
Charles University in Prague

Faculty of Mathematics and Physics

DOCTORAL THESIS

Miroslav Novotný

Trust Management Systems in P2P Networks

Department of Software Engineering

Supervisor of the doctoral thesis: RNDr. Filip Zavoral Ph.D.

Acknowledgements

I would like to thank all those who supported me in my doctoral study and the work
on my thesis. I appreciate the help and guidance of my supervisor RNDr. Filip
Zavoral, Ph.D., for inspiring leadership and valuable comments that helped me solve
many problems. Further, I would like to thank all my colleagues from the
Department of Software Engineering, Faculty of Mathematics and Physics, Charles
University, for friendly atmosphere and help.

This work and the related research was partially supported by the Ministry of
Education, Youth and Sports projects MSM0021620838, the Grant Agency of the
Czech Republic projects 201/09/H057, 202/10/0761 and by the Grant Agency of the
Charles University under grant numbers 2010/28910, SVV-2010-261312, SVV-2011-
263312 and SVV-2012-265312.

Above all, I am in debt to my parents and my girlfriend Marcela for their
support and endless patience.

I declare that I carried out this doctoral thesis independently, and only with the cited

sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.
121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles

University in Prague has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In…...... date............

Název práce: Řízení důvěry v P2P sítích

Autor: Miroslav Novotný

Katedra / Ústav: Katedra softwarového inženýrství

Vedoucí doktorské práce: RNDr. Filip Zavoral Ph.D.

Abstrakt: V dnešní době se architektura určitých typů služeb jako jsou distribuované
výpočty, distribuovaná úložiště nebo sítě pro distribuci obsahu, posouvá od
tradičního modelu klient-server k více škálovatelnému a robustnějšímu P2P modelu.
V takto složitém, anonymním a otevřeném systému je ale velice komplikované
zajistit alespoň základní míru zabezpečení. Největší hrozbu představují útočníci, kteří
dokáží spolupracovat a s použitím sofistikovaných strategií se snaží obejít stávající
bezpečnostní systémy. Jako obrana proti těmto uživatelům vznikly takzvané systémy
na řízení důvěry v P2P sítích. Nicméně jejich účinnost právě proti sofistikovaným
strategiím není dostatečně ověřena.

V této práci jsme navrhli nový systém pro řízení důvěry s názvem BubbleTrust a
vyvinuli simulační framework P2PTrustSim pro testování různých systémů na řízení
důvěry a libovolné strategii používané útočníky. Navržený framework definuje
několik kriterií, která pomohou vyhodnotit úspěšnost dané strategie oproti
zkoumanému systému. V rámci simulací jsme testovali čtyři systémy jež reprezentují
současné hlavní přístupy k řízení důvěry a BubbleTrust.

Klíčová slova: P2P sítě, řízení důvěry, distribuované aplikace, bezpečnost.

Title: Trust management systems in P2P networks

Author: Miroslav Novotný

Department / Institute: Faculty of Mathematics and Physics

Supervisor of the doctoral thesis: RNDr. Filip Zavoral Ph.D.

Abstract: The architecture of certain class of services, such as distributed computing,
distributed storages or content delivering networks shifts from the traditional client-
server model to more scalable and robust peer to peer networks. Providing proper
protection to such complex, open and anonymous systems is very complicated.
Malicious peers can cooperate and develop sophisticated strategies to bypass existing
security mechanisms. Recently, many trust management systems for P2P networks
have been proposed. However, their effectiveness is usually tested only against
simple malicious strategies. Moreover, a complex comparison of resistance of a
particular method is missing.

In this thesis, we (1) propose a new trust management system called BubbleTrust and
(2) develop a simulation framework for testing trust management systems against
various malicious strategies. Our simulation framework defines several criteria
which determine the success of each malicious strategy in the network with a given
system. We present results of four trust management systems that represent main
contemporary approaches and BubbleTrust.

Keywords: P2P network, trust management, distributed applications, security.

Contents
1 Introduction..8
2 Security threats in P2P networks...10

2.1 Attacks against overlay network..10
2.1.1 Sybil attack...11
2.1.2 Eclipse attack..15
2.1.3 Routing and storage attacks..17
2.1.4 Summary...19

2.2 Attacks on the application level...20
2.2.1 Pollution in file-sharing networks..20
2.2.2 Free-riders in file-sharing networks...21
2.2.3 Summary...22

3 Reputation-based trust management systems..23
3.1 Taxonomy of trust management systems...24
3.2 EigenTrust..26
3.3 PeerTrust..27
3.4 Lee2005..29
3.5 PET...29
3.6 Scrivener..30
3.7 TrustGuard..32
3.8 P2PRep...33
3.9 NICE..34
3.10 Credence...35
3.11 Multilevel Reputation System..36
3.12 WTR...37
3.13 H-Trust...38
3.14 Summary..38

4 Attacks against TMS itself...41
4.1 Unwanted side effects..41

4.1.1 Load balancing problem...41
4.1.2 Cold start..42

4.2 Individual strategies...42
4.2.1 Whitewashing...42
4.2.2 False meta-data...43
4.2.3 Camouflage...43

4.3 Collective strategies...43
4.3.1 Full collusion..44
4.3.2 Spies...44

4.4 Newly proposed malicious strategies...45
4.4.1 Evaluator collusion...45
4.4.2 Evaluator spies..46
4.4.3 Malicious spies...46

4.5 Summary..47
5 BubbleTrust..48

5.1 Basic concept...48

6

5.2 Calculation...50
5.3 Basic algorithm..53
5.4 Data management...56
5.5 Provider and evaluator functions...59
5.6 Optimized algorithms...63

5.6.1 Cutting off..63
5.6.2 Limiting depth..64
5.6.3 Using values from previous runs..64

5.7 Evaluation and data analysis..64
5.8 Summary and future work..66

6 Simulation framework...68
6.1 Architecture of P2PTrustSim..68

6.1.1 Simulation class..68
6.1.2 User implementations...69
6.1.3 Trust managements implementation...70
6.1.4 Communication in P2PTrustSim..71

6.2 Evaluation criteria..72
6.3 Common simulation settings..75

7 Simulation results...77
7.1 Efficiency criterion...77
7.2 Dynamic criterion...83
7.3 Influence of different simulation settings...86
7.4 Summary..87

8 Conclusion...89
 Bibliography..92
 Appendix A..97
 Appendix B..98
 Appendix C..99

7

1 Introduction
In recent years, the traditional client-server model of certain class of services

is being replaced by globally interconnected distributed systems which are able to
satisfy our requirements on scalability and performance. The most progressive
distributed systems are based on peer-to-peer architecture (P2P). This architecture
does not have a notion of clients or servers but only peers which can work in both
roles. The load connected with providing services is equally distributed among all
members of the network. Therefore, the P2P network is an abstract overlay network
built on the top of the physical network. This overlay is used for indexing and
discovering peers and it makes the P2P system independent on the physical network
topology.

The major advantage of this architecture is the elimination of the need of
high-perfomance servers which increase the total cost and represent undesirable
single point of failure. However, there are several drawbacks which the developers of
the P2P applications have to take into account, especially if the application allows
open and anonymous access. Except for the peers or network failures, the P2P
applications have to deal with treacherous peers that try to deliberately subvert their
operation. There is not any central authority that watches the peer behaviour and
expels misbehaved peers from the network. The peers have no other possibility than
trust that the remote party works as expected.

The P2P architecture is very attractive due to its low operating cost but the
unresolved security issues can be discouraging for other types of applications.
Imagine full decentralized auction application similar to eBay. Such application
cannot exist without proper security mechanisms because the vision of financial
profit is very attractive for potential attackers. Other example can be a social network
like Facebook built above the P2P network. The access to private information or
unauthorized modification of personal information can be also a strong motivation
for attackers. We can continue with other applications whose transformation into the
P2P architecture its currently difficult to imagine due to security reasons.

The general goal of the thesis is to address the challenges and issues
mentioned above - i.e. ensuring at least some level of security in a dangerous
environment represented by the open and anonymous P2P networks. We focus
primary on the security on the application level jeopardized by the misbehaved users.
Because there are not any trustworthy components in P2P network, the peers are
forced to manage trust themselves. The simplest method is to remember the
outcomes of the past transactions and avoid the cooperation with the peers which
behaved incorrectly. The main disadvantage is that the trustworthy of the remote peer
can be established until after the first transaction. In the typical P2P application, the
peers often have to cooperate with a great number of others and cannot test each one

8

individually. The more complex methods use experience of other peers in the
network to find out whether the remote peer is trustworthy without any transaction
with it. Unfortunately, this opens the possibility for malicious peers to report false
experience and manipulate with the trust towards any peer. These represent the main
reasons why managing trust represents the biggest challenge in the current P2P
networks.

In this thesis, we analyse all possible threats in the P2P applications and the
current defence mechanisms, which are mainly based on some form of trust
management system. We propose a new trust management system which addresses
the deficiencies of the current systems and we create a simulation framework to
verify its efficiency.

The rest of the thesis is organized as follows: Section 2 enumerates the main
threats in P2P network. We distinguish threats on the overlay and application layer.
In section 3, we summarize state of the art of the trust management systems to
mitigate the threats on application layers. The attacks directed to these trust
management systems are discussed in section 4. Section 5 focuses at describing a
novel trust management system called BubbleTrust. In section 6, we present our P2P
trust simulation framework and define criteria that the quality trust management
system should meet. The results for five selected trust management systems,
including BubbleTrust, are stated in section 7. Section 8 concludes the thesis and
proposes a direction for future research.

9

2 Security threats in P2P networks
In this section, we present a general overview of security threats related to the

P2P networks. These threats can be classified into two basic groups: attacks against
overlay network and attacks on the application level. In our work, we focus mainly
on the application level but it is necessary to summarize threats related with overlay
layer, because they significantly influence the layer above.

2.1 Attacks against overlay network

The overlay network is a network built on the top of another network,
typically on the top of the IP network. The overlay network offers its own system of
identifications and routing protocols and it abstracts the physical network. The
structured P2P networks use a mechanism called distributed hash tables (DHT)
which can be considered as a generalization of the classical hash tables.

The distributed hash tables stores (key;value) pairs and any participating node
is able to efficiently retrieve the value associated with a given key. Each node is
responsible for an assigned subset of keys and has records in its routing table which
allows to locate all other keys. The important feature of the DHT is a capability of
joining and leaving nodes with a minimal amount of disruption of the lookup
services. There are several implementations of this concept which differ mainly in
the routing algorithm: CAN [1], Chord [2], Pastry [3], Kademlia [4] or P-Grid [5].

Except for the general attacks applicable to all network systems such as
denial-of-service or exploitation of implementation bugs, DHTs provide some
specific weaknesses. There are three most discussed DHT attacks in literature: (1) the
Sybil attack, where the attacker creates a large number of false identities, (2) the
Eclipse attack, where the attacker corrupts the routing tables of honest peers by
filling them with incorrect routing information, and (3) routing and storage attacks,
where the attacker does not follow the routing or storage protocol correctly, e.g.
routing to incorrect nodes or wrongfully modification of stored data. We discuss
these weaknesses in detail below.

DHTs also have to deal with other issues which may be the result of the
regular operations. One of them is churn - the continuous process of node arrival and
departure, which makes great demands on DHT algorithm to efficiently handle
continuous restructuring the routing table and migration data. The churn has been
studied in [6], [7] and [8], and Ou et al. proved that DHT Kademlia is highly resistant
against this issue [9]. The load balancing problem is other issue which has been
intelsively studied in literature [10], [11], [12], [13] and [14]. It is connected with
inappropriate popularity of some resources and inadequate capacity of the nodes
offering these resources. Even if node and item identifiers are randomly chosen,
there is Θ(log N) imbalance factor in the number of items stored at a node [10].

10

There are several surveys that discuss the DHTs security in general. The most
comprehensive survey is given by G. Urdaneta et al. [15]. It summarizes some well-
known security threats faced by DHT and reviews techniques proposed to solve
them. The critical review on the security in the DHT and proposed solutions is
provided by Dahan and Sato [16], their conclusion is that DHT should not be used to
create secure systems.

2.1.1 Sybil attack

The Sybil attack exploits the fact that P2P network is open to anyone and uses
virtual identifiers which are only loosely connected with physical entities. The
attacker is easily able to create a large amount of virtual identities with a relative
small number of physical nodes. This attack does not damage the DHT itself, but can
be used as a prerequisite for other attacks on both overlay and application layer. The
most of the security mechanisms assume that there is only a limited fraction of
malicious peers in the network and the Sybil attack can break this assumption.

The Sybil attack is not specific to DHTs, but it is extraordinarily dangerous in
this environment. In DHTs, first analysed by Doucer [17] with the conclusion that the
only practical way to limit the number of virtual identities related to one physical
entity is the existence of a logical central authority which issues the identifiers. This
central authority needs to have a reliable way of identifying physical entities and this
is hard to achieve. Other difficulty is that it is unacceptable for a distributed
environment like DHT to rely on any kind of central entity.

The central authority can be replaced by its decentralized variant. For each
newcomer several peers are chosen. These peers are responsible for the validation of
its identity and can refuse to join then into the network. The suitable candidates for
this job are bootstrapping nodes used by newcomers to initialize their routing tables.
But these bootstrapping nodes can be already under control of the attacker and allow
connection of more malicious peers. The prevention of this should be ensured by the
limitation of usable bootstrapping nodes. For instance, Dinger and Hartenstein [18]
propose an algorithm where the bootstrapping nodes are computed using the hash of
node's IP address.

A bigger challenge is the validation of the identity itself. First problem is how
to define the physical identity in this context. Is it a single computer, a user sitting
behind this computer, or the whole criminal organization which possesses a large
botnet of computers with different IP addresses? The current validation algorithms
use several techniques.

Castro et al. [19] proposed using a set of trusted certification authorities to
produce signed certificates that bind a random node identifier to a public key and IP
address. In order to prevent Sybil attack, they suggested to charge money for each

11

certificate or to bind them to the real-world identities. This includes considerable
administration and processing overhead and for binding to the real-world identities
requires reliable authentication procedures.

The hash of IP address and port is used as for identification in [18]. But this
solution causes trouble to users behind NAT or mobile users changing IP address
continuously. Additionally, it is ineffective against botnets possessing many IP
addresses. A similar solution was proposed by Wang et al. [20]. They count on other
network characteristics like default router IP address, MAC address and RTTs
measured by randomly selected nodes within the sub-network of these routers
(landmarks). The authors introduced a concept called net-print containing this data
and representing self-certifying data, which can be directly verified by other nodes.
However, the capability of verification of this data is limited, the MAC addresses can
be verified only by nodes in the same local network and the verification of the
default router is based on the ICMP message with IP Route Record, which is filtered
in most networks. The only really verifiable information is RTTs between the node
and a set of designated landmarks. Other disadvantage of this approach is that
changes in the network conditions cause subsequent identification tests fail and it is
not possible to support mobile nodes with this system.

Other solutions use network coordinates to group nodes. The system
described in [21] measures round trip time between nodes and uses a triangle
inequality to place them into d-dimensional euclidean space. If two nodes are
reasonably far from each other in this space, we can assume that they represent
different identities. If they are close, we cannot assume anything. Therefore, this
system can be used to detect distinct nodes to ensure that the critical network
functions are distributed among distinct identities, but cannot prevent connection of
multiple virtual identities which operate on a single node. The algorithm proposed by
Bazzi et al. in [22] uses a similar idea; the distance between two nodes is represented
as hop count and its measurement is cryptographically protected.

A computational puzzle is other method how to protect DHT network against
Sybil attack. A general difficulty in such systems is enforcing that puzzle solutions
are not reused by attacker over time. Borisov [23] proposed to add computational
puzzle into Chord. The system uses periodic ping messages, used by Chord to
maintain the structure of distributed overlay. They modified these messages to
include the instructions for computation which are different each time. Rowaihy et
al. [24] suggested a hierarchical system based on computational puzzle. The system
creates a tree where the root must be trusted and reliable. Unfortunately, this presents
another form of central authority.

The fundamental problem with computational puzzle in the P2P network is
that the network can consist of many different types of nodes with different
computation capacity. The puzzle must be complex enough to prevent joining

12

malicious nodes and at the same time simple enough not to obstruct regular users on
slow computers.

All previous methods try to assign a virtual identity to a single physical node,
represented by a single IP address, a position in the network, or a computation
capacity. If the attacker controls a large amount of physical nodes, geographically
distributed and with sufficient computation power, these methods do not present
obstacles. The approaches based on social networks try to deal even with this
dangerous situation.

The first of them was SybilGuard [25] which uses human-established trust
relationships. The relationships between honest region (i.e., the region containing all
the honest nodes) and Sybil region (i.e., the region containing all the Sybil identities
created by malicious users) are called attack edges. The basic assumption is that the
attacker can create any number of relationships between Sybil identities, but it is
limited in the number of attack edges. The SybilGuard partitions nodes into groups
such that the number of groups that include at least one Sybil identity is bounded by
the number of attack edges, independently of the number of Sybil identities. In the
2010, the SybilLimit [26] was published which improves the SybilGuard in several
ways.

Table 1 summarizes previously discussed defences against Sybil attacks. As
we can see, the entity identification methods belong to one of the following
categories: (1) real-world identification, (2) costly identifiers - money or computation
time, (3) underlying network - IP address or measured position, (4) social
networking. Some of the methods put barrier for Sybil identities to entering the
system, others just detect already joined Sybil nodes.

All these methods significantly reduce the number of Sybil identities in the
network; however, they are not able to suppress them completely; except the methods
using real-world identification, which are difficult to implement. The main
conclusion is that the developers of the security mechanisms on the application level
have to suppose that the attacker can posses a large number of fake virtual identities
without additional cost.

At this point, we should already mention other problem, which does not relate
directly with Sybil attacks, but is closely related to identification generation. In the
DHT the node identification (nodeId) does not serve only for identification purpose
but it also determines which objects will be stored on the node and which neighbours
will be in its routing table. Attacker who can chose nodeId arbitrarily, can control
access to target object or compromise the integrity of a structured P2P overlay.

13

Authors Entity identifications Verified by Prevent/Detect
Sybil attack

Doucer2002 [17] Real-world
identification.

Central authority. Prevent.

Castro2002 [19] Charge money or real-
world identification.

Set of trusted
certificate
authorities.

Prevent.

Hertenstein2006 [18] IP address and port. Bootstrap nodes. Prevent.

Wang2005 [20] Network
characteristics.

All nodes, but
some of them
have more
possibilities.

Detect.

Bazzi2005 [21] Network coordinates. All nodes. Detect.

Bazzi2006 [22] Network coordinates. All nodes. Detect.

Borrisov2006 [23] Computational puzzle. Neighbours in
DHT.

Prevent.

Rowaihy2007 [24] Computational puzzle. Hierarchical
system rooted by
trusted authority.

Prevent.

Yu [25], [26] Social network. All nodes. Detect.

Table 1: Defences against Sybil attack.

The solution for this problem was already offered by Castro in [19]. It is
based on crypto puzzle and distributed identity generation. The newcomer needs to
cooperate with several nodes which provide restrictions for its new identity and
guarantee that these restrictions ware satisfied. This solution can be easily built in
Sybil defence techniques which used trusted authorities or bootstrap nodes but it is
difficult to integrate it into other methods. On the other hand, the techniques using IP
address or network characteristics as nodeId already have a natural defence against
arbitrarily chosen identities. In the rest of the networks, it can be solved using
asymmetric cryptography. Each peer generates a pair of private/public keys and uses
a hash of public key as its nodeId. But this method does not prevent tampering with
nodeId completely. The attacker can generate key pairs as long as it finds proper keys
giving them the nodeId close enough to the desired value.

Except the last issue with repeated generating key pairs, we consider the
problem of arbitrarily chosen identities as acceptable solved. In the application level
we suppose that the attacker cannot place itself into strategic position into under-
laying DHT network. But it is necessary to check that the under-laying network
implements corresponding countermeasures.

14

2.1.2 Eclipse attack

The Eclipse attack is also known in literature as routing table poisoning. It
consists in tampering the routing table of the honest nodes. The aim is either the
disruption of the communication in the network or the redirection of the lookup
queries to malicious nodes. The easiest way to perform this attack is through
incorrect routing updates. Sit and Morris [27] stated that systems which do not have
special verifiable requirements on the records in the routing tables are most
vulnerable to this type of attack. For instance, in the DHT Pastry [3] one item in the
top level in the routing table can contain a large number of different identifiers. The
attacker can easily supply a desired identifier during the routing updates and the
target peer accepts it because it is a valid identifier. The systems like Chord [2] have
stronger restrictions on identifiers in the routing table and make this attack more
complicated. On the other hand, the loose restrictions on the routing table entries
allow routing optimization according to the network proximity [28]. However, such
optimization presents another possible attack scenario. Hildrum and Kubiatowitz
[29] showed that attackers can reduce their apparent distance from a target node and
enforce itself into its optimized routing table.

The basic defence against Eclipse attack consists in introducing additional
constrains into the routing table. Castro [19] proposed a solution which applies this
basic strategy and allows preserving proximity-aware optimization. He suggests
using two routing tables. One table exploits the potentially vulnerable network
proximity information (called optimized routing table) and the other contains only
entries which can be verified (called verified routing table). In a normal operation the
optimized routing table is used. The system switches to the verified routing table in a
case of a routing failure.

A problem of the previous solution is that the poisoning in the optimized
routing table can increase over time and shortly it can be unusable and the system
degrades into non-optimal routing. The defence proposed by Condie et al. [30] deals
with this problem by periodical resetting the optimized routing table to the content of
the verified routing table. At each reset, every node gets a new random identifier.
This should prevent attacks exploiting the knowledge of how the routing table are
updated over time. The authors stated that if good nodes move continuously, then it is
difficult to attack them in the same way after every reset.

Hildrum and Kubiatowicz [29] stated that the network proximity optimization
can be also used to help to prevent the Eclipse attack. However, they assumed a
trusted mechanism for measuring network distance. Unfortunately, the authors did
not mention how this trusted mechanism should be realised in practice. They
assumed that if the fraction of the malicious nodes is reasonably small, it is difficult
for the malicious nodes to be closest in the network distance to a majority of honest

15

nodes.
Other defence proposed by Singh et al. [31] is based on the observation that a

node that mounts an Eclipse attack must have a higher than average node degree. The
authors proposed a mechanism in which the nodes anonymously audit each other's
connectivity and showed that enforcing a node degree limit is an effective defence
against Eclipse attack. The results showed that the system is effective only if the
degree limit is small which has a negative impact on the lookup time in the absence
of attacks.

Awerbuch and Scheideler [32] introduced the concepts of regions in [0,1)
identifier space. Each new node that joins the network is securely assigned to a single
region and routing is done from region to region. To prevent malicious nodes to
continuously join and leave the system until it receives the desired region, the
protocol called cuckoo rule is implemented. This protocol establishes that when a
new node joins the system, all nodes in the certain region must leave the system and
rejoin with a new random identifier. This prevents the attacker from concentrating
many malicious nodes in one or a small number of regions.

Table 2 summarizes previously discussed methods. None of them provides
sufficient defence against this attack. The methods which do not preserve a stable
node identifier are unacceptable from our point of view. It is causing a significant
overhead because it is necessary that data migrate each time the node identifier
changed. Additionally, the security mechanisms on the application level require
stable node identification.

As we can see, the defence against the Eclipse attack involves a trade-off
between performance (optimized routing table) and security (constrained routing
table). Therefore, these techniques are not able to guarantee proper routing in the
DHT and must be combined with other mechanisms such as redundant routing,
routing failure tests and recovering from routing and storage failures (these methods
will be described in section 2.1.3).

16

Author Techniques Disadvantage

Castro2002 [19] It uses two routing tables,
optimized and verified.

Optimized routing table can
be easily poisoned and the
verified routing table is used
most of the time.

Condie2006 [30] It uses two routing tables,
optimized and verified.
The content of the verified
table is periodically reset
and churn is induced.

The induced churn introduces
a significant overhead.

The node identifier is not
stable.

Hildrum2003 [29] It is based on the trusted
measuring of the network
proximity.

The trusted network distance
measurement is difficult to
implement in practice.

Singh2006 [31] It limits the number of
node degree via
anonymous auditing.

It has a negative impact on
the lookup time in the
absence of attack.

Awerbuch [32], [33] It uses a region-based
redundant routing table and
cuckoo rule.

Complex algorithm.

The node identifier is not
stable.

Table 2: Defences against Eclipse attack.

2.1.3 Routing and storage attacks

The last group, routing and storage attacks, presents the most serious threats.
The malicious node can refuse to forward lookup requests or it can forward them to
incorrect or malicious nodes. These attacks are generally classified as routing attacks
and can lead into increasing the lookup time or in a worst-case scenario into the
routing failures. In the storage attacks, the malicious node responsible for the key can
deny the existence of the key or provide invalid data as response. The malicious node
on the path of the lookup query can only pretend to be the node responsible for the
key and compromise a significant number of keys in the system.

A fundamental defence against these attacks is a replication, but it is not
sufficient regarding the possibility of the Sybil identities or arbitrarily chosen
identities [16]. The artificially created identities can control all replicas or be on the
path towards all replicas. For instance, several mechanisms [19], [29], [34] use
replicas stored on numerically closed locations. This increases the chance that the
malicious nodes will be able to control all replicas or paths towards them. As a
defence, Harvesf and Blough [35] proposed to place replicas at equally spaced
locations in a Chord ring. They proved that this method can produce d disjoint routes

17

if 2d-1 replicas are placed in a fully populated chord ring.
Other defences try to enhance routing protocols to either support independent

routing paths between every two nodes or allow the querier node to control routing
progress. The mechanism called Cyclon [36] is an example of the first group. This
protocol was proposed by Artigas et al. and extended the Chord. The authors divided
the system into r = 2m-p independent Chord rings, each contains only nodes that share
p rightmost bits of the m-bit identifier. The successor lists do not have this
restrictions and can be used as the first or last hop in a lookup. The system provides r
independent path, because routing is realized through the r independent rings.

The second approach was first used by Sit and Moris [27] who proposed
iterative routing as a defence against the routing attack. In the iterative routing, the
requester controls the lookup progress and detects potential routing anomalies. But
this approach has been rejected due to significant overhead. Xiang [37] proposed to
use tracer routing where the requester only observes the lookup progress and together
with node-ID based signature is able to detect the malicious nodes. The author
proposed the protocol which bypasses the malicious nodes and allows to establishing
secure paths.

Other possibility was proposed by Ganesh and Zhao [38]. They proposed a
protocol which allows querier to assure that the results from a lookup are correct.
Their solution is based on signed certificates that prove the existence of nodes in
some range of the identifier space. These certificates are placed at randomized node
subsets (proofs managers). After completing the routing request, the querier can
trigger verification procedure and it determines whether the better root node exists by
searching the existence of the proofs. A disadvantage is that this solution requires the
existence of offline certification authority which distributes the public-private key
pairs.

Most of the security mechanisms do not rely on the one of the strategies
described above but they implement a combination of them. For instance, Artigas et
al. in their next work [39] stated that the independent routing paths implemented in
the Cyclon are not enough to provide sufficient probability of success and the
proposed routing protocol called Bypass. This protocol is a combination of two
strategies: A redundant routing algorithm that, at each step, routes to a set of nodes
instead of just one; and a filter that avoids selecting nodes that are not reliable as next
hop. Their analysis shows that Bypass can potentially achieve a significant
improvement.

All discussed methods are summarized in table 3. This table does not contain
all published methods it but only illustrates commonly used approaches to solve
these issues. Authors of all techniques agree that the data replication is a basic means
of preventing routing and storage attacks but as many studies show it is not sufficient
and must be completed with some sort of redundant routing or verified routing

18

protocol. Also the protection against Sybil attacks and arbitrarily chosen identities
makes these attacks difficult and many security mechanisms count on it.

Author Techniques Disadvantage

Castro2002 [19] It uses two routing tables,
optimized and constrained.
The constrained routing
table is used in case of
routing test failure.
Replicas are placed at
numerically closed
locations.

There is no guarantee that
the routing paths are
disjoint.

Hildrum2003 [29] It uses redundant routing
table entries based on
network proximity.
Replicas are placed at
numerically closed
locations.

There is no guarantee that
the routing paths are
disjoint.

Fiat2005 [34] Modification of Chord that
uses swarm of nodes
instead of single nodes as a
basic construct.

The swarm contains
numerically closed nodes.

Harvesf2006 [35] Replicas are placed at
equally spaced locations in
a Chord ring.

Difficult replicas
maintenance.

Artigas2005 [36] Independent chord rings
providing independent
paths.

Addresses only routing
issue.

Artigas2008 [39] Redundant routing
combined with filters.

Addresses only routing
issue.

Sit2002 [27] Iterative routing. Iterative routing has a
significant overhead.

Ganesh2005 [38] Proof of existence of a
node within a certain id
range.

Requires offline
certification authority.

Table 3: Defences against routing and storage attacks.

2.1.4 Summary

The security issues of P2P overlay networks have been intensively studied
during the last ten years. The proposed mechanisms are able to significantly improve
the security in the overlay network if they are implemented completely. Many

19

researches focus only on subset of security thread, leaving other issues open or
making different assumption regarding the attack model. Combining of these
strategies to make “secure” P2P network remains unresolved.

As we mentioned in the section 2.1.1, the Sybil attack has no reliable solution
which means that the routing and storage attacks are also possible. Therefore
building the fully secure P2P overlay network in the open and anonymous
environment is nearly impossible. Nevertheless, described security techniques should
be implemented to filter out individual or unsophisticated malicious nodes. Larger
groups of cooperated malicious nodes still represent the significant threat to the
current P2P networks.

DHTs have been used in numerous popular peer-to-peer systems such as
KAD network [40], BitTorent or Limwire. All these implementations are based on
Kademlia which provides a relative security due to a build-in replication and iterative
routing. However, it is still vulnerable to Sybil attack and arbitrarily generated
identities. None of current DHT deployments are specially designed to tolerate
malicious nodes. Despite the fact that several security mechanisms have been
proposed in last years, their implementation into current P2P systems is complex and
requires trade-off between security and performance. Additionally, there are still
open problems. The most challenging issue for securing P2P decentralized systems is
a robust and secure assignment of node identifiers. This is crucial to guarantee that
malicious nodes occupy only a small fraction of identifier space and cannot place
themselves into strategic positions in the network.

2.2 Attacks on the application level

Apart from the attacks exploiting application bugs, the biggest problem of the
P2P networks is the lack of cooperation. For P2P networks to be effective, nodes
participating in the network must work together. However, when human nature is
allowed to intervene, this does not always happen. In the case of P2P networks
cooperation is very difficult to enforce. The users behind the applications follow their
own interests which do not have to correspond with interests of others.

2.2.1 Pollution in file-sharing networks

In the most extensively used P2P file-sharing networks the primary problem
is pollution [41], [42]. There are several forms of pollution studied in real P2P
networks. The first form, called data pollution, consists in the sharing deliberately
corrupted files. These files can contain undesirable or even harmful content. Many
viruses use file-sharing networks to replicate themselves. They copy themselves into
shared folders under camouflaged names to lure download. Due to the fact that 10%
of the most popular files create almost 90% of all traffic in the file-sharing network
[43], the virus can speed up their dissemination by choosing popular names. Every

20

downloaded file should be strictly checked on viruses and spyware, but this can be
done only after successful download. Even if the downloaded file is not infected, it
can contain different data then was desired. The number of useless downloads results
into wasting network capacity and annoying the users.

The second form of pollution, called index poisoning or meta-data pollution,
consists in corrupting indexation mechanisms by introducing a large number of
spurious files which are not shared by any peers. After the poisoning, the major
portion of indexes contains invalid information. The client downloading the poisoned
file always fails to establish connection with the other peers. Kong et al. [44] studied
index poisoning in BitTorrent network and Locher et al. [45] proved that the index
poisoning can also affect the KAD network by corrupting DHT entries, either by
publishing fake records on the responsible peers or by inserting malicious nodes
which are close to them.

The protection against pollution is far from trivial. The successful
mechanisms have to assess the downloaded file before it is actually downloaded. The
only clue can be the information from other peers which downloaded the file from
the same peer in the past. These mechanisms are called reputation-based and are
discussed in detail in section 3.

2.2.2 Free-riders in file-sharing networks

Other problem is represented by peers called Free-rides which consume more
than their fair share of network resources [46]. They exploit the system only to
download and do not offer anything in return. This behaviour breaks the basic idea of
P2P networks and leads into overloading of honest peers. A number of studies have
shown that free-riding is a problem of current P2P systems, with resulting into
serious performance degradation. For instance, Hughes et al. [47] in their experiment
in Gnutella network in 2005 find out that 85% of peers do not share any files. And
Sirivianos et al. [48] present an experimental study on the behaviour of BitTorrent
network when selfish peers attempt to maintain high download rates without
uploading. Their modified free-rider client achieved better download rates than
compliant client in most cases, but as the number of free-riders clients increases they
incur substantial performance degradation for both free-rider and compliant clients.

Varying incentive schemes have been proposed to encourage peers to
cooperate by sharing resources. BitTorent currently uses reciprocity based-scheme
[49] which as shown Sirivianos et al. [48] is ineffective in discouraging free-riding.
Kyuyong Shin [50] proposed a scheme called Treat-Before-Trick with a secret
sharing algorithm. Files are divided and encrypted by the owner. The key is divided
into n subkeys, any of t of which are sufficient to recover the original key and
decrypt the file pieces. The owner distributes the file pieces and subkeys to a set of

21

requesting peers, called leechers. The leechers barter with each other by exchanging
keys for file pieces. The peers are enforced to share their downloaded pieces to get
the necessary number of keys to decrypt downloaded files. This scheme is shown to
penalizing Free-riders. However, there is an added cost of requiring encrypt and
decrypt file, and distribute keys.

According to Karakaya et al. [51] solutions to combat Free-riding can be
categorized into three main groups: monetary-, reciprocity- and reputation-based
approaches. Monetary-based approaches work on the basis of charging peers for the
services they receive. Any monetary-based mechanism requires two key
mechanisms: an accounting module to store virtual currency for each peer and
settlement module to fairly exchange virtual currency for services. Most of the
monetary-based solutions implement these modules on the central nodes and are not
useful in the pure P2P networks. In reciprocity-based solutions, peers monitor other
peers’ behaviour and evaluate their contribution. But this information is supplied by
the other peers themselves and Free-rides can easily supply false information. We
have already mentioned reputation-based techniques as a defence against pollution
and the same techniques can be used against free-riders as well. These techniques
include numerous different approaches with different success rate and issues
discussed in detail in section 3.

2.2.3 Summary

The file-sharing P2P networks are currently the most used P2P applications
and attacks against them are well documented. But the same attack scenarios can be
used in every P2P application. The general scheme of all P2P application consists in
two basic functions: searching and utilizing the services. The peers connected in the
networks offer their services, which can be files to download, storage, network or
computational capacity to use. These services must be indexed first to allow other
peers to discover them. The malicious peers can violate indexing procedures (index
poisoning), provide corrupted services (data pollution) or they do not provide
services at all (free-riding). The defence mechanisms are similar as well, in the most
cases it can be used only as a slight modification of the previously described
techniques.

22

3 Reputation-based trust management systems
In the traditional client-server model, servers represent trustful points in the

network application. They are typically operated on the provider's infrastructure and
there is an assumption that they operate correctly because it is in the provider's best
interest. The malicious behaviour is expected only on the client side. Therefore, there
are only two problems which need to be solved: (1) securing connection between
clients and server to be sure that both are correctly identified, and (2) protection of
the servers from being exploited by malicious clients.

The situation in the P2P network is much more complex. Every peer can
operate as a client and a server simultaneously; therefore, the servers are no longer
trustworthy by definition, but every member of the P2P network have to earn each
other's trust. Currently, there are two major approaches for managing trust [52]:
policy-based and reputation-based trust management. Policy-based trust relies on
objective “strong security” mechanisms such as signed certificates and trusted
certification authorities. The access decision is usually based on rules with well
defined semantics providing strong verification and analysis support. The system
makes decision based on “non-subjective” attributes such as a requester's age, an
address or a credit card number which should be certified by trusted certification
authorities. As we can see, such systems require trusted certification authorities with
extended verification capability which are very difficult to implement in the open and
anonymous environment.

Reputation-based trust management is mainly based on the notion of
reputation. In general, reputation is the opinion of the public towards a person, a
group of people, an organization or a resource. In the context of collaborative
application such as P2P systems, the most suitable is the definition provided by
Abdul-Rehman and Hailes [53]: “The reputation is an expectation about agent's
behaviour based on information about or observation of its past behaviour.”
Reputation allows parties to build trust, the degree to which one party has a
confidence in another.

Like in a human community, the peers are exchanging information on their
previous collaborations with others. This information includes the degree of
satisfaction with the services provided by the remote peer and can be used by other
peers which are considering cooperation with the same remote peer. Obviously, there
is a higher probability that the peers with a large number of positive
recommendations will provide correct services. The reputation-based systems help
participants decide whom to trust, encourage trustworthy and fair behaviour.
Therefore, they can be used as a defence against pollution and free-riding [54].

However, there are also several issues. For instance, accepting

23

recommendations from unknown peers blindly is tricky because these
recommendations can be deliberately misleading. The group of malicious peers can
cooperate and provide each other false positive recommendations. The detection of
such false recommendations is very difficult and makes the whole system more
complex. More about attacks on the reputation-based trust management systems is
discussed in section 4.

Due to the difficult implementation of policy-based trust management, the
reputation-based trust management became the only option in the pure and even in
some centralized P2P networks. For instance, the eBay [55], [56] uses reputation-
based trust system which operates on central servers but completely relies on
information from the clients (sellers and bidders). In the rest of this thesis, we will
use the notion trust management system (TMS) instead of a more correct reputation-
based trust management system, because the policy-based trust management systems
are no longer concern us.

3.1 Taxonomy of trust management systems

All TMSs have to solve three basic problems: (1) how to distribute
recommendations among peers, (2) how to verify recommendations, and (3) how to
compute trust based on these recommendations. There are plenty of different
approaches solving these problems. Several researches presented taxonomy to
organize existing ideas and facilitate system design. One of the first taxonomy was
proposed by Marci and Garcia-Molina [57]. They identify three basic components of
reputation system: Information gathering, Scoring and Ranking, and Response. Each
of these components has to solve unique problems and the authors discussed possible
design choices proposed by the research community.

Broader survey was proposed by Hofman et al. [58]. They developed an
analytical framework by which reputation system can be decomposed, analysed and
compared using a common set of metrics. They identified three dimensions
fundamental to any reputation system: formulation, calculation and dissemination.
Formulation is the abstract mathematical specification of how the available
information should be transformed into a usable metric. Calculation is the part of the
reputation system that receives input information and produces the reputation values.
And dissemination part of the reputation system is responsible for delivering
calculated values to interested parties. Although the calculation and dissemination
parts often influence each other, the authors separate them for analytical purposes.

In the next part, they defined an attacker model and classified known and
potential attacks on reputation system within this model. But these sections skip
several attacks scenarios and mix attacks on reputation systems with the attacks on
P2P layer. The defences against these attacks are typically built outside the reputation
systems as was discussed in section 2.1. And finally, they used their analytical

24

framework to analyse several well-known TMSs.
We consider their analytical framework as the main contribution of this work.

This framework is a valuable insight into implication of design choices. We used
some ideas in our work [59] that analyse requirements for a reliable TMS in insecure
environment. Unlike the previous work, we divided TMS into three-layered
architecture: (1) secure P2P layer, (2) information handling layer, and (3) formulation
and calculation layer. We define the functions on each layer and establishe several
simple criteria to each component. We also analysed several published systems
according these criteria, none of them met all criteria completely.

For the purpose of this work, we use simplified classification which was
already used in [60]. It is composed from four characteristic: (1) type of rating, (2)
feedback aggregation, (3) feedback verification and (4) calculation. In contrast to
[58], its ambition is not to embrace all possible design choices or provide the
analytical framework, but organize the major approaches for building TMSs.

In our classification, we distinguish two basic types of rating: global and
personalized. The core of the global rating is to define a single global trust value for
each peer in the network. The calculation is typically done only once and the
calculated value is distributed to all peers in the network. Therefore, the global
reputation system is dominant in the centralized networks. Nevertheless, the
personalized trust rating is more common in distributed P2P networks. In
personalized reputation system each peer has self maintain reputation values to other
peers.

The feedback aggregation scheme can be full or selective. The full-
aggregation TMS calculates the reputation value of a peer considering the opinions
from all other peers who have interacted with this peer. The full-aggregation scheme
can be very accurate but it is connected with a high load for underlying network. The
selective approach involves a trade-off between the accuracy and load, the reputation
is derived from a subset of all existing opinions in the network.

We also distinguish four types of feedback verifications: none, a good
provider, a personal experience, a global experience. The TMSs without feedback
verifications are vulnerable to peers providing false feedbacks. The elementary
protection is based on the idea that a good provider is a good recommender as well,
but some malicious peers do not have to fulfil this premise. Better protection is
provided by the personal experience verification. Each feedback source is assessed
according to the usefulness of its previous feedbacks for the local peer. The last type,
global experience, extends personal experience over the usefulness of previous
feedbacks for other peers in the network.

The last part, calculation, is a component of the TMS that receives input
information and produces the reputation values. Each TMS has a unique calculation

25

scheme based on the mathematical specifications, for example: weighted average,
fuzzy logic, Bayesian approaches, etc.

The rest of this section contains examples of TMSs in chronological order.
This overview demonstrates the variety of different approaches proposed by the
research community in the last decades. We focus primary on TMSs operated in a
fully distributed environment, so they do not rely on any kind of central authority.
Systems with a central authority have its task much easier but the existence of such
central authority breaks the basic idea of P2P network and presents the single point
of failure and additional security threat.

3.2 EigenTrust

EigenTrust [61] is one of the oldest and the most cited trust model for P2P
networks. EigenTrust calculates a global trust value which is based on the idea of
transitive trust.

Basic algorithm is simple. After peer i interacts with peer j, it can compute its
normalized local trust value ci,j based on direct observations. If there are no direct
interactions, peer i can calculate the reputation metric for another identity k by asking
other peers for their opinions of peer k. The calculated reputation from peer i to peer

k is: t i , k=∑ j
c i , j⋅c j , k . We can write this in matrix notation: If we define C to be

the matrix [ci,j], than t⃗ i=CT
⋅c⃗ i is a vector of trust values from peer i towards all

other peers in the network which reflects the local experiences and the opinion of its

friends. We can extend it by asking its friends' friends t⃗ i=(CT
)

2
⋅c⃗i and so on. After

n interactions we get t⃗ i=(CT
)

n
⋅c⃗i . For n large enough, t⃗ i converges to the left

principal eigenvector of matrix C. Therefore, all peers have the same t⃗ i which

contains global trust values for all peers in the network.
EigenTrust works in an iterative way; in each step k, vector t converges to the

left principal eigenvector ⃗
t(k +1)

=CT
⋅t⃗ k . There are two principal issues with this

approach. First, the malicious peers providing false feedback jeopardize the
convergence to the correct trust vector. The authors deal with this problem by
introducing pre-trusted peers. These peers are known on all peers in the network and
are included into computation in each step. The new formula is

⃗
t(k +1)

=(1−a)CT
⋅t⃗ k

+a p⃗ where a is some constant less than 1 and p⃗ is a vector

of pre-trusted peers. This also makes the matrix C irreducible and aperiodic, which
guarantees the convergence.

Second issue is that there is not any central authority; therefore, the
calculation has to be distributed among peers. Fortunately, the calculation is mainly
based on the matrix multiplication which can be easily implemented in a distributed
manner. The naive implementation assumes that peer i calculate i'th item of vector

26

t⃗ ,which is its own trust value. Malicious peers would be able to easily report
false trust value to hide their maliciousness. The secure implementation uses the so-
called score manager. Each peer has assigned several score managers responsible for
the calculation of its trust value. If any of the peers needs the trust value of a remote
peer, it contacts all its score managers to query the actual trust value. The majority
vote is used to filter out the values from malicious or broken managers.

EigenTrust is an example of TMS using global trust values, which is not
common in a distributed TMS. It also uses the full aggregation scheme which tries to
use all available information. This and the existence of several score managers
increase the network load connected with functions of TMS. The feedbacks are
verified on the principle of a good provider is a good evaluator and the calculation is
based on transitive trust. The disadvantage is the necessity of pre-trusted peers;
without them the system is not able to deal even with simple malicious techniques.

3.3 PeerTrust

PeerTrust [62] defines the general trust metric as a combination of five
factors: (1) feedbacks from other peers, (2) the credibility of feedback sources, (3)
the total number of transactions, (4) the transaction context factor, and (5) the
community context factor. The first three factors are common in many TMSs; the
transaction context factor can be used for discriminating mission critical transactions
from less or non-critical ones. It can be seen as a simplified version of risk
management. And the community context factor is used for addressing community-
related characteristic and vulnerabilities.

Let I(u) denote the total number of transactions performed by peer u with
other peers in a recent time window, p(u,i) denote the other participating peer in peer
u's ith transaction, S(u,i) denote the normalized amount of satisfaction peer u receives
from p(u,i) in its ith transaction and Cr(v) denote the credibility of the feedback
submitted by v. Then the basic form of the general metric without the transaction
context factor and the community context factor is calculated using formula (1).

T (u)=∑
i=1

I (u)

S (u , i)⋅Cr (p(u , i)) (1)

The most important is the function Cr(v). The authors propose two different
approaches to credibility measurement. The first one, called trust value metric (TTVM),
uses trust values recursively as peers’ credibility. The function Cr(v) for TTVM is
defined in formula (2).

27

Cr (p (u , i))=
T (p(u , i))

∑
j=1

I (u)

T (p (u , j))
(2)

The second one, called personalized similarity metric (TPSM), uses the
similarity of two feedback vectors. For peer v the recommendation from peer w is as
trustworthy as similar were w’ and v’ recommendations in past. Unlike the TTVM, this
metric reflects a peer w's subjective point of view. Peer v trusts peers which created
similar recommendations and hopes that this similarity will continue. Let I(u,v)
denote the total number of transactions performed by u with peer v and IJS(v,w)
denote the set of peers that have interacted with both peer v and w. Than the
credibility for TPSM metric is defined in formulas (3) and (4).

Cr (p (u , i) ,w)=
Sim(p(u ,i) ,w)

∑
j=1

I (u)

Sim(p(u , j) ,w)
(3)

where

Sim(v ,w)=1−√ ∑
x∈ IJS (v , w)

(∑i=1

I (x ,v)

S (x ,i)

I (x , v)
−

∑
i=1

I (x , w)

S (x , i)

I (x ,w)
)

2

∣IJS (v ,w)∣

(4)

PeerTrust also offers two implementations strategies: dynamic (DTC) and
approximate (ATC) computation. The dynamic computation uses fresh data and is
very expensive since a peer needs to retrieve actual trust data of all peers in the
network. The approximate computation provides a more cost-effective algorithm by
using a trust cache. PeerTrust is actually a collection of four techniques as each of
two credibility measurements has two different implementations.

According to our classification, the TVM metric uses the global type of rating
while PSM uses the personalized rating. The feedback verification type is the good
provider in case of TVM and the personal experience in PSM. Both metrics try to
implement the full aggregation scheme, although in case of ATC some data are older
than others. And the calculation is based on the generalized trust metric.

PeerTrust introduces a general metric for calculation trust in a distributed
environment and offers several different approaches of how to use it. The presented
comparative analysis of all proposed approaches is one of the significant
contributions of this work. The authors perform several simulations to demonstrate
the feasibility, effectiveness and benefits of each approach. Unfortunately, the
effective, distributed and secure manner of implementing it in a real P2P application
was not described.

28

3.4 Lee2005

The interesting technique was proposed by Lee et al. in [63]. It was designed
into file-sharing P2P networks and unlike other techniques it distinguishes a
reputation for peers and for files. The separated reputation for peers and for files has
several advantages. First, it prevents a malicious peer from sharing recognized bogus
files even if it changes its identity. Second, it allows newcomers to share an honest
file even if they do not earn trust yet.

Each file in the system has its own file reputation manager which keeps
information about all versions of the file, the owner and the file reputation. The
reputation is composed from a number of positive and negative recommendations.
According to these values the file is put into one of three categories: trustworthy,
untrustworthy and unknown. Only trustworthy and unknown files are taken into
account for download.

After successful download, the downloading peer should evaluate the file by
sending its opinion to the file reputation manager. The opinions are treated
differently depending on the peer reputation of the source. The peer reputation is kept
on a peer reputation manager. Similarly to the file reputation, the peer reputation is
composed from a number of positive and negative recommendations which are
simply summations of values of the files offered by the given peer. The procedure of
categorizing the peer reputation into trustworthy, untrustworthy and unknown is
performed as in case of file reputation and only recommendations from trustworthy
peers are taken into account fully.

This work presents an attractive idea to combine a reputation of the provided
service and a reputation of the service provider. This approach naturally solves
several problems connected with traditional methods. Unfortunately, its
implementation is limited only on the data-sharing network in which there is an
assumption that one instance of the service exists on more peers. There are also
several open problems which the authors do not address, for instance, the malicious
peers can lie about their files and provide a bogus file instead of indexed and verified
one. There is no defence against malicious reputation managers and so on.

In our taxonomy, the system uses global rating and performs the full
aggregation scheme. As the feedback verification the good provider is used and
calculation is based on summation of negative and positive feedbacks from
trustworthy peers.

3.5 PET

PET is a personalized trust model designed by Liang and Shi [64]. The trust
model distinguishes a reputation as accumulative assessment of the long-term
behaviour and a risk as the opinion of the short-term behaviour. The trustworthiness

29

is directly derived from these two parts, as shown in figure 1. WRe a WRi are weights
of reputation and risk respectively.

The reputation is also calculated from two parts: a recommendation and
interaction-derived information. The recommendation (Er) is the average value of
feedbacks from other peers and the interaction-derived information (Ir) reflects the
local experience. WEr and WIr are the corresponding weights. The calculation of Er

does not reflect different trustworthiness of feedback sources and all feedbacks have
an equal weight. The authors avoid the concept of transitive trust for two reasons.
First, they do not believe that an honest service provider must be an honest feedback
source as well. Second, they pointed out the increased load of the system caused by
examining transitive trust.

The risk is derived only from a local experience and it is normalized to the
worse case, i.e., the sum of all bad services received from this peer divided by the
sum of the worst possible results of all services received from this peer during the
last time interval. Its purpose is to perceive sudden changes in peer behaviour.

The risk represents a novel approach in TMSs. It should reflect the suspicious
patterns in peers’ behaviour and warn that the calculated reputation can be
manipulated. Unfortunately, denoting the risk only as a short-term opinion cannot
react on all attempts to manipulate the reputation.

3.6 Scrivener

Scrivener [65] is based on the idea of pairwise exchange content between
overlay participants. A Scrivener node maintains a relationship with each of its
overlay neighbours. These relationships keep a history of interactions between

30

Fig. 1: Derivation of trustworthiness in PET

involved peers expressed by two values on both sides: credit and confidence. The
credit is the difference between the amount of data sent to the amount of data
received; the negative value is called debt. The request for downloading data is
granted only if the requester's debt is below a certain limit. The confidence value
reflects the reliability of the remote peer in providing services and transferring
request. The unreliable peers can be expelled from neighbours list in an overlay
network and replaced by another peer. The credit limit for each peer is derived from
its confidence value.

In order to allow peers to join into the network, each newcomer has a small
initial credit from that peers which choose it as a neighbour. However, it does not
obtain any credit from peers that it chooses as neighbours. This prevents malicious
peers from constantly selecting new neighbours and abusing the initial credit limit.

The basic protocol allows the transaction only between overlay neighbours.
But it is most unlikely that the requested data can be found on one of them,
especially in the network with a large content set. Scrivener introduces a strategy
called transitive trade, which identifies a credit path from a source peer to the peer
that is the owner of the requested data. After the credit path is identified, the credit
can be rearranged so that the payment from the source peer arrives to the data
provider.

Let the credit path be composed from peers A to Z, where A has a relationship
with B, B with C and so on. The first message called path discovery is sent along the
path from A. Each node has to pay for this message to the next peer in the path and at
the same time decrease its confidence in it. After the message arrives to Z, the
confirmation message is transmitted directly to A. A now can route request messages
for each chunk of the data along the credit path and receives the data directly from Z.
The same payment policy as in case of the path discover message is applied. A final
message, announcing that A successfully downloaded requested data, is routed along
the credit path again and causes each peer to increase the confidence of its successor
to compensate the reduction in the first step and gain an additional confidence as a
result of a successful transaction.

In this protocol, each participating peer has an incentive to cooperate. Z wants
to be credited for transmitting all chunks and intermediate peers do not want to lose
confidence of their predecessors in the credit path. Each peer also has to pay for each
request even if it is not satisfied. This discourages flooding requests into the system.

Scrivener is primary targeted to free-riders and thus it only partially addresses
other malicious behaviours. Unlike other TMSs, it is closely attached to overlay layer
and encourages the message passing as well. The credit path is established through
the reliable peers. The authors suppose that the credit and confidence value is hold in
persistent storage and the unreliable peers can be excluded from the network

31

definitively.
Scrivener does not fully fit into our taxonomy. The system uses the

personalized type of rating. There is no feedback aggregation because each peer uses
only local experience with its overlay neighbours. Neither the feedback verification
is needed. The calculation is based on the amount of sent/received data and the
success rate of the requests sent through the peer.

3.7 TrustGuard

TrustGuard [66] is a framework for building distributed TMSs presented by
Srivatsa, Xiong and Liu. The system supposes the existence of decentralized
feedback storage (e.g. DHT based protocol). If a peer wants to transact with another
peer, the following sequence of actions is performed: (1) feedback collection to
collect all feedback towards queried peer, (2) dishonest feedback filter to filter out
untrustworthy feedbacks, (3) feedback aggregation to compute trust value from
obtained feedbacks, (4) strategic oscillation guard to deal with strategic behaviour of
malicious peer, (5) trust-based peer selection to use the trust value for decision which
peer is suitable for transaction, (6) transaction proof exchange, (7) transaction
execution and (8) feedback submission. After the feedback is submitted, the peer
responsible for storing feedback is able to verify that the feedback originates from a
real transaction between two peers. The authors identified three critical components
and proposed solutions for each of them. These components are: strategic oscillation
guard, fake transaction detection and dishonest feedback filter.

The aim of the strategic oscillation guard is to combat malicious oscillation
behaviour. For instance, a malicious peer may behave non-maliciously until it
achieves a good reputation, then behaves maliciously, after losing its good reputation
returns to its non-maliciousness and so on. The strategies oscillation guard takes into
account the reputation history and tries to detect and suppress such behaviour.

The next critical component is the fake transaction detection. In a typical
transaction-based feedback system, both participants have an opportunity to submit
feedbacks about each other after each transaction. But malicious peers may flood
numerous fictitious feedbacks about other peers without realizing transaction with
them. The purpose of these false feedbacks is to damage the reputation of honest
peers. In TrustGuard each feedback is bind to transaction through transaction proofs.
In other words, the malicious peers cannot evaluate fictitious transactions and
feedbacks between peers are stored if and only if these peers indeed transacted with
each other.

The fake transaction detection component uses a public key cryptography
based scheme. Let that every peer n has an associated public-private key pair,
namely, <PKn,SKn>. TrustGuard assumes the existence of a trusted authority which
binds key pairs to peers. Every peer is able to generate a transaction proof which

32

contains transaction description and time stamp signed by its private key. These
transaction proofs are exchanged between peers before the actual transaction takes
place. If the exchange fails, an honest peer would continue in the transaction.
Nevertheless, if the exchange succeeds and one of the peers refuses to participate in
the transaction, both peers still can evaluate transaction that never actually happens.

The transaction proofs have to be exchanged atomically; that is, either both
participants have a transaction proof from other or none of the proofs is exchanged.
The Optimistic Fair-Exchange Protocol was proposed to achieve this aim. This
protocol guarantees fair-exchange of two electronic items between two mutually
distrusting parties by utilizing trusted third parties. However, these parties are
involved to only such exchanges that results into conflict. Assuming that most of the
peers are honest, the trusted parties are hopefully involved infrequently.

The last component, the dishonest feedback filter, introduces the credibility
factor which is computed in the same way as in PeerTrust described in the section
3.3. Therefore, two methods are offered: trust-value based credibility measure
(TVM) and personalized similarity measure (PSM).

We consider strategic oscillation guard as the main contribution of this work.
The fake transaction detection component requires trusted third parties, complicated
protocol for fair-exchange and does not eliminate fake transactions completely. The
dishonest feedback filter component does not come up with any new ideas and uses
PeerTrust model. On the other hand, TrustGuard is the first TMS dealing explicitly
with strategic malicious behaviour and proposes the ideas which were later used by
other researches.

3.8 P2PRep

P2PRep protocol [67] has been proposed for unstructured P2P network. The
basic sequence of operation is simple. When a peer wants to use some network
resource, it (1) broadcasts query for resource location and receives a list of possible
resource providers, (2) polls the network about the reputation of the providers, (3)
verifies the received votes and (4) aggregates them into a reputation value. This value
is synthesized with the local reputation representing direct interactions with the
remote peer.

The security of this protocol is guaranteed by two mechanisms. First, the poll
query contains a public key and all replies have to be encrypted by this key. Only an
initiator of the query has the corresponding private key. This protects the identity of
the responder and the data integrity. Second, the vote verification process randomly
chooses some of the votes and sends a vote verification message to the address
associated with these votes. This ensures that the vote truly originated from the
corresponding address. However, it does not prevent malicious peers from creating

33

fake feedbacks towards honest peers or lying about the results of their transactions.
Hence there is no feedback verification in a sense of checking the feedback quality.
This makes the P2PRep vulnerable to malicious collectives.

3.9 NICE

NICE is a cooperative framework for implementing distributed application
over the Internet developed on the University of Maryland. Sherwood et al. [68]
proposed a protocol in context of the NICE system for efficiently storing peers’
opinions in a completely decentralized manner and identifying non-cooperative
peers.

For each transaction, both involved peers produce a signed statement (called
cookie) about the quality of the transaction. The peers send these cookies to each
other and store them in the permanent storage. Later, the peer can use these cookies
to prove its trustworthiness. The protocol uses a weighted directed graph called the
trust graph. The vertices in the trust graph correspond with the peers in the network
and there is an edge directed from peer A to peer B if and only if peer B hold a cookie
from peer A. The weight of the edge denotes the quality of the past transactions
between peer B and A included in the cookie. The example of the trust graph is
shown in Figure 2.

Let peer A wants to communicate with peer B, these peers had prior
transactions, hence the cookie exists and its value can be used as a B's reputation. A
more interesting case is when peer A wants to communicate with peer F. Because
there are no prior transactions, F's reputation is calculated using the trust path. A trust
path is an oriented path in the trust graph. There can be more trust paths. For
instance, in Figure 2 the possible trust paths from A to F are: A-B-D-F, A-B-E-F or A-
C-E-F. The quality of the path is called “strength”. The authors propose two methods
of calculating the strength of the path: (1) as a minimum valued edge along the path,
and (2) the product of all edges along the path. And they also propose two methods
of calculating the reputation according the strength of the trust paths: (1) it is the

34

Fig. 2: Example of trust graph.

A

B

C

D

E

F
0,2

0,8

0,1

0,5

0,3

0,1

0,2

strength of the strongest path or (2) weighted sum of strongest disjoint path.
To complete the protocol, we need a procedure how to find trust paths

between given peers. One possible solution is flooding query through the network,
but it is extremely inefficient. The authors propose modified flood-based algorithm.
Whenever a peer receives a cookie from other peer, it receives a digest of all other
cookies at the remote peer. These digests is used to optimize forwarding queries.

Other issue is that low-valued transactions are potentially not recorded in the
system. The cookie evaluating peer B is stored on peer B, and this peer has no
motivation to store and distribute cookies containing negative recommendation to it.
The authors propose storing negative cookies on the issuer. If the peer B wants to
interact with peer A, it can initiate a search for B's negative cookies. This search
follows high trusted edges from A. If this procedure finds a sufficient number of
negative cookies, peer B is considered untrustworthy.

This framework provides a low overhead information storage and search
algorithm usable in unstructured P2P network. The main idea that every peer holds
only data beneficial to them hence they are motivated to participate on the TMS. The
disadvantage is a separate algorithm for dealing with negative recommendations
which makes the system susceptible to malicious collectives.

3.10 Credence

Credence [69] is a TMS developed for the Gnutella file-sharing network and
its primary goal is the defence against file pollution. Unlike in other TMSs,
reputation is connected with objects (files) shared in the network. In Gnutella style
file-sharing networks the peers want to download a file send a search query
containing required file's attributes. As a result it receives a list of files matching its
query with hashes of file contents and meta-data describing the files. The user picks
up one of the file to download. Credence should be able to guarantee that a file with
a given hash has desired attributes.

After a file is downloaded, a user can manually enter positive or negative vote
indicating the authenticity of a downloaded file. Each vote is a signed tuple
containing a file content hash, an evaluation and a time-stamp. A peer evaluating
file's authenticity actively queries the network to find and collect a sample of relevant
votes. The final reputation is formulated by taking a weighted average of obtained
votes. The weight assigned to each vote depends on the statistical correlation
between other votes originated from the same remote peer and votes created by a
local peer. The authors assume that each peer keeps a vote database containing
received and emitted votes. This database is used for satisfying vote queries from
other peers and for a calculation of correlation. The peers also hold a correlation
database which is periodically recalculated according to vote database.

35

The system guarantees that a file with a given hash has desired attributes. But
it does not help to choose peers which share this file reliably. The malicious peers
can provide bogus files instead of files announced in the search result. Although such
bogus files are quickly recognized (hashes do not match) this can be done only after
the downloading is complete.

3.11 Multilevel Reputation System

The authors of the TMS described in [70] introduced the concept of
reputation levels. The reputation levels are attached to peers and classify them into
different classes. The system enforces the access control rule: a peer can use the
resources only from peers on the same or lower reputation level. Obviously, each
peer will prefer the most reputable sources which are the peers on the same level. It
means that the peer is motivated to acquire high reputation not only for distributing
its resources but also for an opportunity to download from more trustworthy peers.

The system requires a central component called Central Computation and
Enforcement Agent (CCEA), which computes the peers’ reputation levels and
enforce the access control rule. It means that all search requests must be processed by
CCEA and after each transaction, both participants must report the outcome of the
transactions to CCEA. Authors propose two schemes for reputation level calculation,
which are Level Up Reputation Computation (LURC) and Level Keeping Reputation
Computation (LKRC). First scheme LURC decides whether the reputation level of
the peer should be increased. This scheme takes into account only the peer's
contribution to peers with higher reputation level. If the level is not increased, the
LKRC scheme is used to check whether the peer can keep its current reputation level.
This depends on its contribution to the peer with the same reputation level.

At the very beginning, all peers are in the lowest reputation level. The
previously described schemes do not allow any peer to increase its reputation level
and the system would stay in this state forever. Nevertheless, random selections are
performed and some of the peers are promoted. This procedure is run periodically
until the number of peers in each level is up to threshold. The system works best if
peers are equally distributed among all levels.

The proposed system elegantly solves the load balancing problem, described
in section 4.1.1. The access rules in the multilevel reputation system guarantee that
the requests are spread more uniformly across the network.

The main disadvantage is the necessity of the central component. Moreover,
this component is heavily loaded by running computation for each peer. This central
component makes many things easier than in a full decentralized TMS but creates a
single point of failure and degrades the distributed system.

36

3.12 WTR

The system WTR [71] described by Bonnaire and Rosas uses DHT as a
storage for peers’ feedbacks. The DHT allows any peer to store its feedback and
retrieve all feedbacks towards a given peer. The standard DHT algorithms have to be
extended for replication to resists DDOS attacks and peer failures. The authors
propose to use their previous recursive replication scheme [72].

The reputation for peer A at time t is calculated using formula (5).

Rt (A)=
∑i=0

m−1
log(m−i+1)×F i

K
(A)×C t(K)

∑i=0

m−1
log(m−i+1)×C t(K)

(5)

where F i
K
(A) is the feedback of index i towards peer A emitted by peer K. To

compute a reputation of peer A, the algorithm uses m more recent recommendations
for node A. The expression log(m-i+1) is used as a sliding factor to give more weight

to more recent feedbacks. And C t(K) represents the credibility of peer K as a

recommendation source. The credibility of peer K is a discrete exponential function

of Rt (K) giving peers with a reputation higher than 0.5 much more credibility than

the other ones.
Besides the reputation, WRT introduces the risk factor. The risk of peer A

reflects the probability of how much the reputation corresponds with real peer
behaviour. The high risk means that the reputation may be calculated inaccurately
due to a low number of recommendations or fluctuation in peer behaviour. The

computation of the risk J t(A) is composed from two factors T1 and T2.

T 1(A)=α(1−
r
m

) (6)

T 2(A)=4(1−α)
∑i=0

k
(F i(A)−F i(A))

2

r
(7)

T1 is used to evaluate a number of recommendations and T2 reflects the
variance of the recommendations emitted by other peers. In formula (6) and (7), r is
the number of available recommendations in a window of size m for node A and
α is a dynamic parameter that allows to give more weight to T1 or T2. The final

risk is summation of T1 and T2. The risk factor should help an application to eliminate
peers with short history or suspicious changes in their behaviour.

The proposed system does not require any kind of centralized authority and it

37

is designed to structured P2P network. The reputation computation is quite simple
using weighted average weighted by credibility and sliding factor. The risk factor
reflects fluctuation in peers’ behaviour similarly to strategic oscillation guard in
TrustGuard [66]. Moreover, TrustGuard has much more complex mechanisms for
that. WTR is inspired by previously published TMSs and implements some time-
proven methods.

3.13 H-Trust

H-Trust [73] is inspired by H-Index [74] aggregation approach. H-Trust
scheme is implemented in five phases: trust recording phase, local trust evaluation
phase, trust query phase, spatial-temporal update phase and group reputation
evaluation phase. In the trust query phase the whole network is queried the feedbacks
to the particular peers, but only peers with a high credibility are taken into account in
the reputation evaluation phase. In H-Trust these peers are called qualified peers.

H-Trust uses a simple algorithm to compute the recommender’s credibility. If
the recommendation proves to be truthful, the recommender’s credibility increases
and vice versa. There is only one way to prove recommendation credibility - using a
resource from the recommended peer. Therefore, after each transaction, not only the
reputation towards the target peer is changed, but also the credibility of the peers
which recommended it is revised. The credibility of all recommenders is changing,
not only of the qualified ones. Due to this fact, the non-qualified peers can prove
their honesty.

The H-Trust aggregation scheme is described by the following statement: A
peer i has trust rating Ti,j = H towards peer j if H of the qualified N peers have at least
trust rating score H towards peer j, and the other (N-H) peers have at most trust rating
score H towards the peer j. If there is no exact H-point, the approximate rank value is
used.

The system introduces a new calculation approach used previously to
quantify scientific researcher papers. This approach seems to be effective in a P2P
environment too. It reflects the reputations of the recommender and the strenght of
the recommendation. The peers’ credibility is not directly used in H-Index
computation, it serves only for distinguishing between qualified and non-qualified
peers.

3.14 Summary

Many papers attempting to solve building secure P2P networks have been
published in recent years. In the previous sections, we tried to describe the most
known of them. We focus on systems which introduced some new ideas and push
knowledge forward, hence it should not be considered as a complete list of all
published TMSs.

38

We summarized all described system in table 4. This table give us a basic idea
of different aspects of each TMS but cannot decide which system is better. It is
difficult to compare individual methods because there are not fixed criteria which can
be used to measure the efficiency of the reputation management. We have only a
vague notion of 'trusted P2P network'. The TMSs have been built under the premise
that this notion is well understood. Previous researchers use the simulations to prove
the potential benefit of their proposal. These simulations are often oriented only
towards the ratio of successful and failed transactions; in some cases the
communication overhead and response time are also taken into account. The
individual simulation models are different, simulate different communication
patterns and malicious behaviour. And only a small number of competitive systems is
included in the simulation, if any. As a result of this, the output of these simulations
cannot be used for comparison with other systems.

Other possibility is to carefully analyse individual methods against described
attacks and try to formally determine their resistance against these attacks. Such
approach has been used in [58], [75] or [76] and has some limitations. For instance,
we can decide whether the system is vulnerable against a certain kind of attack
because authors do not implement any protection mechanism; however, we cannot
compare the efficiency of two systems with the different protection mechanisms.
Additionally, each application environment is different and different threats are
possible. Therefore, the efficiency of TMS should be considered in the context of
application.

39

System

T
yp

e
of

ra

ti
n

g

F
ee

d
b

ac
k

ag

gr
eg

at
io

n

F
ee

d
b

ac
k

ve

ri
fi

ca
ti

on

Calculation

EigenTrust [61] G F GP Weighted average.

PeerTrustTVM [62] G F GP General trust metric.

PeerTrustPSM [62] P F PE General trust metric.

Lee2005 [63] G F GP
Sum of negative and positive

feedbacks from trustworthy peers.

PET P N/A N
Average of feedbacks and risk

calculated from local experience.

Scrivener [65] P N/A N
The amount of sent/received data

and the success rate of the requests.

TrustGuard [66] G/P N/A GP/ PE

Strategic oscillation guard
incorporating peer's history

(Integral component) fluctuation
(Derivative component) and

credibility.

P2PRep [67] P S N Ordered weighted average.

NICE [68] P S GP
The strong of the strongest trusted
path or weighted sum of strongest

disjoint trusted path.

Credence [69] P S PE Weighted average of votes.

Multilevel RS [70] G F N

Reputation level is increased if
there is enough transactions with a
higher reputable peers or decreased
if there is not enough transactions
with the equally reputable peers.

WTR [71] G F GP

Using two values: reputation and
risk.

The reputation is a weighted
average and the risk reflects the

number of feedbacks and
fluctuation in peer behaviour.

H-Trust [73] P S PE H-Index [74]

Table 4: Basic classification of trust management systems. Type of rating: G -
Global, P - Personalized, Feedback aggregation: F - Full, S - Selective, Feedback
verification: N - None, GP - Good provider, PE - Personal experience, GE - Global
experience.

40

4 Attacks against TMS itself
In section 2.2 we described attacks targeted at the application layer and

presented the defence mechanisms based on reputation management in section 3.
Unfortunately, these mechanisms have their own weaknesses which can be exploited
by treacherous peers. These peers can use sophisticated strategies to circumvent TMS
and maximize their malicious impact. In this section, we analyse these weaknesses
and describe malicious strategies exploiting them.

The weaknesses can be classified into three categories: (1) unwanted side
effects, (2) individual strategies, and (3) collective strategies. This chapter describes
the known malicious strategies and suggests three new malicious tactics targeted to
the current TMSs.

4.1 Unwanted side effects

The issues related to this category can be seen in the network without
malicious peers. They are caused by the function of the TMS itself. The literature
describe two issues which are part of this category: (1) load balancing problem, and
(2) cold start problem. Generally, both problems can be relatively easily solved, but it
is necessary to pay attention to them when a new TMS is designed.

4.1.1 Load balancing problem

We have already mentioned the load balancing problem in DHT in section
2.1, but the use of wrongly designed TMSs can make it worse. Suppose that the TMS
uses the continuous value for the reputation and the global rating. It is very likely
that one of the providers has a higher reputation than others and all other peers prefer
cooperating with it. This results into a situation when one top-rated peer is
overloaded and other reliable peers with a slightly lower reputation are idle. Similar
situation can occur in TMSs with personalized rating. All requests are targeted to the
group of most rated peers while there is a number of equally reliable providers.

The TMSs have to be carefully designed to avoid this problem. One possible
solution supposes that peers do not automatically choose the most rated partner, but
randomly choose one above a defined threshold. Unfortunately, this rule is difficult
to enforce, some peers can ignore it and still prefer the highest-rated peers for selfish
reason - maximizing its downloading success. Other solution is to forbid this
situation in the TMS itself. For instance, TMSs can use discrete reputation value
instead of continuous one, or service providers can limit access to their services
according to a requester reputation, like in [77].

41

4.1.2 Cold start

The problem of newly connected peers is its initial reputation. It should be
zero, because the system does not have any previous experience with them. But the
peers with a zero-reputation have only a little chance to be chosen for cooperation
and cannot prove its trustworthiness. For such peers the process of building the
reputation is very slow. This is called a cold start problem. In the worst case scenario,
the newcomers can stack in a zero-reputation state forever.

In order to prevent this problem, TMSs should provide an initial reputation to
all newcomers. But this can be misused in attacks called whitewashing in which
peers leave the network after gaining bad reputation and connect again with a new
identity with a fresh initial reputation. Whitewashing is discussed in detail in section
4.2.1. The most TMSs use only small initial reputation as a trade-off between cold
start problem and making the system attractive for whitewashers.

Other possibility is to allow newcomers to gain a reputation in another way,
for instance, on the basis of the social relationships between users. The user already
connected to the network can send invitations to his friends and provides them an
initial reputation [78].

4.2 Individual strategies

Let us suppose that each malicious peer works alone without cooperation with
others. There are several strategies which it can utilize to circumvent TMSs. Most of
the TMSs can detect these attempts easily and such peers have only a little chance to
succeed. The individual strategies pose a danger if they are used together with other
strategy. Malicious peers can use them as a part of sophisticated collaborative
strategies described in section 4.3.

4.2.1 Whitewashing

This strategy consists in periodical joining and leaving the network. The
malicious peer after gaining bad reputation leaves the network and joins again with a
new identity. All negative recommendations bound with its previous identity become
useless and the peer can start over. This problem has been discussed by many
researchers [79], [58] or [80].

The only possibility to fight against whitewashers on the trust management
layer is to provide a very small initial reputation to newcomers and deal with the cold
start problem (4.1.2). However, the general solution should guarantee that the peers
keep the same identifier during their lifetime. It should be difficult for peers to
generate a new identity easily. The same problem is solved in the defence techniques
against Sybil attack discussed in section 2.1.1. Although these techniques are not
completely reliable, they can significantly improve the security.

42

4.2.2 False meta-data

The fundamental principle of many P2P applications is sharing resources. The
peers publish resources together with meta-data describing them. Typical P2P
application is equipped with a mechanism which allows to search in meta-data and
identifies peers which offer resources connected with them. However, there is no
guarantee that the meta-data describe the resources truthfully. Malicious peers can
insert false attractive information into the meta-data describing their bogus resources
to increase the demands for them. For instance, in the P2P music file sharing
network, the attacker most likely names its infected file like some very popular song.
Due to the fact that 10% of the most popular files create 90% of all transactions in
file sharing P2P networks [43], the attacker dramatically increases the probability
that the file will be downloaded. This is a basic, simple and very effective malicious
strategy. Some of the TMSs are specifically designed to fight against this issue (see
section 3.4 or 3.10) but they are limited to file-sharing P2P networks.

4.2.3 Camouflage

The malicious peers that are aware of the presence of the TMS can provide a
few honest resources. These resources allow them to maintain higher reputation even
if they provide also some bogus resources. Their reputation will be probably smaller
than the reputation of honest peers but it can be enough to trick part of the honest
peers. However, if the honest peer has a choice between several providers of the
same resource, it probably chooses the most trustful one. Therefore, the camouflaged
malicious peers have to offer some unique resource to be chosen despite the lower
reputation. The combination with false meta-data strategy is suggested.

The basic scheme of this strategy is depicted in figure 3a. The honest peers
evaluate the camouflage peer alternately as honest and malicious. There can be many
variants of this strategy, differing in the ratio of honest and bogus services or the
period between changing behaviour. In some literature, the variant of this strategy is
called Traitors [57], [58] or [81].

4.3 Collective strategies

Malicious peers have a significantly higher chance to succeed if they work in
a cooperative manner and coordinate their effort to trick the TMS. Many papers
designated malicious collusions as the biggest treat for P2P applications [82], [58] or
[75]. However, only two collective strategies are considered in the most papers. Their
names are not stabilized, so we use a designation (1) full collusion and (2) spies for
them. In the full collusion the malicious peers are providing false positive
recommendations to other malicious peers and the spies is a strategy when a part of
malicious peers behave honestly and recommend the second part of peers which

43

perform malicious activity.

4.3.1 Full collusion

It is the basic collective strategy. All members of a malicious collective
provide bogus resources and create false positive recommendations to all other
members of the collective. The purpose of these recommendations is to artificially
increase the reputation of other malicious peers. Figure 3b shows full collusion with
three malicious peers.

This strategy is effective only in TMSs which do not verify the credibility of
feedbacks. The feedbacks are generated by malicious peers and most TMSs should
consider them as untrustworthy. On the other hand, these false recommendations can
be very easily generated; therefore, it does not pose additional load for malicious
peers. Malicious peers are able to generate a great number of such false
recommendations which can jeopardize the proper function of TMSs.

4.3.2 Spies

In order to increase trustworthiness of their false recommendations, malicious
peers can use several techniques dependant on algorithms used by TMSs. If the TMS
assesses the credibility of the feedback source according to its reputation as a service
provider, malicious peers can use strategy called Spies. The malicious collective is
divided into two groups: spies and malicious. The spies provide honest services to
earn a high reputation and simultaneously provide false positive recommendations to
the malicious part of the collective. The recommendations between peers in the
network with spies are shown in figure 3c.

The success of this strategy depends on the number of spies in the collective.

44

Fig. 3: Basic malicious strategies. a) camouflage, b) full collusion, c) spies.

More spies are able to outvote the peers with negative experiences with malicious
part of the collective. But even there this method is not faultless. The malicious part
of the collective would have a large number of contradictory recommendations
which should be considered suspicious and TMS can designate these peers as
oscillated and discard them.

The honest transactions performed by spies implied extra load for malicious
collective. The spies have to provide some resources which are beneficial for others.
On the other hand, the spies assume that they are not punished for their false
recommendations and can provide only as many honest services to keep its provider
reputation.

4.4 Newly proposed malicious strategies

We analysed published TMSs and known malicious tactics carefully and
suggest three new collective malicious strategies. Each strategy is designed into a
particular type of TMS and tries to exploit its specific weakness.

4.4.1 Evaluator collusion

If the TMS assesses credibility of the feedback source according to the
truthfulness of its previous feedbacks, malicious peers can try to trick the TMS by
using the services from peers outside the collective and evaluating them correctly.
These true feedbacks increase the credibility of malicious peers as recommenders
and give more weight to their feedbacks towards other member of collective.

Figure 4 shows the schema of this strategy. It is similar to full collusion
except the truthful recommendations towards peers outside the collective. The
effectiveness of this strategy depends on the ratio of truthful and faked
recommendations. But the truthful recommendations are very disadvantageous for
malicious peers for two reasons. First, they must be preceded by complete
transactions outside the collective, which significantly increase the load of malicious
peers. Second, the malicious peers have to evaluate these transactions honestly. This

45

Fig. 4: Schema of evaluator collusion

can be a difficult task in some systems, except the objective criteria like bandwidth,
file integrity or time to complete a request, the final evaluation is subjective and it is
often left to the user behind the application.

The idea that malicious peers implement some robots which automatically
evaluate all services in the network seems like a beneficial approach. But it can open
a way to censorship when a collective of peers decide which service is good and
which is bad.

4.4.2 Evaluator spies

This strategy is a combination of evaluator collusion and spies. The spies
implement three techniques to maintain a high credibility as a feedback source: (1)
they provide an honest service, (2) they use resources outside the collective and
evaluate them correctly, and (3) they create positive recommendations towards other
spies. The scheme depicted in figure 5 is similar to regular spies. Additionally, the
evaluator spies create truthful recommendation outside the collective and between
each other.

This strategy is designed into TMSs which assess credibility of the feedback
source according the quality of the previous feedback, similarly to Evaluator
collusion. Unlike the Evaluator collusion, it tries to minimize the number of truthful
recommendations outside the collective because of the disadvantages discussed
above. Some of them are replaced by providing honest services, like in the spies
strategy, and creating false recommendations between spies which can be easily
generated.

4.4.3 Malicious spies

The malicious spies strategy is a slight modification of the previous strategy.
It is based on the idea that spies do not require a high reputation as resource
providers. They can provide bogus resources and generate negative recommendations
between each other. These recommendations are still truthful and should increase
their credibility as a feedback source. In this way, the attacker can eliminate the need

46

Fig. 5: Scheme of evaluator spies

of providing honest services to trick the TMS.

The scheme of this strategy is shown in figure 6. There is only one
modification compared to evaluator spies. The spies provide bogus services;
therefore, they have negative recommendations from honest peers and from each
other.

This strategy is not suitable to all TMSs. It assumes that the TMS has no
correlation between provider and evaluator rating. Otherwise, it is counterproductive.

4.5 Summary

A bigger number of malicious peers using collective strategy causes a disaster
for each P2P network. The authors of the most previously published TMSs expected
only simple collective strategies and tried to make its system immune to them. But
the attacker with detail knowledge of the internal functions of TMS can develop
more sophisticated strategies targeted to the specific TMS. The strategies described
in this chapter exploited some general principles used by several TMSs. Therefore,
they are more dangerous than common collective strategies. Additionally, other
modifications or combinations of these strategies are possible.

47

Fig. 6: Scheme of malicious spies

5 BubbleTrust
The previously described TMSs suffer several security deficiencies which

prevent the use of full decentralized P2P architecture in more types of applications.
Currently, the P2P architecture is mainly used in non secure sensitive applications or
in applications in which the administrator has the full control over the end nodes. In
the both scenarios the previously described TMSs are perfectly usable. In the first
case, the attacker has not a motivation to deploy sophisticated malicious strategies
because the potential benefit does not outweigh the cost. And in the second case, the
probability of the peer's maliciousness is very low.

Imagine a full decentralized auction application similar to eBay. Such
application cannot exist without proper security mechanisms because the vision of
financial profit is very attractive for potential attackers. Even if the application
operates on centralized servers (like eBay), the ensuring trust between sellers and
buyers is questionable [56]. Our ultimate goal is to allow the deployment of P2P
architecture in more secure sensitive applications. To accomplish this task, we
decided to develop a new TMS which should be resistant even against sophisticated
malicious strategies and at the same time usable in large P2P networks.

In our previous work [83], we presented a novel trust management system
called BubbleTrust which uses some new approaches. The basic idea behind the
BubbleTrust is the separation of a peer role into that of a resource provider and of a
transaction evaluator. The peer is evaluated for both roles separately, hence the
system is able to distinguish peers that provide honest resources but do not
participate correctly in the TMS. This tactic is often used by members of malicious
collectives as described in section 4.3. Using the BubbleTrust makes it less effective.
Other important concept is a data management which ensures that malicious peers
cannot create fake feedbacks towards honest peers or suppress unflattering feedbacks
towards themselves or allied malicious peers.

The BubbleTrust is based on trust graph, which was first introduced in NICE
[68]. In contrast, it does not try to find a trust path between a consumer and a
provider, but it tries to involve as many relations as possible into the decision making
process. It takes into account opinions of a great number of peers which have the
strongest relations towards the queried peer. These relations create a trust bubble
around the queried peer. BubbleTrust would not be possible to use without limiting
the size of this bubble or using caches which significantly reduce the complexity of
the algorithms.

5.1 Basic concept

Let us assume that the P2P network can be decomposed into a set of two-
party transactions. In each transaction one party is designated as a consumer and

48

other as a provider. The provider is a peer which owns some resources and offers
them to the public. The consumer is a peer which uses these resources. Each peer in a
P2P network can act as both a provider and a consumer.

After each transaction, the consumer can express its satisfaction with the
quality of the acquired resource and transaction parameters. On the basis of all
transactions with a given peer the consumer can create an opinion about peer's
reliability as a provider, this opinion is called provider rating.

The consumer publishes all opinions on the network. In other words, the
consumer evaluates every provider, which it cooperates with, and makes this
evaluation public accessible. From the TMS point of view the better notion for
consumer is an evaluator. In the following text we use notion evaluator
interchangeably with the notion consumer if we want to stress its evaluation function.
Other peers download the provider rating from the evaluator and use it for its own
calculation of the provider rating. But the foreign provider rating is not as
trustworthy as locally created ratings. We use a notion recommendation for the
provider rating acquired from other peers.

In the BubbleTrust, every peer has two ratings. First, it is the provider rating,
which we defined above. The higher provider rating means that the peer is more
likely to be a reliable resource provider. This rating corresponds to the notion of the
reputation commonly used in the contemporary TMSs. Second, the evaluator rating
is connected with the evaluation function of the peers. The opinions from the peers
with higher evaluator ratings are more trustworthy than opinions from the peers with
lower evaluator ratings; this rating is often called credibility.

Every peer creates both ratings locally towards each peer which has required
resources. The primary purpose of these ratings is to help peers to make a decision
whether a given peer is reliable for cooperation. If the peer acts as a consumer, it is
looking for a provider with a higher provider rating to ensure that the transaction will
be successful. If the peer acts as a provider, it prefers the consumer with a higher
evaluator rating to ensure that the transaction will be correctly evaluated and this
evaluation will be trustworthy for other peers in the network.

The provider rating originates from direct transactions with evaluated peers or
is calculated from the recommendations acquired from other peers. The evaluator
rating is calculated by comparing network experience with recommendations from
evaluated peers. The calculations of both ratings influence each other. The
calculation of the provider rating requires the evaluator ratings of all peers which
evaluated the given peer. Analogously, the calculation of the evaluator rating requires
the provider ratings of all peers which were evaluated by the given peer. These two
observations give us a brief outline of the calculation algorithm which will be
explained below. The system creates a bubble around the unknown peers which

49

contains the peers having references to them.
Most of the previously published trust managements used only one rating and

this rating supplies the function of the both ratings in our system. The authors
assumed that a quality provider should be a quality evaluator too and vice-versa. But
this is not generally true. Especially the peers which are members of malicious
collectives can break this assumption in an effort to advantage some other members
of the collective. The separation of ratings facilitates the detection of such behaviour.

5.2 Calculation

Before each transaction, the consumer needs the provider ratings of the all
possible providers; on the basis of these ratings the consumer chooses the most
reliable partner for cooperation. There are two possibilities of how the consumer can
get provider ratings. First, both peers have already cooperated in the past and the
consumer has the rating created by itself. Second, the consumer has never cooperated
with the remote peer and has to ask other peers for recommendations. These
recommendations are used to compute the required rating.

Similar situation occurs on the provider's side. It needs the evaluator rating of
the consumer which asks for its resource. The evaluator ratings are always calculated
from the recommendations originated from the given evaluator. In this section, we
explain the calculation of both ratings. We start with the provider ratings; the
calculation of the evaluator ratings is analogous. At first, we give several definitions:

Definition: Provider rating (VP) is a real value in a range [-1,1] which expresses an
opinion about the provider reliability. The positive value expresses the satisfaction
and negative value dissatisfaction. The absolute value represents the strength of this
opinion.

Definition: Evaluator rating (VE) is a real value in the range [0,1] which express an
opinion about the quality of ratings offered by the evaluator. The higher value means
more trustworthy rating.

We choose different ranges to stress the different interpretation of both
values. The provider rating expresses two states: satisfaction and dissatisfaction and
certainty about belonging into these states, whereas the evaluator rating expresses the
quality of the opinion. The recommendation from an evaluator towards a provider is
stored as a relation.

Definition: The relation is a 5-tuple r = <E, P, v, w, t> where E is a transaction
evaluator, P is a transaction provider, v is a provider rating, w is a transactions weight
and t is a time of the last modification. We use a notation r.E, r.P, r.v, r.w and r.t for

50

elements in the relation r.

The relation can originate or be altered only after the transaction takes place
between involved peers. The storing and seeking relations in the network is described
in section 5.4. Meanwhile, we assume that all relations created in the network are
available for every peer.

Definition: The transactions weight expresses the consumer’s opinion about the
importance of the transactions between the consumer and the provider. This opinion
is a real value in a range [0,1].

The transactions weight gives the evaluator the opportunity to express the
importance of the transactions, for instance on the basis of the size or character of the
data. The importance of the whole relation is calculated from the transaction weight
and the time of the last modification.

Definition: Weight function (W) determines the weight of the each relation and is
defined by the formula:

W (r)= f (r.t)∗r.w (8)

where f (x) : N → [0, 1] is a time function which maps the age of transaction
into a range [0,1]. The design of time function will be discussed later.

The next question is how the evaluator rating influences the opinion
originated from the evaluator. We define a two dimensional function, called provider
function, which expresses this dependency.

Definition: The provider function accepts two arguments, the provider rating
originated from one evaluator and the evaluator rating of this evaluator. The result is
altered provider rating which takes into account the evaluator trustworthiness. The
function has a form: pv(x1, x2) : [−1, 1] × [0, 1] → [−1, 1] Where x1 is a provider
rating originated from the remote evaluator and x2 is an evaluator rating of the remote
evaluator. This function can have several interpretations, we analyse function
requirements and provide possible interpretation in section 5.5.

Now we are able to give a formula to compute the provider rating. The basic
idea is simple: The peer is a good provider if a majority of good evaluators agrees on
it. The formula (9) takes into account the altered provider ratings and weights of all
relations where the given peer acts as a provider. Let R is a set of relation such r ∈ R

51

and r.P = A, the provider rating of peer A, VP(A), is calculated according the formula:

V P(A)=

∑
r∈R

pv (r.v , V E(r.E))⋅W (r)

∑
r∈R

W (r)
(9)

The formula for computation of the evaluator rating is very similar. First, we
need the evaluator function.

Definition: The evaluator function accepts two arguments, the provider rating
originated from a given evaluator and the reference provider rating. The reference
provider rating reflects the majority opinion of other peers or local provider ratings if
it is available. The result is an evaluator rating of the given evaluator which takes
into account the difference between both ratings. The function has a form:
ev(x1, x2): [−1, 1] × [−1, 1] → [0, 1]. Where x1 is a provider rating originated from the
remote evaluator and x2 is a reference provider rating.

Similarly to provider function, this function can have several interpretations.
We analyse function requirements and provide possible interpretation in section 5.5.
The idea behind the evaluator rating: the peer is a good evaluator if a majority of its
ratings correctly evaluates the providers. The formula (10) takes into account the
calculated evaluator ratings and weights of all relations where the given peer acts as
an evaluator.

Let R is a set of relation such r ∈ R and r.E = A, the evaluator rating of peer A,
VE(A), is calculated according the formula:

V E(A)=

∑
r∈R

ev (r.v ,V P(r.E))⋅W (r)

∑
r∈R

W (r)
(10)

The aim of the trust management is to calculate the provider rating and the
evaluator rating for the given peers. In the proposed system those values are
computed locally on each peer. The calculated values are used only for decision on
the local peer and are not exported to other peers. It means that each peer has a
unique view on the network and the trust values towards one peer can be different on
the different peers, the similar approach is used for example in Fuzzy [67] or Core
[84]. The opposite approach represents systems like EigenTrust [61] where the trust
values are global: All peers share the same opinion towards others.

52

5.3 Basic algorithm

In this section, we describe the algorithms which implement the formulae (9)
and (10). We demonstrate the algorithm which computes the provider rating; the
calculation of the evaluator ratings is analogous. Both computations influence each
other. We need to calculate evaluator ratings of all evaluators for a given peer if we
want to calculate the provider rating for the given peer.

The basic algorithm works recursively; in each level it computes either
provider ratings or evaluator ratings of all peers in the input set. The first level
computes provider ratings; the second level computes evaluator ratings; the third
provider ratings and so on. The sequence of computation is illustrated in figure 7.

In each level the algorithm performs the following steps:

• Find evaluators (or providers) for all peers in the input set.

• Recursively computes the evaluator (or provider) ratings for new peers.

• Compute provider (or evaluator) ratings according the formulae (9) or (10).

53

Fig. 7: Incrementally growing trust bubble. Black dots are peers in the
provider role, grey dots are peers in the evaluator role and arrows represent
feedbacks.

The information about one peer is held in a data structure depicted in figure 8.
The items VP and VE correspond to the provider rating and the evaluator rating. They
can take the value unknown, processing or a number in the proper range. The newly
discovered peers have this value set to unknown and the value processing means that
the calculation is in progress. The data structure for the local peer has VP and VE set
to 1, because every peer always trusts itself. The variables dividendP, dividendE,
dividerP and dividerE are auxiliary variables.

The function calculating provider rating for group of peers is described in
figure 9. This function calls three auxiliary functions: get_relations(role, A)
get_peers(role, S) and get_optimization(role, S). The role is either “provider” or
“evaluator”, A is a set of peers and S is a set of relations. The function
get_relations(role, A) returns all relations r from the network where r.E∈ A if role
is “evaluator” or r.P∈A if role is “provider”. This function queries the network to
get required information and is described in section 5.4. The function get_peers(role,
S) returns all peers p for which exists some relation r belongs to S where r.E=p if
role is “evaluator” or r.P= p if role is “provider”. The implementation of this
function is trivial. And the last function optimization(role, S) implements
optimization mechanisms which will be described further in the text. Meanwhile, let
this function is empty.

The algorithm sets the provider ratings for all peers in the input set at once.
Every peer is able to calculate ratings for a larger number of peers in one algorithm
run. This is a typical situation when the peer has several possible providers and needs
to know the ratings of all. The function basic_evaluator_ratings(A) is analogous,
swaps the words evaluator and provider and uses the evaluator function instead of the
provider function (line 15).

The algorithm visits each peer twice at the most, when it calculates a provider
rating and when it calculates an evaluator rating. At the beginning all peers have the
both ratings set to unknown. The function basic_provider_ratings(A) accepts only
peers with unknown provider ratings (line 2) and as the first step their ratings are set
to processing (line 3). This ensures that any recursive call of this function does not
deal with these peers again. At the end of the function all peers which had unknown

54

node {
 VP = unknown|processing|[-1,1]
 VE = unknown|processing|[0,1]
 dividendP = 0;
 dividendE = 0;
 dividerP = 0;
 dividerE = 0;
}

Fig. 8: Data structure for one peer in BubbleTrust

provider ratings are set to numeric value (line 20 or 22). The algorithm also ignores
the relations between peers in the input set (line 11) because these relations do not
provide new information. The rules above ensure that the basic algorithm finishes
after visiting all nodes in the network or if there are no relations from the visited
nodes to the rest of the network.

In the practical application we cannot let the algorithm explore the whole
network due to limited network performance and time requirements. Further in the
text, we introduce several methods of reducing a number of visited nodes without a
significant degradation of the results.

55

Input: Input - Set of nodes.
Output: Set items VP for all nodes from the input set.

function basic_provider_ratings(Input) {
 1: foreach p from Input {
 2: if p.VP == unknown then {
 3: p.VP = processing;
 4: P = P + {p};
 5: }
 6: }
 7: if empty(P) then return;
 8: S = get_relations(provider,P);
 9: optimization(evaluator,S);
10: E = get_peers(evaluator,S);
11: E = E \ P;
12: basic_evaluator_ratings(E);
13: foreach s from S {
14: if s.evaluator.VE == processing then continue;
15: s.provider.dividendP += pv(s.val,s.eval.VE) * W(s);
16: s.provider.dividerP += W(s);
17: }
18: foreach p from P {
19: if (p.dividerP != 0) then {
20: p.VP = p.dividendP/p.dividerP;
21: } else {
22: p.VP = default_VP;
23: }
24: }
25: }

Fig. 9: Basic algorithm for calculation of provider rating.

5.4 Data management

All TMS need to store a large amount of data containing a history of peers’
behaviour, or more precisely, the opinion of other peers about behaviour of their
transaction partners. Typically, only a recent history is held due to the storage
limitation. The parameter history_period determines how long the network
remembers the information about peers’ behaviour.

In BubbleTrust, the history is held in the form of relations as defined in
section 5.2. These relations are stored somewhere in the network and accessible
through the function get_relations for each peer. The data management layer
discussed in this section has to provide a secure way of creating, storing and looking
up relations. First, we formulate four requirements on secure data management:

1. For each relation r, it is verifiable that the values in a relation (r.P, r.v, r.w and
r.t) are created by peer r.E. In other words, the relation can be created or
modified only by the evaluator stated in the relation.

2. For each relation r, it is verifiable that peers r.P and r.E agreed on cooperation
and this agreement precede r.t. In other words, the evaluator cannot create a
relation towards a remote peer without its knowledge.

3. Only one relation can exist between evaluator and provider. This relation
expresses the cumulative values from all previous transactions.

4. The function get_relations returns all relations matching the criteria and
created or modified in the last history_period.

Requirements 1 and 2 need that every peer that takes part in the system has a
unique unforgeable identifier. We assume that this identifier is the hash value of the
peer's public key. It is convenient to use this identifier at P2P layer as well. We have
already discussed issues connected with this approach in section 2.1.1.

Let (SE, PE) is the private/public key pair of peer E (evaluator) and (SP,PP) is
the same for peer P (provider). The public keys are freely distributed in the network.
The following protocol describes the creation of the relation between them.

1. E -> P: Req(E,P,TR)

2. P -> E: Ack(E,P,#(E,P,TR)SP)

3. E <-> P: Transaction

4. E: Create r=(A,B,R,W,T,#(A,B,TR)SP,#(r)SE)

In the first step, the evaluator sends a request to the provider, this request
contains the identification of both peers and an actual time-stamp TR. It can also
contain other transaction specific information which is not shown here. If the
provider is willing to accept the request, it replies with an acknowledgement

56

containing the digital signature of the items in the request. The provider should
refuse the request if the time-stamp in the request is significantly different from its
local time or lower than in the previous transaction with the same peer. After the
evaluator receives the acknowledgement and verifies the signature, the transaction
can start. In the last step, the evaluator has a possibility to create a secured relation
and express its satisfaction with transaction. The secured relation contains two extra
items: (1) the digital signature of the request confirming that the provider agreed with
transaction and (2) the digital signature of the whole relation confirming that the
evaluator creates the relations. These two items allow verifying requirements 1 and 2.

The protocol above should ensure that each relation is preceded by the
transaction between involved peers. Clearly, this is not true in a case when both peers
are malicious. The group of malicious peers can create relations among them without
limitations. We will analyse situations when either the provider or the evaluator is
malicious.

If the provider is malicious, there are two possibilities of malicious activity.
First, the provider does not send the correct acknowledgement in step 2. The
evaluator should mainly verify the signature and whether it corresponds with the
request. If the acknowledgement does not pass, the evaluator does not perform the
transaction. Second, the bogus transaction is provided in step 3. In this case, the
evaluator is able to create a relation with negative rating. The provider has no means
of stopping it.

The situation with malicious evaluator is more complicated. The evaluator
can receive the acknowledgement in step 2 but does not perform the transaction and
skips to step 4. The information provided in such relation is completely fabricated
and can damage the reputation of honest providers. The defence against this
behaviour consists in checking of the evaluator rating before the acknowledgement is
generated. The providers should not agree with transactions with poor evaluators for
two reasons. First, the successful transaction does not increase its provider rating
and, second, there is a probability that it does not even get a chance to prove its
trustworthiness. Other vulnerability is that the malicious evaluator can use the
acknowledgement from previous transaction and change the relation once created.
The storage procedure described bellow should deal with such behaviour.

The next issue is how the relations are stored in the network. It is not suitable
to store the relations on peers which are involved in them because the malicious
peers can suppress some relations to improve their reputation. Instead, we use a
storage based on the distributed hash table (DHT). In order to make the relations
searchable by both participants, the basic implementation suppose that each relation
is stored in the network twice under different keys, once under a key derived from
the evaluator identifier and once under a key based on the provider identifier. Any

57

usable implementation has to be extended by the replication to prevent data loss in
case of peer failure or maliciousness. This problem is more serious due to the fact
that all relations from one evaluator or towards one provider are stored together on
one peer. If this peer fails, the complete history of one remote peer is lost. There are
several replication algorithms proposed in literature (e.g. [72], [85], [86] or [87])
which can be used. In the following text, we suppose only the basic implementation
without replication.

After the relation is created in step 4, the evaluator stores it into the DHT. The
peer in the DHT responsible for storing the relations should perform the following
series of operations before the relation is stored in its local database:

1. If the relation already exists, it tests whether a new relation has a newer
time-stamp T and a newer time-stamp TR in the acknowledgement than
relations already stored in a local database. The relation is dropped otherwise.

2. It tests whether time-stamp T and time-stamp TR are not too old and whether
T > TR.

3. It verifies the evaluator signature to eliminate forged relations.
4. It verifies the provider signature in the acknowledgement to eliminate not

approved relations.
5. The relation is stored in local database. The older relation is replaced if it

exists.

This ensures that only the newest and genuine relations are stored and that the
malicious evaluator cannot use the acknowledgement from the previous transaction
to update its previously created relation.

The function get_relations sends a DHT query for each peer from the input
set together with a specification whether provider or evaluator key is required. The
important property is that each relation has to be stored simultaneously under an
evaluator and a provider key. The relation r has to be included in the results of both
function get_relations(provider,{r.P}) and get_relations(evaluator,{r.E}) or none of
them. Otherwise the malicious peer can exploit it. For instance, the malicious
evaluator can store its false relation only under a provider key, which means that this
relation will be used in the calculation of the provider rating but not used in the
calculation of the evaluator rating. To prevent this vulnerability, the peer responsible
for storing the relation under a provider key notifies its counterpart for an evaluator
key before it stores the relation into its local database and vice versa. Therefore, the
evaluator can send store message only once. Additionally, if we modify this
procedure to do this notification periodically, we have a simple replication algorithm.

The fundamental question is how the transactions are evaluated. The previous
researchers used either continuous values in a limited range or a discrete value to

58

mitigate the subjectivity of the evaluation. Besides, the reputation value included in
the relation is a cumulative value which contains the evaluation of all previous
transaction towards the remote peer. More precisely, it is the evaluation of the remote
peer based on its past transactions. We intentionally do not provide a mechanism of
evaluating the transaction or cumulating evaluations of transactions into an
evaluation of a peer. The evaluation of transactions in a file-sharing network can be
completely different from the mechanisms used in a distributed storage or a
distributed computation. In each application the peers have different means to verify
the result of the transaction and different demands on the transaction parameters. So,
these mechanisms are related with the application layer, and BubbleTrust is not bind
with any specific application layer.

5.5 Provider and evaluator functions

The next task is to design the evaluator and the provider functions defined in
section 5.2. Those functions have a crucial impact on the algorithm result. The
provider function determines how the evaluator rating influences its
recommendations. Analogously, the evaluator function determines how the accuracy
of the recommendations influences the evaluator rating of its originator. In this
section, we discuss the requirements on both functions and propose their
formulations. We start with the provider function which has a form:

pv (x1 , x2) : [− 1,1]×[0,1]→ [− 1,1]

The first argument is a provider rating originated from an evaluator
(recommendation) and the second argument is the evaluator rating of this evaluator.
The function result is the altered provider rating according the evaluator trustfulness.
This implies four natural conditions:

1. If x2 = 1 then pv = x1 (Let the recommendation unchanged.)
2. If x2 = 0 then pv = 0. (Ignore the recommendation.)
3. The pv is an increasing function in x2 for x1 > 0.
4. The pv is a decreasing function in x2 for x1 < 0.

We introduce a fifth condition which allows us to parametrize the function by
the parameter TP. This parameter determines the degree of toleration and is in the
range (0,1].

5. If x2 = 0.5 then pv=x1⋅T P .

59

In other words, if the evaluator trustfulness decreases to the mid-value, the
recommendation is decreased by the parameter TP. This parameter is called provider
toleration. We designed the simplest function which meets all five conditions:

pv (x1, x2)=x2
log0.5(T P)⋅x1 (11)

Figure 10 demonstrates the meaning of the parameter TP. The bigger TP

implies that the pv decrease slowly, hence the system is more tolerant to the peers
with lower evaluator ratings. In this figure, the function value in the point x2 = 0.5 is
equal to the value of TP. And figure 11 illustrates the provider function for different
x1 value. The figure shows only positive values, the graph of negative values is
symmetrical on axis x2.

60

Fig. 10: Provider function with fixed TP and variable x1.

Fig. 11: Provider function with fixed x1 and variable TP.

The evaluator function is a little bit more complicated. It has a form:

ev (x1, x2) :[−1,1]×[−1,1]→[0,1]

The first argument is a provider rating originated from a given evaluator and
second argument is the reference provider rating. On the basis of those values, the
function determines the evaluator rating of the given evaluator. This implies three
natural conditions:

1. If x1 = x2 then ev = 1 (Accurate recommendation)
2. If difference between x1 and x2 increases, then ev decreases.
3. The decreasing rate depends on the absolute value of x2. The smaller |x2|

implies lower decrease rate.

We also introduce the next condition which allows us to parametrize the
function by the parameter TE. Similarly to the evaluator function this parameter can
be interpreted as a degree of toleration.

4. If x2 = 1 and∓ x1=x 2⋅(1−TE) than ev = 0.5

In other words, if the known peer is completely trustful or completely
distrustful and the recommendation differs by the parameter (1 - TE), then the given
evaluator has an evaluator rating 0.5 (the mid-value). This condition is analogous to
condition 5 for the evaluator function.

The following function meets all conditions:

ev (x1, x2)=0.5
(

x1−x2

(1−T E)⋅∣x1∣−1
)

2

(12)

Figure 12 shows the evaluator function for fixed TE and variable x2. The
maximum is in the points where x1 = x2 (accurate recommendation). The parameter
TE determines how quickly the function decreases from its maximum.

The last function is the time function which maps the age of transaction into a
range [0,1]. There is only one simple condition: the older relation weights less than
newer one. The simplest implementation is the linear function:

f (t)=1−
ΔT

history_period
for ΔT < history_period, 0 otherwise.

However, in our system we use the exponential function which reflects
dependency between time and the relation weight better. We use the following

61

exponential function:

f (t)=e−(ΔT⋅k)
2

k=√−ln(min_weight)
history_period

for ΔT < history_period, 0 otherwise.

where parameter min_weight is the minimum acceptable value. The function reaches
this value if ΔT is close to history_period. The function is shown in figure 13.

62

Fig. 12: Evaluator function with fixed TE and variable x2.

Fig. 13: Time function for different parameter k.

5.6 Optimized algorithms

The basic algorithm introduced in section 5.3 tries to reach all peers in the
network. The load related with the basic algorithm can be unacceptable for real
usage. In the following text we introduce several improvements which reduce the
algorithm complexity without significant degradation of its efficiency.

5.6.1 Cutting off

The first improvement is based on the idea that in the formula (9) or (10) it is
not necessary to involve the relations which have small weight in comparison to
other. These relations have only limited influence on the result and can be neglected.
The optimized algorithm ignores the peers whose relations have a low contribution to
the calculated trust value and there is no point in dealing with them. We also
implement the maximal number of nodes added in each level. The algorithm ensures
that less important peers are removed first. The function in figure 14 realizes the
described restrictions and can implement the function optimizations(evaluator,S) in
the basic algorithm.

The algorithm calculates cumulated weight for each evaluator, because this
evaluator can have relations towards more peers in the input set. The algorithm

63

function optimization(evaluator,S) {

 W = 0;

 foreach s from S {

 e = s.get_evaluator();

 e.weight += W(s);

 W += W(s);

 E.add(e);

 }

 foreach e from E { e.weight = e.weight/W; }

 E = sort_weight(E);

 removedWeights = 0;

 foreach e from E {

 removedWeights += e.weight;

 if ((removedWeights <= limit) || (S.size() > maxNodes)) then

 E.remove(e);

 }

 foreach s from S {

 if (!E.contains(s.get_evaluator()) then S.remove(s);

 }

 return S;

}

Fig. 14: Cutting off relations with the smallest weight.

removes the evaluators which cumulative weights towards all peers in the input set
are smallest.

5.6.2 Limiting depth

The basic algorithm finishes after visiting all nodes in the network or if there
are no more relations from visited nodes to the rest of the network. The restrictions
on number of nodes in each level result into increasing the depth of recursion, so it is
necessary to limit the depth as well. The peers in the last level have assigned the
default trust values. We choose the default provider rating equal to 0 and default
evaluator rating to 0.5, both represent a mid-value. In simulations presented further
in the text we recommend an appropriate number of levels.

5.6.3 Using values from previous runs

One algorithm run computes trust values for a large number of peers. Using
these values in next runs seems to be a good idea. There are two related issues. First,
not all trust values are equally reliable. For instance, the trust value which was
calculated in level 6 is less reliable than the value from level 2. On level 6 there are
less remaining levels to maximal depth and calculation is more limited. Second, the
trust values obsolete in time because new transactions take place and relations are
changed.

Nevertheless, using the cached values can significantly decrease the network
load. We introduce three simple rules for manipulating with the trust cache which
should minimize the impact on the accuracy.

1. The level where the trust value was calculated is stored into the cache along
with the trust value.

2. The cache record is used in calculation only if the level of the record is less or
equal to the current level in the calculation algorithms.

3. Each level has its time to live (TTL). After this time the level of the record is
increased. If the record is on the maximal level, the record is deleted.

These rules ensure that the calculation is not less accurate than without using
the cache. In fact, using cached values from the lower level than the current level
increases accuracy, because the values on the lower levels are more precise.

5.7 Evaluation and data analysis

To evaluate performance of our method, we implemented the simulation
model. We generate a network with a given number of nodes and relations between
them. The relations are generated according to both zip's law and random
distribution; each relation has a different size and time.

We focused on performance issues which can be measured by the average

64

number of visited nodes for each query. The basic algorithm reaches as many peers
as possible; if there are some relations from the visited peers to the rest of the
network, the basic algorithm follows them. Hence the number of visited nodes
depends on the density of relations in the network. The practical simulations showed
that the average number of visited nodes for the basic algorithm and zipf's
distribution is 1.4⋅N , where N is the number of the peers in the network. Do not
forget that each peer can be visited twice.

The optimized algorithm with cutting off and limiting depth reduces the

maximal number of visited peers to (max_nodes⋅max_levels) . The parameter

max_level limits the depth of the recursion and max_nodes limit the number of peers
on each level. Obviously, the peers which are farther from the original peer have
smaller influence on the calculated rating. Our goal is to set these parameters as low
as possible with minimal impact to the result.

We performed several simulations with different network sizes and number of
relations. The figure 15 displays how the parameters max_nodes and max_levels
change the reputation value in the network with 2000 nodes and 40000 relations.

The graph shows the difference between outputs of the basic algorithm and
restricted algorithm with the given parameters. An important property of the
BubbleTrust is that it does not depend on the size of the network. As a result of these
simulations, we recommend using the parameters max_nodes = 200 and max_levels
= 5 where the difference is less than 0.05. However, the algorithm can still visit 1000

65

Fig. 15: The dependency between the restriction parameters and calculation result.

nodes, so the next optimization is necessary.
The cached version has a great potential to reduce the number of visited

peers. We performed the simulation of the network with 1000 peers and 20000
relations per day with a zipf's distribution. The efficiency of this optimization
depends on the peer activity. We suppose that the tested peers ask to the some others
peer ratings every 10 minutes. The figure 16 shows the simulation after two days.
This simulation does not implement any other optimization.

On recommended level 5, the number of visited peers falls to the one quarter.
The rules for using cached values ensure that this optimization does not deteriorate
the result values.

Of course, further simulations are necessary to prove the algorithm efficiency
against previously proposed malicious activities compared with previously published
methods. This section focuses on the network load caused by the algorithms itself
and effectiveness of the proposed optimization methods.

5.8 Summary and future work

BubbleTrust differs from the previously published TMSs in several ways. The
data management layer ensures that the malicious peers cannot create fake relations
towards honest peers or suppress unflattering relations towards them. All peers have
to acquire an acknowledgement from their transaction partner before the relation is
created. Unfortunately, this does not stop malicious peers to create fake relations
towards allied malicious peers.

66

Fig. 16: Efficiency of using cache in the network with 1000 nodes and 20000 relations
per day.

The evaluator rating is calculated using experience of other peers in the
network. TMSs discussed in section 3 use either only personal experiences or rely on
the premise that good provider is a good evaluator as well. As far as we know,
BubbleTrust is the first TMS using global experience as feedback verification (see
table 4). In BubbleTrust we formalized the relation between evaluator and provider
rating and vice versa. The provider function and the evaluator function allow to
parametrize these relations and establish the level of toleration. The evaluator rating
has also a new use in BubbleTrust. The providers check the evaluator ratings of all
consumers requesting their resource.

Unlike the most other TMSs, BubbleTrust does not try to find the chain of the
trust from the consumer to the provider. This chain can be easily compromised if
only one malicious peers succeed in attaching itself into this chain. Moreover, this
chain can be relatively long, especially in a large P2P networks and the process of
finding such chain can be very expensive. BubbleTrust uses the concept of trust
bubbles. In the centre of the bubble is a potential provider and on each level are peers
which have the strongest relations with peers on the lower level. The size of the
bubble is not determined by the size of the network but only by the capacity of
computing peers. The peers which initiate the computation may or may not be a part
of the bubble. Thanks to this mechanism, the peer's decision is based on the opinion
from the largest group of peers with strongest relations towards the target peer. Each
peer in BubbleTrust can choose the size of the trust bubble and adjust the trade-off
between computation accuracy and the load of computation process. All this
improvements should significantly help to fight with malicious peers. The simulation
and comparison with previously published TMSs are in section 7.

In our future works we want to focus on the next reduction of the complexity
of the algorithm. For instance, at the moment, every peer makes a decision on the
basis of information served by data management layer and performs all calculations
by its own. However, the peers which trust each other at most can share information
stored in the cache and reduce the network load.

To complete the system, it is also necessary to develop a reliable method for
replication information stored in the DHT. The primary purpose of replication is to
prevent data loss caused by the node failure or its maliciousness. But it can also
significantly speed up the lookups in DHT and reduce the network load.

67

6 Simulation framework
In order to facilitate comparison of different TMSs and their behaviour under

different malicious strategies, we created a simulation framework [88] called
P2PTrustSim. We used FreePastry [89], a modular, open-source implementation of
the Pastry [3], P2P structured overlay network. Moreover, FreePastry includes a
network simulator which can be used as a base for P2PTrustSim. Above the
FreePastry, we created the peer simulation layer which implements various peers’
behaviour. The framework is highly configurable and allows implementing various
simulation scenarios, trust managements and malicious strategies.

6.1 Architecture of P2PTrustSim

The framework is written in Java and available via svn [90]. The main class
accepts two parameters: the configuration file and the output directory. The
configuration file is a standard Java properties file containing entire simulation
settings. All logs and statistics are stored into the output directory.

The basic properties located in the configuration file are simulation_class,
trustmanagement_class and malicious_nodes_implementation. These properties
determine which class will be used for these tasks. Except the few properties related
to log facility, all other properties depend on the settings of these three basic
properties.

6.1.1 Simulation class

The simulation class creates and controls the simulation. Its task is to prepare
a simulation scenario, which includes initializing a required number of honest and
malicious nodes and initial distributing resources among them. This class is also
responsible for starting the simulation, reading and aggregating statistical data from
all nodes. It implements UserSimulatorInterface which is quite simple. This interface
contains only two methods: addPeer and run.

So far we have created only one implementation of the simulation class called
BasicUserSimulator. This class initializes malicious nodes according the properties
malicous_nodes and malicious_nodes_implementation. To reflect the typical resource
distribution in a P2P network better, each resource has a parameter called popularity.
More popular resources are most often used in transactions; they are shared on one
peer longer and have a higher probability that the downloading peer becomes a new
provider. These rules imply that resources have no stable providers but travel in the
network; new resources can be created, old ones can vanish and more popular
resources are provided by more peers. The resource popularity is distributed
according the zipf-law. The resources are distributed according the zipf-law which
reflects the typical resource distribution in the most used file-sharing P2P networks

68

[43]. The parameters of zipf-law distribution are determined by the properties
zipflaw_exponent and zipflaw_ranks.

In a regular interval determined by the property one_cycle_min the simulation
dumps the information about the simulation progress and the memory usage on the
standard output. The property one_cycle_min is defined in minutes of simulation
time. And every dump_every_nth_cycle the statistical information from all nodes are
stored into the file ./stats/global.log in the output directory. All other actions are
driven by the user implementations.

6.1.2 User implementations

There can be many different user behaviours. The peers can be either honest
or malicious and malicious peers can implement many malicious strategies. In
P2PTrustSim the user behaviour is simulated in class AbstractUserImplementation.
This abstract class contains implementation of functions performing transactions,
sharing resources and communicating with trust management. The specific user
behaviour is implemented in classes inherited from AbstractUserImplementation. All
subclasses must implement these three methods: run, serveTransaction and
evaluateTransaction. The first method is called periodically by the simulation
framework and should perform the actions initiated by the user itself, like
downloading a resource from a remote peer or creating fake transactions. Other two
methods are called when the framework requires serve or evaluate transactions.
P2PTrustSim contains eleven classes implementing different user behaviours.

The first class is called UserHonest and simulates behaviour of honest peers.
In regular intervals, the honest peer picks a random resource, finds all providers for
this resource, chooses the best provider, downloads the resource from this provider
and evaluates the transaction. Optionally, the peer can be a new provider for this
resource and share it with other peers for some time. If some remote peer requires the
resource located on the honest peer, the honest peer always provides the resource in a
full quality. The honest peer also always evaluates all transactions truthfully.

All other classes implement some type of malicious behaviour described in
chapter 4 or a combination of them. The simplest malicious strategy is implemented
in UserIndividualSimple. All resources shared by the malicious peers are malicious.
Malicious peers do not use any strategy to help spread their resources nor download
any resource from other peers. Slightly more clever is a strategy implemented in
UserIndividual which uses also false meta-data strategy to make all their resources
most popular ones. The current TMSs should easily deal with both these strategies.
The last individual malicious strategy is implemented in the class UserCamouflage.
The camouflaged malicious peers provide both malicious and honest resources. The
ratio between malicious and honest transactions is determined by the property

69

malicious_trans_ratio.
The next five classes correspond with names of collective malicious strategies

described in chapters 4.3 and 4.4. In all cases the combination with false mata-data
strategy is used. The remaining two classes UserMaliciousNewcomer and
UserMaliciousChange is used for special scenarios with oscilation behaviour
explained in chapter 7. The number of faked or other auxilary transactions for each
malicious strategy can be set through the configuration file.

6.1.3 Trust managements implementation

The implementations of trust management systems are separated into the
independent project. Our goal was to create an implementation which will be usable
together with FreePastry to develop any P2P application. There are not any
dependencies on P2PTrustSim. The project is accessible via svn [91].

Currently, the project contains basic implementations of seven TMSs. These
implementations are usable together with P2PTrustSim and can be used by
application developers as well. But so far we have implemented only the features
necessary for our simulations; therefore, some critical functions are still missing. For
instance, any implementation does not provide replication. The implementation of
BubbleTrust does not use cryptography in the data management layer. Each peer in
EigenTrust is a score manager for itself. All implementations should be extended
before they can be used in the production deployment.

All TMSs must implement interface called TrustManagementInterface. This
interface exports all TMS functions. The main functions are: getProviderRatings,
getEvaluatorRatings and evalTransaction. But some implemented TMSs either do
not use an evaluator rating or use a vector value for a provider rating. In this case we
mapped the results into a range [-1,1] for provider rating and a range [0,1] for
evaluator rating. In case that the TMS does not support evaluator rating, the function
getEvaluatorRating returns always 1. Therefore, the decision algorithm in
P2PTrustSim does not have to be modified for each TMS.

P2PTrustSim is built above the structured P2P network which limits the
number of TMSs which can be implemented. We can afford it because the structured
P2P networks became prevalent in recent years and replaced the less efficient
unstructured P2P networks in many applications. We also implemented only the basic
model using the reputation connected with peers, not with resources. The resource
reputation model has special requirements on the way of distributing resources. We
do not assume anything about P2P application above TMSs.

We implemented seven TMSs demonstrating different approaches, namely:
DummyTrust, SimpleTrust, EigenTrust, PeerTrust, H-Trust, WTR and BubbleTrust.
First implementation, DummyTrust, represents a network without trust management.
A random provider is chosen regardless of its reputation. SimpleTrust is a very

70

simple TMS which uses only local experiences. Recommendations from remote
peers are ignored. These two implementations serve as a base for a comparison. The
remaining five implementations correspond with TMSs described in the sections 3.

There are some implementation details which should be mentioned. The
EigenTrust is not able to work correctly without pre-trusted peers, so we had to set
10% honest peers as pre-trusted. Therefore, EigenTrust has a significant advantage
over other TMSs. In PeerTrust we implemented only PSM variant because TVM is
conceptually similar to EigenTrust and ATC implementation is used due to DTC
excessive overhead. The system WTR uses the risk factor besides the reputation, in
our model we cumulated the risk and the reputation into a single value which is used
for the decision process. This calculation follows the procedure described in the
WTR [71].

6.1.4 Communication in P2PTrustSim

The communication between the user implementation and the trust
management is provided by the P2P layer. This layer implements a FreePastry
application node, realizes the transactions between peers and communicates with
TMS. This layer simulates the functions of a P2P application while the user
implementation represents physical users sitting behind this application.

Note that malicious behaviour is implemented only on the user level. There is
only one implementation of the P2P layer. The attacker controlling this layer would
have the capability to perform other attacks like whitewashing or attacks against the
overlay network described in 2.1. However, as we have already announced, we
focused primary on the attacks on the application level.

Figure 17 illustrates the communication between all components of the
system during one transaction. On one side is a consumer requesting a resource and
on the other side is a provider serving this resource. The P2P layer is responsible for
communication with the TMS and implement a decision algorithm. The framework is
prepared for the data management as proposed in BubbleTrust, although currently
only BubbleTrust uses it.

71

6.2 Evaluation criteria

It is difficult to compare individual TMSs because there are no fixed criteria
which are able to measure the efficiency of the reputation managements or their
resistance against malicious strategies. We have only a vague notion of “trusted P2P
network”. Most of the TMSs have been built under the premise that this notion is
well understood. For the comparison of different TMSs, first we need to determine
the criteria of success.

Our framework provides statistical data which can be used as a substrate for
these criteria. Each transaction is categorized and counted on both sides (provider
and consumer). The categories distinguish the type of the peer (honest or malicious);
on which side of the transaction the peer was (provider or consumer); and the result
of the transaction. Figure 18 shows all nine types of transactions. The honest and
bogus transactions correspond with their names. The ulterior transactions represent
honest transactions which malicious peers have to perform to fix their reputation.
These transactions can be on the provider side to fix a provider reputation or on the
consumer side to fix an evaluator reputation. The faked transactions are between
malicious peers and their purpose is to transfer reputation from one malicious peer
(e.g. spy) to other malicious peers. If none provider is sufficiently trustful, the
transaction is refused and counted as ConsumeRefused. The originated peer typically
tries to pick different service and repeat the transaction.

72

Fig. 17: Sequence diagram of communication in P2PTrustSim

Let us suppose that all the malicious peers cooperate within only one
malicious collective and the transactions from honest peers are always honest. The
following four invariants are always valid:

The sums are over all peers in the network. Our primary goal is to evaluate
the success of each malicious strategy in a different TMS. Therefore, we defined four
criteria: MaliciousSuccessRatio, BogusRatio, MaliciousCost, and MaliciousBenefit.

MaliciousSuccessRatio is a ratio between bogus transactions provided by
malicious peers in the network with TMS and in the network without TMS
(DummyTrust). It reflects the contribution of the given TMS and it is defined by the
following formula:

MaliciousSuccessRatio=
TotalBoguswithTMS

TotalBoguswithoutTMS

The result should be smaller than 1, otherwise the TMS is not useful. We will
require values smaller than 0.5 to consider the TMS to be resistant against the given

73

Fig. 18: Categorization of transactions in the simulation framework.

1.
∑ ProvideFaked =∑ ConsumeFaked=TotalFaked

2.
∑ ProvideBogus=∑ ConsumeBogus=TotalBogus

3.
∑ ProvideUlterior+∑ConsumeUlterior=TotalUlterior

4.
∑ ProvideHonest+∑ ProvideUlterior=

∑ConsumeHonest+∑ ConsumeUlterior=TotalHonest

malicious strategy.
BogusRatio is a ratio between bogus and all services consumed by the honest

peers. It tells us the percentage of bogus services in the network. It is defined by the
following formula:

BogusRatio=
TotalBogus

∑ ConsumeHonest+TotalBogus

We accept values smaller than 50%, otherwise there is more bogus than
honest services and the participation in such P2P network is not useful for any honest
peer.

MaliciousCost studies TMS from the malicious peers’ point of view. It
monitors the load associated with a malicious strategy. And it is defined as a ratio
between extra transactions performed by the malicious peers to trick the TMS and
the bogus transactions in the network. These extra transactions include faked and
ulterior transactions and represent additional overhead for malicious peers which
they try to minimize. We defined it by the following formula:

MaliciousCost=
TotalUlterior+TotalFaked /2

TotalBogus

The formula takes into account the fact that the overhead connected with
faked transactions is smaller than overhead connected with ulterior transactions. One
side of the ulterior transaction is an honest peer; therefore, the transaction has to be
completed to produce the recommendation. On the other hand, the faked transactions
are solely between malicious peers who can produce recommendations without the
transaction really happening.

This metric gives us an idea of how much computation power and network
utilization is required for a given malicious strategy. It should be as big as possible to
make the strategy useless for the malicious peers. It is necessary to know how strong
the peer’s motivation for its maliciousness is to determine the limit value for this
metric.

The last criterion is a MaliciousBenefit. It represents how much beneficial
transactions the malicious peers have to perform to pass one malicious service. It is
defined by the following formula:

MaliciousBenefit=
TotalUlterio
TotalBogus

The value above 1 means that there is benefit from the malicious collective

74

which is bigger than the damage caused by the collective. This criterion is helpful in
a situation when we want to maximize benefit for peers in the network and do not
want to bother with some bogus transactions.

Apart from these four criteria, the next important property of each TMS is
how quickly the sudden changes in peer’s behaviour are recognized. We considered
two situations: malicious newcomer and treasons. The malicious newcomers are the
peers which join the network and start harm immediately. It is convenient to provide
a small initial reputation to each newcomer in order to give them a possibility to
reveal their intentions. Without these initial reputations, the newcomers would have
only a little chance to be chosen for cooperation and their trustworthiness could not
be verified. But this initial reputation can be also exploited by malicious peers to
push their bogus services.

In treason, the peers which are already connected in the network and which
behaved correctly in the past suddenly start to provide bogus services. This situation
is more dangerous than first one, because such peers have already built a good
reputation and they are usually able to push more bogus services until they are
detected. In our simulation, we have tested both these scenarios and measured the
time necessary to detect such peers and suppress their malicious influence.

6.3 Common simulation settings

We tried to set the similar parameters for all TMSs. The most important
parameter is the history_period which determines how long the network remembers
the information about the last transactions. We set this parameter to 5 hours (in order
to have a history window appropriate to the total simulation time) in all TMSs. Other
parameters used in implemented TMSs are chosen either according the authors
proposals or according the best results of our preliminary simulations. The complete
lists of parameters are given in table 5.

The numbers of ulterior and faked transactions are the same for all malicious
strategies which use them. The camouflage strategy has the ratio between bogus and
honest transactions 0.5. In both cases we choose the values which present trade-off
between success of the malicious strategy and its cost.

75

EigenTrust

Parameter Value

Ratio of pre-trusted peers 10%

Weight of pre-trusted peers (a in original paper) 0.2

PeerTrust

Parameter Value

Default trust 0.2

Default similarity 0.2

Cache limit 60m

H-Trust

Parameter Value

H-Index multiplicator 10

Query threshold 7

WTR

Parameter Value

Window size 10 transactions

Alpha 0.5

BubbleTrust

Parameter Value

Max levels 5

Max nodes 20

TP 0.3

TE 0.5

TTL0 30m

TTL1 30m

TTL2 60m

TTL3 60m

TTL4 120m

Table 5: Parameters for TMS implementations

76

7 Simulation results
In the simulations, we focused on two problems. First, the effectiveness of the

different malicious strategies measured by the four criteria presented in previous
section. Second, we measured how quickly the TMSs are able to react on changes in
peers behaviours.

Our basic simulation network contains 200 peers and 80 peers are malicious.
Hence 40% of nodes in the network are malicious, which represents a very
dangerous environment. The honest peers wake up every 10 minutes and use one
service from the network. The malicious peers also wake up every 10 minutes and
perform a given number of faked or ulterior transactions. The whole simulation takes
24 hours. The size of the network was designed with regards to simulation
possibilities of the FreePastry and the heavy load produced by our simulation. We
have also run other series of test with the different settings and analysed their impact
on result in chapter 7.3.

7.1 Efficiency criterion

Figure 19 shows MaliciousSuccessRatio in the network with BubbleTrust. We
can see that the most successful strategy is evaluator collusion with almost 25% of
realized malicious transactions. In other words, BubbleTrust decreases the number of
malicious transactions to 25% compared to the network without TMSs. This is the
worst case scenario. Other malicious strategies are not so successful. The malicious
transactions are nearly completely suppressed in individual strategies. In these
strategies, we can observe a phenomenon called starvation. The malicious peers are
quickly recognized and nobody wants to cooperate with them. Hence, new
recommendations are not created. After expiring the old recommendations, all
information about peer's maliciousness are lost and they can start over. This causes
the spikes in the graph repeated ones every two history_period.

Figure 20 shows the same graph in network using PeerTrust. The results are
completely different. The most successful strategies are still the evaluator collusion
and the evaluator spies but they reach success ratios near 1. This means that the
number of malicious transactions is almost the same as when we do not use any
TMSs. Therefore, the peers are completely vulnerable against these strategies. We
analysed the reason for this failure and found out that the credibility of malicious
peers is very high due to their correct evaluations. The credibility in PeerTrust is
calculated from mutual recommendations towards same peers. The set of these
recommendations is relatively small and malicious peers in collusion can easily
manipulate with it.

MaliciousSuccessRatios of other TMSs are shown in table 6. The numbers in

77

the table are average values for last 10 hours of simulations. The values above the
threshold 0.5 are displayed in bold; these values indicate that TMSs failed against
this malicious strategy. We can see that only BubbleTrust is resistant against all
tested malicious strategies. There is at least one effective malicious strategy against
all other TMSs.

SimpleTrust is ineffective against all malicious strategies since the history
period is too short. Without cooperation with other peers, the information about
peer’s maliciousness is lost after 5 hours and the delay between two transactions
towards the same peer can be longer. Any real implementation of SimpleTrust should
use much longer history period since all experiences are stored only locally and there
is not an additional cost of storing them in the network.

EigenTrust, despite its advantage, is vulnerable to spies. The spies are even
able to perform more bogus transactions than it would be possible in a network
without TMS. The collusion tactics are completely useless because they are not
designed into this type of TMS. It is notable that the individual strategies are
relatively successful. The reason for this is that the trust matrix converges slowly.
The convergence speed is investigated further in the text.

H-Trust is fully resistant against Simple, Individual, Full collusion and Spies;

78

Fig. 19: MaliciousSuccessRatio for different malicious strategies in
BubbleTrust

all bogus transactions are suppressed. However, it is vulnerable against Evaluator
collusion or Evaluator spies. WTR copes very well with individual strategies;
especially the camouflage is ineffective due to the risk factor. But the collective
strategies can easily circumvent it.

The next criterion BogusRatio is shown in table 7. The results are very
similar to the MaliciousSuccessRatio, it is only a different point of view. In the worst
case scenario, only 28% of all transactions in the P2P network with the BubbleTrust
can be bogus. Other TMSs tolerate 60% (EigenTrust), 70% (H-Trust), 72%
(PeerTrust) and 73% (WTR) bogus transactions

79

Fig. 20: MaliciousSuccessRatio for different malicious strategies in
PeerTrust

Strategy
Simple
Trust

Eigen
Trust

H
Trust

Peer
Trust

WTR
Bubble
Trust

SIM 0.90 0.28 0.00 0.05 0.00 0.04

IND 0.90 0.20 0.00 0.03 0.00 0.02

CAM 0.93 0.26 0.14 0.60 0.00 0.04

FCOL 0.89 0.00 0.00 0.87 0.98 0.13

ECOL 0.88 0.00 0.94 0.99 0.99 0.24

SPS 0.81 1.06 0.00 0.81 0.81 0.07

ESPS 0.83 0.99 0.99 1.00 0.99 0.17

MSPS 0.88 0.15 0.68 0.68 0.62 0.11

Table 6: MaliciousSuccessRatio for different malicious strategies and TMSs.
Malicious strategies: SIM - Simple, IND - Malicious Individual, CAM - Camouflage,
FCOL - Full Collusion, ECOL - Evaluator Collusion, SPS - Spies, ESPS - Evaluator
Spies, MSPS - Malicious Spies.

Strategy
Simple
Trust

Eigen
Trust

H
Trust

Peer
Trust

WTR
Bubble
Trust

SIM 41% 16% 0% 3% 0% 3%

IND 67% 20% 0% 4% 0% 3%

CAM 47% 18% 10% 36% 0% 4%

FCOL 67% 0% 0% 67% 73% 18%

ECOL 67% 0% 70% 72% 71% 28%

SPS 43% 54% 0% 43% 50% 5%

ESPS 43% 60% 50% 50% 50% 12%

MSPS 66% 27% 56% 56% 57% 15%

Table 7: BogusRatio for different malicious strategies and TMSs. Malicious
strategies: SIM - Simple, IND - Malicious Individual, CAM - Camouflage, FCOL -
Full Collusion, ECOL - Evaluator Collusion, SPS - Spies, ESPS - Evaluator Spies,
MSPS - Malicious Spies.

80

A more interesting parameter is MaliciousCost which represents the overhead
of malicious peers for one malicious transaction. Figure 21 shows MaliciousCost of
malicious strategies which use ulterior or faked transactions in BubbleTrust.

The cheapest strategy is the camouflage with approximately 0.16 honest
transactions to one bogus. But this strategy has also a negligible
MaliciousSuccessRatio. From the collective strategies, the cheapest is the full
collusion with a little less than 20 additional transactions to one bogus transaction
which is able to reach MaliciousSuccessRatio 0.13. If we compare all malicious
strategies using the ratio of cost to success, full collusion seems to be the most
advantageous strategy. The creator of a malicious collective should always consider
the cost associated with considered malicious strategies and a potential benefit from
realized malicious transactions. The values for other TMSs are depicted in table 8.

The attacker most likely uses a strategy which has the best cost/success ratio.
For instance, in the PeerTrust the most successful strategy is Evaluator collusion but
it is very expensive (above 9), better choice is Full collusion with success ratio 0.87
and cost only 3.12. The Camouflage strategy is relatively efficient in EigenTrust, H-
Trust and PeerTrust; although it has a low success ratio, it is compensated by its very

81

Fig. 21: MaliciousCost for different malicious strategies in
BubbleTrust

low price. In the BubbleTrust, all strategies have cost above 20 (except Camouflage)
and the most expensive strategy (Evaluator collusion) has almost 38. This is
significantly higher value than have other TMSs.

The last criterion MaliciousBenefit offers a different point of view. The
question is whether malicious strategies emitting ulterior transactions can be
beneficial for other peers in the network. Table 9 shows MaliciousBenefit for
different malicious strategies and TMSs. The strategies like evaluator collusion,
evaluator spies and malicious spies have always more beneficial transactions than
bogus ones. Strictly speaking, the designation malicious collective is no longer
suitable.

Strategy
Simple
Trust

Eigen
Trust

H
Trust

Peer
Trust

WTR
Bubble
Trust

CAM 0.16 0.19 0.11 0.12 N/A 0.16

FCOL 3.04 N/A N/A 3.12 2.73 20.29

ECOL 10.30 N/A 9.65 9.23 9.17 37.97

SPS 2.55 1.96 N/A 2.55 2.10 29.01

ESPS 6.97 5.96 5.76 5.74 5.83 33.74

MSPS 4.42 N/A 5.70 5.71 5.43 35.00

Table 8: MaliciousCost for different malicious strategies and TMSs.

The attackers, whose primary goal is to destroy the network functionality for
other peers, probably do not choose malicious strategy with a high MaliciousBenefit.
But attackers who desire to spread their malicious services at any cost do not bother
with MaliciousBenefit.

Strategy
Simple
Trust

Eigen
Trust

H
Trust

Peer
Trust

WTR
Bubble
Trust

CAM 0.16 0.19 0.11 0.12 N/A 0.16

ECOL 7.24 N/A 6.79 6.48 6.44 26.68

SPS 0.12 0.10 N/A 0.13 0.09 1.83

ESPS 3.37 2.88 2.77 2.76 2.80 16.53

MSPS 2.09 N/A 2.70 2.70 2.56 16.56

Table 9: MaliciousBenefit for different malicious strategies and TMSs.

82

7.2 Dynamic criterion

In the following simulations, we focus on convergence speed; therefore, on
the time which the TMSs need to react to newcomers or sudden changes in peer
behaviour. To test a newcomer scenario, we used similar settings like in previous
simulations. In this simulation, the 40% of malicious peers join the network after ten
hours. The number of bogus transactions increases as expected and after some time
drops to zero. Figure 22 shows the progress in a number of bogus transactions in this
scenario. The PeerTrust, BubbleTrust and WTR are able to recognize all malicious
newcomers in less than one hour. The best results have been measured with
PeerTrust which deals with all newcomers in a half hour. The slowest reaction has
been measured in EigenTrust. However, these results are not sufficiently informative
because they depend mainly on initial trust. Each TMS gives newcomers a small
initial reputation in order to allow them to prove their trustworthiness. This value
differs in each TMS and influences the results in this simulation.

Nevertheless, the results of this simulation can help to determine resistance of

83

Fig. 22: Number of bogus transactions after joining new malicious
peers.

individual TMSs against whitewashing attacks. The longer time to recognize a
malicious newcomer the more attractive the system is for whitewashers.

In the next simulation scenario, the 40% of honest peers suddenly change
behaviour and start provide bogus resources. These peers have already the highest
possible reputation, hence they can cause more damage until detected. Figure 23
shows progress in number of bogus transactions in scenario with traitors.

As we expected, in all cases the time to discover malicious peers is longer
than in the previous scenario. The quickest TMS is BubbleTrust followed by WTR
with times about 2.5 hours. On the other hand, the trust in traitors in H-Trust is lost
after more than 13 hours. EigenTrust does not suppress all bogus transactions even in
simple malicious strategy, see table 6. We have to measure the time for which the
number of bogus transactions falls to its normal level, in this case it is 6 hour.
Similarly for PeerTrust, the effect of traitors diminishes after 10 hours.

Traitors are very dangerous for each TMS. The success of this strategy mainly
depends on the speed of how the changes in peer behaviour are recognized. There are
two time intervals which need to be taken into account. First, it is the time to reveal a

84

Fig. 23: Number of bogus transactions after betrayal.

traitor. It is the interval between the moment when a high-reputable peer starts to be
malicious and the moment when all peers in the network are aware of his
maliciousness. This has been investigated in the previous simulation. Second interval
is the time to rehabilitate a malicious peer. In other words, it is the time between the
moment when a malicious peer starts to provide honest resources and the moment
when all peers in the network trust them again. Some TMSs do not allow malicious
peers to regain its reputation after treason at all. But this requires that history is
remembered indefinitely which is not case in most TMSs.

In the last simulation, we investigated the time to rehabilitate malicious peers.
This simulation takes 60 hours and malicious peers change their behaviour every 15
hours. Figure 24 shows the time interval from 30 to 50 hours. Therefore, it starts in a
moment when a recognized malicious peers return to honest behaviours. The
increasing number of ulterior transactions expresses the process of regaining trust.
After approx. 6 hours the number of ulterior transactions reaches its normal level
which indicates that all malicious peers are trustful again. Table 10 shows times of all
other TMSs.

85

Fig. 24: Rehabilitation after treason in BubbleTrust.

The quality TMSs should have the shortest treason detection time and the
longest rehabilitation time. The parameter history_period has an appreciable impact
on these results, in all our simulation it is set to 5 hours. This parameter determines
how long the feedbacks are stored in the network. The individual peers can have its
own database according the algorithm of used TMS.

7.3 Influence of different simulation settings

We have tried different simulation settings. The basic simulation network
contains 200 nodes and 40% of them are malicious. At first we have adjusted the
number of nodes in the network with preserving the ratio of malicious nodes. We
have made the following observation: an increase in number of nodes does not affect
the MaliciousSuccessRatio. The reason for this fact is that each TMS can handle only
a limited number of nodes in the calculation of ratings. For instance, the size of the
trust bubble in BubbleTrust is limited to 100 nodes. A similar limitation can be found
in all TMSs. The information from nodes which are very distant in a trust chain is
negligible. On the other hand, the results change if we decrease the number of nodes
in the network. This change can be in both directions; it depends on the TMS and the
malicious strategy. In this case the TMS has to rely on information from a smaller
number of nodes than it expects. It works in some kind of degrades modes.
Therefore, we chose the network with 200 nodes as optimal for simulation a real
application.

Next we have altered the ratio of malicious nodes. Figure 25 shows the results
for BubbleTrust. As we can see, the malicious success increases with the ratio of
malicious nodes in the network. BubbleTrust resists relatively well even in the
network with more than 50% of malicious nodes. In our tests we stayed at 40%
because it is very unlikely that the overlay network beneath the P2P application can
handle with the situation where half of the peers are malicious. The defence
techniques described in 2.1 assume that only a small fraction of nodes is malicious.
In fact, 40% already cause big problems.

86

7.4 Summary

Table 10 shows that the best TMS in our comparison is BubbleTrust. It has
the shortest treason detection time, the longest rehabilitation time and allows only
28% of bogus transaction under the most successful malicious strategy. As far as we
know, it is the only one TMS using global experience as feedback verification.

H-index calculation used in H-Trust proved to be vulnerable to traitors. It
takes too long to detect traitors and malicious peers are rehabilitated too quickly. The
system WTR permits the highest number of bogus transactions from all tested TMSs,
but it is followed closely by PeerTrust and WTR. EigenTrust has better results than
HTrust, WTR and PeerTrust but it has a significant advantage in the form of pre-
trusted peers as well.

Our tests proved that it is very difficult to resist against the sophisticated
malicious techniques. Especially the calculation of the evaluator rating is susceptible
to rigging. The previously published TMSs do not pay as much attention to the
evaluator rating as they pay to the provider rating. This must change if the TMS

87

Fig. 25: Effect of ratio of malicious peers on Malicious Success Ratio in
BubbleTrust.

should be resistant against the evaluator collusion or the evaluator spies.

T
ru

st
 m

an
ag

em
en

t
sy

st
em

R
eh

ab
ili

ta
ti

on
 t

im
e

[h
ou

rs
]

T
re

as
on

 d
et

ec
ti

on
 t

im
e

[h
ou

rs
]

T
yp

e
of

 r
at

in
g

F
ee

d
b

ac
k

 a
gg

re
ga

ti
on

F
ee

d
b

ac
k

 v
er

if
ic

at
io

n

B
es

t
m

al
ic

io
u

s
st

ra
te

gy

M
ax

im
al

 B
og

u
sR

at
io

EigenTrust 4 6 G F GP SPS 60%

HTrust 1.3 14 P S PE ESPS 70%

PeerTrust 5 10 P F PE ECOL 72%

WTR 2.5 3.1 G F GP ECOL 73%

BubbleTrust 6.5 2.4 P S GE ECOL 28%

Table 10: Summary of all tested TMSs.

All TMSs have been tested in a very dangerous environment and against the
sophisticated malicious strategies. If we run similar tests in less dangerous
environment, the results of all TMSs have been significantly better and similar to
each other. Additionally, the use of such sophisticated malicious strategies in a real
P2P application has not been recorded yet. Currently, there are not P2P applications
widespread enough and handling with such attractive resources to be worth it. These
tests should be understood as stress tests realizing the worst case scenario. They
should verify whether P2P networks can be used in more security sensitive
applications.

88

8 Conclusion
In this thesis, we focused on the security aspects of the distributed

applications built over P2P networks. This is a very extensive topic covering the
common network attacks, the attacks against the overlay network and last but not
least the application attacks exploiting the natural trust among the peers. We
summarized the state of the art in this field and assessed the application layer as the
most challenging area. The reputation-based trust management has been proposed in
the the last years as a novel way of dealing with the security deficiencies inherent to
P2P networks. Many trust management systems have been developed in last years.
We described the most known of them and organized them into a simple taxonomy
which gives us a basic idea about usable approaches. Many published trust
management systems are conceptually similar. In this thesis, we focused only on
systems which introduced new ideas or push knowledge forward, hence it should not
be considered as a complete list of all published TMSs.

One of the crucial parts of this thesis is an analysis of possible malicious
strategies. The collective of malicious peers which cooperate with each other can
develop sophisticated malicious strategies which present a big challenge for each
TMS. The most previously published TMSs have been designed considering only
simple collective strategies, if any, but the attacker with detailed knowledge of the
internal function of the TMS can adapt its strategy to be more efficient under used
TMS. We propose several modifications of the known malicious strategies targeted
towards the general principles used by some TMSs. These strategies are more
dangerous than common collective strategies. Additionally, other modifications or
combinations of these strategies are possible with even bigger efficiency.

It is expected that malicious peers work in a collective try to use the most
effective strategy. Therefore, the quality of TMSs has to be assessed according to the
most successful malicious strategy. Additionally, other properties have to be taken
into account too; e.g. the cost connected with the malicious strategy can exceed the
potential benefit for malicious peers.

We organized the existing models and ideas of trust management systems and
confronted them to the potential strategies used by attackers associated in malicious
collectives. We also analysed the existing malicious strategies and proposed new
strategies specifically designed according the weaknesses of the current trust
management systems.

On the basis of this analysis, we developed a novel trust management system
called BubbleTrust. This system implements several new approaches compared to the
previously published systems. The data management layer uses asymmetric
cryptography to ensure that malicious peers cannot create faked feedback towards

89

honest peers or deny unflattering feedbacks towards other malicious peers.
BubbleTrust also uses a unique way of calculating an evaluator rating. Most of the
other TMSs calculate evaluator rating either using only local experience with
evaluator's previous feedbacks or using the premise that a good provider must be a
good evaluator as well. In BubbleTrust, the peers calculate the evaluator rating
similarly to provider rating; in cooperation with other peers. This approach provides
more precise results and better resistance against collaborative malicious strategy
using false feedbacks.

Unlike the most other TMSs, BubbleTrust does not try to find the chain of the
trust from the consumer to the provider. BubbleTrust uses the concept of trust
bubbles. In the centre of the bubble is a potential provider and on each level are peers
which have the strongest relations with peers on the lower level. The size of the
bubble is not determined by the size of the network but only by the capacity of
computing peers. The peers which initiate the computation may or may not be a part
of the bubble. Each peer in BubbleTrust can choose the size of the trust bubble and
adjust the trade-off between computation accuracy and the load of the computation
process.

All this improvements should significantly help to fight with malicious peers.
To verify this assumption, we created a simulation framework called P2PTrustSim.
Using this framework we can compare trust management systems against different
malicious strategies. We also proposed several efficiency criteria which can be
evaluated using this framework. In this thesis, since we cannot test all trust
managements due to their appreciable numbers, we chose the most representative
systems for each type according to the presented taxonomy. Although, the simulation
framework is easily extensible with any TMS suited for structured P2P networks. We
tested five TMSs including BubbleTrust against eight malicious strategies. The
results indicate that only BubbleTrust is resistant against all considered malicious
strategies; it is, therefore, the best choice for deployment in the secured P2P
networks.

As a future work, we plan to extend the simulation possibilities of
P2PTrustSim to test malicious strategies directed to overlay layer and implement
more simulation scenarios. We would also like to implement more TMSs to
emphasize our results.

As for BubbleTrust, our next task is the addition reduction of the complexity
of the algorithm. For instance, at the moment, every peer makes a decision on the
basis of information served by data management layer and performs all calculations
by its own. However, the peers which trust each other at most can share information
stored in the cache and reduce the network load.

For the purposes of the simulations we created five TMS implementations
which can be directly used together with FreePastry for deployment of any P2P

90

application. Nevertheless, the implemented functionality covers only requirements of
tested simulation scenarios. For instance, the cryptography in data management layer
in BubbleTrust is not implemented or the peers in EigenTrust calculated their own
trust values. We plan to improve the BubbleTrust implementation by adding next
security measures. We would like to provide a fully usable security solution for P2P
networks based on BubbleTrust which reacts on all threats in the application and the
network layer.

Our ultimate aim is to make the P2P architecture suitable for implementation
in more security sensitive applications in which traditional client-server model still
dominates.

91

Bibliography
[1] Ratnasamy, S.; Francis, P.; Handley, M.; Karp, R. & Shenker, S., "A scalable content-

addressable network", SIGCOMM Comput. Commun. Rev., 2001, vol. 31 pp. 161-172.
[2] Stoica, I.; Morris, R.; Karger, D.; Kaashoek, M. F. & Balakrishnan, H., "Chord: A scalable

peer-to-peer lookup service for internet applications", In: Proceedings of the 2001 conference on
Applications, technologies, architectures, and protocols for computer communications, pp. 149-
160, 2001

[3] Rowstron, A. & Druschel, P., "Pastry: Scalable, Decentralized Object Location, and Routing
for Large-Scale Peer-to-Peer Systems", Lecture Notes in Computer Science: Middleware 2001,
2001, vol. 2218, pp. 329-350, 2001

[4] Maymounkov, P. & Mazières, D., "Kademlia: A Peer-to-Peer Information System Based on the
XOR Metric", Lecture Notes in Computer Science: Peer-to-Peer Systems, 2002, vol. 2429, pp.
53-65, 2002

[5] Aberer, K.; Cudré-Mauroux, P.; Datta, A.; Despotovic, Z.; Hauswirth, M.; Punceva, M. &
Schmidt, R., "P-Grid: A Self-organizing Structured P2P System", SIGMOD Rec., 2003, vol. 32
pp. 29-33.

[6] Stutzbach, D. & Rejaie, R., "Understanding churn in peer-to-peer networks", In: Proceedings of
the 6th ACM SIGCOMM conference on Internet measurement, pp. 189-202, 2006

[7] Rhea, S.; Geels, D.; Roscoe, T. & Kubiatowicz, J., "Handling churn in a DHT", In: Proceedings
of the annual conference on USENIX Annual Technical Conference, pp. 10-10, 2004

[8] Godfrey, P. B.; Shenker, S. & Stoica, I., "Minimizing churn in distributed systems", In:
Proceedings of the 2006 conference on Applications, technologies, architectures, and protocols
for computer communications, pp. 147-158, 2006

[9] Ou, Z.; Harjula, E.; Kassinen, O. & Ylianttila, M., "Performance evaluation of a Kademlia-
based communication-oriented P2P system under churn", Comput. Netw., 2010, vol. 54 pp. 689-
705.

[10] Rao, A.; Lakshminarayanan, K.; Surana, S.; Karp, R. & Stoica, I., "Load Balancing in
Structured P2P Systems", Lecture Notes in Computer Science: Peer-to-Peer Systems II, 2003,
vol. 2735, pp. 68-79, 2003

[11] Byers, J.; Considine, J. & Mitzenmacher, M., "Simple Load Balancing for Distributed Hash
Tables", Lecture Notes in Computer Science: Peer-to-Peer Systems II, 2003, vol. 2735, pp. 80-
87, 2003

[12] Karger, D. R. & Ruhl, M., "Simple efficient load balancing algorithms for peer-to-peer
systems", In: Proceedings of the sixteenth annual ACM symposium on Parallelism in algorithms
and architectures, pp. 36-43, 2004

[13] Godfrey, B.; Lakshminarayanan, K.; Surana, S.; Karp, R. & Stoica, I., "Load balancing in
dynamic structured P2P systems", In: INFOCOM 2004. Twenty-third AnnualJoint Conference of
the IEEE Computer and Communications Societies, pp. 2253 - 2262 vol.4, 2004

[14] Zhu, Y. & Hu, Y., "Efficient, proximity-aware load balancing for DHT-based P2P systems",
Parallel and Distributed Systems, IEEE Transactions on, 2005, vol. 16 pp. 349 - 361.

[15] Urdaneta, G.; Pierre, G. & Steen, M. V., "A survey of DHT security techniques", ACM Comput.
Surv., 2011, vol. 43 pp. 8:1-8:49.

[16] Dahan, .. S. & Sato, .. M., "Survey of Six Myths and Oversights about Distributed Hash Tables
Security", In: ICDCSW 07: Proceedings of the 27th International Conference on Distributed
Computing Systems Workshops, pp. 26, 2007

[17] Douceur, .. J. R., "The Sybil Attack", In: IPTPS '01: Revised Papers from the First International
Workshop on Peer-to-Peer Systems, pp. 251-260, 2002

[18] Dinger, J. & Hartenstein, H., "Defending the Sybil Attack in P2P Networks: Taxonomy,
Challenges, and a Proposal for Self-Registration", In: Proceedings of the First International
Conference on Availability, Reliability and Security, pp. 756-763, 2006

[19] Castro, .. M.; Druschel, .. P.; Ganesh, .. A.; Rowstron, .. A. & Wallach, .. D. S., "Secure routing
for structured peer-to-peer overlay networks", SIGOPS Oper. Syst. Rev., 2002, vol. 36 pp. 299-
314.

[20] Wang, H.; Zhu, Y. & Hu, Y., "An Efficient and Secure Peer-to-Peer Overlay Network", In:
Proceedings of the The IEEE Conference on Local Computer Networks 30th Anniversary, pp.
764-771, 2005

92

[21] Bazzi, R. A. & Konjevod, G., "On the establishment of distinct identities in overlay networks",
In: Proceedings of the twenty-fourth annual ACM symposium on Principles of distributed
computing, pp. 312-320, 2005

[22] Bazzi, R.; Choi, Y.-r. & Gouda, M., "Hop Chains: Secure Routing and the Establishment of
Distinct Identities", Lecture Notes in Computer Science: Principles of Distributed Systems,
2006, vol. 4305, pp. 365-379, 2006

[23] Borisov, N., "Computational Puzzles as Sybil Defenses", In: Peer-to-Peer Computing, 2006. P2P
2006. Sixth IEEE International Conference on, pp. 171 -176, 2006

[24] Rowaihy, H.; Enck, W.; McDaniel, P. & La Porta, T., "Limiting Sybil Attacks in Structured P2P
Networks", In: INFOCOM 2007. 26th IEEE International Conference on Computer
Communications. IEEE, pp. 2596 -2600, 2007

[25] Yu, H.; Kaminsky, M.; Gibbons, P. B. & Flaxman, A., "SybilGuard: defending against sybil
attacks via social networks", In: Proceedings of the 2006 conference on Applications,
technologies, architectures, and protocols for computer communications, pp. 267-278, 2006

[26] Yu, H.; Gibbons, P.; Kaminsky, M. & Xiao, F., "SybilLimit: A Near-Optimal Social Network
Defense Against Sybil Attacks", Networking, IEEE/ACM Transactions on, 2010, vol. 18 pp. 885
-898.

[27] Sit, E. & Morris, R., "Security Considerations for Peer-to-Peer Distributed Hash Tables", In:
Revised Papers from the First International Workshop on Peer-to-Peer Systems, pp. 261-269,
2002

[28] ll Namgung, J.; Shin, S.-Y.; Park, S.-H.; Lee, L.-S. & Jeong, D., "Self-organizing P2P overlay
network applying dynamic landmark mechanism for contents delivery network", In: Proc. Third
ACIS Int Software Engineering Research, Management and Applications Conf, pp. 317-324,
2005

[29] Hildrum, K. & Kubiatowicz, J., "Asymptotically Efficient Approaches to Fault-Tolerance in
Peer-to-Peer Networks", Lecture Notes in Computer Science: Distributed Computing, 2003, vol.
2848, pp. 321-336, 2003

[30] Condie, T.; Kacholia, V.; Sankararaman, S.; Hellerstein, J. M. & Maniatis, P., "Induced Churn
as Shelter from Routing-Table Poisoning", In: In Proc. 13th Annual Network and Distributed
System Security Symposium (NDSS, , 2006

[31] Singh, A.; Ngan, T.-W.; Druschel, P. & Wallach, D. S., "Eclipse Attacks on Overlay Networks:
Threats and Defenses", In: INFOCOM 2006. 25th IEEE International Conference on Computer
Communications. Proceedings, pp. 1 -12, 2006

[32] Awerbuch, B. & Scheideler, C., "Towards a scalable and robust DHT", In: Proceedings of the
eighteenth annual ACM symposium on Parallelism in algorithms and architectures, pp. 318-327,
2006

[33] Awerbuch, B. & Scheideler, C., "Towards scalable and robust overlay networks", In: Proc 6th
Int Workshop on PeerToPeer Systems IPTPS, pp. 1-7, 2007

[34] Fiat, A.; Saia, J. & Young, M., "Making Chord Robust to Byzantine Attacks", Lecture Notes in
Computer Science: Algorithms – ESA 2005, 2005, vol. 3669, pp. 803-814, 2005

[35] Harvesf, C. & Blough, D., "The Effect of Replica Placement on Routing Robustness in
Distributed Hash Tables", In: Peer-to-Peer Computing, 2006. P2P 2006. Sixth IEEE
International Conference on, pp. 57 -6, 2006

[36] Artigas, M.; Lopez, P. & Skarmeta, A., "A novel methodology for constructing secure multipath
overlays", Internet Computing, IEEE, 2005, vol. 9 pp. 50 - 57.

[37] Xiang, X., "Providing Efficient Secure DHTs Routing", In: Computational Intelligence and
Security, 2009. CIS '09. International Conference on, pp. 510 -514, 2009

[38] Ganesh, L. & Zhao, B., "Identity theft protection in structured overlays", In: Secure Network
Protocols, 2005. (NPSec). 1st IEEE ICNP Workshop on, pp. 49 - 54, 2005

[39] Sanchez-Artigas, M.; Lopez, P. & Skarmeta, A., "Bypass: Providing secure DHT routing
through bypassing malicious peers", In: Computers and Communications, 2008. ISCC 2008.
IEEE Symposium on, pp. 934 -941, 2008

[40] Steiner, M.; En-Najjary, T. & Biersack, E. W., "A global view of kad", In: Proceedings of the 7th
ACM SIGCOMM conference on Internet measurement, pp. 117-122, 2007

[41] Liang, J.; Kumar, R.; Xi, Y. & Ross, K., "Pollution in P2P file sharing systems", In: INFOCOM
2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies.
Proceedings IEEE, pp. 1174 - 1185 vol. 2, 2005

93

[42] Montassier, G.; Cholez, T.; Doyen, G.; Khatoun, R.; Chrisment, I. & Festor, O., "Content
pollution quantification in large P2P networks : A measurement study on KAD", In: Peer-to-Peer
Computing (P2P), 2011 IEEE International Conference on, pp. 30 -33, 2011

[43] Gummadi, K. P.; Dunn, R. J.; Saroiu, S.; Gribble, S. D.; Levy, H. M. & Zahorjan, J.,
"Measurement, modeling, and analysis of a peer-to-peer file-sharing workload", SIGOPS Oper.
Syst. Rev., 2003, vol. 37 pp. 314-329.

[44] Kong, J.; Cai, W. & Wang, L., "The Evaluation of Index Poisoning in BitTorrent", In:
Communication Software and Networks, 2010. ICCSN '10. Second International Conference on,
pp. 382 -386, 2010

[45] Locher, T.; Mysicka, D.; Schmid, S. & Wattenhofer, R., "Poisoning the Kad network", In:
Proceedings of the 11th international conference on Distributed computing and networking, pp.
195-206, 2010

[46] Obele, B.; Ukaegbu, A. & Kang, M., "On tackling free-riders in P2P networks", In: Advanced
Communication Technology, 2009. ICACT 2009. 11th International Conference on, pp. 2084
-2089, 2009

[47] Hughes, D.; Coulson, G. & Walkerdine, J., "Free Riding on Gnutella Revisited: The Bell
Tolls?", IEEE Distributed Systems Online, 2005, vol. 6 pp. 1-.

[48] Sirivianos, M.; Han, J.; Rex, P. & Yang, C. X., "Free-riding in BitTorrent Networks with the
Large View Exploit", In: In IPTPS ’07, , 2007

[49] Jun, S. & Ahamad, M., "Incentives in BitTorrent induce free riding", In: Proceedings of the 2005
ACM SIGCOMM workshop on Economics of peer-to-peer systems, pp. 116-121, 2005

[50] Shin, K.; Reeves, D. S. & Rhee, I., "Treat-before-trick: Free-riding prevention for BitTorrent-
like peer-to-peer networks", In: Proceedings of the 2009 IEEE International Symposium on
Parallel&Distributed Processing, pp. 1-12, 2009

[51] Karakaya, M.; Korpeoglu, I. & Ulusoy, O., "Free Riding in Peer-to-Peer Networks", Internet
Computing, IEEE, 2009, vol. 13 pp. 92 -98.

[52] Bonatti, P.; Duma, C.; Olmedilla, D. & N., S., "An integration of reputation-based and policy-
based trust management", In: Proceedings of the Semantic Web Policy Workshop, , 2005

[53] Abdul-Rahman, A. & Hailes, S., "Supporting trust in virtual communities", In: System Sciences,
2000. Proceedings of the 33rd Annual Hawaii International Conference on, pp. 9 pp. vol.1,
2000

[54] Novotny, M. & Zavoral, F., "Reputation Based Methods for Building Secure P2P Networks", In:
Proceedings of ICADIWT 2008 - First IEEE International Conference on the Applications of
Digital Information and Web Technologies, pp. 403-408, 2008

[55] Houser, D., "Reputation in Auctions: Theory, and Evidence from eBay", Journal of Economics
& Management Strategy, 2006, vol. 15 pp. 353.

[56] Resnick, P.; Zeckhauser, R.; Swanson, J. & Lockwood, K., "The value of reputation on eBay: A
controlled experiment", Experimental Economics, 2006, vol. 9 pp. 79-101.

[57] Marti, S. & Garcia-Molina, H., "Taxonomy of trust: Categorizing P2P reputation systems",
Computer Networks, 2006, vol. 50 pp. 472-484.

[58] Hoffman, K.; Zage, D. & Nita-Rotaru, C., "A survey of attack and defense techniques for
reputation systems", ACM Comput. Surv., 2009, vol. 42 pp. 1:1-1:31.

[59] Novotny, M. & Zavoral, F., "Towards Reliable Trust Management in Insecure P2P
Environments", In: 3rd International Symposium on Intelligent Distributed Computing, pp. 283-
288, 2009

[60] Novotny, M. & Zavoral, F., "Trust Management Systems in P2P Networks and their Resistance
against Malicious Collectives", Agent-oriented Computing for Distributed Systems and
Networks, Special Issue of the Journal of Networks and Computer Applications, 2012, .

[61] Kamvar, S. D.; Schlosser, M. T. & Garcia-Molina, H., "The Eigentrust algorithm for reputation
management in P2P networks", In: WWW '03: Proceedings of the 12th international conference
on World Wide Web, pp. 640-651, 2003

[62] Xiong, L. & Liu, L., "PeerTrust: supporting reputation-based trust for peer-to-peer electronic
communities", Knowledge and Data Engineering, IEEE Transactions on, 2004, vol. 16 pp. 843 -
857.

[63] Lee, S. Y.; Kwon, O.-H.; Kim, J. & Hong, S. J., "A reputation management system in structured
peer-to-peer networks", In: , pp. 362-367, 2005

[64] Liang, .. Z. & Shi, .. W., "PET: A PErsonalized Trust Model with Reputation and Risk
Evaluation for P2P Resource Sharing", In: HICSS '05: Proceedings of the Proceedings of the

94

38th Annual Hawaii International Conference on System Sciences, pp. 201-2, 2005
[65] Nandi, A.; Tsuen; Singh, A.; Druschel, P. & Wallach, D. S., "Scrivener: Providing Incentives in

Cooperative Content Distribution Systems", In: ACM/IFIP/USENIX 6th International
Middleware Conference (Middleware 2005), , 2005

[66] Srivatsa, M.; Xiong, L. & Liu, L., "TrustGuard: countering vulnerabilities in reputation
management for decentralized overlay networks", In: WWW 05: Proceedings of the 14th
international conference on World Wide Web, pp. 422-431, 2005

[67] Aringhieri, R.; Damiani, E.; Sabine; Paraboschi, S. & Samarati, P., "Fuzzy techniques for trust
and reputation management in anonymous peer-to-peer systems", Journal of the American
Society for Information Science and Technology, 2006, vol. 57 pp. 528-537.

[68] Sherwood, .. R.; Lee, .. S. & Bhattacharjee, .. B., "Cooperative peer groups in NICE", Comput.
Netw., 2006, vol. 50 pp. 523-544.

[69] Walsh, K. & Sirer, E. G., "Experience with an object reputation system for peer-to-peer
filesharing", In: NSDI'06: Proceedings of the 3rd conference on 3rd Symposium on Networked
Systems Design & Implementation, pp. 1, 2006

[70] Xu, .. Z.; He, .. Y. & Deng, .. L., "A Multilevel Reputation System for Peer-to-Peer Networks",
In: GCC '07: Proceedings of the Sixth International Conference on Grid and Cooperative
Computing, pp. 67-74, 2007

[71] Bonnaire, X. & Rosas, E., "WTR: A Reputation Metric for Distributed Hash Tables Based on a
Risk and Credibility Factor", Journal of Computer Science and Technology, 2009, vol. 24 pp.
844-854.

[72] Bonnaire, X. & Marin, O., "Recursive Replication: A Survival Solution for Structured P2P
Information Systems to Denial of Service Attacks", Lecture Notes in Computer Science: On the
Move to Meaningful Internet Systems 2007: OTM 2007 Workshops, 2007, vol. 4806, pp. 931-
940, 2007

[73] Zhao, H. & Li, X., "H-Trust: A Group Trust Management System for Peer-to-Peer Desktop
Grid", Journal of Computer Science and Technology, 2009, vol. 24 pp. 833-843.

[74] Hirsch, J. E., "An index to quantify an individual's scientific research output", Proceedings of
the National Academy of Sciences of the United States of America, 2005, vol. 102 pp. 16569-
16572.

[75] Bonnaire, X. & Rosas, E., "A critical analysis of latest advances in building trusted P2P
networks using reputation systems", In: Proceedings of the 2007 international conference on Web
information systems engineering, pp. 130-141, 2007

[76] Novotny, M. & Zavoral, F., "Matrix model of trust management in P2P networks", In: Proc.
Third Int. Conf. Research Challenges in Information Science RCIS 2009, pp. 459-468, 2009

[77] Liu, X., "hiREP: Hierarchical Reputation Management for Peer-to-Peer Systems", In: 2006
International Conference on Parallel Processing (ICPP 06), pp. 289, 2006

[78] Wang, Y.; Hori, Y. & Sakurai, K., "Characterizing economic and social properties of trust and
reputation systems in P2P environment", Journal Of Computer Science And Technology, 2008,
vol. 23 pp. 129-140.

[79] Feldman, M.; Papadimitriou, C.; Chuang, J. & Stoica, I., "Free-riding and whitewashing in
peer-to-peer systems", Selected Areas in Communications, IEEE Journal on, 2006, vol. 24 pp.
1010 - 1019.

[80] Mekouar, L.; Iraqi, Y. & Boutaba, R., "Reputation-Based Trust Management in Peer-to-Peer
Systems: Taxonomy and Anatomy", Handbook of Peer-to-Peer Networking, 2010, pp. 689-732,
2010

[81] Selvaraj, C. & Anand, S., "Peer profile based trust model for P2P systems using genetic
algorithm", Peer-to-Peer Networking and Applications, 2011, vol. 1 pp. 1-12.

[82] Suryanarayana, G. & Taylor, R. N., "A Survey of Trust Management and Resource Discovery
Technologies in Peer-to-Peer Applications", , 2004, .

[83] Novotny, M. & Zavoral, F., "BubbleTrust: A Reliable Trust Management for Large P2P
Networks", Communications in Computer and Information Science: Recent Trends in Network
Security and Applications, 2010, vol. 89, pp. 359-373, 2010

[84] Michiardi, P. & Molva, R., "Core: a collaborative reputation mechanism to enforce node
cooperation in mobile ad hoc networks", In: Proceedings of the IFIP TC6/TC11 Sixth Joint
Working Conference on Communications and Multimedia Security, pp. 107-121, 2002

[85] Cates, J., "Robust and efficient data management for a distributed hash table", , 2003, .

95

[86] Chun, B.; Dabek, F.; Haeberlen, A.; Sit, E.; Weatherspoon, H.; Kaashoek, M.; Kubiatowicz, J. &
Morris, R., "Efficient replica maintenance for distributed storage systems", USENIX Association
Proceedings of the 3rd Symposium on Networked Systems Design & Implementation (NSDI
06), 2006, pp. 45-58.

[87] Harvesf, C. & Blough, D., "Replica Placement for Route Diversity in Tree-Based Routing
Distributed Hash Tables", #IEEE_J_DSC#, 2010, .

[88] Novotny, M. & Zavoral, F., "Resistance against Malicious Collectives in BubbleTrust", In:
Parallel and Distributed Computing, Applications and Technologies (PDCAT), 2011 12th
International Conference on, pp. 56 -61, 2011

[89] "FreePastry" , http://www.freepastry.org/freepastry
[90] "P2PTrustSim - Simulation framework" ,

 https://data.ksi.ms.mff.cuni.cz/svn/P2P_Trust/P2PImplementation/
[91] "P2PTrustSim - Trust management implementations" ,

 https://data.ksi.ms.mff.cuni.cz/svn/P2P_Trust/TrustManagement/

96

Appendix A

 List of Tables
Table 1: Defences against Sybil attack...14
Table 2: Defences against Eclipse attack..17
Table 3: Defences against routing and storage attacks...19
Table 4: Basic classification of trust management systems..40
Table 5: Parameters for TMS implementations..76
Table 6: MaliciousSuccessRatio for different malicious strategies and TMSs...........80
Table 7: BogusRatio for different malicious strategies and TMSs.............................80
Table 8: MaliciousCost for different malicious strategies and TMSs.........................82
Table 9: MaliciousBenefit for different malicious strategies and TMSs....................82
Table 10: Summary of all tested TMSs...88

97

Appendix B

List of Figures
Fig. 1: Derivation of trustworthiness in PET..30
Fig. 2: Example of trust graph..34
Fig. 3: Basic malicious strategies..44
Fig. 4: Schema of evaluator collusion...45
Fig. 5: Scheme of evaluator spies...46
Fig. 6: Scheme of malicious spies...47
Fig. 7: Incrementally growing trust bubble...53
Fig. 8: Data structure for one peer in BubbleTrust...54
Fig. 9: Basic algorithm for calculation of provider rating..55
Fig. 10: Provider function with fixed TP and variable x1...60
Fig. 11: Provider function with fixed x1 and variable TP...60
Fig. 12: Evaluator function with fixed TE and variable x2..62
Fig. 13: Time function for different parameter k..62
Fig. 14: Cutting off relations with the smallest weight...63
Fig. 15: The dependency between the restriction parameters and calculation result..65
Fig. 16: Efficiency of using cache..66
Fig. 17: Sequence diagram of communication in P2PTrustSim.................................72
Fig. 18: Categorization of transactions in the simulation framework.........................73
Fig. 19: MaliciousSuccessRatio for different malicious strategies in BubbleTrust....78
Fig. 20: MaliciousSuccessRatio for different malicious strategies in PeerTrust........79
Fig. 21: MaliciousCost for different malicious strategies in BubbleTrust..................81
Fig. 22: Number of bogus transactions after joining new malicious peers.................83
Fig. 23: Number of bogus transactions after betrayal...84
Fig. 24: Rehabilitation after treason in BubbleTrust...85
Fig. 25: Effect of ratio of malicious peers on Malicious Success Ratio in
BubbleTrust...87

98

Appendix C

Context of attached CD

The attached CD contains the following directories:

Documentations - contains the javadoc documentation of all related
packages: FreePastry, P2PTrustSim and TrustManagement.

Results - contains complete simulation results presented in this thesis.

Simulations - contains compiled version of P2PTrustSim and various scripts
for run simulations.

Sources - Source code of P2PTrustSim and TrustManagements.

Thesis - PDF version of this thesis and used figures.

99

