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Abstrakt: V dnešní době se architektura určitých typů služeb jako jsou distribuované 
výpočty,  distribuovaná  úložiště  nebo  sítě  pro  distribuci  obsahu,  posouvá  od 
tradičního modelu klient-server k více škálovatelnému a robustnějšímu P2P modelu. 
V takto  složitém,  anonymním  a  otevřeném  systému  je  ale  velice  komplikované 
zajistit alespoň základní míru zabezpečení. Největší hrozbu představují útočníci, kteří 
dokáží spolupracovat a s použitím sofistikovaných strategií se snaží obejít stávající 
bezpečnostní systémy. Jako obrana proti těmto uživatelům vznikly takzvané systémy 
na řízení důvěry v P2P sítích. Nicméně jejich účinnost právě proti sofistikovaným 
strategiím není dostatečně ověřena.

V této práci jsme navrhli nový systém pro řízení důvěry s názvem BubbleTrust a 
vyvinuli simulační framework P2PTrustSim pro testování různých systémů na řízení 
důvěry  a  libovolné  strategii  používané  útočníky.  Navržený  framework  definuje 
několik  kriterií,  která  pomohou  vyhodnotit  úspěšnost  dané  strategie  oproti 
zkoumanému systému. V rámci simulací jsme testovali čtyři systémy jež reprezentují 
současné hlavní přístupy k řízení důvěry a BubbleTrust. 
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Abstract: The architecture of certain class of services, such as distributed computing, 
distributed storages or content delivering networks shifts from the traditional client-
server model to more scalable and robust peer to peer networks. Providing proper 
protection  to  such  complex,  open  and  anonymous  systems  is  very  complicated. 
Malicious peers can cooperate and develop sophisticated strategies to bypass existing 
security mechanisms. Recently, many trust management systems for P2P networks 
have  been  proposed.  However,  their  effectiveness  is  usually  tested  only  against 
simple  malicious  strategies.  Moreover,  a  complex  comparison  of  resistance  of  a 
particular method is missing. 

In this thesis, we (1) propose a new trust management system called BubbleTrust and 
(2) develop a simulation framework for testing trust management systems against 
various  malicious  strategies.  Our  simulation  framework  defines  several  criteria 
which determine the success of each malicious strategy in the network with a given 
system. We present  results of four trust management systems that represent main 
contemporary approaches and BubbleTrust.

Keywords: P2P network, trust management, distributed applications, security.



Contents
1 Introduction................................................................................................................8
2 Security threats in P2P networks.............................................................................10

2.1 Attacks against overlay network......................................................................10
2.1.1 Sybil attack...............................................................................................11
2.1.2 Eclipse attack............................................................................................15
2.1.3 Routing and storage attacks......................................................................17
2.1.4 Summary...................................................................................................19

2.2 Attacks on the application level.......................................................................20
2.2.1 Pollution in file-sharing networks............................................................20
2.2.2 Free-riders in file-sharing networks.........................................................21
2.2.3 Summary...................................................................................................22

3 Reputation-based trust management systems..........................................................23
3.1 Taxonomy of trust management systems.........................................................24
3.2 EigenTrust........................................................................................................26
3.3 PeerTrust..........................................................................................................27
3.4 Lee2005............................................................................................................29
3.5 PET...................................................................................................................29
3.6 Scrivener..........................................................................................................30
3.7 TrustGuard........................................................................................................32
3.8 P2PRep.............................................................................................................33
3.9 NICE................................................................................................................34
3.10 Credence.........................................................................................................35
3.11 Multilevel Reputation System........................................................................36
3.12 WTR...............................................................................................................37
3.13 H-Trust...........................................................................................................38
3.14 Summary........................................................................................................38

4 Attacks against TMS itself.......................................................................................41
4.1 Unwanted side effects......................................................................................41

4.1.1 Load balancing problem...........................................................................41
4.1.2 Cold start..................................................................................................42

4.2 Individual strategies.........................................................................................42
4.2.1 Whitewashing...........................................................................................42
4.2.2 False meta-data.........................................................................................43
4.2.3 Camouflage...............................................................................................43

4.3 Collective strategies.........................................................................................43
4.3.1 Full collusion............................................................................................44
4.3.2 Spies.........................................................................................................44

4.4 Newly proposed malicious strategies...............................................................45
4.4.1 Evaluator collusion...................................................................................45
4.4.2 Evaluator spies..........................................................................................46
4.4.3 Malicious spies.........................................................................................46

4.5 Summary..........................................................................................................47
5 BubbleTrust..............................................................................................................48

5.1 Basic concept...................................................................................................48

6



5.2 Calculation.......................................................................................................50
5.3 Basic algorithm................................................................................................53
5.4 Data management.............................................................................................56
5.5 Provider and evaluator functions.....................................................................59
5.6 Optimized algorithms.......................................................................................63

5.6.1 Cutting off................................................................................................63
5.6.2 Limiting depth..........................................................................................64
5.6.3 Using values from previous runs..............................................................64

5.7 Evaluation and data analysis............................................................................64
5.8 Summary and future work................................................................................66

6 Simulation framework.............................................................................................68
6.1 Architecture of P2PTrustSim............................................................................68

6.1.1 Simulation class........................................................................................68
6.1.2 User implementations...............................................................................69
6.1.3 Trust managements implementation.........................................................70
6.1.4 Communication in P2PTrustSim..............................................................71

6.2 Evaluation criteria............................................................................................72
6.3 Common simulation settings............................................................................75

7 Simulation results.....................................................................................................77
7.1 Efficiency criterion...........................................................................................77
7.2 Dynamic criterion.............................................................................................83
7.3 Influence of different simulation settings.........................................................86
7.4 Summary..........................................................................................................87

8 Conclusion...............................................................................................................89
 Bibliography..............................................................................................................92
 Appendix A................................................................................................................97
 Appendix B................................................................................................................98
 Appendix C................................................................................................................99

7



1 Introduction
In recent years, the traditional client-server model of certain class of services 

is being replaced by globally interconnected distributed systems which are able to 
satisfy  our  requirements  on  scalability  and  performance.  The  most  progressive 
distributed systems are based on peer-to-peer architecture (P2P). This architecture 
does not have a notion of clients or servers but only peers which can work in both 
roles. The load connected with providing services is equally distributed among all 
members of the network. Therefore, the P2P network is an abstract overlay network 
built  on  the  top  of  the  physical  network.  This  overlay  is  used  for  indexing  and 
discovering peers and it makes the P2P system independent on the physical network 
topology.

The major advantage of this  architecture is the elimination of the need of 
high-perfomance  servers  which  increase  the  total  cost  and  represent  undesirable 
single point of failure. However, there are several drawbacks which the developers of 
the P2P applications have to take into account, especially if the application allows 
open  and  anonymous  access.  Except  for  the  peers  or  network  failures,  the  P2P 
applications have to deal with treacherous peers that try to deliberately subvert their 
operation.  There is not any central authority that watches the peer behaviour and 
expels misbehaved peers from the network. The peers have no other possibility than 
trust that the remote party works as expected.

The P2P architecture is very attractive due to its low operating cost but the 
unresolved  security  issues  can  be  discouraging  for  other  types  of  applications. 
Imagine  full  decentralized  auction  application  similar  to  eBay.  Such  application 
cannot  exist  without  proper  security  mechanisms  because  the  vision  of  financial 
profit is very attractive for potential attackers. Other example can be a social network 
like Facebook built  above the P2P network. The access to private information or 
unauthorized modification of  personal information can be also a strong motivation 
for attackers. We can continue with other applications whose transformation into the 
P2P architecture its currently difficult to imagine due to security reasons.

The  general  goal  of  the  thesis  is  to  address  the  challenges  and  issues 
mentioned  above  -  i.e.  ensuring  at  least  some  level  of  security  in  a  dangerous 
environment  represented  by  the  open  and  anonymous  P2P networks.  We  focus 
primary on the security on the application level jeopardized by the misbehaved users. 
Because there are not any trustworthy components in P2P network, the peers are 
forced  to  manage  trust  themselves.  The  simplest  method  is  to  remember  the 
outcomes of the past transactions and avoid the cooperation with the peers which 
behaved incorrectly. The main disadvantage is that the trustworthy of the remote peer 
can be established until after the first transaction. In the typical P2P application, the 
peers often have to cooperate with a great number of others and cannot test each one 
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individually.  The  more  complex  methods  use  experience  of  other  peers  in  the 
network to find out whether the remote peer is trustworthy without any transaction 
with it. Unfortunately,  this opens the possibility for malicious peers to report false 
experience and manipulate with the trust towards any peer. These represent the main 
reasons  why  managing  trust  represents  the  biggest  challenge  in  the  current  P2P 
networks.

In this thesis, we analyse all possible threats in the P2P applications and the 
current  defence  mechanisms,  which  are  mainly  based  on  some  form  of  trust 
management system. We propose a new trust management system which addresses 
the deficiencies of  the current  systems and we create  a simulation framework to 
verify its efficiency.

The rest of the thesis is organized as follows: Section 2 enumerates the main 
threats in P2P network. We distinguish threats on the overlay and application layer. 
In  section  3,  we summarize  state  of  the  art  of  the  trust  management  systems to 
mitigate  the  threats  on  application  layers.  The  attacks  directed  to  these  trust 
management systems are discussed in section  4. Section  5 focuses at describing a 
novel trust management system called BubbleTrust. In section 6, we present our P2P 
trust  simulation  framework and define  criteria  that  the  quality  trust  management 
system  should  meet.  The  results  for  five  selected  trust  management  systems, 
including BubbleTrust, are stated in section  7. Section  8 concludes the thesis and 
proposes a direction for future research.
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2 Security threats in P2P networks
In this section, we present a general overview of security threats related to the 

P2P networks. These threats can be classified into two basic groups: attacks against 
overlay network and attacks on the application level. In our work, we focus mainly 
on the application level but it is necessary to summarize threats related with overlay 
layer, because they significantly influence the layer above.

2.1 Attacks against overlay network

The  overlay  network  is  a  network  built  on  the  top  of  another  network, 
typically on the top of the IP network. The overlay network offers its own system of 
identifications  and  routing  protocols  and  it  abstracts  the  physical  network.  The 
structured  P2P networks  use  a  mechanism  called  distributed  hash  tables  (DHT) 
which can be considered as a generalization of the classical hash tables.

The distributed hash tables stores (key;value) pairs and any participating node 
is able to efficiently retrieve the value associated with a given key. Each node is  
responsible for an assigned subset of keys and has records in its routing table which 
allows to locate all other keys. The important feature of the DHT is a capability of 
joining  and  leaving  nodes  with  a  minimal  amount  of  disruption  of  the  lookup 
services. There are several implementations of this concept which differ mainly in 
the routing algorithm: CAN [1], Chord [2], Pastry [3], Kademlia [4] or P-Grid [5].

Except  for  the  general  attacks  applicable  to  all  network  systems  such  as 
denial-of-service  or  exploitation  of  implementation  bugs,  DHTs  provide  some 
specific weaknesses. There are three most discussed DHT attacks in literature: (1) the 
Sybil attack, where the attacker creates a large number of false identities, (2) the 
Eclipse attack,  where  the  attacker  corrupts  the  routing  tables  of  honest  peers  by 
filling them with incorrect routing information, and (3) routing and storage attacks, 
where the attacker  does not  follow the routing or  storage protocol  correctly,  e.g. 
routing to  incorrect  nodes or  wrongfully modification of  stored data.  We discuss 
these weaknesses in detail below.

DHTs also have to  deal with other issues which may be the result  of the 
regular operations. One of them is churn - the continuous process of node arrival and 
departure,  which  makes  great  demands  on  DHT algorithm  to  efficiently  handle 
continuous restructuring the routing table and migration data. The churn has been 
studied in [6], [7] and [8], and Ou et al. proved that DHT Kademlia is highly resistant 
against  this  issue  [9].  The load balancing problem is  other issue which has been 
intelsively studied in literature  [10],  [11],  [12],  [13] and  [14]. It is connected with 
inappropriate  popularity  of  some resources  and inadequate  capacity  of  the  nodes 
offering these resources.  Even if  node and item identifiers are randomly chosen, 
there is Θ(log N) imbalance factor in the number of items stored at a node [10].
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There are several surveys that discuss the DHTs security in general. The most 
comprehensive survey is given by G. Urdaneta et al. [15]. It summarizes some well-
known security  threats  faced by DHT and reviews  techniques  proposed to  solve 
them.  The  critical  review on the  security  in  the  DHT and proposed solutions  is 
provided by Dahan and Sato [16], their conclusion is that DHT should not be used to 
create secure systems. 

2.1.1 Sybil attack

The Sybil attack exploits the fact that P2P network is open to anyone and uses 
virtual  identifiers  which  are  only  loosely  connected  with  physical  entities.  The 
attacker is easily able to create a large amount of virtual identities with a relative 
small number of physical nodes. This attack does not damage the DHT itself, but can 
be used as a prerequisite for other attacks on both overlay and application layer. The 
most  of  the  security  mechanisms assume that  there  is  only  a  limited  fraction  of 
malicious peers in the network and the Sybil attack can break this assumption.

The Sybil attack is not specific to DHTs, but it is extraordinarily dangerous in 
this environment. In DHTs, first analysed by Doucer [17] with the conclusion that the 
only practical way to limit the number of virtual identities related to one physical 
entity is the existence of a logical central authority which issues the identifiers. This 
central authority needs to have a reliable way of identifying physical entities and this 
is  hard  to  achieve.  Other  difficulty  is  that  it  is  unacceptable  for  a  distributed 
environment like DHT to rely on any kind of central entity.

The central authority can be replaced by its decentralized variant. For each 
newcomer several peers are chosen. These peers are responsible for the validation of 
its identity and can refuse to join then into the network. The suitable candidates for 
this job are bootstrapping nodes used by newcomers to initialize their routing tables. 
But these bootstrapping nodes can be already under control of the attacker and allow 
connection of more malicious peers. The prevention of this should be ensured by the 
limitation of usable bootstrapping nodes. For instance, Dinger and Hartenstein [18] 
propose an algorithm where the bootstrapping nodes are computed using the hash of 
node's IP address.

A bigger challenge is the validation of the identity itself. First problem is how 
to define the physical identity in this context. Is it a single computer, a user sitting 
behind this computer, or the whole criminal organization which possesses a large 
botnet of computers with different IP addresses? The current validation algorithms 
use several techniques.

Castro et al.  [19] proposed using a set of trusted certification authorities to 
produce signed certificates that bind a random node identifier to a public key and IP 
address. In order to prevent Sybil attack, they suggested to charge money for each 
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certificate or to bind them to the real-world identities.  This includes considerable 
administration and processing overhead and for binding to the real-world identities 
requires reliable authentication procedures.

The hash of IP address and port is used as for identification in [18]. But this 
solution causes trouble to users behind NAT or mobile users changing IP address 
continuously.  Additionally,  it  is  ineffective  against  botnets  possessing  many  IP 
addresses. A similar solution was proposed by Wang et al. [20]. They count on other 
network  characteristics  like  default  router  IP  address,  MAC  address  and  RTTs 
measured  by  randomly  selected  nodes  within  the  sub-network  of  these  routers 
(landmarks). The authors introduced a concept called  net-print containing this data 
and representing self-certifying data, which can be directly verified by other nodes. 
However, the capability of verification of this data is limited, the MAC addresses can 
be  verified  only  by  nodes  in  the  same local  network and the  verification  of  the 
default router is based on the ICMP message with IP Route Record, which is filtered 
in most networks. The only really verifiable information is RTTs between the node 
and  a  set  of  designated  landmarks.  Other  disadvantage  of  this  approach  is  that 
changes in the network conditions cause subsequent identification tests fail and it is 
not possible to support mobile nodes with this system.

Other  solutions  use  network  coordinates  to  group  nodes.  The  system 
described  in  [21] measures  round  trip  time  between  nodes  and  uses  a  triangle 
inequality  to  place  them  into  d-dimensional  euclidean  space.  If  two  nodes  are 
reasonably  far  from each other  in  this  space,  we can assume that  they  represent 
different  identities.  If  they are close,  we cannot  assume anything.  Therefore,  this 
system  can  be  used  to  detect  distinct  nodes  to  ensure  that  the  critical  network 
functions are distributed among distinct identities, but cannot prevent connection of 
multiple virtual identities which operate on a single node. The algorithm proposed by 
Bazzi et al. in [22] uses a similar idea; the distance between two nodes is represented 
as hop count and its measurement is cryptographically protected.

A computational puzzle is other method how to protect DHT network against 
Sybil attack. A general difficulty in such systems is enforcing that puzzle solutions 
are not reused by attacker over time. Borisov  [23] proposed to add computational 
puzzle  into  Chord.  The  system  uses  periodic  ping  messages,  used  by  Chord  to 
maintain  the  structure  of  distributed  overlay.  They  modified  these  messages  to 
include the instructions for computation which are different each time.  Rowaihy et 
al. [24] suggested a hierarchical system based on computational puzzle. The system 
creates a tree where the root must be trusted and reliable. Unfortunately, this presents 
another form of central authority. 

The fundamental problem with computational puzzle in the P2P network is 
that  the  network  can  consist  of  many  different  types  of  nodes  with  different 
computation  capacity.  The  puzzle  must  be  complex  enough  to  prevent  joining 
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malicious nodes and at the same time simple enough not to obstruct regular users on 
slow computers.

All previous methods try to assign a virtual identity to a single physical node, 
represented  by  a  single  IP address,  a  position  in  the  network,  or  a  computation 
capacity. If the attacker controls a large amount of physical nodes, geographically 
distributed  and with  sufficient  computation  power,  these  methods  do  not  present 
obstacles.  The  approaches  based  on  social  networks  try  to  deal  even  with  this 
dangerous situation.

The first of them was SybilGuard  [25] which uses human-established trust 
relationships. The relationships between honest region (i.e., the region containing all 
the honest nodes) and Sybil region (i.e., the region containing all the Sybil identities 
created by malicious users) are called attack edges. The basic assumption is that the 
attacker can create any number of relationships between Sybil identities, but it is 
limited in the number of attack edges. The SybilGuard partitions nodes into groups 
such that the number of groups that include at least one Sybil identity is bounded by 
the number of attack edges, independently of the number of Sybil identities. In the 
2010, the SybilLimit [26] was published which improves the SybilGuard in several 
ways.

Table  1 summarizes previously discussed defences against Sybil attacks. As 
we  can  see,  the  entity  identification  methods  belong  to  one  of  the  following 
categories: (1) real-world identification, (2) costly identifiers - money or computation 
time,  (3)  underlying  network  -  IP  address  or  measured  position,  (4)  social 
networking.  Some of the methods put barrier  for Sybil  identities to entering the 
system, others just detect already joined Sybil nodes.

All these methods significantly reduce the number of Sybil identities in the 
network; however, they are not able to suppress them completely; except the methods 
using  real-world  identification,  which  are  difficult  to  implement.  The  main 
conclusion is that the developers of the security mechanisms on the application level 
have to suppose that the attacker can posses a large number of fake virtual identities 
without additional cost.

At this point, we should already mention other problem, which does not relate 
directly with Sybil attacks, but is closely related to identification generation. In the 
DHT the node identification (nodeId) does not serve only for identification purpose 
but it also determines which objects will be stored on the node and which neighbours 
will be in its routing table. Attacker who can chose nodeId arbitrarily, can control 
access to target object or compromise the integrity of a structured P2P overlay.
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Authors Entity identifications Verified by Prevent/Detect 
Sybil attack

Doucer2002 [17] Real-world 
identification.

Central authority. Prevent.

Castro2002 [19] Charge money or real-
world identification.

Set of trusted 
certificate 
authorities.

Prevent.

Hertenstein2006 [18] IP address and port. Bootstrap nodes. Prevent.

Wang2005 [20] Network 
characteristics.

All nodes, but 
some of them 
have more 
possibilities.

Detect.

Bazzi2005 [21] Network coordinates. All nodes. Detect.

Bazzi2006 [22] Network coordinates. All nodes. Detect.

Borrisov2006 [23] Computational puzzle. Neighbours in 
DHT.

Prevent.

Rowaihy2007 [24] Computational puzzle. Hierarchical 
system rooted by 
trusted authority.

Prevent.

Yu [25], [26]  Social network. All nodes. Detect.

Table 1: Defences against Sybil attack.

The solution for this  problem was already offered by Castro in  [19].  It  is 
based on crypto puzzle and distributed identity generation. The newcomer needs to 
cooperate  with  several  nodes  which  provide  restrictions  for  its  new identity  and 
guarantee that these restrictions ware satisfied. This solution can be easily built in 
Sybil defence techniques which used trusted authorities or bootstrap nodes but it is 
difficult to integrate it into other methods. On the other hand, the techniques using IP 
address or network characteristics as nodeId already have a natural defence against 
arbitrarily  chosen  identities.  In  the  rest  of  the  networks,  it  can  be  solved  using 
asymmetric cryptography. Each peer generates a pair of private/public keys and uses 
a hash of public key as its nodeId. But this method does not prevent tampering with 
nodeId completely. The attacker can generate key pairs as long as it finds proper keys 
giving them the nodeId close enough to the desired value.

Except  the  last  issue  with repeated  generating  key pairs,  we consider  the 
problem of arbitrarily chosen identities as acceptable solved. In the application level 
we suppose that the attacker cannot place itself into strategic position into under-
laying DHT network.  But  it  is  necessary to  check that  the under-laying network 
implements corresponding countermeasures.
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2.1.2 Eclipse attack

The Eclipse attack is also known in literature as routing table poisoning. It 
consists in tampering the routing table of the honest nodes. The aim is either the 
disruption of  the communication in  the network  or  the redirection  of  the  lookup 
queries  to  malicious  nodes.  The  easiest  way  to  perform  this  attack  is  through 
incorrect routing updates. Sit and Morris [27] stated that systems which do not have 
special  verifiable  requirements  on  the  records  in  the  routing  tables  are  most 
vulnerable to this type of attack. For instance, in the DHT Pastry [3] one item in the 
top level in the routing table can contain a large number of different identifiers. The 
attacker can easily  supply a desired identifier  during the routing updates and the 
target peer accepts it because it is a valid identifier. The systems like Chord [2] have 
stronger restrictions on identifiers in the routing table and make this attack more 
complicated. On the other hand, the loose restrictions on the routing table entries 
allow routing optimization according to the network proximity [28]. However, such 
optimization  presents  another  possible  attack  scenario.  Hildrum and  Kubiatowitz 
[29] showed that attackers can reduce their apparent distance from a target node and 
enforce itself into its optimized routing table.

The basic defence against Eclipse attack consists in introducing additional 
constrains into the routing table. Castro [19] proposed a solution which applies this 
basic  strategy  and  allows  preserving  proximity-aware  optimization.  He  suggests 
using  two  routing  tables.  One  table  exploits  the  potentially  vulnerable  network 
proximity information (called optimized routing table) and the other contains only 
entries which can be verified (called verified routing table). In a normal operation the 
optimized routing table is used. The system switches to the verified routing table in a 
case of a routing failure.

A problem of the previous solution is  that the poisoning in the optimized 
routing table can increase over time and shortly it can be unusable and the system 
degrades into non-optimal routing. The defence proposed by Condie et al. [30] deals 
with this problem by periodical resetting the optimized routing table to the content of 
the verified routing table. At each reset, every node gets a new random identifier. 
This should prevent attacks exploiting the knowledge of how the routing table are 
updated over time. The authors stated that if good nodes move continuously, then it is 
difficult to attack them in the same way after every reset.

Hildrum and Kubiatowicz [29] stated that the network proximity optimization 
can be also used to help to prevent the Eclipse attack.  However, they assumed a 
trusted mechanism for measuring network distance. Unfortunately, the authors did 
not  mention  how  this  trusted  mechanism  should  be  realised  in  practice.  They 
assumed that if the fraction of the malicious nodes is reasonably small, it is difficult 
for the malicious nodes to be closest in the network distance to a majority of honest 
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nodes.
Other defence proposed by Singh et al. [31] is based on the observation that a 

node that mounts an Eclipse attack must have a higher than average node degree. The 
authors proposed a mechanism in which the nodes anonymously audit each other's 
connectivity and showed that enforcing a node degree limit is an effective defence 
against Eclipse attack. The results showed that the system is effective only if the 
degree limit is small which has a negative impact on the lookup time in the absence 
of attacks.

Awerbuch and Scheideler  [32] introduced the concepts of regions  in  [0,1) 
identifier space. Each new node that joins the network is securely assigned to a single 
region and routing is  done from region to  region. To prevent  malicious nodes to 
continuously  join  and  leave  the  system  until  it  receives  the  desired  region,  the 
protocol called  cuckoo rule is implemented. This protocol establishes that when a 
new node joins the system, all nodes in the certain region must leave the system and 
rejoin with a new random identifier. This prevents the attacker from concentrating 
many malicious nodes in one or a small number of regions.

Table  2 summarizes previously discussed methods. None of them provides 
sufficient defence against this attack. The methods which do not preserve a stable 
node identifier are unacceptable from our point of view. It is causing a significant 
overhead  because  it  is  necessary  that  data  migrate  each time  the  node identifier 
changed.  Additionally,  the  security  mechanisms  on  the  application  level  require 
stable node identification.

As we can see,  the defence against the Eclipse attack involves a trade-off 
between  performance  (optimized  routing  table)  and  security  (constrained  routing 
table). Therefore, these techniques are not able to guarantee proper routing in the 
DHT and  must  be  combined  with  other  mechanisms  such  as  redundant  routing, 
routing failure tests and recovering from routing and storage failures (these methods 
will be described in section 2.1.3).
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Author Techniques Disadvantage

Castro2002 [19] It uses two routing tables, 
optimized and verified.

Optimized routing table can 
be easily poisoned and the 
verified routing table is used 
most of the time.

Condie2006 [30] It uses two routing tables, 
optimized and verified.
The content of the verified 
table is periodically reset 
and churn is induced.

The induced churn introduces 
a significant overhead.

The node identifier is not 
stable.

Hildrum2003 [29] It is based on the trusted 
measuring of the network 
proximity.

The trusted network distance 
measurement is difficult to 
implement in practice.

Singh2006 [31] It limits the number of 
node degree via 
anonymous auditing.

It has a negative impact on 
the lookup time in the 
absence of attack.

Awerbuch [32], [33] It uses a region-based 
redundant routing table and 
cuckoo rule.

Complex algorithm.

The node identifier is not 
stable.

Table 2: Defences against Eclipse attack.

2.1.3 Routing and storage attacks

The last group, routing and storage attacks, presents the most serious threats. 
The malicious node can refuse to forward lookup requests or it can forward them to 
incorrect or malicious nodes. These attacks are generally classified as routing attacks 
and can lead into increasing the lookup time or in a worst-case scenario into the 
routing failures. In the storage attacks, the malicious node responsible for the key can 
deny the existence of the key or provide invalid data as response. The malicious node 
on the path of the lookup query can only pretend to be the node responsible for the 
key and compromise a significant number of keys in the system. 

A fundamental  defence against  these attacks  is  a  replication,  but  it  is  not 
sufficient  regarding  the  possibility  of  the  Sybil  identities  or  arbitrarily  chosen 
identities [16]. The artificially created identities can control all replicas or be on the 
path  towards  all  replicas.  For  instance,  several  mechanisms  [19],  [29],  [34] use 
replicas stored on numerically closed locations. This increases the chance that the 
malicious nodes will  be able to control all replicas or paths towards them.  As a 
defence,  Harvesf  and  Blough  [35] proposed  to  place  replicas  at  equally  spaced 
locations in a Chord ring. They proved that this method can produce d disjoint routes 
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if 2d-1 replicas are placed in a fully populated chord ring.
Other defences try to enhance routing protocols to either support independent 

routing paths between every two nodes or allow the querier node to control routing 
progress. The mechanism called Cyclon [36] is an example of the first group. This 
protocol was proposed by Artigas et al. and extended the Chord. The authors divided 
the system into r = 2m-p independent Chord rings, each contains only nodes that share 
p rightmost  bits  of  the  m-bit  identifier.  The  successor  lists  do  not  have  this 
restrictions and can be used as the first or last hop in a lookup. The system provides r 
independent path, because routing is realized through the r independent rings.

The second approach was first  used by Sit  and Moris [27] who proposed 
iterative routing as a defence against the routing attack. In the iterative routing, the 
requester controls the lookup progress and detects potential routing anomalies. But 
this approach has been rejected due to significant overhead. Xiang [37] proposed to 
use tracer routing where the requester only observes the lookup progress and together 
with  node-ID  based  signature  is  able  to  detect  the  malicious  nodes.  The  author 
proposed the protocol which bypasses the malicious nodes and allows to establishing 
secure paths.

Other possibility was proposed by Ganesh and Zhao  [38]. They proposed a 
protocol which allows querier to assure that the results from a lookup are correct. 
Their solution is based on signed certificates that prove the existence of nodes in 
some range of the identifier space. These certificates are placed at randomized node 
subsets  (proofs  managers).  After  completing  the  routing  request,  the  querier  can 
trigger verification procedure and it determines whether the better root node exists by 
searching the existence of the proofs. A disadvantage is that this solution requires the 
existence of offline certification authority which distributes the public-private key 
pairs.

Most of the security  mechanisms do not  rely on the one of  the strategies 
described above but they implement a combination of them. For instance, Artigas et 
al. in their next work [39] stated that the independent routing paths implemented in 
the  Cyclon  are  not  enough  to  provide  sufficient  probability  of  success  and  the 
proposed  routing  protocol  called  Bypass.  This  protocol  is  a  combination  of  two 
strategies: A redundant routing algorithm that, at each step, routes to a set of nodes 
instead of just one; and a filter that avoids selecting nodes that are not reliable as next 
hop.  Their  analysis  shows  that  Bypass  can  potentially  achieve  a  significant 
improvement.

All discussed methods are summarized in table 3. This table does not contain 
all  published methods it  but  only illustrates  commonly  used approaches  to  solve 
these issues. Authors of all techniques agree that the data replication is a basic means 
of preventing routing and storage attacks but as many studies show it is not sufficient 
and  must  be  completed  with  some  sort  of  redundant  routing  or  verified  routing 
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protocol. Also the protection against Sybil attacks and arbitrarily chosen identities 
makes these attacks difficult and many security mechanisms count on it.

Author Techniques Disadvantage

Castro2002 [19] It uses two routing tables, 
optimized and constrained.
The constrained routing 
table is used in case of 
routing test failure.
Replicas are placed at 
numerically closed 
locations.

There is no guarantee that 
the routing paths are 
disjoint.

Hildrum2003 [29] It uses redundant routing 
table entries based on 
network proximity.
Replicas are placed at 
numerically closed 
locations.

There is no guarantee that 
the routing paths are 
disjoint.

Fiat2005 [34] Modification of Chord that 
uses swarm of nodes 
instead of single nodes as a 
basic construct.

The swarm contains 
numerically closed nodes.

Harvesf2006 [35] Replicas are placed at 
equally spaced locations in 
a Chord ring.

Difficult replicas 
maintenance.

Artigas2005 [36] Independent chord rings 
providing independent 
paths.

Addresses only routing 
issue.

Artigas2008 [39] Redundant routing 
combined with filters.

Addresses only routing 
issue.

Sit2002 [27] Iterative routing. Iterative routing has a 
significant overhead.

Ganesh2005 [38] Proof of existence of a 
node within a certain id 
range.

Requires offline 
certification authority.

Table 3: Defences against routing and storage attacks.

2.1.4 Summary

The security issues of P2P overlay networks have been intensively studied 
during the last ten years. The proposed mechanisms are able to significantly improve 
the  security  in  the  overlay  network  if  they  are  implemented  completely.  Many 
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researches  focus  only  on  subset  of  security  thread,  leaving  other  issues  open or 
making  different  assumption  regarding  the  attack  model.  Combining  of  these 
strategies to make “secure” P2P network remains unresolved.

As we mentioned in the section 2.1.1, the Sybil attack has no reliable solution 
which  means  that  the  routing  and  storage  attacks  are  also  possible.  Therefore 
building  the  fully  secure  P2P  overlay  network  in  the  open  and  anonymous 
environment is nearly impossible. Nevertheless, described security techniques should 
be implemented to filter out individual or unsophisticated malicious nodes. Larger 
groups  of  cooperated  malicious  nodes  still  represent  the  significant  threat  to  the 
current P2P networks.

DHTs  have  been  used  in  numerous  popular  peer-to-peer  systems  such  as 
KAD network  [40], BitTorent or Limwire. All these implementations are based on 
Kademlia which provides a relative security due to a build-in replication and iterative 
routing.  However,  it  is  still  vulnerable  to  Sybil  attack  and  arbitrarily  generated 
identities.  None  of  current  DHT deployments  are  specially  designed  to  tolerate 
malicious  nodes.  Despite  the  fact  that  several  security  mechanisms  have  been 
proposed in last years, their implementation into current P2P systems is complex and 
requires  trade-off  between  security  and  performance.  Additionally,  there  are  still 
open problems. The most challenging issue for securing P2P decentralized systems is 
a robust and secure assignment of node identifiers. This is crucial to guarantee that 
malicious nodes occupy only a small fraction of identifier space and cannot place 
themselves into strategic positions in the network.

2.2 Attacks on the application level

Apart from the attacks exploiting application bugs, the biggest problem of the 
P2P networks is the lack of cooperation. For P2P networks to be effective, nodes 
participating in the network must work together. However, when human nature is 
allowed to  intervene,  this  does  not  always  happen.  In the  case  of  P2P networks 
cooperation is very difficult to enforce. The users behind the applications follow their 
own interests which do not have to correspond with interests of others.

2.2.1 Pollution in file-sharing networks

In the most extensively used P2P file-sharing networks the primary problem 
is  pollution  [41],  [42].  There  are  several  forms  of  pollution  studied  in  real  P2P 
networks. The first form, called data pollution, consists in the sharing deliberately 
corrupted files. These files can contain undesirable or even harmful content. Many 
viruses use file-sharing networks to replicate themselves. They copy themselves into 
shared folders under camouflaged names to lure download. Due to the fact that 10% 
of the most popular files create almost 90% of all traffic in the file-sharing network 
[43], the virus can speed up their dissemination by choosing popular names. Every 
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downloaded file should be strictly checked on viruses and spyware, but this can be 
done only after successful download. Even if the downloaded file is not infected, it 
can contain different data then was desired. The number of useless downloads results 
into wasting network capacity and annoying the users.

The second form of pollution, called index poisoning or meta-data pollution, 
consists  in  corrupting  indexation  mechanisms  by  introducing  a  large  number  of 
spurious  files  which are not  shared by any peers.  After  the poisoning,  the major 
portion of indexes contains invalid information. The client downloading the poisoned 
file always fails to establish connection with the other peers. Kong et al. [44] studied 
index poisoning in BitTorrent network and Locher et al.  [45] proved that the index 
poisoning can also affect the KAD network by corrupting DHT entries, either by 
publishing fake records  on the responsible  peers  or by inserting malicious nodes 
which are close to them.

The  protection  against  pollution  is  far  from  trivial.  The  successful 
mechanisms have to assess the downloaded file before it is actually downloaded. The 
only clue can be the information from other peers which downloaded the file from 
the same peer in the past.  These mechanisms are called reputation-based and are 
discussed in detail in section 3.

2.2.2 Free-riders in file-sharing networks

Other problem is represented by peers called Free-rides which consume more 
than  their  fair  share  of  network resources  [46].  They exploit  the  system only  to 
download and do not offer anything in return. This behaviour breaks the basic idea of 
P2P networks and leads into overloading of honest peers. A number of studies have 
shown  that  free-riding  is  a  problem of  current  P2P systems,  with  resulting  into 
serious performance degradation. For instance, Hughes et al. [47] in their experiment 
in Gnutella network in 2005 find out that 85% of peers do not share any files. And 
Sirivianos et al.  [48] present an experimental study on the behaviour of BitTorrent 
network  when  selfish  peers  attempt  to  maintain  high  download  rates  without 
uploading.  Their  modified  free-rider  client  achieved  better  download  rates  than 
compliant client in most cases, but as the number of free-riders clients increases they 
incur substantial performance degradation for both free-rider and compliant clients. 

Varying  incentive  schemes  have  been  proposed  to  encourage  peers  to 
cooperate by sharing resources. BitTorent currently uses reciprocity based-scheme 
[49] which as shown Sirivianos et al. [48] is ineffective in discouraging free-riding. 
Kyuyong  Shin  [50] proposed  a  scheme  called  Treat-Before-Trick  with  a  secret 
sharing algorithm. Files are divided and encrypted by the owner. The key is divided 
into  n subkeys,  any of  t of  which  are  sufficient  to  recover  the  original  key  and 
decrypt the file pieces. The owner distributes the file pieces and subkeys to a set of  
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requesting peers, called leechers. The leechers barter with each other by exchanging 
keys for file pieces. The peers are enforced to share their downloaded pieces to get 
the necessary number of keys to decrypt downloaded files. This scheme is shown to 
penalizing  Free-riders.  However,  there is  an  added cost  of  requiring encrypt  and 
decrypt file, and distribute keys.

According to  Karakaya et  al.  [51] solutions  to  combat  Free-riding  can be 
categorized into three main groups:  monetary-,  reciprocity-  and  reputation-based 
approaches. Monetary-based approaches work on the basis of charging peers for the 
services  they  receive.  Any  monetary-based  mechanism  requires  two  key 
mechanisms:  an  accounting  module  to  store  virtual  currency  for  each  peer  and 
settlement  module  to  fairly  exchange  virtual  currency  for  services.  Most  of  the 
monetary-based solutions implement these modules on the central nodes and are not 
useful in the pure P2P networks. In reciprocity-based solutions, peers monitor other 
peers’ behaviour and evaluate their contribution. But this information is supplied by 
the other peers themselves and Free-rides can easily supply false information. We 
have already mentioned reputation-based techniques as a defence against pollution 
and the same techniques can be used against free-riders as well. These techniques 
include  numerous  different  approaches  with  different  success  rate  and  issues 
discussed in detail in section 3.

2.2.3 Summary

The file-sharing P2P networks are currently the most used P2P applications 
and attacks against them are well documented. But the same attack scenarios can be 
used in every P2P application. The general scheme of all P2P application consists in 
two basic functions: searching and utilizing the services. The peers connected in the 
networks offer their services, which can be files to download, storage, network or 
computational capacity to use. These services must be indexed first to allow other 
peers to discover them. The malicious peers can violate indexing procedures (index 
poisoning),  provide  corrupted  services  (data  pollution)  or  they  do  not  provide 
services at all (free-riding). The defence mechanisms are similar as well, in the most 
cases  it  can  be  used  only  as  a  slight  modification  of  the  previously  described 
techniques.
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3 Reputation-based trust management systems
In the traditional client-server model, servers represent trustful points in the 

network application. They are typically operated on the provider's infrastructure and 
there is an assumption that they operate correctly because it is in the provider's best  
interest. The malicious behaviour is expected only on the client side. Therefore, there 
are only two problems which need to be solved: (1) securing connection between 
clients and server to be sure that both are correctly identified, and (2) protection of 
the servers from being exploited by malicious clients.

The situation in  the P2P network is  much more complex.  Every peer  can 
operate as a client and a server simultaneously; therefore, the servers are no longer 
trustworthy by definition, but every member of the P2P network have to earn each 
other's  trust.  Currently,  there  are  two major  approaches  for  managing  trust  [52]: 
policy-based and  reputation-based trust  management.  Policy-based trust  relies  on 
objective  “strong  security”  mechanisms  such  as  signed  certificates  and  trusted 
certification  authorities.  The  access  decision  is  usually  based  on  rules  with  well 
defined semantics   providing strong verification and analysis support. The system 
makes decision based on “non-subjective” attributes such as a requester's age,  an 
address or a credit card number  which should be certified by trusted certification 
authorities. As we can see, such systems require trusted certification authorities with 
extended verification capability which are very difficult to implement in the open and 
anonymous environment.

Reputation-based  trust  management  is  mainly  based  on  the  notion  of 
reputation. In general, reputation is the opinion of the public towards a person, a 
group  of  people,  an  organization  or  a  resource.  In  the  context  of  collaborative 
application  such as  P2P systems,  the  most  suitable  is  the  definition  provided by 
Abdul-Rehman  and  Hailes  [53]:  “The  reputation  is  an  expectation  about  agent's 
behaviour  based  on  information  about  or  observation  of  its  past  behaviour.” 
Reputation  allows  parties  to  build  trust,  the  degree  to  which  one  party  has  a 
confidence in another.

Like in a human community, the peers are exchanging information on their 
previous  collaborations  with  others.  This  information  includes  the  degree  of 
satisfaction with the services provided by the remote peer and can be used by other 
peers which are considering cooperation with the same remote peer. Obviously, there 
is  a  higher  probability  that  the  peers  with  a  large  number  of  positive 
recommendations will provide correct services. The reputation-based systems help 
participants  decide  whom  to  trust,  encourage  trustworthy  and  fair  behaviour. 
Therefore, they can be used as a defence against pollution and free-riding [54].

However,  there  are  also  several  issues.  For  instance,  accepting 
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recommendations  from  unknown  peers  blindly  is  tricky  because  these 
recommendations can be deliberately misleading. The group of malicious peers can 
cooperate and provide each other false positive recommendations. The detection of 
such  false  recommendations  is  very  difficult  and  makes  the  whole  system more 
complex. More about attacks on the reputation-based trust management systems is 
discussed in section 4.

Due to the difficult  implementation of policy-based trust  management,  the 
reputation-based trust management became the only option in the pure and even in 
some centralized P2P networks. For instance, the eBay  [55],  [56] uses reputation-
based  trust  system  which  operates  on  central  servers  but  completely  relies  on 
information from the clients (sellers and bidders). In the rest of this thesis, we will 
use the notion trust management system (TMS) instead of a more correct reputation-
based trust management system, because the policy-based trust management systems 
are no longer concern us.

3.1 Taxonomy of trust management systems

All  TMSs  have  to  solve  three  basic  problems:  (1)  how  to  distribute 
recommendations among peers, (2) how to verify recommendations, and (3) how to 
compute  trust  based  on  these  recommendations.  There  are  plenty  of  different 
approaches  solving  these  problems.  Several  researches  presented  taxonomy  to 
organize existing ideas and facilitate system design. One of the first taxonomy was 
proposed by Marci and Garcia-Molina [57]. They identify three basic components of 
reputation system: Information gathering, Scoring and Ranking, and Response. Each 
of these components has to solve unique problems and the authors discussed possible 
design choices proposed by the research community. 

Broader  survey was  proposed  by Hofman  et  al.  [58].  They  developed an 
analytical framework by which reputation system can be decomposed, analysed and 
compared  using  a  common  set  of  metrics.  They  identified  three  dimensions 
fundamental to any reputation system: formulation, calculation and dissemination. 
Formulation  is  the  abstract  mathematical  specification  of  how  the  available 
information should be transformed into a usable metric. Calculation is the part of the 
reputation system that receives input information and produces the reputation values. 
And  dissemination  part  of  the  reputation  system  is  responsible  for  delivering 
calculated values to interested parties. Although the calculation and dissemination 
parts often influence each other, the authors separate them for analytical purposes.

In the next part,  they defined an attacker model and classified known and 
potential  attacks  on reputation  system within  this  model.  But  these  sections  skip 
several attacks scenarios and mix attacks on reputation systems with the attacks on 
P2P layer. The defences against these attacks are typically built outside the reputation 
systems  as  was  discussed  in  section  2.1.  And  finally,  they  used  their  analytical 
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framework to analyse several well-known TMSs.
We consider their analytical framework as the main contribution of this work. 

This framework is a valuable insight into implication of design choices. We used 
some ideas in our work [59] that analyse requirements for a reliable TMS in insecure 
environment.  Unlike  the  previous  work,  we  divided  TMS  into  three-layered 
architecture: (1) secure P2P layer, (2) information handling layer, and (3) formulation 
and calculation layer. We define the functions on each layer and establishe several 
simple  criteria  to  each  component.  We  also  analysed  several  published  systems 
according these criteria, none of them met all criteria completely.

For  the  purpose  of  this  work,  we use simplified  classification  which  was 
already used in [60]. It is composed from four characteristic: (1) type of rating, (2) 
feedback aggregation,  (3) feedback verification and (4) calculation.  In contrast  to 
[58],  its  ambition  is  not  to  embrace  all  possible  design  choices  or  provide  the 
analytical framework, but organize the major approaches for building TMSs.

In our  classification,  we distinguish two basic  types  of  rating:  global  and 
personalized. The core of the global rating is to define a single global trust value for 
each  peer  in  the  network.  The  calculation  is  typically  done  only  once  and  the 
calculated  value  is  distributed  to  all  peers  in  the  network.  Therefore,  the  global 
reputation  system  is  dominant  in  the  centralized  networks.  Nevertheless,  the 
personalized  trust  rating  is  more  common  in  distributed  P2P  networks.  In 
personalized reputation system each peer has self maintain reputation values to other 
peers.

The  feedback  aggregation  scheme  can  be  full  or  selective.  The  full-
aggregation TMS calculates the reputation value of a peer considering the opinions 
from all other peers who have interacted with this peer. The full-aggregation scheme 
can be very accurate but it is connected with a high load for underlying network. The 
selective approach involves a trade-off between the accuracy and load, the reputation 
is derived from a subset of all existing opinions in the network.

We  also  distinguish  four  types  of  feedback  verifications:  none,  a  good 
provider, a personal experience, a global experience. The TMSs without feedback 
verifications  are  vulnerable  to  peers  providing  false  feedbacks.  The  elementary 
protection is based on the idea that a good provider is a good recommender as well, 
but  some malicious  peers  do not  have  to  fulfil  this  premise.  Better  protection is 
provided by the personal experience verification. Each feedback source is assessed 
according to the usefulness of its previous feedbacks for the local peer. The last type,  
global  experience,  extends  personal  experience  over  the  usefulness  of  previous 
feedbacks for other peers in the network.

The last  part,  calculation,  is  a  component  of  the TMS that  receives  input 
information and produces the reputation values. Each TMS has a unique calculation 
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scheme based on the mathematical specifications, for example: weighted average, 
fuzzy logic, Bayesian approaches, etc.

The rest of this section contains examples of TMSs in chronological order. 
This  overview  demonstrates  the  variety  of  different  approaches  proposed  by  the 
research community in the last decades. We focus primary on TMSs operated in a 
fully distributed environment, so they do not rely on any kind of central authority. 
Systems with a central authority have its task much easier but the existence of such 
central authority breaks the basic idea of P2P network and presents the single point 
of failure and additional security threat.

3.2 EigenTrust

EigenTrust  [61] is one of the oldest and the most cited trust model for P2P 
networks. EigenTrust calculates a global trust value which is based on the idea of 
transitive trust. 

Basic algorithm is simple. After peer i interacts with peer j,  it can compute its 
normalized local trust value  ci,j based on direct observations. If there are no direct 
interactions, peer i can calculate the reputation metric for another identity k by asking 
other peers for their opinions of peer k.  The calculated reputation from peer i to peer 

k is: t i , k=∑ j
c i , j⋅c j , k . We can write this in matrix notation: If we define C to be 

the matrix [ci,j], than t⃗ i=CT
⋅c⃗ i is a vector of trust values from peer  i towards all 

other peers in the network which reflects the local experiences and the opinion of its 

friends. We can extend it by asking its friends' friends t⃗ i=(CT
)

2
⋅c⃗i and so on. After 

n interactions we get t⃗ i=(CT
)

n
⋅c⃗i . For n large enough, t⃗ i converges to the left 

principal eigenvector  of matrix  C.  Therefore,  all  peers have the same  t⃗ i which 

contains global trust values for all peers in the network.
EigenTrust works in an iterative way; in each step k, vector t converges to the 

left  principal eigenvector ⃗
t(k +1)

=CT
⋅t⃗ k .  There are two principal issues with this 

approach.  First,  the  malicious  peers  providing  false  feedback  jeopardize  the 
convergence  to  the  correct  trust  vector.  The  authors  deal  with  this  problem  by 
introducing pre-trusted peers. These peers are known on all peers in the network and 
are  included  into  computation  in  each  step.  The  new  formula  is 

⃗
t(k +1)

=(1−a)CT
⋅t⃗ k

+a p⃗ where a is some constant less than 1 and p⃗ is a vector 

of pre-trusted peers. This also makes the matrix  C irreducible and aperiodic, which 
guarantees the convergence.

Second  issue  is  that  there  is  not  any  central  authority;  therefore,  the 
calculation has to be distributed among peers. Fortunately, the calculation is mainly 
based on the matrix multiplication which can be easily implemented in a distributed 
manner. The naive implementation assumes that peer  i calculate  i'th item of vector
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t⃗ ,which is  its own trust value. Malicious peers would be able to easily report 
false trust value to hide their maliciousness. The secure implementation uses the so-
called score manager. Each peer has assigned several score managers responsible for 
the calculation of its trust value. If any of the peers needs the trust value of a remote 
peer, it contacts all its score managers to query the actual trust value. The majority 
vote is used to filter out the values from malicious or broken managers.

EigenTrust  is  an example of TMS using global  trust  values,  which is  not 
common in a distributed TMS. It also uses the full aggregation scheme which tries to 
use  all  available  information.  This  and  the  existence  of  several  score  managers 
increase  the  network  load  connected  with  functions  of  TMS.  The  feedbacks  are 
verified on the principle of a good provider is a good evaluator and the calculation is 
based  on  transitive  trust.  The  disadvantage  is  the  necessity  of  pre-trusted  peers; 
without them the system is not able to deal even with simple malicious techniques.

3.3 PeerTrust

PeerTrust  [62] defines  the  general  trust  metric  as  a  combination  of  five 
factors: (1) feedbacks from other peers, (2) the credibility of feedback sources, (3) 
the  total  number  of  transactions,  (4)  the  transaction  context  factor,  and  (5)  the 
community context factor.  The first three factors are common in many TMSs; the 
transaction context factor can be used for discriminating mission critical transactions 
from  less  or  non-critical  ones.  It  can  be  seen  as  a  simplified  version  of  risk 
management. And the community context factor is used for addressing community-
related characteristic and vulnerabilities.

Let  I(u) denote the total number of transactions performed by peer  u with 
other peers in a recent time window, p(u,i) denote the other participating peer in peer 
u's ith transaction, S(u,i) denote the normalized amount of satisfaction peer u receives 
from  p(u,i) in  its  ith  transaction and  Cr(v) denote the credibility  of the feedback 
submitted by  v. Then the  basic form of the general metric without the transaction 
context factor and the community context factor is calculated using formula (1).

T (u)=∑
i=1

I (u )

S (u , i)⋅Cr ( p(u , i)) (1)

The most important is the function Cr(v). The authors propose two different 
approaches to credibility measurement. The first one, called trust value metric (TTVM), 
uses  trust  values  recursively  as  peers’ credibility.  The  function  Cr(v)  for  TTVM is 
defined in formula (2).
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Cr ( p (u , i))=
T ( p(u , i))

∑
j=1

I (u)

T ( p (u , j ))
(2)

The  second  one,  called  personalized  similarity  metric  (TPSM),  uses  the 
similarity of two feedback vectors. For peer v the recommendation from peer w is as 
trustworthy as similar were w’ and v’ recommendations in past. Unlike the TTVM, this 
metric reflects a peer w's subjective point of view. Peer v trusts peers which created 
similar  recommendations  and  hopes  that  this  similarity  will  continue.  Let  I(u,v) 
denote the total  number of transactions performed by  u with peer  v  and  IJS(v,w) 
denote  the  set  of  peers  that  have  interacted  with  both  peer  v and  w.  Than  the 
credibility for TPSM metric is defined in formulas (3) and (4).

Cr ( p (u , i) ,w)=
Sim( p(u ,i) ,w)

∑
j=1

I (u)

Sim( p(u , j) ,w)
(3)

where

Sim(v ,w )=1−√ ∑
x∈ IJS (v , w)

( ∑i=1

I ( x ,v)

S (x ,i)

I (x , v)
−

∑
i=1

I ( x , w)

S ( x , i)

I ( x ,w)
)

2

∣IJS (v ,w)∣

(4)

PeerTrust  also  offers  two implementations  strategies:  dynamic  (DTC) and 
approximate (ATC) computation. The dynamic computation uses fresh data and is 
very expensive since a peer needs to retrieve actual trust  data of all  peers in the 
network. The approximate computation provides a more cost-effective algorithm by 
using a trust cache. PeerTrust is actually a collection of four techniques as each of 
two credibility measurements has two different implementations.

According to our classification, the TVM metric uses the global type of rating 
while PSM uses the personalized rating. The feedback verification type is the good 
provider in case of TVM and the  personal experience in PSM. Both metrics try to 
implement the full aggregation scheme, although in case of ATC some data are older 
than others. And the calculation is based on the generalized trust metric.

PeerTrust  introduces  a  general  metric  for  calculation trust  in  a  distributed 
environment and offers several different approaches of how to use it. The presented 
comparative  analysis  of  all  proposed  approaches  is  one  of  the  significant 
contributions of this work. The authors perform several simulations to demonstrate 
the  feasibility,  effectiveness  and  benefits  of  each  approach.  Unfortunately,  the 
effective, distributed and secure manner of implementing it in a real P2P application 
was not described.
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3.4 Lee2005

The interesting technique was proposed by Lee et al. in [63]. It was designed 
into  file-sharing  P2P  networks  and  unlike  other  techniques  it  distinguishes  a 
reputation for peers and for files. The separated reputation for peers and for files has 
several advantages. First, it prevents a malicious peer from sharing recognized bogus 
files even if it changes its identity. Second, it allows newcomers to share an honest 
file even if they do not earn trust yet.

Each file  in  the  system has  its  own file  reputation  manager  which  keeps 
information about  all  versions of the file,  the owner and the file  reputation.  The 
reputation is composed from a number of positive and negative recommendations. 
According to these values the file is put into one of three categories:  trustworthy, 
untrustworthy and  unknown.  Only  trustworthy  and  unknown files  are  taken  into 
account for download.

After successful download, the downloading peer should evaluate the file by 
sending  its  opinion  to  the  file  reputation  manager.  The  opinions  are  treated 
differently depending on the peer reputation of the source. The peer reputation is kept 
on a peer reputation manager. Similarly to the file reputation, the peer reputation is 
composed  from  a  number  of  positive  and  negative  recommendations  which  are 
simply summations of values of the files offered by the given peer. The procedure of 
categorizing  the  peer  reputation  into  trustworthy,  untrustworthy and  unknown is 
performed as in case of file reputation and only recommendations from trustworthy 
peers are taken into account fully.

This work presents an attractive idea to combine a reputation of the provided 
service  and  a  reputation  of  the  service  provider.  This  approach  naturally  solves 
several  problems  connected  with  traditional  methods.  Unfortunately,  its 
implementation  is  limited  only on the  data-sharing  network in  which  there is  an 
assumption that  one instance of the service exists  on more peers.  There are  also 
several open problems which the authors do not address, for instance, the malicious 
peers can lie about their files and provide a bogus file instead of indexed and verified 
one. There is no defence against malicious reputation managers and so on.

In  our  taxonomy,  the  system  uses  global rating  and  performs  the  full 
aggregation  scheme.  As  the  feedback  verification  the good provider is  used  and 
calculation  is  based  on  summation  of  negative  and  positive  feedbacks  from 
trustworthy peers.

3.5 PET

PET is a personalized trust model designed by Liang and Shi [64]. The trust 
model  distinguishes  a  reputation  as  accumulative  assessment  of  the  long-term 
behaviour and a risk as the opinion of the short-term behaviour. The trustworthiness 
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is directly derived from these two parts, as shown in figure 1. WRe a WRi are weights 
of reputation and risk respectively.

The  reputation  is  also  calculated  from  two  parts:  a  recommendation  and 
interaction-derived information.  The recommendation (Er)  is  the average value of 
feedbacks from other peers and the interaction-derived information (Ir) reflects the 
local experience. WEr and WIr are the corresponding weights. The calculation of Er 

does not reflect different trustworthiness of feedback sources and all feedbacks have 
an equal weight. The authors avoid the concept of transitive trust for two reasons. 
First, they do not believe that an honest service provider must be an honest feedback 
source as well. Second, they pointed out the increased load of the system caused by 
examining transitive trust.

The risk is derived only from a local experience and it is normalized to the 
worse case, i.e., the sum of all bad services received from this peer divided by the 
sum of the worst possible results of all services received from this peer during the 
last time interval. Its purpose is to perceive sudden changes in peer behaviour.

The risk represents a novel approach in TMSs. It should reflect the suspicious 
patterns  in  peers’  behaviour  and  warn  that  the  calculated  reputation  can  be 
manipulated. Unfortunately, denoting the risk only as a short-term opinion cannot 
react on all attempts to manipulate the reputation.

3.6 Scrivener

Scrivener  [65] is  based on the idea of pairwise exchange content between 
overlay  participants.  A Scrivener  node  maintains  a  relationship  with  each  of  its 
overlay  neighbours.  These  relationships  keep  a  history  of  interactions  between 
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involved peers expressed by two values on both sides: credit and confidence. The 
credit  is  the  difference  between  the  amount  of  data  sent  to  the  amount  of  data 
received;  the  negative  value  is  called  debt.  The request  for  downloading  data  is 
granted only if the requester's debt is below a certain limit. The confidence value 
reflects  the  reliability  of  the  remote  peer  in  providing  services  and  transferring 
request.  The unreliable  peers  can be expelled  from neighbours  list  in  an  overlay 
network and replaced by another peer. The credit limit for each peer is derived from 
its confidence value.

In order to allow peers to join into the network, each newcomer has a small 
initial credit from that peers which choose it as a neighbour. However, it does not 
obtain any credit from peers that it chooses as neighbours. This prevents malicious 
peers from constantly selecting new neighbours and abusing the initial credit limit.

The basic protocol allows the transaction only between overlay neighbours. 
But  it  is  most  unlikely  that  the  requested  data  can  be  found  on  one  of  them, 
especially in the network with a large content set. Scrivener introduces a strategy 
called transitive trade, which identifies a credit path from a source peer to the peer 
that is the owner of the requested data. After the credit path is identified, the credit 
can  be  rearranged  so  that  the  payment  from the  source  peer  arrives  to  the  data 
provider.

Let the credit path be composed from peers A to Z, where A has a relationship 
with B, B with C and so on. The first message called path discovery is sent along the 
path from A. Each node has to pay for this message to the next peer in the path and at 
the  same time  decrease  its  confidence  in  it.  After  the  message  arrives  to  Z,  the 
confirmation message is transmitted directly to A. A now can route request messages 
for each chunk of the data along the credit path and receives the data directly from Z. 
The same payment policy as in case of the path discover message is applied. A final 
message, announcing that A successfully downloaded requested data, is routed along 
the credit path again and causes each peer to increase the confidence of its successor 
to compensate the reduction in the first step and gain an additional confidence as a 
result of a successful transaction.

In this protocol, each participating peer has an incentive to cooperate. Z wants 
to be credited for transmitting all chunks and intermediate peers do not want to lose 
confidence of their predecessors in the credit path. Each peer also has to pay for each 
request even if it is not satisfied. This discourages flooding requests into the system.

Scrivener is primary targeted to free-riders and thus it only partially addresses 
other malicious behaviours. Unlike other TMSs, it is closely attached to overlay layer 
and encourages the message passing as well. The credit path is established through 
the reliable peers. The authors suppose that the credit and confidence value is hold in 
persistent  storage  and  the  unreliable  peers  can  be  excluded  from  the  network 
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definitively.
Scrivener  does  not  fully  fit  into  our  taxonomy.  The  system  uses  the 

personalized type of rating. There is no feedback aggregation because each peer uses 
only local experience with its overlay neighbours. Neither the feedback verification 
is  needed.  The calculation  is  based  on the  amount  of  sent/received data  and the 
success rate of the requests sent through the peer.

3.7 TrustGuard

TrustGuard [66] is a framework for building distributed TMSs presented by 
Srivatsa,  Xiong  and  Liu.  The  system  supposes  the  existence  of  decentralized 
feedback storage (e.g. DHT based protocol). If a peer wants to transact with another 
peer,  the  following  sequence  of  actions  is  performed:  (1)  feedback  collection  to 
collect all feedback towards queried peer, (2) dishonest feedback filter to filter out 
untrustworthy  feedbacks,  (3)  feedback  aggregation  to  compute  trust  value  from 
obtained feedbacks, (4) strategic oscillation guard to deal with strategic behaviour of 
malicious peer, (5) trust-based peer selection to use the trust value for decision which 
peer  is  suitable  for  transaction,  (6)  transaction  proof  exchange,  (7)  transaction 
execution and (8) feedback submission.  After the feedback is submitted,  the peer 
responsible for storing feedback is able to verify that the feedback originates from a 
real transaction between two peers. The authors identified three critical components 
and proposed solutions for each of them. These components are: strategic oscillation 
guard, fake transaction detection and dishonest feedback filter.

The aim of the strategic oscillation guard is to combat malicious oscillation 
behaviour.  For  instance,  a  malicious  peer  may  behave  non-maliciously  until  it 
achieves a good reputation, then behaves maliciously, after losing its good reputation 
returns to its non-maliciousness and so on. The strategies oscillation guard takes into 
account the reputation history and tries to detect and suppress such behaviour.

The next  critical  component  is  the fake transaction detection.  In a  typical 
transaction-based feedback system, both participants have an opportunity to submit 
feedbacks about each other after each transaction. But malicious peers may flood 
numerous fictitious feedbacks about other peers without realizing transaction with 
them. The purpose of these false feedbacks is to damage the reputation of honest 
peers. In TrustGuard each feedback is bind to transaction through transaction proofs. 
In  other  words,  the  malicious  peers  cannot  evaluate  fictitious  transactions  and 
feedbacks between peers are stored if and only if these peers indeed transacted with 
each other.

The fake  transaction  detection component  uses  a  public  key  cryptography 
based  scheme.  Let  that  every  peer  n has  an  associated  public-private  key  pair, 
namely, <PKn,SKn>. TrustGuard assumes the existence of a trusted authority which 
binds key pairs to peers. Every peer is able to generate a transaction proof which 
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contains  transaction  description  and time  stamp signed  by its  private  key.  These 
transaction proofs are exchanged between peers before the actual transaction takes 
place.  If  the  exchange  fails,  an  honest  peer  would  continue  in  the  transaction. 
Nevertheless, if the exchange succeeds and one of the peers refuses to participate in 
the transaction, both peers still can evaluate transaction that never actually happens.

The transaction proofs have to be exchanged atomically; that is, either both 
participants have a transaction proof from other or none of the proofs is exchanged. 
The  Optimistic  Fair-Exchange  Protocol  was  proposed  to  achieve  this  aim.  This 
protocol  guarantees  fair-exchange  of  two electronic  items  between  two mutually 
distrusting  parties  by  utilizing  trusted  third  parties.  However,  these  parties  are 
involved to only such exchanges that results into conflict. Assuming that most of the 
peers are honest, the trusted parties are hopefully involved infrequently.

The last component, the dishonest feedback filter, introduces the credibility 
factor which is computed in the same way as in PeerTrust described in the section 
3.3.  Therefore,  two  methods  are  offered:  trust-value  based  credibility  measure 
(TVM) and personalized similarity measure (PSM).

We consider strategic oscillation guard as the main contribution of this work. 
The fake transaction detection component requires trusted third parties, complicated 
protocol for fair-exchange and does not eliminate fake transactions completely. The 
dishonest feedback filter component does not come up with any new ideas and uses 
PeerTrust model. On the other hand, TrustGuard is the first TMS dealing explicitly 
with strategic malicious behaviour and proposes the ideas which were later used by 
other researches.

3.8 P2PRep

P2PRep protocol [67] has been proposed for unstructured P2P network. The 
basic  sequence  of  operation  is  simple.  When a  peer  wants  to  use  some network 
resource, it (1) broadcasts query for resource location and receives a list of possible 
resource providers, (2) polls the network about the reputation of the providers, (3) 
verifies the received votes and (4) aggregates them into a reputation value. This value 
is  synthesized  with  the  local  reputation  representing  direct  interactions  with  the 
remote peer.

The security of this protocol is guaranteed by two mechanisms. First, the poll 
query contains a public key and all replies have to be encrypted by this key. Only an 
initiator of the query has the corresponding private key. This protects the identity of 
the responder and the data integrity. Second, the vote verification process randomly 
chooses  some of  the  votes  and sends a  vote  verification  message  to  the  address 
associated  with  these  votes.  This  ensures  that  the  vote  truly  originated  from the 
corresponding address. However, it does not prevent malicious peers from creating 
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fake feedbacks towards honest peers or lying about the results of their transactions. 
Hence there is no feedback verification in a sense of checking the feedback quality. 
This makes the P2PRep vulnerable to malicious collectives.

3.9 NICE

NICE is a cooperative framework for implementing distributed application 
over the Internet  developed on the University of Maryland.  Sherwood et  al.  [68] 
proposed a  protocol  in  context  of  the  NICE system for  efficiently  storing peers’ 
opinions  in  a  completely  decentralized  manner  and  identifying  non-cooperative 
peers.

For each transaction, both involved peers produce a signed statement (called 
cookie) about the quality of the transaction. The peers send these cookies to each 
other and store them in the permanent storage. Later, the peer can use these cookies 
to prove its trustworthiness. The protocol uses a weighted directed graph called the 
trust graph. The vertices in the trust graph correspond with the peers in the network 
and there is an edge directed from peer A to peer B if and only if peer B hold a cookie 
from peer  A.  The weight of the edge denotes the quality of the past  transactions 
between peer  B and  A included in the cookie.  The example of the trust graph is 
shown in Figure 2.

Let  peer  A wants  to  communicate  with  peer  B,  these  peers  had  prior 
transactions, hence the cookie exists and its value can be used as a B's reputation. A 
more interesting case is when peer  A wants to communicate with peer  F. Because 
there are no prior transactions, F's reputation is calculated using the trust path. A trust 
path  is  an  oriented  path  in  the  trust  graph.  There  can  be  more  trust  paths.  For 
instance, in Figure 2 the possible trust paths from A to F are: A-B-D-F, A-B-E-F or A-
C-E-F. The quality of the path is called “strength”. The authors propose two methods 
of calculating the strength of the path:  (1) as a minimum valued edge along the path, 
and (2) the product of all edges along the path. And they also propose two methods 
of calculating the reputation according the strength of the trust paths: (1) it is the 
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strength of the strongest path or (2) weighted sum of strongest disjoint path.
To  complete  the  protocol,  we  need  a  procedure  how  to  find  trust  paths 

between given peers. One possible solution is flooding query through the network, 
but it is extremely inefficient. The authors propose modified flood-based algorithm. 
Whenever a peer receives a cookie from other peer, it receives a digest of all other 
cookies at the remote peer. These digests is used to optimize forwarding queries.

Other issue is that low-valued transactions are potentially not recorded in the 
system.  The cookie  evaluating  peer  B is  stored  on  peer  B,  and  this  peer  has  no 
motivation to store and distribute cookies containing negative recommendation to it. 
The authors propose storing negative cookies on the issuer. If the peer  B wants to 
interact with peer  A,  it  can initiate a search for  B's negative cookies. This search 
follows high trusted edges from  A.  If this  procedure finds a sufficient number of 
negative cookies, peer B is considered untrustworthy.

This  framework  provides  a  low overhead  information  storage  and  search 
algorithm usable in unstructured P2P network. The main idea that every peer holds 
only data beneficial to them hence they are motivated to participate on the TMS. The 
disadvantage  is  a  separate  algorithm for  dealing  with  negative  recommendations 
which makes the system susceptible to malicious collectives.

3.10 Credence

Credence [69] is a TMS developed for the Gnutella file-sharing network and 
its  primary  goal  is  the  defence  against  file  pollution.  Unlike  in  other  TMSs, 
reputation is connected with objects (files) shared in the network. In Gnutella style 
file-sharing  networks  the  peers  want  to  download  a  file  send  a  search  query 
containing required file's attributes. As a result it receives a list of files matching its 
query with hashes of file contents and meta-data describing the files. The user picks 
up one of the file to download. Credence should be able to guarantee that a file with 
a given hash has desired attributes.

After a file is downloaded, a user can manually enter positive or negative vote 
indicating  the  authenticity  of  a  downloaded  file.  Each  vote  is  a  signed  tuple 
containing a file content hash, an evaluation and a time-stamp. A peer evaluating 
file's authenticity actively queries the network to find and collect a sample of relevant 
votes. The final reputation is formulated by taking a weighted average of obtained 
votes.  The  weight  assigned  to  each  vote  depends  on  the  statistical  correlation 
between other votes originated from the same remote peer and votes created by a 
local  peer.  The  authors  assume that  each  peer  keeps  a  vote  database containing 
received and emitted votes. This database is used for satisfying vote queries from 
other peers and for a calculation of correlation. The peers also hold a  correlation 
database which is periodically recalculated according to vote database.
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The system guarantees that a file with a given hash has desired attributes. But 
it does not help to choose peers which share this file reliably. The malicious peers 
can provide bogus files instead of files announced in the search result. Although such 
bogus files are quickly recognized (hashes do not match) this can be done only after 
the downloading is complete.

3.11 Multilevel Reputation System

The  authors  of  the  TMS  described  in  [70] introduced  the  concept  of 
reputation levels. The reputation levels are attached to peers and classify them into 
different classes. The system enforces the access control rule:  a peer can use the 
resources only from peers on the same or lower reputation level. Obviously, each 
peer will prefer the most reputable sources which are the peers on the same level. It 
means that the peer is motivated to acquire high reputation not only for distributing 
its resources but also for an opportunity to download from more trustworthy peers.

The system requires  a  central  component  called  Central  Computation  and 
Enforcement  Agent  (CCEA),  which  computes  the  peers’  reputation  levels  and 
enforce the access control rule. It means that all search requests must be processed by 
CCEA and after each transaction, both participants must report the outcome of the 
transactions to CCEA. Authors propose two schemes for reputation level calculation, 
which are Level Up Reputation Computation (LURC) and Level Keeping Reputation 
Computation (LKRC). First scheme LURC decides whether the reputation level of 
the  peer  should  be  increased.  This  scheme  takes  into  account  only  the  peer's 
contribution to peers with higher reputation level. If the level is not increased, the 
LKRC scheme is used to check whether the peer can keep its current reputation level. 
This depends on its contribution to the peer with the same reputation level.

At  the  very  beginning,  all  peers  are  in  the  lowest  reputation  level.  The 
previously described schemes do not allow any peer to increase its reputation level 
and the system would stay in this state forever. Nevertheless, random selections are 
performed and some of the peers are promoted. This procedure is run periodically 
until the number of peers in each level is up to threshold. The system works best if  
peers are equally distributed among all levels.

The proposed system elegantly solves the load balancing problem, described 
in section 4.1.1. The access rules in the multilevel reputation system guarantee that 
the requests are spread more uniformly across the network.

The main disadvantage is the necessity of the central component. Moreover, 
this component is heavily loaded by running computation for each peer. This central 
component makes many things easier than in a full decentralized TMS but creates a 
single point of failure and degrades the distributed system.
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3.12 WTR

The  system WTR  [71] described  by Bonnaire  and  Rosas  uses  DHT as  a 
storage for peers’ feedbacks. The DHT allows any peer to store its  feedback and 
retrieve all feedbacks towards a given peer. The standard DHT algorithms have to be 
extended  for  replication  to  resists  DDOS  attacks  and  peer  failures.  The  authors 
propose to use their previous recursive replication scheme [72].

The reputation for peer A at time t is calculated using formula (5). 

Rt (A)=
∑i=0

m−1
log(m−i+1)×F i

K
( A)×C t( K )

∑i=0

m−1
log(m−i+1)×C t(K )

(5)

where  F i
K
(A) is the feedback of index  i towards peer  A emitted by peer  K.  To 

compute a reputation of peer A, the algorithm uses m more recent recommendations 
for node A. The expression log(m-i+1) is used as a sliding factor to give more weight 

to  more  recent  feedbacks.  And C t( K ) represents  the  credibility  of  peer  K as  a 

recommendation source. The credibility of peer K is a discrete exponential function 

of Rt (K ) giving peers with a reputation higher than 0.5 much more credibility than 

the other ones.
Besides the reputation, WRT introduces the risk factor. The risk of peer  A 

reflects  the  probability  of  how  much  the  reputation  corresponds  with  real  peer 
behaviour. The high risk means that the reputation may be calculated inaccurately 
due  to  a  low number  of  recommendations  or  fluctuation  in  peer  behaviour.  The 

computation of the risk J t( A) is composed from two factors T1 and T2. 

T 1(A)=α(1−
r
m

) (6)

T 2(A)=4(1−α)
∑i=0

k
(F i( A)−F i( A))

2

r
(7)

T1 is  used  to  evaluate  a  number  of  recommendations  and  T2 reflects  the 
variance of the recommendations emitted by other peers. In formula (6) and (7), r is 
the number of available recommendations in a window of size  m for node  A and 
α is a dynamic parameter that allows to give more weight to  T1 or  T2. The final 

risk is summation of T1 and T2. The risk factor should help an application to eliminate 
peers with short history or suspicious changes in their behaviour.

The proposed system does not require any kind of centralized authority and it 
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is designed to structured P2P network. The reputation computation is quite simple 
using weighted average weighted by credibility and sliding factor. The risk factor 
reflects  fluctuation  in  peers’ behaviour  similarly  to  strategic  oscillation  guard  in 
TrustGuard  [66].  Moreover,  TrustGuard has much more complex mechanisms for 
that. WTR is inspired by previously published TMSs and implements some time-
proven methods.

3.13 H-Trust

H-Trust  [73] is  inspired  by  H-Index  [74] aggregation  approach.  H-Trust 
scheme is implemented in five phases: trust recording phase, local trust evaluation 
phase,  trust  query  phase,  spatial-temporal  update  phase  and  group  reputation 
evaluation phase. In the trust query phase the whole network is queried the feedbacks 
to the particular peers, but only peers with a high credibility are taken into account in 
the reputation evaluation phase. In H-Trust these peers are called qualified peers.

H-Trust uses a simple algorithm to compute the recommender’s credibility. If 
the recommendation proves to be truthful, the recommender’s credibility increases 
and vice versa. There is only one way to prove recommendation credibility - using a 
resource from the recommended peer. Therefore, after each transaction, not only the 
reputation towards the target peer is changed, but also the credibility of the peers 
which recommended it is revised. The credibility of all recommenders is changing, 
not only of the qualified ones. Due to this fact, the non-qualified peers can prove 
their honesty.

The H-Trust aggregation scheme is described by the following statement: A 
peer i has trust rating Ti,j = H towards peer j if H of the qualified N peers have at least 
trust rating score H towards peer j, and the other (N-H) peers have at most trust rating 
score H towards the peer j. If there is no exact H-point, the approximate rank value is 
used.

The  system  introduces  a  new  calculation  approach  used  previously  to 
quantify scientific researcher papers. This approach seems to be effective in a P2P 
environment too. It reflects the reputations of the recommender and the strenght of 
the  recommendation.  The  peers’  credibility  is  not  directly  used  in  H-Index 
computation, it serves only for distinguishing between qualified and non-qualified 
peers.

3.14 Summary

Many papers attempting to solve building secure P2P networks have been 
published in recent years. In the previous sections,  we tried to describe the most 
known of them. We focus on systems which introduced some new ideas and push 
knowledge  forward,  hence  it  should  not  be  considered  as  a  complete  list  of  all 
published TMSs.
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We summarized all described system in table 4. This table give us a basic idea 
of different  aspects  of  each TMS but cannot  decide which system is  better.  It  is 
difficult to compare individual methods because there are not fixed criteria which can 
be used to measure the efficiency of the reputation management. We have only a 
vague notion of 'trusted P2P network'. The TMSs have been built under the premise 
that this notion is well understood. Previous researchers use the simulations to prove 
the  potential  benefit  of  their  proposal.  These  simulations  are  often  oriented  only 
towards  the  ratio  of  successful  and  failed  transactions;  in  some  cases  the 
communication  overhead  and  response  time  are  also  taken  into  account.  The 
individual  simulation  models  are  different,  simulate  different  communication 
patterns and malicious behaviour. And only a small number of competitive systems is 
included in the simulation, if any. As a result of this, the output of these simulations 
cannot be used for comparison with other systems.

Other possibility is to carefully analyse individual methods against described 
attacks  and try to  formally determine their  resistance against  these  attacks.  Such 
approach has been used in [58], [75] or [76] and has some limitations. For instance, 
we can  decide  whether  the  system is  vulnerable  against  a  certain  kind of  attack 
because authors do not implement any protection mechanism; however, we cannot 
compare the efficiency of two systems with the different  protection mechanisms. 
Additionally,  each  application  environment  is  different  and  different  threats  are 
possible. Therefore, the efficiency of TMS should be considered in the context of 
application.
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Calculation

EigenTrust [61] G F GP Weighted average.

PeerTrustTVM [62] G F GP General trust metric.

PeerTrustPSM [62] P F PE General trust metric.

Lee2005 [63] G F GP
Sum of negative and positive 

feedbacks from trustworthy peers.

PET P N/A N
Average of feedbacks and risk 

calculated from local experience.

Scrivener [65] P N/A N
The amount of sent/received data 

and the success rate of the requests. 

TrustGuard [66] G/P N/A GP/ PE

Strategic oscillation guard 
incorporating peer's history 

(Integral component) fluctuation 
(Derivative component) and 

credibility.

P2PRep [67] P S N Ordered weighted average.

NICE [68] P S GP
The strong of the strongest trusted 
path or weighted sum of strongest 

disjoint trusted path.

Credence [69] P S PE Weighted average of votes.

Multilevel RS [70] G F N

Reputation level is increased if 
there is enough transactions with a 
higher reputable peers or decreased 
if there is not enough transactions 
with the equally reputable peers.

WTR [71] G F GP

Using two values: reputation and 
risk.

The reputation is a weighted 
average and the risk reflects the 

number of feedbacks and 
fluctuation in peer behaviour.

H-Trust [73] P S PE H-Index [74] 

Table 4: Basic classification of trust management systems. Type of rating: G -  
Global, P - Personalized, Feedback aggregation: F - Full, S - Selective, Feedback  
verification: N - None, GP - Good provider, PE - Personal experience, GE - Global  
experience.
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4 Attacks against TMS itself
In  section  2.2 we  described  attacks  targeted  at  the  application  layer  and 

presented the defence mechanisms based on reputation management  in section  3. 
Unfortunately, these mechanisms have their own weaknesses which can be exploited 
by treacherous peers. These peers can use sophisticated strategies to circumvent TMS 
and maximize their malicious impact. In this section, we analyse these weaknesses 
and describe malicious strategies exploiting them.

The weaknesses can be classified into three categories:  (1) unwanted side 
effects, (2) individual strategies, and (3) collective strategies. This chapter describes 
the known malicious strategies and suggests three new malicious tactics targeted to 
the current TMSs.

4.1 Unwanted side effects

The  issues  related  to  this  category  can  be  seen  in  the  network  without 
malicious peers. They are caused by the function of the TMS itself. The literature 
describe two issues which are part of this category: (1) load balancing problem, and 
(2) cold start problem. Generally, both problems can be relatively easily solved, but it 
is necessary to pay attention to them when a new TMS is designed.

4.1.1 Load balancing problem

We have already mentioned the load balancing problem in DHT in section 
2.1, but the use of wrongly designed TMSs can make it worse. Suppose that the TMS 
uses the continuous value for the reputation and the global rating. It is very likely 
that one of the providers has a higher reputation than others and all other peers prefer 
cooperating  with  it.  This  results  into  a  situation  when  one  top-rated  peer  is 
overloaded and other reliable peers with a slightly lower reputation are idle. Similar 
situation can occur in TMSs with personalized rating. All requests are targeted to the 
group of most rated peers while there is a number of equally reliable providers.

The TMSs have to be carefully designed to avoid this problem. One possible 
solution supposes that peers do not automatically choose the most rated partner, but 
randomly choose one above a defined threshold. Unfortunately, this rule is difficult 
to enforce, some peers can ignore it and still prefer the highest-rated peers for selfish 
reason  -  maximizing  its  downloading  success.  Other  solution  is  to  forbid  this 
situation in the TMS itself.  For instance,  TMSs can use discrete reputation value 
instead  of  continuous one,  or  service providers  can  limit  access  to  their  services 
according to a requester reputation, like in [77].
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4.1.2 Cold start

The problem of newly connected peers is its initial reputation. It should be 
zero, because the system does not have any previous experience with them. But the 
peers with a zero-reputation have only a little chance to be chosen for cooperation 
and cannot  prove  its  trustworthiness.  For  such peers  the  process  of  building  the 
reputation is very slow. This is called a cold start problem. In the worst case scenario, 
the newcomers can stack in a zero-reputation state forever.

In order to prevent this problem, TMSs should provide an initial reputation to 
all  newcomers.  But this  can be misused in attacks called whitewashing in which 
peers leave the network after gaining bad reputation and connect again with a new 
identity with a fresh initial reputation. Whitewashing is discussed in detail in section 
4.2.1. The most TMSs use only small initial reputation as a trade-off between cold 
start problem and making the system attractive for whitewashers.

Other possibility is to allow newcomers to gain a reputation in another way, 
for instance, on the basis of the social relationships between users. The user already 
connected to the network can send invitations to his friends and provides them an 
initial reputation [78].

4.2 Individual strategies

Let us suppose that each malicious peer works alone without cooperation with 
others. There are several strategies which it can utilize to circumvent TMSs. Most of 
the TMSs can detect these attempts easily and such peers have only a little chance to 
succeed. The individual strategies pose a danger if they are used together with other 
strategy.  Malicious  peers  can  use  them  as  a  part  of  sophisticated  collaborative 
strategies described in section 4.3.

4.2.1 Whitewashing

This  strategy  consists  in  periodical  joining  and  leaving  the  network.  The 
malicious peer after gaining bad reputation leaves the network and joins again with a 
new identity. All negative recommendations bound with its previous identity become 
useless  and  the  peer  can  start  over.  This  problem  has  been  discussed  by  many 
researchers [79], [58] or [80].

The only possibility to fight against whitewashers on the trust management 
layer is to provide a very small initial reputation to newcomers and deal with the cold 
start problem (4.1.2). However, the general solution should guarantee that the peers 
keep the  same identifier  during  their  lifetime.  It  should  be  difficult  for  peers  to 
generate a new identity easily. The same problem is solved in the defence techniques 
against  Sybil  attack discussed in section  2.1.1. Although these techniques are not 
completely reliable, they can significantly improve the security.
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4.2.2 False meta-data

The fundamental principle of many P2P applications is sharing resources. The 
peers  publish  resources  together  with  meta-data  describing  them.  Typical  P2P 
application is equipped with a mechanism which allows to search in meta-data and 
identifies peers which offer resources connected with them. However, there is no 
guarantee that the meta-data describe the resources truthfully. Malicious peers can 
insert false attractive information into the meta-data describing their bogus resources 
to  increase  the  demands  for  them.  For  instance,  in  the  P2P music  file  sharing 
network, the attacker most likely names its infected file like some very popular song. 
Due to the fact that 10% of the most popular files create 90% of all transactions in 
file sharing P2P networks  [43], the attacker dramatically increases the probability 
that the file will be downloaded. This is a basic, simple and very effective malicious 
strategy. Some of the TMSs are specifically designed to fight against this issue (see 
section 3.4 or 3.10) but they are limited to file-sharing P2P networks.

4.2.3 Camouflage

The malicious peers that are aware of the presence of the TMS can provide a 
few honest resources. These resources allow them to maintain higher reputation even 
if they provide also some bogus resources. Their reputation will be probably smaller 
than the reputation of honest peers but it can be enough to trick part of the honest 
peers. However, if the honest peer has a choice between several providers of the 
same resource, it probably chooses the most trustful one. Therefore, the camouflaged 
malicious peers have to offer some unique resource to be chosen despite the lower 
reputation. The combination with false meta-data strategy is suggested.

The basic scheme of this strategy is depicted in figure  3a. The honest peers 
evaluate the camouflage peer alternately as honest and malicious. There can be many 
variants of this strategy, differing in the ratio of honest and bogus services or the 
period between changing behaviour. In some literature, the variant of this strategy is 
called Traitors [57], [58] or [81].

4.3 Collective strategies

Malicious peers have a significantly higher chance to succeed if they work in 
a  cooperative manner  and coordinate  their  effort  to  trick the TMS. Many papers 
designated malicious collusions as the biggest treat for P2P applications [82], [58] or 
[75]. However, only two collective strategies are considered in the most papers. Their 
names are not stabilized, so we use a designation (1) full collusion and (2) spies for  
them.  In  the  full  collusion  the  malicious  peers  are  providing  false  positive 
recommendations to other malicious peers and the spies is a strategy when a part of 
malicious  peers behave honestly  and recommend the second part  of  peers which 
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perform malicious activity.

4.3.1 Full collusion

It  is  the  basic  collective  strategy.  All  members  of  a  malicious  collective 
provide  bogus  resources  and  create  false  positive  recommendations  to  all  other 
members of the collective. The purpose of these recommendations is to artificially 
increase the reputation of other malicious peers. Figure 3b shows full collusion with 
three malicious peers.

This strategy is effective only in TMSs which do not verify the credibility of 
feedbacks. The feedbacks are generated by malicious peers and most TMSs should 
consider them as untrustworthy. On the other hand, these false recommendations can 
be very easily generated; therefore, it  does not pose additional load for malicious 
peers.  Malicious  peers  are  able  to  generate  a  great  number  of  such  false 
recommendations which can jeopardize the proper function of TMSs.

4.3.2 Spies

In order to increase trustworthiness of their false recommendations, malicious 
peers can use several techniques dependant on algorithms used by TMSs. If the TMS 
assesses the credibility of the feedback source according to its reputation as a service 
provider, malicious peers can use strategy called Spies. The malicious collective is 
divided into two groups: spies and malicious. The spies provide honest services to 
earn a high reputation and simultaneously provide false positive recommendations to 
the  malicious  part  of  the  collective.  The  recommendations  between  peers  in  the 
network with spies are shown in figure 3c.

The success of this strategy depends on the number of spies in the collective. 
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More spies are able to outvote the peers with negative experiences with malicious 
part of the collective. But even there this method is not faultless. The malicious part 
of  the  collective  would  have  a  large  number  of  contradictory  recommendations 
which  should  be  considered  suspicious  and  TMS  can  designate  these  peers  as 
oscillated and discard them.

The honest transactions performed by spies implied extra load for malicious 
collective. The spies have to provide some resources which are beneficial for others. 
On  the  other  hand,  the  spies  assume  that  they  are  not  punished  for  their  false 
recommendations and can provide only as many honest services to keep its provider 
reputation.

4.4 Newly proposed malicious strategies

We  analysed  published  TMSs  and  known  malicious  tactics  carefully  and 
suggest three new collective malicious strategies. Each strategy is designed into a 
particular type of TMS and tries to exploit its specific weakness. 

4.4.1 Evaluator collusion

If  the  TMS  assesses  credibility  of  the  feedback  source  according  to  the 
truthfulness of its previous feedbacks, malicious peers can try to trick the TMS by 
using the services from peers outside the collective and evaluating them correctly. 
These true feedbacks increase the credibility of malicious peers as recommenders 
and give more weight to their feedbacks towards other member of collective.

Figure  4 shows the  schema of  this  strategy.  It  is  similar  to  full  collusion 
except  the  truthful  recommendations  towards  peers  outside  the  collective.  The 
effectiveness  of  this  strategy  depends  on  the  ratio  of  truthful  and  faked 
recommendations. But the truthful recommendations are very disadvantageous for 
malicious  peers  for  two  reasons.  First,  they  must  be  preceded  by  complete 
transactions outside the collective, which significantly increase the load of malicious 
peers. Second, the malicious peers have to evaluate these transactions honestly. This 
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can be a difficult task in some systems, except the objective criteria like bandwidth, 
file integrity or time to complete a request, the final evaluation is subjective and it is 
often left to the user behind the application.

The idea that malicious peers implement some robots which automatically 
evaluate all services in the network seems like a beneficial approach. But it can open 
a way to censorship when a collective of peers decide which service is good and 
which is bad.

4.4.2 Evaluator spies

This  strategy is  a  combination of evaluator  collusion and spies.  The spies 
implement three techniques to maintain a high credibility as a feedback source: (1) 
they provide  an honest  service,  (2)  they  use  resources  outside the  collective and 
evaluate them correctly, and (3) they create positive recommendations towards other 
spies. The scheme depicted in figure  5 is similar to regular spies. Additionally, the 
evaluator spies create truthful recommendation outside the collective and between 
each other.

This strategy is designed into TMSs which assess credibility of the feedback 
source  according  the  quality  of  the  previous  feedback,  similarly  to  Evaluator 
collusion. Unlike the Evaluator collusion, it tries to minimize the number of truthful 
recommendations  outside  the  collective  because  of  the  disadvantages  discussed 
above. Some of them are replaced by providing honest services, like in the spies 
strategy,  and  creating  false  recommendations  between  spies  which  can  be  easily 
generated.

4.4.3 Malicious spies

The malicious spies strategy is a slight modification of the previous strategy. 
It  is  based  on  the  idea  that  spies  do  not  require  a  high  reputation  as  resource 
providers. They can provide bogus resources and generate negative recommendations 
between each other.  These recommendations are still truthful and should increase 
their credibility as a feedback source. In this way, the attacker can eliminate the need 
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of providing honest services to trick the TMS.

The  scheme  of  this  strategy  is  shown  in  figure  6.  There  is  only  one 
modification  compared  to  evaluator  spies.  The  spies  provide  bogus  services; 
therefore,  they have negative recommendations from honest peers  and from each 
other.

This strategy is not suitable to all TMSs. It assumes that the TMS has no 
correlation between provider and evaluator rating. Otherwise, it is counterproductive.

4.5 Summary

A bigger number of malicious peers using collective strategy causes a disaster 
for each P2P network. The authors of the most previously published TMSs expected 
only simple collective strategies and tried to make its system immune to them. But 
the attacker with detail  knowledge of the internal functions of TMS can develop 
more sophisticated strategies targeted to the specific TMS. The strategies described 
in this chapter exploited some general principles used by several TMSs. Therefore, 
they  are  more  dangerous  than  common  collective  strategies.  Additionally,  other 
modifications or combinations of these strategies are possible.
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5 BubbleTrust
The  previously  described TMSs suffer  several  security  deficiencies  which 

prevent the use of full decentralized P2P architecture in more types of applications. 
Currently, the P2P architecture is mainly used in non secure sensitive applications or 
in applications in which the administrator has the full control over the end nodes. In 
the both scenarios the previously described TMSs are perfectly usable. In the first 
case, the attacker has not a motivation to deploy sophisticated malicious strategies 
because the potential benefit does not outweigh the cost. And in the second case, the 
probability of the peer's maliciousness is very low.

Imagine  a  full  decentralized  auction  application  similar  to  eBay.  Such 
application cannot exist without proper security mechanisms because the vision of 
financial  profit  is  very  attractive  for  potential  attackers.  Even  if  the  application 
operates on centralized servers (like eBay), the ensuring trust between sellers and 
buyers is questionable  [56]. Our ultimate goal is to allow the deployment of P2P 
architecture  in  more  secure  sensitive  applications.  To  accomplish  this  task,  we 
decided to develop a new TMS which should be resistant even against sophisticated 
malicious strategies and at the same time usable in large P2P networks.

In our previous work  [83], we presented a novel trust management system 
called BubbleTrust  which uses  some new approaches.  The basic idea behind the 
BubbleTrust is the separation of a peer role into that of a resource provider and of a 
transaction evaluator. The peer is evaluated for both roles separately, hence the 
system is able to distinguish peers that provide honest resources but do not 
participate correctly in the TMS. This tactic is often used by members of malicious 
collectives as described in section 4.3. Using the BubbleTrust makes it less effective. 
Other important concept is a data management which ensures that malicious peers 
cannot create fake feedbacks towards honest peers or suppress unflattering feedbacks 
towards themselves or allied malicious peers.

The BubbleTrust is based on trust graph, which was first introduced in NICE 
[68].  In  contrast,  it  does  not  try  to  find  a  trust  path  between a  consumer  and a 
provider, but it tries to involve as many relations as possible into the decision making 
process.  It takes into account opinions of a great number of peers which have the 
strongest relations towards the queried peer.  These relations create a trust bubble 
around the queried peer. BubbleTrust would not be possible to use without limiting 
the size of this bubble or using caches which significantly reduce the complexity of 
the algorithms.

5.1 Basic concept

Let us assume that the P2P network can be decomposed into a set of two-
party transactions. In each transaction one party is designated as a consumer and 
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other as a provider. The provider is a peer which owns some resources and offers 
them to the public. The consumer is a peer which uses these resources. Each peer in a 
P2P network can act as both a provider and a consumer. 

After  each  transaction,  the  consumer  can  express  its  satisfaction  with  the 
quality  of  the  acquired  resource  and  transaction  parameters.  On  the  basis  of  all 
transactions  with  a  given  peer  the  consumer  can  create  an  opinion  about  peer's 
reliability as a provider, this opinion is called provider rating. 

The consumer  publishes  all  opinions  on  the  network.  In  other  words,  the 
consumer  evaluates  every  provider,  which  it  cooperates  with,  and  makes  this 
evaluation  public  accessible.  From the  TMS point  of  view the  better  notion  for 
consumer  is  an  evaluator.  In  the  following  text  we  use  notion  evaluator 
interchangeably with the notion consumer if we want to stress its evaluation function. 
Other peers download the provider rating from the evaluator and use it for its own 
calculation  of  the  provider  rating.  But  the  foreign  provider  rating  is  not  as 
trustworthy  as  locally  created  ratings.  We  use  a  notion  recommendation  for  the 
provider rating acquired from other peers. 

In the BubbleTrust, every peer has two ratings. First, it is the provider rating, 
which we defined above. The higher provider rating means that the peer is more 
likely to be a reliable resource provider. This rating corresponds to the notion of the 
reputation commonly used in the contemporary TMSs. Second, the evaluator rating 
is connected with the evaluation function of the peers. The opinions from the peers 
with higher evaluator ratings are more trustworthy than opinions from the peers with 
lower evaluator ratings; this rating is often called credibility.

Every peer creates both ratings locally towards each peer which has required 
resources. The primary purpose of these ratings is to help peers to make a decision 
whether a given peer is reliable for cooperation. If the peer acts as a consumer, it is 
looking for a provider with a higher provider rating to ensure that the transaction will 
be successful. If the peer acts as a provider, it prefers the consumer with a higher 
evaluator rating to ensure that the transaction will be correctly evaluated and this 
evaluation will be trustworthy for other peers in the network.

The provider rating originates from direct transactions with evaluated peers or 
is calculated from the recommendations acquired from other peers. The evaluator 
rating is calculated by comparing network experience with recommendations from 
evaluated  peers.  The  calculations  of  both  ratings  influence  each  other.  The 
calculation of the provider rating requires the evaluator ratings of all peers which 
evaluated the given peer. Analogously, the calculation of the evaluator rating requires 
the provider ratings of all peers which were evaluated by the given peer. These two 
observations  give  us  a  brief  outline  of  the  calculation  algorithm  which  will  be 
explained below.  The system creates  a  bubble  around the  unknown peers  which 
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contains the peers having references to them. 
Most of the previously published trust managements used only one rating and 

this  rating  supplies  the  function  of  the  both  ratings  in  our  system.  The  authors 
assumed that a quality provider should be a quality evaluator too and vice-versa. But 
this  is  not  generally  true.  Especially  the  peers  which  are  members  of  malicious 
collectives can break this assumption in an effort to advantage some other members 
of the collective. The separation of ratings facilitates the detection of such behaviour. 

5.2 Calculation

Before each transaction, the consumer needs the provider ratings of the all 
possible  providers;  on  the  basis  of  these  ratings  the  consumer  chooses  the  most 
reliable partner for cooperation. There are two possibilities of how the consumer can 
get provider ratings. First,  both peers have already cooperated in the past and the 
consumer has the rating created by itself. Second, the consumer has never cooperated 
with  the  remote  peer  and  has  to  ask  other  peers  for  recommendations.  These 
recommendations are used to compute the required rating. 

Similar situation occurs on the provider's side. It needs the evaluator rating of 
the consumer which asks for its resource. The evaluator ratings are always calculated 
from the recommendations originated from the given evaluator. In this section, we 
explain  the  calculation  of  both  ratings.  We  start  with  the  provider  ratings;  the 
calculation of the evaluator ratings is analogous. At first, we give several definitions: 

Definition: Provider rating (VP) is a real value in a range [-1,1] which expresses an 
opinion about the provider reliability. The positive value expresses the satisfaction 
and negative value dissatisfaction. The absolute value represents the strength of this 
opinion.

Definition: Evaluator rating (VE) is a real value in the range [0,1] which express an 
opinion about the quality of ratings offered by the evaluator. The higher value means 
more trustworthy rating. 

We  choose  different  ranges  to  stress  the  different  interpretation  of  both 
values. The provider rating expresses two states: satisfaction and dissatisfaction and 
certainty about belonging into these states, whereas the evaluator rating expresses the 
quality of the opinion. The recommendation from an evaluator towards a provider is 
stored as a relation. 

Definition: The relation is a 5-tuple  r = <E,  P,  v,  w,  t> where  E is a transaction 
evaluator, P is a transaction provider, v is a provider rating, w is a transactions weight 
and t is a time of the last modification. We use a notation r.E, r.P, r.v, r.w and r.t for 
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elements in the relation r. 

The relation can originate or be altered only after the transaction takes place 
between involved peers. The storing and seeking relations in the network is described 
in section  5.4. Meanwhile, we assume that all relations created in the network are 
available for every peer. 

Definition: The  transactions  weight  expresses  the  consumer’s  opinion  about  the 
importance of the transactions between the consumer and the provider. This opinion 
is a real value in a range [0,1]. 

The transactions weight gives the evaluator the opportunity to express the 
importance of the transactions, for instance on the basis of the size or character of the 
data. The importance of the whole relation is calculated from the transaction weight 
and the time of the last modification. 

Definition: Weight function (W) determines the weight of the each relation and is 
defined by the formula: 

W (r )= f (r.t )∗r.w (8)

where f (x) : N → [0, 1] is a time function which maps the age of transaction 
into a range [0,1]. The design of time function will be discussed later. 

The  next  question  is  how  the  evaluator  rating  influences  the  opinion 
originated from the evaluator. We define a two dimensional function, called provider 
function, which expresses this dependency. 

Definition: The  provider  function  accepts  two  arguments,  the  provider  rating 
originated from one evaluator and the evaluator rating of this evaluator. The result is 
altered provider rating which takes into account the evaluator trustworthiness. The 
function has a form: pv(x1,  x2 ) : [−1, 1] × [0, 1] → [−1, 1] Where x1 is a provider 
rating originated from the remote evaluator and x2 is an evaluator rating of the remote 
evaluator.  This  function  can  have  several  interpretations,  we  analyse  function 
requirements and provide possible interpretation in section 5.5.

Now we are able to give a formula to compute the provider rating. The basic 
idea is simple: The peer is a good provider if a majority of good evaluators agrees on 
it. The formula (9) takes into account the altered provider ratings and weights of all 
relations where the given peer acts as a provider. Let R is a set of relation such r  ∈ R 
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and r.P = A, the provider rating of peer A, VP(A), is calculated according the formula: 

V P( A)=

∑
r∈R

pv (r.v , V E(r.E ))⋅W (r )

∑
r∈R

W (r )
(9)

The formula for computation of the evaluator rating is very similar. First, we 
need the evaluator function. 

Definition: The  evaluator  function  accepts  two  arguments,  the  provider  rating 
originated from a given evaluator and the reference provider rating. The reference 
provider rating reflects the majority opinion of other peers or local provider ratings if 
it is available. The result is an evaluator rating of the given evaluator which takes 
into  account  the  difference  between  both  ratings.  The  function  has  a  form: 
ev(x1, x2): [−1, 1] × [−1, 1] → [0, 1]. Where x1 is a provider rating originated from the 
remote evaluator and x2 is a reference provider rating. 

Similarly to provider function, this function can have several interpretations. 
We analyse function requirements and provide possible interpretation in section 5.5. 
The idea behind the evaluator rating: the peer is a good evaluator if a majority of its 
ratings correctly evaluates the providers. The formula (10) takes into account the 
calculated evaluator ratings and weights of all relations where the given peer acts as 
an evaluator. 

Let R is a set of relation such r  ∈ R and r.E = A, the evaluator rating of peer A, 
VE(A), is calculated according the formula: 

V E( A)=

∑
r∈R

ev (r.v ,V P(r.E ))⋅W (r )

∑
r∈R

W (r )
(10)

The aim of the trust management is to calculate the provider rating and the 
evaluator  rating  for  the  given  peers.  In  the  proposed  system  those  values  are 
computed locally on each peer. The calculated values are used only for decision on 
the local peer and are not exported to other peers.  It means that each peer has a 
unique view on the network and the trust values towards one peer can be different on 
the different peers, the similar approach is used for example in Fuzzy [67] or Core 
[84]. The opposite approach represents systems like EigenTrust [61] where the trust 
values are global: All peers share the same opinion towards others. 
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5.3 Basic algorithm

In this section, we describe the algorithms which implement the formulae (9) 
and (10).  We demonstrate  the algorithm which computes the provider  rating;  the 
calculation of the evaluator ratings is analogous. Both computations influence each 
other. We need to calculate evaluator ratings of all evaluators for a given peer if we 
want to calculate the provider rating for the given peer. 

The  basic  algorithm  works  recursively;  in  each  level  it  computes  either 
provider  ratings  or  evaluator  ratings  of  all  peers  in  the  input  set.  The first  level 
computes  provider  ratings;  the second level  computes evaluator  ratings;  the third 
provider ratings and so on. The sequence of computation is illustrated in figure 7.

In each level the algorithm performs the following steps:

• Find evaluators (or providers) for all peers in the input set.

• Recursively computes the evaluator (or provider) ratings for new peers.

• Compute provider (or evaluator) ratings according the formulae (9) or (10).
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Fig.  7:  Incrementally growing trust  bubble.  Black dots  are peers  in  the 
provider role, grey dots are peers in the evaluator role and arrows represent 
feedbacks.



The information about one peer is held in a data structure depicted in figure 8. 
The items VP and VE correspond to the provider rating and the evaluator rating. They 
can take the value unknown, processing or a number in the proper range. The newly 
discovered peers have this value set to unknown and the value processing means that 
the calculation is in progress. The data structure for the local peer has VP and VE set 
to 1,  because every peer always trusts itself.  The variables  dividendP, dividendE,  
dividerP and dividerE are auxiliary variables. 

The function calculating provider rating for group of peers is described in 
figure  9.  This  function  calls  three  auxiliary  functions:  get_relations(role,  A) 
get_peers(role,  S)  and get_optimization(role,  S).  The  role is  either  “provider”  or 
“evaluator”,  A is  a  set  of  peers  and  S is  a  set  of  relations.  The  function 
get_relations(role, A) returns all relations r from the network where r.E∈ A if role 
is “evaluator” or r.P∈A if role is “provider”. This function queries the network to 
get required information and is described in section 5.4. The function get_peers(role,  
S) returns all peers p for which exists some relation r belongs to S where r.E=p if 
role is  “evaluator”  or r.P= p if  role is  “provider”.  The  implementation  of  this 
function  is  trivial.  And  the  last  function  optimization(role,  S) implements 
optimization mechanisms which will be described further in the text. Meanwhile, let 
this function is empty. 

The algorithm sets the provider ratings for all peers in the input set at once. 
Every peer is able to calculate ratings for a larger number of peers in one algorithm 
run. This is a typical situation when the peer has several possible providers and needs 
to know the ratings of all.  The function  basic_evaluator_ratings(A) is  analogous, 
swaps the words evaluator and provider and uses the evaluator function instead of the 
provider function (line 15). 

The algorithm visits each peer twice at the most, when it calculates a provider 
rating and when it calculates an evaluator rating. At the beginning all peers have the 
both ratings set to unknown. The function  basic_provider_ratings(A) accepts only 
peers with unknown provider ratings (line 2) and as the first step their ratings are set 
to processing (line 3). This ensures that any recursive call of this function does not 
deal with these peers again. At the end of the function all peers which had unknown 
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node { 
        VP = unknown|processing|[-1,1] 
        VE = unknown|processing|[0,1] 
        dividendP = 0; 
        dividendE = 0; 
        dividerP = 0; 
        dividerE = 0; 
} 

Fig. 8: Data structure for one peer in BubbleTrust



provider ratings are set to numeric value (line 20 or 22). The algorithm also ignores 
the relations between peers in the input set (line 11) because these relations do not 
provide new information. The rules above ensure that the basic algorithm finishes 
after visiting all nodes in the network or if there are no relations from the visited 
nodes to the rest of the network. 

In the practical application we cannot let  the algorithm explore the whole 
network due to limited network performance and time requirements. Further in the 
text, we introduce several methods of reducing a number of visited nodes without a 
significant degradation of the results. 
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Input: Input - Set of nodes. 
Output: Set items VP for all nodes from the input set. 

function basic_provider_ratings(Input) {
 1:  foreach p from Input { 
 2:    if p.VP == unknown then { 
 3:       p.VP = processing; 
 4:       P = P + {p}; 
 5:    } 
 6:  } 
 7:  if empty(P) then return; 
 8:  S = get_relations(provider,P); 
 9:  optimization(evaluator,S); 
10:  E = get_peers(evaluator,S); 
11:  E = E \ P; 
12:  basic_evaluator_ratings(E); 
13:  foreach s from S { 
14:    if s.evaluator.VE == processing then continue; 
15:    s.provider.dividendP += pv(s.val,s.eval.VE) * W(s); 
16:    s.provider.dividerP += W(s); 
17:  } 
18:  foreach p from P { 
19:    if (p.dividerP != 0) then { 
20:      p.VP = p.dividendP/p.dividerP; 
21:    } else { 
22:      p.VP = default_VP; 
23:    } 
24:  }
25: }

Fig. 9: Basic algorithm for calculation of provider rating.



5.4 Data management

All TMS need to store a large amount of data containing a history of peers’ 
behaviour,  or more precisely,  the opinion of other peers  about behaviour of their 
transaction  partners.  Typically,  only  a  recent  history  is  held  due  to  the  storage 
limitation.  The  parameter  history_period determines  how  long  the  network 
remembers the information about peers’ behaviour.

In BubbleTrust,  the  history is  held  in  the  form of  relations  as  defined in 
section  5.2.  These  relations  are  stored  somewhere  in  the  network  and accessible 
through  the  function  get_relations for  each  peer.  The  data  management  layer 
discussed in this section has to provide a secure way of creating, storing and looking 
up relations.  First, we formulate four requirements on secure data management:

1. For each relation r, it is verifiable that the values in a relation (r.P, r.v, r.w and 
r.t)  are created by peer  r.E.  In other words, the relation can be created or 
modified only by the evaluator stated in the relation.

2. For each relation r, it is verifiable that peers r.P and r.E agreed on cooperation 
and this agreement precede r.t. In other words, the evaluator cannot create a 
relation towards a remote peer without its knowledge.

3. Only  one  relation  can  exist  between evaluator  and provider.  This  relation 
expresses the cumulative values from all previous transactions.

4. The  function  get_relations returns  all  relations  matching  the  criteria  and 
created or modified in the last history_period.

Requirements 1 and 2 need that every peer that takes part in the system has a 
unique unforgeable identifier. We assume that this identifier is the hash value of the 
peer's public key. It is convenient to use this identifier at P2P layer as well. We have 
already discussed issues connected with this approach in section 2.1.1.

Let (SE, PE) is the private/public key pair of peer E (evaluator) and (SP,PP) is 
the same for peer P (provider). The public keys are freely distributed in the network. 
The following protocol describes the creation of the relation between them.

1. E  -> P: Req(E,P,TR)

2. P  -> E: Ack(E,P,#(E,P,TR)SP)

3. E <-> P: Transaction

4.       E: Create r=(A,B,R,W,T,#(A,B,TR)SP,#(r)SE)

In the first step, the evaluator sends a request to the provider, this request 
contains the identification of both peers and an actual time-stamp  TR.  It can also 
contain  other  transaction  specific  information  which  is  not  shown  here.  If  the 
provider  is  willing  to  accept  the  request,  it  replies  with  an  acknowledgement 
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containing  the  digital  signature  of  the  items  in  the  request.  The  provider  should 
refuse the request if the time-stamp in the request is significantly different from its 
local time or lower than in the previous transaction with the same peer. After the 
evaluator receives the acknowledgement and verifies the signature, the transaction 
can start. In the last step, the evaluator has a possibility to create a secured relation 
and express its satisfaction with transaction. The secured relation contains two extra 
items: (1) the digital signature of the request confirming that the provider agreed with 
transaction and (2) the digital  signature of the whole relation confirming that the 
evaluator creates the relations. These two items allow verifying requirements 1 and 2.

The  protocol  above  should  ensure  that  each  relation  is  preceded  by  the 
transaction between involved peers. Clearly, this is not true in a case when both peers 
are malicious. The group of malicious peers can create relations among them without 
limitations. We will analyse situations when either the provider or the evaluator is 
malicious.

If the provider is malicious, there are two possibilities of malicious activity. 
First,  the  provider  does  not  send  the  correct  acknowledgement  in  step  2.  The 
evaluator should mainly verify the signature and whether it  corresponds with the 
request. If the acknowledgement does not pass, the evaluator does not perform the 
transaction.  Second, the bogus transaction is provided in step 3. In this  case,  the 
evaluator is able to create a relation with negative rating. The provider has no means 
of stopping it.

The situation with malicious evaluator is more complicated. The evaluator 
can receive the acknowledgement in step 2 but does not perform the transaction and 
skips to step 4. The information provided in such relation is completely fabricated 
and  can  damage  the  reputation  of  honest  providers.  The  defence  against  this 
behaviour consists in checking of the evaluator rating before the acknowledgement is 
generated. The providers should not agree with transactions with poor evaluators for 
two reasons. First,  the successful transaction does not increase its provider rating 
and, second, there is a probability that it  does not even get a chance to prove its 
trustworthiness.  Other  vulnerability  is  that  the  malicious  evaluator  can  use  the 
acknowledgement from previous transaction and change the relation once created. 
The storage procedure described bellow should deal with such behaviour.

The next issue is how the relations are stored in the network. It is not suitable  
to store the relations on peers which are involved in them because the malicious 
peers  can suppress  some relations  to  improve their  reputation.  Instead,  we use a 
storage based on the distributed hash table (DHT). In order to make the relations 
searchable by both participants, the basic implementation suppose that each relation 
is stored in the network twice under different keys, once under a key derived from 
the evaluator identifier and once under a key based on the provider identifier. Any 
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usable implementation has to be extended by the replication to prevent data loss in 
case of peer failure or maliciousness. This problem is more serious due to the fact 
that all relations from one evaluator or towards one provider are stored together on 
one peer. If this peer fails, the complete history of one remote peer is lost. There are 
several replication algorithms proposed in literature (e.g.  [72], [85],  [86] or  [87]) 
which can be used. In the following text, we suppose only the basic implementation 
without replication.

After the relation is created in step 4, the evaluator stores it into the DHT. The 
peer in the DHT responsible for storing the relations should perform the following 
series of operations before the relation is stored in its local database:

1. If  the  relation  already exists,  it  tests  whether  a  new relation has  a  newer 
time-stamp  T and  a  newer  time-stamp  TR in  the  acknowledgement  than 
relations already stored in a local database. The relation is dropped otherwise.

2. It tests whether time-stamp T and time-stamp TR are not too old and whether 
T > TR.

3. It verifies the evaluator signature to eliminate forged relations.
4. It  verifies the provider signature in the acknowledgement to eliminate not 

approved relations.
5. The relation is stored in local database. The older relation is replaced if it 

exists.

This ensures that only the newest and genuine relations are stored and that the 
malicious evaluator cannot use the acknowledgement from the previous transaction 
to update its previously created relation.

The function  get_relations sends a DHT query for each peer from the input 
set together with a specification whether provider or evaluator key is required. The 
important property is that each relation has to be stored simultaneously under an 
evaluator and a provider key. The relation r has to be included in the results of both 
function  get_relations(provider,{r.P})  and get_relations(evaluator,{r.E})  or none of 
them.  Otherwise  the  malicious  peer  can  exploit  it.  For  instance,  the  malicious 
evaluator can store its false relation only under a provider key, which means that this 
relation will be used in the calculation of the provider rating but not used in the 
calculation of the evaluator rating. To prevent this vulnerability, the peer responsible 
for storing the relation under a provider key notifies its counterpart for an evaluator 
key before it stores the relation into its local database and vice versa. Therefore, the 
evaluator  can  send  store  message  only  once.  Additionally,  if  we  modify  this 
procedure to do this notification periodically, we have a simple replication algorithm.

The fundamental question is how the transactions are evaluated. The previous 
researchers used either continuous values in a limited range or a discrete value to 
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mitigate the subjectivity of the evaluation. Besides, the reputation value included in 
the  relation  is  a  cumulative  value  which  contains  the  evaluation  of  all  previous 
transaction towards the remote peer. More precisely, it is the evaluation of the remote 
peer based on its past transactions. We intentionally do not provide a mechanism of 
evaluating  the  transaction  or  cumulating  evaluations  of  transactions  into  an 
evaluation of a peer. The evaluation of transactions in a file-sharing network can be 
completely  different  from  the  mechanisms  used  in  a  distributed  storage  or  a 
distributed computation. In each application the peers have different means to verify 
the result of the transaction and different demands on the transaction parameters. So, 
these mechanisms are related with the application layer, and BubbleTrust is not bind 
with any specific application layer.

5.5 Provider and evaluator functions

The next task is to design the evaluator and the provider functions defined in 
section  5.2.  Those  functions  have  a  crucial  impact  on  the  algorithm result.  The 
provider  function  determines  how  the  evaluator  rating  influences  its 
recommendations. Analogously, the evaluator function determines how the accuracy 
of  the  recommendations  influences  the  evaluator  rating  of  its  originator.  In  this 
section,  we  discuss  the  requirements  on  both  functions  and  propose  their 
formulations. We start with the provider function which has a form: 

pv ( x1 , x2) : [− 1,1]×[0,1]→ [− 1,1]

The  first  argument  is  a  provider  rating  originated  from  an  evaluator 
(recommendation) and the second argument is the evaluator rating of this evaluator. 
The function result is the altered provider rating according the evaluator trustfulness. 
This implies four natural conditions: 

1. If x2 = 1 then pv = x1 (Let the recommendation unchanged.) 
2. If x2 = 0 then pv = 0. (Ignore the recommendation.) 
3. The pv is an increasing function in x2 for x1 > 0. 
4. The pv is a decreasing function in x2 for x1 < 0. 

We introduce a fifth condition which allows us to parametrize the function by 
the parameter  TP. This parameter determines the degree of toleration and is in the 
range (0,1]. 

5. If x2 = 0.5 then pv=x1⋅T P . 
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In other words, if the evaluator trustfulness decreases to the mid-value, the 
recommendation is decreased by the parameter TP. This parameter is called provider 
toleration. We designed the simplest function which meets all five conditions: 

pv ( x1, x2)=x2
log0.5(T P)⋅x1 (11)

Figure  10 demonstrates  the  meaning  of  the  parameter  TP.  The  bigger  TP 

implies that the  pv decrease slowly, hence the system is more tolerant to the peers 
with lower evaluator ratings. In this figure, the function value in the point x2 = 0.5 is 
equal to the value of TP. And figure 11 illustrates the provider function for different 
x1 value.  The figure  shows only  positive  values,  the  graph of  negative  values  is 
symmetrical on axis x2.
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Fig. 10: Provider function with fixed TP and variable x1.

Fig. 11: Provider function with fixed x1 and variable TP.



The evaluator function is a little bit more complicated. It has a form:

ev ( x1, x2) :[−1,1]×[−1,1]→[0,1]

The first argument is a provider rating originated from a given evaluator and 
second argument is the reference provider rating. On the basis of those values, the 
function determines the evaluator rating of the given evaluator. This implies three 
natural conditions: 

1. If x1 = x2 then ev = 1 (Accurate recommendation) 
2. If difference between x1 and x2 increases, then ev decreases. 
3. The decreasing  rate  depends on the absolute  value of  x2.  The  smaller  |x2| 

implies lower decrease rate. 

We also  introduce  the  next  condition  which  allows  us  to  parametrize  the 
function by the parameter TE. Similarly to the evaluator function this parameter can 
be interpreted as a degree of toleration. 

4.  If x2 =  1 and∓ x1=x 2⋅(1−TE ) than ev = 0.5

In  other  words,  if  the  known  peer  is  completely  trustful  or  completely 
distrustful and the recommendation differs by the parameter (1 - TE), then the given 
evaluator has an evaluator rating 0.5 (the mid-value). This condition is analogous to 
condition 5 for the evaluator function. 

The following function meets all conditions: 

ev ( x1, x2)=0.5
(

x1−x2

(1−T E)⋅∣x1∣−1
)

2

(12)

Figure  12 shows the  evaluator  function  for  fixed  TE and  variable  x2.  The 
maximum is in the points where x1 = x2 (accurate recommendation). The parameter 
TE determines how quickly the function decreases from its maximum. 

The last function is the time function which maps the age of transaction into a 
range [0,1]. There is only one simple condition: the older relation weights less than 
newer one. The simplest implementation is the linear function: 

f (t)=1−
ΔT

history_period
for ΔT < history_period, 0 otherwise.

However,  in  our  system  we  use  the  exponential  function  which  reflects 
dependency  between  time  and  the  relation  weight  better.  We  use  the  following 
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exponential function: 

f (t)=e−(ΔT⋅k )
2

k=√−ln(min_weight)
history_period

for ΔT < history_period, 0 otherwise.

where parameter min_weight is the minimum acceptable value. The function reaches 
this value if ΔT is close to history_period. The function is shown in figure 13.
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Fig. 12: Evaluator function with fixed TE and variable x2.

Fig. 13: Time function for different parameter k.



5.6 Optimized algorithms

The basic algorithm introduced in section  5.3 tries to reach all peers in the 
network.  The load  related  with  the  basic  algorithm can be  unacceptable  for  real 
usage. In the following text we introduce several improvements which reduce the 
algorithm complexity without significant degradation of its efficiency. 

5.6.1 Cutting off

The first improvement is based on the idea that in the formula (9) or (10) it is 
not necessary to  involve the relations which have small  weight  in comparison to 
other. These relations have only limited influence on the result and can be neglected. 
The optimized algorithm ignores the peers whose relations have a low contribution to 
the  calculated  trust  value  and  there  is  no  point  in  dealing  with  them.  We  also 
implement the maximal number of nodes added in each level. The algorithm ensures 
that less important peers are removed first.  The function in figure  14 realizes the 
described restrictions and can implement the function  optimizations(evaluator,S) in 
the basic algorithm.

The algorithm calculates cumulated weight for each evaluator, because this 
evaluator  can  have  relations  towards  more  peers  in  the  input  set.  The  algorithm 
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function optimization(evaluator,S) { 

  W = 0; 

  foreach s from S { 

    e = s.get_evaluator(); 

    e.weight += W(s); 

    W += W(s); 

    E.add(e); 

  } 

  foreach e from E { e.weight = e.weight/W; } 

  E = sort_weight(E); 

  removedWeights = 0; 

  foreach e from E { 

    removedWeights += e.weight; 

    if ((removedWeights <= limit) || (S.size() > maxNodes)) then 

      E.remove(e); 

  } 

  foreach s from S { 

    if (!E.contains(s.get_evaluator()) then S.remove(s); 

  } 

  return S; 

} 

Fig. 14: Cutting off relations with the smallest weight.



removes the evaluators which cumulative weights towards all peers in the input set 
are smallest.

5.6.2 Limiting depth

The basic algorithm finishes after visiting all nodes in the network or if there 
are no more relations from visited nodes to the rest of the network. The restrictions 
on number of nodes in each level result into increasing the depth of recursion, so it is 
necessary to limit the depth as well. The peers in the last level have assigned the 
default  trust values. We choose the default provider rating equal to 0 and default 
evaluator rating to 0.5, both represent a mid-value. In simulations presented further 
in the text we recommend an appropriate number of levels. 

5.6.3 Using values from previous runs

One algorithm run computes trust values for a large number of peers. Using 
these values in next runs seems to be a good idea. There are two related issues. First, 
not  all  trust  values  are  equally  reliable.  For  instance,  the  trust  value  which  was 
calculated in level 6 is less reliable than the value from level 2. On level 6 there are 
less remaining levels to maximal depth and calculation is more limited. Second, the 
trust values obsolete in time because new transactions take place and relations are 
changed. 

Nevertheless, using the cached values can significantly decrease the network 
load. We introduce three simple rules for manipulating with the trust cache which 
should minimize the impact on the accuracy.

1. The level where the trust value was calculated is stored into the cache along 
with the trust value.

2. The cache record is used in calculation only if the level of the record is less or 
equal to the current level in the calculation algorithms.

3. Each level has its time to live (TTL). After this time the level of the record is 
increased. If the record is on the maximal level, the record is deleted.

These rules ensure that the calculation is not less accurate than without using 
the cache. In fact, using cached values from the lower level than the current level 
increases accuracy, because the values on the lower levels are more precise.

5.7 Evaluation and data analysis

To  evaluate  performance  of  our  method,  we  implemented  the  simulation 
model. We generate a network with a given number of nodes and relations between 
them.  The  relations  are  generated  according  to  both  zip's  law  and  random 
distribution; each relation has a different size and time. 

We focused on performance issues which can be measured by the average 
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number of visited nodes for each query. The basic algorithm reaches as many peers 
as  possible;  if  there  are  some relations  from the  visited  peers  to  the  rest  of  the 
network,  the  basic  algorithm  follows  them.  Hence  the  number  of  visited  nodes 
depends on the density of relations in the network. The practical simulations showed 
that  the  average  number  of  visited  nodes  for  the  basic  algorithm  and  zipf's 
distribution is 1.4⋅N , where N is the number of the peers in the network. Do not 
forget that each peer can be visited twice.

The  optimized  algorithm with  cutting  off  and  limiting  depth  reduces  the 

maximal  number  of  visited  peers  to (max_nodes⋅max_levels) .  The  parameter 

max_level limits the depth of the recursion and max_nodes limit the number of peers 
on each level. Obviously, the peers which are farther from the original peer have 
smaller influence on the calculated rating. Our goal is to set these parameters as low 
as possible with minimal impact to the result. 

We performed several simulations with different network sizes and number of 
relations.  The figure  15 displays  how the  parameters  max_nodes and  max_levels 
change the reputation value in the network with 2000 nodes and 40000 relations.

The graph shows the difference between outputs of the basic algorithm and 
restricted  algorithm  with  the  given  parameters.  An  important  property  of  the 
BubbleTrust is that it does not depend on the size of the network. As a result of these 
simulations, we recommend using the parameters max_nodes = 200 and max_levels 
= 5 where the difference is less than 0.05. However, the algorithm can still visit 1000 
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Fig. 15: The dependency between the restriction parameters and calculation result.



nodes, so the next optimization is necessary.
The cached version  has  a  great  potential  to  reduce  the  number  of  visited 

peers.  We  performed  the  simulation  of  the  network  with  1000  peers  and  20000 
relations  per  day  with  a  zipf's  distribution.  The  efficiency  of  this  optimization 
depends on the peer activity. We suppose that the tested peers ask to the some others 
peer ratings every 10 minutes. The figure  16 shows the simulation after two days. 
This simulation does not implement any other optimization. 

On recommended level 5, the number of visited peers falls to the one quarter. 
The rules for using cached values ensure that this optimization does not deteriorate 
the result values. 

Of course, further simulations are necessary to prove the algorithm efficiency 
against previously proposed malicious activities compared with previously published 
methods. This section focuses on the network load caused by the algorithms itself 
and effectiveness of the proposed optimization methods.

5.8 Summary and future work

BubbleTrust differs from the previously published TMSs in several ways. The 
data management layer ensures that the malicious peers cannot create fake relations 
towards honest peers or suppress unflattering relations towards them. All peers have 
to acquire an acknowledgement from their transaction partner before the relation is 
created.  Unfortunately,  this  does not stop malicious  peers to create fake relations 
towards allied malicious peers. 
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Fig. 16: Efficiency of using cache in the network with 1000 nodes and 20000 relations 
per day.



The  evaluator  rating  is  calculated  using  experience  of  other  peers  in  the 
network. TMSs discussed in section 3 use either only personal experiences or rely on 
the premise that  good provider  is  a  good evaluator  as  well.  As far  as  we know, 
BubbleTrust is the first TMS using global experience as feedback verification (see 
table  4). In BubbleTrust we formalized the relation between evaluator and provider 
rating  and vice  versa.  The provider  function  and the  evaluator  function allow to 
parametrize these relations and establish the level of toleration. The evaluator rating 
has also a new use in BubbleTrust. The providers check the evaluator ratings of all 
consumers requesting their resource.

Unlike the most other TMSs, BubbleTrust does not try to find the chain of the 
trust from the consumer to the provider. This chain can be easily compromised if 
only one malicious peers succeed in attaching itself into this chain. Moreover, this 
chain can be relatively long, especially in a large P2P networks and the process of 
finding such chain can be very expensive.  BubbleTrust  uses  the concept  of  trust 
bubbles. In the centre of the bubble is a potential provider and on each level are peers 
which have the strongest relations with peers on the lower level. The size of the 
bubble is  not  determined by the size of the network but  only by the capacity of 
computing peers. The peers which initiate the computation may or may not be a part 
of the bubble. Thanks to this mechanism, the peer's decision is based on the opinion 
from the largest group of peers with strongest relations towards the target peer. Each 
peer in BubbleTrust can choose the size of the trust bubble and adjust the trade-off 
between  computation  accuracy  and  the  load  of  computation  process.  All  this 
improvements should significantly help to fight with malicious peers. The simulation 
and comparison with previously published TMSs are in section 7.

In our future works we want to focus on the next reduction of the complexity 
of the algorithm. For instance, at the moment, every peer makes a decision on the 
basis of information served by data management layer and performs all calculations 
by its own. However, the peers which trust each other at most can share information 
stored in the cache and reduce the network load.

To complete the system, it is also necessary to develop a reliable method for 
replication information stored in the DHT. The primary purpose of replication is to 
prevent data loss caused by the node failure or its maliciousness. But it  can also 
significantly speed up the lookups in DHT and reduce the network load.
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6 Simulation framework
In order to facilitate comparison of different TMSs and their behaviour under 

different  malicious  strategies,  we  created  a  simulation  framework  [88] called 
P2PTrustSim. We used FreePastry  [89], a modular, open-source implementation of 
the  Pastry  [3],  P2P structured  overlay  network.  Moreover,  FreePastry  includes  a 
network  simulator  which  can  be  used  as  a  base  for  P2PTrustSim.  Above  the 
FreePastry, we created the peer simulation layer which implements various peers’ 
behaviour. The framework is highly configurable and allows implementing various 
simulation scenarios, trust managements and malicious strategies.

6.1 Architecture of P2PTrustSim

The framework is written in Java and available via svn [90]. The main class 
accepts  two  parameters:  the  configuration  file  and  the  output  directory.  The 
configuration  file  is  a  standard  Java  properties  file  containing  entire  simulation 
settings. All logs and statistics are stored into the output directory.

The basic properties located in the configuration file  are  simulation_class, 
trustmanagement_class and  malicious_nodes_implementation.  These  properties 
determine which class will be used for these tasks. Except the few properties related 
to  log  facility,  all  other  properties  depend  on  the  settings  of  these  three  basic 
properties.

6.1.1 Simulation class

The simulation class creates and controls the simulation. Its task is to prepare 
a simulation scenario, which includes initializing a required number of honest and 
malicious  nodes and initial  distributing resources  among them. This  class  is  also 
responsible for starting the simulation, reading and aggregating statistical data from 
all nodes. It implements UserSimulatorInterface which is quite simple. This interface 
contains only two methods: addPeer and run.

So far we have created only one implementation of the simulation class called 
BasicUserSimulator. This class initializes malicious nodes according the properties 
malicous_nodes and malicious_nodes_implementation. To reflect the typical resource 
distribution in a P2P network better, each resource has a parameter called popularity. 
More popular resources are most often used in transactions; they are shared on one 
peer longer and have a higher probability that the downloading peer becomes a new 
provider. These rules imply that resources have no stable providers but travel in the 
network;  new  resources  can  be  created,  old  ones  can  vanish  and  more  popular 
resources  are  provided  by  more  peers.  The  resource  popularity  is  distributed 
according the zipf-law. The resources are distributed according the zipf-law which 
reflects the typical resource distribution in the most used file-sharing P2P networks 
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[43].  The  parameters  of  zipf-law  distribution  are  determined  by  the  properties 
zipflaw_exponent and zipflaw_ranks.

In a regular interval determined by the property one_cycle_min the simulation 
dumps the information about the simulation progress and the memory usage on the 
standard output.  The property  one_cycle_min is  defined in minutes  of simulation 
time. And every dump_every_nth_cycle the statistical information from all nodes are 
stored into the file  ./stats/global.log in  the output  directory.  All  other  actions are 
driven by the user implementations.

6.1.2 User implementations

There can be many different user behaviours. The peers can be either honest 
or  malicious  and  malicious  peers  can  implement  many  malicious  strategies.  In 
P2PTrustSim the user behaviour is simulated in class AbstractUserImplementation. 
This  abstract  class  contains  implementation  of  functions  performing  transactions, 
sharing  resources  and  communicating  with  trust  management.  The  specific  user 
behaviour is implemented in classes inherited from AbstractUserImplementation. All 
subclasses  must  implement  these  three  methods:  run,  serveTransaction  and 
evaluateTransaction.  The  first  method  is  called  periodically  by  the  simulation 
framework  and  should  perform  the  actions  initiated  by  the  user  itself,  like 
downloading a resource from a remote peer or creating fake transactions. Other two 
methods  are  called  when  the  framework  requires  serve  or  evaluate  transactions. 
P2PTrustSim contains eleven classes implementing different user behaviours.

The first class is called UserHonest and simulates behaviour of honest peers. 
In regular intervals, the honest peer picks a random resource, finds all providers for 
this resource, chooses the best provider, downloads the resource from this provider 
and evaluates the transaction. Optionally, the peer can be a new provider for this 
resource and share it with other peers for some time. If some remote peer requires the 
resource located on the honest peer, the honest peer always provides the resource in a 
full quality. The honest peer also always evaluates all transactions truthfully.

All other classes implement some type of malicious behaviour described in 
chapter 4 or a combination of them. The simplest malicious strategy is implemented 
in UserIndividualSimple. All resources shared by the malicious peers are malicious. 
Malicious peers do not use any strategy to help spread their resources nor download 
any resource from other peers.  Slightly more clever is  a strategy implemented in 
UserIndividual which uses also false meta-data strategy to make all their resources 
most popular ones. The current TMSs should easily deal with both these strategies. 
The last individual malicious strategy is implemented in the class UserCamouflage. 
The camouflaged malicious peers provide both malicious and honest resources. The 
ratio  between  malicious  and  honest  transactions  is  determined  by  the  property 
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malicious_trans_ratio.
The next five classes correspond with names of collective malicious strategies 

described in chapters 4.3 and 4.4. In all cases the combination with false mata-data 
strategy  is  used.  The  remaining  two  classes  UserMaliciousNewcomer   and 
UserMaliciousChange  is  used  for  special  scenarios  with  oscilation  behaviour 
explained in chapter 7. The number of faked or other auxilary transactions for each 
malicious strategy can be set through the configuration file.

6.1.3 Trust managements implementation

The  implementations  of  trust  management  systems  are  separated  into  the 
independent project. Our goal was to create an implementation which will be usable 
together  with  FreePastry  to  develop  any  P2P  application.  There  are  not  any 
dependencies on P2PTrustSim. The project is accessible via svn [91].

Currently, the project contains basic implementations of seven TMSs. These 
implementations  are  usable  together  with  P2PTrustSim  and  can  be  used  by 
application developers as well. But so far we have implemented only the features 
necessary for our simulations; therefore, some critical functions are still missing. For 
instance, any implementation does not provide replication. The implementation of 
BubbleTrust does not use cryptography in the data management layer. Each peer in 
EigenTrust is a score manager for itself.  All implementations should be extended 
before they can be used in the production deployment.

All TMSs must implement interface called TrustManagementInterface. This 
interface exports  all  TMS functions.  The main functions  are:  getProviderRatings, 
getEvaluatorRatings and evalTransaction.  But some implemented TMSs either do 
not use an evaluator rating or use a vector value for a provider rating. In this case we 
mapped  the  results  into  a  range  [-1,1]  for  provider  rating  and  a  range  [0,1]  for 
evaluator rating. In case that the TMS does not support evaluator rating, the function 
getEvaluatorRating  returns  always  1.  Therefore,  the  decision  algorithm  in 
P2PTrustSim does not have to be modified for each TMS.

P2PTrustSim  is  built  above  the  structured  P2P network  which  limits  the 
number of TMSs which can be implemented. We can afford it because the structured 
P2P  networks  became  prevalent  in  recent  years  and  replaced  the  less  efficient 
unstructured P2P networks in many applications. We also implemented only the basic 
model using the reputation connected with peers, not with resources. The resource 
reputation model has special requirements on the way of distributing resources. We 
do not assume anything about P2P application above TMSs.

We implemented seven TMSs demonstrating different approaches, namely: 
DummyTrust, SimpleTrust, EigenTrust, PeerTrust, H-Trust, WTR and BubbleTrust. 
First implementation, DummyTrust, represents a network without trust management. 
A random provider  is  chosen  regardless  of  its  reputation.  SimpleTrust  is  a  very 
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simple  TMS  which  uses  only  local  experiences.  Recommendations  from remote 
peers are ignored. These two implementations serve as a base for a comparison. The 
remaining five implementations correspond with TMSs described in the sections 3.

There  are  some  implementation  details  which  should  be  mentioned.  The 
EigenTrust is not able to work correctly without pre-trusted peers, so we had to set 
10% honest peers as pre-trusted. Therefore, EigenTrust has a significant advantage 
over other TMSs. In PeerTrust we implemented only PSM variant because TVM is 
conceptually  similar  to  EigenTrust  and ATC implementation is  used due to  DTC 
excessive overhead. The system WTR uses the risk factor besides the reputation, in 
our model we cumulated the risk and the reputation into a single value which is used 
for  the  decision  process.  This  calculation  follows the  procedure  described in  the 
WTR [71].

6.1.4 Communication in P2PTrustSim

The  communication  between  the  user  implementation  and  the  trust 
management  is  provided  by  the  P2P layer.  This  layer  implements  a  FreePastry 
application  node,  realizes  the  transactions  between peers  and communicates  with 
TMS.  This  layer  simulates  the  functions  of  a  P2P  application  while  the  user 
implementation represents physical users sitting behind this application.

Note that malicious behaviour is implemented only on the user level. There is 
only one implementation of the P2P layer. The attacker controlling this layer would 
have the capability to perform other attacks like whitewashing or attacks against the 
overlay  network  described  in  2.1.  However,  as  we  have  already  announced,  we 
focused primary on the attacks on the application level.

Figure  17 illustrates  the  communication  between  all  components  of  the 
system during one transaction. On one side is a consumer requesting a resource and 
on the other side is a provider serving this resource. The P2P layer is responsible for 
communication with the TMS and implement a decision algorithm. The framework is 
prepared for the data management as proposed in BubbleTrust, although currently 
only BubbleTrust uses it.
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6.2 Evaluation criteria

It is difficult to compare individual TMSs because there are no fixed criteria 
which are able  to  measure the efficiency of the reputation managements  or  their 
resistance against malicious strategies. We have only a vague notion of “trusted P2P 
network”. Most of the TMSs have been built under the premise that this notion is 
well understood. For the comparison of different TMSs, first we need to determine 
the criteria of success.

Our framework provides statistical data which can be used as a substrate for 
these criteria. Each transaction is categorized and counted on both sides (provider 
and consumer). The categories distinguish the type of the peer (honest or malicious); 
on which side of the transaction the peer was (provider or consumer); and the result 
of the transaction. Figure  18 shows all nine types of transactions. The honest and 
bogus transactions correspond with their names. The ulterior transactions represent 
honest transactions which malicious peers have to perform to fix their reputation. 
These transactions can be on the provider side to fix a provider reputation or on the 
consumer side to fix  an evaluator reputation.  The faked transactions are  between 
malicious peers and their purpose is to transfer reputation from one malicious peer 
(e.g.  spy)  to  other  malicious  peers.  If  none  provider  is  sufficiently  trustful,  the 
transaction is refused and counted as ConsumeRefused. The originated peer typically 
tries to pick different service and repeat the transaction.
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Let  us  suppose  that  all  the  malicious  peers  cooperate  within  only  one 
malicious collective and the transactions from honest peers are always honest. The 
following four invariants are always valid:

The sums are over all peers in the network. Our primary goal is to evaluate 
the success of each malicious strategy in a different TMS. Therefore, we defined four 
criteria: MaliciousSuccessRatio, BogusRatio, MaliciousCost, and MaliciousBenefit.

MaliciousSuccessRatio  is  a  ratio  between  bogus  transactions  provided  by 
malicious  peers  in  the  network  with  TMS  and  in  the  network  without  TMS 
(DummyTrust). It reflects the contribution of the given TMS and it is defined by the 
following formula:

MaliciousSuccessRatio=
TotalBoguswithTMS

TotalBoguswithoutTMS

The result should be smaller than 1, otherwise the TMS is not useful. We will 
require values smaller than 0.5 to consider the TMS to be resistant against the given 

73

Fig. 18: Categorization of transactions in the simulation framework.

1.
∑ ProvideFaked =∑ ConsumeFaked=TotalFaked

2.
∑ ProvideBogus=∑ ConsumeBogus=TotalBogus

3.
∑ ProvideUlterior+∑ConsumeUlterior=TotalUlterior

4.
∑ ProvideHonest+∑ ProvideUlterior=

∑ConsumeHonest+∑ ConsumeUlterior=TotalHonest



malicious strategy.
BogusRatio is a ratio between bogus and all services consumed by the honest 

peers. It tells us the percentage of bogus services in the network. It is defined by the 
following formula:

BogusRatio=
TotalBogus

∑ ConsumeHonest+TotalBogus

We accept  values  smaller  than  50%,  otherwise  there  is  more  bogus  than 
honest services and the participation in such P2P network is not useful for any honest 
peer.

MaliciousCost  studies  TMS  from  the  malicious  peers’ point  of  view.  It 
monitors the load associated with a malicious strategy. And it is defined as a ratio 
between extra transactions performed by the malicious peers to trick the TMS and 
the bogus transactions in the network. These extra transactions include faked and 
ulterior  transactions  and represent  additional  overhead for  malicious  peers  which 
they try to minimize. We defined it by the following formula:

MaliciousCost=
TotalUlterior+TotalFaked /2

TotalBogus

The formula takes  into account  the fact  that  the overhead connected with 
faked transactions is smaller than overhead connected with ulterior transactions. One 
side of the ulterior transaction is an honest peer; therefore, the transaction has to be 
completed to produce the recommendation. On the other hand, the faked transactions 
are solely between malicious peers who can produce recommendations without the 
transaction really happening.

This metric gives us an idea of how much computation power and network 
utilization is required for a given malicious strategy. It should be as big as possible to 
make the strategy useless for the malicious peers. It is necessary to know how strong 
the peer’s motivation for its maliciousness is to determine the limit value for this 
metric.

The last criterion is a MaliciousBenefit.  It represents how much beneficial 
transactions the malicious peers have to perform to pass one malicious service. It is 
defined by the following formula:

MaliciousBenefit=
TotalUlterio
TotalBogus

The value above 1 means that there is benefit from the malicious collective 
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which is bigger than the damage caused by the collective. This criterion is helpful in 
a situation when we want to maximize benefit for peers in the network and do not 
want to bother with some bogus transactions.

Apart from these four criteria, the next important property of each TMS is 
how quickly the sudden changes in peer’s behaviour are recognized. We considered 
two situations: malicious newcomer and treasons. The malicious newcomers are the 
peers which join the network and start harm immediately. It is convenient to provide 
a small initial reputation to each newcomer in order to give them a possibility to 
reveal their intentions. Without these initial reputations, the newcomers would have 
only a little chance to be chosen for cooperation and their trustworthiness could not 
be verified. But this initial reputation can be also exploited by malicious peers to 
push their bogus services.

In treason, the peers which are already connected in the network and which 
behaved correctly in the past suddenly start to provide bogus services. This situation 
is  more  dangerous  than  first  one,  because  such  peers  have  already  built  a  good 
reputation  and they  are  usually  able  to  push  more  bogus  services  until  they  are 
detected. In our simulation, we have tested both these scenarios and measured the 
time necessary to detect such peers and suppress their malicious influence.

6.3 Common simulation settings

We tried  to  set  the  similar  parameters  for  all  TMSs.  The most  important 
parameter is the history_period which determines how long the network remembers 
the information about the last transactions. We set this parameter to 5 hours (in order 
to have a history window appropriate to the total simulation time) in all TMSs. Other 
parameters  used  in  implemented  TMSs  are  chosen  either  according  the  authors 
proposals or according the best results of our preliminary simulations. The complete 
lists of parameters are given in table 5.

The numbers of ulterior and faked transactions are the same for all malicious 
strategies which use them. The camouflage strategy has the ratio between bogus and 
honest transactions 0.5. In both cases we choose the values which present trade-off 
between success of the malicious strategy and its cost.
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EigenTrust

Parameter Value

Ratio of pre-trusted peers 10%

Weight of pre-trusted peers (a in original paper) 0.2

PeerTrust

Parameter Value

Default trust 0.2

Default similarity 0.2

Cache limit 60m

H-Trust

Parameter Value

H-Index multiplicator 10

Query threshold 7

WTR

Parameter Value

Window size 10 transactions

Alpha 0.5

BubbleTrust

Parameter Value

Max levels 5

Max nodes 20

TP 0.3

TE 0.5

TTL0 30m

TTL1 30m

TTL2 60m

TTL3 60m

TTL4 120m

Table 5: Parameters for TMS implementations
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7 Simulation results
In the simulations, we focused on two problems. First, the effectiveness of the 

different  malicious  strategies  measured  by the four  criteria  presented in  previous 
section.  Second, we measured how quickly the TMSs are able to react on changes in 
peers behaviours.

Our basic simulation network contains 200 peers and 80 peers are malicious. 
Hence  40%  of  nodes  in  the  network  are  malicious,  which  represents  a  very 
dangerous environment. The honest peers wake up every 10 minutes and use one 
service from the network. The malicious peers also wake up every 10 minutes and 
perform a given number of faked or ulterior transactions. The whole simulation takes 
24  hours.  The  size  of  the  network  was  designed  with  regards  to  simulation 
possibilities of the FreePastry and the heavy load produced by our simulation. We 
have also run other series of test with the different settings and analysed their impact 
on result in chapter 7.3.

7.1 Efficiency criterion

Figure 19 shows MaliciousSuccessRatio in the network with BubbleTrust. We 
can see that the most successful strategy is evaluator collusion with almost 25% of 
realized malicious transactions. In other words, BubbleTrust decreases the number of 
malicious transactions to 25% compared to the network without TMSs. This is the 
worst case scenario. Other malicious strategies are not so successful. The malicious 
transactions  are  nearly  completely  suppressed  in  individual  strategies.  In  these 
strategies, we can observe a phenomenon called starvation. The malicious peers are 
quickly  recognized  and  nobody  wants  to  cooperate  with  them.  Hence,  new 
recommendations  are  not  created.  After  expiring  the  old  recommendations,  all 
information about peer's maliciousness are lost and they can start over. This causes 
the spikes in the graph repeated ones every two history_period.

Figure 20 shows the same graph in network using PeerTrust. The results are 
completely different. The most successful strategies are still the evaluator collusion 
and the evaluator spies but they reach success ratios near 1.  This means that the 
number of malicious transactions is almost the same as when we do not use any 
TMSs. Therefore, the peers are completely vulnerable against these strategies. We 
analysed the reason for this failure and found out that the credibility of malicious 
peers is very high due to their correct evaluations. The credibility in PeerTrust is 
calculated  from  mutual  recommendations  towards  same  peers.  The  set  of  these 
recommendations  is  relatively  small  and  malicious  peers  in  collusion  can  easily 
manipulate with it.

MaliciousSuccessRatios of other TMSs are shown in table 6. The numbers in 
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the table are average values for last 10 hours of simulations. The values above the 
threshold 0.5 are displayed in bold; these values indicate that TMSs failed against 
this  malicious  strategy.  We can see  that  only  BubbleTrust  is  resistant  against  all 
tested malicious strategies. There is at least one effective malicious strategy against 
all other TMSs.

SimpleTrust  is  ineffective against  all  malicious strategies since the history 
period  is  too  short.  Without  cooperation  with  other  peers,  the  information  about 
peer’s maliciousness is lost  after  5 hours and the delay between two transactions 
towards the same peer can be longer. Any real implementation of SimpleTrust should 
use much longer history period since all experiences are stored only locally and there 
is not an additional cost of storing them in the network. 

EigenTrust, despite its advantage, is vulnerable to spies. The spies are even 
able  to  perform more bogus transactions  than it  would be possible  in  a  network 
without  TMS.  The  collusion  tactics  are  completely  useless  because  they  are  not 
designed  into  this  type  of  TMS.  It  is  notable  that  the  individual  strategies  are 
relatively successful. The reason for this is that the trust matrix converges slowly. 
The convergence speed is investigated further in the text.

H-Trust is fully resistant against Simple, Individual, Full collusion and Spies; 
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all  bogus transactions are suppressed. However, it  is vulnerable against Evaluator 
collusion  or  Evaluator  spies.  WTR  copes  very  well  with  individual  strategies; 
especially  the camouflage  is  ineffective  due to  the  risk factor.  But  the  collective 
strategies can easily circumvent it.

The  next  criterion  BogusRatio  is  shown  in  table  7.  The  results  are  very 
similar to the MaliciousSuccessRatio, it is only a different point of view. In the worst 
case scenario, only 28% of all transactions in the P2P network with the BubbleTrust 
can  be  bogus.  Other  TMSs  tolerate  60%  (EigenTrust),  70%  (H-Trust),  72% 
(PeerTrust) and 73% (WTR) bogus transactions
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Strategy
Simple
Trust

Eigen
Trust

H
Trust

Peer
Trust

WTR
Bubble
Trust

SIM 0.90 0.28 0.00 0.05 0.00 0.04

IND 0.90 0.20 0.00 0.03 0.00 0.02

CAM 0.93 0.26 0.14 0.60 0.00 0.04

FCOL 0.89 0.00 0.00 0.87 0.98 0.13

ECOL 0.88 0.00 0.94 0.99 0.99 0.24

SPS 0.81 1.06 0.00 0.81 0.81 0.07

ESPS 0.83 0.99 0.99 1.00 0.99 0.17

MSPS 0.88 0.15 0.68 0.68 0.62 0.11

Table 6: MaliciousSuccessRatio for different malicious strategies and TMSs.  
Malicious strategies: SIM - Simple, IND - Malicious Individual, CAM - Camouflage,  
FCOL - Full Collusion, ECOL - Evaluator Collusion, SPS - Spies, ESPS - Evaluator  
Spies, MSPS - Malicious Spies.

Strategy
Simple
Trust

Eigen
Trust

H
Trust

Peer
Trust

WTR
Bubble
Trust

SIM 41% 16% 0% 3% 0% 3%

IND 67% 20% 0% 4% 0% 3%

CAM 47% 18% 10% 36% 0% 4%

FCOL 67% 0% 0% 67% 73% 18%

ECOL 67% 0% 70% 72% 71% 28%

SPS 43% 54% 0% 43% 50% 5%

ESPS 43% 60% 50% 50% 50% 12%

MSPS 66% 27% 56% 56% 57% 15%

Table 7: BogusRatio for different malicious strategies and TMSs. Malicious  
strategies: SIM - Simple, IND - Malicious Individual, CAM - Camouflage, FCOL -  
Full Collusion, ECOL - Evaluator Collusion, SPS - Spies, ESPS - Evaluator Spies,  
MSPS - Malicious Spies.
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A more interesting parameter is MaliciousCost which represents the overhead 
of malicious peers for one malicious transaction. Figure 21 shows MaliciousCost of 
malicious strategies which use ulterior or faked transactions in BubbleTrust.

The  cheapest  strategy  is  the  camouflage  with  approximately  0.16  honest 
transactions  to  one  bogus.  But  this  strategy  has  also  a  negligible 
MaliciousSuccessRatio.  From  the  collective  strategies,  the  cheapest  is  the  full 
collusion with a little less than 20 additional transactions to one bogus transaction 
which  is  able  to  reach MaliciousSuccessRatio  0.13.  If  we compare  all  malicious 
strategies  using the ratio  of  cost  to  success,  full  collusion  seems to be the most 
advantageous strategy. The creator of a malicious collective should always consider 
the cost associated with considered malicious strategies and a potential benefit from 
realized malicious transactions. The values for other TMSs are depicted in table 8.

The attacker most likely uses a strategy which has the best cost/success ratio. 
For instance, in the PeerTrust the most successful strategy is Evaluator collusion but 
it is very expensive (above 9), better choice is Full collusion with success ratio 0.87 
and cost only 3.12. The Camouflage strategy is relatively efficient in EigenTrust, H-
Trust and PeerTrust; although it has a low success ratio, it is compensated by its very 
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low price. In the BubbleTrust, all strategies have cost above 20 (except Camouflage) 
and  the  most  expensive  strategy  (Evaluator  collusion)  has  almost  38.  This  is 
significantly higher value than have other TMSs.

The  last  criterion  MaliciousBenefit  offers  a  different  point  of  view.  The 
question  is  whether  malicious  strategies  emitting  ulterior  transactions  can  be 
beneficial  for  other  peers  in  the  network.  Table  9 shows  MaliciousBenefit  for 
different  malicious  strategies  and  TMSs.  The  strategies  like  evaluator  collusion, 
evaluator spies and malicious spies have always more beneficial transactions than 
bogus  ones.  Strictly  speaking,  the  designation  malicious  collective  is  no  longer 
suitable.

Strategy
Simple
Trust

Eigen
Trust

H
Trust

Peer
Trust

WTR
Bubble
Trust

CAM 0.16 0.19 0.11 0.12 N/A 0.16

FCOL 3.04 N/A N/A 3.12 2.73 20.29

ECOL 10.30 N/A 9.65 9.23 9.17 37.97

SPS 2.55 1.96 N/A 2.55 2.10 29.01

ESPS 6.97 5.96 5.76 5.74 5.83 33.74

MSPS 4.42 N/A 5.70 5.71 5.43 35.00

Table 8: MaliciousCost for different malicious strategies and TMSs.

The attackers, whose primary goal is to destroy the network functionality for 
other peers, probably do not choose malicious strategy with a high MaliciousBenefit. 
But attackers who desire to spread their malicious services at any cost do not bother 
with MaliciousBenefit.

Strategy
Simple
Trust

Eigen
Trust

H
Trust

Peer
Trust

WTR
Bubble
Trust

CAM 0.16 0.19 0.11 0.12 N/A 0.16

ECOL 7.24 N/A 6.79 6.48 6.44 26.68

SPS 0.12 0.10 N/A 0.13 0.09 1.83

ESPS 3.37 2.88 2.77 2.76 2.80 16.53

MSPS 2.09 N/A 2.70 2.70 2.56 16.56

Table 9: MaliciousBenefit for different malicious strategies and TMSs.
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7.2 Dynamic criterion

In the following simulations, we focus on convergence speed; therefore, on 
the time which the TMSs need to react to newcomers or sudden changes in peer 
behaviour. To test a newcomer scenario, we used similar settings like in previous 
simulations. In this simulation, the 40% of malicious peers join the network after ten 
hours. The number of bogus transactions increases as expected and after some time 
drops to zero. Figure 22 shows the progress in a number of bogus transactions in this 
scenario. The PeerTrust, BubbleTrust and WTR are able to recognize all malicious 
newcomers  in  less  than  one  hour.  The  best  results  have  been  measured  with 
PeerTrust which deals with all newcomers in a half hour. The slowest reaction has 
been measured in EigenTrust. However, these results are not sufficiently informative 
because they depend mainly on initial  trust.  Each TMS gives newcomers a small 
initial reputation in order to allow them to prove their trustworthiness. This value 
differs in each TMS and influences the results in this simulation.

Nevertheless, the results of this simulation can help to determine resistance of 
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Fig. 22: Number of bogus transactions after joining new malicious 
peers.



individual  TMSs  against  whitewashing  attacks.  The  longer  time  to  recognize  a 
malicious newcomer the more attractive the system is for whitewashers.

In the next simulation scenario,  the 40% of honest peers suddenly change 
behaviour and start provide bogus resources. These peers have already the highest 
possible reputation,  hence they can cause more damage until  detected.  Figure  23 
shows progress in number of bogus transactions in scenario with traitors.

As we expected, in all cases the time to discover malicious peers is longer 
than in the previous scenario. The quickest TMS is BubbleTrust followed by WTR 
with times about 2.5 hours. On the other hand, the trust in traitors in H-Trust is lost  
after more than 13 hours. EigenTrust does not suppress all bogus transactions even in 
simple malicious strategy, see table  6. We have to measure the time for which the 
number  of  bogus  transactions  falls  to  its  normal  level,  in  this  case  it  is  6  hour.  
Similarly for PeerTrust, the effect of traitors diminishes after 10 hours.

Traitors are very dangerous for each TMS. The success of this strategy mainly 
depends on the speed of how the changes in peer behaviour are recognized. There are 
two time intervals which need to be taken into account. First, it is the time to reveal a 
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Fig. 23: Number of bogus transactions after betrayal.



traitor. It is the interval between the moment when a high-reputable peer starts to be 
malicious  and  the  moment  when  all  peers  in  the  network  are  aware  of  his 
maliciousness. This has been investigated in the previous simulation. Second interval 
is the time to rehabilitate a malicious peer. In other words, it is the time between the 
moment when a malicious peer starts to provide honest resources and the moment 
when all peers in the network trust them again. Some TMSs do not allow malicious 
peers to  regain its  reputation after treason at  all.  But  this  requires that  history is 
remembered indefinitely which is not case in most TMSs.

In the last simulation, we investigated the time to rehabilitate malicious peers. 
This simulation takes 60 hours and malicious peers change their behaviour every 15 
hours. Figure 24 shows the time interval from 30 to 50 hours. Therefore, it starts in a 
moment  when  a  recognized  malicious  peers  return  to  honest  behaviours.  The 
increasing number of ulterior transactions expresses the process of regaining trust. 
After approx. 6 hours the number of ulterior transactions reaches its normal level 
which indicates that all malicious peers are trustful again. Table 10 shows times of all 
other TMSs.

85

Fig. 24: Rehabilitation after treason in BubbleTrust.



The quality TMSs should have the shortest  treason detection time and the 
longest rehabilitation time. The parameter history_period has an appreciable impact 
on these results, in all our simulation it is set to 5 hours. This parameter determines 
how long the feedbacks are stored in the network. The individual peers can have its  
own database according the algorithm of used TMS.

7.3 Influence of different simulation settings

We have  tried  different  simulation  settings.  The basic  simulation  network 
contains 200 nodes and 40% of them are malicious. At first we have adjusted the 
number of nodes in the network with preserving the ratio of malicious nodes. We 
have made the following observation: an increase in number of nodes does not affect 
the MaliciousSuccessRatio. The reason for this fact is that each TMS can handle only 
a limited number of nodes in the calculation of ratings. For instance, the size of the 
trust bubble in BubbleTrust is limited to 100 nodes. A similar limitation can be found 
in all TMSs. The information from nodes which are very distant in a trust chain is 
negligible. On the other hand, the results change if we decrease the number of nodes 
in the network. This change can be in both directions; it depends on the TMS and the 
malicious strategy. In this case the TMS has to rely on information from a smaller 
number  of  nodes  than  it  expects.  It  works  in  some  kind  of  degrades  modes. 
Therefore, we chose the network with 200 nodes as optimal for simulation a real 
application.

Next we have altered the ratio of malicious nodes. Figure 25 shows the results 
for BubbleTrust. As we can see, the malicious success increases with the ratio of 
malicious  nodes  in  the  network.  BubbleTrust  resists  relatively  well  even  in  the 
network with more than 50% of malicious nodes.  In our tests  we stayed at  40% 
because it is very unlikely that the overlay network beneath the P2P application can 
handle  with  the  situation  where  half  of  the  peers  are  malicious.  The  defence 
techniques described in 2.1 assume that only a small fraction of nodes is malicious. 
In fact, 40% already cause big problems.
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7.4 Summary

Table  10 shows that the best TMS in our comparison is BubbleTrust. It has 
the shortest treason detection time, the longest rehabilitation time and allows only 
28% of bogus transaction under the most successful malicious strategy. As far as we 
know, it is the only one TMS using global experience as feedback verification.

H-index calculation used in H-Trust proved to be vulnerable to traitors.  It 
takes too long to detect traitors and malicious peers are rehabilitated too quickly. The 
system WTR permits the highest number of bogus transactions from all tested TMSs, 
but it is followed closely by PeerTrust and WTR. EigenTrust has better results than 
HTrust, WTR and PeerTrust but it has a significant advantage in the form of pre-
trusted peers as well.

Our tests  proved that  it  is  very difficult  to  resist  against  the sophisticated 
malicious techniques. Especially the calculation of the evaluator rating is susceptible 
to  rigging.  The previously  published TMSs do not  pay  as  much attention  to  the 
evaluator rating as they pay to the provider rating. This must change if the TMS 
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Fig. 25: Effect of ratio of malicious peers on Malicious Success Ratio in 
BubbleTrust.



should be resistant against the evaluator collusion or the evaluator spies.
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EigenTrust 4 6 G F GP SPS 60%

HTrust 1.3 14 P S PE ESPS 70%

PeerTrust 5 10 P F PE ECOL 72%

WTR 2.5 3.1 G F GP ECOL 73%

BubbleTrust 6.5 2.4 P S GE ECOL 28%

Table 10: Summary of all tested TMSs.

All TMSs have been tested in a very dangerous environment and against the 
sophisticated  malicious  strategies.  If  we  run  similar  tests  in  less  dangerous 
environment, the results of all TMSs have been significantly better and similar to 
each other. Additionally, the use of such sophisticated malicious strategies in a real 
P2P application has not been recorded yet. Currently, there are not P2P applications 
widespread enough and handling with such attractive resources to be worth it. These 
tests  should be understood as  stress  tests  realizing the worst  case scenario.  They 
should  verify  whether  P2P  networks  can  be  used  in  more  security  sensitive 
applications.
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8 Conclusion
In  this  thesis,  we  focused  on  the  security  aspects  of  the  distributed 

applications built  over P2P networks. This is a very extensive topic covering the 
common network attacks, the attacks against the overlay network and last but not 
least  the  application  attacks  exploiting  the  natural  trust  among  the  peers.  We 
summarized the state of the art in this field and assessed the application layer as the 
most challenging area. The reputation-based trust management has been proposed in 
the the last years as a novel way of dealing with the security deficiencies inherent to 
P2P networks. Many trust management systems have been developed in last years. 
We described the most known of them and organized them into a simple taxonomy 
which  gives  us  a  basic  idea  about  usable  approaches.  Many  published  trust 
management  systems are conceptually  similar.  In this  thesis,  we focused only on 
systems which introduced new ideas or push knowledge forward, hence it should not 
be considered as a complete list of all published TMSs.

One of the crucial  parts  of this thesis  is  an analysis of possible malicious 
strategies. The collective of malicious peers which cooperate with each other can 
develop sophisticated malicious strategies which present a big challenge for each 
TMS. The most previously published TMSs have been designed considering only 
simple collective strategies, if any, but the attacker with detailed knowledge of the 
internal function of the TMS can adapt its strategy to be more efficient under used 
TMS. We propose several modifications of the known malicious strategies targeted 
towards  the  general  principles  used  by  some  TMSs.  These  strategies  are  more 
dangerous than common collective strategies. Additionally,  other modifications or 
combinations of these strategies are possible with even bigger efficiency.

It is expected that malicious peers work in a collective try to use the most 
effective strategy. Therefore, the quality of TMSs has to be assessed according to the 
most successful malicious strategy. Additionally, other properties have to be taken 
into account too; e.g. the cost connected with the malicious strategy can exceed the 
potential benefit for malicious peers.

We organized the existing models and ideas of trust management systems and 
confronted them to the potential strategies used by attackers associated in malicious 
collectives.  We also analysed  the existing malicious  strategies  and proposed new 
strategies  specifically  designed  according  the  weaknesses  of  the  current  trust 
management systems.

On the basis of this analysis, we developed a novel trust management system 
called BubbleTrust. This system implements several new approaches compared to the 
previously  published  systems.  The  data  management  layer  uses  asymmetric 
cryptography to ensure that malicious peers cannot create faked feedback towards 
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honest  peers  or  deny  unflattering  feedbacks  towards  other  malicious  peers. 
BubbleTrust also uses a unique way of calculating an evaluator rating. Most of the 
other  TMSs  calculate  evaluator  rating  either  using  only  local  experience  with 
evaluator's previous feedbacks or using the premise that a good provider must be a 
good  evaluator  as  well.  In  BubbleTrust,  the  peers  calculate  the  evaluator  rating 
similarly to provider rating; in cooperation with other peers. This approach provides 
more precise results  and better  resistance against  collaborative malicious  strategy 
using false feedbacks.

Unlike the most other TMSs, BubbleTrust does not try to find the chain of the 
trust  from  the  consumer  to  the  provider.  BubbleTrust  uses  the  concept  of  trust 
bubbles. In the centre of the bubble is a potential provider and on each level are peers 
which have the strongest relations with peers on the lower level. The size of the 
bubble is  not  determined by the size of the network but  only by the capacity of 
computing peers. The peers which initiate the computation may or may not be a part 
of the bubble. Each peer in BubbleTrust can choose the size of the trust bubble and 
adjust the trade-off between computation accuracy and the load of the computation 
process.

All this improvements should significantly help to fight with malicious peers. 
To verify this assumption, we created a simulation framework called P2PTrustSim. 
Using this framework we can compare trust management systems against different 
malicious  strategies.  We  also  proposed  several  efficiency  criteria  which  can  be 
evaluated  using  this  framework.  In  this  thesis,  since  we  cannot  test  all  trust 
managements due to their  appreciable numbers, we chose the most representative 
systems for each type according to the presented taxonomy. Although, the simulation 
framework is easily extensible with any TMS suited for structured P2P networks. We 
tested  five  TMSs  including  BubbleTrust  against  eight  malicious  strategies.  The 
results indicate that only BubbleTrust is resistant against all considered malicious 
strategies;  it  is,  therefore,  the  best  choice  for  deployment  in  the  secured  P2P 
networks.

As  a  future  work,  we  plan  to  extend  the  simulation  possibilities  of 
P2PTrustSim to test  malicious strategies directed to overlay layer  and implement 
more  simulation  scenarios.  We  would  also  like  to  implement  more  TMSs  to 
emphasize our results.

As for BubbleTrust, our next task is the addition reduction of the complexity 
of the algorithm. For instance, at the moment, every peer makes a decision on the 
basis of information served by data management layer and performs all calculations 
by its own. However, the peers which trust each other at most can share information 
stored in the cache and reduce the network load.

For the purposes of the simulations we created five TMS implementations 
which can be directly  used together  with  FreePastry for  deployment  of  any P2P 
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application. Nevertheless, the implemented functionality covers only requirements of 
tested simulation scenarios. For instance, the cryptography in data management layer 
in BubbleTrust is not implemented or the peers in EigenTrust calculated their own 
trust values. We plan to improve the BubbleTrust implementation by adding next 
security measures. We would like to provide a fully usable security solution for P2P 
networks based on BubbleTrust which reacts on all threats in the application and the 
network layer.

Our ultimate aim is to make the P2P architecture suitable for implementation 
in more security sensitive applications in which traditional client-server model still 
dominates.
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Appendix C

Context of attached CD

The attached CD contains the following directories:

Documentations - contains the javadoc documentation of all related 
packages: FreePastry, P2PTrustSim and TrustManagement.

Results - contains complete simulation results presented in this thesis.

Simulations - contains compiled version of P2PTrustSim and various scripts 
for run simulations.

Sources - Source code of P2PTrustSim and TrustManagements.

Thesis - PDF version of this thesis and used figures. 
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