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List of notation

Notation Meaning Condition
R d—dimensional Euclidean space
Br(z) {y e R4 Jy — 2| < R} reRY R>0
B} () {y e R4 |y — 2| < R,yq > 0} reRY R>0
B! {x e R4 |z| < R, 24 = 0} R>0
B$}(x) Bgr(z)NQ re€RLQCRLR>0
jom Space of symmetric d x d matrices
I An identity matrix
L™ (9, RY) Lebesgue spaces QCcR",1<7<00
of functions f : Q — R?
11 Norm on L™(Q, R%)
Wkm(Q,RY)  Sobolev spaces QCcR", 1<7<00
of functions f : Q > RY keN
-l -l 70 Norm on WH™(Q, RY)
wie Ce(O,RY) 1 <7< oo
' T l<7m<oo
L (W&””)’ e (1,00)
L3(%2) {9 € L*(LR), [,9=0} QcR?
Wo'iiy {u € Wy?(Q,RY), divu = 0} QCR?
[, ]x Duality between X’ and X
(., )m Scalar product on H H is a Hilbert space
i Lebesgue measure
(NEo o(E) [, fdo o is a measure on R,
ECR? o(E) >0,
f is o—measurable
(f)er (f) Br(@)u 2€RY R>0
H" n—dimensional Hausdorff measure
as stated in [11]
(f)r (f)r a1 I CRY
is a (d-1)-dimensional
manifold
Ran(F) Range of an operator F'
Ker(F) Kernel of an operator F
VMO Space of functions with
vanishing mean oscillations
VMOg VMO N L*®



Chapter 1

Introduction

1.1 Motivation

Non-Newtonian fluid is a type of fluid whose flow properties differ from those
of Newtonian fluids which are described by the Navier—-Stokes system. However,
there are many physical phenomena which can not be expressed by the typical
Navier—Stokes model, such as shear thinning, shear thickening, die swell, etc.
The viscosity of non—Newtonian fluids is not generally constant but depends on
shear rate and, as many experimental works show, there are several liquids whose
viscosity depends on pressure. On the other hand, changes in the density of these
liquids are negligible as the pressure grows (see for example [3, 7]). Thus we
can model these liquids as being incompressible and, in this case, the governing

equation has a form

uy — div T (Du,p) +diviu®@u) + Vp = fin (0,7) x £,
divue = 01in (0,7) x €, (1.1.1)

where 0 C R? is a body, p stands for pressure, u is a velocity field, Du denotes
a symmetrical gradient of u, i.e. Du = § (Vu+ (Vu)'), and f represents body
forces. Further, T' stands for the deviatoric stress tensor and div(u ® u) is a
convective term.

A plenty of works studying this system under various boundary and growth con-
ditions have been published, see for example [4, 5, 9, 17, 18, 26] and references
given there. However, there are still many open questions, mostly regarding re-

gularity of solutions.



In this work, we deal with a steady case, i.e. we study an equation

—divT(Du,p) +diviu®@u) +Vp = finQ,
divu = 0in €,
usa = 0. (1.1.2)

We assume that there exist positive constants ¢, ¢y, c3 such that! the deviatoric
stress tensor T obeys the following growth condition for all ¢ € R all D € R%

sym’ Sym
and 7 € R:

T(D,)

0
algl < (@8 < ol

< o (1.1.3)

Partial regularity of solution to (1.1.2) in interior domains has been studied in
[24, 25]. N. D. Huy studied partial regularity up to a straight boundary in his
dissertation thesis ([15]). Chapter 4 of this work is devoted to the partial Holder
regularity for system (1.1.2) in a bounded C? domain 2. In the remainder of this

work, we assume that the tensor 7" fulfills

T0,m) =0, VreR

~ 0S8(D, )

35 : R xR —R; T(D,7) = D V(D,7) e R” xR.  (1.1.4)

In order to obtain partial regularity, we use so called indirect approach to regulari-
ty. To learn more about this approach we refer reader to [11] where this procedure
is used to obtain partial regularity of solution to certain elliptic systems. The
blow—up system of (1.1.2) has a form of the generalized Stokes system which can

be read as follows

—div(ADu) + BVp = fonQ,
divu = g on €,
u = 0 on 0. (1.1.5)

The coefficients A and B come from identities

= 3 (52 g ) o

2\ 06
T
By = 0k — arj(a’e)

IHereinafter in this text we use a letter ¢ for an arbitrary constant which can vary from line

to line. A subscribed letter ¢ (e.g. ¢1, ¢2) stands for a specific constant.



where a € R? and e € R are defined later.

The existence and uniqueness of solution to (1.1.5) is well known for B = I - in
this case it is sufficient to test the equation by selenoidal functions and to use
Lax-Milgram lemma and de Rham theorem [30]. Also the Hilbert regularity and
the Holder regularity is known and its proof can be found in [14] and [8]. The
case of a constant matrix B, generally not equal to identity, was studied in [14]
where existence, uniqueness and higher differentiability of solution was proven.
One may ask whether this kind of results can be obtained even for a non-constant
matrix B. The existence and uniqueness of solution to such problem was provided
in my diploma thesis. However, these results are mentioned here for completeness
of this work. Moreover, we provide two regularity results. The first part of this
thesis was published in two articles, namely [22] and [23].

All main results are formulated in the next section.

1.2 Main results

In case of a linear system, we present two existence results and two regularity
results. In nonlinear case, we full regularity for dimension d = 2 and partial
regularity for dimension d = 3. As a byproduct we obtain higher differentiability

in a bounded domain.

1 Theorem. Let Q C RY be a bounded Lipschitz domain and let a matriz A €
LOO(Q,Rd4) be elliptic and symmetric. Then there exists a neighborhood U C
WLOO(Q,RCF) of an identity matrixz such that for a matric B € U and for every
f e WL2(QRY) and g € L3(Y) there exists a unique weak solution (u,p) of
equation (1.1.5). In addition, following inequality holds

[ulliz + pllz < el fll-12+ llgll2)
with ¢ independent of u, p, f and g.

2 Theorem. Let Q C R? be a bounded Lipschitz domain and let a matriz A €
L"O(Q,Rd4) be elliptic and symmetric. Then there exists a neighborhood V C
Wl’OO(Q,Rdg) of an identity matriz, which is generally bigger then U from the
previous theorem, such that for a matrivr B € V, g = 0 and f € W2 the

following is true.

o If[f, (B‘l)Tw]WOl,z = 0 for all weak solutions v to dual equation (3.1.6)
then there exists a weak solution to (1.1.5). The space of functions f, for

which solution does not exist, has a finite dimension.
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e For every couple of weak solutions (u1,p1) and (ug,ps) to (1.1.5) it holds
that
[div(B~rA)"Vy + (VBT A) ), (ur — ug)|yyre =0

0,div
for every ¢ € Wol,’inv' Moreover, the space of weak solutions to (1.1.5) has

a finite dimension.

We also show higher differentiability of solutions for the linear system and for
the smooth data.

3 Theorem. Let k € N U {0}. Let Q@ C R? be a bounded C**% domain.
Suppose that f € WH2(Q RY), g € WF1I2(Q,R), A € WFtL(Q R™), B ¢
WHLo(Q R?), B € V and let (u,p) € Wy (Q,RY) x L*(Q, R) be a weak solu-
tion to (1.1.5). Then (u,p) € W*22(Q,R?) x Wk12(Q R) and

|l ks22 + |2 k41.2 < e[ fllk2 + | gllkrr2 + [Jull12)-

In case B € U, we get

[wllero2 + 1Pler12 < el fllkz + Ngllk2)-

And the following result deals with Holder regularity of solutions to the linear

system.

4 Theorem. Let Q) C R? be a C* domain and 2 C Q be a nonempty open subset
and let A € VMOg be elliptic and symmetric. Then there exists a neighborhood
U e Wh(Q,RT) of an identity matriz such that following holds. Let B € U’,
f=divF, F e L*(Q,R%) and g = 0. Moreover, let solution (u,p) € WH3(Q) x
L*(Q) to (1.1.5) fulfills [ p=0. Then there exists a constant c such that

[Dullzze + P2 < el F|zon
for all p < d.

The main result for the nonlinear system can be read as follows.

5 Theorem. Let d < 3 and let Q C RY be a C* domain and f € L*°(Q,R?) N
L2142 (Q R for some 6 > 0 and o € (0,1). Then there is a positive constant
v such that if c3 < 7 then for any weak solution (u,p) to (1.1.2) there exists a
closed set Q¥ C Q such that H2(Y) = 0 and Vu and p are Hélder continuous
in Q\ .



Chapter 2

Preliminaries

2.1 Definitions

Unless stated otherwise, we assume that the domain Q C R? is bounded and
Lipschitz. The space L=(€, R?) is considered with a norm [[uljeo = 1/ 320, |Jui]|2,.
We consider one additional norm on the space VVO1 2 except the standard one
(IVull2), namely ||ul|p := ||Dulla. We use the same notation for norms in a
dual space, thus for v € W12 the notation ||u'||p means sup{\(u/,u)wé,zl;u €
Wy% ||ullp < 1}. Spaces Wy? and W()lﬁiv are Hilbert spaces with scalar product
(u,v)p = fQ DuDv. For operator T on a Hilbert space, we denote its Hilbert
adjoint operator by T".

We also provide a definition of Morrey and VMO spaces and their basic properties
which are used later. For more informations about this spaces we refer to [19]
and [6].

6 Definition - Morrey Spaces. Let 0 < u < d. We define a space L**(2, R")

as a space of the functions u € L*(, R™) for which ||u||p2x < oo where

1/2
def 1 2
HUHL2,;L = SUPgzen,0<p<diam() <p“ /Bf}(x) ‘U(?J” dy)
Additionally, we define a space Wold%f(Q) as a space of functions belonging to
Wy (Q) with Vu € L*#(Q,RT).

7 Definition. For a real valued function f € L'(Q,R) and r > 0, x € Q we

define:

def 1
n(l‘ﬂﬂ)(f) = SUDg<p<r 7O/ N1
== |B,?(x)\ B (x)

1f (W) = (F)Bg@ldy

and n(r)(f) e sup,cqn(x,r)(f). We define the space VMO(Q,R?) by the fol-



lowing relation:

VMO(Q,RY) =
{f e LYQ,RY, n(r)(f) < +oo for all r € (0,diam(Q2)) and lim n(r) = 0}

r—0+

Moreover, we work with a space VMOg(Q,R?) = VMO(Q,RY) N L>(Q, RY).

8 Definition. A matriz A € L>®(Q,R¥*%) is said to be symmetric if Al =
Aflj = Agj foralli,j, k.l € {1,...,d} and for almost all x € Q.

We call a matriz A € L>(, RdQng) elliptic if there exists a constant o > 0 such
that A(z)(€ ® €) > al|€||* for all € € RE and for almost all = € Q.

Sym

9 Definition. For A € L®(Q,R¥*®) symmetric, B € Wh°(Q,RY), f e
W=L2(Q,RY) and g € LE(Q), a weak solution to (1.1.5) is defined as a couple
(u,p) € Wy (Q,RY) x L2(Q,R) fulfilling':

0 (By;
[ at@wamaa+ [pH2E) g veemia R,
Q Q ’
divu = ¢ a.e on Q. (2.1.1)

We call the weak solution unique if for any Q1 C § there exists only one weak

solution (u,p) such that [, p =

10 Definition. Let f € W=2(Q,RY). We say, that (u,p) € W5, () x L*(Q,R)
is a weak solution to (1.1.2), if, for Vy € Wolﬁiw it holds that

Jp; dpj
/QE](DU p) a.flfl +/QUJUZ6—3?Z‘ - [f? (IO]W&Q

and, for all Vo € Wy (Q,RY)

di =— | T(D Vo — \V4 1,2
/Qp ive /Q (Du, )V /Q(WM) o+ [f, el

2.2 Observations

11 Lemma. There exist constants ¢, and cs such that for every u € Wy *(, RY)

following inequalities hold:
1
—lullz < llullp (2.2.1)
Cy

lullp < [[Vulls < eslullp (2.2.2)

!Summation convention is used throughout this paper.



Proof. The proof of the first inequality in (2.2.2) is obvious. The rest comes
from Korn’s inequality (see cf. [13]). Inequality (2.2.1) immediatelly follows from
(2.2.2) and from Poincaré inequality (see c.f. [1], Theorem 6.30). O

12 Assumptions. Let a matriz A € L™ be symmetric and elliptic with a constant
a>0,amatrir B=1—-K, K € WI’OO(Q,]R‘F), Koo < 1.

o We say that an assumption Ay is fulfilled if the inequality

csVd|| K| n c1Vd| VK] a

0K " 0= KT)? ~ Al (2.2:3)

holds.

o [f
avd

05]|A||<>0\/3—i-oz7

we say that an assumption Ay is fulfilled.

1Kl <

(2.2.4)

13 Lemma. There exists a bounded linear operator T : L2(Q) — W,?(Q,R%)

fulfilling
divlig=g Vg€ LiQ). (2.2.5)

Proof. For proof see [30], Lemma 2.1.1 in Chapter II. O

14 Corollary. Let there exist a weak solution to equation (1.1.5) for g = 0. Then
there exists a weak solution to equation (1.1.5) for any g € L(9).

Let a weak solution to equation (1.1.5) with g = 0 be unique. Then a weak solution
to (1.1.5) is unique for any g € L3(2).

Let (u,p) be a weak solution to (1.1.5) with g = 0 which satisfies ||ul|12 + ||p|l2 <
cllfll=12- Then a weak solution to (1.1.5) with the same data A, B and f but
general g € LE(Q) fulfills

[ullie +llplle < c(lfll-12 + [lgll2)- (2.2.6)

Proof. Let g € L. Then, according to Lemma 13, we get the existence of u; such
that divu; = g with |Juil12 < ¢||g|l2. We define a function u “ wo + uy where

Uy € W()lﬁiv such that wug solve
—div ADug + BVp = f + div ADu;.

The existence of such a solution is granted by the assumptions of this corollary.
The function u solves system (1.1.5) due to its linearity. Since [Juo||12 + ||pll2 <

c|lfll=1.2 we immediately obtain (2.2.6).



Now suppose that there exists a unique solution to (1.1.5) such that divu = 0. For
contradiction assume that there exist at least two solutions (ug,p;) and (usg, ps)
solving (1.1.5) with the same f, A, B and g and with divu; = divuy = g. Their

difference solve

—div AD(u1 — Ug) + BV(pl — pg) = O,
—div(u; —ug) = 0.

Naturally, one solution to this problem is zero and according to the assumptions
this solution is unique. Thus we get (u1,p1) = (u2,p2) and the corollary is

proved. O

15 Lemma. Let Qg C Q. There exists a constant ¢ such that for each f €
W=L2(Q,RY) satisfying

[foplwa =0 Vo € Wy (Q)

there exists a uniquely determined p € L*(2,R) satisfying

Vo=t [ =0 bl <clfla
Qo
Proof. For proof see [30], Lemma 2.1.1 in chapter II. O

16 Lemma. Let B = [ — K, where K € WY°(Q,R?) and |K||o < 1. Then
there exists an inversion C < B~ ¢ W (Q,RT) of the form C' = I+ L, where
L =37 K" Moreover, following estimates holds

V|| VE o )

VO||loo = IVL||o £ | m————
IVl = IV (u_HKHw)Q

V|| K|

L]l < :
1= [| Koo

Proof. Space L=(Q,R%) equipped with a norm

d d 2
def 00 2
X s |3 (z uxzmkum) Y € IO, [V < 1

ik=1 \j=1

is Banach algebra hence we can use Neumann Lemma (i.e. Theorem 10.7 in [28]).

Moreover, % < I Xla < | X||oo- The assumption ||K||o < 1 implies that

N

| K|, < 1 and thus B is invertible and ||B~"||, < co. Because B~' € L=(Q, R™)
1 1

we get B € L>(Q) (it follows immediately from B - det B7'). We



denote the cofactor matrix to B by B. Following identities hold true for inverse

matrices
1
Bj' = ——Bj,
K det B
_ aBﬂ - —9(det B
0By _ det B — Bj; 52
al‘k (det B)

and thus we obtain B~t € W1>(Q,R%). Moreover, the precise form of matrix

C = B!, which comes from Neumann Lemma, can be written as
C=I+L=I+)» K
i=1
We use triangle inequality together with property of Banach algebra (||z.y|| <
[l [[y]l) to get

IL]la =

ZK’

S - i 1Ko
<Y K o <D IKL = T K[
a i=1 i=1 a

For 1t holds

%

axj 895]2 Zax Z;Ku Kl1

=1 =1

oL
Bz

and following estimate can be derived for the norm of

oL HaK = H
— K
=] <[5 2RI = 5
Obviously
’3_L el 1271
0zl ~ (1- HKHoo)

After summation we get

oL
c%vj

d
IVLIZ =

: ( VAV )
8% (1= [ K]lw)

17 Lemma - Fredholm’s alternative. Let H be a Hilbert space equipped with

2 d
<
(1- ||K loc) Zl
0
a norm ||.||g and let there be three bounded linear operators F, G, E : H — H

such that F is invertible and E is compact. Moreover let |\ > ||G]
Then following holds:

|| F

10



1. Ran(A\F'+ G' + E') = Ker(\F + G + E)*,
2. Ran(A\F + G + E) = Ket(\F' + G' + E')*,
3. dim(Ker(AF + G+ E)) < oc.

Proof. Composition of operators A\F' 4+ G and F~!is A\ + GF~!. This operator is
obviously invertible since A\ > ||G||z+||F || +. Also operator AF + G is invertible
because F is one-to-one. So we can apply the operator (A\F +G)~! and work with
operators (I +(AF+G)™'E) and (I + E(AF +G)™!). The operator E is compact
and the same holds true for the operators (A\F'+G)™'F and E(AF+G)™1). Hence
Fredholm alternative (cf [20]) together with following identities:

Ran(l + E(A\F +G)™') = Ran(AF + G + E),

Ker(I + (A\F +G)'E) = Ker(A\F + G + E)

yield

Ran(A\F'+G'+ E') = Ran(I + E'(AF+G)™ ")) = Ran(I + (AF + G)'E)) =
=Ker(I + (A\F +G)'E)t =Ker(\F + G + E)*

and

Ran(A\F + G + E) = Ran(I + EAF + G)™ ') =Ker(I + (E(A\F + G) 1))+ =
=Ker(I + (AF +G)™Y'E)*" =Ker(A\F' + G' + E')*.

The finite dimension of the null space is a direct result of the Fredholm alternative.
O

18 Observations. The space L*>* can be identified with L* for u = 0. The space
L* s embedded into L** for u < o < d (see for instance [19)]).
Immediately from the definition we see that for f € L**(Q2) and g € L>=(Q) we

get gf € L**(Q) and ||gf|z2n < l|gllooll fllz2s-
19 Lemma. Let Q be a C* domain and n € N.

1. Letd > 3. For any u < d—2 there exists a constant ¢ such that for all f €
L*#(Q,R™) there is a function F' € L**2(Q,R™ %) fulfilling f = —div F
in the weak sense (i.e. [, fo = [, FV for all ¢ € Wy*(Q,R")) and
[E 2,52 < [ fll2p

2. Let d < 2. Then there exists a constant ¢ such that for all f € L*(Q,R™)
there is a function F € L>*(Q,R™?), 0 < u < d fulfilling f = div F in the

weak sense and || F |2, < || f]l2-

11



Proof. Let us consider a weak solution w of the following system

—Aw = fon{),
w = 0 on 0f.

In case d > 3 the Theorem 3.16 in [31] immediately gives the existence of a con-
stant ¢ independent of f such that the estimate |Vw||2 42 < ¢ fll2,, is fulfilled.
Let d < 2. Then Vw € W'? and W2 is embedded into L** for u € (0,d) (see
Theorems 2.3 and 2.1 in [31]). Now it suffices to set F' = Vw. O

If Q is a C? domain, we can suppose that 9 can be described in a neighbor-
hood of zy € 9N as a function T, : R — R fulfilling T',,(0) = z¢ and, since
both systems (1.1.2) and (1.1.5) are invariant under rotation and translation, we
require that 35] (0)=46;,1€{l,...,d}, € {1,...,d—1}. Furthermore, we can
assume that there exist constants «, 5 > 0 such that?

{(z/,2q) e RL 2| < o, T(2') < 2qg < T(2') 4+ B} C Q

and
{(2/,2q) €ERY 2| < a,T'(2)) — B < wqg < T(a)} C R*\ Q.

See Definition A.3.29 in [16] for more. We define a new function Fj, : R? — R by
Fo (z) = Ty (2') 4+ (0, 24). We write Fy, () for F,,(Rz). The image of Bf (0)
under mapping [y, g is denoted as 2, g. For simplicity of notation, we omit

suffix x if possible.
20 Observations. Let ) be a C*-domain, xo € 0. Then
(i) VF,, r(0) = RI.

(ii) VF,y r(z) = RI4+R*w(x), wherew is a function, which is bounded uniformly

with respect to x¢ and R.

(iii) There exist ¢ > 0 and Ry > 0 such that, for all R < Ry and x € By (0),
R — cR™ < |det VF,, r(7)] < R* 4+ cRM.
(iv) Especially, there exist Ry € (0, Ry) and ¢, ¢ > 0 such that, for all0 < R <
Ry and for all x € B (0), there exists F, ', and
cR* < |det VF, r(y)| < ¢RY,
cR™ < |det VE, 'p(z)| < /R,
for ally € B (0) and x € Q.

2Here 2’ is understood as the first (d — 1)-tuple of coordinates of z, ie. x =

/
xr1,T Td—1,2q) = (T ,xq).
( 1,425y bd—1, d) ( ) d)

12



(v) There exist Ry and constants ¢, > 0 such that, for all R € (0, Ry),

on,cR C (BR(I()) N Q) C Qaco,c’R'

Proof. (i) It follows immediately from the definition of F,, g.

(ii) According to the mean value theorem, we have

0F,, r OF R, 0*Fror

for some £ € B;(0). The definition of F,, g implies ||[VZF, r()|e =
cR?|| V2T (Fpy.1(€))|lo- Since Q is a C? domain, V2T is bounded and the

rest follows immediately.
(iii) It follows immediately from the definition of determinant and ().

(iv) According to (%), for R sufficiently small, we have |det VF, r| > 0 and,
due to the inverse function theorem, F}, r is invertible. We can also assume
that cR < % and thus

R4 1 1
- = R — 5Rd < R'—cRR* < |det VF,, r| < R*+cRR* < R* (1 + 5) :

The identity
1 =|det ]| = |det (VF:CO,RVF;J}R)] = |det VF,, gl |det VF;O}R}
implies the rest.

(v) Let z € Q. r. Then there exists y € Bi (0) such that z = F,, g(y). Further,
since VF,, g is bounded according to (%), Iy, g is Lipschitz with a constant
R+ cR?. Thus, |z — x| < (R+cR?)|y—0| and = € Br(14cr) (o). Thus, for
R sufficiently small, the first inclusion is proven.

Let x € By, r NS for R sufficiently small. Then |z — 29| < R and since
F, 'y is Lipschitz with constant cR'™" we get |F), 'p(z) — 0] < ¢ It is
enough to choose R’ = Rc and, consequently = € F,, /(B (0)).

O

21 Lemma. Let T satisfy (1.1.3) and (1.1.4) and let D,Dy,D, € RY and
p,p1,p2 € R. Then

2
(i) 5 | D1 — D2’2 < (T (D1,p1) = T (Da,p2)) (D1 — Da) + ﬁ\pl —paf?,
(i) T(D,p)D = ¢ (ID]* = 1),

13



(iii) |T(D,p)| < c2 (1+|D]).
Proof. The proof of inequality (i) follows the proof of Lemma 3.3 in [9]. Set

Di5(s) = Dy +s(Dy — Dy) and  p1a(s) = p2 + s(p1 — p2).

We have
T(Dlapl) - T(D27p2> :/0 %T(Dl,z(S),pl,Q(S))dS
_ ' T (D12(s), p12(s))
_\/0 oD (D1 — DQ)dS

We denote (T'(Dy,p1)—T(Da, p2))(D1—D3) by M 5. Young and Holder inequality
together with assumption (1.1.3) imply

L OT(Dya(s),
¢1|Dy — Dy S/O ( 172((9‘52) p12(s))

/1 aT(D1,2(8)7p1,2(S))
0 Op
<M 5+ c3|p1 — pa|| D1 — D

c? c
<Mis+ —=|pr —pof* + —|Dy — D,J?
261 2

(Dl — DQ)(Dl — Dg)ds

<M+ (p1 — p2)(D1 — Dy)ds

and the desired inequality follows immediately. The inequalities (ii) and (iii)

comes from Lemma 1.19, Chapter 5 in [27]. O

22 Lemma - Poincaré inequalities. Let Q be a C? domain and let f €
WhP(Q), let Qp C Q be a neighborhood of a point xy € OQ described as Qr =
Foor(Bf(0)) and let Tr = Qp N Q. Then || fllave = |(f)ral + IV fllpan is equi-
valent to ||.]|1 p.ap-

Especially, there exists a constant ¢ independent on f such that

d
|l fllpor < BeI(f)rel + BRIV fllpox

and
1f = (e lp.or < ¢RIV fllp.0n
hold for all R < Ry, where Ry s sufficiently small.

Proof. The equivalence of norms can be found in [16] as Lemma A.3.80.

For the proof of the inequalities we suppose that Ry is small such that Fp is

14



invertible for all R < Ry and || det Fgl| < cR. We use a rescaling argument. A
function f fulfills

V2 g, = / P = / F(Fr(F5 (9)) 7] det VEr(y)].| det VER (y)ldy

<c|| det VFg| | det VFEOlHoo/ | (Fr(Fg, ())|'dy

Qg

<c (Rﬁ) / R )y

According to the above mentioned equivalence of norms, we get

/Q F(F(F7 () Pdy

p

p

<c |(J”(FR(PEOI(?J))))FRO|+(/Q |Vyf(FR(F§01(y)))|pdy>

Ro

<c|(f(2))rpl" + 0/ Vo f (Fr(Fry W)V Fr(Fg) (1)) Vg, (y)["dy

QR

<@+ (3) [ afERER WP

The last term can be estimated via change of variables as follows

Ro\*
<c(2) 1911,

We put these three inequalities together and, since Ry is fixed, we get

|Vt )Py < [ Vaf @] det By det Fi o

1f1p0n < cRU(FIral + cR7IV LI

pvﬂR - png'

This inequality applied to a function (f — (f)r,) implies

1 = (Drallnon < ¢ (RES = (Dradeal + RIVS = V(Dralpon) < cRIV

and the lemma is proven. 0

23 Lemma . Let G C R? be an open set, v € L (G,R), 0 < a < d and set

loc

E,(v) =<z €q, limsupp‘a/ lv| >0
p—0+ By()

. Then H*(E,(v)) = 0.

Proof. See Theorem 2.2, Chapter IV in [11]. O
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24 Corollary. Let G C R be an open set, s € (0,1] and® v € W2P(G,R). Set

loc
F={zeqgG, pl_l)I(I)h_(U)%p does not exist} U{z € G, pl_l)r(1)1+ |(V)s,p] = 00}

Then for alle > 0
Hd—ps-i-E(F) =0.

Proof. For s = 1 we refer to [11]. Let s € (0,1). From definition of W*?, it may
be concluded that w = B2 ¢ 11(G % G, R). We consider a set E C G x G

(z—y)dtsp

defined as E = E4_ps+. (w). Set
diag £ == {x € G, (z,z) € E}.

It suffices to show that F' C diag E. So let « ¢ diag . For some r( sufficiently
small, it holds that supg,.,, <r‘d+p5_5 fBT(xx |v(zivdzdy) < M < oo. Let

(z—y)d+sp
0< 5 <t<r<ry Then

T_d/ v(y)dy — t_d/ v(z)dz
By (x) Bi(x)

- (tr)_d /Bt(;v) (/Br(:v) U(?J)dy) de- (rt)_d /Br(:v) (/Bt(x) U(Z>dz) dy'

<c(tr) / lo(y) — v(=)|dyd=
Bi(x)x Br(z)

1/p
<ty ([ juty) = et paya:)
Bi(x)x By (z)
_ P 1/17
<c (Td“”s / Mdydz)
Bi(z)X By (z) ly — z[#tPs

_ D 1/p
SCTE/p (,rd+p86 / |U(y) /I;S_Z” dde)
Bi(z)X By (z) ly — z[#tPs

§C6M1/p7«€/p’

which gives the continuity of o(r) «f (u)z, as a function of r € (0, 00) for fixed
x. It remains to prove that lim,_,oo(r) exists and is finite. Let {r;}°; be non-

increasing sequence converging to zero. Then o(r;) is Cauchy sequence. Indeed,

e/p

e/p 61— )
< J(\/[1>/p

For every ¢ > j there exists [ such that

for every 6 > 0 there exists 49 € N such that r; whenever j > 1.
Sk— .y

2 — 2k

We set sy = r; and s, =

3ie. v € LP(G) and v(x)ld%ﬁ) e Lt (GxG@) forse(0,1)

| loc
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Sip1 < 1r; < 8. Then

l

jo(r)) = o (r)l < o(rs) = a(s)l+ Y lo(si) = o(se-)]

k=1
-1 L\
< C6M1/p8l6/p + Z C6M1/p82/10 < C6M1/p Z (2_?€>
k=0 k=0
< cﬁMl/pr;?/pi
- 1\&/p —
1-(3)
Hence lim, o4 (u),,, exists and it is finite, thus = ¢ F. d

25 Lemma. Let (w,q) € WH2(B](0))x L*(B; (0)) be a weak solution to a system

—divADw + (I — B)Vq = 0 on B;(0),
divw = 0 on B{(0),

w = 0 on B

where A € Rd4, B € R? are constant matrices and there exist \ > 0, A >0 and
~v > 0 such that following inequality holds true for all & € RY

NP <AE®E) < AJE)
B < 7.

Ift v < m, then for all T,cc € (0,1), R <1 there is a positive constant C*
such that
E"(0,7R) < C*r*E"9(0, R)

where C* depends only on X\, A, v and d.

Proof. See Lemma 2.2 in [14]. O

4Here the constant c; comes from Bogovskii operator.
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Chapter 3

Generalized Stokes System

3.1 Existence and Uniqueness

In this chapter, we assume that A € L®(Q,R%) and B € W (Q, R¥) are non-
constant matrices. Under assumption A,, according to Lemma 16, there exists a
matrix B~' € Wh(Q,R”). Set ¢ = B! and L = C' — I. For ¢ € W?*(Q),
a function CT¢ is in W,*(€). Thus, we apply CT¢ as a test function to (2.1.1)

and we get
/ ADuD (CTp) + / pdiv BTCTp = [f, CTga]Wé,z.
Q Q

Let h € W=12(Q,R?) be given by [h, elyrz = [f, CTga]WOl,z. It follows that

/CA'DUV(,O—F/(VC)A'DUQO—F/pdiV(p: [h, ¢l (3.1.1)
Q 0 Q

where (C’A)Zl = Crk A}l and ((VO)A)" = ‘957";%’“14%. Hence the problem (1.1.5)

is equivalent to

—div(CA)Du+ (VC)ADu+Vp = h,
divu = g,
ulpgg = 0. (3.1.2)

Proof of Theorem 1. Let assumption A; hold. By Corollary 14 it is enough to
consider the case g = 0. Testing (2.1.1) by the function CT¢, divy = 0 we get
(according to (3.1.1))

/ADuDg@—l—/(LA)DUV@—%—/(VL)Apr: (R, @lyre. (3.1.3)
Q Q Q 0

18



Consider three linear operators F, G, E : Wolﬁiv(Q) > Wolﬁiv(Q) defined as follows

F:uw Fu such, that (Fu,¢)p = [, ADuDe,
G :u— Gu such, that (Gu,p)p = [,(LA)DuVy, (3.1.4)
E:u— Eu such, that (Eu,)p = [,(VL)ADuep.

Since

Eusl = | [ 2 (Z AZ?(x)(Du»J-(x)) (D)

A
e 5
3
0=
Sl
M=%

S

83

0

vl

S

0
~_—

v

s

3

s

/ 3 (W)mn2>;

VA

S

8

\

AR

)

E

=

[S1

VR

q Ji=1 m,n=1
< NAllclPull2Dell2 = [[Allecllullollell o, (3.1.5)
we get
IFlp < [[Alloo-

The operators G and E can be estimated in the same way as follows

IGllp < esl| Lol Alloo
1E]lp < ca|| VL] ool Al so-

Thus the operators F, G and E are well defined. The matrix A is elliptic with
a constant «, whence (Fu,u) > «|lul|% and operator F' is bijective according to

Lax-Milgram lemma (see cf. [29], Corollary 8.2). This gives

_ _ 1
1P < 1Pl < —.

The operator F' + G + E is bijective if and only if I + F~'(G + E) is bijective.

Let us compute
_ _ 1
IE7HG+ E)lo < IF7 o(IG]lp + 1Ellp) < ~All(es]| Ll + el VL]oo).

We conclude, using the estimates from Lemma 16, that

VA Kl cmuvm!m)

. Al
IFHG+ B)lo = ((1—HKHOO) (= K

Due to A; we get that ||F~Y(G + E)||p < 1. Hence, I + F~'(G + E) is bijective

and there is only one solution u € W(]l,ﬁiv fulfilling (3.1.3). Moreover, one gets
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llull12 < ¢||f]|-12 according to Lemma 11. Note that there exists a constant c

such that || f||p < c||f]|-12. Now we can express p from equation (3.1.2) by
Vp =div(CA)Du — VCADu + h

and, since [div(CA)Du — VCADu + h,¢]_15 = 0 for ¢ € Wolﬁiv(Q) according
to (3.1.3), existence of p is proved due to the Lemma 15. Moreover, this lemma

leads to an estimate
ull1,2 + l|pll2 < cllf]]-12-
O

Throughout the rest of this section we assume that A; holds. We work with
three operators F', E and G defined in (3.1.4).

26 Lemma. Ker(F'+ G' + E') is a set of all weak solutions i € Wolﬁiv(Q) to a

system
div(CA)T'Vy + div((VC)A)Ty = 0,
divy = 0,
Ylag = 0. (3.1.6)
A set Ran(F' + G' + E') can be described as
{90 S Wolﬁiv(Q)7 EW) S Wol,gw(Q)7
(p,2)p = [div(CA)"V + div((VO)A) T, 2] V2 € Wi, ()}, (3.1.7)

Proof. Let 1 be a weak solution to the equation (3.1.6), which means that

satisfies the equation
/ CADYVY + / (VC)ADpp =0 Vo € W7, ().
) )

The left hand side of this equation coincides with ((F + G + E)p,¥)p and an
identity
(F+ G+ E)pd)p = (F'+ G + ENi, o) (3.1.8)

completes the proof of the first part.
Now, ¢ is in Ran(F’+ G’ + E’) if and only if there exists ¢ € Wolﬁiv(Q) such that
for all z € W'z, ()

<()07 Z> = <(F/ + G/ + E,)qu)? Z>D - <¢7 (F +G+ E)Z>D =
/ CADzVY + (VO)ADzyp = [div(CA)T VY + div((VC)A) T+, 2] (3.1.9)
Q
which is the desired conclusion. O
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27 Lemma. The operator E : Wolﬁiv(ﬂ) — Wolﬁiv(ﬂ) is compact.

Proof. We may factorize E as follows

E

Woie (@) — Wi (Q)
&l TH
(LAQRY)) = (W, (),
Here H is an identification between a Hilbert space and its dual, while Z is dual
to the compact embedding between W()lﬁiv and L?, thus Z is compact (see [28]

Theorem 4.19). £ is defined in the same way as E, it means

£(u)p = / (VL)ADug
Q
for all p € L*(Q,RY). O

Proof of Theorem 2. Let assumption A, hold. As in the previous section we focus
on the equation

(F+G+ E)u=h.

By Ay we get [|[F|||G|| < 1, thus all assumptions to Lemma 17 are satisfied,

since F is compact due to Lemma 27. Applying Lemma 26 we get the claim. [

3.2 Higher differentiability

Before formulating a proof of the main results, we show a proof of the interior

regularity via bootstrap argument presented in [22].

28 Lemma. Let ' C Q be a nonempty open and bounded set which fulfills
dist(,0Q) > v > 0. Moreover, let A € W'>(Q, R**¥) B € W?>(Q, R"),
f e L*(QRY), g € W2 satisfying [,9 = 0, let condition A; be fulfilled and
(u,p) be a weak solution to (1.1.5). Then (a—“ 8—p) € Wh2(QY) x L*(Y) and

Ox1’ O0x1
ou
— < —+ ,
F S e+ lglha)
dp
- < )
'am v c([[fll2+ 1lgll1,2)

Proof. Denote V.= /. Then V is a compact set and there exists an open set
Qy C Qsuch that V' C Qy and dist(Qy, 0§2) > 3. We choose an arbitrary smooth

bounded function ¥ such that dist(supp),0Q) > 7 and J(z) = 1 Vo € @'. We
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multiply formally (1.1.5) by a function ¥ (i.e. we apply a test function ¢ instead
of ¢). Thus

—(div ADu)Y + (BVp)Y = fd on Q,
ddive = g9 on Q. (3.2.1)

It holds that

d
(— div AD(ud))) — _1( 0 wdwi , 0 A’??M)
k=1

or; Y Ox; ox; v 0Ox _
= —(div ADu)9 — div(A((VI)u)) — ADuVY

B 0vp 8p oY
BV - (Bm( ). - (s 5.

Hence the system (3.2.1) is equivalent to

—div AD(ud) + BV(p9) = [0 — F(u,p, A, B,¥) on
div(ud) = g9+ uVd on Q, (3.2.2)

where F'is defined as

F(u,p, A, B,9) = div(A(Viu)) + ADuVY — BVIp
and the L? norm of F' can be estimated by

[R]l2 < (| Allool[Pll2.00 l[ull1.2 + 1| Blloo [V oo [[P1]2)-

Weset @ =ud, p=pV, f = f0 — F(u,p, A, B,9) and § = g0 + uVd. The
equation (3.2.2) can be written as
—divADu+ BVp = fon(,
divu = g on .

The Green’s formula shows that

/§:/§g+/uVﬁ:/ﬁdivu+/uVﬁ:/ udv = 0.
Q Q Q Q Q a0

Here v stands for a unit outer normal. In order to shorten the notation, we write
Ase,u(x) instead of u(x + dey) — u(x). By the linearity of (1.1.5),

—div AD (A? ) + BV (%) = 5A5e1f+ (le(AéelA) u(. 4 deq))
+g ((Ase, B)VD(. + de1)),
di AéelE . A5€1§
A Y
Asosilon = 0. (3.2.3)
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For ¢ small enough, there exists a constant ¢, which is independent of 9, such

that

1 _
HEA&alf’ S CHfH27
—1.2
1 _ _
3803 < ellia
2
1
HgAéelB S CHBHQ,ooa
1,00
1
5804 < et
and
[(Ase, B)VD(. +de1)||-12 < cl[pll2]|Ase, Bll1,005
| div(Ase, A)Du(. +der)| 12 < cllulli2l|Ase, Al so-
Moreover,

1Nz + 19lle2 + lulliz + [Ipll2 < el fllz + llgll2),
where ¢ = ¢(0, A, B,Q)). The equation (3.2.3) satisfies the assumptions of Theo-

rem 1 thus
Age, T
|2 < e+ ol
1,2
Ase,p
|22 < ctita-+ ol
2

We conclude from [10], Lemma 15.5 that 5—?1 is in Wh2, a‘% is in L?, and that

0
||a—xl(19u)||1,2 < ([l fllz +1lgll2),

0
—( < c + )
|5 @Pl2 < cllifll>+ llglh 2)
The L? norm of a%lp can be estimated in the same way. O
The derivative with respect to the first canonical vector was chosen just for
simplification of the proof. It is obvious, that the previous lemma can be modified

for a derivative with respect to any canonical vector.

29 Theorem. Let € be an arbitrary nonempty open subset of Q such that
dist(V, Q) > v > 0. Let A € W'°(Q,RY), B € W2>(Q,RY), f € L*(Q,RY),
g € WH2(Q,R) and let condition Ay be fulfilled. Then a weak solution (u,p) is in
space W22(Y RY) x WH2(QY,R) and following estimates hold

lull2z0 < cllfll2+ llgllr2),

1Pllhze < cllfllz+ [lgll2)-
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Regularity of some special cases of the system (1.1.5) can be found in [10],
[14]. Here we use the result published in [12].

30 Definition. We say that a matriz A is weakly coercive if there exists A > 0
such that for all u € W, (Q,R?)

/ADuDu > | Vull3.
Q

31 Theorem. Let k € N U {0}, Q be a bounded domain of class C**2. We
assume that A € WHHo(Q R is weakly coercive, g € W*12(QR) and f €
WHk2(Q,RY). Then any weak solution (u,p) to a system

—divADu+Vp = fin(Q,
divu = g inQ,
uon = 0 (3.2.4)

belongs to WF22(Q) x WkH12(Q) | and

|l ks22 + |2 k41.2 < e[ fllk2 + |lgllarr2 + [Jull2)-

Proof. For details, we refer reader to Theorem 1.2 and Remark 1.5 in Part II in

[12]. The proof of the theorem given there can be easily generalized. O

As written before the system (1.1.5) can be arranged as

_divOADu+Vp = f—DCAVu,
divu = g. (3.2.5)

We recall that C' = B~1.
32 Lemma. The matriz C' A is weakly coercive under As.

Proof. We suppose that C' = I — L. Let us compute

/ CADuDu = / ADuDu — LADuDu > o||Dul|? — || L||wo|| Al|oc | Pul|? >
Q Q

(o = [|Allo | Llloc) | D

Assumption Ay grants that [|A||||L]] < a and thus the proof is complete. O

As a consequence we obtain a proof of Theorem 3.
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Proof of 3. Let assumption A, hold. It suffices to show the claim for a weak so-
lution to (3.2.5). By Lemma 32, the matrix C'A is weakly coercive, thus Theorem
31 gives

[ullera2 + IPlerr2 < el fllkz + IPCllecll Allscllullisrz + [1gllks1.2 + lull2)-

For k = 0 we get

[ullz2 +lIpll2 < el fllz + IPClloo | Allccllull1z + [lgll1.2 + [[ull2),

thus
2,2 + [[pll2 < el fllz + gl + [Ju]l12)-

Let the estimate

|l ks22 + |Pk+1,2 < (| flle2 + |gllkrr2 + [Jull12) (3.2.6)

hold for some k € N. Then for k£ + 1 we get, according to Theorem 31,

[ulletsz + IPler22 < el fllirz + 1PCllocllAlloolulleraz + glleraz + llull2)-

From (3.2.6) we have an estimate on |lul[x+22 and we immediately get the first

claim of Theorem 3. If A; holds, Theorem 1 give us an estimate on ||u||; 2, whence

[ullirz2 + [1Pler12 < el fllkz + Ngllk2)- D

3.3 Holder regularity
In this section, we use results on solutions to the system

—divADu+ Vp = divF on ,
divu = 0on

u = 0 on 09, (3.3.1)

proved in [8]. Results concerning regularity of weak solutions to (3.3.1) are given

in the following theorem.

33 Theorem. Let A € VMOg be elliptic and Q2 be a C* domain. Then there
exists a positive constant cg such that, for any (u,p) which solves (3.3.1) and a
right hand side F € L**(Q,R%), (0 < pu < d), we have

IDull 2w + [lpll 2w < csl| F 2 (3.3.2)
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Let (u,p) be a weak solution to (1.1.5). Then assumption p € L** leads to
the claim that p and Du are in L*#*2. This fact is formulated in the following

lemma.

34 Lemma. Let Q be a C' domain, Q1 C Q be a nonempty open subset, 0 <
p<d—2 (resp. pw=20 ford<2)andv € [u,p+ 2| (resp. v € [0,d) for
d<2). Let A€ VMOpg be symmetric and elliptic, f = divF, F € LZ”(Q,R‘P),
B € WY (QR™), ¢s||I — Blloo =: 1 < 1 and g = 0. We suppose, moreover,
that a weak solution (u,p) € W*(Q) x L**(Q) to (1.1.5) fulfills [, p=0. Then

there exists a constant ¢ such that
[Dull 2w + [pllL2r < c(1F][ 2w + [Pl L2n)-
Proof. From B = I — K, the first equation in (1.1.5) can be rewritten as
—divADu+ (I — K)Vp =div F,
which is equivalent to
—div ADu + Vp = div F + div (Kp) — (div K)p. (3.3.3)

The first and third terms on the right hand side are in appropriate Morrey spaces.
To handle the second term, we use Banach fixed-point theorem. Let us equip the
space WOI;"IJ(Q) x L?¥(Q) with a norm ||(u,p)|| «f | Dull2. + ||pll2y- Fix (u,p)

: 1,2 1,2
and, for a given F, we define an operator P : W/ x L*¥ — WY x L* by

P(v,q) = (w,r) “

—divADw + Vr =divF +div(Kq) — (divK)p & [ r=0. (3.34)
971

The right hand side of the equation in (3.3.4) can be expressed as div G where
G is in a space L>(Q,R%). Indeed, F and Kq are in L>” and (div K)p is in
L*#. Thus, according to Lemma 19, (div K)p can be expressed as a divergence
of some function from L2’”(Q,Rd2). Theorem 1 gives the existence of a unique
solution to the equation (3.3.4) and from Theorem 33 it follows that this solution
is in Wolcig(Q) x L*¥(Q,R). Thus target space of the operator P is WOI;LJ(Q) X
L*¥(Q,R) and the operator is well defined.

Let us estimate a norm || P(v1, q1) — P(ve, 2)|| = ||Dwy — Dws|| 20 + ||71 — r2|| 20
Due to the linearity of (1.1.5) we have

—div AD(wy — wy) + V(r1 — re) = —div(K(q1 — ¢2)).
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According to Theorem 33 and Lemma 19
[ Dwy — Dwal|r2v + [lr1 = r2flr2r < cs|[Kl[collar — @2llz2r = Ullar — qo[ 2

Hence, due to assumptions, the mapping P is a contraction. Note that the whole
procedure can be done even for P extended on Wolﬁiv(Q) x L*(Q,R). That is,
P: Wolﬁiv(Q) x L?(Q,R) — Wolﬁiv(Q) x L*(Q2,R) is also a contraction. Therefore,
there exists a fixed point, i.e. a pair (vg, qo) € Woljli’(ﬂ) x L*"(€,R) such that
P(vo, q0) = (vo, qo). Because P is a contraction on the space Wolﬁiv(Q) x L*(Q, R),
this fixed point coincides with the solution (u,p). We get

IDull 2w + lIpllz2w < el Fllzaw + Ulpllzze + cllpll 22

The claim follows immediately due to the assumption [ < 1. 0
As a consequence of the previous lemma we get a proof of Theorem 4.

Proof of Theorem 4. Let B € Wh*(Q,R?) and let || — Bljoo =: | < 1. For
a dimension two or less we get the claim immediately from Lemma 34. We now
assume that a dimension is greater than two. Note that, according to Theorem
1, we get the claim for ;4 = 0. Suppose for a moment that the claim is true for
some fip. Then Lemma 34 gives the validity of the claim for p < min{d, uo + 2}

and the Theorem is proven by induction. 0

3.4 Few additional lemmas

35 Lemma. Let Q) be a bounded Lipschitz domain, A € L>(£2, Rd4) be an elliptic
matriz and (u,p) € WH2(Q,R?) x L*(Q,R), Jop =0, be a weak solution to the

system

—divADu+Vp = divF,
divu = g,
ulyg = 0. (3.4.1)

Then there exists 6 > 0 such that, for F € L**(Q,R¥) and g € L>*9(Q, R),

IDull21s + [1pll2+s < (1 Fll2+s + [1gll2+)- (3.4.2)

Proof. According to Bogovskii lemma (see [2] for more) there exists uy such that

divuy = g, wi]yg = 0 and |[Duyl[245 < ¢f|gll2+s-
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Let (ug, p) solve the following system
—div ADug + Vp = div F + div ADuy,
divug = 0,
uolpg = 0
According to Lemma 2.6 in [17], we have
[Duolla+s < cl|F'+ ADuy 245 < (|| Fll2+s + [lgl2+s)-

Finally, Lemma 2.7 in [2] implies

pll2+s < (| F + AD(uo + ur)ll246) < e[| Fll24s + ll9ll246)-
As a consequence, the pair (u = ug + u, p) solves (3.4.1) and (3.4.2) holds O

36 Lemma. Let A € LO"(BR(O) R™) be an elliptic matriz and let (u,p) €
W1’2(B+(O) Rd) x L*(B#(0), fB+p 0, (resp. (u,p) € W'?(Bg(0),RY) x

L*(Bg(0 fB = 0) be a weak solution to a system

—divADu+Vp = divF,

divu = g,
U|aBg(0) = 0,
(resp. ulpp = 0)- (3.4.3)

Then there exists 6 > 0 such that, for functions F € L2+5(BR(O),Rd2) and
g € L*(Bg(0),R), we get p € L*°(B}(0),R) (resp. p € L**(Bg(0),R)).
Moreover, there exists a constant cg independent of R and right hand side such

that
[pll2+s < colll F'[l2+5 + llgll2+s)-

Proof. For R =1, it follows from Lemma 35. For arbitrary R > 0, it suffices to
use change of variables. Set @(z) = u(Rz), p(z) = p(Rx), F(xr) = F(Rz) and
§(z) = g(Rx) for x € B{ (0). Then (a,p) solves

—divADiu+ VRp = divRF in B (0),
diva = Rgin B{(0),
Ulppr = 0,
(resp. Tlyp, ) = 0)
By Lemma 35, we get
|1RBll2+5 < c(IRFll245 + | Rgll2+s).

where ¢ does not depend on R, which implies the result. O
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37 Remark. Let assumptions of the previous lemma hold. It is also true, that

Ipll2 < cro(E1l2 + [lgll2)-
Furthermore, according to Lemma 2.6 in [17], it holds that ciocg* < 1.

38 Corollary. Let A € L®(Bg(0),R™) be an elliptic matriz and let a matriz B €
L®(Bgr(0),RT) satisfy | Blloo < ¢5*. Let (u,p) € WH2(B}(0), RY) x L*(B#(0), R)
(resp. (u,p) € WL2(Bg(0),R?) x L*(Br(0)R)) be a weak solution to a system

—divADu+Vp = divF —div(Bp),

divu = g,
“|aBg o = 0
(resp. ulpp = 0)- (3.4.4)

Then there exists 0 > 0 and ci; such that, for F,g € L*™(Bg(0)),
w e WHS(BHO)RY, p € L#(BHO)LR) (esp. u € W'(BH0)RY,
p € L**(B}(0),R)). Moreover, if fB;p =0 (resp. [z p=0), then

we get

IDullars +lIpllz+s < crr(1Fll2vs + llgll2+s).

Proof. We give the proof only for the upper half ball; the other case can be proven
in a similar way. For given ¢ € L?*°(B}(0),R) let v, ¢’ be a weak solution to a
system
—divADv+Vq = divF —div(Bq) in B}(0),
dive = 0in B£(0),

U|aBg(0) = 0,

/q/z/p
Bh Bh

R
and we define operator T : L**°(B%(0),R) — L**9(B}(0),R) as T'(q) = ¢ This
operator is well defined according to the previous lemma. Let ¢i,q2 € L*™ be
arbitrary and set ¢; = T(q1) and ¢, = T(g2). The linearity of the generalized

Stokes problem implies
—divAD(v; —v2) + V(qy — q3) = div(B(q1 — q2)) in B£(0),
div(vy —v2) = 0in B£(0),
(v1 — 712)’83;5(0) =0
and [, (¢ — ¢5) = 0. From Lemma 36 we obtain

||CI§ - CIQH2+6 < C9HB||<>0HQ1 - Q2H2+5 < 7||CI1 - CI2H2+6
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where v = ¢9||B|lo < 1. Hence T' is a contraction and thus there exists ¢ €
L**°(B%(0),R) such that T'(q) = ¢ and

—divADv +Vq = divF —divBgq in B£(0),
dive = 0in B(0),
U’aBg(o) = 0.
It can be derived from Lemma 36 that v € W5H**9 Functions (v,q) coincide

with (u,p) since (3.4.4) has a unique solution as proven further. Therefore, for

| B P = 0, we get following estimate by Lemma 35

D245 + |pll2+s < e (| Flla+s + |gll2+s + | Bpll2+s) < cun ([[fll2+s + [|9l2+s) -

It remains to prove the uniqueness of solution to (3.4.4). Let (uq,p1), (u2,p2) €

WH2(BE(0), R?) x L2(B#(0), R) be weak solutions to (3.4.4) such that fB“‘(O) P =
R

fBg(o) po. Then

—divAD(uy —u2) + V(p1 —p2) = —divB(p1 — p2),
div(u; —ug) = 0,

U1 = Uslyp = 0
and fB+(o) p1 — p2 = 0. Thus, according to Lemma 36,
R

o1 = p2ll2 < crocy t|p1 — p2f2-
Since clocgl < 1, we get p; = po and, consequently, u; = us. O

39 Corollary. Let Ry > 0 and let A € L>(Bj, (0), R™) be an elliptic matriz and
let B € LO"(BEI(O),]RdQ) satisfy | Bllee < cg*. Then there exists Ry such that for
all R € (0, Ro) the following holds.

Let (u,p) € WY2(BE(0),RY) x L2(B£(0)R) be a weak solution to a system

—divADu+Vp = divF —div(Bp)+ RS(u,p) on B (0)
divu = g on B}(0)
Upss = 0, (3.4.5)

where S : WHA(BE(0), RY) x L2 (BE(0),R) = W=L2H(B1(0),R?) is a linear
operator which is bounded independently of R.

Then there exists & > 0 such that for (F,g) € L**(B#(0),R” x R), we get
(u,5) € W2 (BE(0), RY) x I2(B}(0), R)
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Proof. As in the previous proof, we use Banach fixed—point theorem. We define
T - Wy*P(Bj(0),RY) x L§H(B(0)) = Wy ™ (BE(0),R) x LgH(Bf(0)) as

follows

—divADu+ Vp = divF —div(Bp) + RS(v,r)
T(v,r)=(u,p) < divu = ¢

U’ang = 0.
Let (us, p;) = T'(vi,13), i € {1,2}. Then
—divAD(u; —ug) + V(p1 —p2) = —div(B(p1 — p2))
+RS(vy — v2,q1 — q2) in BA(0)
div(u1 — UQ) = 0Oin BE(O)

(ur —u2)lppy = 0.
According to Lemma 38 it holds, that
||D(U1—U2)HQM,B;JFle—mHQM,B; < Reie (HD(Ul - U2)Hz+a,B; + |l — CI2H25,B§> :

It is enough to choose Ry such that Ryciic < 1 and the operator 7' is a contraction
for any R € (0, Ry). Uniqueness of solution to Stokes problem implies the claim

of the corollary. O
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Chapter 4

Navier—Stokes System with

Pressure—dependent Viscosity

Throughout this chapter, we focus on the equation (1.1.2) in dimension d equal
2 or 3.

4.1 Existence of Solution

40 Lemma. Let € be a Lipschitz domain, cz < (leé2)07. Then there exists a
constant ¢ > 0 such that for all f € W=12(Q,RY) there exists a weak solution

(u,p) € WH2(Q,RY) x L2(Q) to (1.1.2) satisfying
IVullz +pll2 < ellfll-12

Proof. Since we use the same method as in [9] where an analogous result is proven
for the growth m < 2, we provide only a sketch of the proof. This sketch is divided

into two steps. At first, we introduce an approximative problem

div u®
—divT(Du, p°) + (u*V)u® + %us +Vp® = finQ,

—eAp® +ep +divu® = 0in €,
u = 0on 0f2

op*
o OonoQ  (4.1.1)

and we show the existence of solution (uf, pf) to (4.1.1). Then we find a sequence
(uf", p°r) converging to (u,p) and we show that (u,p) is a solution to (1.1.2).
Existence of solution to the approximative problem

In order to prove the existence of solution to (4.1.1), we use the Galerkin appro-

ximations.
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Let {a¥}2°, be a basis in Wh2(, R) and {a*}52, be a basis in W, *(Q, R?). For
n € N set

3

n
pt = crak, u" = E dra®,
k=1 k=1

where p” and u”™ solve a system

8/Vp”Vof—|—8/p”of—/u”Vof:0, r=1,...,n, (4.1.2)
Q Q Q

divu™

/T(Du",pn)Das + /(u"V)u"as +/ ua® =
Q Q o 2

—/Vp”as—i-[f,as]wol,z, s=1,...,n. (4.1.3)
Q

We multiply (4.1.2) by ¢, (4.1.3) by d? and we sum all together over r = 1,...,n

and s =1,...,n. Since
n|2
nlu"®

/Q(u”V)u”u”—l—/divu = 0, (4.1.4)

Q

we get
e (190" 2 + 197112) + / T(Du,p")Du” = [f,u"} .

Lemma 21 implies
e (IVp" 12 + Ip"[I2) + IVu"[lz < 1z

and
|T(Du”, p™)|I5 < cra.

Thus, up to a subsequence, (u™, p") — (u,p) weakly in W12(Q, R%) x WhH2(Q, R)
and (u™, p") — (uf, pf) strongly in L*(Q, R?) x L?(Q, R). Moreover, T'(Du", p™) —
x weakly in L2(Q, R?"). That is enough to assert that, for all ¢ € W2(Q,R) and
for all 1 € Wy*(Q,RY),

5/QVp5V<,0—|—5/Qpecp—|—/Qdivu€<p:0, (4.1.5)
€ £ 1 : AP s q: o
/Q(u V)u w—l—i/ﬂ(dlvu Ju w—i—/ﬂxl?w—/ﬂp divey = [f,¢]w-12, (4.1.6)

e (19712 + 17°112) + / DU = [f, 1

In order to conclude the first part of the proof, it is sufficient to show T'(p®, Du®) =

x- We still proceed as in [9]. First we prove strong convergence of Du" to Du®
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in (0, Rdg). Lemma 21 implies
c
alDu = Dl < [ (T(Du ") = T(Dur, 1) (D" — D) + 22" 17|
Q

:/T(Du”,p”)Du”—/T(Dua,pE)D(u”—ue)
Q Q

n n g C3 n £
- [ r@u e+ S - B
Q 1
L lge = IVH I+ 1671) — [ T D )
n ,n € C3 n £112
—/T(Du P)DPu A+ 5 =" = o,
Q C1
And, due to a weak lower semi-continuity of norms, we obtain
o lim [Du" — Du[3 < [f, e — = (IVFI3 + I°13) - / \Du* < 0.
n—oo 9]

Thus, Du™ — Duf strongly in L2 (Du™, p") — (Duf,p) almost everywhere in
Q). Due to the Vitali theorem,

/QT(Dun,p”)Dw%/QT(Dua,pE)qu:/ﬂ)(Dw.

Convergence of approximative solutions
We need to estimate p® and u° independently of . We take ¢ = p° in (4.1.5) and
Y =u® in (4.1.6). We get

(I3 + 171 + [ o dive = o
Q
/T(Due,pe)Due—/pedivue = [fuf]yre.
Q Q 0
Consequently,
e(IVERlE + 1P°113) + IIVel]3 < e

and, due to Lemma 21,
[T(Dw, p7)[2 < s

We test equation (4.1.1) by ¢ defined by

dive® = p°in Q,
¢ = 0on J.

We emphasize, that [,p® = 0 due to (4.1.1), and (4.1.1),. Further, due to the
Bogovskii lemma, ||¢[|12 < ¢7|p°||2. We obtain

1
(u*V)up® + 5 /(div u)ut .
Q

18 = [ TP e + |
Q

Q
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It can be derived, using Lemma 21, that
1115 < (c(L+ 1D l2) + 1 Fll-1.2) 19112 + 2[[ Vel [u® ]| all® |
<cllfll2 < cllptll2,

and therefore ||p°||o < ¢. Thus, up to a subsequence, (u®,p®) — (u,p) weakly in
Wy (Q,RY) x L2(Q) and T(Dus, p°) — x weakly in L2. Above obtained estimate

is enough to proceed to a limit in (4.1.1) as follows
/xDso + /(W)us@ - / pdive = [f,¢lyr2,
Q Q Q
divey = 0.

As in the first step, it is sufficient to show that y = T'(Du, p) which can be done
by proving that (Duf, p°) — (Du,p) strongly in L?. We define ¢° as

dive® = p° —pin Q,
©* = 0 on .
We remind, that ©° — 0 weakly in W12(€2, R%). Hence, by testing (4.1.1) by ¢*,
we get

1 . e\, E, € S
Iy —pll3 :/p(if —p) = ¢l + 5/(dwu et / [(Pupbe
Q Q @

+ /Q(U€V)u€<p€ + /Q (T(Du®,p°) — T(Du,p)) Dy*
and consequently,
g 37~ pl} = liny | (P(Dp7) = TPup) D, (01D
It can be easily seen that
| @@ ) = T(Oup) D <o [ [P0 = DullDe 4 [ 1 = plIDe
<co||Du — Dull2[|Dg”|l2 + cslp” — pll2Def|2

=cyc7||Dus — Dullo||p® — pll2 + cserllp® — pll3
(4.1.8)

and further,

2
C C
HDw = Dully < [ (70w, ) = T(Du,p) (P = Du) + 5"
Q

We test (4.1.1) by ¢° = u® — u. We obtain

/Q (T'(Du®,p°) — T(Du,p)) (Du® — Du) = — /Q T(Du,p)D(u® — u)

+ /st div(u® —u) + [f,u° — U]WOI,Q - /Q(UEV)uE(us —u)
- %/Q(div u®)ut(u® — u).
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Since [, p® divu® = —e(||Vp||3 + [|p°]13), we conclude that

/Q (T(Du?, p) — T(Du,p)) (Du® — Du) + ¢ (V7|3 + [Ip°]3)

- /Q T(Du,p)D(u" — u) + [f,u° =tz — / (u"V)us (v — u)

Q

1
- = /(div u®)ut(u® — u).
2 Ja
Therefore
hmEWDwt—DmP<nmfﬁus— 2 (4.1.9)
e—0 2 2_e—>0201p Pil2 o
and, consequently,
lim ||Duf — Dulfs < lim =2 ||p° — pf2 (4.1.10)
e—0 e—0 C1

From (4.1.7), (4.1.8) and (4.1.9) it may be concluded that

CoCrCs .
272 lim [|pf — plf3.

e—0

(1 = eser) lim [[p° — plf3 <
e—0
As (1 —czer(1 4 2)) > 0, it can be derived that
lim [|p® = pl2 =0
e—0
and from (4.1.10) we get

lim [|D(u® — u)||2 = 0,

e—0

whence the proof is complete. O

4.2 Higher differentiability

41 Lemma. Let Q be a C? domain and let f € L*(,R?). Let assumption
(1.1.3) be satisfied with c3 < —3——. Then a weak solution to (1.1.2) belongs

(c14crea)er

to W22(Q,RY) x W2(Q,R).

Proof. As an interior regularity has been proven already (see e.g. [24]), we focus

only on boundary regularity. Unknowns v and p satisfy following integral identity
/ T(Du,p)Dp — (u@u)Vy —pdive — fo =0
Q

for all ¢ € VVO1 2. Let 0 € 9 and suppose that ¢ is supported in some sufficiently
small neighborhood €2y r. A precise value of R will be specified later. We define
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functions

- (5 (3))
o) =p (Fe (%))
fa) =1 (Fa (%))
v(@) = ¢ (Fr (%)) , (4.2.1)

where = € B}(0). We remind that Fg

relations hold!

F(z). We set y = F(z). Following

—~

3z

~—
Il

Vi(zr) = Vyu(F(x))VF(x) = Vyu(F(z))I + RV, u(F(z))w(x),
Di(x) = Dyu(F(x)) + Rw(z)V, u(F(z))

and thus (u,p) satisfy the equation

/B o T(Dyu(F), p(F))Dyp(F) |det VF |+ / u(F)@u(F)V,@(F)|det VF|

B (0)

- /B o p(F) div, (F) |det VF| — / f(E)e(F) |det VF| = 0.

B (0)

Let R be sufficiently small and z € B}(0). Then we have

VF~(y) = I + Rw(y),
V2F(x) < .

The functions (@, p) fulfill

/ T(Dt + RwVi, p)DYVF~ — / (it ® 4)DYVF
B}(0)

B}(0)

—/ ﬁTr(VwVFl):/ fi (4.2.2)
B (0)

B (0)
for all 1 € Wy*(B#(0)). In further calculations, we omit the term |det VF|.
We provide only a sketch of the proof because we follow step-by-step the proof
presented in [24]. Let i € {1,...,d — 1}. We emphasize, that the operator A,
is defined as Ag, f () = f(x 4 de;) — f(x). We apply operator $As, on equation
(4.2.2). We denote %Agei by A and %A_gei by A_ to shorten the notation. We

set

Ate) = /01 OT(Di(x) + RwVi(r) + tAs, (Dgl(;;) + RwVi(z)), plz) + t8sp(z))
By /01 0T (Di(x) + RuVii(x) + tAs, (Dg;x) + RoVi(z)), p(x) + tAsep(r)

!The w denotes, as usual, arbitrary matrix—, vector—, or real-valued function which is

bounded independently on R and on the right hand side.
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From equation (4.2.2), we conclude, that (4, p) satisfies
/ AADGDY + / BApDY + R / (AADUDY + BAPDY)w
Bf(0) Bf(0) B (0)

+ / T(Di+Rwit, p)DYAVF '+ / A(u@u) DYV F '+ / (u@u) DY AV F !
BE(0) B

7#(0) B (0)

+/ ApTr(vwF—l):/ fA_p.
B} (0) B£(0)

Choose a test function ¥ (z) = n*(z)Ad(x), where n € C*°(Bj},) is a nonnegative
cut-off function. In what follows, norms ||w||eo, |A-VF s, I7l1.00, ||@]]1.2 and

||p||2 will be included in a general constant c. We obtain

(e = Re) 1Dl g < [ 9P + Ro)ADA(n)DA i)
BR

=— / (I + Rw)2nAD(AW)VnAG
Bf,

_ /]3+(I + Rw)B(Ap)nD(Aﬂ)n - 2/ (I + Rw)B(Ap)nAaVn

+
BR

+ / T(Di+RwVi, p)n*D(Va)AVF 1+ / T(Di+RwVi, p)2nVnVaAVF
B} B

+
R

+ /+(I + Rw)A(t @ w)nD(Au)n + / (I + Rw)A(u ® u)2nVnAu
BR

By
+ / (4 @ 0)2nVnAGAVE ! + / (4 @ W)*D(Va)AVF
By Bj;
—i—/ Ap Tr(2nVnAGVF ) + Apn® Tr(AVA(I + Rw)) + fA_(n*Ad(z))
Bj; By Bj;

:_]1_IQ_I3+I4+I5+IG+I7+18+19+110+111+112.

Since Tr(Va(I 4+ Rw)) = 0, we immediately get I;; = 0. For I; and I3 it is enough
to use the Young inequality and boundedness of A and B to get

|| < c(s)+5||77DA21||27B}+2 (4.2.3)

and
|I5] < c(e) + € [nAplly, g - (4.2.4)

The Young inequality also gives
11| < e(e) + € InAplly g+ - (4.2.5)
The boundedness of B yields
L] < C3||77A]5||2,B§||77DA71||2,B§- (4.2.6)
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The term T'(Da + RwVau,p) is estimated from above according to Lemma 21.
Thus we have
||+ |I5| < cle) + ¢ ||7]DA12]|27B}+2 ) (4.2.7)

For term Is we have

1/2 1/2
| Ig] < </B+(7779M)2> </B+ (IAflllﬂlln|)2>

R R
SHUDA{LHZB; H’&HG,BE H’?AQH&B;

see Theorem 5.8 in
+ +
1,2,B} 2,B}, (

The interpolation inequality [|f||; z+ < c|/f]]
[1]) implies

N L\ 11d/6 L 1-d/6 N o\ 11d/6

4] < clnAD e [V (AR, A0 < cllnADill o [D(rAG)|

+ +
2,B}; 2,B}; 2,B};

A A~ d A d
< c|nADilly g (IVnaalY5, +InaDal|)s, )

+ +
2,B}; 2,B};

~ ~ d
< c|nADill, sy + cllnADa|, 1 < cfe) + ellnADull3

The same procedure may be applied on I, Iy and Ig. Thus
|Is| + | 17| + |1s] + |Lo] < c(e) + 5H77ADUH§B§- (4.2.8)

Finally,
|I12] < c(e) +¢ anAﬁH;,Bg (4.2.9)

Inequalities (4.2.3), (4.2.4), (4.2.5), (4.2.6), (4.2.7), (4.2.8) and (4.2.9) yield
(er = cR) DAy s < = (IlDAUE s + (12515 5 ) +
+ (s 2) [,y 9D Al gy + (=) (42.10)

In order to get an estimate of pressure, we choose ® € VVO1 2 as a solution to the

following problem

dived = nAp-— \Bg\l/n(x)Aﬁ(:z:)d:z: in €,
® = 0on 0.

It holds that H(I)Hl,zB;; < C7H77A13H2,B§ We use a test function p = n® to get

0= / (ADM + BAﬁ) nDO(I+Rw)+ | AT(Da+ Rwit, p)Vid(I + Rw)+
B

Bj,
At ® a)D(nd) — / Apn div(n®) — fA_D
Bj; By By
- ApnTe(®(I — VE™Y)) + / T(Di + Rwi, p)D(n®)AVF™!
Bj, Bj,

+/+(ﬁ®ﬁ)p(7]@)AVFl = J1+J2+J3—J4—J5—J6+J7+Jg.
Br
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Holder inequality implies

5] < (ca DAy gy + s 085l 55 ) (e APl +¢) . (4211)
Easily, using Young inequality,
ol < /B T(Dit R )A_ (V)] < o) + cldply . (42.12)
R
where ¢ stands for arbitrary real positive number. Further
|J5] < / AuunVoe| + / At @ u)Vnd
B} Bh

<8l syllindil g+ [ (@@ DA-(Tr0).
R

N N N N N ~ d/6 ~nl1—d/6
Because [|anAdlly gy < [l s l1A0, g < clily o IV ADIYS, [nAa]) "

we get
|Js| < ellnADilly gt [nAD] gy + ellnAPI; s + cle). (4.2.13)

Further,

2
Ji> | Ap(ndiv®+ Vn®) > |InAp|ls — </+(Ap)n> — /+ IPA_(Vn®)|
B B

Bf + +
2[1(Ap)nll; gy — c(e) — ell(Ap)nll; gy (4.2.14)
Easily
|J5] < c(e) + e [nAplly s - (4.2.15)
Finally
[Js| < R Apnll; - (4.2.16)
7] < e(e) + el Apnll; s (4.2.17)

and, since (u® u) € L3, we get
| Js] < cle) +el| Apnll3. (4.2.18)
Thus we have

INAPI; g1 < (c2er+eteR)INADilly el lnAplly gy +(escrte+cR) INAPI; i +e(e).
(4.2.19)
2

Here we use Young inequality in a form ab < 2(C752+Cl) I b2(C7c22+c1)' We obtain

CoCr 112
1— - R A <
( c3cq eres + 1) +e+c ) In pHZBE <

(0207(0207 + Cl)
2

+e+ Rc) HnADqu;B; + c(e).
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The assumption c3 < '3717 implies that there exist R > 0 and ¢ > 0 such

(e14cacer)e
that
C1C7 C2Cr7
l—c3c;—————c—Rc>—"——.
3 2(cac7 + 1) 2(cac7 + 1)
Thus
HUAﬁH;B;{ < ((c2cr + &1)* + €+ Re) HUADQH;B; + c(e). (4.2.20)
The same Young inequality applied on (4.2.10) implies
~112 C3 1 12 CoCr + €1 112
<2 - e
A gy < 2 (G IR gy + 2 D, )
+ (e + Rc)HnDVﬁH;B; + ()
c3(cacy + ¢ .
< (w e+ Rc) [nADa3 0 + c(e)
1 b

According to assumptions, we can choose R and e such that C?’(%fﬂl) +e+Re< 1
and thus we get

[PADZ 1 + 9B 5y < e

Now it is enough to choose 7 as

1in B}

R/2
n = 0 n Rd \ BR .
smoothly
ovi p
Ha " < c(lfullvz 1pll2, 1 £l2sw, B, T)
i 2,BR/2 L 2,BR/2

foralli e {1,...,d—1}.
It suffices to show that also the derivatives with respect to the normal vector are

bounded in proper spaces. The functions (u,p) satisfy equation

~divT(Di+ (VF' = )V, p)VE!
—~VpVE™ = g, (4.2.21)
divi = Tr(VF'—=1)Va), (4.2.22)

where g € L2 contains right hand side and the convective term. We rewrite this

. . . 2~ 2.~ N
system in point of view of an unknown vector s = 0%y 9 Ud 9 ) The
x5’ » dxy 0 Ozg

equation (4.2.21) can be reformulated as follows

—u O%u,
K al'lal'j

(4.2.23)

Tw(Dit — RwDi, j
+(5kl+Rw+(I_Rw)a u(Dd — R u’p)) % _ g

op 8—1'1_‘(]’
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where A = —(I—Rw)w. Therefore ||A|| < 3|+ Rwl||. We emphasize

that according to the assumptions |%—Z| < ¢3 < 1 and thus, for R > 0 sufficiently

1
9Ty (Di— RwDa,p)
= . We

multiply (4.2.23) by C and we put all the already estimated terms on the right

small, there exists an inverse matrix C' = <5kl + (I — Rw)

hand side. Hence, we obtain, for m € {1,...,d}?

- op — . 0%u,
—A8)y = (Cq ) + =—— (1 = Og) — CA —
(A= Ot g =)= S (O
Li€fLnd)?\{(d,d)}i€{1,....d}
(4.2.24)
where A is defined as a d x (d 4 1) matrix
0
Api = | (CAYm | (4.2.25)
0
1

We denote the right hand side of (4.2.24) by g. We add to (4.2.24) the equation
(4.2.22) differentiated with respect to ;. We get

aul- 62 iji !
) 8—3:] 0x;0xq

A = A + Rw.
0,...,0,1,0

Further, we denote the right hand side of (4.2.26) by §'. We compute det A’. We
expand the determinant of A’ along the last row and along the last column. We
get det A’ = det Ay, + Re where Ay is the (d — 1) x (d — 1) matrix that results

(A/S)m = Jm(1 = Om(a+1)) + Om(a+1 (4.2.26)

Here

from A by removing the last two columns and last row. The matrix C'A is elliptic.

Indeed, A is elliptic with constant ¢; — Rc because g—g is elliptic. Further, C'A

%S — Rc which is, for R small enough, greater

l—c3

than zero according to the assumptions. Thus also a matrix A, is elliptic and it

is elliptic with a constant ¢; — ¢y

has nonzero determinant. We get, that, for R sufficiently small, there exists an

inverse matrix (A’)~' € L. From (4.2.26) we have for arbitrary r € R

2,
(%) (am) . (42.27)
0ri ) .1 41 Ox10x; ij=1,d—1]|,.

Since §' € L2, we have V?u € L2(B};(0),R*). The Sobolev embedding theorem
implies u € W'¥ N L8 thus uVu € L*(B}(0),R?) and the right hand side ¢’ in

+

!MMSCQWW+

T

2Here d is not a summation index.
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(4.2.26) is bounded in L% By iterating this process, we obtain

(3]9) ( %u; )
0%i ) i1, a1 Or,0x; i,j=1,...,d—1

.........

sl < C (IIg’Hz +

) . (4.2.28)

which concludes the proof. O

8

4.3 Higher integrability

42 Lemma. Let c3 < min {m,cgl} and 2 be a C* domain. Then there

exists a constant 6 > 0 such that, for f € L*(Q,RY), a weak solution (u,p) to
(1.1.2) belongs to WHH9(Q, RY) x WHA9(Q, R).

Proof. Assume that 0 = 2y € Q and let R > 0 be such that Byg C 2. Since
all assumptions of the previous lemma holds, we can assume, that (u,p) €
W22(Q,RY) x WH2(Q,R). We differentiate (1.1.2) with respect to z; for i €

{1,...,d} fixed. We get
oT (8u) oT Op

) ) Jp 0
—_ —D — —_— p—
WopP\or, )  Wapan " Var, ~ an,

(f —diviu®u)).  (4.3.1)

Set A = g—g(Du,p), B = %—Z(Du,p), U= g—; and P = aa_:i' The equation (4.3.1)

can be rewritten as

0 (f —div(u ® u)) + div BP.

—divADU + VP =
(9:}51-

We multiply this equation by a cut—of function n € C°° which is defined by

1 IEBR/Q
0 zeR!\ By

Thus functions (U, P) «f (Un, Pn) solve

—divAVU + VP = F + div BP,

divU =g,
0 - Y
Br
where
0
F = g (f —diviu®u))+ (Vn)P + (Vn)BP + div(A(Vn)U)
and 5
— 9Ny
= anUJ.
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Since VU € L*(Q,R%), U belongs to L(Q,R?). Thus we have g € L**(Q,R).
Further, F' can be written as F' = div F’, where I’ € L2+5(Q,Rd2). Indeed,
since uVu € L3(2,R?), the term ndi(f — div(u ® u)) + div A(Vn)U is in space
W-L2+9(Q RY). Moreover, F — 778 (f —div(u ® u)) € L%, RY) because U €
W2(Q,R%), P € L*(Q,R) and B € L®(Q,R¥). Thus, according to Corollary
38, we get that (VU, P) are in space L29(Q, R% x R). Since i can be chosen
arbitrarily, we immediately obtain u € WQ’QH(B%,]Rd) and p € WLQJ”S(B%,]R).
Let 0 = zp € 02 and €, g be the neighborhood defined earlier. We define
quantities u, p and f by (4.2.1) and we differentiate equation (1.1.2) with respect
to z;, i € {1,...,d —1}. We assume that 2% is equal to zero on 9B} (0). We set
A= g—g((Dﬂ + vaa,p)) and B = a_p((D“ —|— RwV1,p)) and we have

/ Ap 2t Dw+/ Doy — [ givy
Br+ 0

z; ox; B o0x;

ou Op .
— RSl (a—xz, 8—xz’¢) + SQ(U,]?,@Z)), (432)

where

ou  0p B . o ou op

o0t
ox;

D@/)w—l—Ba

AD
* ox;

D¢w)

and

i) = [ (—f O 1(Di+ RV ) Dy 4 p T (V)

ox; o0x; ox;
0 OVF
+63:Z( @ u)DYVE + (4 ® 0)Dy o

F
+T(Di + RwVa, p)Di av )

i

It holds that

|52 (@, p, ¥)| <

e (Wl 19l + v+ H

o . _
axi(u@)u)

108l ) [l

[2+3
Thus the term S5(, p, 1) can be represented as [ GV where G € L?*((, R™).
For S; we have, due to Holder inequality,
ou  0p
g [ == =Z£
1 (axla axlaw)'

ou Op
’ % (%’ D, ')'
op
(%Z

= sup 1,(2+5)’
eWw,’ , <1
1246 P 0 111 ,(248)!

axi

2+6)

2+5
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According to Lemma 39 there exists Ry > 0 such that for all R < Ry it holds
di  Op

that (8— 8—?) e WL2H(B(0), RY) x L*H3(B}(0), R).

The same considerations can be done even for a function, which is not supported

in Bj. It is enough to take %77 instead of % where 7 is a nonnegative smooth

cut—off function defined as

1 x¢€ B}
n(w) = e
0 .TER\B;;R/4

The regularity of the derivation with respect to the normal vector can be done
similarly as in proof of Lemma 41. Hence, since Q is compact, we get the claim

of the lemma. O

43 Corollary. Let all assumptions of Lemma 42 holds. Then there exists 6 > 0
such that (Du, p) € WY22+3(9Q)).

Proof. Follows immediately from properties of the trace operator. O

4.4 Key lemma and its consequences

For needs of this section, we define quantity E“?(x, R) for o € (0,1) as follows
u,p 2-d 2 2-d a
EY(z, R) = R [[Vulla0, , + B2 VP20, » + B
Throughout this section, we assume that € is a bounded C? domain.

44 Key lemma. Let (1.1.3) be satisfied with c3 < m, let « € (0,1) and
let f € L*(Q,RY) where uy > d — 1+ «. There exists Ry > 0 such that for all
M >0 and T € (0,1) there exists € > 0 for which the following implication holds:
Let (u,p) € W12(Q,R?) x L2(,R) be a weak solution of system (1.1.2) and let

for any xy € 0 and R € (0, Ry) the inequalities

E"(x0, R) <e, (IVul)p, +|(@)p, | <M

hold. Then
E“P(zg, TR) < 2C*T*E"“P(x0, R).

Proof. We prove this lemma via blow up system.

Throughout the proof, we write F}, instead of F,, g, and €2, instead of €2, r,.
We define a set 1"y, as I';, = 0€2;, N 0S2. For a contradiction, we suppose that there
exist M, 7, x, € 092, ¢, — 0, R, — 0, as h tends to zero, and weak solutions

(up, pr) to (1.1.2) satisfying
Bl (zy, Ry) = en, [(Vun)r, | + [(r)r, | < M (4.4.1)
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and
E4noPh (Ih, TRh) > 207 7% BpUhoPh (Ih, Rh)

We, moreover, assume that?

(pr)r, — ainR
(D*up)r, — ein R™%

o
Rh
€h

Further, from the assumption (4.4.1), it follows that f—: = R;7*=2 — 0 as h

tends to zero. We set x = F,(y) and we introduce new rescaled quantities vy, g,
and f, defined by

up (Fi(y)) — (Vu)r, - (0,...,0,y4) Ry

vh(y) = Ruen )
~ pe(Fa(y) — (ow)r,
an(y) = . :
h
Ry
fuly) = gf(Fh(y)f
Their derivatives fulfill
Vyvh(y) _ V;vuh(Fh(y)) B (v;:h)l“h . (O, R ,O, 1) + %vauh(Fh(?J)):
Dyonly) — Dxuh(Fh(y)g)h_ (Djun)r, n
s (f—:wvxum(y)) +(DaTaunm)) ) ,
Vi) = 7 (Vu(F(w) (VA)) +
+€h;h Vaun(Fu(y)) V2 Fu(y),
V) = VRO | T g ) (4.42)

By the change of variables, we have, due to properties of Fj, (see Observations
20),

(IR — | RE1)) / Varn(Fuy))Pdy < [ [Vapnde

B (0) Qp,

< (il + R |
B (0

V2unl )Py < [ |92
(0) Qn

: ’prh(Fh(?J))dea

()~ clRiD |

By

< (| +em) [

B (0

) IV2u,(Fn(y))Pdy.

3We use the convention V = (V’,a%). The operator D* is defined as D*u def

3 ((0.820) + (0.20)")
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Thus

1 1
IVapnll20, SIVapn(Fi())lls,5r0) £ ——===IVupnll2,
\/ B+ cRiH \/ Ri — cRiH!

1 1
——|Viunlla0, <IViun(Fa()l25t0) < —————=IIViunl20,
\/ B+ cRi! R — ¢RI

(4.4.3)
The identity (VFy,)?> = RII + Riw + Rjw implies that
1
19t + 90 < || o V2BV TE?| 4
hEh 2,8 (0)
1
+ H quh(Fh())V2Fh +
Rnen 2,5} (0)
R R?
+ H_hvxuhwh(.)) || 2R (F()
Eh 2,81 (0) h 2,B{ (0)
2—d
B IVl + IVol0,)
S u + +
2-d
Ry — (| Pup g, + [ Vnllan,) +
env/1— cRy, : ’
+ H Vaun(Fu () V2E,
Rnen 2,57 (0)
1+ CRh 1 2
<~ T puern(g Ry) + || ——Vaun(Fy () V2E
_5hm ( h h) Rhéh h( h( )) h 2731-(0)
and similarly
HVQUthBf(o) + HVCIthBf(o) 2
> 1B pumy, R — | = Voun(Fa() V2E,
“en/1+cRy, ho T Rpep, oMY 2,B7 (0)

1 2
The term Hmvxuh(ﬁ’h(.))v F, "B O) converges to zero as h tends to zero.

Indeed, according to the Poincaré inequality (Lemma 22) we get

cR R
|7 VO R]  <ETBO 0 < o g Tl
hEh 2731*‘(0) Eh €hR2
1—4
R R, 2
<c <—h (Vup)r, | + Rp—L HVQUhHQ,ﬂh>
Eh €n
Uh,Ph
< (&MJrRhE (xhth))
En Eh
<c (&M + Rh) — 0.
Eh
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It follows that

EwPr(0,1) - 1 as h — 0,
EPr(0,7) > 2C*T*E*»Pr(0, 1) for h sufficiently small. (4.4.4)

Boundedness of the second gradient of v, and the first gradient of py, in space L?

implies that, up to a subsequence,
(vn,pn) = (v,p) in W2*(B{(0)) x WH*(B(0)) weakly.

We set © = Fj(y) and ¥(y) = o(Fr(y)) = ¢(z). Every term in a weak formulation

of the equation (1.1.2) can be reformulated as follows

/ f(@)p(x)dz = / F(En () (y)| det ¥ B (y)|dy,
Qg (zn)

B (0)

/Q ( )uh(x) ® up(x)Dop(x)dx =
1

- Bu s

— Ry /B+(0) up(Fr(y)) @ up(Fr(y))Dy(y)w| det V Fy(y)|dy,

up(F(y)) @ un(Fi(y)) D (y)| det V Fy, (y)|dy—

similarly

1

R Jsyt)

R [ TOWEW). ) POl det VE )y

T(Dun(Fn(y)), pn(Fn(y)) Dy (y)| det VFy (y)|dy—

and, due to divy)(y) = Tr(VeVF,) = R, divp + RiVpw,

1

=& pu(Fu(y)) dive(y)| det VFy, (y)|dy+
h JB{(0)

/ pr(x) div p(z)dz
Qry, (xn)
F R [ ) TV 0)0) det T )
B
Hence, for all ¢ € W(}’Q(Bf(o)), holds

L+L+ L+ I+ 1s+1g = 0,
1 [0 R
divy, = ——( uhd) —I——hwdivuh,
'y

Eh Gxd Eh
Vnlgas = 0 (4.4.5)
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where the terms I; are defined as

1 . det VF,
L = / —T (Dvnen + (D*un)r,» qnen + (Pr)r,) DQﬁ%,
B (0) €h R
1 . 1
I, = / — (T (Dvheh + (D uh)rh + Ry— (Vuhw+
Bf(0) €h 2
(VUhW)T) s qnEn + (ph)QRh(xh)) -
T (Dupen + (D un)ry,, qnen + (Pr)r,)) Dqﬁ‘]%%,
h
1 ) det VF;
I3 = / —— (gnen + (pn)r,) div Qﬁﬂ,
Bf(0) €h R
det VF;
no= - gl
B (0) Ry,
1
[5 = / — (Uth€h + (Vuh)ph((), e ,O, 1)Rh) (29
Bf(0) €h
det VF
X (Uth€h + (Vuh)ph (O, ey 0, 1)Rh) 'Dw|R—dh(y)|,
R2 '
Iy = — ((pn(Fn(y))) Te(Vo(Fr(y))w)+
€n JBf (0)
+un(Fu(y)) @ un(Fr(y)) D (y)w
det V F,
FTDu(F) pu )Pty )e) L]
h
Since div, u, = 0, we have
Tr (Vyun(Fu(y))(VFr(y)) ™) = 0
and identity Fj(y) = Rih(] + Rjw) implies
divy up(Fi(y)) = —RawVyun(Fr(y))-
By the zero-Dirichlet boundary condition, 2ueile) = 0 for all y € B{™!,

Oy, (',0)
i€{l,...,dyand j € {1,...,d —1}. Thus, for every y € B{ ™!,

|Vyuna(Fn(y))] < eRp|Vyun(Fi(y))]-
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Thus, for M , we have
oxg T,

Oupg ' /
dxr =
/Fh O (z)| da Bé-t

<c [ 19 Fs) (TR |det VE )l dy

8uhd

(5 (4) | etV i)l

< (VR [ | IVs(Fuw)] et VFy)ldy

1

—cRy ||(VE) | /Bd_l Vo (Fh(y))V || det VE,(y)|dy

1

gthH(VFh)lﬂooHVFhHm/ IV oup|de < cRy|Ta| M.
'y

Jupg
Oy r,

The term ‘det;w tends to 1 in L™ as h goes to zero. Thus we omit it in further
h

computations. The term I tends to zero as the integral is bounded and f—: — 0.

Therefore i

cf—:]\/[ — 0. Also f—:w divup, — 0 and thus divuy,

tends to zero.

Similarly, also the terms I5 and I goes to zero. The term I, can be handled as

L) = —— / fw' < —R |l <
R Qp Qp
]% (p+1-d) B 411]%a
< TR "z ¢ )20, < RFF = I ll2ull$ll> = 0.

We rewrite the term I; as follows

1

I =— (/ T(Dupen + (D*up)r, . qnen + (pr)r,,) : DY
Eh B (0)

- /B+(o) T((D*un)r,, (Pr)r,) : D

7

g

=0

1 ! 0 *
:_/ / —T'(sDupep, + (D*un)r, , Squen + (pr)r, )ds
B (0 s

LoT(sD D~
:/ (/ OT(sDupep + ( “h)Fh’SQh€h+(ph)F”)d )DUh Dy(y)dy+
B (0) 0 oD
LaT(sD D~
+/ (/ OT (sDupep, + ( ng)Fh’Sq’lgh * (ph)rh)ds> an DY (y)dy
By (0) \Jo b
Thus
I — ADv : Dy (y)dy + / BaDy(y)dy
B (0) B (0)
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where A and B are defined as

def O0T(a,e)
4=
B JT (a,e)
= PR

From the fact that fBj(O) (pn)r, divey = 0 for all ¢ € Wy*(B;(0),RY), we derive
that

1
I = / “ L (Ghen + (o)) dive
Bf@©) ¢n

= / qhdivqﬁ—>/ qdiv 1.
B (0) B (0)

We may conclude that v and ¢ solve

—divADv+ (I — B)Vq = 0in By (0),
dive = 0in B{(0) (4.4.6)

and by Lemma 25
E"(z,TR) < CT*E"(z, R). (4.4.7)

Our goal is to prove that

20" < (0, 7) — EV(0,7) <
< C*TaEv’q(O, 1) C*7% lim inf E¥rn (O 1) crre (4.4.8)

h—0
which is a contradiction. The first inequality comes from (4.4.4). The third
inequality is true due to (4.4.7). The weak lower semicontinuity of norm gives

the forth inequality and the fifth inequality is trivial. It remains to show that
E(0,7) — EV(0, 7).

We do it by proving that (vs, gn) — (v, q) strongly in W22(B}(0)) x Wh2(B(0)).

‘detv Bl for simplicity. We

differentiate (4.4.5) with respect to z;, i € {1,...,d — 1}. Set

Throughout the rest of this proof, we neglect the term

oT oT

A, = D (Dupey, + (D*up)r,, anen + (pr)r,) = D (ap, en)
oT oT

B, = W (Dupen, + (D*un)r,, s ahen + (pn)r,,) = W (ap, en) .

3%

Further, we set wj, = % and r, = The functions wy, and r;, satisfy

—div Athh + div ((I - Bh) . T’h) = Sh,
divwh = (gp

Wh|par = 0 (4.4.9)
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where S, € W2 is defined as

0
[Sh, (,O]Wflz = Rz / 2 (wh & (Uheh + (Vuh)ph(O, e ,O, 1))) D(,O—i—/ fhagp
B ) O%i

By (0)
oT T oT ovy,
— - — D
+ /Bf-(o) (61) (@h + Rh(Vuhw + (Vuhw) ), €h) oD (ah, €h)) o,

oT oT Oqn
+ —(an, + Rp(Vupw + (Vupw)?), e ——a,e) D
/BT(0> (8p (an + Rp(Vupw + (Vupw) ™), en) 8p( hs €h) o, 0¥

9,
o Vuy(F(h))RywDe

oT
+ / —(ap + R (Vupw + (Vuhw)T), en)
Bt (0) 9D

0
Fy,D
8xivh ¥

or
+ / —(ah + Rh(Vuhw + (Vuhw)T), eh)Vuh(Fh)
57 (0) 0P

Ry,

0 0
+ — |: (uh(Fh) X Uh(Fh)) D@Rhw + uh(Fh) ® uh(Fh)Dgo VFh
€n JBf(0) LOTi Ox;

+(a—T(Duh(Fh)aPh(Fh))Daaxiuh(Fh) + Z_Z(Duh(Fh)aph(Fh))aaxiph(Fh)) DyRyw

oD
0

c%vi
- Jl + J2 + Jg + J4 -+ J5 -+ J6 + J7. (4410)

+ T(Duh(Fh),ph(Fh))Dcp VF}L:|

Further, g, is defined as follows

gn =

Tr (v2uh (Fy(z)) (agi@ . RhI) VEy(2) + Vg, (Fy(2)) 8ZiVFh(x))

enRRy,

From (4.4.9) and %(4.4.6) we deduce

—divAD(w, —w)+ (I — B)V(r,—1r) = Sp+div(4, — A)Dwy,
+ le(Bh - B)T’h
div(wp, —w) = gp. (4.4.11)
1 for € B} (0)

0 for x € R%\ B;(0)
Set wy, = (w, —w)O and 7, = (r, —r)0. We multiply system (4.4.11) by 6 to get

Let there be a real smooth cut—off function § > 0, § =

—div ADwy, + (I — B)VF, = 08, +0div(A, — A)Duwy,
+0div(By, — B)r, + (I — B)(VO)(rp, — 1)
—VOIAD (wy, — w) — div A(VO)(wy, — w)
divaw, = 6Og,+ VO(w, —w)
Tnlopr = 0. (4.4.12)
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We denote the left hand side of (4.4.12) by S,. We test equation (4.4.12) by .
We get

ClHthH% S A/ D’LZ}hD’LDh = / fh div @Dh —|—/ B?thﬁJh + [S’h,ﬁ]h],l,g
Bf Bf Bf
< [|7nlaf| div @n |2 + csl|7nla ] DDn]2-

Since || divayll2 = [|0gn + VO(w, — w)|]2 = o(h) — 0, we get, using Young

inequality
cr| D3 < & (D@l + I7all3) +callallol Dinlla+c[Sh, wn] -12+0(h). (4.4.13)

Further, we test equation (4.4.12) by ¢}, which solves

diV(ph = fh—(fh)Bii—

@h’an = 0.

We get

IV7nl3 :/ AD@hD@h+/ B7,Dpn + [Shypn] 1.2
Bf By
< cocr|| Dinla||7nllz + (eser + €)1l + [Shs @n] -1,
We use Young inequalities in the same way as in (4.2.10) to conlude
D@5 + 17all3 < c([Sh, @n) 1,2 + [Shspn]-1,2) + o(h).

We show that the terms [Sy, @] 1.2 and [Sy, ¢n] 1.2 tend to zero. In what follows,
we estimate a term [Sy, p] since a method is the same even for the second term.

The terms Ji, ..., J; come from (4.4.10) with ¢ = ¢,.

(S )12 =Ji+ Jat Js+ Jy+ Js+ Jg+ Jr + / VO(A, — A)Dwypn

Bf
+ / Q(Ah — A)thDQph + / V@(Bh — B)?“thh + / Q(Bh — B)T’hngh
Bf Bf Bf
— VOAD (wy, — w)ep, — / AVO(wy, —w)Dyy,
Bf Bf

=h+L+ I3+ i+ I+ I+ Jr+ Jg + Jog + Jig + Ji1 — Jiz — Jis.

Since wy, — w and ¢;, — 0 strongly in L?(Q, R?), it can be derived that Ji» and

Ji3 tend to zero.

Further, A, — A almost everywhere, B, — B a.e., g—g(ah—l—Rh(Vuhw—l—(Vuhw)T), en) —
or 0 ar

Sp(an, ep) a.e. and also 8—;’;((1;1 + Rp(Vupw + (Vupw)T), en) — ap (an, €n) almost
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everywhere. Thus, terms Js, Jy, Js, Jg, Jio and Jy; go to zero.

Term .J; can be estimated similarly as term .

Because wy, and vy, are both bounded in L*, we get J; — 0 due to Rj, — 0.
Further, f—: — 0, thus J; — 0.

The fact R, — 0 also implies J5 — 0 and, since

Q%Z,VF;IHOO < R%c, we easily get

Js — 0.

Thus we have (g%?, gz_) — (g—;’i, %) strongly in Wh3(B) x L*(B;) for all
i €{1,...,d —1}. The convergence of derivations with respect to the normal
vector can be done similarly as at the end of proof of Lemma 41. O

45 Lemma. Let assumptions (1.1.3) be satisfied with c3 < =i and let
f e L**(Q,R) where u > d— 1+ «. There exists Ry such that for all M > 0 and
v € (0,q) there exists T € (0,1) and € > 0 for which the following implication
holds.

Let (u,p) € WH2(Q,RY) x L2(2,R) be a weak solution of the system (1.1.2) and

let for all R € (0, Ry) and for all xo € OS) the inequalities

E*P(zo, R) <&, (|[Vul)r, ,+ @)
hold. Then .
E"(x0, 7" R) < o7t B (2, R),

forallk € N

Proof. According to Lemma 22, we get for 0 < R < R’

C
[(P)r,r — @), o = gH(p)rm,R — ®r, w20,
—d
< R (1) = Pllacs + 0 = @)1,y llzc, )

_d _d
< cyR'2 HVPHZQ,C,R + s R R™2 HVPHQ,QJW-
Fix 7 such that 2C*7%77 < % and 7 < % According to Lemma 44 there exists ¢,

such that
E"P(xg,TR) < 2C*T*E"P (10, R)

whenever
Eu’p(ﬂfo, R) <é€1.

We suppose that E*“P(zq, R) < €5 where &5 is such that (ci4 + 20157’5)52 < %.

According to the Lemma 44, the conclusion is true for k = 0.
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Let the conclusion be true for some k£ € N and let ‘(p)p
1< k—1. We have

< % for all

zg,7 1R

1
Eu’p(ilfo, TkR()) S Q—ka'YEu’p(.To, Ro)

We get E"P(xz, TFRy) < 5 min{eq, €2} due to the assumptions . The function p
fulfills

P, | <@~ @), e |1 O)r

.TO‘I'

< 014(7'kRo) 2 HVPH2 Q

(), Thk— 1Rg |

_d
+ Cc157 2( "R )1 2| Vpll2.0

’ a:O,‘rkflRO

+ (IpD)r

z( TkR

xo,Tk_lRO :

The estimate (7°Ry)'™2 vaHQQ < E"P(z9, T8 Ry) < greo implies

xzQ TkRO

1 —d
| < oF <014 + 2¢157 2 )52 + |[(p)r

zO,kalRO ’

Therefore i
M 1
|(p) TQ,T RO S Z Z 2_ z0 RO S

The same conclusion can be drawn for (|Vul)r Thus (|Vul|)r +

z0, T R (), k Ry
|(p)r | < M and we can use Key Lemma to get

zO,TkRO

7'7'k

E“P(z, 7" Ry) < 2C*m* 7V E"P(z, 7" Ry) < ??Eup(flfapbo)-

O

For (u,p) € W2%Q) x WL2(Q), z € Q and 0 < R we define quantities
EyP(x, R) and E“P(z, R) as follows

&4 (x, R) Y R*7|V2ullysayne + RZ1VDla,5pwn0,
&u(z, R) ™ £%(z, R) + R

Inclusions Q, = C (Br(z) N Q) C Q,2p are valid for R less or equal to certain
Ry hence it can be seen that there exists a constant ¢, which depends only on (2,
such that

%Eu’p(x, R) < &"P(x,R) < cE"P(x, R)

forall z € I.
Lemma 3.4 in [24] is a variant of the Key lemma for interior and can be read as

follows.
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46 Lemma. Let assumption (1.1.3) be satisfied with c3 < m and let f €
L** where p > d — 1+ . There exists Ry > 0 such that for all M > 0 and
7 € (0,1) there exists an € > 0 for which the following implication holds.

Let (u,p) € WH2(Q,RY) x L2(2,R) be a weak solution of the system (1.1.2) and

let for any xo € Q and R € (0, Ry) the inequalities

EWP(xg, R) < ¢, <M

+ ’(DU)BR(IO) ’(P)BR(IO)

(U)BR(IO)

hold. Then
EWP(xg, TR) < 2C*T4E"P(x0, R).

Following lemma can be obtained in similar way as Lemma 45.

47 Lemma. Let assumptions 1.1.3 be satisfied with c3 < m and let f €

L** where u > d — 1 + . There exists Ry > 0 such that for all M > 0 and
€ (0,«) there exists 7 € (0,1) and € > 0 for which the following implication

hold:

Let (u,p) € WH2(Q,RY) x L2(2,R) be a weak solution of the system (1.1.2) and

let for any xo € Q and R € (0, Ry) the inequalities

M
guﬂp(l‘(), R) <g, (U)BR(LUO) + ’(DU)BR(QC()) + ’(p)BR(xO) S Z
hold. Then .
gu’p(l'o, TkR) S Q—kawgu’p(l'o, R)
for allk € N

48 Corollary. Let (u,p) be a weak solution of (1.1.2) and let (1.1.3) be satisfied

with c3 = If xo € 0N) fulfills

(c1 +C762)C7

lim inf E”P(zq, R) =0,
R—0

limsup |(p)r,, x| + ([Vul)r
R—0

limsup [(p)a,,. | + [(Du)a,, o] + |(W)a,, | <o0,
R—0

IO R OO7
then Du and p are Holder continuous on some neighborhood of xg.

Proof. Let xy € I' satisty the assumptions of the corollary. Our aim is to prove
that there exists constant ¢4 and v > 0 such that for all x € ong , where R > 0
is sufficiently small, and for all p < g it holds that

EWP(x,p) < cigp”. (4.4.14)
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This condition directly implies that (V2u, Vp) € £2%-2+7(Q, R ) x £L24-2+7(Q, R)
and thus Vu and p are Holder continuous.

It holds that lim infz_,o E*? (g, R) = 0 = V¢ > 0; VR > 0; 3R < Ro; E"P(x, R) <
¢ and thus, according to the continuity of integral, there exists R, € (O, %), a
neighborhood I'y, g, and a constant ¢;7 > 0 such that for all x € I'y, g, it holds
that E“P(xg, Ry) < ci7. Further, as liminfg .o E“P(z0, R) = 0, we assume, with-
out loss of generality, that £“P(z, Ry) < c¢y7 for all x € Q) g,.

Let p < %. We suppose that x € Fxo’%. We find k € N such that 7" R; < p <

78R, where 7 comes from Lemma 45. It can be easily seen that
E“P(x,p) < max {1, T%} E*P (:1:, Tle) .
Thus, according to Lemma 45, there exists constant c¢;g such that

€7 (x, p) < E"P(x,p) < eT™ E"P (0, Ry)
v E"P (2, Ry)

<e(Br™) =gy

S pvclg. (4415)

Let © € Quri3 \ Tag,ris- We distinguish between two situations. If p <
dist(x, 'y, g, /3), we can simply repeat previous method using Lemma 47 instead

of Lemma 45 and we get that existence of a constant c;9 such that
EWP(x,p) < ci9p”. (4.4.16)

In order to complete the proof we need to show, that E“P(x, p)p~7 is bounded
independently of p and x even for p > dist(z, 9Q).
If p > dist(x, 0Q), we can find 2y € 'y g, /3 such that B,(x) N Q C Bs,(x1) N Q.

Thus there exists a constant ¢y such that
EWP(x, p) < (317212 1 30 EuP(11 3p) < cEP(x1,3p) < cerrp” < caop”. (4.4.17)

Combining inequalities (4.4.15), (4.4.16) and (4.4.17) we get the validity of (4.4.14)

on some neighborhood of x. O

4.5 Proof of the main theorem

Let ¢3 < min {( 1

c1+ecacr)er”? €9

}. We call a point = € 0f) singular if there is no
relative neighborhood of x where Du and p are Holder continuous. We denote

the set of all singular points by Y. As a consequence of the previous corollary we

27



get ¥ C U?Zl Y; where
¥ ={z € 0Q,liminf E*?(z, R) > 0},
R—0
Yo ={z € 09, 1ir]r{1 Sgp(|DUI)rEO,R + |(P)r,.nl = o0},
%

¥y ={z € 09, 1ir]r{1 sup (D)0 | + [(Du)a,, ol + [(W)a,, »| = o0}
%

We know, according to Lemma 42, that (Du,p) € W¥22+3(9Q) and, according
to Corollary 24, we get
HI2(X,) = 0.

Note that (Du,p) € W% and thus Corollary 24 also implies
HdiQ(Zg) == O

Due to the Lemma 23
HI2(X,) = 0.

Thus
HITA(E) < HITH(D)) + HITE(S,) + HTE(E,) =0

and the proof of the main theorem is completed.
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