double shift in
correlations between BUX and PX, although the time span between the shifts
is quite short.

For BUX–WIG pair, correlations appear to be much volatile until mid 2005,
varying between 0.2–0.7. This is followed by a moderate increase and a reduced
variation until the end of the sample, leading to higher correlations in average
(0.4–0.8).

In case of PX–WIG, an increasing trend in correlations is noticed for the
period from mid 2003 to 2009, followed by a decrease afterwards.
From the visual inspection we can deduce that correlations among CEE markets
tend to increase in time, even though the time shifts differ for different pairs.

Correlations between CEEs and eurozone

It is important to understand how CEE stock markets are linked to the rest
of eurozone. For the sake of simplicity we have not used different indices for
different EU countries, but a single aggregate index representing EU stock
market. Figure 6.6 shows correlations of CEE markets vis–à–vis eurozone. At
the beginning of 2006, we notice a shift in correlations for BUX–STOXX50 pair
and the average correlation after 2006 is higher than before.

For WIG–STOXX50 pair, correlations range between 0.2–0.5 prior to 2006,
followed by a steady increase until 2008 when they reach a high value of 0.7.
After 2008 they move between 0.5–0.8.

Until the end of 2005, correlations between PX–STOXX50 varied mainly
between 0.2–0.5, then similar to WIG–STOXX50 case are steadily increased
until 2008. This is followed by some large downward and upward movements
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until the end of the sample.
Even though Czech Republic, Poland and Hungary joined the EU in May 2004,
their financial markets and the eurozone market seem to become more inter-
connected only after 2006.
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Figure 6.5: Dynamic correlations among CEEs
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Evolution of correlations in time

Visually, we notice a strengthen in comovements among CEE stock markets
and between CEEs and eurozone. We will regress the conditional correlations
on a constant and a time trend to better understand whether correlations are
increased over time. Furthermore, the difference between the first and the last
fitted values of the regression will be calculated. In this way, we can also figure
out for which pairs, correlations are increased the most. Table 6.7 gives the
estimated parameters and the percantage change between the first and the last
fitted values (∆ρ).

ρij,t = a+ b t+ εij,t

Among CEEs

a (1000∗) b R2 ∆ρ

BUX–PX 0.392∗∗∗ 0.09∗∗∗ 0.54 57.8%(46.257) (14.96)

BUX–WIG 0.496∗∗∗ 0.055∗∗∗ 0.16 28.1%(33.652) (5.809)

PX–WIG 0.426∗∗∗ 0.097∗∗∗ 0.32 57.4%(25.003) (8.599)

CEEs–Eurozone

a (1000∗) b R2 ∆ρ

BUX–STOXX50 0.35∗∗∗ 0.089∗∗∗ 0.29 64.6%(21.921) (9.114)

PX–STOXX50 0.37∗∗∗ 0.087∗∗∗ 0.29 59.5%(25.646) (8.897)

WIG–STOXX50 0.327∗∗∗ 0.144∗∗∗ 0.69 111.5%(36.128) (20.632)

Table 6.7: Correlation analysis. ∗∗∗Denotes statistical significance at 1% level. Numbers
in parentheses are t-statistics and are calculated using Newey-West covariance estimator. ∆ρ
is the difference between the last and the first fitted values of the regression ρij,t = a+b t+εij,t.

In all the pairs, slope parameter b is greater than zero and statistically sig-
nificant at 1% level, which indicates that correlations are increased over time.
Among the CEE markets, correlations between BUX–PX and PX–WIG are in-
creased by 57.8% and 57.4%, respectively. On the contrary, correlations for
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BUX–WIG pair are increased by only 28.1%, which is quite small compared to
the other pairs. Between CEE markets and euro area, the highest increase is
observed for WIG–STOXX50 pair by 111.5%. While, for BUX–STOXX50 and
PX–STOXX50 there is a 64.6% and 59.5% increase. In summary, correlations
are increased in time both among CEEs and between CEEs and eurozone, with
the highest increase observed in CEEs–eurozone pairs.

Correlations during the recent financial crises

Besides the evolution of correlations in tranquil periods, it is also important
to measure the impact of the crises on correlation dynamics. As our sample
includes the recent financial crises, we will try to understand whether correla-
tions are strengthened during it. For this purpose, we will regress conditional
correlations on a constant and a dummy variable for the crises.

ρij,t = c+ dIcrises + εij,t

Among CEEs

c d R2

BUX–PX 0.474∗∗∗ 0.097∗∗∗ 0.25
(60.857) (9.6)

BUX–WIG 0.549∗∗∗ 0.05∗∗∗ 0.06
(62.35) (3.695)

PX–WIG 0.507∗∗∗ 0.129∗∗∗ 0.23
(48.24) (8.511)

CEEs–Eurozone

c d R2

BUX–STOXX50 0.427∗∗∗ 0.113∗∗∗ 0.19
(42.739) (7.863)

PX–STOXX50 0.452∗∗∗ 0.087∗∗∗ 0.12
(44.009) (5.692)

WIG–STOXX50 0.452∗∗∗ 0.18∗∗∗ 0.44
(47.336) (14.777)

Table 6.8: Correlations during the recent financial crisis. ∗∗∗Denotes statistical
significance at 1% level. Numbers in parentheses are t-statistics and are calculated using
Newey-West covariance estimator.
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We have conducted these regressions both among CEE markets and between
CEEs and eurozone. Table 6.8 above presents the regression results. For all
the pairs, slope coefficient d is positive and statistically significant at 1% level,
indicating that the crises has shifted the correlations upward. The magnitude
by which correlations are increased varies from 0.05 to 0.18. Among the CEE
markets the lowest increase is observed for BUX–WIG (0.05) pair and the high-
est for PX–WIG (0.13), while between CEEs and euro area the lowest increase
is observed for PX–STOXX50 (0.09) pair and the highest for WIG–STOXX50
(0.18). For CEEs–eurozone pair, correlations are increased more then among
CEEs itself.

It is very important to emphasize that diversification benefits are reduced if
comovements among stock markets are strengthened. We have concluded that
correlations of CEEs vis–à–vis eurozone are increased over time and also during
the recent financial crises, leading to less diversification benefits in CEE stock
markets.

The relationship between conditional correlations and conditional
volatilities

This last part will be devoted to the relationship between conditional corre-
lations and conditional volatilities. It is crucial to understand whether corre-
lations and volatilities are positively or negatively related. If volatilities and
correlations move in the same direction (i.e. correlations are strengthened when
the level of risk is increased), then long run risks are higher than they appear
in the short run (Capiello et al. 2006b). To uncover this important relationship
the following regression will be estimated:

ρij,t = π + κ1σi,t + κ2σj,t + εij,t

where i corresponds to a specific CEE market (Czech, Polish or Hungarian
market) and j to the aggregate eurozone market. If κ2 is positive (negative),
correlations between a CEE market and the eurozone market should be in-
creased (decreased) whenever volatility in eurozone market is increased. Table
6.9 below presents the regression results. Both for BUX–STOXX50 and PX–
STOXX50 pairs we observe a positive κ2, which is statistically significant at 5%
level. This indicates that correlations for these pairs are strengthened during
high volatility periods. Whereas, for WIG–STOXX50 pair, κ2 is negative but
statistically insignificant. This means that during high volatility periods, diver-
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sification benefits by investing in Polish stock market are higher. Nevertheless,
we cannot say this with certainty since the effect is statistically insignificant.
In addition, the relationship may not be constant in time, but time–varying as
claimed by Syllignakis & Kouretas (2011). Therefore, we will use the rolling
“stepwise6” regression methodology. A time window of 120 days is chosen,
leading to 2,413 rolling windows. We have ploted the time–varying κs and the
R-squared of the regressions in figures 6.7, 6.8 and 6.9. Most of the time κ2 is
greater than zero, even though exist time periods when it becomes negative.
So, this relationship is niether constant in time nor strictly positive or negative
during all the sample period, but rather time–varying with periods of being
higher or lower than zero. The R–squared varies from 0 to 90%.

π κ1 κ2 R2

BUX–STOXX50 0.333∗∗∗ 6.064∗∗∗ 2.861∗∗ 0.2
(16.947) (4.083) (2.271)

PX–STOXX50 0.383∗∗∗ 4.844∗∗∗ 2.538∗∗ 0.2
(23.873) (4.036) (2.074)

WIG–STOXX50 0.343∗∗∗ 14.088∗∗∗ -0.849 0.23
(17.816) (6.351) (-0.562)

Table 6.9: Conditional correlations and conditional volatilities. ∗∗ and ∗∗∗ denotes
statistical significance at 5% and 1% significance level. Numbers in parentheses are t-statistics
and are calculated using Newey-West covariance estimator.
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Figure 6.7: Time-varying κ coefficients for BUX–STOXX50 pair. On the left
y–axis are given the R–squared values, while on the right y–axis are given the values of
time–varying parameters.

6See appendix A for the algorithm used.
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Figure 6.9: Time-varying κ coefficients for WIG–STOXX50 pair. On the left
y–axis are given the R–squared values, while on the right y–axis are given the values of
time–varying parameters.



Chapter 7

Conclusions

In this research, we have studied stock market comovements among three major
CEE markets (the Czech Republic, Poland and Hungary) and between CEEs
vis–à–vis the aggregate eurozone market. For this purpose, we have employed a
complex econometric methodology consisting in the application of DCC model
and its asymmetric version (ADCC). Additionally, OLS regressions were con-
ducted to study the evolution of correlations in time, during the recent finan-
cial crises and the relationship between conditional correlations and conditional
volatilities.

Firstly, we have found asymmetric effects in conditional variances of BUX,
PX and WIG. Secondly, models that evolved in squares (models of conditional
variances) outperformed models that evolved in absolute values (models of
conditional standard deviations).

Regarding the conditional correlations, we found asymmetric effects only
in BUX–WIG pair. For the other pairs, the asymmetric term was statistically
insignificant even at 10% level. So, asymmetries in correlations are not as
widespread as in conditional variances.

Another important finding is that correlations are increased over time for
both pairs (CEEs–CEEs and CEEs–eurozone). This is not only supported by the
visual inspection of conditional correlations, but also by the OLS regressions
of conditional correlations on a time trend. Furthermore, correlations between
CEEs vis–à–vis eurozone are increased by more than correlations among CEEs
itself. Even though Czech Republic, Poland and Hungary joined the EU in
May 2004, their financial markets and the eurozone market seem to become
more interconnected only after 2006.

Also, we observe higher correlation coefficients (on average) during the re-
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cent financial crises. The magnitude by which correlations are increased varies
from 0.05–0.18. Again, the increase is higher for CEEs–eurozone pairs. The
aforementioned facts imply that diversification benefits in CEE region, from
the point of view of a European investor, are reduced over time.

Finally, following Syllignakis & Kouretas (2011) we investigated the rela-
tionship between correlations and volatilities, using the simple OLS method on
the whole sample data and the rolling “stepwise” regression methodology. Using
the OLS method, we found a positive and statistically significant relationship
between conditional correlations of BUX–STOXX50 and PX–STOXX50 and the
conditional variances of STOXX50. On the contrary, conditional correlations of
WIG–STOXX50 and conditional variances of STOXX50 were negatively related.
Nevertheless, the latter relationship is statistically insignificant and we cannot
say much about the diversification benefits in Polish stock market during high
volatility periods. Applying the rolling “stepwise” regression methodology we
have mainly found a positive relationship between correlations and volatilities,
even though there exist time periods when it becomes negative. So, this re-
lationship is niether constant in time nor strictly positive or negative during
all the sample period, but rather time–varying with periods of being higher or
lower than zero.
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Appendix A

Rolling “stepwise” regresssion algorithm
for i = 1:(length(corr1)-120+1)

c = corr(i:i+120-1);
v = std2(i:i+120-1, :);
[B, TSTAT, S2, VCVNW, R2, RBAR, YHAT]=olsnw3(c, v);
PVAL = 2-2*normcdf(abs(TSTAT));
if any(PVAL(2:3) > 0.05)

[B1, TSTAT1, S21, VCVNW1, R21, RBAR1, YHAT1] = olsnw(c, v(:, 1));
[B2, TSTAT2, S22, VCVNW2, R22, RBAR2, YHAT2] = olsnw(c, v(:, 2));
PVAL1 = 2-2*normcdf(abs(TSTAT1));
PVAL2 = 2-2*normcdf(abs(TSTAT2));
if PVAL1(2) < 0.05 && PVAL2(2) > 0.05

B = [B1; NaN];
TSTAT = [TSTAT1; NaN];
R2 = R21;

elseif PVAL1(2) > 0.05 && PVAL2(2) < 0.05
B = [B2(1); NaN; B2(2)];
TSTAT = [TSTAT2(1); NaN; TSTAT2(2)];
R2 = R22;

elseif PVAL1(2) < 0.05 && PVAL2(2) < 0.05
if R21 > R22

B = [B1; NaN];
TSTAT = [TSTAT1; NaN];
R2 = R21;

else
B = [B2(1); NaN; B2(2)];
TSTAT = [TSTAT2(1); NaN; TSTAT2(2)];
R2 = R22;

end
else

B = [NaN; NaN; NaN];
TSTAT = [NaN; NaN; NaN];
R2 = NaN;

end
end
param = [param B];
tstat = [tstat TSTAT];
r2 = [r2 R2];

end

1Corr is the (nr. of observations x 1) vector of conditional correlations, e.g. correlations
between BUX–STOXX50.

2Std is the (nr. of observations x 2) matrix of conditional standard deviations, e.g.
[BUX_std STOXX50_std].

3Linear regression estimation with Newey-West HAC standard errors (see MFE matlab
toolbox).
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Sample P/ACF of returns and squared returns
of the indices
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Figure 4: STOXX50

Sample P/ACFs of standardized residuals and
squared standardized residuals of the indices.
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