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Introduction

Pseudorandom generators belong to the most important tools in cryptology. Be-
side their importance of their own, they are also important because of their close
relationship to other areas of cryptology. One of the main parts of symmetric
cryptography are the stream ciphers. Every stream cipher can be considered as
a pseudorandom generator and vice versa. Moreover, differentiation between the
stream cipher and the block cipher is not strict because a block cipher in the OFB
mode can be considered as a stream cipher. Hence, these parts of cryptology are
closely connected.

Another important part related to pseudorandom generators are the statistical
tests which measure how much of an output of a pseudorandom generator is really
random. Note that passing some of the statistical tests may not be sufficient
proof of a good pseudorandom generator. But it is a tool for the cryptographers
to gain at least some information about the generator/cipher. For many years,
the Diehard [Mar95)] test battery was considered the best among the statistical
tests. In 2000, NIST completed its statistical test battery called the Statistical
Test Suite, which gradually took over the prestige of the Diehard. The Statistical
Test Suite was used, among others, to test the candidates for AES. Even though
the tests were designed by such an authority as NIST, mistakes were found in
Discrete Fourier Transform Test and Lempel-Ziv Test (see [KUHO04]). Finally, we
have to mention that new and particularly useful tests were proposed in [DEKSI0]
and applied to block ciphers: MARS, RC6, Rijndael (now AES), Serpent, and
Twofish.

This thesis is organized as follows: In the first chapter, we describe the statis-
tics that will be used in the thesis. The next chapter describes 8 statistical tests
used for testing the randomness of sequences. In the third chapter the concept
of sensitivity tests is investigated and several useful transformation are shown.
In chapter 9 new tests are proposed and a new way of creating statistical tests
is presented. The testing strategy as well as the results for SHA-3 second round
candidates are presented in the last chapter. The complete results of testing are
in the Appendix.



Chapter 1

Statistical approach

First, we have to summarize the probability and statistical theory that we will
use in the thesis. This task will be done in this chapter.

1.1 Definitions

Definition 1.1. Let 2 be a set. A o-algebra A on () is a nonempty set of subsets
of Q such that

1. Ace A = A°e A,
2. A, e An=12... = U2 A, €A

Definition 1.2. The pair (£2,.4), where (2 is a set and A is o-algebra, is called
a measurable space. Given (2, A), each A € A is called a measurable set.

Definition 1.3. A measure p on (92, A) is a function p : A — [0,00], with
p(0) = 0, such that, for any sequence (A, : n € N) of disjoint elements of A,

M(LHJAO = ;M(An)-

Definition 1.4. The triple (€2, A, 1), where (2, .4) is measurable space and p is
measure on A, is called a measure space.

Definition 1.5. If ;(2) = 1 then p is a probability measure and (2, A, p) is a
probability space. We will use Pr|-] instead of p(-).

Definition 1.6. Let (€2,.4) and (Y, ) be measurable spaces. A function f : Q —
Y is measurable if f~'(A) € A whenever A € £. Here f~!(A) is the inverse image
of A by f

A ={zeQ: f(x) e A}.

Definition 1.7. Let (€2, A, Pr) be a probability space and let (Y,&) be a mea-
surable space. A measurable function X : Q — Y is called random variable in
Y.

Note 1.8. Y will be usually R (or more often in this thesis {0, 1 }).



Definition 1.9. Let (£2,.A,Pr) be a probability space and let (Y™, E™) be a
measurable space. A measurable function X : 2 — Y™ is called random vector
mn Y.

Note 1.10. The usual convention is consider X as a vector of random variables
X = (X, Xy,..., X,).

Definition 1.11. A discrete random variable on (2, A, Pr) is a measurable func-
tion X : {2 — Y such that the image of X is a countable subset of Y.

Definition 1.12. The distribution function (or cumulative distribution function)
of a random variable X : 2 — R, denoted by Fx(x), is defined by

Fx(x) =Prl{w: X(w) <z}], for all z.
Instead of Pr[{ w : X(w) < x }] we will use Pr[X < z].

Definition 1.13. A continuous random variable on (2, A, Pr) is a measurable
function X : Q — Y such that there exists a function f, called the density
function, such that for all ¢ we have

Fiy= [ s,

where F' is distribution function of X.

Definition 1.14. Let X be a random variable defined on a probability space
(Q, A, Pr), then the expected value (or mean) of X, denoted by E X, is defined as
Lebesgue integral

EX:/XdPr.
Q

If integral does not converge then X does not have (finite) expected value.

Note 1.15. In case of a discrete random variable X an expected value of X can
be expressed as EX = [, XdPr =} .z Pr[X =a].

Definition 1.16. Let X = (X1, X5,...,X,,) be a random vector, then the ex-
pected value of X, denoted by E X, is defined as

EX = (EX,EXs,...,.EX,).

Definition 1.17. Let X be a random variable defined on a probability space
(Q, A, Pr) and has the expected value E X, then the variance of X, denoted by
Var(X), is defined as

Var(X) = E(X —E X)%

Note 1.18. By expanding the variance, we can write: Var(X) = E X?—2(E X)?+
(EX)2=EX2— (EX)2.

Note 1.19. If the random variable X has the mean p and the variance o2, then
the random variable Y = (X — p)/0 has mean 0 and variance 1.



Definition 1.20. Let X and Y be a random variables defined on a probability
space (Q, A,Pr) and E X2 < 00, EY? < co. The covariance Cov(X,Y) of X and
Y is defined as

Cov(X,Y)=EX -EX)(Y —EY).

Definition 1.21. Let X = (X3, X5, ..., X,,) be a random vector. The covariance
matriz Cov(X) is defined as

Val'(X1> COV(XI, XQ) s COV(Xl, Xn)

Cov(Xa, X Var(X o Cov(Xs, X,

COV(X) _ OV( :2 1) arf 2) . OV( .2 )
Cov(Xn, X1) Cov(X,,Xs) ---  Var(X,)

1.2 Distributions

Definition 1.22 (Bernoulli distribution). We say that the random variable
X has the bernoulli distribution with parameter p € [0, 1] if X has two values 0, 1
and if

PriX =1]=p,Pr[X =0]=1—-p.

Although the Bernoulli distribution is a simple distribution we will use it
the most. All pseudo-random generators are operating with bits that are finally
converted to a value we want to use, such as a random element from a finite set.

Definition 1.23 (Binomial distribution). We say that the random variable
X has the binomial distribution (Bi(p,n)) with parameters p € [0,1] and n € N
if the possible values of X are 0,1,2,...,n and

Pr[X = k] = <:)p'“(1 —p)" "

The Binomial distribution can be seen as n Bernoulli random variables summed
together.

Definition 1.24 (Multinomial distribution). We say that the random vector
X = (X1, Xo, ..., Xi) has the multinomial distribution (Mult(n, p)) with param-
eters p = (p1,po,...,0k) € [0,1]* and n € N if every X; has possible values
0,1,...,n and

n!

Pl"[Xl :l’l,Xg:l'g,...,Xk::L'k] =

T, T2 T
gl gL P2 P

where n =2y +xo+ - +axrand 1 =p; +po+ -+ + pi.

Example 1.25. Assume we have a fair dice and we throw it 10 times. Here
are the results: 2/4,5,1,3,2,1,4,5,6. Then X = (X1, Xo,...,Xs) = (2,2,1,2,2,1),
where X; denotes the number of occurrences of 7 in a dice, has Mult(10, p), where

p=1(1/6,1/6,1/6,1/6,1/6,1/6).



Definition 1.26 (Normal distribution). A (continuous) random variable X
has the normal distribution (N(u,0?)) with the mean p and the variance o? if its
probability density function is

1 (z—p)?
f(x) = e

o121

If X is N(0,1), then X has a standard normal distribution. A standard normal
distribution function is denoted by ®(z).

Note 1.27. If X = (X, X, ..., X,,) is a random vector, where X is independent
and has a normal distribution. Let X has mean p and covariance matrix >, then
we will say X is N(pu, 3).

Definition 1.28 (x2-distribution). Let m > 1 be an integer. A (continuous)
random variable X has the x2-distribution with m degrees of freedom (denoted
by x?2,) if its probability density function is defined by

1 m/2)—1 ,—x/2
flz) = Wx(/) e/, 0<z < o0,
0 x <0,

where T is the gamma function] The mean and the variance of this distribu-
tion are y = m and o2 = 2m.

Note 1.29. The y2-distribution arise when we sum squares of independent ran-
dom variables with a standard normal distribution. More precisely: let Y7, ..., Y,
be independent random variables with distribution N(0,1). We define new ran-
dom variable X as X = "', ¥} then X has y*-distribution with m degrees of
freedom.

1.2.1 The Central Limit Theorem

Definition 1.30. A sequence X7, Xy, ... of random variables converge in distri-
bution to a random variable X if

lim F,(z) = F(z),

n—oo

for every x at which F' is continuous. Here F}, and F' are the cumulative distribu-

tion functions of random variables X,, and X, respectively. Notation: X; NS

Theorem 1.31 (Central Limit Theorem). Let X;, Xs,... be independent,
identically distributed random variables with mean p and finite nonzero variance

o?, then
1 (X = d
A p— N(0.1).
ﬁz( ~) 4 Ny

!The gamma function is I'(t) = fooo

2t~ le~dx, for t > 0.



1.3 Hypothesis testing

By hypothesis testing we understand a process of deciding about the truth or
falsity of hypotheses based on experimental evidence. If we want to decide with
the knowledge of only some data (random sample), our decision may not be
perfectly true but is true with a possible error. A null hypothesis (Hj) means
that the tested sequence (or mapping) is random and the alternative hypothesis
(H,) means that the sequence (or mapping) is not random. During the hypothesis
testing we either reject or not reject the null hypothesis. We have to point out that
not rejecting is not the same as accepting. The true meaning of not rejecting the
null hypothesis is that we don’t have an evidence (based on a random sample)
of non-randomness. With that in mind, the usual process of using hypothesis
testing is taking as a null hypothesis the claim which we want to find an evidence
against. This is the reason why we always take as a H, that the sequence (or
mapping) is random.
There are four possible outcomes of our decision:

Conclusion
True situation Not reject Hy | Reject Hy
Data/mapping is random (H is true) No error Type I error
Data/mapping is not random (H, is true) | Type II error No error

The probability of a Type I error is called the level of significance of the test
and is usually denoted as a.
The test itself is based on two components:

1. Random variable T,, = T, (X}, ..., X,), which is the function of a random
sample (called the test statistic).

2. Set C C R, which is called the critical region.

The rule how to decide about a hypothesis is as follows:

e if T), € C, then we reject a null hypothesis.

e if T,, ¢ C, then we can’t reject a null hypothesis.

We create the test statistic depending on what event we want to observe.
For example if our bit stream is (X, Xs,...,X,), our test statistic could be
T, = Z?Zl X;. This test statistic counts the number of ones. If we set o = 0.05
we can choose any K C {0,1,2,...,n} such that ), Pr[X = i] = 0.05. There
are several examples of critical regions in Figure [1.1]

But almost always is a critical region taken with condition that probability
of statistic 7, (under null hypothesis) is the smallest. In our example the (both
sided) critical region is in Figure

The two most common values for o is @ = 0.01 and o = 0.05. The explanation
I found is as follows. If you put your « to be (for example) 0.023 then your
hypothesis would be suspect of being rejected on level 0.022 and this is the reason
why you have chosen o = 0.023.

The solution to this problem is p-value, which is the estimated probability of
rejecting the null hypothesis, when that hypothesis is true. Rather than selecting
the critical region ahead of time, the p-value of a test can be reported and the
reader then makes a decision.



Figure 1.1: Example of several critical regions.

n/2 n

Figure 1.2: Classical critical region on both tails.



Example 1.32. Assume we have a sequence of ten bits (0,1,0,1,1,0,1,1,1,0) =
(X1, Xs, ..., X10) and our test statistic is Tig = Zgl X;. Under null hypothesis
distribution of T3 is binomial distribution with p = 1/2 and T}9 = 6. Our p-value
is

p—value = (PI'[TlO = 0] + PT[TlO = 10]) + (PI'[TlO = 1] —+ PI'[TlO = 9])
Ty =

2 4 6 8 10

Figure 1.3: Critical region from example [1.32]

p-value is 0.7539 and this means we can’t reject hypothesis about randomness
of the data on any reasonable level.

1.4 Chi-squared test

Chi-squared test (or x? test) is a test for deciding whether the empirical frequen-
cies X1, ..., Xy of events Ay, ..., Ay have approximately mean values np?, ..., np?,
where probabilities p!, ..., p} are computed according some probabilistic model.
A null hypothesis is that the probability of events Ay, ..., Ay are p{,...,p? and
test statistic is:

XZIZ(XZ'_—W. (1.1)

0
np;
i=1 Pi

X? has approximately y?-distribution with & — 1 degrees of freedom. We
reject null hypothesis at « significance level in case X? > x%_,(«), which can be
interpreted as our test statistic not having y2-distribution and the probability of
frequencies differing from p{, ... p?.



Note 1.33. We consider only a one-sided test because a deviation on the left side
can be interpreted as a sign that our data is fitting our model too well, which is
actually desired.

Note that x? test is asymptotic, hence n (the size of random sample) has to
be large enough. The usual condition in literature is np? > 5 for all i = 1,...,m.
It is more a "rule of thumb” than anything else. Another condition is Yarnold’s
criterion on data. Yarnold’s criterion states that data should satisfy

npy > 5q/k for all i = 1,2, ... k where k > 3

and ¢ is number of events where np{ < 5. The bounds on errors are estimated in
[Yar07] as:

0.031
lerror| < ————= when a = 0.01
min(np?)
.04
lerror| < ,00—70 when a = 0.05.
min(np;)

Note that these bounds are results of numerical investigation of accuracy of
approximations and are not theoretical bounds. The conclusion is that we have
to be careful about deciding about our hypothesis when p-value is close to the
level of significance of a test.

Example 1.34. Suppose we have a six-sided dice and we want to test if the dice
is unbiased and random (each face has equal probability). To test this hypothesis,
we roll the dice 300 times and observe the frequency of occurrence of each of the
faces. We expect that the number on each face will occur 50 times. However,
suppose we observe frequencies of occurrence as follows:

Face value | 1 2131415 6
Occurrence | 44 | 64 | 57 | 38 | b5 | 42

Probability of each face is 1/6 and we roll the dice for 300 times, hence
X = (X1,Xy,...,Xg) = (44,64,57,38,55,42) has Mult(300,p), where p =
(1/6,1/6,1/6,1/6,1/6,1/6). Now, we can test our hypothesis and compute p-
value using the multinomial distribution or we can use y2-distribution. We use
x? test and the test statistic is:

Xazzji(X'—7mz ié —50
— -

% npl
(44 —50)? (64——50) (57-—50f
N 50 + 50 + 50
38 —50)2 (55 —50)2 (42 — 50)2
(38 - 50)° (3550 (42— 50)
50 50 50
= 514/50 = 10.28.

The p-value is Pr[x? > 10.28] = 0.06768 and the number of degrees of freedom
is five. We can reject our hypothesis on 0.06768 significance level, which is greater
than 0.05 (usual value of significance level).

10



Chapter 2

Statistical tests

In this chapter we describe several statistical tests with examples. In all tests, we
will concentrate on testing of short sequences (several hundreds bits in general and
512 for concrete examples). The number 512 naturally arises when considering
modern block ciphers and hash functions which has output 128, 256 or 512 bits
and we can expect that in future 512 will dominate.

Test statistic will be denoted as X and bit sequence will be (X7, Xs, ..., X,),
where X; € Z, for all 7.

2.1 Frequency Test

Frequency Test is a basic test for testing of randomness and should be included
in every battery of tests. Test compares the Hamming weight of the sequence
with the expected weight (n/2) of random sequence. The test statistic is

X = zn:Xi
=1

and since every X; has Bernoulli distribution, the X has Binomial distribution,
therefore (n)
Pr[X = k] = &2
(X = K] = &
As is stated by the NIST [BRS™10], this test should be used in the first place.
If a sequence does not pass this test, it will probably fail in many others.

2.2 Frequency Test within a Block

Frequency Test within a Block divides n-bit sequence into m-bit blocks and de-
termine whether the frequency of ones in an m-bit block is approximately m /2,
as would be expected in a random sequence. In our case n = 512, we take m = 8
and determine probabilities of four cases for blocks of size 8, see Table [2.1]

In test we will count number of blocks having weight 3, 4, 5 or different and
finally 2 test is applied.

More precisely let n be the length of sequence and m be the length of block (se-
quence is divided into & = [ * | blocks and the remaining bits are discarded), m =
number of blocks with weight 0,1,2,6,7 or 8, my = number of blocks with weight 3,

11



Hamming weight of 8 bit sequence | Probability
0,1,2,6,7,8 p1 = 0.2890625
3 py = 0.21875
4 p3 = 0.2734375
5 py = 0.21875

Table 2.1: Probabilities of weights of 8-bit sequence.

m3 = number of blocks with weight 4, 7, = number of blocks with weight 5. The
test statistic is

4

X2 _ Z (mi — kpi)?

i=1 kpi

and has x? distribution with 3 degrees of freedom.
Note that by the Frequency Test within a Block a slightly different test is
usually meant (see [BRST10], 2-2). This is the modifications which, I believe,

would also deserve the same name.

2.3 Runs Test

A run is an uninterrupted maximal sequence of identical bits. In the Run Test
the number of runs in the sequence is compared with the expected number of
runs in a random sequence.

Example 2.1. A sequence 0010111001 has 6 runs: 00, 1, 0, 111, 00, 1.

The purpose of the Runs test is to observe whether ones and zeros are not
changing too fast (like sequence 0101010101) or too slow (like 0000011111). Here,
we present a slightly different modification of what is usually considered as the
Runs test. The usual Runs test computes the distribution of runs for random
sequence with weight w, see [SDEK10] or for a long sequences [BRST10] 2-3. Here
we derive the probability distribution for a sequence which has the length n and
k runs, with no requirement for the weight of the sequence.

Denote a and b a different bits and the test statistic (number of runs) as X.
For k = 1 we have two sequences: aa...a and bb...b, hence Pr[X =1] = Z.

For k = 2 the first and last bit is determined: acc. .. cb where c it either a or b,
hence we have n—1 possibilities where we switch from a to b, so Pr[X = 2] = 252,

Now for an arbitrary k we can imagine our sequence with partition after every
bit: alc|c|...|b. Again the first and the last bit are determined and there are (} ;)
possibilities how to choose the partition where we switch from ones to zeros or
from zeros to ones, hence

n—1
Pr[X = k] :2(2;HJ,fork: 1,2,...,n.

12



2.4 Test for the Longest Run of Ones in a Block

The Test for the Longest Run of Ones in a Block divides n-bit sequence into
blocks with the length of m, determines the longest run of ones in each block
and compares it with expected values for a random sequence with x? test. Here
we chose m = 8 and determined the number of sequence having the longest run
0,1,2,...,8. The results are in Table 2.2

Longest run | Number of sequences
0 1
1 54
2 94
3 59
4 28
5 12
6 5
7 2
8 1

Table 2.2: Number of sequences with the longest run.

We must conclude the classes in [BRST10] 3-4 are well chosen and we use
them, see Table [2.3]

Longest run | Probability

0or1 55,256
2 94,/256
3 59/256

4 or more 48 /256

Table 2.3: Classes from [BRST10] 3-4.

Let n be the length of the sequence and m be the length of block (sequence is
divided into k = | | blocks and the remaining bits are discarded), m; = number
of blocks with longest run of length 0 or 1, mo = number of blocks with longest
run of length 2, m3 = number of blocks with longest run of length 3, 7, = number
of blocks with longest run of length 4 or more. We denote p; = Pr[X < 1] = 2
po=Pr[X =2] = 2L ps =Pr[X =3] = 25 p, =Pr[X >4] = 2.

The test statistic is

256

Y2 Z (i — /fpi)Q’

i=1 kpi

which has x? distribution with 3 degrees of freedom.

13



2.5 Binary Rank Matrix Test

The Binary Rank Matrix Test was first proposed by George Marsaglia [Mar95] in
1995. Binary matrices are formed from a sequence and their ranks are computed.
The test measures whether the frequencies of ranks meet the expectations about
a random sequence.

Suppose we have a binary matrix m x m and let X be the rank of a matrix.
We will divide it into three cases: Pr[X = m], Pr[X = m—1] and Pr[X <m—1].
In the case Pr[X = m] all rows are independent, then there are 2™ — 1 choices

for the first row, 2™ — 2 for the second row, 2™ — 4 for third row, ..., 2™ — 27!
for i row, ..., 2™ — 2™~ for the last row, hence
m om __ 21'71
PI'[X = m] = Hl:l( 2m2 )

Now in the case Pr[X = m — 1], first m — 1 rows are independent so they are
chosen in the same way as the first case and the last row has to be chosen that
is linearly dependent with m — 1 previous. If the i** row is linearly dependent,
there are 2¢=! choices, therefore there are 1424224 ... 42m~1 = 2™ _ 1 choices
for the linear dependent row, hence

m—1/om i—1
. 2m —2
Pri X =m—-1] = L, (2m2 )

(2™ —1).

For a sequence of length 512 we choose m = 4 and exact probabilities are
given in Table After all ranks are determined the y? test is used. Hence the
test statistic is

3

P (mi — k‘Pz‘)27

where 7 is a number of matrices with full rank, w5 is a number of matrices with
rank m — 1 and 73 are the rest of matrices.

Rank <m—1 m— 1 m

Probability | p1 = 0.3076171875 | py = 0.576782226562 | ps = 0.115600585938

Table 2.4: Probabilities in the Binary Matrix Test for m = 4.

2.6 Random Walk Excursion Test

The Random Walk Excursion Test for short sequences was proposed in [F'S06]
but same test for long sequences was in [BRST10] (all is meant in cryptographic
context).

The Random Walk Excursion Test is test related to a random walk. A se-
quence of zeros and ones is transformed to a random walk by starting at point
[0, Y0] = [0,0] and for every one in the sequence, we move one step up and one
step ahead ([;41,%i11] = [ + 1,4; + 1]) and for every zero in the sequence, we
move one step down and one step ahead ([z;41,yi01] = [0 + 1,y — 1]).
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Figure 2.1: Random walk from Example [2.2]

Example 2.2. A sequence: 1011000110 is then transformed into the following
random walk in Figure |2.1]

We created a sequence of pairs [z;,y;] and the excursion of length k is a
subsequence which started with y; = 0, ended with ;. = 0 and for all j €
{1,2,...,k—=1} : yiy; # 0, hence a sequence from Example has 4 excur-
sions. The Random Walk Excursion Test measures whether a sequence produces
a number of excursions that is expected from a random sequence.

In derivation of probability of a sequence of length n having k excursions, we
first have to derive the probability of having excursion of length [. It is clear
that [ is even so [ = 2j. We first ask how many paths there are from point
S = [zo,y0] = [0,0] to point F' = [z;,y] = [l,0] without having any y; < 0 for
i€{1,2,...,1—1}. The number of all paths are (2]]) because it is the number
of ways how to choose j ones in sequence of length 2j. Now every wrong path has
t where y; < 0 for the first time. From this point on, we draw a different random
walk, every time when we should move up, we move down and vice versa, see

Figure 2.2: Modified random walk from Example [2.2]
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It should be clear that for every wrong path we always end in the point
[z, y1] = [, —2]. Conversely, every path from [0, 0] to [I, —2] can be transformed
to a wrong path, hence the number of wrong paths is equal to the number of
paths from [0,0] to [, —2], which is (32_]1) So the number of paths from S to F'
without having any y; <0 fori e {1,2,...,1—1}is

(2 (%) @) (25)! @)1 (25
Cj_<j) (J’H)_ﬂﬂ <j+1>!<j—1)!_<j+1>!j!_j+1(j)’

which is the Catalan number and relates many other combinatorial problems.
Now to our original problem, which is the probability of excursion of length 2.

It is
Cj,1
92j-1°

Prlexcursion of lenght 2j] = P; =

because the first and the last step is determined (we move up or down) and from
that point, there are C;_; random walks without having y; = 0. We denote
Ryj =1~ Zgzl P»;, which is the probability of not having excursion in a random
walk of length 27.

Now, the probability of having k excursions in a sequence of length n is

PI'[X = k’] = Z P2j1P2j2 N PijRQZ‘. (21)
214224+ 25 +2i=n
im>0;1<m<k

Note that these probabilities can be difficult to compute for larger n. In the
Appendix are tables with probabilities for n = 8,16 and 32.

Therefore in case n = 512, it would be very difficult to compute probabilities
for such a long sequence. I decided to split a sequence into 16 bit blocks and
count the excursions in these blocks. In the end the x? test is used. The test
statistic is

5

P (mi — /fpz')27

kp;

where p; is from Table[2.5|and 71, 7, . . . , 75 are numbers of blocks with 0,1,2,3
and 4-8 excursions.

Excursions Probability
0 p1 = 0.196380615234
1 p2 = 0.196380615234
2 ps = 0.183288574219
3 py = 0.157104492188
4-8 ps = 0.266845703

Table 2.5: Probabilities in the Random Walk Excursion Test for 16 bit block.
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2.7 Prime Number Test

The Prime Number Test is a proposal of a new test, which is related to integers. It
means that our bit sequence is transformed into integers a these integers are then
tested. This test measures if a sequence produces prime numbers with frequency
that is expected from a random sequence.

Let n be the length of sequence and m is the length of block (sequence is
divided into £ = [ | blocks and the remaining bits are discarded). Each block is
converted to number between 0 and 2" — 1 and is determined whether is prime
or not. We will create a new sequence from old one as follows: if the number is

prime we will append 1 and 0 otherwise.

Example 2.3. Let M = 0111011001001 be the tested sequence, hence n = 13.
We choose m = 3 and convert M: 0115 = 3, 1015 = 5, 1005 = 4, 1005 = 4 and
the last 1 is discarded. Then we convert 3,5,4,4 into 1100.

. m__ .
Let p = number of primes ;)sltween 0 and 2 ! then we have just created a sequence

with the Bernoulli distribution with parameter p, hence sum of these bits has the
Binomial distribution Bi(p,k).

For large values of m one can use the Prime Number Theorem which states
that the number of primes less than or equal to 2" — 1 can be approximated

by —2-1— ~ £=L But there are two practical issues: 1) We have to estimate
g(2m—1) m

the error in the Prime Number Theorem and 2) determining primality of large
numbers can be done quickly only with probabilistic algorithms. With that in
mind, we recommend to use this test only with a small values of m, where the
primality of numbers less than 2™ can be done by the trivial division or with a
table of prime numbers less than 2.

2.8 Irreducible Polynomial Test

The Irreducible Polynomial Test is a proposal of a new test, which is related to
polynomials over a finite field. The bit sequence is transformed into polynomials
and these polynomials are then tested. This test measures if a sequence produces
irreducible polynomials over a finite field with a frequency which is expected from
a random sequence.

Let F, be a finite field, n is the length of sequence and m = ¢' is the length
of block (sequence is divided into & = | ] blocks and the remaining bits are
discarded). Each block is converted to a polynomial of degree less than [ and is
determined whether is irreducible or not. We will create a new sequence from old
one as follows: if the polynomial is irreducible, we will append 1 and 0 otherwise.

Example 2.4. Let M = 011101010101 be the tested sequence. We choose a
finite field Fy, m = 3 and convert M: 011 = x + 1, 101 = 22 + 1, 010 = x,
101 = 22 + 1. Then we convert x + 1,2% + 1,2, 22 + 1 into 1010.

Let p = number of irreducible poly;:mials of degree less than [ 7 then we jllSt created a se-

quence with the Bernoulli distribution with parameter p, hence the sum of these
bits has the Binomial distribution Bi(p,k).
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In contrast to the Prime Number Test, here we can enumerate the number of
irreducible polynomials precisely. Let M,; be the number of all irreducible poly-
nomials of degree [ over finite field F,, then from the M&bius inversion formula,

we have

1 k
My =7 nla/k)d",

klq

where p: N — {—1,0,1} is the M&bius function defined

1 ifn=1
u(n) =< (—=1)k if n is product of k disting prime numbers

0 if p?|n for some prime p.

Hence the number of irreducible polynomials of degree less than [ is Zi: M.

Note 2.5. Obviously, this test and the Prime Number Test are special cases of
a more universal test. In the more universal variant, we specify a set of m-bit
long blocks/sequences P and for every occurrence of m-bit block in the original
sequence, we append 1 and 0 otherwise. In the Prime Number Test, we choose
P as a binary notation of prime numbers and in the Irreducible Polynomial Test
binary notation of irreducible polynomials over finite field.
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Chapter 3

Sensitivity of Tests

The purpose of this chapter is to investigate the transformations that could be
used before testing, to modify the original sequence to a new one and then apply
tests. If we set « (the type I error) to fix the value, we can consider a statistical
test T' as a deterministic Turing machine 7' : {0,1}" — { accept, reject }, that
will decide about randomness of sequence of a length n. The test T" divides a set
{0,1}" into two different subsets:

S, ={s€{0,1}"|T(s) = accept }

S, ={se{0,1}"|T(s) =reject } .

Trivially S,US, = {0,1}" and note that « = |S,|/2". In [TDB0§] a new concept
of sensitivity is introduced.

Definition 3.1 ([TDBO0S§]). Consider a randomness test 7" and a one-to-one trans-
formation o : {0,1}" — {0,1}", T is said to be invariant under o if for any
s€{0,1}":T(s) =T(o(s)).

The authors suggested that if 7'(.) and T'(o(.)) are statistically independent,
then T'(0(.)) can be added to the test suite as a new test.
The authors have investigated the following transformations:

e Complementation: bitwise XOR with 1, that is 0.(X;, Xo,..., X)) = (X1 &
LXo®dl,..., X, d1).

e [-Rotation: circular shift, that is oy, (X1, Xo,..., X)) = (Xig1, ..., Xo,
Xi,..., X))

e i" Bit flip: flipping "™ bit of sequence, that is o (X, Xo,...,X,) =
(X1 Xi @1, Xo).

e Reversing: considering the sequence backwards, that is g,.,s( X1, Xo, ..., X,)
- (X'ran—l; e 7X1)-

I*" Derivative: summation of the sequence and its [-bit rotation, that is

04, (X1, Xo, ..., X)) = (X1 © X1, Xo® X419, ..., X,, ® X)). But this trans-
formation is not one-to-one so a little modification is done: o4, (X7, Xo, ...,
Xn) = (X1 @ X1, Xo® Xigo, .., X1 © X111, X)),
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The authors divided these transformations for each test into three categories:
e Test 7' is invariant under o.

e Transformation has small effect on results.

e 7(.) and T'(o(.)) are statistically independent.

Here a different view is presented. For every test 7" and every transformation
o atable of |5, NS, ,|/|S:| is given, where S, = {s € {0,1}"|T(s) = reject } and
Sro={s€{0,1}"|T(c(s)) = reject }.

Furthermore another way of creation of transformations is given. We can
consider a sequence of length n divided into m-bit blocks and then apply above-
mentioned transformations. With that in mind, a new transformations are con-
sidered:

e m-l-Rotation: circular shift in m bit blocks (suppose m divides n), that is
Om—t—ros(X1, Xoy oo, Xy X1, -+ X)) = (Xog1, Xigoy o, X1, Xy -, X,
Xm+l+1 s 7Xm+l7 B aXn—m+l)-

e m-Reversing: considering every m bit block of the sequence backwards
(suppose m divides n), that is 0., s(X1, Xo, oo, Xon, Xona1, -+, X)) =
(Xm7Xm—1a SR X17X2m7 s aXm-‘rlv s aXna s 7Xn—m+1)-

e m-l-Derivation: on every m bit block is [-Derivation applied, that is
Om—t—der (X1, Xoy o Xy Xong1, -, Xn) = (X1 @ Xpy1, -0, X1 @ X,
Xm7 Xm+1 @ Xm-i-l-‘rla s 7Xn)'

Moreover a new transformation avalanche XOR is considered:

e avalanche XOR: in the i place is xor of all previous bits with the i*" one,
that is Uxor(Xla XQ, . ,Xn> = (Xl, X1 D Xg, ce EB?:le)

And its m bit block variant:

e m-avalanche XOR: same as avalanche XOR but in m bit blocks, that
iS O—IOT‘<X17X27 Ca 7Xm7Xm+17 . 7Xn) = (X17X1 ) XQ, cey @;ZlXia Xerl;
X1 @ Xing2, .-, ®2 1 X5, ..., BF X;).

i=n—m-+1

Testing was done for all sequences of length n = 20 and « is set close to 0.01.
While we are in a discrete case, we can’t set a exactly to 0.01. The exact value
of «v is given in Table 3.1

Tests | Frequency | Runs | Longest Run | RW Excursion
« 0.0118 0.0118 0.0127 0.0225

Table 3.1: Type I error used in tests.
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Tests Frequency | Runs | Longest Run | RW Excursion
Complementation 1 1 0.0021 1
i'" bit flip 0.3744 0.3744 0.5924 0.1076

Table 3.2: Sensitivity of randomness test for Complementation ** bit flip for
length of sequence n = 20.

Tests Frequency | Runs | Longest Run | RW Excursion
Rotation 1 0.8683 0.6396 0.3388
10-Rotation 1 0.4754 0.3415 0.2601
5-Rotation 1 0.2080 0.4033 0.1826
4-Rotation 1 0.2229 0.4830 0.4017
2-Rotation 1 0.2802 0.5587 1

Table 3.3: Sensitivity of randomness test for Rotation for length of sequence
n = 20.

Tests Frequency | Runs | Longest Run | RW Excursion
Derivation 0.1077 0.0859 0.0117 0.0217
10-Derivation 0.1128 0.0362 0.0096 0.01704
5-Derivation 0.0944 0.0181 0.0035 0.0173
4-Derivation 0.1112 0.0367 0.0061 0.0153
2-Derivation 0.1780 0.1549 0.0029 0.0124

Table 3.4: Sensitivity of randomness test for Derivation for length of sequence
n = 20.

Tests Frequency | Runs | Longest Run | RW Excursion
Reversing 1 1 1 0.7174
10-Reversing 1 0.8683 0.4617 0.5870
5-Reversing 1 0.4526 0.2593 0.1456
4-Reversing 1 0.3310 0.4457 0.5435
2-Reversing 1 0.2802 0.5587 1

Table 3.5: Sensitivity of randomness test for Reversing for length of sequence
n = 20.

Tests | Frequency | Runs | Longest Run | RW Excursion

XOR 0.1041 0.0434 0.0027 0.0187
10-XOR 0.1041 0.0386 0.0029 0.0175
5-XOR 0.0944 0.0286 0.0028 0.0315
4-XOR 0.0989 0.0350 0.0028 0.0183
2-XOR 0.1780 0.1549 0.0029 0.0124

Table 3.6: Sensitivity of randomness test for Reversing for length of sequence
n = 20.

In Tables 3.6) are presented the results. For every transforma-

tion (that was describe before) and for four tests (Frequency Test, Runs Test, The
Longest Run of Ones Test and Random Walk Excursion Test) a certain number
is given. The number is |S, N S, ,|/|S,| and represents the measure of indepen-
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dence the test on the transformation o. It means we test all 22 sequences and

for every s € {0,1}* we observed if T(s) = T(o(s)) = reject or if T(s) = reject
and T'(o(s)) = accept.

Number 1 means that 7" is invariant under o, while all sequences rejected by
T(o(.)) was also rejected by T'. Interesting are the numbers close to a because
they indicate that T'(.) and T'(o(.)) are in relation which is close to independence.
As it can be seen from the tables, some of the transformations do not have any
effect on the test results.

Complementing significantly affects only the longest run of ones test, i*" bit
flipping does not have a strong effect. Rotation seems to be more effective, if it
is done by 5 bit blocks as well as Reversing. Frequency test is of course invariant
under both of them. Moreover, ordinary Reverse does not affect runs test and
longest run of ones and 2-1-Rotation is identical to 2-1-Reversing and both do
not affect random walk excursion while they just reverse random walk by axis x.
The most effective seems to be the derivative transformation (as stated by the
authors of [TDB0§]) and new transformation avalanche XOR. Both are effective
in block variant to the same extent as the in ordinary variant. Hence the use
of these two transformations (or their variants) and adding 7'(o(.)) to test suite
can be considered. Note that also their independence from other tests in the test
suite is desirable.

Note 3.2. For i*" Bit flip, [-Rotation and [*"* Derivative we present an average
value. And also for m-Il-Derivation and m-I-Rotation an average value (for m) is
presented.

Note 3.3. Frequency and Runs mean Frequency Test and Runs Test as were
described in the chapter 2. Longest Run means the Longest Run of Ones Test,
therefore the same test as was described but not in block and same for RW
Excursion (the Random Walk Excursion Test). We use only these four tests out
of the eight tests that are described in chapter 2 because only these four tests
can give a meaningful results for such short sequences.
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Chapter 4

Next Bit Tests

The whole idea of the Next Bit Tests comes from the complexity theory. The
definition of the Pseudorandom generator in the complexity theory is:

Definition 4.1. A deterministic polynomial-time Turing machine G : {0, 1 }k —
{0,1 }g(k) is called pseudorandom generator if there exists a stretch function ¢ :
N — N (satisfying ¢(k) > k for all k), such that for any probabilistic polynomial-
time Turing machine D, for any positive polynomial p, and for all sufficiently

large k’s
1

p(k)’
where U,, denotes the uniform distribution over {0,1}" and the probability is
taken over Uy (resp. Uyx)) as well as over the internal coin tosses of D.

| Pr[D(G(Uy)) = 1] = Pr[D(Unry) = 1]] <

In a very close relationship lies the definition of being next bit unpredictable.

Definition 4.2. A deterministic polynomial-time Turing machine G : {0,1}" —

{0,1 }f(k) is called next bit unpredictable if for any probabilistic polynomial-time
Turing machine D, for any positive polynomial p, and for all sufficiently large k’s

1
|PI‘[D(G(U]€>{17Q ..... [_1},1) == G(Uk)]] — 1/2| < m,
where G(x){1,2,..n} denotes the first n bits of G(x) and the probability is taken
over Ug, I € {1,2,...,0(k)} and over the internal coin tosses of D.

The relationship is shown by the Yao’s theorem.

Theorem 4.3 (Yao 1982). A deterministic polynomial-time Turing machine G :
{0,1}" = {0,1}™ 0(k) > k is a pseudorandom generator iff G is next bit
unpredictable.

Suppose we have some function f that determines the next bit. What is the
probability distribution of success in case of sequence of independent variables
with the Bernoulli distribution with p = 1/2?7 Well, for a random sequence the
success should be one half on every bit for every function f because if the bits
of sequence X, Xo,..., X, are truly independent from each other, the previous
bits will not help us in a prediction of the next bits. The measurement of success
of the function f can be done in the following way. We can imagine it as the
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Frequency Test applied on a bit-wise xor both, of the old sequence, and of a new
one, created by the function f. Every zero means success, and every one a failure.
The proportion should be around one half. Every deviation means we guess too
well or too badly. If we guess too badly, we can change our strategy into the
opposite.

Example 4.4. Let M = 1011001111001 be the tested sequence. We choose f
as the xor of all bits in the input and 0 otherwise. Therefore f() =0, f(1) = 1,
f(10) =1, f(101) =0, ..., f(101100111100) = 1. Denote this new sequence as
N = 0110111010111, hence M & N = 1101110101110 and this sequence is then
tested with the Frequency Test.

Of course, the key property of the following procedure depends on the design
of the function f that will guess next bits of a sequence. Construction of f can
be done in various ways. I have chosen the way that is intuitive and seems to be
logical. Imagine we have a test 7" and the test 7" measures some property of a
sequence. For example let T be the Frequency Test. Suppose that a generator
wants to fool our test in the easiest way. For example it produces a sequence
where the first half consists only of ones and the second of zeros. This sequence
passes the test T" but it is obvious how to predict the next bits. So our function
f will guess the most expected behaviour connected to property the of T'. In this
case, we will guess one, if we have seen more zeros than ones and vice versa.

Now, if we test a sequence always with a test 7" and then with his next bit
variant, then we will reject the sequences that behave too poorly or too well with
respect to the testing property of 1. This is quite an innovative perspective in
testing randomness because all other tests concentrate mostly on bad randomness
properties and don’t consider that too good behaviour could be also suspicious.

Here we describe the next bit variants of every test in chapter 2.
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4.1 Next Bit Frequency Test

The Frequency Test measures the proportion of ones and zeros in sequence. Hence
whenever we have more ones than zeros we will guess zero and vice versa.

Algorithm 1 Next Bit Frequency Test
Require: sequence seq of length n
Ensure: new sequence new created by Next Bit Frequency guessing
sum <0
new[0] <— random bit
for:=0,1,2...n—2do
sum 4— sum + 2 x seq[i] — 1
if sum > 0 then
newli+ 1] + 0
else if sum < 0 then
newli + 1] < 1
else
new[i + 1] < random bit
end if
end for
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4.2 Next Bit Frequency Test within a Block

The Frequency Test within a Block measures the proportion of ones and zeros in
every block of sequence. Let m be the length of block, we created expected values
of number of blocks with weight w = 0, 1, ..., m, which is (k: (Tg) /2™, k(”f) J2m L
k(z) / Qm), where £ is number of blocks. Then we guess what is the most probable
bit according this weight vector and what we have already seen in block. After
every block we upgrade expected values of weight of blocks.

Algorithm 2 Next Bit Frequency Test within a Block
Require: sequence seq of length n, length of block m
Ensure: new sequence new created by Next Bit Frequency within a Block guess-
ing
k5]
expected < (k:(rg)/Qm, k:(”f) J2m L k(g)/Qm)
for:=0,1,...,k do
weight < 0 {weight is number of already seen ones in block}
for j=0,1,....,m—1do
vector < (expected|weight], expected|weight + 1], ..., expected|m])
guess <— 0
for index =0,1,...,length(vector) — 1 do
guess < guess + vector|index] - (index/(m — j) — 1/2)
end for
if guess > 0 then
newli * m + j| < 1
else if guess < 0 then
new(i * m + j| < 0
else
newl[i * m + j] <— random bit
end if
weight < weight + seq[i x m + j|
end for
expected|weight] < expected|weight] — 1
end for

In the algorithm the number indexr means average number of ones in the rest
of block and index/(m — j) is this number normed to one bit.
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4.3 Next Bit Runs Test

The Runs Test measures the number of runs (uninterrupted maximal sequence
of identical bits) in a sequence as it is expected from a random sequence. First,
we have to compute an expected number of runs in a sequence of length n. The
first bit have one run and then with every other bit we have 1/2 the probability
of having next run, hence expected value is 1 + (n —1)/2 = (n + 1)/2. We will
count the number of the observed runs and compare it with the expected number
and guess the next bit accordingly.

Algorithm 3 Next Bit Runs Test
Require: sequence seq of length n
Ensure: new sequence new created by Next Bit Runs guessing
expected <— (n+1)/2
new[0] <— random bit
runs < 0 {runs is number of runs}
for:=0,1,...n—2do
update runs
if (expected — runs)/(n —i —1) > 1/2 then
newli + 1] < seqli] ® 1
else if (expected — runs)/(n —i—1) < 1/2 then
newli + 1] < seq|i
else
new[i + 1] + random bit
end if
end for

4.4 Next Bit Test for the Longest Run of Ones
in a Block

The Test for the Longest Run of Ones in a Block measures whether the proportion
of the longest run of ones in blocks is as it would be expected from a random
sequence. Let PLRO; denotes the probability of having the longest run of ones
of length 7 in a block of length m, hence PLRO; = (number of blocks of length
m with the longest run of ones of length i)/2™. For every j € {0,1,...,n—1}
we compute the most likely bit.
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Algorithm 4 Next Bit Test for the Longest Run of Ones in a Block
Require: sequence seq of length n, length of block m
Ensure: new sequence new created by Next Bit Longest Run of Ones in a Block
guessing
k)
expected + (k* PLROg, k x PLRO,, ... .k * PLRO,,)
for:=0,1,...,k do
longest < 0 {longest is the longest run of ones already seen in block}
for j=0,1,....m—1do

vector < (expected|longest], expected[longest + 1], ..., expected[m)])
guess <— 0
for index = 0,1,...,length(vector) — 1 do
guess < vectorlindex]-(predict( Xipmj, index, (Xim, Xim+1, - - - s Xim+j—1))
end for

if guess > 0 then
newli *m + j] < 1
else if guess < 0 then
new(i * m + j| < 0
else
newl[i * m + j| <— random bit
end if
update longest
end for
expected[longest| < expected|longest] — 1
end for

To understand the algorithm we have to explain what function predict does.
Recall X;_; is the i*" bit of given sequence and by L we denote the length of the
longest run of ones in a block.

predict(X;, index, (Xo, X1,...,X;1) =
PI'[Xj = 1|X0, Xl, ce 7Xj—1a L= mdex]
- Pl"[Xj = 0|X0,X1, ce 7Xj—17 L= mdex]

The probability Pr[X; = i|Xo, X1, ..., X,_1, L = index| means the probability
that (j+1)" bit will be ¢ given the longest run of ones in a block is index and first
j bits are (Xo, Xi,...,X;_1). Hence if predict > 0 then it is more likely that the
next bit will be 1 and 0 otherwise. In the algorithm, we are taking into account
the probabilities for every possibility on the longest run of ones in a block.
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4.5 Next Bit Binary Rank Matrix Test

The Next Bit Binary Rank Matrix Test measures whether ranks of binary ma-
trices are as they should be from a random sequence. The algorithm works in
a similar manner as the previous one. Only, the probability of the next bit is
computed according to the probabilities expected from random matrices. The
length of the block will be m?, while we consider m x m matrices and let R; be
the probability of a matrix m x m having rank 1.

Algorithm 5 Next Bit Binary Rank Matrix Test

Require: sequence seq of length n, length of block m?

Ensure: new sequence new created by Next Bit Binary Rank Matrix guessing
k<« | 2]

expect?de (k:*Ro,k:*Rl,...,k:*Rm)
for:=0,1,...,k do

lower <0
upper < m {lower and upper are boundaries on rank of partially build
matrix }
for j=0,1,....,m—1do
vector < (expected|lower], expected|lower + 1], ..., expected|upper])
for/=0,1,...,m—1do
guess <— 0
for index = lower, lower + 1, ..., upper do

guess < vector|index] - (predict(Xim24jum-+1, index, (Xium2, Xiwm241,
ce Xi*m2+j*m+l—1))
end for
if guess > 0 then
newli*m? +jxm+1] < 1
else if guess < 0 then
newli *m? 4+ jxm+1] + 0
else
new[i x m? + j * m + ] < random bit
end if
end for
update lower and upper
end for
expected[lower] < expected[lower] — 1 {here lower = upper = rank of
matrix }
end for

Function predict like in previous algorithm is:

predict(X i, index, (Xo, X1, ..., Xjumyi—1)) =
Pr(Xjums = 1| X0, X1, . . ., Xjumyi—1, R = index]
— Pr[Xjum+s = 0/X0, X1, . .., Xjumsi—1, R = index],
where Pr[ X+ = 1| Xo, X1, . . ., Xjum+i—1, R = index| denotes the probability

that (j x m + [ + 1) bit will be i given the rank of matrix is index and first
j *m + [ bits are (Xo, Xla . 7Xj*m+l71)-
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4.6 Next Bit Random Walk Excursion Test

The Random Walk Excursion Test measures whether number of excursions are
as it is expected from a random sequence. Here PFE; denotes a probability of a
block of length m having i excursions. Hence, PE; = (number of blocks of length
m with i excursions)/2™.

Algorithm 6 Next Bit Random Walk Excursion Test
Require: sequence seq of length n, length of block m
Ensure: new sequence new created by Next Bit Random Walk Excursion guess-
ing
ke 5]
expected < (k: x PEg, kx PEq, ..., PEm/Q)
fori=20,1,...,k do
excursion <— 0 {excursion is the number of already seen excursions in block }
for j=0,1,..., m—1do
vector < (expected|excursion], expected[excursion + 1],
..., expected|m/2])

guess < 0
for index = 0,1,...,length(vector) — 1 do

guess < vector|index|-(predict(Xipj, index, (Xim, Xim+1, - - - » Xim+j—1))
end for

if guess > 0 then
newl(i x m + j] < 1
else if guess < 0 then
newli * m+ j| < 0
else
new(i * m + j| + random bit
end if
update excursion
end for
expected[excursion| < expected[excursion] — 1
end for

Here the function predict is:

predict(X;, index, (Xo, X1,...,X;1) =
PI'[X] = 1‘X0, Xla c ,Xj,l, E= anew]
- PI'[Xj = 0|)(0,)(17 cee an—ly E = mdem],

where Pr[X; = i| X, X1, ..., X;_1, E = index] is probability of (j + 1) bit is
i given the first j bits are (X, X1, ..., X;_1) and the block has index excursions.
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4.7 Next Bit Prime Number Test

The Prime Number Test observes whether the proportion and location of bits is
as expected from a random sequence in connection with binary notation numbers.
The function predict works in a similar way as the previous algorithms.

Algorithm 7 Next Bit Prime Number Test
Require: sequence seq of length n, length of block m
Ensure: new sequence new created by Next Bit Prime Number guessing
ke )
expected < (k * (number of primes less than 2™)/2™,
k * (number of composite numbers less than 2)/2™)
for:=0,1,...,k do
for j=0,1,..., m—1do

guess <— 0
for indexr = 0,1 do

guess < expected[index|-(predict(Xim+, index, (Xim, Xim+1s - - - s Xim+j—1))
end for

if guess > 0 then
newli * m + j| < 1
else if guess < 0 then
newli *m + j| < 0
else
newl[i * m + j| <— random bit
end if
end for
if last block was prime then
expected|0] < expected|0] — 1
else
expected[l] < expected[1] — 1
end if
end for

4.8 Next Bit Irreducible Polynomial Test

The Irreducible Polynomial Test is similar to the Prime Number Test but in-
stead of measuring occurrences of prime numbers it measures the occurrences
of irreducible polynomials. The Next Bit Irreducible Polynomial Test is almost
identical with the Next Bit Prime Number Test, therefore we will omit a detailed
description and just state that the algorithm is the same as the Algorithm
except of the replacement primes for the irreducible polynomials and composite
numbers for the reducible polynomials.
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4.9 Next Bit Universal Test

The Next Bit Universal Test is a compromise between all Next Bit Tests. This
test guesses the next bit according to other next bit tests and votes for the most
likely variant among them. From all other next bit tests, we have a new sequence
that was guessed and for all bits in this sequence, we know whether we put there
a random bit or a certain bit according the property that we try to guess.

Example 4.5. Suppose we have 4 next bit tests. These are the 4 sequences
guessed by these tests: S; = [[0,1],[0,1],[1,0],[1,1]], S2 = [[0,1],[0,0], 1, 0],
[1,1]], Ss = [[1,0],[0,1],[1,1],]0,1]], Sy = [[1,0],]0,0],[1,0],[0,1]]. The first bit
means that the bit is random (let 1 mean it is) and the second bit is the bit of
the guessed sequence. For every position, we choose the most probable bit from
all sequences that has the position of a non-random bit (on the first position is
0). The first bit is 1 while S; and S, has on the first position 1 and S5 and S,
has on this position random bit. The second bit is random because S; and Ss
vote for 1 and S5 and S, vote for 0. The third bit is random and the forth is 1.

Moreover, we can consider a more general variant of this test, where the votes
of sequences are not equal but the power of votes is given by some weight vector
w = (wy,ws, ..., w;), where [ is the number of guessed sequences in the Next Bit
Universal Test.

Algorithm 8 Next Bit Universal Test
Require: sequences S, .5y, ..., .S of length n, weight vector w = (wy, we, . .., w;)
Ensure: new sequence new created by Next Bit Universal guessing
fort=0,1,...,n—1do
guess < 0
for j=1,...,ldo
if i bit of S; is non-random then
guess < wj - (25;[i] — 1)
end if
end for
if guess > 0 then
new(i] + 1
else if guess < 0 then
newli] < 0
else
newli] <— random bit
end if
end for

32



Chapter 5

Results for SHA-3 second round
candidates

Here we discuss how to test hash functions and show some interesting results for
SHA-3 second round candidates. All tests are used for 512 bit sequences produced
by 512-bit versions of hash functions. First of all, there are several possibilities
how to create data sets for testing. Most of them are described in [Sot99]. We
took an inspiration from there in our testing of four data sets.

Integers: Integers from 0 to 7,7 € N are hashed and these outputs are tested.

Integers-XOR: Integers from 0 to i,7 € N are hashed and the outputs are
XORed with the input and these sequences are tested.

Chaining: The first sequence is hash of 512-bit block of all zeros. The second
sequence is two times hashed of 512-bit block of all zeros and the i*" tested
sequence is H'(0), where H is hash function and 0 is 512-bit block of all zeros.

Chaining-XOR: Similar to previous data sets the i** tested sequence is H*(0) ®
H=1(0).

The XOR variants of data sets are similar to plaintext-ciphertext correlation in
[Sot99] except the plaintext is not random.

We have tested 1,000,000 bits generated according these four scenarios (more
concretely 512 - 1953 = 999,936 bits) and observed for which data set and test
the p-value is less than or equal to 0.01 (complete results of testing are in the
Appendix). We have used the same testing strategy as in [SDEKI0], which is
probably the most reasonable in our situation.

We prepared four data sets (Integers, Integers-XOR, Chaining, Chaining-
XOR) and each has the length 512 - 1953 = 999, 936 bits. We tested each 512 bit
block length with 17 tests that were described in this thesis (8 in the chapter 2
and 9 tests were in the chapter 4). Hence we obtained 1953 p-values for every
test and every data set. Now, the strategy of testing that is mostly used is as
follows.

Imagine, for the simplicity, that we don’t test just 512 bits but we test for
example more than one million bits and we use an approximation so that we
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can work with continuous random variables (strategy the NIST used). In this
case, the p-value is in the interval [0,1] and we can work with this p-value as
with uniform continuous variable. Hence, we know that Pr[p-value < 0.1] = 0.1,
Pr[0.1 < p-value < 0.2] = 0.1, ...,Pr[0.9 < p-value] = 0.1. We divide p-values
into 10 equal subintervals of [0,1] and measure their proportion with y? test.

Let m be the number of sequences tested (1953 in our case) and F; be the
number of p-values in subinterval 7 for i = 1,2,...,10. Then the y? value and
the corresponding p-value are calculated as

10
E—m-p)? 9 x°
V= Z % and p-value = igamc (5, %)

=1

Low p-value indicates poor proportion of p-values and hence could be use as
an evidence of non-randomness. The NIST stated: "If p-value > 0.0001, the test
results are considered to be uniformly distributed” [BRST10].

In our case of short sequences we have to modify this strategy as is done in
[SDEK10]. The p-value is not continuous but discrete, hence it is not correct
to think Pr[p-value < 0.1] = 0.1 but Pr[p-value < 0.1] = p; and p; has to be
computed.

More generally, for every test we compute bounds by =0 < by < by < -+ <
by < bip = 1 and p1, pa, ..., pio such that

Pr[b;_1 < p-value < b;] = p;, fori =1,2,...,10.

These bounds by, by, . . ., byp are chosen such that every p; is around 0.1. Then
the x? value is calculated as

10
2= Z (F; —m - p;)?
i=1 mep;
where F; is the number of p-values in subinterval [b;_1,b;) for i = 1,2,...,10
and m is in our case equal to 1953. Using the incomplete gamma function we
compute p-value = igamc <g, X;)

Note 5.1. Not for all tests it was easy to create 10 subintervals and simultane-
ously fulfill the Yarnold’s criterion for y? test (see chapter 1). Therefore, I decided
to create 8 or 9 subintervals for several tests. But this is only a technicality and
doesn’t effect the results.

ligamc is Incomplete gamma function complemented defined as igamc(a,x) = 1— 7(138’/9”2;2) =

JOL ta—le—tdt
Joo tamtemtdt

1 and is used for computing p-values from y2-distribution.
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In Table are results of candidates testing with p-values less than or equal
to 0.01.

’ Hash function ‘ Statistical test ‘ Data set ‘ p-value ‘
BLAKE Next Bit Rank Test Chaining 0.00982
BMW Frequency Test Chaining-XOR | 0.00862
CubeHash Irreducible Polynomial Test Chaining 0.00684
CubeHash Prime Number Test Integers 0.00668
Grostl Next Bit Frequency Test Integers 0.01000
Hamsi Longest Run of Ones Integers 0.00047
JH Next Bit Irreducible Pol. Test | Chaining-XOR | 0.00922
JH Next Bit Irreducible Pol. Test Chaining 0.00028
SIMD Next Bit Runs Test Chaining-XOR | 0.00746

Table 5.1: Tests and p-values less than or equal to 0.01 for second round candi-
dates.

As we can see from the results, all p-values are greater then 0.0001 which
was used by NIST in a testing the randomness of candidates on AES. But they
are lower than or equal to 0.01 which should be also taken into consideration
in evaluation of candidates on SHA-3. It is interesting that some of the third
round candidates (the third round candidates were: BLAKE, Grgstl, JH, Keccak
and Skein) are in Table [5.1] These candidates were selected from the second
round candidates and should be more suitable to be a new hash standard. Of
course, randomness is not the only criterion for selection on a new hash function.
NIST stated that the new hash standard should be fast (in software and also in
hardware) and should be at least secure as SHA-2. Also, there was a tendency to
use other construction for the hash function than Merkle-Damgard that is used
in SHA-2.

On October 2, 2012, NIST announced Keccak as the winner of the SHA-3
Cryptographic Hash Algorithm Competition. As we can see from Table we
have no evidence for non-randomness of Keccak. So we have no arguments against
Keccak as the new hash standard in the field of randomness.

Note 5.2. In the Appendix, there are complete results for every data set, every
test and every SHA-3 second round candidate. The values in tables are p-values
from test that was described in this chapter.
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Conclusion

In this thesis, we have been dealing with statistical testing of cryptographic prim-
itives which is an important part of the cryptanalysis. Statistical tests play a
significant role in evaluation of ciphers and hash functions security although they
do not consider the inner structure of primitives. Failing in the statistical tests
could be a sign of a poor inner structure or of dependencies inside the cipher,
which should be motivation for a harder cryptanalysis and modification of the
cipher.
The contribution of this thesis is the following:

e We proposed a new class of statistical tests, based on the idea of next bit
guessing. We showed the next bit variance of all tests in chapter 2. A future
research topic could be the transformation of more tests into their next-bit
variant and the examination of their properties and their relationship to
other tests.

e We introduced the Universal Next Bit Test, which is a kind of compromise
between various Next Bit Tests.

e Considering the conclusions of the paper [TDBO08], we focused on the sen-
sitivity of tests. We analysed the transformations mentioned in the paper
and showed that their block variants are more usable. Moreover, the new
transformation, avalanche XOR, was proposed as an effective transforma-
tion.

e We proposed two tests (Prime Number Test, Irreducible polynomial Test).

e We used our tests (standard tests and the new next-bit variance of them)
on the second round candidates on SHA-3 and commented on the results.
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Appendix

Probabilities in the Random Walk Excursion Test

Excursions | Probability
0 0.2734375
1 0.2734375
2 0.234375
3 0.15625
4 0.0625

Table 2: Probabilities in the Random Walk Excursion Test for n = 8 bit block.

Excursions Probability
0 0.196380615234
0.196380615234
0.183288574219
0.157104492188
0.120849609375
0.08056640625
0.0439453125
0.017578125
0.00390625

QO | OO x| W N —

Table 3: Probabilities in the Random Walk Excursion Test for n = 16 bit block.

38



Excursions Probability
0 0.139949934091
1 0.139949934091
2 0.135435420088
3 0.126406392083
4 0.113329868764
5 0.0971398875117
6 0.079151019454
7 0.06088539958
8 0.0438374876976
9 0.0292249917984
10 0.0177891254425
11 0.00970315933228
12 0.00462055206299
13 0.0018482208252
14 0.000583648681641
15 0.000129699707031
16 0.0000152587890625

Table 4: Probabilities in the Random Walk Excursion Test for n = 32 bit block.
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Results of testing SHA-3 candidates

Data set: Integers

Test/Hash | Frequency | Block Frequency | Run | Longest Run
BLAKE 0.86818 0.09247 0.38322 0.33947
BMW 0.77838 0.97675 0.86551 0.86092
CubeHash | 0.91461 0.87642 0.45955 0.61986
ECHO 0.48749 0.95085 0.56375 0.92982
Fugue 0.28614 0.56459 0.68639 0.78020
Grostl 0.81059 0.41951 0.12233 0.21004
Hamsi 0.48323 0.79096 0.91303 [OOSR
JH 0.15052 0.60625 0.08571 0.21558
Keccak 0.54157 0.39668 0.58472 0.88671
Luffa 0.84413 0.99722 0.48638 0.86057
Shabal 0.27070 0.87913 0.93433 0.82181
SHAvite-3 | 0.99338 0.63616 0.59482 0.30574
SIMD 0.48957 0.46782 0.66738 0.69608
Skein 0.87967 0.71758 0.54604 0.17708

Table 5: P-values from the first half of normal tests, data set: Integers

Test/Hash | Rank | Excursion | Prime | Irreducible
BLAKE 0.80638 | 0.87370 | 0.33119 0.95849
BMW 0.40700 | 0.38024 | 0.23345 0.91801
CubeHash | 0.47564 | 0.35642 ! 0.12585
ECHO 0.43389 | 0.64145 0.52259 0.11161

Fugue 0.48716 | 0.67574 | 0.89239 0.28736
Grostl 0.27715 | 0.74182 | 0.36403 0.50442
Hamsi 0.99512 | 0.61680 | 0.04891 0.58282
JH 0.23577 | 0.02933 | 0.19354 0.80216
Keccak 0.74490 | 0.86886 | 0.27951 0.78228
Lufta 0.56528 | 0.05851 | 0.05451 0.04648

Shabal 0.62030 | 0.60609 | 0.38683 0.63121
SHAvite-3 | 0.33324 | 0.55115 | 0.73404 0.80907
SIMD 0.24183 | 0.72301 | 0.32600 0.81211
Skein 0.27423 | 0.04922 | 0.70264 0.29751

Table 6: P-values from the second half of normal tests, data set: Integers
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Test/Hash | Next Freq. | Next Block Freq. | Next Runs | Next Longest Run
BLAKE 0.53685 0.53071 0.35200 0.59027
BMW 0.52613 0.75038 0.42039 0.15074
CubeHash | 0.04220 0.64535 0.80434 0.68629
ECHO 0.73506 0.78601 0.43240 0.83500
Fugue 0.94885 0.66683 0.54142 0.36224
Grgstl 0.30642 0.04703 0.37676
Hamsi 0.50588 0.16261 0.30313 0.38052
JH 0.65607 0.65899 0.24734 0.97848
Keccak 0.66817 0.54586 0.73097 0.86700
Luffa 0.98967 0.28506 0.36140 0.79745
Shabal 0.62298 0.51587 0.76578 0.67791
SHAvite-3 0.30330 0.88139 0.21109 0.64484
SIMD 0.28043 0.55403 0.69436 0.21311
Skein 0.08750 0.59054 0.04146 0.48565

Table 7: P-values from the first half of next bit tests, data set: Integers

Test/Hash | Next Rank | Next Excursion | Next Prime | Next Ir. | Next Uni.
BLAKE 0.99479 0.69908 0.06942 0.81031 | 0.17306
BMW 0.54724 0.33944 0.34371 0.13784 | 0.18483
CubeHash | 0.12630 0.32618 0.72195 0.81999 | 0.63780
ECHO 0.32035 0.98573 0.03343 0.75874 | 0.24671
Fugue 0.79586 0.89550 0.33612 0.09304 | 0.17223
Grgstl 0.77273 0.26635 0.66822 0.81341 | 0.75669
Hamsi 0.21972 0.27708 0.58849 0.41042 | 0.74563
JH 0.73435 0.17201 0.60713 0.87542 | 0.59818
Keccak 0.66364 0.03160 0.03021 0.65274 | 0.57927
Luffa 0.59212 0.52665 0.96903 0.16582 | 0.55944
Shabal 0.77642 0.68631 0.98507 0.77393 | 0.36883
SHAvite-3 0.11486 0.36425 0.90851 0.32801 | 0.83210
SIMD 0.22218 0.64796 0.07314 0.94978 | 0.36719
Skein 0.55058 0.63417 0.18723 0.42103 | 0.22183

Table 8: P-values from the second half of next bit tests, data set: Integers
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Results of testing SHA-3 candidates
Data set: Integers-XOR

Test/Hash | Frequency | Block Frequency | Runs | Longest Run
BLAKE 0.38435 0.55527 0.54272 0.42010
BMW 0.44633 0.72275 0.01456 0.42751
CubeHash | 0.79198 0.97156 0.46249 0.25746
ECHO 0.50981 0.76643 0.57249 0.17457
Fugue 0.85699 0.93009 0.91978 0.84697
Grostl 0.02098 0.87456 0.09290 0.67366
Hamsi 0.62912 0.63721 0.48515 0.34116
JH 0.42748 0.97666 0.89838 0.97794
Keccak 0.14617 0.23279 0.29258 0.29826
Luffa 0.96107 0.43850 0.65458 0.39186
Shabal 0.38421 0.91236 0.52086 0.23398
SHAvite-3 | 0.91038 0.97332 0.49624 0.57883
SIMD 0.95612 0.64530 0.49542 0.98740
Skein 0.19621 0.33991 0.56030 0.08009

Table 9: P-values from the first half of normal tests, data set: Integers-XOR

Test/Hash | Rank | Excursion | Prime | Irreducible
BLAKE 0.83967 | 0.90938 | 0.73186 | 0.52997
BMW 0.56438 | 0.83786 | 0.76871 0.73633
CubeHash | 0.16531 | 0.64090 | 0.52773 0.13591
ECHO 0.55892 | 0.21251 | 0.28376 0.70027

Fugue 0.57059 | 0.53200 | 0.25201 0.34132
Grgstl 0.59698 | 0.73281 | 0.92652 | 0.10683
Hamsi 0.51045 | 0.71222 | 0.72975 | 0.85822
JH 0.90235 | 0.89618 | 0.13992 | 0.61457
Keccak 0.89782 | 0.18122 | 0.16284 | 0.11903
Luffa 0.47145 | 0.17714 | 0.75627 | 0.07958

Shabal 0.62305 | 0.03710 | 0.87909 | 0.26234
SHAvite-3 | 0.04579 | 0.24926 | 0.81876 | 0.82803
SIMD 0.01049 | 0.03119 | 0.60728 | 0.18051
Skein 0.20983 | 0.22184 | 0.94658 | 0.86001

Table 10: P-values from the second half of normal tests, data set: Integers-XOR
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Test/Hash | Next Freq. | Next Block Freq. | Next Runs | Next Longest Run
BLAKE 0.30823 0.53951 0.52028 0.66094
BMW 0.46357 0.31497 0.10817 0.96554
CubeHash | 0.84658 0.14474 0.21613 0.22979
ECHO 0.60213 0.21076 0.51236 0.99312
Fugue 0.50530 0.13007 0.11258 0.66793
Grgstl 0.88679 0.35073 0.62945 0.14891
Hamsi 0.64820 0.44501 0.01718 0.17820
JH 0.23365 0.70713 0.89124 0.08122
Keccak 0.98307 0.12477 0.77045 0.40273
Luffa 0.73683 0.50919 0.66942 0.88341
Shabal 0.34259 0.99426 0.48890 0.83213
SHAvite-3 0.13301 0.81666 0.41861 0.37905
SIMD 0.21343 0.02090 0.37060 0.79878
Skein 0.66969 0.37829 0.98768 0.17937

Table 11: P-values from the first half of next bit tests, data set: Integers-XOR

Test/Hash | Next Rank | Next Excursion | Next Prime | Next Ir. | Next Uni.
BLAKE 0.01530 0.39539 0.54441 0.04868 | 0.14789
BMW 0.04788 0.37234 0.91555 0.36512 | 0.87757
CubeHash | 0.86470 0.55212 0.73036 0.26885 | 0.69840
ECHO 0.52263 0.84570 0.30680 0.10459 | 0.84682
Fugue 0.82353 0.76234 0.02833 0.44359 | 0.76482
Grgstl 0.73353 0.30234 0.86097 0.42030 | 0.42940
Hamsi 0.43445 0.28130 0.33758 0.29394 | 0.44128
JH 0.90073 0.71361 0.23675 0.19031 | 0.77348
Keccak 0.10106 0.69958 0.62989 0.60544 | 0.15467
Luffa 0.78309 0.47881 0.01866 0.82443 | 0.47990
Shabal 0.02862 0.66755 0.06425 0.31908 | 0.77720
SHAvite-3 0.51430 0.92906 0.71273 0.81551 | 0.96899
SIMD 0.35582 0.75106 0.43788 0.09537 | 0.92510
Skein 0.71259 0.54961 0.08474 0.08981 | 0.95433

Table 12: P-values from the second half of next bit tests, data set: Integers-XOR
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Results of testing SHA-3 candidates
Data set: Chaining

Test/Hash | Frequency | Block Frequency | Runs | Longest Run
BLAKE 0.12577 0.31957 0.15940 0.37699
BMW 0.03397 0.88533 0.38711 0.44117
CubeHash | 0.85581 0.95639 0.31506 0.83504
ECHO 0.68028 0.91140 0.75933 0.52450
Fugue 0.15241 0.98838 0.96363 0.36735
Grogstl 0.73506 0.76885 0.11383 0.19453
Hamsi 0.61644 0.93969 0.79415 0.82051
JH 0.87083 0.97897 0.94510 0.22787
Keccak 0.04336 0.79406 0.07994 0.42717
Luffa 0.73150 0.96234 0.45954 0.48680
Shabal 0.82181 0.98257 0.85183 0.51035
SHAvite-3 | 0.47141 0.92895 0.40095 0.86890
SIMD 0.16779 0.15148 0.69431 0.90654
Skein 0.82175 0.84141 0.43193 0.29473

Table 13: P-values from the first half of normal tests, data set: Chaining

Test/Hash | Rank | Excursion | Prime | Irreducible
BLAKE 0.41638 | 0.54433 | 0.45604 | 0.03467
BMW 0.58885 | 0.15565 | 0.47807 | 0.64671

CubeHash | 0.90138 [ 0.29666 | 0.65624 | SI00GSEN

ECHO 0.16307 | 0.84412 | 0.63679 | 0.05548

Fugue 0.92675 | 0.57843 | 0.91344 | 0.52646
Grgstl 0.24653 | 0.51590 | 0.63893 | 0.01597
Hamsi 0.74755 | 0.92746 | 0.80031 | 0.52575
JH 0.14739 | 0.51748 | 0.72086 | 0.79376
Keccak 0.29992 | 0.10764 | 0.03106 | 0.48370
Luffa 0.34850 | 0.65233 | 0.34171 | 0.88950

Shabal 0.49074 | 0.54166 | 0.17312 | 0.03876
SHAvite-3 | 0.97858 | 0.99089 | 0.90381 | 0.24729
SIMD 0.84683 | 0.69941 | 0.22658 | 0.23848
Skein 0.89610 | 0.72971 | 0.59539 | 0.27941

Table 14: P-values from the second half of normal tests, data set: Chaining
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Test/Hash | Next Freq. | Next Block Freq. | Next Runs | Next Longest Run
BLAKE 0.15448 0.75907 0.10509 0.90515
BMW 0.16504 0.28226 0.24895 0.04678
CubeHash | 0.65753 0.56708 0.04574 0.71149
ECHO 0.57008 0.17640 0.07152 0.60798
Fugue 0.15247 0.89189 0.84224 0.31444
Grgstl 0.97774 0.42945 0.27821 0.14020
Hamsi 0.98362 0.17237 0.77952 0.96220
JH 0.75385 0.03613 0.18964 0.88726
Keccak 0.88685 0.95349 0.54384 0.58847
Luffa 0.14301 0.96057 0.49453 0.60495
Shabal 0.40493 0.67662 0.92011 0.74646
SHAvite-3 0.63038 0.06872 0.26970 0.32110
SIMD 0.50351 0.41262 0.08264 0.97308
Skein 0.30626 0.64008 0.51801 0.19727

Table 15: P-values from the first half of next bit tests, data set: Chaining

Test/Hash | Next Rank | Next Excursion | Next Prime | Next Ir. | Next Uni.
EH 0.24207 0.82538 | 0.20473 | 0.25266
BMW 0.43863 0.68670 0.91163 0.59578 | 0.18085
CubeHash | 0.41519 0.27754 0.84978 0.84352 | 0.92713
ECHO 0.80832 0.14074 0.85491 0.44654 | 0.51537
Fugue 0.09181 0.81325 0.35591 0.86787 | 0.21553
Grgstl 0.13179 0.35510 0.70440 0.97134 | 0.43385
Hamsi 0.49213 0.84648 0.88161 0.12953 | 0.84271
JH 0.18382 0.67147 0.49228 0.59195
Keccak 0.74564 0.94913 0.61154 0.42426 | 0.66812
Luffa 0.78655 0.93590 0.18187 0.31795 | 0.12105
Shabal 0.52090 0.35407 0.54014 0.68375 | 0.05662
SHAvite-3 0.17244 0.80227 0.64612 0.04197 | 0.56228
SIMD 0.61237 0.20812 0.64178 0.51568 | 0.88870
Skein 0.37811 0.18514 0.06795 0.28397 | 0.30973

Table 16: P-values from the second half of next bit tests, data set: Chaining
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Results of testing SHA-3 candidates
Data set: Chaining-XOR

Test/Hash | Frequency | Block Frequency | Runs | Longest Run
BLAKE 0.38255 0.47610 0.90288 0.71217
'BMW  [ONOSGEN 058020 0.71254 [ 0.61375
CubeHash | 0.76259 0.97847 0.56905 0.69076
ECHO 0.73520 0.87963 0.98895 0.26691
Fugue 0.78893 0.74415 0.43505 0.57602
Grogstl 0.95835 0.97155 0.74385 0.39402
Hamsi 0.45343 0.91517 0.78817 0.78851
JH 0.84693 0.69399 0.88873 0.41993
Keccak 0.05271 0.96813 0.07616 0.22139
Luffa 0.37160 0.65585 0.06006 0.23832
Shabal 0.76024 0.94530 0.48405 0.73771
SHAvite-3 | 0.53788 0.70874 0.73616 0.89031
SIMD 0.39170 0.32031 0.04741 0.81985
Skein 0.57450 0.96609 0.15921 0.18459

Table 17: P-values from the first half of normal tests, data set: Chaining-XOR

Test/Hash | Rank | Excursion | Prime | Irreducible
BLAKE 0.59863 | 0.49544 | 0.50464 | 0.12297
BMW 0.14470 | 0.85198 | 0.50086 | 0.47402
CubeHash | 0.99865 | 0.48037 | 0.91796 | 0.21467
ECHO 0.32557 | 0.44058 | 0.19461 | 0.10561

Fugue 0.88962 | 0.28634 | 0.55655 | 0.79322
Grgstl 0.46535 | 0.15856 | 0.36385 | 0.38809
Hamsi 0.91327 | 0.91208 | 0.08885 | 0.62991
JH 0.14207 | 0.23040 | 0.24557 | 0.33916
Keccak 0.34529 | 0.84384 | 0.05702 | 0.33372
Luffa 0.74367 | 0.53078 | 0.60274 | 0.74316

Shabal 0.09109 | 0.97211 | 0.29707 | 0.45284
SHAvite-3 | 0.80827 | 0.27113 | 0.52957 | 0.25862
SIMD 0.98048 | 0.67485 | 0.82959 | 0.47102
Skein 0.48029 | 0.38452 | 0.88540 | 0.05309

Table 18: P-values from the second half of normal tests, data set: Chaining-XOR
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Test/Hash | Next Freq. | Next Block Freq. | Next Runs | Next Longest Run
BLAKE 0.24491 0.36114 0.57696 0.41962
BMW 0.90374 0.36600 0.89468 0.04692
CubeHash | 0.61506 0.49776 0.36243 0.99380
ECHO 0.43094 0.16038 0.93734 0.44257
Fugue 0.13735 0.90804 0.86698 0.02076
Grgstl 0.59628 0.23498 0.98764 0.30259
Hamsi 0.40250 0.35945 0.26388 0.77907
JH 0.48009 0.96744 0.36974 0.58761
Keccak 0.67676 0.45944 0.79499 0.48706
Luffa 0.26566 0.78745 0.03222 0.17150
Shabal 0.79273 0.47492 0.36635 0.87024
SHAvite-3 0.81221 0.06471 0.94457 0.46922
SIMD 0.10203 0.31285 ! 0.28006
Skein 0.68489 0.67778 0.07184 0.80851

Table 19: P-values from the first half of next bit tests, data set: Chaining-XOR

Test/Hash | Next Rank | Next Excursion | Next Prime | Next Ir. | Next Uni.
BLAKE 0.36483 0.81876 0.92408 0.86583 | 0.85925
BMW 0.21747 0.77158 0.51704 0.67519 | 0.33680
CubeHash | 0.23450 0.51157 0.28913 0.64768 | 0.96098
ECHO 0.96193 0.01909 0.90110 0.45085 | 0.65417
Fugue 0.26534 0.68994 0.18345 0.75177 | 0.98015
Grgstl 0.57753 0.40507 0.78701 0.36768 | 0.07679
Hamsi 0.83986 0.38932 0.89338 0.57817 | 0.56829
JH 0.61365 0.20346 0.18494 ; 0.75504
Keccak 0.76227 0.56874 0.60305 0.06575 | 0.73514
Lufta 0.74364 0.11393 0.67127 0.40630 | 0.68593
Shabal 0.24446 0.89921 0.38692 0.09796 | 0.90467
SHAvite-3 0.17220 0.18329 0.66005 0.86148 | 0.66685
SIMD 0.55398 0.70329 0.79870 0.73679 | 0.21898
Skein 0.88940 0.63234 0.11498 0.38589 | 0.69646

Table 20: P-values from the second half of next bit tests, data set: Chaining-XOR
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