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je možné tyto metody aplikovat pouze u databáźı menš́ıho rozsahu. Grafické
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1. Introduction

Software efficiency has been an intensively discussed issue since the very dawn
of the computer science. Efficiency has been affecting many attributes of infor-
mation systems, such as response times or the maximal size of the data we can
process in a reasonable time. In the past, the performance of an application was
determined mostly by the selection of appropriate algorithms and data struc-
tures, quality of the implementation, the compiler used, and the computational
speed of the processor. The instruction processing speed was the leading fac-
tor since major improvements of most algorithms are quite rare and the optimal
implementation is usually tailored to the compiler and the CPU architecture.

The computational speed of a processor was tightly linked to its operating
frequency and the frequency corelated strongly with the number (and size) of
the transistors on the chip. As the number of transistors has doubled every one
or two years [1, 2], the performance of computers, and thus the software, was
leaping steadily. Unfortunately, this trend reached an impasse at the beginning
of the 21st century. It was discovered that the heat production of silicon-based
chips is cubically proportional1 to the frequency of the chip. Even though the
cooling technologies have developed rapidly to match the needs of the CPUs, the
frequency-boosting approach become unsustainable in the long run.

The frequency pursuit was abandoned and the CPU development ventured
into the domain of multi-core parallelism. Current mainstream processors are
equipped with multiple computational cores which are quite independent. They
share only the die casing and a few resources such as the external busses, the
memory controllers, or the L3 cache. Most of the Intel CPUs also employ the
hyper-threading technology, which maps two virtual CPU cores to one physical,
so the internal (and often redundant) units of the core can be better utilized.
Furthermore, we can observe that the nonuniform memory architecture systems
(NUMA), that encompass multiple physical processors (each managing its own
part of the memory), are becoming increasingly popular. The combination of
these factors has caused every up-to-date server to have tens of CPU cores, which
all need to be utilized in order to achieve an optimal performance.

Another major hardware revolution happened in the field of graphical process-
ing units. In 2006, the GPU stream processor architectures evolved to a point
where the GPUs were capable of processing general computational tasks in ad-
dition to the traditional image operations and 3D graphic rendering. This gen-
eration of generic purpose GPUs gave us a highly parallel architecture capable
of processing data at speeds that cannot be achieved even by the best multi-core
CPUs. Graphical chips of the day contain from hundreds to thousands compu-
tational cores. Unfortunately, this architecture is bound with many limitations
concerning the parallel execution model and the memory transfers, which restricts
its applicability to rather specific data-parallel problems.

In addition to multi-core CPUs and many-core GPUs, other parallel plat-
forms available for common PCs and servers have been introduced recently. For

1Actually, the P = CV 2f , where P is power, C is capacitance, V is voltage, and f is
frequency [3]. According to frequency-voltage configuration tables, the V is approximately
lineary dependent on f .
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instance, the IBM Cell processors [4] or the Intel Many Integrated Core (MIC)
architecture [5]. These platforms only prove that the trend of parallelization is
quite strong in the current hardware and that we need to adapt our algorithms,
implementation techniques, and programming paradigms in order to fully exploit
their computational power.

1.1 Embracing Parallelism

It has been established that parallelism is one of the most essential things affecting
the efficiency of current applications and there are many computational problems
that can really benefit from a concurrent execution [6, 7, 8]. We would like to
discuss a few very important issues that rise with the introduction of parallelism
into algorithms before advancing further.

Performance Evaluation

As our work focuses on improving the performance of applications by embrac-
ing parallelism, we need to address the issue of performance evaluation. The
theoretical approach, which operates with well established time complexities of
algorithms, is not quite satisfactory in this case. On the other hand, the näıve
approach of measuring the real execution time is highly dependent on various
hardware factors and it suffers from significant errors of measurement. Unfor-
tunately, the real running time is the only practical thing we can measure with
acceptable relevance. In the light of these facts, we will provide most of the
results as the parallel speedup, which is computed as

Speedup =
tserial
tparallel

where tserial is the real time required by the best serial version of the algorithm
and tparallel is the real time taken by the parallel version. Both versions are
executed on the same data, thus solving exactly the same problem.

The speedup is always provided along with the number of cores (threads,
devices, . . . ) used for the parallel version of the algorithm. We are trying to
reduce the error of measurement by timing the serial and the parallel version of
the algorithm on the same machine, using the same compiler, and under the same
conditions. If we provide real times in our results, they should be perceived only
as illustrational and the emphasis is on the speedup measured.

Scalability and Amdahl’s Law

We usually measure the speedup in several different settings, when the parallel
implementation utilizes a different number of cores. These tests are designed to
asses the scalability of the algorithm. In other words, how many computation-
al units can be efficiently utilized, or how well is the problem parallelable. In
an optimal case, the speedup is equal to the number of computational units used
(i.e., 2× on dual-core, 4× on quad-core, etc.) and we denote this case the linear
speedup. The scalability also helps us predict how the application will perform in
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Figure 1.1: An example of the algorithm decomposition

the future as each new generation of CPUs and GPUs has more cores than the
previous generation.

The scalability of an algorithm can also be determined by measuring the ratio
of its serial and parallel parts (as depicted in Figure 1.1). If we identify the sizes
of these parts, we can use the Amdahl’s Law [9]

SN =
1

(1− P ) + P
N

to estimate the speedup in advance. The SN denotes speedup of the algorithm
when N computational units are used and the P is the relative size of the parallel
part of the algorithm. The speedup estimation becomes particularly interesting
when the N tends to the infinity:

lim
N→∞

SN = lim
N→∞

1

(1− P ) + P
N

=
1

1− P

Even though this might sound excessively theoretic, it often helps us understand,
what happens when an algorithm is moved from multi-core CPUs with tens of
cores to a multi-GPU system with thousands of cores. For instance, if the serial
part of the algorithm takes 5% of total work, we will never be able to achieve
greater speedup than 20×, no matter how many cores we can employ. In such
case, we can observe 3.48× speedup on a quad-core CPU (which looks adequate);
however, we may achieve only 19.3× speedup on a 512-core GPU card2. There-
fore, one of our main objectives is to reduce the serial parts as much as possible
even at the cost of using an algorithm with suboptimal time complexity.

1.2 Outlining Objectives

This thesis focuses mainly on the problematics of database systems that employ
similarity search and content-based retrieval. The main objective is to identify
the key points that will benefit the most from parallelism and to exploit them
to improve the performance of these systems. A particular emphasis was put
on the utilization of generic purpose GPUs as they were the only highly parallel
platform generally available at the time our research begun.

Current hardware architectures are quite complex. Understanding the design
of these architectures is essential for developing an optimal parallel algorithms.
Therefore, we dedicated Chapter 2 to revise the multi-core CPU and many-core
GPU architectures of the day.

2This example is only illustrational as we inadequately compare results of two platforms.
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The first part of our research addresses the problems introduced by using
a heterogeneous computational platform, where the operating systems and the
main part of the application runs on a multi-core CPU(s), but computationally
expensive parts are accelerated by the GPU devices. The task scheduling becomes
more difficult as the GPU may wait for the CPU or vice versa. We have studied
related problems and propose some solutions in Chapter 3.

The second and the most important part of the work is dedicated to the
various problems of multimedia databases, especially the efficiency of content-
based retrieval and similarity search in large image databases. We have identified
several algorithms that would benefit greatly from parallelism. These algorithms
and their parallel modifications are described in Chapter 4.

Finally, we focus on the problem of feature extraction, which is used to create
the image descriptors for the similarity search. Our main objective is to accelerate
the extraction process, so we can index larger datasets in a feasible time and
perform many experiments to tune the configuration parameters of the extractor.
Our results are summarized in Chapter 5.

1.3 Contributions

This work summarizes the results of three years of individual research on the
given topic. The contributions can be identified as follows:

• We have revised the topic of task scheduling in frameworks for parallel
data processing and made two improvements [10]. First, we have proposed
a new approach for dealing with blocking tasks in parallel frameworks for
multi-core CPUs. Second, we have designed our own framework for hybrid
CPU-GPU systems. This framework is built on top of the OpenCL library
and it simplifies the design of our applications. Furthermore, the proposed
idea of the feeding thread pool exhibits significant improvement. It reduced
the waiting times during data transfers and allowed us to better utilize the
GPU computational power, especially in multi-GPU configurations.

• The domain of similarity search and content-based retrieval is much more
computationally demanding, so it can really benefit from the parallel ap-
proach. We have adapted a Signature Quadratic Form Distance function,
that computes (dis)similarity of two image signatures, for the GPGPU plat-
form [11, 12]. A speedup of two orders of magnitude was observed. Fur-
thermore, we have also accelerated the database access method called the
pivot table prefiltering and proposed a novel range estimation algorithm
that solves the problem of parallel k nearest neighbour queries.

• Finally, we have employed the GPGPU in the database indexing and pro-
posed a GPGPU feature extractor, which computes the signatures for im-
ages [13]. This fast extractor opened new possibilities as it allowed us to
index large image databases. It also allowed us to explore the configuration
parameter space of the extractor and to find a configuration that produces
the most accurate signatures. These experiments took only several weeks
on the GPU, but they would have taken more than a year using only CPUs.
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2. Parallel Architectures

Knowing your enemy is the first step in designing a good strategy. To do so, we
revise current parallel architectures especially multi-core CPUs and many-core
GPUs. As these architectures are quite complex, we narrow our focus only to the
aspects that directly influence the design of our parallel algorithms.

2.1 Multi-Core CPUs

Multi-core CPUs are well established in the segments of servers, personal comput-
ers, and laptops. At present time, they are penetrating to the segment of tablets
and mobile phones. Desktop CPUs have up to 16 cores and more cores per chip
are expected in future generations. Even though there are many types of proces-
sor architectures, we will focus on the Intel IA32 (more commonly known as the
x86) architecture, since it is the predominant architecture in personal computers,
small servers, and server clusters. Most of the observations made about IA32
hold for other architectures as well and we explicitly point out any important
differences.

2.1.1 Parallelism in CPUs

Current CPUs employ parallelism on three levels:

• instruction execution,

• vector instructions (data parallelism – SIMD),

• and on-chip core replication (task parallelism).

Executing Instructions Simultaneously

The very first computers were designed to execute one instruction at a time.
Quite soon, it become clear that this solution is suboptimal as each instruction
comprises several smaller steps, such as decoding or activation of some numeric
processing unit. A natural solution to this problem is to create an instruction
pipeline. The pipeline design was first mentioned in the work of Konrad Zuse [14]
as it was used in the Z1 and Z3 machines. It was employed on regular scale in
the late 1970s, especially in the Cray supercomputers [15].

Each instruction is divided into fixed number of steps that are processed by
different stages of the pipeline. Separate stages can perform their tasks concur-
rently, thus the execution of subsequent instructions partially overlap. A simple
example of a 4-stage pipeline is depicted in Figure 2.1.

Although the pipeline can increase the instruction throughput significantly, it
is encumbered by several problems. Most important are instruction dependency
hazards and branching problem. The first problem is caused by the sequential ex-
ecution model that is presented to the programmer but not upheld by the pipeline
architecture. When instruction inputs depend on the outputs of the previous in-
struction, the previous instruction needs to be processed entirely (i.e., including
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Figure 2.1: An illustrative example of 4-stage instruction pipeline

the write back stage), before the following instruction is executed. Current CPUs
deal with this problem by stalling the pipeline or reordering the instructions. The
second problem is caused by the uncertainty of conditional jumps. Each condi-
tional jump has two possible results – it is either performed or it is not. This
means that the following instruction is not certain until the jump instruction is
executed. This problem is usually solved by branch prediction and speculative
execution. The CPU tries to guess, which branch is going to be taken and starts
to execute it. If the other branch is taken, the pipeline must be discarded and
then repopulated by the correct instruction stream.

The superscalar architecture presents the next level in the instruction par-
allelism. This architecture was first introduced in CDC 6600 Cray mainframe
in 1965 and the first x86 CPU with superscalar architecture was Intel Pentium
(P5), released in March 1993. A superscalar processor is capable of executing
multiple instructions at once. It is usually based on the pipeline architecture,
hence a superscalar CPU has more than one pipeline.

Current CPUs also employ the out-of-order execution. The x86 processor
family first introduced this feature in Intel Pentium Pro (1995) along with the
speculative execution. The out-of-order pipeline can reorder instructions to better
utilize computational units of the CPUs and avoid instruction dependencies in
the pipeline while maintaining the consistency of the results.

Even though this type of parallelism is very interesting and more advanced
optimizations are implemented with every new generation of CPUs, it can be
hardly affected by the programmer. The instructions may be generated so that
the pipeline and the out-of-order execution works better in some cases; however,
these optimizations are performed solely by the compiler.

Vector Instructions and Data Parallelism

The single instruction multiple data (SIMD) execution model is based on a sim-
ple idea that the processor can perform the same instruction on multiple data
simultaneously. This approach is quite conservative and easy to implement as
it requires that the processor design duplicates only the execution units (e.g.,
arithmetic units) and remaining units, such as the instruction decoder, caches,
registry, or the data loading/storing units, are shared. Therefore, a vector in-
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struction is treated almost as a regular instruction, except for the execution part
which activates multiple symmetric units at once and lets them simultaneously
process a vector of numbers instead of a single number.

The x86 family first introduced the MMX vector instruction set in Intel Pen-
tium MMX (1997). It was shortly followed by the 3DNow! technology from AMD
(1998) and the Streaming SIMD Extension instruction set (SSE) in 1999. Cur-
rent x86 processors implement SSE version 4.2, Advanced Encryption Standard
(AES), Advanced Vector Extensions (AVX), CVT16, and eXtended Operations
(XOP) instruction sets. Most recent instruction sets of fused multiply-add op-
erations (FMA3 and FMA4) have just appeared in the newest AMD processors
and are planned for the next generation of the Intel processors. It is safe to say
that this level of parallelism has strong support from the CPU vendors, thus we
have to embrace it in our software designs.

Fortunately, current compilers are well aware of the vector instruction sets and
they try to generate these instructions whenever possible. In complex situations,
when the compiler fails to recognize an opportunity to exploit vector instruc-
tions, we can optimize critical routines manually by rewriting them in assembly
language, or by using some special libraries, such as the xmmintrin.h header,
which provides API for vector instructions directly from C/C++ language.

Embedding Multiple Cores for Task Parallelism

The third level of parallelism is the one that concerns us the most. As the transis-
tors are getting smaller with each new generation of chips, it become possible to
integrate multiple CPU cores onto a chip (as depicted in Figure 2.2). These cores
are almost as independent as separate processors would be, since they share only
communication buses, power management, and top level L3 cache. Each proces-
sor core executes separate instruction thread, thus they are perfectly suited for
task-parallel problems.

Furthermore, a CPU core has many redundant units. Despite the instruction
level parallelism, these units are rarely all occupied. One of the possible solutions
is to increase the number of threads processed by the core. It can be achieved
by attaching multiple frontends (logical cores) to each physical core. The logical
cores appear as regular processors to the operating system, but they share many
resources of the physical core. The instructions issued to these cores are inter-
leaved in some way, hence they increase the utilization of internal units and mask
some of the system latencies.

One of the first systems that implemented this approach was the Delencor
HEP [16] in early 1980s. It used multiple blocking threads per core interleaved
on cycle-by-cycle basis in a pipeline. Currently, the multithreading technique is
implemented in various architectures, such as Itanium (IA-64), IBM POWER5,
or UltraSPARC.

The first appearance in the x86 family was in 2002, when Intel introduced new
Pentium 4 Netburst architecture [17] with Hyper-threading technology [18, 19].
Each core has two logical frontends, thus it processes two independent instruction
streams. Intel chose a minimalist approach as they added only the most essential
units like registry alias tables or instruction buffers to the chip. Most of the
remaining units are either time-shared or partitioned between the two threads.
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Figure 2.2: An illustrative schema of a multi-core CPU

AMD implemented their version of multithreading almost ten years later in
the Bulldozer architecture [20]. Unlike Intel, the AMD dual-core modules actually
duplicate many of the units. The idea is to create two cores with much simpler
design but dedicated units, especially the L1 cache and the integer execution
units. However, some of the parts (like L2 cache, instruction decoder, or floating
point units) are still shared between the cores.

As we have mentioned in Chapter 1, the multi-core approach was an answer
to the heat problems caused by high operating frequencies. Even though the
tradeoff between the number of cores and their frequencies is quite beneficial for
large servers and multiprocess environments, there are still applications, which
are inherently serial. In order to increase performance of serial problems, most
of the current CPUs implement some kind of internal speed regulation (e.g., the
Intel Turbo Boost technology). In case some cores are not utilized, the CPU
power management turns these cores off and diverts the saved energy to the
remaining cores, so they can increase their frequencies as they got more power.
This technology must be considered as in some cases it might be better to use
a fast serial algorithm instead of an inefficient parallel one.

2.1.2 Memory Issues

Most of the tightly coupled parallel systems rely on shared memory model, where
multiple computational units share their data in one memory space. This model
has several important issues that must be addressed, like the synchronization,
coherency, performance, or memory protection. We revise issues which are the
most important for the design of parallel algorithms.
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Data Synchronization

In any parallel environment, access to shared assets has to be synchronized. In
case of shared memory, access to mutable data structures shared amongst multi-
ple threads must be coordinated to avoid data corruption caused by concurrent
read-write and write-write operations. Even though there are many techniques
and design patterns [21] that reduce the necessity of synchronization, like data
replication or privatization, the synchronization is inevitable in many situations.

The problematics of synchronization has been thoroughly studied [22, 23, 24].
There are basically two ways, how to synchronize access to shared data:

• atomic operations and

• mutual exclusion.

The atomic operations are suitable for simple stand-alone updates of the data.
An atomic operation is a single instruction that is guaranteed by the system ar-
chitecture to be performed entirely at once and in a thread-safe manner [25]. The
most common operation is the compare-and-swap instruction (CAS), also known
as compare-and-exchange or test-and-set. The instruction has three operands:
old value, new value, and a pointer to variable in main memory. If the variable
holds the old value, the new value is atomically assigned to it. Even though we
can implement almost anything with this instruction, specialized atomic instruc-
tions such as increment, integer arithmetics, or logical functions are implemented
by most architectures [25].

If data updates are more complex and the functionality cannot be provided by
atomic operations, the mutual exclusion needs to be ensured. It is based on the
premise, that only one thread may work with the shared data at a time. There are
many types of synchronization primitives. The simpler ones use guarding variable
(a lock) which is modified by atomic operations (usually the CAS instruction). An
active waiting is used in case the lock is acquired by a different thread. A typical
representant of such primitive is the spin-lock.

More complex primitives like the mutex, the semaphore, or the read-write lock
suspend the waiting thread to save computational resources. In order to do so,
in addition to guarding variable, they require queues for waiting threads and
a mechanism for waking suspended threads.

Caches

Memory latency is a serious performance problem since the CPU processing speed
significantly outmatches the data throughput of the operating memory. There
are various techniques that can be used to reduce memory latency. Common
CPUs deal with the problem by employing multi-level caches that selectively store
fragments of data which are used by the CPU core at a time (see Figure 2.2).
Current x86 CPUs use three-level organization. L1 caches, which are closest to
the CPU core, are the smallest (tens of kB) but also the fastest. L3 caches, which
are closest to the main memory, are the largest (several MB) and the slowest.

The lower levels of cache (usually L1 and L2) are replicated on every core,
while higher levels (L3, sometimes L2) are shared. This presents a potential
problem as the same data might be copied and modified in caches of two cores
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independently. In order to maintain data integrity, some kind of cache coherency
protocol must be employed. The x86 architecture use the MESI protocol [25] in
combination with memory bus snooping technique.

The protocol marks every cache line with label Modified, Exclusive, Shared, or
Invalid. These labels indicate the replication state of the data. There are simple
rules describing which operation is the processor core allowed to do with each line
type. The protocol also defines how to change the state of the line if necessary.
The processor is snooping on the memory bus and modifies the state of the lines
according to the observed memory traffic. This coherency protocol is operating
on each level of the cache.

A cache coherency protocol can create an unpleasant side effect called false
sharing. Since a cache line is usually at least tens of bytes long (64 B in IA32),
two threads might be working on independent data which are close enough to
fall in the same cache line. In such case, the coherency protocol forces the cores
to steal the cache line every time they would like to perform some exclusive
operation, thus creating a ping-pong effect on the memory bus. This problem is
easily avoided by aligning intensively used data to the cache line boundary.

Even though we have focused on the x86 CPU family, most of other archi-
tectures use very similar mechanisms including the cache coherency protocols.
These differences are not important from the programming point of view, thus
we have chosen not to elaborate on the details.

Virtual Memory Space

The memory protection mechanisms used by current operating systems [22, 23]
to separate data of different processes introduce virtual memory spaces. Each
process is provided with its own virtual memory space, which creates an illusion
the process has all the memory for itself. It also prevents the process to see or
write the memory of other processes, unless two processes explicitly negotiate
some memory sharing.

Virtual memory addresses need to be translated to physical memory address-
es. This translation mechanism must be supported directly by the CPU and the
operating system must manage the translation mechanism. The IA32 architec-
ture uses page tables to translate the address [25]. Page tables are organized as
a widespread shallow tree1, which is quickly traversed from root to leaf when a
physical address is looked up. Table on each level is indexed directly by a part
of the virtual address, thus the page-walk is very fast. On the other hand, these
tables are present in main memory, thus each translation requires several memory
reads.

The main reason, why the virtual address translation is not incredibly slow,
is the presence of a dedicated cache for translated addresses called translation
lookaside buffers (TLB). In order to utilize this cache as much as possible, we
should avoid data access patterns that jump over large portions of the virtual
memory space. Furthermore, the TLB is cleared every time a process is switched
on the CPU core, since the new process has its own memory space. Hence, we
should minimize context switches and use threads that share memory space rather
than processes with their own memory spaces.

1With up to 4 levels, depending on address space type and size.
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Other architectures use more or less elaborate translation mechanisms. One of
them is the inverted page tables translation employed by PowerPC, UltraSPARC,
or IA-64. The basic idea is to use hashing in order to find translation for an
address quickly. Another approach is to use a TLB-only solution with software
filling like MIPS processors does. The TLB cache is manipulated by the operating
system and cache misses are handled by system exceptions.

NUMA Systems

Small symmetric multiprocessor systems are often organized in cache coherent
nonuniform memory architecture (ccNUMA) [26]. In this architecture, each
(multi-core) processor has its own private memory and it is interconnected with
one, two, or even three other processors as depicted in Figure 2.3.

Figure 2.3: Samples of 2, 4, and 8 node NUMA systems

Each node can access not only its own memory, but the memories of other
nodes as well. Obviously, data transfers from the local memory of the node are
faster than transfers from a memory of another processor. This delay is often
called the NUMA factor and it can slow the data transfers even several times.
Furthermore, it has been observed that when a memory of a processor is accessed
by another processor, the first processor is being slowed by the data transfer.

2.1.3 API and Parallel Libraries

Parallel execution on multiple cores is achieved by employing multiple processes
or by spawning multiple threads within one process. The technical and imple-
mentation details are within the realms of the operating system kernel, which
is well beyond the scope of this thesis. As we are focusing on high performance
data processing applications, we will settle for the simple fact that the underlying
operating system allows us to execute multiple threads at once and the threads
are executed by available processing units in the best effort manner. Each thread
is a piece of code that may run independently (i.e., it has its own state, call
stack, etc.), but all threads share the memory, thus they can easily cooperate on
a problem.

The threads provide a low-level generic way how to execute code in parallel on
multi-core or multi-CPU systems, but they are not very programmer-friendly. To
reduce the tedious programmers’ work, various parallel libraries, frameworks and
application interfaces have been introduced, such as the Intel Threading Build-
ing Blocks [27, 28] or the OpenMP [29, 30]. These libraries provide extensions
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to standard thread programming by offering additional value, such as parallel
algorithm templates or data structures designed for concurrent access. In the
following, we briefly describe the Intel TBB and some of their generic ideas, as
we have used this library in our experiments.

Intel Threading Building Blocks

The Intel TBB is an open source multi-platform library for the standard C++
language. Unlike some other libraries it does not provide any language extensions,
but it uses C++ templates and other C++ features to provide generic parallel al-
gorithms and data structures in addition to standard things like threads or atomic
operations. We introduce some of the most essential structures to illuminate the
general idea. More detailed descriptions can be found in Intel documentation [28]
and literature [27].

Basic parallel algorithms, which are sometimes called parallel primitives, cover
the most fundamental problems.

• The parallel-for is a template for a typical data parallel task. It traverses
a selected index range and invokes a given functor (the body of the parallel
loop) for each item in the range (concurrently when possible).

• The parallel reduce performs standard tree reduction technique, where leaf
operations (computation) as well as joining operations (reduction) are per-
formed in parallel.

• Finally, the parallel scan performs the prefix scan operation concurrently.
The prefix scan takes a vector xi and computes another vector yi, where
each yi = xi ⊕ yi−1 (y0 = x0 ⊕ Id⊕). The ⊕ is an associative operation and
Id⊕ is a neutral item of the ⊕. Even though the prefix scan looks inherently
serial, it can be parallelized at the cost of doing some additional work [27].

Parallel data structures implemented in TBB are basically a thread safe ver-
sions of some C++ STL containers. For instance the TBB concurrent vector or
the concurrent queue are very similar to the vector and the dequeue STL contain-
ers, but they can be operated simultaneously from multiple threads or parallel
primitives. Others, like the concurrent hash map, are specifically designed for
concurrent usage and provide a specific API that is both effective and efficient.

Task Scheduling

The TBB offers a quite sophisticated task scheduler besides the convenient par-
allel primitives and containers. This scheduler also works as an engine for the
primitives described above. A task scheduler is more convenient than program-
ming with raw threads as it reduces the overhead of creating and disposing of
a thread and provides better ways to keep the CPU workload balanced.

The scheduler uses a thread pool – a pool of worker threads which are created
when the application starts (or when first needed) and destroyed when the ap-
plication terminates. These threads are waiting on a synchronization primitive
until a task is dispatched to them. Waking up a suspended thread is much faster
than creating a new one, thus a significant amount of time can be saved. The
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TBB usually creates as many threads as there are logical cores available. This
way, all cores can be occupied if sufficient concurrent tasks are available and the
overhead of the operating system scheduler is reduced as the threads do not need
to switch between available processors.

The tasks are dispatched nonpreemptively to free threads. If no free thread
is available, they are queued and dispatched as soon as one of the worker threads
finishes. Since the dispatching overhead is quite low, the programmers are encour-
aged to produce large quantity of tasks. This technique is called oversubscription
and it helps to balance the workload. We address this matter more thoroughly
in Section 3.2.2.

2.2 Many-Core GPUs

A graphical processing unit is a piece of specialized hardware originally designed
to encode digital image data into signals that can be directly interpreted by the
computer monitor. First GPU cards comprised mostly the video memory con-
nected to digital-analog signal converters, and their programming API provided
only very simple 2D operations for copying image data. In 1996, the first 3D
accelerator for desktop PCs was presented and the GPU encompassed some ba-
sic computational operations required for rendering 3D graphics, such as fast
multiplication of small vectors and matrices. Propelled by the gaming industry,
the GPU development raced forward and featured new functions like textures
rendering or lightning computations.

In 2001, the 3D rendering pipeline was enhanced by introducing small pieces
of code called shaders, that can be executed over every vertex of the scene or over
every pixel fragment in a highly parallel fashion. The stream processors that ex-
ecute shaders were quite primitive in the very first version and their program was
limited in length, instruction set, and available memory (registers). In the follow-
ing five years, the stream processors become much more powerful and universal.
Finally, in 2006, they have become powerful enough to be used for generic (i.e.,
not only graphical) computations as well. The GPGPU has emerged as a very
strong and cheap parallel platform designed for data parallel problems. As such,
it plays and is going to play a significant role in high performance computations.

In this section, we summarize the hardware properties and programming mod-
el of current GPUs. Most of the facts and observations are made about NVIDIA
Fermi architecture [31], which was the state of the art when our experiments
begun. The newest state of the art architecture (NVIDIA Kepler [32]), which
emerged in 2012, features some enhancements. However, we do not provide a de-
scription of Kepler architecture as all our experiments were conducted on the
Fermi GPU cards. At the end of the section, we also provide a brief description
of the programming API – the OpenCL library, which was used in our prototype
implementations.

The development of GPUs lies solely in the hands of commercial compa-
nies, which keep their secrets about implementation details quite safe. We can
only summarize information published in programming specifications [33], opti-
mization guidelines [34], and related literature [35], hence our overview might
be slightly inaccurate. We describe the hardware model as it appears to the
programmer rather than the hardware itself.
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2.2.1 Hardware Overview

A GPU card is an independent device (see Figure 2.4) with all advantages and
disadvantages. The main advantage is that the device can process its own tasks,
while other parts of the system, especially the CPU and other GPUs, can perform
other work. The main disadvantage is that the GPU card is separate from the
host operating memory, hence all input data must be transferred from the host to
the GPU internal memory and all results must be transferred back. Furthermore,
the CPU cannot interrupt nor interfere with the GPU tasks once they have been
dispatched.

Figure 2.4: Schema of a host system with a GPU device

The GPU is interconnected with the host system by an expansion bus, usually
the PCI-Express (PCIe). The PCI-Express 2.0 (16×), which was present in our
hardware, is capable of transferring up to 8 GB per second in both directions.
In comparison with CPU buses, such as Intel QuickPath Interconnect (QPI) or
AMD HyperTransport (HT), which both have throughput of approximately 25
GB/s, the PCIe bus is rather slow. Therefore, the data transfer cost must be
considered carefully and the GPU should be used only for operations, where the
amount of the computational work significantly overweights the data transfers,
or when the data transfers can overlap with the computational work.

The device itself is equipped with an internal memory and a GPU processor.
They are connected by a wide memory bus which has high throughput – usually
over 100 GB/s. Beside the shared memory controller and the L2 cache, the GPU
processor is formed by several Symmetric Multiprocessors (SMPs). A fully loaded
Fermi GPU carries 16 SMPs.

Figure 2.5: Schema of GPU symmetric multiprocessor

The SMP itself (Figure 2.5) consist of several computational cores (32 in case
of Fermi). Each core has its own arithmetic units for integer and floating point
math and a private set of registers, but they share some resources of the SMP.
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Most importantly, the instruction cache, the warp scheduler, and the dispatch
unit. These are responsible for the thread planning and the instruction execution,
thus all cores must execute the same instruction at the same time. This model
is discussed in more detail in the following section (2.2.2). The cores also share
load/store units, that are responsible for main memory data transactions, the L1
cache, and the local memory. We explain the details of memory structure later,
in Section 2.2.3.

2.2.2 Execution Model

The GPU devices embrace the data parallel model. In this model, one function
(called kernel), is invoked multiple times for multiple inputs. The parallelism
is achieved by processing these inputs concurrently. This model works perfectly
in cases when the kernel function operates solely on the input objects without
accessing any other data, thus completely without synchronization. Furthermore,
there should be enough data objects to occupy all available processing units to
fully utilize the hardware.

When a kernel is invoked, the programmer defines, how many threads it will
spawn. All these threads execute the same code with the same arguments, but
they are also provided with a thread ID value, which can be used to determine
the portion of the work (i.e., the input data item) the thread should process.
The ID is usually a flat number (from 0 to N − 1 where N is the number of
threads spawned), but it can also be a two or three dimensional vector, so the
programmer can conveniently navigate in 2D and 3D problems. The threads
are lightweight entities as they share almost everything, except for the ID. The
programmer is encouraged to create a huge number of threads as the system can
easily encompass millions of them. A larger number of threads with smaller tasks
to perform creates more balanced workload for the GPU cores.

Threads with adjacent IDs are bundled together in groups. More precisely, the
programmer specify the group size G when invoking a kernel2 and the tID thread
is placed in the ⌊tID/G⌋ group. The groups are important from the perspective
of scheduling as well as from their perspective of sharing resources, as we will
cover later.

Single Instruction Multiple Threads

This execution model is an extension of the Single Instruction Multiple Data
(SIMD) parallelism which is employed in the CPU vector instructions such as
SSE. In this case, we have multiple threads that all have the same code, but they
advance through the code together executing the same instruction at a time.
However, each thread has its own set of registers, thus working on different data.

This concept is much more powerful than SIMD as the threads have their
own memory and even though they must execute the same instruction at a time,
they can use branches or even while-loops. Furthermore, the code written for
the SIMT model is more clear than a code which contains vector instructions.
Finally, the work synchronization amongst the threads is trivial and the barrier
instruction is in fact only a simple memory fence.

2In case of multidimensional IDs, the group size is defined for each dimension.
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On the other hand, SIMT execution can be used efficiently only in case all
threads have exactly the same amount of work. The main problem is branching.
When different threads execute different branches of an if-statement, all cores
must execute both branches and some kind of instruction masking technique must
be employed, in order to render instructions in the invalid branches inactive. In
the worst case scenario, the threads execute a while-loop that terminates early
for most of the data, but it can run for a long time in a few isolated cases. If so,
most of the cores will linger needlessly in the while-loop masking their instructions
while only a few cores will be doing any real work finishing their long-running
tasks.

Threads on The Symmetric Multiprocessor

Thread scheduler plans thread groups to available SMPs, usually one group to
one SMP. Theoretically, there might be multiple groups executing the same kernel
mapped to a SMP, if the groups have low requirements and the SMP resources,
such as registers or local memory, are underutilized. A thread group is never split
amongst multiple SMPs as the threads in the group require access to the local
memory.

The group may have more threads than there are available cores on the SMP,
so the threads are divided into warps3. A warp is a kind of a subgroup with size
equal to the number of cores in the SMP. Only one warp is actually running, while
other warps are waiting to be scheduled. Threads in one warp are implementing
the real SIMT model, as the SMP cores are running in lock step, and the threads
in one group are running in virtual SIMT. The context switch between two warps
is very fast, so the scheduler changes them very often, especially if the running
warp becomes stalled (by a memory transaction, for instance).

Figure 2.6: Thread overlapping, hiding memory latency

Figure 2.6 depicts the principle of reducing memory latencies by overlapping
memory transfers with computations. For instance, when the running warp ex-
ecutes an instruction that loads data from global memory, the load/store units
start the memory transaction and the threads must wait for the data. This might
be a lengthy operation, so the scheduler switches to another warp which can run
meanwhile. The warps are scheduled in a round-robin fashion, thus when the
first warp is scheduled again, it is quite likely the data transaction has finished
and the warp can continue immediately.

At this point, we need to emphasise an important issue of the thread schedul-
ing. The thread group is assigned to a SMP nonpreemptively. It means that

3AMD denotes them wavefronts.
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all threads must terminate their work before another group is scheduled to that
SMP. The context switch of two groups on a SMP would be quite expensive and
unnecessary for most data parallel algorithms. On the other hand, there is no
way of creating a task synchronization primitive (e.g., a barrier) over all groups,
unless we can guarantee that all the groups are assigned to the SMPs and run-
ning. Otherwise, any such primitive would most certainly cause a deadlock of the
whole system.

2.2.3 Memory Structure

The GPU has much more complicated memory model than the CPU. A CPU
process perceives the memory as a single uniform space with linear addressing.
The GPU process has to deal with several types of memories with different address
spaces. Beside the host memory, which is not directly accessible from the kernel,
there are following memory spaces:

• a global memory,

• a constant memory,

• a local (shared) memory,

• and a private memory.

Each memory space has separate addressing, thus different type of pointers.
The kernel must explicitly declare the type of the address space when creating
a pointer and pointers of different address spaces are not compatible.

The memory spaces differ significantly in both size and latency. The memory
structure schema, including memory buses and caches, is depicted in Figure 2.7.

Figure 2.7: Structure of memory spaces on GPU

As we have already established in Section 2.2.1, the global memory is placed
independently on the GPU card. It is several gigabytes large and connected to
the GPU chip via an internal memory bus. This bus has a throughput several
times higher than QPI, HT, or the integrated memory controller of the CPU, but
we have to bear in mind that the GPU memory bus has to feed data to many
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more processing units. The throughput is achieved mainly by the width of the
bus, which has usually at least 256 bits.

The memory controller also connects the global memory with the PCI-Express
bus. When the host system wants to exchange data with a GPU device, the data
are stored to or loaded from the global memory. Fortunately, current global
memory controllers are capable of conducting data transfers to the host system
and to the GPU core chip simultaneously, so the memory transactions and the
computations can overlap.

The GPU chip is equipped with a transparent L2 cache (768 kB on Fermi)
which is shared amongst the SMPs. It caches data from the global memory to
reduce the number of data transactions on the external bus.

Each SMP has a small amount (64 kB) of integrated memory shared amongst
the cores. This memory is divided between the local memory4 and the transparent
L1 cache. The exact division can be configured, but we have usually used 48 kB
of local memory and 16 kB of cache.

The local memory is very important for code optimization. It is quite small,
but on the other hand it is almost as fast as the registers and it is accessible by
all the cores. If the code running on the SMP is optimized to use local memory
as manually managed cache or for shared intermediate results, it has significant
positive impact on the processing speed.

The private memory belongs exclusively to a single thread and corresponds
to the registers of a GPU core. In fact, the registers belong to the SMP (32k
of 32-bit words on Fermi) and they are allocated for the threads assigned to the
SMP to create an illusion that each thread has a processing core for itself and
avoid register saving/restoring when the warp is switched. If we use 512 threads
in the group (which is also the current maximum), each thread will only have
64 words of private memory. The compiler may attempt to avoid the problem
of limited private memory by spilling the private data to the L1 cache; however,
this comes with a serious performance hit due to the increase in memory traffic
and instruction count.

Finally, the constant memory is a small block of memory dedicated for im-
mutable data shared amongst the threads. It has very limited size (64 kB), but
since the data are constant, it can be cached very well, thus accessed quite fast.

2.2.4 Memory Performance Issues

There are two important issues concerning the architecture of the GPU memory
that strongly affect the performance:

• the global memory data transfers

• the local memory organization

Data transfers between the global memory and the GPU chip are performed
in transactions. Each transaction transfers an aligned data block of fixed size.

4NVIDIA designates this type of memory the shared memory. It is also used for texture
data in 3D graphic, thus it was formerly denoted the texture memory or the texture cache.
The term local memory comes from OpenCL specification, so we will hold to that to avoid
ambiguity with the algorithm descriptions.
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If the caching is turned on, each transaction transfers a cache line of 128 bytes.
The 128 B corresponds to 32 4-byte words, so if all the cores in the warp read
or write 4-byte words from within a 128 B aligned memory block, the data are
transferred in one transaction. If the memory access pattern is less coalesced, it
breaks down to multiple transactions, 32 in the worst case scenario.

The second issue is the organization of the local memory. The local memory
is usually accessed by all 32 cores at once so it must be designed for highly par-
allel access. Since one memory controller would present a significant bottleneck,
the memory is divided into 32 banks. Two consecutive 4-byte words are in two
consecutive banks (modulo the number of banks). Banks operate independently,
so if two threads access data in different banks, the operations are performed
concurrently. On the other hand, if two threads access data in the same bank,
their operations are serialized and the whole warp is delayed. In a special case
when multiple threads read exactly the same word from the local memory, the
memory controller broadcasts the value to the threads in one step. The banking
principle is depicted in Figure 2.8.

Figure 2.8: Threads accessing local memory randomly (on the left) and the broad-
cast optimization (on the right)

The issues described above lead to an optimization technique frequently em-
ployed in GPU programming. In most cases, the data should be organized as
a structure of arrays instead of an array of structures. We can demonstrate the
benefits on a simple study case.

Let us have a large number of 2D point pairs for which we want to compute
the Euclidean distance:

d(i, j) =
√

(xi − xj)2 + (yi − yj)2

On a CPU, we would organize the data as an array of structures, where each
structure contains the pair of 2D coordinates (values x1, y1 and x2, y2). This
practice is naturally embraced by the programmers as it is more comprehensible
in the code and the CPU will deal with it quite well. If we use this organization on
a GPU (assuming all values are 32 bit floats), we will create a few small problems.
In the following example, the variables are always denoted x1, y1, x2, and y2 even
though each thread is assigned its own set of these variables.

When a warp loads x1 values form the global memory, the data are stridden
since there is y1, x2, and y2 value between each two adjacent x1 values. This load
will result into four memory transactions instead of one. Thanks to the L2 and
L1 cache, the problem would not be so severe as the subsequent loads of y1, x2,
and y2 values will be performed from the cache.

If the input point coordinates are stored in the local memory (e.g., as an
intermediate result produced by the previous computational step), the situation
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gets much worse. When a warp accesses each variable, the values are spread
amongst 8 banks instead of 32. There are 4 threads competing for access to each
of these 8 banks, thus the whole process is slowed by the factor of four.

Figure 2.9: Data organized as an array of structures and structure of arrays

We can organize our data as a structure of arrays (the difference is depicted
in Figure 2.9). If we do so, the loading from the global memory will result in one
memory transaction per each variable, thus producing more stable workload. In
case of the local memory scenario, two consecutive x1 variables are in consecutive
banks, thus accessing them would not produce any bank conflicts.

2.2.5 GPU Programming

There are currently three frameworks that can be used for parallel GPGPU pro-
gramming – CUDA [36], AMD Accelerated Parallel Processing SDK [37], and
OpenCL [38]. The CUDA is a proprietary solution of the NVIDIA company and
it is working on NVIDIA hardware only. On the other hand it is well established
and quite easy to use, as it is designed solely for GPUs. The APP SDK (origi-
nally named Stream SDK or Close-to-Metal) is a proprietary solution for AMD
devices. The AMD solution arrived later than CUDA and it did not reach the
same popularity.

OpenCL, on the other hand, is a generic framework for parallel computing
designed by the Khronos consortium representing many large companies. It has
several implementations for GPUs (from NVIDIA, AMD, or Apple), so it can be
used with various devices from various vendors. Furthermore, it encompasses also
other parallel devices, such as multi-core CPUs, IBM Cell cards, etc. We have
used the OpenCL in most of our experiments since we prefer an open solution
to the private one. However, the algorithms and the optimization techniques
presented in this work can be applied for any CUDA or APP implementations as
well.

We briefly describe basic principles of the OpenCL framework as some of these
principles are quite important for the algorithm design. The framework itself has
two parts. On the host side, the OpenCL runtime provides an API with bindings
to various languages that allow programmer to detect parallel devices and use
them. For the devices themselves, the framework defines an OpenCL language,
which is a subset of C99 language for programming kernels, and a list of built-in
functions that must be implemented on the device (thread identification, atomic
operations, mathematical functions, etc.).
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OpenCL Runtime

The host-side libraries provide mechanisms to detect parallel devices and list
important information about them, such as the number of computational cores,
operating frequencies, or the amount of internal memory. When a parallel device
is detected, the OpenCL can compile kernels directly for it. Runtime compilation
produces much more efficient code, which is optimized for the target device. On
the other hand, the kernel compilation itself takes some time. It does not usually
bother us gravely as this time can be hidden in the start-up time of the parallel
application or in the initialization procedures like the SQL PREPARE statement.

The OpenCL also manages the memory of the parallel device. The memory
is allocated via memory objects. A memory object (buffer) is a logical entity
that represents a continuous block in the memory of the device. The user cannot
define, how or where the object is allocated as these details are implementation
specific. The OpenCL defines a set of functions for transferring data to and from
the buffers and the buffers can be assigned to kernel arguments in the form of
global memory pointers.

Figure 2.10: A model of OpenCL runtime entities

All operations performed on the device are issued through a command queue.
One or more command queues can be created for each detected device. The
most common commands are the read/write operations that manipulate data
in memory buffers and the kernel executions. The whole schema is depicted in
Figure 2.10.

Kernel Execution

When a kernel is executed, it is provided with a global work size and a local work
size. The global work size defines the total number of work items spawned, while
the local size specifies the number of items in a group. The work items directly
correspond to the threads and the work group is in fact the thread group on the
GPGPUs. All the work groups must have the same amount of threads, hence the
global work size must be divisible by the local work size.

The work items can be organized into one, two, or three dimensional space
and the global work size and the local work size values are specified for each di-
mension independently. The OpenCL language defines specific built-in functions
that allow the work item (the thread) to get the values of work sizes, the work
dimension, and the index of the item among the global work load and within the
work group.
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OpenCL Language

The OpenCL language is a subset of the C99 language [39] with some extensions.
The most important differences are:

• Each pointer has an additional type (global, local, or private) that defines
its address space (as we have already described in Section 2.2.3).

• The kernel cannot allocate memory. Private memory is assigned automati-
cally to local variables, local and global memory must be preallocated before
the kernel is executed.

• There is no stack. All function calls are inlined, recursion is not permitted.

• Fixed-size vector data types are introduced. Each basic type (like int

or float) has a corresponding vector type of length 2, 3, 4, 8, and 16
(e.g., uint4 is a vector of four unsigned integers). All basic arithmetic
operations defined for the scalar types are defined for the vector types as
well. These operations may be translated into fewer instructions if the
architecture supports them.

Finally, we have to keep in mind that items in a group can be executed in
SIMT or virtual-SIMT fashion. Therefore, an extensive usage of if-statements or
while-loops ought to be discouraged.
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3. Task Scheduling

In this chapter, we address several issues of the task scheduling. After a general
overview of the topic, we focus on two specific problems of scheduling – the
blocking tasks and the hybrid CPU-GPU tasks. We propose practical solutions
for these problems and evaluate their impact experimentally.

3.1 The Problem of Scheduling

Task scheduling is one of the most important issues in any parallel system. If
approached from a wrong direction, it has the ability to significantly hurt the
overall performance. It may also have a direct impact on other system attributes,
such as the utilization of processing units or the memory allocation, thus having
serious influence on the power consumption of the whole system.

From the general point of view, there are many qualitative aspects of a sched-
uler, especially:

• latency

• throughput

• fairness

• overhead

• scalability

• hardware utilization (which implies power consumption)

The importance of these aspects differs with each system. For instance, the
process (or thread) scheduler of an operating system is most concerned with
latency and fairness [23, 22], while the tasks scheduler of a parallel framework
for high performance computations [27, 40] requires high throughput and small
overhead.

As this topic is very broad, we need to narrow our span. This work focuses
on the computational parallel frameworks designed to process large datasets.
Therefore, we do not consider fairness nor latency, as we expect that all hardware
resources (CPUs, GPUs, . . . ) are allocated solely for the application at the time.
As we have restricted the domain of the problem, we can discuss some generic
attributes of the task schedulers designed for our purposes.

A scheduler should focus mainly on throughput and scalability. The through-
put defines the size of the data that can be processed at a unit of time or the
time required to solve a problem of a fixed size. The scalability reflects the over-
head and the limits of parallel processing. It helps us predict the future and
determine, how would the same application work on newer hardware with more
processing units. We also need to monitor hardware utilization closely since idle
computational units usually suggest some room for improvement.

Furthermore, a scheduler should be non-preemptive. Preemptive scheduling
assumes that we can suspend running tasks and resume suspended tasks, so
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we can execute more tasks than there are available processing units in a quasi-
parallel manner. Such execution may be beneficial for interactive applications,
where multiple processes need to interact with the user or with an external device.
On the other hand, the suspend/resume operations are quite expensive and they
do not help in case we need to wait for all the tasks to complete.

The problem of the uniform task scheduling has been investigated thoroughly.
We provide an overview of the related work in the following section (3.2). Our
contribution is divided into two parts. In Section 3.3, we address the problem of
blocking tasks that may disrupt the occupancy of available computational units.
Section 3.4 focuses on a special case of blocking tasks that raises in hybrid CPU-
GPU systems. The experimental evaluation of both solutions is presented in
Section 3.5.

3.2 Related Work

As the topic of task scheduling is quite broad, we divided our overview into
three sections. First, we revise the task scheduling in general (Section 3.2.1)
and establish basic principles of static and dynamic scheduling as well as the
problematics of hybrid CPU-GPU scheduling. In Section 3.2.2, we describe the
Intel Threading Building Blocks framework and its task scheduler. The TBB
offers one of the best schedulers for multi-core CPU systems as it implements
state-of-the-art methods and techniques. Finally, we present the Bobox system
[40, 41] (Section 3.2.3), a highly parallel framework for data processing being
developed at our departement. The Bobox aims at a more specific problem
domain, thus it can employ more optimizations than TBB.

3.2.1 Task Scheduling

Let us define the terms first. A task is a part of work performed by the program.
It comprises both code and data, i.e., the inputs and the algorithm that processes
the inputs. Tasks usually have some dependency constraints, which ensure that
a task cannot be scheduled before all its preceding tasks have finished. Tasks are
very flexible as they can be used to exploit various types of parallelism. We can
divide an algorithm to steps and let each task perform one step (thus achieving
a pipeline), generate multiple tasks with the same code that work on different
parts of the inputs (data parallelism), or even create a complex combination of
those types.

The term scheduling describes an algorithm that allocates computational units
and assigns tasks to them. Task scheduling is similar to the process scheduling
employed by the operating system [23, 22] to allocate computational resources for
running processes. Task scheduling is prefered to the process scheduling in data
processing frameworks as the tasks have much lower overhead than processes or
threads. It is also much faster to assign task to a worker thread than to switch
threads on a CPU core.
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Various Types of Scheduling

Even though we have restrained the boundaries of the scheduling problem, there
are still many variations [42, 43, 44] that depend on the additional assumption
we make about the tasks or the hardware and whether we have some external
constraints like hardware limitations or deadlines. We examine several such as-
sumptions and constraints to demonstrate various approaches to scheduling.

First, we can discuss the properties of the tasks being scheduled, especially
their creation and length estimations. If all tasks are known in advance and their
length can be estimated or even calculated with reasonable accuracy, a schedule
can be computed in advance. Finding an optimal schedule is basically a variation
of the knapsack problem [45, 46], which is a NP-hard problem [47]. Various
approximation algorithms exist, usually based on the greedy approach [48, 49].
Computing the schedule is rather expensive, so this approach is only optimal for
small numbers of long-lasting tasks.

The knapsack optimization (or its approximation) works fine until task de-
pendencies are added. With the dependencies, the tasks form a directed acyclic
graph (DAG) and they need to be scheduled with respect to the dependency satis-
faction constraints. This type of scheduling is usually solved by the Critical Path
Method [50]. The CPM identifies the longest path in the task graph and marks
tasks on this path as critical. Knowing the critical tasks helps the scheduling (as
we can, for instance, assign them to a better hardware), and can also be used in
some optimizations planing. This method is rarely used for task scheduling in
parallel systems, but it has its applications in project management.

Additional problems arise when deadlines are introduced to the system [51,
52]. We recognize soft deadline and hard deadline real-time systems. A soft
deadline denotes a deadline that can be missed, but such event should be as
rare as possible. Real-time processing of digital signals is a good example [53].
Hard deadline systems [54] are prohibited to miss any deadlines once they accept
a task. This approach is typical for mission critical systems, such as onboard
control systems of aircrafts, boats, or vehicles.

Even though there are many shades of grey in the realms of scheduling, our
choices are rather limited since the parallel and distributed systems for data
processing have quite specific properties. First of all, we usually cannot make
any assumptions about the tasks nor the hardware. The tasks are too short
and too diverse, so their computational time is hard to estimate with reasonable
margin of error. On the same note, the tasks are not all enumerated in advance
since their number may depend on the size of some intermediate result. Even
the number of the computational cores allocated for the framework may not be
constant as we show in Section 3.3.

From now on, we consider only systems with following properties.

• There are no assumptions about the length of the tasks and the tasks are
emerging on the fly.

• The tasks are processed by the worker threads while the dispatching cost is
very small.

• The tasks may have dependencies that enforce their processing order, but
no other constraints (e.g., deadlines) are applied.
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The Dynamic Approach

Previous methods could be called the static approach as they create the schedule
once and the tasks are executed according to that schedule [55]. When new
tasks emerge dynamically, this approach is becoming less efficient as we need to
reschedule the tasks from time to time and the scheduling itself takes significant
amount of time.

Another approach is to employ some kind of dynamic scheduling [56, 57, 58],
which deals with tasks and systems where properties are unpredictable or even
changing in time. The dynamic scheduling is expected to schedule tasks on the
best effort basis with as little overhead as possible.

There are several näıve ways how to implement dynamic approach. We can
hold a pool of tasks from where the tasks are dispatched to (or taken by) the
worker threads. Unfortunately, as the number of workers increase, the task pool
inevitably becomes a systemwide bottleneck. An opposite approach would be to
assign tasks to workers immediately, in a round robin fashion for instance. Such
algorithm would produce seriously imbalanced workloads and it would not deal
with some problems like the varying number of workers.

In order to avoid bottlenecks, imbalance of the workload, and excessive over-
head, the task pool must be split into multiple parts – usually as many as there
are workers, so each worker has its own pool. A load balancing protocol must be
employed to ensure that all workers have work to do while there are still tasks
to perform. One of the easiest methods, which has minimal overhead and very
good performance, is the task stealing technique. This technique is employed by
Threading Building Blocks [27, 28] and we describe it later in Section 3.2.2.

A more sophisticated approach is to perform task balancing every now and
then. In each balancing step, all tasks from all pools are taken and redistributed
evenly in the pools. We can perform such action periodically, under specific
conditions (like when serious imbalance is observed), or when one of the workers
runs out of tasks. Even though this method seems to be more prudent in planning,
it does not perform much better than task stealing and it has a significantly
greater overhead.

Hybrid CPU-GPU Scheduling

Scheduling principles described so far were designed mostly for symmetric mul-
tiprocessing systems or at least homogeneous systems. Emerging parallel archi-
tectures like GPGPU or Intel MIC are introducing heterogeneous platforms for
parallel computing. Such platform is usually equipped with multi-core CPU and
additional parallel devices connected to the host system. Scheduling in these sys-
tems brings new problems, such as additional communication or synchronization,
and a more complicated load balancing.

One of the first attempts to explore the problems of hybrid CPU-GPU task
scheduling was made by Wang et al. [59]. They have presented a collaborative
computing model to bridge the gap between the CPU and GPU utilization. Jablin
et al. presented a framework for an automatic management and optimization of
CPU-GPU communication [60]. This framework is designed to simplify the design
of GPGPU applications while optimizing data transfers between the host system
and the parallel device.
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A slightly broader view to the problem was presented by Jimenez et al. [61] as
they addressed the issue of sharing parallel devices among multiple users. Their
solution proposed a predictive scheduler that estimates demands of the users
based on the performance history. The work of Shirahata et al. [62] expanded
the problem of scheduling even further – to the realms of computational clusters.
Their solution is based on the MapReduce approach [63], but it utilizes GPU
devices in addition to multi-core CPUs.

Related work revised above focuses on specific problems of the hybrid schedul-
ing with slightly different objectives than we have. The closest solution we found
was the StarPU [64] framework, which is an unified runtime task scheduling sys-
tem for heterogeneous architectures. It evaluates a task graph and schedules
tasks on both CPUs and GPUs while it attempts to optimize data transfers and
communication. Unfortunately, the project aims strongly at user friendliness.
We needed a lower level of control in the task scheduling as our most important
objective is peak performance and we are willing to sacrifice some comfort in
order to achieve it.

3.2.2 Intel Threading Building Blocks Scheduler

The Intel Threading Building blocks library [27, 28] has already been introduced
in Section 2.1.3. In this section, we take a closer look on the TBB scheduler and
explain how it works in detail.

Task Graph

The scheduler executes a task graph. A task graph is a tree where tasks represent
vertices. Each task has one oriented edge pointing to its successor, except for
the root tasks that do not have any successors. Furthermore, each task has a
refcount variable that counts the number of other tasks which have this task as
a successor. When a task finishes, it automatically decrements the refcount of its
successor and when the refcount reaches zero, the task is inserted into the ready
pool to be scheduled. As will be shown later, the refcounts need not correspond
directly to the number of incoming edges in the task graph.

We can define a depth of a task as follows. The root tasks have depth equal
to zero. Every other task has the depth of their successor plus one. In the
first implementation of TBB (version 2.x), the depth was also stored in the task
structure along with the refcount and the reference to the successor. The current
TBB version has the scheduler streamlined so the depth is no longer necessary,
but we still define it, so we can describe and compare both versions later.

The task graph changes dynamically as new tasks are being created. The
whole idea stands on a simple fact that tasks can spawn other tasks, thus the
creation itself can run in parallel. The dynamic task creation could also have
a significantly smaller memory usage. Furthermore, the system can process even
problems that cannot be easily measured and divided into tasks in advance.

Figure 3.1 captures an example of a task graph. Tasks A, B, andD are already
allocated, but they are waiting for their children to finish. Tasks C, E, F , and G
are ready to run or running, depending on how many threads are available. The
grey tasks (H, . . . , N) have not yet been spawned and they only illustrate, how
will the computation continue.

29



Figure 3.1: An example of a task graph

When a task spawns its children, there are two ways how to process them and
how the graph will unfold:

• depth-first

• or breadth-first.

The depth-first traversal is ideal for a serial execution. It has the lowest
memory consumption (assuming the graph is finite), because only one branch is
unfolded at any given time. It also makes the best use of CPU caches since the
most recently created task is also likely to be the hottest in the cache. The depth-
first approach is depicted in Figure 3.1, where the leftmost branch has been fully
unfolded. On the other hand, the breadth-first approach unfolds the graph in the
quickest possible way, thus providing the greatest potential for parallelization.

Thread Pool

The tasks are processed by threads in the thread pool. By default, the TBB
framework creates as many threads as there are logical CPU cores (i.e., it exploits
hyper-threading as well). More precisely, it creates one less worker threads than
there are CPU cores so that the main thread still has its own core. This way, the
main thread can do other work while the workers are processing tasks and when
the main thread tries to wait for the workers, it may become a worker too, so it
helps the workers to finish the tasks.

Each thread has its own double ended queue (deque) for the tasks. We denote
the ends of the queue the top and the bottom. When a new task is spawned by a
thread, it is pushed to the bottom of the deque. Hence, the oldest task is at the
top and the youngest is at the bottom. When a thread finishes a task, it needs
to find another task to execute. It does so by application of following rules:
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1. The finishing task can yield a reference to another task which should be
executed next. This is actually called a scheduler bypass as it allows the
programmer to interfere with the regular scheduling mechanisms.

2. If the task deque is not empty, a task is popped from the bottom and
executed. As we mentioned before, new tasks are pushed to the bottom, so
this case corresponds to the depth-first traversal of the graph.

3. If the deque is empty, the thread attempts to steal a task from the top of the
deque of a random thread. That corresponds to the breadth-first unfolding
of the graph. If the stealing fails, the thread attempts to steal again until
it succeeds1.

We can summarize this strategy as depth-first work and breadth-first theft.
It makes each thread proceed to the depth, thus better utilizing the caches and
reducing memory demands, but it simultaneously allows occasional breadth ex-
pansions to occupy all the workers.

Figure 3.2: A thread pool of worker threads

The older version of the scheduler used a more elaborated pool of ready tasks.
The pool comprised an array of lists. The array was subscripted by the depth
of the task and the lists were treated as stacks. When a task was spawned, it
was inserted into the front of the list in the corresponding depth. The rules for
getting tasks out of the pool were very similar to the rules described above. The
thread took the first task in the deepest occupied list of its pool, or it attempted
to steal the first task of the shallowest list of a random thread.

We can observe, that if the depth of a task is determined as the depth of
its parent plus one, the tasks in the deque are in fact ordered by their depths
(shallowest at the top and deepest at the bottom). Hence, the current scheduler,
which employs simple deques, works as fine as the older scheduler, but it managed
to save some memory by omitting the depth values from the tasks.

Task Programming Patterns

Before we explore the most common programming patterns for the task scheduler,
we need to clarify, how the tasks are planned (i.e., how they get into the deque of
the ready tasks). There are three ways, how the task may enter the ready pool:

• A task is spawned explicitly when its parent task (or the main thread)
invokes the spawn method of the Threading Building Blocks API.

1Our description was taken from the TBB documentation [28]. However, we have observed
that additional optimizations were implemented since the worker threads are suspended in case
there are not enough tasks in the whole system.
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• When a task has been marked for reexecution, it is re-enqueued on termi-
nation.

• The refcount of a task is decremented every time one of the tasks referring
to it terminates. A task is enqueued for execution when this counter reaches
zero.

The easiest pattern for spawning children is the blocking style, which is de-
picted in Figure 3.3. It corresponds to the standard recursive implementation of
the divide and conquer paradigm. The parent task spawns its children and waits
for them to terminate by calling the spawn and wait method. This method al-
so ensures, that the worker thread being used by the parent task is temporarily
vacated, so it can process the child tasks. The state of the parent task remains
intact and it can easily resume when the method returns.

Figure 3.3: Spawning child tasks in the blocking style

Before the parent task spawns its children, it must update its refcount correct-
ly. We need to ensure that the task is not reentered automatically to the ready
pool, as it would be executed again from the beginning instead of being resumed
form the waiting method. The refcount has to be set to k+1 in case k children are
spawned. The ”+1” guard ensures that the task will not get reexecuted. After
all k child tasks terminate and the refcount is decremented k times, it remains
1. Thus, it never reaches zero and the task is not reentered to the ready pool.
Instead, the termination of all the children causes the spawning method to return,
and the parent task resumes its work.

Though the blocking style is quite convenient for the programmer, it has some
opportunities for improvement. The most tedious is that the parent task keeps
its state on the call stack. Furthermore, the parent task cannot be stolen from
its thread since it is considered to be running. We can use the continuation style
to deal with these problems.

The continuation style is depicted in Figure 3.4. The parent task creates
child tasks and also a continuation task. The continuation task is the successor
of all child tasks and its refcount is set to the number of children. Hence, it is
automatically enqueued to the ready pool when all the children terminate. The
parent task transfers its state to the continuation task, so the continuation can
pick up where the parent task finished. After spawning all the children, the parent
task terminates, thus it vacates the call stack.

The continuation style works better with the scheduler as it splits the original
work of the parent task into two tasks. The continuation task can be treated
separately, even get stolen by another thread. On the other hand, it is usually
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Figure 3.4: Spawning child tasks and their continuation task

more difficult to use as the programmer is responsible for transferring the state
of the parent to the continuation task. To optimize further, we can recycle the
parent task as the continuation task in some cases. If we do so, we save some
memory allocation and data copying.

3.2.3 The Bobox System

Bobox [40, 41] is a highly parallel framework designed specifically for the needs of
the database management systems or similar systems that query or process large
amounts of data. It works on common CPU symmetric multiprocessors, thus it
can be used with current personal computers or NUMA servers.

One of the main objectives is to make the system easy to use. Pieces of code
that are written by the programmer are always executed in serial and they are
designed not to interfere with each other. Therefore, the programmer needs to
focus on the semantics of the problem, not the parallelization details like the
scheduling, the synchronization, or the deadlock avoidance. We also believe that
most of the user-defined functions (like sorting or joining) can be written in
a generic way, so there is a high potential for code reusability.

So far, the Bobox framework was used for several applications. One of the
most important is a SPARQL evaluation system [65, 66] that processes RDF data
[67]. It has also been used for querying semi-structured data (XML) by the means
of the XQuery language [68] and its TriQuery extension [69].

Bobox Fundamentals

The Bobox approach to parallelism is based on the ideas of nonlinear pipelines
and concurrent data streams processing. The framework processes one or more
models. A model (depicted in Figure 3.5) is a directed graph with boxes as vertices
and edges that specify the connections between outputs and inputs of the boxes.
The boxes are independent operators that process the data. The code of each box
is executed serially, which is convenient for the programmer, but the boxes are
planed by multiple threads, thus they can run in parallel. Data are transmitted
along the edges as packages called the envelopes and the system ensures that
these transfers are thread safe.

A box is an object with an internal state and one processing method. It
can also have an arbitrary number of inputs and outputs, while the inputs and
outputs are perfectly paired in the model. When the processing method of the
box is executed, it usually consumes the input envelopes and creates some output
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Figure 3.5: Bobox model example

envelopes. It can also modify the internal state of the box. Inputs and outputs
are buffered and the framework ensures the envelopes are transferred from the
output buffers to the connected input buffers automatically and in a thread-safe
way.

The graph contains at least one box that generates data. These initial boxes
usually do not have an input, but they generate or load the data (e.g., from
a persistent storage). Analogically, there is at least one box that usually does not
have any outputs and it consumes the data. These sink boxes are programmed
to save the results back to the persistent storage or yield them to a Bobox user.

The envelope is basically a data table (an array of records), but the data are
organized in a column-oriented manner (i.e., as a structure of arrays). Each input
and output has a descriptor that defines the number and types of columns of the
envelope they can receive or send respectively. A connection can be made only
between an input and an output with the same envelope descriptors.

The column-oriented organization of the envelopes was originally designed so
the system may benefit from the SIMD instructions of the CPU. Another reason
was that we can copy the entire columns between envelopes just by passing on
pointers in case some of them do not change. Finally, this data representation is
suitable for other highly parallel systems, such as GPGPUs.

Top-level Architecture

The architecture of Bobox is depicted in Figure 3.6. It demonstrates the usage of
the Bobox as a part of a database management system, which is what the Bobox
is designed to do in the first place. The system receives queries, processes them,
and yields their results. Multiple queries can be processed simultaneously.

The query is parsed by a frontend, which is basically a compiler. The frontend
compiles the query and issues a new request to the system. A request is just
a logical concept that helps us differentiate tasks that process separate queries
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Figure 3.6: The Bobox architecture

and correctly match computed results to the original query when the work is
completed.

The request is represented by an execution plan. The execution plan is a for-
mal description of a model (depicted in Figure 3.5) and it is handed to the Bobox
runtime. The runtime instantiates the execution plan and creates a correspond-
ing model. The model is yielded to the task scheduler along with an initial task
and the scheduler starts processing the model.

Bobox Scheduler

The most essential and the most interesting part of the Bobox framework is its
scheduler. It is inspired by the TBB scheduler, but it is adapted for more specific
tasks produced by the models and it is better optimized for cache usage and
NUMA systems [70].

The Bobox scheduler (depicted in Figure 3.7) uses a thread pool which has
the same number of threads as there are logical CPU cores available. Each thread
is aware of its location within the CPU hierarchy – i.e., on which logical core,
physical core, and NUMA node it runs.

Figure 3.7: The Bobox scheduler design

Many principles of the scheduler are similar to the TBB scheduler, so we
focus mainly on the differences. The tasks for the scheduler are in fact planned
executions of the box processing methods. A box is never scheduled by multiple
threads since the code in the box method is not expected to be reentrant.
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Each task is tagged by the request id, which also defines the model where the
box belongs to. Request ids are generated sequentially, so we can easily recognize
younger and older requests. The basic strategy of the scheduler is to keep all
the tasks of one request on one NUMA node, but not to reduce parallelism if the
number of requests is low. Each request is assigned to one node at the beginning.
A load balancer monitors utilization of all nodes and reassigns the requests or
makes them shared when necessary.

There are three types of task queues in the system. Initial tasks of new
requests are placed in one global queue. Each NUMA node has a list of requests
the node is working on and each of them has a request queue of tasks. Finally,
each thread has a local double-ended queue like the TBB worker threads.

The tasks for the scheduler are not spawned directly like in TBB. Instead, each
box may notify the scheduler that it wants to be scheduled on some important
event, usually when an input envelope arrives or some space is vacated in the
output buffer. The scheduler plans the task automatically, when such event
occurs. An execution of the processing method of the box usually spawns some
other tasks. The box may be rescheduled if it has some unprocessed input and
adjacent boxes connected to the output may be scheduled if some envelopes are
generated.

In most cases, it is better when the following boxes are scheduled immediately
and on the same core, as their input envelopes were just generated and there is a
good chance they are still hot in the cache. On the other hand the box which just
finished need not run again immediately, as the state of the box is often quite
small in comparison to the size of the envelopes. To deal with these priorities, we
distinguish immediate tasks and regular tasks. The immediate tasks are pushed
to the bottom of the local task deque of the thread, and they are treated like in
the TBB. The regular tasks are pushed to the request task queue of the NUMA
node.

The task stealing technique is employed in a similar manner as in the TBB
with only minor modifications. Since the threads are aware of their location and
the location of other threads, they try to steal from their closes threads first.
That means an idle thread tries to rob its hyper-threading buddy first, then it
tries to steal from threads that share some caches with its processor core, and
finally it tries the remaining cores. The basic task stealing is restricted to one
NUMA node.

When the basic task stealing fails, the thread takes the first task of the request
task queue of the oldest task being processed by the current NUMA node. If there
are no remaining tasks in the request queues, an initial task of a new request is
taken from the global queue and this request is assigned to the NUMA node.
In case there are no new request to be processed, the thread is suspended until
the load balancer reassigns some requests to the node or until some new work
emerges.

3.3 Blocking Tasks

Most of the parallel frameworks are designed to process computational tasks.
That means each task is expected to utilize its processing unit to the best of the
hardware abilities. On the other hand, complex systems sometimes require block-
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ing operations2 to be performed, such as I/O transactions to a persistent storage
device or a communication with peer nodes in a computational cluster. If such
operations are performed in regular tasks, it may lead to a serious underutilization
of computational units.

We stated that the tasks are scheduled to worker threads non-preemptively.
That means, once the task is taken by the worker, it cannot be interrupted or
forcibly replaced by another task. When a blocking operation is executed within
a task, the assigned worker thread is suspended by the operating system until
the operation is resolved. If the worker pool contains exactly the same amount
of threads as there are available cores (which is quite common case), one of the
cores becomes idle even though it is capable of processing another task.

There are several solutions to this situation. We begin with revising some
näıve solutions and follow by presenting our solution implemented in the Bobox
system.

3.3.1 Näıve Solutions

First idea would be to increase the number of threads in the worker pool, so the
system has at least as many running threads as CPUs even if some of the treads
get suspended by the blocking operations. This solution would not require any
modifications to the scheduler nor the tasks. On the other hand, this thread
oversubscription creates additional work for the scheduler of the operating sys-
tem, as it has to switch these threads on available cores evenly. The context
switching of the threads has some overhead and it causes a measurable drop in
the performance.

We can choose to create the substitute threads on demand to avoid their
oversubscription. When a task needs to perform a blocking operation, it must
create a new thread and insert it into the worker pool as a replacement. Then it
enters the blocking operation and the newly created thread takes over the task
processing. Unfortunately, a problematic situation arises when the blocking op-
eration terminates and the task wants to resume the computational operations.
It must somehow synchronize the entire pool, wait for one of the threads to ter-
minate, and remove it from the pool. Furthermore, the creation and destruction
of a thread is a quite costly operation and it should be avoided when possible.

Another possible solution would be to divide tasks into two groups – the
computational tasks and the blocking task. Each group has its own thread pool
to process the tasks. The computational thread pool has exactly one worker per
available core. The blocking thread pool can have an arbitrary number of threads.
We can choose its size based on how many blocking operation we would like to
run in parallel, or we can design the pool to grow automatically when needed.

This approach works quite fine, but it is not very convenient for the program-
mer. The programmer must design the tasks to fall exactly to the computational
group or the blocking group. Any heterogeneous task that would contain a se-
quence of blocking and computational operations must be divided into multiple
tasks and the corresponding dependencies must be created so that these tasks
are indeed executed sequentially.

2The blocking operations and blocking tasks in this section do not have anything to do with
blocking style task programming described in TBB task programming patterns.
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3.3.2 The Bobox Solution

We have described some of the direct approaches to the problem and their weak-
nesses. Our proposed solution tries to take the best of these methods while
avoiding the problematic parts. Let us summarize what we have learned so far.

• In an ideal case, the number of threads executing regular tasks should be
equal to the number of CPU cores. Less threads cause hardware under-
utilization, while more threads increase the overhead of context switching
employed by the process scheduler of the operating system.

• The operating system scheduler and the principle of blocking operations
cannot be easily modified or bypassed, so a replacement worker thread
must be dispatched when a task performs a blocking operation.

• Repetitive creation/destruction of threads needs to be avoided as it is a cost-
ly operation. Thread pool should be used for both regular and replacement
workers.

• The programming model needs to be sufficiently convenient for the user,
otherwise it will not be used.

• The number of blocking operations running simultaneously (especially the
disk I/O transactions) needs to be limited in some cases. Such limit should
not collide with the ability to process regular tasks.

Attach/Detach Principle

Bobox uses two thread pools. A pool of worker threads that process the tasks
and a pool of suspended backup threads which can be quickly resumed and added
to the worker pool. The size of the worker pool is determined by the number of
available CPU cores. The number of threads in the backup pool specifies, how
many blocking operations can be pending simultaneously.

Two new functions are introduced in the API: attach and detach. These
functions allow the programmer of a task to manipulate the number of worker
threads in the system. The detach function should be called immediately before
the blocking operation is invoked and the attach function needs to be called
right after the blocking operation terminates. If used properly, there should be
one active worker thread per available CPU core at almost all times.

When detach is called, the system resumes one of the backup threads and
inserts it into the worker pool. The blocking operation can be invoked after that,
so the current thread is in fact suspended and the resumed thread takes over in
the computational work.

If there are no more backup threads, we need to delay the blocking operation
but we also do not wish to reduce the number of working threads since there might
be plenty computational tasks waiting to be processed. Therefore, the blocking
task is suspended in the detach call and removed from the worker thread3.

3We use fibers [71] on top of regular threads in order to manipulate their workload in user
space.
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The suspended task is placed into a queue designated for detached tasks where
it waits until one of the backup workers becomes available. Though we have
claimed that the tasks are always non-preemptive, an exception is made in the
case of the detach call.

When attach is called, it notifies the scheduler that the size of the worker
pool needs to be reduced by one and it immediately suspends the thread. The
thread remains suspended until one of the running tasks finishes. The thread
that was processing that task is removed from the worker pool, suspended, and
inserted into the backup pool. After that the thread suspended in the attach

call is resumed and it can continue with its task.
Additionally, when a worker thread is being suspended and moved from the

worker pool to the backup pool, the detached tasks queue is checked. If the
queue is not empty, the thread is not removed, but it takes a detached task from
the queue and resumes it. The task is expected to execute a blocking operation
immediately after it is resumed, so the thread gets suspended again.

Possible Improvements

There are a few possible improvements to this solution, but we have not imple-
mented nor tested them yet. First is an automatic attach/detach invocation.
There are two possibilities, how to achieve this. We can design an API for all
blocking operations and encourage the programmer to direct all blocking calls
via this API. Every blocking call through this API automatically invokes detach
at the beginning and attach at the end. The second possibility is to perform
a statical analysis of the code at the compilation time in order to identify the
blocking operations and wrap them correctly with detach-attach calls. Such so-
lution would be even more convenient for the programmer; however, it is based
on the assumption we can identify all blocking tasks by the code analysis.

The experimental results suggest that, different types of blocking operations
may lead to different behaviour. More elaborate analysis of various types of such
operations is in order. It might be beneficial to treat different types differently.

3.4 Hybrid CPU-GPU Scheduling

If the scheduling problem is expanded to the hybrid CPU-GPU systems, several
additional problems rise. To achieve the best performance, both CPU and GPU
has to be utilized optimally. The situation gets rather complicated, since the
GPU tasks (i.e., kernel execution and memory transfers) have to be issued from
the host system, hence they require some CPU time as well.

Theoretically, this problem should be taken care of by the GPGPU program-
ming libraries like OpenCL. Unfortunately, the OpenCL implementation provid-
ed by NVIDIA, which we had at our disposal, is quite conservative and does not
exploit all the possibilities the standard offers. We have observed that it under-
utilizes hardware resources even in situations, when there is no apparent reason
for any restrictions. For instance, when independent kernel execution and buffer
transfer operations are issued into one command queue, they are performed se-
rially even in case the queue is marked out of order, thus capable of executing
operations in parallel.
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Finally, we need to point out that the data are packed into the GPU buffers
and the GPU device has much more limited memory space than the host system.
The data transfers between the CPU and the GPU usually require some additional
data operation like gathering relevant data from host memory into compacted
form for the GPU or scattering the results from the compacted form back to
host memory. Sometimes, it is also necessary to reorganize the data, e.g., from
an array of structures to a structure of arrays as demonstrated in Section 2.2.4.
These transfers require significant amount of CPU time and they can delay the
GPU tasks if not handled properly.

We have designed a task dispatching framework that deals with these kinds
of problems and helps us develop GPGPU applications much more conveniently.
The framework is built on top of the OpenCL and TBB primitives and it can be
easily combined with the TBB library or the Bobox framework. It has been used
in every our prototype implementation and it performed flawlessly.

3.4.1 OpenCL Framework

As our framework is built on top of the OpenCL framework [38], a brief revision
of the key principles of OpenCL is in order. The API that OpenCL provides is
quite simple and easy to use. The host program can detect parallel devices that
support OpenCL, enumerate them, and retrieve basic information about them.
There are three most important things we can do with a parallel device:

• allocate and managed memory buffers,

• compile kernels,

• and execute kernels in parallel.

Command Queues

Parallel device operations are controlled via command queues. A command queue
is an OpenCL object, which is attached to exactly one parallel device, but one de-
vice can have arbitrary number of queues attached to it. The API provides queue
functions to issue memory buffer read/write transactions and to commence kernel
executions. All these operations can be either blocking (the calling thread is sus-
pended until the operation concludes), or nonblocking. Nonblocking operations
are working asynchronously and the API provides barriers, events, and waiting
operations for synchronization.

Each command queue can be either in-order (which is the default), or out-of-
order. The in-order queues perform their operations in the exact same order, as
they were issued by the main thread. The out-of-order queues can reorganize the
operations (except for the synchronization markers and barriers), or even execute
them in parallel when possible. Operations in two concurrent queues attached
to the same device do not have a well defined order and they can be executed in
parallel as well.

The NVIDIA GPU devices with compute capability 2.0 and higher are equipped
with two memory controllers, so they should be able to overlap host-device trans-
actions with kernel execution. This overlapping is often quite important for the
overall performance. Unfortunately, we were unable to achieve this effect using
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the out-of-order queues, even though the OpenCL specification allows it. There-
fore, we have used only the in-order queues and attempted to achieve parallelism
by other means.

Memory Management

Another important issue is the management of memory of the parallel devices.
The OpenCL provides a mechanism for allocating buffers, which are accessible
both by the host system and by the parallel device. A buffer is a continuous block
of memory that is placed in the device if possible. It can be marked with several
flags that configure basic properties, like whether the buffer can be read or written
by a kernel. Even though these flags allows us to control some attributes, most
buffer properties remain implementation defined. For instance, we cannot ensure
that all allocated buffers are really present at the device, since the framework
may swap them to the host memory when necessary4.

There are two basic ways how to manipulate data in buffers from the host side.
We can issue a read or write operation to the command queue. The command
queue has to be attached to the same device where the buffer resides and another
buffer must be provided in the host memory. Then the data are transferred from
the host buffer to the device buffer in case of a write or from device buffer to
host buffer in case of a read. The second option is to map the buffer to the
host memory space. In that case, the host application will get a pointer to the
beginning of the buffer and all standard memory operations are transparently
synchronized.

Kernels

Finally, we need to address the kernel issues. The kernel is usually provided in
source code form, so it needs to be compiled first. We can list the parallel devices
for which the compilation is performed and the OpenCL framework automatically
shield us from the fact that there may be multiple binaries of the same kernel in
the system. The appropriate kernel binary is selected when the kernel is being
executed.

Before a kernel is executed, its arguments must be assigned. Pointers to
the global memory can be assigned to the memory buffers. Pointers to the local
memory can be provided with a size value. A memory block of this size is allocated
in the local memory and set to the pointer argument when the kernel is executed.
Constant values are assigned to the remaining (private) arguments.

Execution of the kernel is issued via the command queue. The kernel identifier
is provided along with the number of threads (and the dimensions for the thread
IDs) and how many threads are in one group. We have described the thread
spawning and the execution process thoroughly in Section 2.2.

3.4.2 Model Case Study

In order to understand the design of our framework, we have performed a model
case study to analyse the problems and to gather the requirements for the frame-

4Actually, the newest OpenCL standard (1.2) added some support for the buffer migration,
but it still remains mostly under the control of the framework.
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work. We do not cover every conceivable scenario, but rather describe some of the
problems encountered during the design of various types of GPGPU applications
[12, 13, 72]. Each of the following models describes a possible use case of the
framework.

Model Cases

• The most simple case is using a single GPU task. This scenario is possible
only if all input, intermediate, and output data fit in the GPU memory.
Multiple simple tasks may overlap or even run concurrently on separate
GPU devices, but they solve different problems, thus they are completely
independent from the CPU-GPU cooperation point of view.

• If the data of the GPU task do not fit the GPU memory, or they are
being streamed, multiple GPU tasks are required. In this iterative case, the
data are divided into blocks and all the blocks are processed by the same
algorithm (GPU kernel).

• The GPU algorithm might require some data structures which are persistent
in the GPU memory (e.g., a precomputed read-only lookup table or inter-
mediate results that are updated by multiple GPU tasks). We designate
this case the incremental case.

Observations

We have implemented all the model cases in the most direct way and tested them
in various combinations and settings using profiling techniques. The implemen-
tation used the OpenCL framework with out-of-order command queues and one
main thread on the CPU. The main thread was used for dispatching commands to
the GPU and control the data transfers. Following problems have been identified
as the result of our experiments:

• There is a fragile balance between the CPU and GPU workloads. In many
situations the CPU was waiting for the GPU and vice versa. The problem
escalates significantly when multiple GPUs are employed in the system.

• The data transfers are especially problematic as they take considerable time
and stall both the CPU and the GPU. The data transfers need to overlap
with GPU computations, in order to reduce their effect on the performance.

• The data transfers are most efficient if aggregated in only a few bulk trans-
actions. Unfortunately, the data gather operations that compact the input
data in one block and the scatter operations that process the results of
a GPU task take approximately the same time as the transfers themselves.

• Allocation and deallocation of the GPU memory is also bound with nontriv-
ial overhead. It might be beneficial to reuse the allocated buffers, especially
in the iterative case.
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Multi-GPU Systems

We must also consider all model cases from the perspective of the multi-GPU
systems. The simple case scenario is best suited for a single-GPU system; howev-
er, we can still benefit from having multiple GPUs if there are more subproblems
to be solved by separate simple tasks. Otherwise, we can divide a simple GPU
task into multiple tasks and use the iterative method to occupy more GPUs if
the task is truly data parallel.

The iterative case scales almost ideally with the number of GPU devices avail-
able. We assume only that there are more GPU tasks than GPUs. If not, the size
of the data blocks must be reduced so that more tasks are spawned. Finally, the
incremental case has to use data replication so that the required data structures
are copied to every GPU. This can be done only during the initialization stage in
case of read-only lookup tables, or it must be performed on regular basis, if the
data are mutable.

3.4.3 Framework Design

We have designed our framework as a flexible module which can be combined
with various parallel libraries for multicore CPUs. The integration possibilities
are described at the end of this section. The framework has two parts – a GPU
wrapper that provides more suitable access to the OpenCL API with some addi-
tional features and a feeding thread pool of CPU threads. The overall design is
depicted in Figure 3.8.

Figure 3.8: The design of the GPU task dispatching framework

The feeding thread pool plays a similar role to the backup threads. It han-
dles asynchronous operations of the GPUs and related data transfer issues. The
OpenCL wrapper was designed for several reasons. Most importantly, it automa-
tizes certain routine operations (like kernel compilation) to reduce programmers
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work and it provides better means for binding the GPU devices with the feeding
threads.

The GPU Wrapper

The wrapper is an object oriented API built on the top of the OpenCL runtime.
It manages devices, memory buffers, and kernels. It is encapsulated in a singleton
object, which is also a container for other objects. Each detected device in the
system is handled by a device manager object which provides the API to work
with the device and manages the necessary OpenCL structures (handles, context,
etc.).

Each device manager is equiped with one or more end points. An end point is
a logical structure that holds one command queue. Multiple end points may be
attached to one device, so a concurrent execution of operations can be achieved
– especially, overlapping the kernel execution and the data transfers.

The end points are also responsible for managing memory buffers. We recog-
nize three types of buffers:

• Anonymous buffers, which are allocated for individual GPU tasks and that
belong exclusively to a single end point. They are most suitable for the
simple cases, when the buffer is used only once.

• Replicated buffers are allocated and registered under a name during the
initialization phase. They are allocated through the device manager, which
ensures that each end point allocates its own buffer. Hence, the GPU
tasks can use any end point with the same functionality. These buffers are
designed especially for the iterative cases.

• Shared buffers are similar to the replicated buffers, but only one instance is
allocated by the device manager and it is shared by the end points. They
are designed for the incremental cases, or as read-only data buffers. Note
that the shared buffers do not ensure data replication/sharing among mul-
tiple devices. Every iterative case we have examined so far uses a different
approach to replication (if any) and we have not found any uniform tech-
nique that would cover at least some of these situations both effectively and
efficiently.

The wrapper also provides some additional support for kernels. The kernel
compilation is rather runtime work, and it can get quite tedious if the programmer
correctly checks all the API calls. A support for loading kernels from external
text files was also added, so the kernel code can be outsourced to separate files.

The OpenCL API addresses kernel arguments by their position in the kernel
header declaration. The wrapper extends this possibility by attaching names to
the arguments, so they can be found more easily. It also automatically assigns
named (replicated and shared) buffers to the kernel arguments of the same name.

The Feeding Thread Pool

The feeding threads were introduced to the framework in order to reduce the
amount of time the GPU spends waiting for the input data from the CPU. They
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are handling the CPU part of the GPU task, which usually consists of gath-
er/scatter routines and the host-device data transfers. The tasks are dispatched
to the pool by one input queue. Completed tasks are stored into an output queue,
which can be accessed by the remaining parts of the system, usually the main
thread of the application. Both queues are thread-safe and blocking, thus they
easily synchronizes the feeding threads. We did not use more elaborate techniques
like task stealing for several reasons:

• This design is much simpler for implementation and for the programmer.

• The GPU tasks do not spawn another tasks, hence all tasks are issued from
outside of the framework.

• The locking overhead of the queue is negligible in comparison to the execu-
tion time of the GPU tasks.

• The scalability is not an important issue since the number of feeding threads
is proportional to the number of GPU devices and it is unlikely we will
be able to squeeze more than 8 GPU devices into the conventional server
computers.

The mapping between the feeding threads and the GPU end points is not
hardwired in the framework. We can choose different approaches for different
applications. One end point is always mapped to one feeding thread, but each
thread may administer an arbitrary number of end points. The feeding thread
dispatches incoming GPU tasks to associated end points in the round-robin style.
In common cases, we have used the thread-per-end-point and the thread-per-device
mappings.

The concept of a feeding pool was designed under the assumption that there
are always more CPU cores than feeding threads. We have observed that there
is no reason to have more than two end points per a GPU in normal situations,
thus a four-GPU system requires at most 8 feeding threads. Mainstream CPUs
have 12 logical cores at present time and multiprocessor NUMA servers are quite
common. For these reasons we advocate that our assumption holds for the current
mainstream hardware.

Integrating with Other Parallel Libraries

If the majority of the work is performed on the GPU, our framework can be used
with only single main thread. The main thread may influence the scheduling up
to a certain level by issuing the tasks to the input queue and waiting for them to
complete. This way it may control the dependencies between the tasks or their
priorities.

Since the input and output queues are thread safe, the GPU scheduler may be
used in combination with any other parallel framework such as TBB, OpenMP,
or Bobox. Parallel frameworks usually create as many threads as there are CPU
cores available. Such situation is not optimal, because when the worker thread
pool is combined with the feeding thread pool, the system ends with more threads
than CPU cores. The operating system has to schedule these threads as evenly
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as possible, so the feeding threads get delayed by the workers and the GPUs get
stalled.

Some of the libraries allow to configure the number of working threads, even
to change it dynamically during the execution. If so, we can modify the size
of the worker thread pool based on the number of the feeding threads, or even
dynamically based on the number of the feeding threads that are currently busy.

We have considered combining the GPU framework with the Bobox system
using the same attach/detach mechanism since the GPU tasks are in fact block-
ing operations from the CPU point of view. Unfortunately, the GPU tasks are
rather complex and the OpenCL library uses a quite significant amount of CPU
time which we cannot control. Every time we tried to decrease the priority or the
number of the feeding threads, the overall performance had reduced significantly.
It is our conclusion that the feeding pool must be treated with the highest pri-
ority and any other thread pool should utilize the CPUs only when they are not
required by the feeding pool.

Our current implementation of the GPU scheduler operates with one input
and one output task queue. It would be trivial to modify it to use multiple in-
put/output queue pairs, so that multiple independent parts of the system may
easily interoperate with our GPU scheduler. We are also exploring other pos-
sibilities of integration with the Bobox system and additional experiments are
planned for future work.

3.5 Experimental Evaluation

The experiments focus on the empirical evaluation of two major contributions
proposed in this chapter. After introducing the technical details, such as our
hardware and methodology of measurement, we present the experiments proving
that the attach/detach principle proposed for blocking operations in the Bobox
system has a positive impact on the performance. The second half of the experi-
mental section is dedicated to the performance evaluation of our GPU framework
for hybrid scheduling.

3.5.1 Hardware and Methodology

The following experiments are oriented on performance, so the system real-time
clock was used to measure the time required to complete each test. We realize
that these times are strongly dependant on the hardware, the compiler used,
and the implementation details. However, we have tried to maintain the same
conditions for all related tests and we are mainly interested in the relative speedup
rather than absolute time values. In case of the GPU framework, we have also
measured GPU occupancy using the NVIDIA GPU profiler. The profiler times
were compared with real times to verify that the profiler did not taint the results
significantly.

The first set of Bobox experiments were performed on a Dell server with
two Xeon E5310 processors, four physical cores running at 1.6 GHz each. The
server was equipped with 8 GB RAM and two local 73 GB HDDs (spinning at
15, 000 rpm) connected in RAID 1. Red Hat Enterprise Linux 6.3 was used as
the operating system on the server.
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To demonstrate certain aspects of HDD controllers and I/O planning in op-
erating systems, the second set of tests was performed on commodity personal
computer. The PC was equiped with Intel Core i7 870 CPU running at 2.93
GHz, 8 GB of RAM and WD Raptor hard drive spinning at 10, 000 rpm. A 64
bit version of Windows 7 Professional operating system was used.

The GPU experiments were performed on a server built on a special moth-
erboard (FT72-B7015) designed to embrace up to 8 GPU cards. The server was
equipped with Xeon E5645 processor comprising 6 physical (12 logical) cores run-
ning at 2.4 GHz, 96 GB of DDR3-1333 RAM, and 4 NVIDIA Tesla M2090 GPU
cards based on the Fermi architecture. Each GPU chip consists of 512 cores (32
cores per 16 SMPs) and 6 GB of memory.

We also tested the GPU implementation on a commodity PC with two gaming
cards NVIDIA GTX 580. These cards have also 512 cores, but only 1.5 GB of
memory. We have found that the GTX 580 cards have similar performance as
the Teslas, thus we do not provide more detailed comparison.

3.5.2 Blocking Tasks

As we have mentioned in Section 3.3.2, one of the most important differences be-
tween the Bobox system and other libraries is the support of blocking operations.
Both experiments in this section focus on them.

Blocking Operations

The first experiment compares how the TBB library and the Bobox deal with
the blocking I/O operations in the tasks. The experiment comprised 40 tasks
executed concurrently with no dependencies. Each task generated 32 million of
32 bit values using 100 iterations of linear congruential generator [73] and then
it wrote the entire 128 MB block into a binary file. The file was flushed after
the write to ensure the write operation would take place immediately. In the
serial settings, the random generator took approximately 685 seconds of CPU
time while the writing operations took 132 seconds. Hence, the computations
took 84% of total (serial) time and the writing took 16%.

The TBB experiment used the parallel for template to execute the requests
in parallel. The Bobox framework was tested under multiple settings. A Bi

setting denotes a Bobox experiment, that used i backup threads. The first setting
B0 does not use backup threads at all, thus the invocations of the detach and
attach functions have no effect. Both the TBB and the Bobox used as many
computational threads as there were available CPU cores.

The results of this experiment are summarized in Figure 3.9. They clearly
prove that the backup threads help the overall performance significantly. We
have also tried different numbers of tasks, different ratio of computations and
I/O, and the measured improvement of the backup threads was similar in every
case.

Hard Drive Limitations

The first experiment proved, that the backup threads improve the performance of
the blocking tasks. However, most of the blocking tasks (like I/O) are performed
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Figure 3.9: Execution times (in seconds) of 40 tasks with a blocking operation

on devices, which cannot handle many concurrent operations. To test the limits
of this approach, we have designed another experiment.

The second experiment had also executed 40 tasks, but it used only one iter-
ation to generate the data. The computational work was reduced 100×, thus the
most of the time was taken by the writing operations. The test was conducted
on a commodity PC with a single hard drive, which does not handle concurrent
operations as well as the RAID controller of the server.
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Figure 3.10: Execution times (in seconds) of tasks comprised mostly of writing

We used the same configuration for the TBB and the Bobox as in the previous
experiment. The results are presented in Figure 3.10. They indicate, that any
attempt for concurrent writing was slower than the sequential writing. This
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confirms our original assumption that some hard drive controllers (especially
those in common personal computers) cannot handle the parallel workload as well
as RAID controllers in servers. Therefore, the best performance was achieved by
the Bobox system with one backup thread that serializes the I/O operations but
also leaves the worker threads free for computations.

Use of the detach and the attach functions improved the performance signif-
icantly. However, the proper size of the backup thread pool must be determined
for each type of blocking tasks (or each device). We will focus on this area in our
future research.

3.5.3 Hybrid Scheduling

To present the benefits of our GPU scheduler, we chose an image similarity search
problem. This problem and its GPU solution is thoroughly described in Chap-
ter 4. We summarize it briefly just for the purposes of these tests. The problem
of the similarity search is based on the query-by-example paradigm. Let us have
a database of images that are not annotated or otherwise classified. The us-
er cannot search such database using a conventional text-query interface, but
rather provide an example image and expects to get similar images in response.

The images are represented as signatures, each signature is a set of points in
a 7-dimensional space with weights. A metric distance function (Signature Quad-
ratic Form Distance in our case) is defined to compute the distance (inversed
similarity) of image signatures. The distance between a query signature and all
(or at least a subset of) the signatures in the database needs to be computed
in order to determine the results of the query. The distances are computed
iteratively on available GPUs and each GPU task has the following steps:

1. Gather image signatures into a single block.

2. Copy the signatures to the GPU in one transfer.

3. Invoke the SQFD kernel that computes distances from the query to all
signatures in the block.

4. Transfer the distances back to the host memory.

5. Use the distances to determine which images from the block will be included
into the result.

In the following experiments we compare our solution to the original naive
approach which uses a single CPU thread to both dispatch the work to the GPUs
and process the distances to create the k nearest neighbour result. The scheduler
uses 2 end points per GPU5 and one feeding thread per end point. We provide
results measured for different numbers of GPU cards to determine the scalability
of the solution.

Figure 3.11 depicts the results of the experiments. The left graph shows abso-
lute times required for processing our test database comprising 950, 000 images.

5This was empirically determined as an optimum for overlapping data transfers and compu-
tations.
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Figure 3.11: Measured real times in ms (left) and average utilization of the GPUs
in percents (right)

As we can see, the feeding threads helped significantly in achieving better perfor-
mance (1.4× for single GPU and 5× for 4 GPUs) and the problem scales almost
idealy with increasing number of GPUs. The data marked optimal represent the
theoretical peak performance of our algorithm, that would be achieved, if all the
GPUs were utilized for 100%.

The reason for this behaviour is visualized in the right graph of the figure. It
shows the utilization of the GPUs in percents of the total computational time.
Our scheduler is capable to utilize the GPUs for more than 90%, even when
4 GPUs are being served. We believe that the GPUs are not fully utilized be-
cause of the throughput limits of the PCI-Express and memory buses. The näıve
approach utilizes a single GPU only up to 65%, and adding more GPUs does
not improve the situation since their utilization decreases in the proportion of
their numbers. Furthermore, we have observed that our scheduler overlaps data
transfers with SQFD computations significantly, while the naive approach does
not.
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4. Accelerating Similarity Search

In the following two chapters, we shift our focus to multimedia databases, which
are standing on quite different paradigms than the relational databases. This do-
main presents even more computationally challenging tasks, thus it might benefit
from the parallel acceleration even more. We have done an extensive research in
the area of image databases and content-based retrieval based on the query by
example model.

4.1 Introduction

Searching textual data on a web scale has been attended by the largest companies
in the IT industry (like Google, Microsoft, or Yahoo) and they have perfected the
text-based search significantly in the last two decades. However, when dealing
with multimedia content, there is still much room for improvement. In the past,
the major approach was also text-based. This approach expects the multimedia
content is annotated by textual meta information, such as captions, labels, tags,
comments, ratings, or a surrounding content gathered from the adjacent web
page.

As the multimedia content grows almost proportionally to the current storing
capacities, the users are becoming more and more reluctant to provide any textual
annotation to their multimedia as it consumes a lot of time. In the direct response
to this trend, new techniques of querying data have been established. These
techniques might be more convenient for the user, but they also require much
higher computational power. This approach is called the content-based retrieval
as it relies on the content analysis and comparison in the search process. It is
described in more detail in Section 4.1.1.

The similarity search principle brings two major challenges: How to represent
the content so it can be easily queried and how to measure the similarity between
the two objects. The objects are usually represented by some kind of descriptors.
Several examples of descriptors, especially for the image content, are presented in
Section 4.1.2. The descriptors are then measured with a distance function. The
distance function is defined as the opposite of similarity, so it is sometimes also
called the dissimilarity function. We address the issue of similarity functions in
Section 4.1.3.

There are also some other, more philosophical, issues regarding the similarity
search. Every query-based retrieval system struggles with the query interpreta-
tion problem. The user must formulate his/her requests into a query and the
system must understand the query correctly. This might be difficult, as the
query may not reflect the intent of the user properly, it may be provided within
a user-specific context, or it could be ambiguous due to the imperfections of the
query language. These issues are quite serious in the text-based searching and
they get even worse in the similarity search. However, we do not address these
issues as our main objective is to improve performance of the current methods
by employing many-core GPUs.
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4.1.1 Content-based Retrieval

The content-based retrieval paradigm was introduced to improve the search pro-
cess in the databases, where textual annotations are unavailable, incomplete,
difficult to acquire, or even impossible to establish. This reflect the situation in
databases of multimedia content (images, audio, or video) [74], bio-information
databases (such as protein structures), or other highly specialized and structured
objects.

The content-based approach is based on the idea, that the database should
use the content of these complex objects and provide content-specific means to
query the data.

The Query

The most basic query principle in the similarity search is the query by example.
The user provides an example of an object and expects to receive the same or
very similar objects in return. This method is very intuitive and easy to use. On
the other hand, the user must provide an example of the object. Such example
may be hard or even impossible to get and it may not express exactly what the
user wants.

Another method is the query by description. The user describes the object
in well-established terms or even in the natural language. This may be more
convenient in case the user cannot provide an example for the previous method.
On the other hand, it tends to have very bad results as the textual description of
the object is very inaccurate in most domains.

Somewhere between the first two approaches would be the query by sketch.
It is basically very similar to the query by example, but the user does not need
to provide an entire example. The query is represented by only a sketch of an
object, which could be a quick hand drawing as a query for the image database or
a whistle of a melody as a query for the musical database. This might be a good
compromise in some cases, but it might require additional skills from the user,
such as talent for hand drawing or the ability to whistle in the tune.

In the following work, we prefer to use the query by example model, as it
has proved quite useful for search in an image database. Digital cameras are
a quite common equipment of laptops and cell phones, thus the user should not
have much trouble acquiring queries from the real world. Furthermore, if the user
is not able to provide the query, it can be crossed with the text-based retrieval
methods and employed in an explorational model [75, 76].

Figure 4.1: The explorational approach to querying image databases
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The Figure 4.1 depicts the exploration process for the image database. The
user initiates the first search by the means of the text-based search (or by some
other method) and then continues interactively by exploring the database. In each
following step, the user explores the results of the previous step, selects an image
(or even multiple images) that resembles what the user is looking for the most
and uses this image as a query for a new search. Doing so, every iteration brings
the user closer to the desired results.

The Selectivity of Queries

One of the most common types of queries is the k Nearest Neighbours query
(kNN), also known as the top-k query. The search returns exactly k results, which
are the best in terms of the search. Using the distance (dissimilarity) function
d, a kNN result set RkNN(q) ⊂ D of a query q represents the k closest objects
selected from the database D, that means |RkNN(q)| = k and ∀x ∈ RkNN (q), ∀y ∈
D \RkNN(q) : d(q, x) ≤ d(q, y). This type of queries is directly applicable in the
user interface as it represents, what the user intuitively expects.

The second type of content-based queries is the range query. It is parametrized
by a range value r and the result Rr(q) comprise all objects which are closer to
the query than this range (i.e., ∀x ∈ Rr(q) : d(q, x) ≤ r and ∀y ∈ D \ Rr(q) :
d(q, y) > r). Range queries are used in more specific situations when the range
of the query can be provided (e.g., by some estimation mechanism or as a result
of a previous query). Their direct usage is complicated by the fact, that unlike
the k value from the kNN query, the r parameter does not have any intuitive
meaning as the distances usually capture only a relative dissimilarity. The kNN
query can be sometimes perceived as a special type of the range query, where the
r is equal to the distance of the k-th item. However, this point of view is purely
theoretical since the value of r is not known before the query finishes.

For the purpose of an easy reference, we define the filtering range of a query
as follows: in case of range queries, the filtering range is constant and equal to
r during the whole query processing. The kNN queries filtering range decreases
dynamically and it is equal to the maximal object distance in the result set R
(i.e., max{d(q, o)|o ∈ R}), or to the infinity when |R| < k. The filtering range
is used to decide, whether a candidate object is about to be included into the
result.

Query Evaluation Algorithms

For a better understanding of the principles of kNN and range queries, we present
the algorithms that resolve these queries. These simplest algorithms are some-
times designated the sequential scan as they read the database objects sequential-
ly, compute their distances to the query, and update the result set. Algorithm 4.1
represents a version of sequential scan for range queries and Algorithm 4.2 is
a version for kNN queries.
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Data: database (signatures) D, query signature q, range r
Result: list R of objects within the given range (and their distances)
R← ∅
foreach s ∈ D do

if d(q, s) ≤ r then
add s to R

end

end

Algorithm 4.1: Sequential scan for range query

The kNN query algorithm is only slightly more complicated. The result set
R has limited capacity of k and we require to find the maximal distance of the
objects in R. We can represent the R by a 2-regular heap data structure which
keeps inserted objects and their respective computed distances. The heap has
Θ(1) time complexity for accessing the maximum and O(log k) for adding and
removing items.

Data: database (signatures) D, query signature q, parameter k
Result: list R of the k closest objects (and their distances)
R← ∅
foreach s ∈ D do

if |R| < k ∨max{d(q, o)|o ∈ R} > d(q, s) then
add s to R
if |R| > k then

select x ∈ R : d(q, x) = max{d(q, o)|o ∈ R}
remove x from R

end

end

end

Algorithm 4.2: Sequential scan for kNN query

The distance functions are usually rather expensive to compute. Even though
the function d is used multiple times in the algorithm, we would like to emphasize
that the distance to each database object is computed exactly once and already
computed distances are cached in R.

4.1.2 Object Descriptors

Usually, it is quite impractical to compare the database objects directly. Mul-
timedia objects contain many information, some of which may not be relevant
for the similarity measure. In order to simplify the distance function and reduce
the amount of data required for the computation, the objects are represented by
descriptors.

A descriptor is a footprint of an object that aggregates features which are
relevant for the similarity measure. In case of images, the descriptor can extract
some color information, texture information, or detect some kind of concepts in
images. Musical database can analyze rhythm, frequencies, or detect instruments
for the descriptors.
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The descriptors are an inseparable part of the similarity model and they are
tightly entangled with the distance function. They can affect the efficiency in the
terms of time and space complexity as well as the quality of the similarity model.
Since we focus on the image data, we present some examples of descriptors used
for images. At the end of this section, we describe the feature signatures used as
descriptors in our similarity model.

Image Descriptors

Image descriptors try to capture various image properties, such as color or texture.
More complex signatures attempt to detect some points of interest or even some
concepts in the image. One of the simplest descriptors is a color histogram.
Histograms usually have fixed size and comparing two histograms can be quite
fast. On the other hand, color histogram dismisses the spatial distribution of the
colors and it does not provide very precise results [77].

A classification approach to the problem takes the bag-of-words model [78].
It is inspired by document indexing techniques and it treats image features as
words. A vocabulary of features is constructed form the images in the database
and then the images are represented by a sparse vector of occurrence counts of
words from the vocabulary.

The bag-of-words model can use various types of features to create the vocab-
ulary. One of the most famous is the Scale-invariant feature transform (SIFT)
[79]. These features represent interesting points in the image (keypoints), which
characterize objects. These points should be detectable, even if there is a change
in the image scale, noise, or illumination. Therefore, the extraction process usu-
ally relies on edge detection algorithms.

Another approach is to sample the image features and to create feature sig-
natures. Image features are localized, thus each feature is provided with image
coordinates (x, y), that correspond to a location from which the features has
been extracted. The feature vector usually contains color information taken from
a pixel at x, y, or the average color of a small surroundings of x, y. It may al-
so contain some texture information like contrast or entropy, some information
about detected edges, or color gradients. We use this type of descriptors in our
work so we revise it later in more detail.

Much broader, but also more complex, approach was taken by the MPEG-
7 descriptors [80]. MPEG-7 is a set of ISO standards designed for multimedia
content description. It uses XML to store metadata along with the multimedia
content. These standards are quite extensive and they define the description
language, query formats, and various descriptor types for images, audio, video,
and even 3D objects. The standard for visual descriptors covers colors and their
distributions, textures, illumination, edges, shapes, and even face recognition.

Image Feature Signatures

As mentioned before, we employ image signatures in our similarity model. It
is a simple indexing technique, which allows us to represent images in a more
compact way that is also more suitable for a fast similarity comparison. An image
signature gathers a specific feature information about the image parts, such as
color or texture entropy. We use 7 dimensional feature space (x, y, L, a, b, c, e),
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where x, y are normalized coordinates of the feature position in the image, L, a, b
is the color information converted into a Lab space [81], c is the contrast value
and e is the entropy.

Many features are sampled from the image producing many points in the 7-
dimensional feature space. A clustering algorithm is applied to aggregate this
information into more compact form. The image signature is then represented
by the cluster centers (centroids) and a weight of the cluster, which is computed
from the number of points belonging into that cluster. The Figure 4.2 depicts
an example of images and simplified visualisation of their corresponding feature
signatures.

Figure 4.2: Example of images and their signatures

More detailed description of the image signatures and their extraction is pro-
vided in Chapter 5. For the purposes of the similarity search, it suffices to know
that a signature is a set of 7-dimensional points with weights.

Formally, a signature So of an object o is defined as So = {(coi , w
o
i )|i = 1 . . . n}.

The coi ∈ R
7 and wo

i ∈ R
+. We have to emphasize that the number of centroids

differs for each object as simpler objects are covered by fewer centroids while
complex images require more centroids to capture the same level of detail. We
denote the number of centroids (i.e., the size of the signature) |So|.

4.1.3 Distance Functions

A distance function, also designated as a dissimilarity function, is the nemesis
of object descriptors in a similarity model. It computes the inverse value of
similarity between two objects.
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The most common family of distance functions, which are applied in simple
cases or as ground distances for more complex measures, is the Lp metrics. If the
descriptor comprise a vector of fixed length d, it can be perceived as a point in
d dimensional space, Rd for example. The Lp distance between points x and y

in such space is defined as Lp = (
∑d

i=1 |xi− yi|p)1/p L1 (the Manhattan distance)
and L2 (the Euclidean distance) metrics are used the most often.

Adaptative Measures

When the descriptors have variable length, an adaptative measure has to be used.
The descriptor can be organized as a simple set of properties, or it can also capture
the ordering, so the properties are stored in a sequence. We present an example
of a measure for each case.

One of the simplest similarity measures for sets is the Jaccard similarity coef-
ficient or the Jaccard index. This coefficient is defined as a ratio of the number
of properties common for both sets to the number of unique properties in both
sets. Formally, for sets X and Y , the Jaccard index is

J(X, Y ) =
|X ∩ Y |

|X ∪ Y |
.

In addition, the Jaccard distance, which measures the dissimilarity between
two sets is defined as Jδ(X, Y ) = 1− J(X, Y ). This concept can be extended by
altering the definition of set union and intersection for the descriptor sets or by
choosing a different way of computing their cardinalities.

In case of sequential descriptors, the measure must respect the ordering and
project it to the distance. A typical example of such measure is the Levenshtein
distance. It was originally designed as an edit distance between two strings, but
it can be used in a similarity search to compare sequences. It specifies three basic
editing operations:

• inserting a character,

• deleting a character,

• and replacing a character.

A distance between two strings is then defined as the smallest amount of basic
editing operations required to transcribe one string to the other. The distance
can be efficiently computed using dynamic programming. Time complexity of the
algorithm is Θ(m · n), where m and n are the lengths of compared strings.

Measures for Feature Signatures

As mentioned before, we use the image feature signatures as object descriptors
in our similarity model. The signatures have variable length and the features are
weighted, thus we require adaptative measures that can deal with weights. There
are a few such measures and we introduce three of them here.

The Hausdorff metric [82] is designed to measure distance between two subsets
of a metric space. Feature signatures are in fact sets of points from R

7. The
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measure is defined as the maximum of individual distances between each point
of one set and a corresponding closest point in the other set. The formula can be
formalized as follows. Let us have two subsets X, Y of some metric space (M, d).
The Hausdorff distance is then defined as

dH(X, Y ) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(y, x)}.

As we operate on finite sets, the supremum and infimum in the formula can
be replaced with maximum and minimum respectively. If the feature signatures
did not have the weights, the distance d between two features could have been
a simple Lp metric, euclidean L2 for instance. The weights can be incorporated
in many ways. One of them is to multiply the individual distances by the weights
of adjacent points.

The greatest problem of the Hausdorff distance is that it takes the maxi-
mum of the individual distances. Therefore, one outliner among the features can
cause that two very similar objects are measured as quite distant. Better re-
sults provides the Signature Quadratic Form Distance (SQFD) [83]. It is based
on a similarity function fs that measures similarity between two features. The
quadratic form is created by enumerating all fs values for all feature pairs. We
describe this function thoroughly in Section 4.1.4 as we use it in our similarity
model.

The SQFD has a specific variation called GQFD [84], which is based on the
Gaussian mixture models instead of plain signatures. This model represents the
features as probabilistic functions instead of fixed points in the feature space.
The SQFD can be perceived as a special case of GQFD with Dirac delta function
used for the probability distribution.

Another example of a distance function is the Earth Mover’s Distance (EMD)
[85], which can be used to compare not only signatures, but also histograms and
other types of descriptors. The distance is defined as the cost of transforming
one feature signature to another. It can be considered a transportation problem,
thus it can be solved by linear optimization methods, such as specialized Simplex
algorithm.

Given a ground distance d, which measures dissimilarity of two features, the
EMD is defined as a minimum cost flow over all flows fij ∈ R:

dEMD(S
q, So) = min

fij







∑

i

∑

j fij · d(c
q
i , c
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min
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The distance is subjected to the constraints: ∀i :
∑

j fij ≤ wq
i , ∀j :

∑

i fij ≤
wo

j , ∀i, j : fij ≥ 0, and
∑

i

∑

j fij = min{
∑

i w
q
i ,
∑

j w
o
j}. These constraints

guarantee a feasible solution. All costs must be positive and limited by their
weights. The ground distance d could be an Lp metric for instance.

The EMD function usually performs quite well in the terms of similarity model
precision. However, its computational cost is rather high. The linear optimization
methods applied for this problem are known to have O(n4) time complexity.
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4.1.4 Signature Quadratic Form Distance

The Signature Quadratic Form Distance (SQFD) [83, 86, 87] is adaptative sim-
ilarity measure for multimedia signatures. We have used the SQFD in our ex-
periments since it provide very good similarity precision, it is easy to implement,
and it is quite fast to compute [77]. It is based on the classical quadratic form
distance, which can be used to compare histograms [88] for instance. The classi-
cal QFD applied a cross-dimension concept to compare all the dimensions of the
feature histogram. This method is adopted to a cross-dependency concept that
compares all feature signatures with each other.

Mathematical Definition

We define the distance on the signatures definition described at the end of Sec-
tion 4.1.2. The compared signatures Sq and So are representing the query
and the object respectively. Let us revise, that signature is a set of features
So = {(coi , w

o
i )|i = 1 . . . n}, where each feature is represented by a centroid coi ∈ R

7

and weight wo
i ∈ R

+. The distance is formalized as

dSQFDfs
(Sq, So) =

√

(wq| − wo) · Afs · (wq| − wo)T .

The vector (wq| − wo) is created by concatenation of weight vectors wq and
−wo, where −wo has negated values. The concatenation of wq = (wq

1, . . . , w
q
n)

and wo = (wo
1, . . . , w

o
m) looks like (wq| − wo) = (wq

1, . . . , w
q
n,−w

o
1, . . . ,−w

o
m). The

values n and m are shorthand notations of the sizes |Sq| and |So| respectively.
The similarity matrix Afs ∈ R

(n+m)×(n+m) is the enumeration of similarity
function fs applied to all pairs of centroids concatenated from both signatures.
Let us denote c = (cq|co) the concatenation of cq centroids and co centroids
(cq1, . . . , c

q
n, c

o
1, . . . , c

o
m). The elements of similarity matrix Afs are then defined

as aij = fs(ci, cj), where i, j = 1, . . . , n + m. Since the matrix represents all
pairs of the concatenated centroid vector c, it comprises the self-similarity parts
representing internal similarity of the signatures as well as inter-similarity between
the two signatures. The matrix structure is depicted in Figure 4.3.

Figure 4.3: Similarity matrix Afs of the signatures Sq and So
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Similarity Functions

The similarity function fs(ci, cj) 7→ R measures similarity between two centroids.
An inequality fs(ci, ci) ≥ fs(cj , ck) must hold for all ci, cj, ck, where cj 6= ck. The
similarity function is expected to assign higher values to more similar objects and
identical objects must be ranked more similar than any two nonidentical objects.

There are many possibilities, how to define similarity function. One is to base
the similarity on ground distance functions, that are naturally introduced in the
features space. In case of Rn spaces, a ground distance function could be Lp

metric for instance. For given distance function d(ci, cj) 7→ R
+ and parameter α,

there are three typical similarity functions:

• Minus function f−(ci, cj) = −d(ci, cj)

• Gaussian function fg(ci, cj) = e−α·d2(ci,cj)

• Heuristic function fh(ci, cj) =
1

α+d(ci,cj)

In the following work, we have exclusively used the Gaussian function with
L2 Euclidean metric as the ground distance function fs(ci, cj) = e−α·L2

2(ci,cj). The
parameter α is used to tune the ratio between precision of the similarity model
and the intrinsic dimensionality, which affects the indexability of the database.
The intrinsic dimensionality of a database is defined as iDim = d̄2/2σ2

d, where d̄
is the mean value and σ2

d is the variance of all distance values between objects
in the database. Database with low intrinsic dimensionality can be effectively
indexed by techniques described in Section 4.2. Databases with high intrinsic
dimensionality are hard to index and we need to use a simple sequential scan to
resolve queries.

Implementation and Optimization

Since SQFD is the key function implemented in our similarity search system,
we provide a little more insight into implementation and optimization details for
CPU systems. First of all, let us make an observation, that we do not need to
keep entire Afs matrix in the memory. The first multiplication (wq| − wo) · Afs

produces a vector of the same proportions as the (wq| − wo). Therefore, the
Afs values can be computed on the fly and partial sums can be maintained in
the results vector. This intermediate vector is most likely to fit the L1 cache
as we expect the signatures have hundreds of centroids at most. Finally, the
computations of Afs values can be partially parallelized employing SIMD vector
instructions like SSE.

If we look beyond the straightforward optimizations, we can remove some
redundant computations. The Figure 4.3 shows that the similarity matrix is
naturally divided into four parts. Two parts represent the self-similarities of the
Sq and So signatures and the remaining two parts represent the inter-similarity
between these signatures. If the similarity function fs is symmetric, the inter-
similarity parts are identical (only transposed) and the self-similarity submatrices
are also symmetric. We can use that to compute only half of the Afs values.

In the traditional searching scheme, when the distances between a query and
database objects are computed, more computations can be saved. The self-
similarity matrix of the query can be computed only once at the beginning of
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the search. The self-similarity matrices of the database objects can be precom-
puted and stored along with the database. Furthermore, we can multiply these
matrices by the corresponding parts of the weight vectors and keep them as a sin-
gle number, thus in a very compact way.

4.2 Indexing

The basic algorithms for kNN and range queries expect, that a distance is com-
puted between the query object and each object in the database. This approach
does not scale for databases of the world wide web magnitude. The most work
of the search process is usually spent by computing distances and loading the
object descriptors. Indexing techniques are designed to reduce the number of dis-
tances being computed, thus the descriptors being loaded. This pruning method
is sometimes called prefiltering. Prefiltering process yields object candidates that
are worth further examination. Only the distances to the candidates are com-
puted and filtering is used to determine, which candidates are finally inserted to
the result set.

The indexing techniques can be divided into two basic categories: metric and
nonmetric. Metric indexing (also called called metric access methods) [89, 90]
applies for similarity models that create a metric space. In fact, many similarity
models fall into this category, so we address these methods in more detail in the
remaining of this section.

If the distance function of the similarity model does not conform with metric
axioms, a nonmetric indexing methods [91] have to be used. In some cases,
a domain expert can identify specific properties of the similarity model, which can
be used for indexing. Otherwise a general nonmetric access method must be used.

The most of nonmetric access methods are based on some kind of mapping.
A projection is created from the original (nonmetric) space into a metric space,
vector space, or even Euclidean space. The projection must respect some prop-
erties of the target space, so that indexing techniques for metric, vector, or Eu-
clidean space can be used. Some more elaborated structures like NM-tree [92]
are based on metric indexing methods, but they use some form of mapping to
modify the method for nonmetric spaces. A thorough comparison of nonmetric
methods is presented in the work of Skopal and Bustos [91].

4.2.1 Metric Spaces

Properties of the metric space can be used for object pruning, which inherently
improves the search efficiency. A metric space is a ordered pair (M, d), where
M is a set and d is a metric distance function (d(x, y) 7→ R, x, y ∈ M) that
measures distance between objects from the set M. Additionally, the metric
function complies with the metric axioms:

1. d(x, y) ≥ 0 (nonnegativity)

2. d(x, y) = 0, iff x = y (identity)

3. d(x, y) = d(y, x) (symmetry)

4. d(x, y) + d(y, z) ≥ d(x, z) (triangular inequality)
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The most important is the fourth axiom, the triangular inequality. It can help
the searching process to rule out some of the database objects without computing
the (potentially expensive) distance function. Let us have a query object q and
two database objects p, o. The triangular inequality can be used to determine
a lower bound estimate of the distance d(q, o) from the distances d(q, p) and
d(p, o). The inequality and the estimate are visualized in Figure 4.4.

Figure 4.4: Lower bound estimation by triangular inequality and one pivot

The triangular inequality states that d(q, o) + d(o, p) ≥ d(q, p), which also
means that d(q, o) ≥ |d(q, p) − d(o, p)|. We can use this formula to define the
lower bound estimate of the real distance, as lbp(q, o) = |d(p, q)− d(o, p)|. Since
the estimate is called lower bound, it is always smaller or equal to the real distance
(lbp(q, o) ≤ d(q, o)).

More objects like p may be used to estimate a better lower bound. For a set of
objects P ⊆ D a combined lower bound estimate lbP (q, o) is defined as the most
accurate lower bound lbpi(q, o) of all pi ∈ P . The estimate is more accurate if it is
closer to the real distance, thus greater. Hence, the lbP (q, o) = max{lbpi(q, o)|pi ∈
P}. If the query object q or the set of prefiltering objects P is predefined and
fixed, we use a shorthand notation lb(q, o), lbP (o), or even lb(o) for the lower
bound lbP (q, o).

4.2.2 Pivots

Objects used for estimating the lower bounds are usually called pivots or van-
tage points. We always denote the pivot set P ⊆ D, where D is the database
unless specified otherwise. There are various methods that use pivots for prefilter-
ing [89]. The basic idea, which is common to all of them is that the distances
between pivots and database objects are precomputed, thus they do not need to
be computed when the query is being resolved. We denote dP (p, o) the distance
between pivot p and object o which has been precomputed (dP (p, o) ≡ d(p, o))
to distinguish between precomputed values and distances computed during the
query evaluation.
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Approximating Eliminating Search Algorithm

One of the first methods based on this approach was the approximating eliminat-
ing search algorithm (AESA) [93]. It expects that the index is formed of a matrix,
that holds precomputed distances between every object pair in the database. In
another words, the pivot set comprises entire database (P = D). Every time
a distance is computed between one of the objects, the object is used as pivot for
prefiltering the candidates. The pseudocode of the kNN query with AESA access
method is presented in Algorithm 4.3.

Data: database D (∀oi, oj ∈ D precomputed dP (oi, oj)), query q, k
Result: list R of the k closest objects (and their distances)
C ← D,R← ∅
∀o ∈ D : lb(o)← 0 // initialize lb estimates

while C 6= ∅ do
c← object from C, C ← C \ {c}
// update the result set

if |R| < k ∨ d(q, c) < max{d(q, o)|o ∈ R} then
R← R ∪ c
if |R| > k then

remove object o with the greatest d(q, o) from R
end

end
foreach o ∈ C do // update lb estimates

lb(o)← max{|dP (c, o)− d(c, q)|, lb(o)} // triangular ineq.

end
if |R| ≥ k then

r ← max{d(q, o)|o ∈ R} // filtering range

foreach o ∈ C do // filter C to prune distant objects

if lb(o) > r then
C ← C \ {o}

end

end

end

end
Algorithm 4.3: kNN query with AESA access method

The algorithm operates with a candidate set C. At the beginning, this can-
didate set comprises the entire database and one candidate c is taken from this
set in every iteration. There are many ways, how to select c from C. In the first
iteration, the candidate is usually selected randomly. In the following iteration,
some kind of heuristics may be applied, like selecting an object o with the smallest
lower bound estimate lb(o). Objects with smaller lower bounds are more likely
to have smaller real distances, thus they are more likely to be included into the
result set R and decrease the filtering range.

The lower bound estimates lb(o) are kept in an array, which is initialized
to zeros before the algorithm starts. These values are updated every time new
query-to-object distance is computed. After this update, the candidate set is
pruned using triangular inequality and current filtering range obtained from R.
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Note that the range query algorithm would require only a minimal modifications
as it uses constant filtering range r.

Even though this method is optimal in the number of computed distances, the
lower bound updates and candidate set filtering can be quite expensive. Further-
more, the database indexing have Θ(|D|2) both time and space complexity. With
these limitations, the AESA method can be successfully used only in models with
very expensive distance function and for rather small databases.

Linear AESA

A modification called Linear AESA (LAESA), presented by Micó et al. [94] tries
to reduce the time and space complexity of the indexation by restricting the size
of the pivot set. Only limited number of pivots P are selected from the database
and the distances are precomputed between each pivot and every database object
(∀p ∈ P, o ∈ D : dP (p, o)← d(p, o)). The distances are stored in array of |P | · |D|
items, which is called the pivot table. Let us emphasize that P ⊂ D, therefore
distances between every two pivots are precomputed as well.

Standard LAESA algorithm is derived from the original AESA (Algorithm 4.3).
The sole difference is, that the update of lb(o) values is not performed in every
iteration, but only if c ∈ P . It is also reasonable to alter the premise upon which
the candidates are selected from the set C, so the pivots are selected in precedence
to regular objects.

In case the number of pivots is rather small, we can use a 2-phase LAESA
algorithm instead. In the first phase, we compute distances between query object
and all pivots. These distances are used to create initial top-k result (or at least
part of it, if k > |P |) and for pivot prefiltering in the second phase. The second
phase traverses remaining objects in the database and computes the result. Each
object goes through two step filtering. The prefiltering uses triangular inequality
to quickly rule out too distant objects, while the regular filtering computes the
distance function to determine, whether the object is included into the result.
The Algorithm 4.4 formalizes the 2-phase approach. In the following, we denote
the 2-phase LAESA access method as pivot table prefiltering since it is basically
a simple traversal of the pivot table.

The pivot table prefiltering is clearly suboptimal in the number of computed
distances as we do not use any type of prefiltering in the first phase. On the other
hand, the 2-phase approach have some benefits. First of all, we do not require
additional space for lower bound estimates, as these estimates are computed on
the fly. Furthermore, the pivot table is traversed sequentially and only once,
which leads to better utilization of the memory and processor caches. Finally,
the pivot table prefiltering can be more easily parallelized1 than original AESA
and LAESA methods.

1 Actually, this holds for range queries. The kNN queries have inherent problems with
parallelism. We address this issue more thoroughly in Section 4.6.
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Data: database D, set of pivots P (precomputed distanced dP ), query q, k
Result: list R of the k closest objects (and their distances)
R← ∅
// 1st phase: compute all query-pivot distances

foreach p ∈ P do
compute d(q, p)
add p to R and remove the most distant object from R if |R| > k

end
// 2nd phase: use pivots in prefiltering

foreach c ∈ D \ P do
if |R| < k ∨ lbP (q, c) ≤ max{d(q, o)|o ∈ R} then // prefiltering

if d(q, c) < max{d(q, o)|o ∈ R} then // d computed, filtering

add c to R and remove the most distant object from R if |R| > k
end

end

end

Algorithm 4.4: kNN query with 2-phase LAESA access method (a.k.a., the
pivot table prefiltering)

Performance Concerns of Pivot Table Prefiltering

As mentioned earlier, the pivot table prefiltering assumes, that the number of
pivots is reasonably small. In our case, we are using only up to hundreds of pivots.
The number of pivots is quite important. More pivots produce better lower bound
estimates for the prefiltering, but on the other hand, the computation of a lower
bound lb(q, o) takes O(|P |) time.

An optimization technique called early termination can be employed to im-
prove performance of the prefiltering step. The predicate lbP (q, c) ≤ r, where
r denotes filtering range (r = max{d(q, o)|o ∈ R} in case of kNN query) can
be replaced with ∃p ∈ P : lbp(q, c) ≤ r. Obviously, ∃p ∈ P : lbp(q, c) ≤ r ⇒
lbP (q, c) ≤ r, thus the semantics of the prefiltering is not altered. However, if we
look for any p, that satisfies lbp(q, c) ≤ r, we can terminate as soon as we find
one. This does not help in case no such p exists, but if it does, about half of the
computation time can be saved in average.

4.2.3 List of Clusters

Another method of indexing is data partitioning or clustering. The general idea
is to divide the data into fragments with common properties. In case of metric
spaces, objects are divided according to their relative distances. The most direct
approach is to partition data into clusters and organize these clusters as a simple
list (LC index) [95].

A cluster i is defined as an ordered triplet (ci, ri, Oi), where ci ∈ D is the
center of the cluster, ri ∈ R

+ its radius, and Oi ⊂ D is a set of objects that
belong to the cluster (sometimes called a bucket). All objects in the cluster falls
within a metric ball represented by the center and the radius of the cluster (i.e.,
∀o ∈ Oi : d(ci, o) ≤ ri). The system of subsets Oi is in fact a decomposition of
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D, thus
⋃

Oi = D and ∀i 6= j : Oi ∩Oj = ∅. An example of the list of clusters is
depicted in Figure 4.5.

Figure 4.5: List of clusters (LC index)

There are various techniques and algorithms, how the clusters can be created.
Usually, the list is constructed in a way, that all the clusters (except for the last
one) have the same amount of elements. This corresponds to the block-oriented
data organization of the persistent memory, where each cluster must be stored in a
block of fixed size. However, there are also other approaches, such as constructing
clusters with fixed radius. These algorithms are covered in the work of Chávez
et al. [95].

Query Evaluation

Let us have a list of clusters index on top of our similarity model. The triangular
inequality can be used to rule out whole clusters in case the ball of the cluster
and the filtering ball of the query do not intersect. Formally, if d(q, ci) > ri + r,
where r is the current filtering range of the query q, the entire cluster i (i.e., all
objects in Oi) can be dismissed. The code is presented in Algorithm 4.5.

If the objects of one cluster are indeed stored together in the persistent mem-
ory, the list of clusters effectively reduce also the number of blocks read from this
memory. On the other hand, the clustering is much more complicated and time
consuming than simple computation of pivot table.
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Data: database D, list L of clusters (ci, ri, Oi), query q, k
Result: list R of the k closest objects (and their distances)
R← ∅
foreach (ci, ri, Oi) ∈ L do

if |R| < k ∨ d(q, ci) ≤ ri +max{d(q, o)|o ∈ R} then // prefiltering

foreach x ∈ Oi do
if d(q, x) < max{d(q, o)|o ∈ R} then // filtering

add x to R, remove the most distant obj. from R if |R| > k
end

end

end

end

Algorithm 4.5: kNN query with list-of-clusters index

4.2.4 M-tree and PM-tree

The clustering approach can be extended by organizing the clusters into tree
structures. Tree structures are adopted by many database systems, for instance
B-trees [96] are used in relational databases or R-trees [97] are used for geometrical
data. Similar decomposition can be employed in metric spaces, although there are
some limitations. We present the metric tree and its improvement that combines
tree structure with pivot table.

M-Tree

The metric tree (M-tree) was first introduced by Ciaccia [98]. It is quite similar
to R-tree [97], but it uses balls instead of bounding rectangles to partition the
metric space. Leaf nodes of the tree contain ground entries of the indexed data
objects while inner nodes contain routing entries. A ground entry is a pair Go =
(o, d(o, Par(o))), that contains the object descriptor o and the computed distance
between o and its parent object Par(o) of the tree hierarchy. The routing entry
is a tuple Ro = (o, d(o, Par(o)), Child(o), ro). Again, the o stands for object
descriptor and d(o, Par(o)) is the distance to the parent object. The Child(o) is
the reference to the child node in the tree and ro is the covering radius.

Figure 4.6: M-tree indexing example
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All objects within a subtree represented by a routing object Ro must fall
into the ball inducted by object o and radius ro. Formally, ∀Roi ∈ Tree(Ro) :
d(o, oi) ≤ ro and analogically ∀Goi ∈ Tree(Ro) : d(o, oi) ≤ ro. This condition is
quite weak as it allows to construct many different trees on the same data. An
example of object set and one of the possible M-trees is depicted in Figure 4.6.

A technique similar to the one used by the LC index is used for prefiltering.
Internal nodes of the tree are examined as if they were list of clusters. A distance
between query and object o is computed for each record Ro of the internal node.
If d(q, o) ≤ ro + r, where ro is the covering radius of Ro and r is the filtering
range of the query, a Child(o) node is examined recursively. Otherwise, the entire
subtree ofRo can be dismissed. When the recursion reaches leaf nodes, a distance
is computed for each object o of the ground records Go to determine, whether the
object is included into the result set. A recursive implementation of the search
process is formalized in Algorithm 4.6.

Data: database D, M-tree T , query q, k
Result: list R of the k closest objects (and their distances)
function SearchNode(node N , query q, k) → list of objects :

R← ∅
if N is leaf then

foreach Go ∈ N do
if |R| < k ∨ d(q, o) < max{d(q, x)|x ∈ R} then // filtering

add o to R, remove the most distant obj. from R if |R| > k
end

end

else
r ← max{d(q, x)|x ∈ R}
foreach Ro ∈ N do

if |R| < k ∨ d(q, o) ≤ ro + r then // prefiltering

R← R ∪ SearchNode(Child(o), q, k)
end

end

end
return R

end
// Initial search call

R← SearchNode(Root(T ), q, k)

Algorithm 4.6: kNN query with M-tree index

M-tree also introduces algorithms for updating operations. However, these
operations are little concern to us as we focus on the acceleration of the searching
problem. These methods can be found in related literature [98].

Pivoting M-tree

One of the major problems of the M-tree is that the bounding balls in metric
space are not shaped in any way, so they cannot reflect the data distributions.
The bounding ball usually covers only a few objects and a lot of empty space,
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which is sometimes referred as dead space. One of possible improvements is to
crossbreed M-tree with pivot-based methods (like earlier introduced AESA and
LAESA) to create Pivoting M-tree (PM-tree) [99].

The PM-tree is an extension of M-tree, so we describe only the differences.
First of all, a set of pivots P ⊂ D must be selected from database. The set is fixed
for the lifetime of the index. The routing entries Ro in the internal nodes are
extended by attribute HR, which is an array of hyper-rings. The ground entries
Go in the leaf nodes are extended by attribute PD , which is a list that stores
distances to pivots.

Elements of hyper-rings HR[i] holds the smallest covering distances between
pivot pi ∈ P and all objects covered by corresponding routing entry Ro. The
HR[i] record is an interval 〈HR[i].min,HR[i].max〉 in which the min and max
values are in fact the minimum and the maximum of the set {d(o, pi)|o ∈ ORo

},
where ORo

stands for set of all objects in the subtree covered by routing entry
Ro.

The PD attribute of the grounding entry Go is an array that holds precom-
puted distanced PD [i] = d(o, pi) between each pivot pi ∈ P and the object o. We
can perceive this list as one row of the pivot table, so the pivot table is in fact
scattered over the leaf nodes. Let us emphasize that both HR and PD arrays
have |P | items, thus the number of pivots must be reasonably small in order to
keep the size of the PM-tree within feasible limits.

Figure 4.7: How pivots improve M-tree partitioning

An example that demonstrates, how the pivots improve partitioning of the
metric space is depicted in Figure 4.7. Each hyper-ring acts as a new boundary
that cuts of some dead space and the covering space of the node is in fact an
intersection of the original bounding ball and all the hyper-rings.

The query algorithm is quite similar to the Algorithm 4.6 for M-trees. Be-
fore the algorithm is executed the distances d(q, pi) between the query q and all
the pivots pi ∈ P . In the algorithm itself, the prefiltering condition, which is
evaluated for each routing entry, is enriched by the following formula:

∧

pi∈P

d(q, pi) + r ≥ HR[i].min ∧ d(q, pi)− r ≤ HR[i].max

It tests whether the query ball (defined by the query q and filtering range r)
intersects with the area determined by the hyper-rings. If the formula evaluates
as false, the subtree of the routing entry does not have an intersection with the
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query ball, thus it can be skipped. Furthermore, a prefiltering test is added for
the ground entry case:

∧

pi∈P

|d(q, pi)− PD [i]| ≤ r

This is in fact the same test, which is performed in the prefiltering step of the
2-phase LAESA method (the pivot table filtering). If the second formula resolves
as false, the distance between query and corresponding object in the ground entry
needs not to be computed.

4.2.5 M-Index

A completely different approach takes the Metric Index (M-Index) [100]. The
concept of M-Index is based on iDistance [101], which is also a similarity search
indexing method, but it is designed for vector spaces. The general idea is to
create a linear ranking for the objects that provides each object with numeric
key from R

+. This key is then used to store objects into a well-established data
structures, a B+-tree [96] for instance.

The index expects the database to be partitioned by a set of pivots P ⊂ D,
which is selected from the database when its being indexed. A Voronoi-like par-
titioning is used to divide the database into |P | clusters. Each object is assigned
to its closest pivot and objects assigned to one pivot pi create a cluster Ci. Given
a constant c great enough to separate distinct clusters (i.e., c > max{d(pi, o)|∀pi ∈
P, ∀o ∈ Ci}), an iDistance ranking for object o ∈ Ci can be defined as

iDist(o) = d(pi, o) + ic.

Each cluster Ci (i = 0, 1, . . .) has its own interval 〈ic, (i + 1)c〉, thus the
objects from the same clusters are mapped close together and their distance to
the corresponding pivot is reflected in the iDistance value. If the metric d is
normalized (d : D × D → 〈0, 1)), we omit the multiplicative constant (c = 1)
and each cluster is neatly mapped between two natural numbers. The principle
of linear ranking is depicted in Figure 4.8.

Figure 4.8: Principle of iDistance ranking employed by M-Index

Thanks to the Voronoi partitioning and the double-pivot distance constraint
[90], cluster Ci can be skipped if d(pi, q) − d(pj, q) > 2r for any pj ∈ P . If the
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cluster Ci is not ruled out by the prefiltering, its objects can be easily retrieved
from the B+-tree by applying simple interval query for 〈i · c, (i+1) · c) keys. The
B+-tree respects the spatial locality of the keys, thus the results are most likely
compacted in only a few tree nodes.

The idea presented above reflects a one level M-Index. In case the data are
really large, the index can be extended to a tree hierarchy of the Voronoi parti-
tioning. The number of levels need not to be static, hence a dynamic partitioning
can be employed to better reflect the structure of the data. Finally, the M-Index
may be used also for an approximate query search in addition to traditional range
and kNN queries. As these improvements are quite complex, they are well be-
yond the general introduction, thus we did not present them here. All the details,
including formalization of algorithms, can be found in the related literature [100].

4.2.6 Ptolemaic Spaces

The metric access methods described earlier are based on the axiom of triangular
inequality. If the distance function conforms to stronger axioms than metric ones,
these axioms may be used to design more elaborate and more effective indexing
methods. In this section, we introduce the Ptolemaic indexing [102, 103] based
on Ptolemaic metric.

The indexing is based on the Ptolemy’s inequality. It states that for any
quadrilateral, the pairwise products of opposing sides sum to more than the
product of the diagonals. In other words, for any four points x, y, u, v ∈ U the
inequality formulates as the following:

d(x, v) · d(y, u) ≤ d(x, y) · d(u, v) + d(x, u) · d(y, v)

A distance function that satisfies identity, nonnegativity, symmetry, and Ptole-
my’s inequality is a Ptolemaic distance. If a Ptolemaic distance also conforms
to triangular inequality axiom, it is a Ptolemaic metric. The SQFD function
satisfies the Ptolemy’s inequality [103], hence it is a Ptolemaic metric.

We can use the Ptolemy’s inequality in a similar way we used the triangular
inequality. Let us have a set of pivots P and precomputed pivot table dP . A lower
bound estimate can be computed for each pair of pivots from P . For given query
q, object o, and pivots p, s ∈ P , the lower bound is defined as:

lbp,s(q, o) =
|d(q, p) · dP (o, s)− d(q, s) · dP (o, p)|

dP (p, s)

We expect that p 6= s, thus dP (p, s) > 0 since the distance function has the
identity and nonnegativity properties. The value of lbp,p(q, o) (i.e., the single-
pivot Ptolemaic estimate) can be additionally defined as zero for the sake of
completeness.

The prefiltering step of the AESA or the pivot table prefiltering algorithm
needs only to update the condition to compute a lower bound estimate for each
pair of pivots rather than for each pivot. Other metric access methods would re-
quire more elaborate modifications, which we do not cover here as we are focusing
mainly on the pivot table prefiltering method.

The complexity of the prefiltering step increases from O(|P |) to O(|P |2) with
the Ptolemaic inequality. On the other hand, Ptolemaic prefiltering requires
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smaller amount of pivots to achieve the same effectiveness as the triangular pre-
filtering [103].

We have introduced two types of lower bounds, both denoted lb. If there is
need to distinguish between them, we use lb△p (q, o) for triangular and lbPt

p,s(q, o)
for Ptolemaic lower bound. In addition, we define lb⊕P (q, o) as the combined lower
bound. The combined lower bound uses the better (i.e., higher) estimate of the
other two (triangular and Ptolemaic) lower bounds.

4.3 Related Work

In this section, we revise some of the work related to parallelism in similarity
search. We focus especially on multimedia similarity search and GPGPU parallel
architectures.

Parallel Similarity Search

Individual parallel algorithms, which can be used to evaluate distance functions,
were established long time ago. For instance, a parallel algorithm for computing
the edit distance was introduced in 1988 by Mathies [104].

The first attempts to utilize parallel architectures for similarity search emerged
in the field of bio-computations. This field struggles with many problems that
employ similarity search techniques, such as searching the protein databases or
DNA sequences. Such comparisons are very expensive and they can really benefit
from the parallel execution.

Galper et al. [105] addressed the problem of alignment which is usually solved
by dynamic programming. They have pointed out that most of the parallel
algorithms for this problem are designed for theoretical architectures (such as
PRAM [106]), so they proposed several practical approaches for a multiprocessor
shared-memory system.

Gish et al. [107] explored the BLASTX technique which identifies protein
coding regions in nucleotide sequences. As this method is quite time consuming,
they proposed a parallel implementation of BLAST for multiprocessor systems.

One of the most recent endeavours of Galgonek et at. [108] was the parallel
implementation of the SProt measure, which is used for structural comparison
of two proteins. Their implementation achieved almost linear speedup on 4-
node NUMA server with multi-core CPUs using Intel Threading Building Blocks
library. They have also parallelized the TM-score algorithm, which is used in
many other similarity search approaches.

Multimedia Similarity Search

The situation is a little different in case of parallel multimedia similarity search.
The sequential scan is an embarrassingly parallel problem and the internal par-
allelization of distance computations is usually less efficient on multi-core CPUs.
Furthermore, there has been no attempts to employ other architectures (such as
GPGPU) for parallel distance computations to our best knowledge.

When the metric indexing is employed, it gets slightly more interesting. The
pivot table prefiltering is still considered to be almost ideal data parallel problem.
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Even though the kNN query suffers from the filtering range update dependency
(which we address in Section 4.6), it performs rather well on multi-core CPUs.
Other parallel and distributed metric index methods are summarized in the book
of Zezula [90].

The most interesting of these methods is the parallel implementation of M-tree
[109]. It is based on optimal declustering, which considers the object proximity
to balance the workload and also reduce the disk I/O. However, the algorithm
does not address the problem of shared priority queue, which is used to hold the
intermediate top-k result of a kNN query.

When the scope of the database exceeds the capabilities of a single server or
tightly coupled cluster, a distributed approach is required. The first distribut-
ed index for metric spaces was presented by Batko et al. [110]. It is based on
the Generalized Hyperplane Tree (GHT*) where the nodes of the tree are dis-
tributed across multiple computers. The data structure is designed so that many
operations (including node split) can be performed locally, thus efficiently.

Another example of distributed solution is the Metric Chord (M-Chord) [111]
data structure. The general idea is to index objects in metric space by iDistance
[101], like in the case of M-Index [100]. Then a Chord [112] distributed data
structure is used to store the objects.

Nearest Neighbours Query Problem

The most fundamentally studied problems that extends beyond the realms of sim-
ilarity search is the k nearest neighbours, also known as the top-k problem. One
of the first parallel approaches to nearest neighbour search [113] was proposed by
a research team from Munich university in 1997. In the work, they assumed that
the object descriptors are mapped to high dimensionality spaces and compared
by rather cheap distance functions. They proposed to cluster the feature space,
so the clusters may be searched concurrently.

To the best of our knowledge, the first implementation of kNN query on GPUs
was presented by Bustos et al. [114] in 2006. Their implementation was restricted
to compute k nearest neighbours using Manhattan distance in R

d spaces, where d
varied up to 256. The work proposed a GPU-specific data representation, which
allowed better utilization of the texture cache (local memory) of the SMPs.

A similar approach was taken by Garcia [115] in 2008. Their experiments
tested Euclidean and Manhattan distances in R

d spaces for dimensions between
8 to 96. The brute force implementation outperformed not only näıve serial
algorithm, but also the version which used kd-tree to index the space [116].

The most recent work on the same topic was done by Barrientos et al. [117].
They improved the performance by replacing parallel sorting with standard 2-
regular heap that holds the intermediate top-k result. The GPU parallel imple-
mentation was based on heap reduction. The heap is kept replicated, so each
thread in a warp has its own copy and the data from multiple heaps are then
combined by a parallel reduction algorithm.
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4.4 Accelerating SQFD by GPUs

In this section, we describe our contributions to the field. We have implemented
a similarity search framework that allows us to compute the Signature Quadratic
Form Distances of modern GPU cards.

4.4.1 Problem Analysis

Before we describe of our GPU solution, let us address several issues regarding
the integration, hardware properties, and data properties.

Implementation Requirements

An image database system that employs similarity search consists of many parts,
such as persistent storage, indexing modules, etc. Our first concern regards inte-
gration with these parts. The GPU implementation must be completely indepen-
dent on the other parts of the system. On the other hand, the GPU requires the
signatures to be stored in specific format in order to achieve the best performance
possible. This modification can be easily propagated to the system as it does not
affect anything else.

The GPU SQFD version is expected to be used with different types of queries,
especially the range queries and the kNN queries in combination with some kind
of metric access methods which perform prefiltering of the database. It can also
be used for indexing methods, which require to precompute some of the distances,
like pivot table construction or object clustering. In all cases, many distances are
expected to be computed to evaluate one query or to build an index. We cannot
hope to fit object signatures of the entire database into memory of the GPU. On
the other hand, issuing a task for a GPU is bound with nontrivial overhead, thus
computing each distance in a separate GPU task would be highly inefficient. The
only reasonable compromise in this case is to bundle signatures into blocks and
let GPU compute multiple distances in each task.

There are several possibilities, how to implement block-wise distance compu-
tations. The most direct approach is to send 2N paired signatures and compute
N distances. In case there is only one query, half of these signatures will be a copy
of the query signature. The possible utilization scenarios need to be explored in
order to select the best model. There are three imaginable situations:

• single-query evaluation,

• multi-query evaluation,

• full object-to-object distance matrix enumeration.

Single-query and multi-query evaluations are quite common. Multi-query
model can increase the processing throughput and it reduces the data trans-
fers between GPU and the host system as each object signature transferred to
GPU is used multiple times for multiple queries. Multi-query model is also used
when pivot table is constructed as we compute distances between database ob-
jects and pivots. The situation, when complete distance matrix is computed is
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slightly more rare, but it can occur during database clustering or similarity mod-
el training for instance. It is also used, when the results of a query are being
clustered for a better visualization.

Hardware Considerations

From the hardware point of view, most of the issues have been already summa-
rized in Chapter 2. Only a few things remain to emphasize. First of all, the host
system may be equipped with more than one GPU. The GPUs present may not
even be of the same type. The implementation should utilize all of the present
GPUs to the best of their abilities. On the other hand, no GPU may be present
in the system. In such case, the fallback to original CPU implementation has to
be possible.

Furthermore, the distance computations should leave the rest of the database
system free to perform other tasks, such as filtering the results or prefiltering the
candidates. Therefore, the block-wise distance computation has to be implement-
ed as an asynchronous operation from the programmers point of view.

Data Overview

The distance function is computed between two feature signatures. The feature
signatures were described at the end of Section 4.1.2. We need to be aware of
common signature sizes of the real-world data in order to design an optimal algo-
rithm. Figure 4.9 presents histograms of signature sizes gathered from our image
datasets. These histograms suggest that most of the signatures have between 50
and 100 centroids and the largest signature encountered had 230 centroids.
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Figure 4.9: Histograms of signature sizes of two real-world datasets

We use 7 dimensional feature space, where each feature is represented by one
float number. The weights correspond to the number of features in their respective
clusters, so they could be stored as integers; however, the SQFD requires the
weights to be normalized (

∑

wi = 1), so we store them also as float numbers.
Empirical results indicate that single precision floats (32 bits) provide sufficient
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accuracy for the computations, hence one centroid of the signature takes (7 +
1)× 4B = 32B. As most signatures have 50 to 100 signatures, they take 1, 600 to
3, 200 bytes of memory space.

Both centroid values and weights are accessed multiple times during the com-
putation. Therefore, the signatures should be cached in the local memory of the
SMP. The Fermi architecture offers us 48 kB of space, which can be used to store
two signatures of (49, 152/2)/32 = 768 centroids. According to signature size
histograms, this amount is more than enough for our signatures.

Conclusions

As mentioned before, the distances should be computed in a block-wise manner.
The problem we are solving fits the description of an iterative task described in
Section 3.4.2. Therefore, we can use our OpenCL wrapper with CPU feeding
threads, which was described in Chapter 3. This framework helps us to meet
our implementation criteria and deal with the problem of balancing the workload
amongst multiple GPUs.

Concerning the workload inside each GPU, a slightly more elaborated plan
will be required. Despite the fact there might be enough signatures in the block
to occupy all the GPU cores, assigning one distance to each thread is not optimal.
The signatures need to be cached in the local memory of the SMP (shared by all
threads in the group) which can accomodate only a few signatures. Furthermore,
signatures have different sizes and, so the workload would be very imbalanced
amongst the threads. All threads in a warp would have to wait for the thread
with the larges signature as the threads in a warp execute their code in lockstep.

For these reasons, we have decided to use two levels of parallelism. The dis-
tances of signatures in one block are computed concurrently by thread groups
and threads in a group compute one distance cooperatively. The principles of
signature dispatching and parallel computation of distances are described in Sec-
tion 4.4.2. The details concerning how one SQFD distance is computed in parallel
by threads employing SIMT model are described in Section 4.4.3.

4.4.2 Similarity Search in Parallel Environment

The similarity search engine was implemented on the top of OpenCL wrapper
combined with feeding threads. The architecture of the system is depicted in Fig-
ure 4.10. The core part comprises of prefiltering and filtering. The prefiltering is
responsible for generating candidates, which are formed to blocks and dispatched
to the input queue of the GPU feeding thread pool. Computed distances are
recovered from the output queue of the feeding pool and filtered. The filtering
process maintains a set of partial results until all distances for all candidates are
computed.

In this description, we have generalized the term of prefiltering. Usually, the
prefiltering refers to an application of some metric access method (e.g., the pivot
table prefiltering). If no special access method is used and a simple sequential
scan is performed, the prefiltering only sequentially gathers signatures and pack
them into blocks.

The performance of the system can be affected by the block size and how
many blocks are dispatched concurrently. The main thread operates in a loop
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Figure 4.10: Similarity search framework with GPU acceleration

over entire database performing prefiltering. If a block of candidates of sufficient
size is ready, it can be dispatched to the feeding threads. If a block of distances
is available, the prefiltering may be interrupted to filter the distances and update
the partial result set. The main thread can also choose to wait for next distance
block in case there are enough signature blocks currently dispatched. The exact
strategy is also dependent on the type of the query being solved.

In case of the range query, there is no particular reason to wait for the dis-
tances, except the memory limitations imposed on the feeding thread queues
perhaps. However, the kNN query is a much more complicated matter. The
filtering range is updated every time a block of distances arrives and the current
top-k result is updated. Unfortunately, the filtering range is also required by the
prefiltering step. In fact, it would be best to compute distances sequentially as
each distance can contribute to improving the filtering range. We address this
issue more thoroughly in Section 4.6.

Block Types

To cover all possible scenarios of usage, we have designed two types of blocks:

• a multi-query distance block

• and distance matrix block.

The former block type contains Nq query signatures and No object signa-
tures. The result comprises all distances between each query-object pair (i.e.,
Nq ·No values). Usually, the query signature block has only one query. The latter
block type contains N signatures and the entire distance matrix is computed. To
save space, we compute only one half of this matrix as the distance function is
symmetric, so the result consists of N(N − 1)/2 distances.

As mentioned before, each distance is computed by one thread group. The
multi-query case dispatches Nq · No groups and i-th group computes distance
between query q⌊i/No⌋ and object o(i mod No). The distance matrix case requires
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slightly more elaborated mapping as only half of the matrix is computed. The
mapping is depicted in Figure 4.11.

Figure 4.11: Examples of group id mappings to the distance matrix

This mapping was chosen, so that each thread can compute the indices of
the objects oi, oj from the group index GID with only a few integer operations.
The Algorithm 4.7 presents the formulas used for computing object indices from
group identifier.

Data: group index GID , number of objects N
Result: object indices i and j
i← ⌊GID/⌊N/2⌋⌋
j ← GID mod ⌊N/2⌋ + i+ 1
if j ≥ N then // out of matrix borders check

i← i+ 1− (N mod 2) // special correction for odd N
j ← j −N

end
if i ≥ j then // make sure we compute upper triangular matrix

swap i and j
end

Algorithm 4.7: Computing matrix position from group index

The results are compacted to an array of size N(N − 1)/2 in a row-wise
manner, so the i-th row has only N − i− 1 items. The index ires to the array can
be computed from indices i, j as

ires =
N(N − 1)− (N − i)(N − i− 1)

2
+ (j − i− 1).

Feeding The GPUs

The feeding threads prepare the data for the GPU, upload them to GPU buffers
and execute the SQFD kernel on the GPU. When the kernel finishes, the distances
are copied back to prepared buffer in the host memory. The problem is, that
each memory transaction to the GPU is bound with serious overhead. The data
must be prepared in one (or at least in very few) continuous block, otherwise
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the performance drops dramatically2. The feeding threads are responsible for
copying signatures from database buffers into a temporary buffer and then issue
a transfer to GPU.

Another problem is, that all the threads computing distances of one block
of signatures are provided only a pointer to the beginning of the buffer with
the signatures. Each thread group require two signatures from this block, but
the signatures are not aligned in the buffer as they differ in sizes. In order to
find these signatures quickly, an index is built by the feeding thread during the
copying step. The index contains offsets of all signatures in the block and the
size of the block. Hence, signature for object i starts at position Idx [i] and its
size is Idx [i + 1] − Idx [i]. The index is transferred to the GPU along with the
buffer containing feature signatures.

We have mentioned that the SQFD can be optimized by precomputing the
self-similarity submatrices of all database objects and the query. As we show
later in Section 4.4.3, the self-similarity value can be stored as single number.
The feeding thread assembles the self-similarity values for all signatures in the
block and prepares them into separate buffer, which is transferred to the GPU
along with signatures and their index.

Signature Format

The final issue regards the feature signature representation. Let us revise, that
each signature So is a list of centroids, where each centroid coi is a point in R

7 space
and a weight wo

i ∈ R
+ is attached to each centroid. Each value is represented

as 32 bit float number, which happens to be an ideal choice for the GPU, as it
operates naturally with 32-bit values.

The data format does not concern the rest of the system, because the re-
maining parts regard the signatures as blocks of binary data. The format has
also little consequence for the CPU implementation as the signature usually fits
the L1 cache, thus any compact representation works fine here. On the GPU,
the signatures are cached manually in the local memory of the SMP. The SMP
is divided into banks, so that two consecutive 32-bit words are in two following
banks. The peak performance is achieved when different threads access data in
different banks.

It is a good practice to organize this type of data as an array of structures,
where each structure represent one centroid (7 coordinates) and its weight. The
signature values are linearized in memory as (c1[1], c1[2], . . . , c1[7], w1, c2[1], . . .).
Let us assume that all the threads read different centroid at once. In the first
step, each thread loads ci[1] (where i is different for each thread). As the first
value of each centroid is aligned to 8 (addressing in multiples of 32-bit values),
threads on cores 0, 4, 8, 12, . . . , 28 will collide on bank #0, threads on cores 4k+1
collide on bank #8 and so on.

To avoid this problem, we organize the data in column-wise manner (in a
structure of arrays) as suggested in Section 2.2.4. Hence, there will be a block of
ci[1] values (i = 1, . . . , |So|) followed by ci[2] values and so on, enclosed by the

2Actually, several different approaches were tested, such as enqueueing transfers into out-
of-order command queue or using memory mapping for GPU buffers. The presented approach
was the fastest one.
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block of wi values. This way, the chance of collision is significantly reduced and
if consecutive threads reads consecutive centroids, there are no collisions what so
ever.

Another approach would be to separate only a vector of weights. The centroids
will be stored as array of structures (c1[1], c1[2], . . . , c1[7], c2[1], . . .) followed by an
array of weights. As the centroids are aligned to 7 words and 32 is not divisible
by 7, the probability of a collision is again significantly lower. However, our first
approach works for a feature space of any dimension (not only for 7).

4.4.3 Parallel Implementation of SQFD

One SQFD distance is computed by one work group, which is mapped to one
symmetric multiprocessor. The main restriction of this arrangement is that the
algorithm needs to be rewritten to fully embrace the SIMT nature of the mul-
tiprocessor. This means that we need to avoid creating a lot of branches or
while-loops and to balance the workload amongst the threads.

SQFD Revision

Let us briefly revise the definition of the SQFD (thoroughly described in Sec-
tion 4.1.4) for the purpose of its optimization for GPUs. The distance is defined
as:

dSQFDfs
(Sq, So) =

√

(wq| − wo) · Afs · (wq| − wo)T .

The Afs is the similarity matrix defined by similarity function fs. In our im-
plementation, we have used fs(ci, cj) = e−α·L2

2(ci,cj), but it can be easily changed.
The näıve approach is to enumerate matrix Afs and compute the multipli-

cation with the first vector w = (wq| − wo). The product would have the same
proportions as w and this intermediate result has to be stored in the memory.
Then, it is multiplied with wT and single scalar is yielded. Finally, the square
root of this scalar is found, thus the distance is computed.

Exploring Implementation Alternatives

There are many approaches to parallel implementation. As it is hard to formally
prove that an implementation is optimal or even better than another, we at least
examine other feasible alternatives and explain, why they have been rejected. We
start with a few observations, which are quite important for any implementation:

• The inputs can be cached into local memory and it is imperative they are
cached. Therefore, we assume that every algorithm does so. On the other
hand, it has to be noted that the signatures take significant portion of the
local memory, so any algorithm have less room for intermediate results.

• The enumeration of fs takes the most of the computational time, since it
needs to be computed for each pair ci, cj.

• The Afs matrix needs to be enumerated on the fly. Local memory of the
SMP cannot accomodate matrices larger than 110×110, which is not nearly
enough according to our data analysis.
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The näıve approach works very well on the CPUs as it uses optimal number
of arithmetic operations. However, in massively parallel environment, several
problems emerge. Elements of the similarity matrix can be enumerated inde-
pendently, thus concurrently. The problem is, that in the first multiplication
v = (wq| − wo) · Afs, each column of the matrix contributes to only one item in
the intermediate result v, so the access to values of v must be synchronized. The
same problem rises in the second multiplication, where a sum of the products of
corresponding items in the vectors v and wT needs to be found.

To avoid synchronization implied by the näıve approach, we can try reordering
the workload among the threads, so that each shared item is then managed by
only one thread. In this case, we assign each element of the intermediate vector
v to single thread in a round robin fashion. Hence, all the write operations are
mutually exclusive. We denote this approach the vector-parallel algorithm as it
parallelizes the work over the intermediate vector result.

The vector-parallel approach computes a vector v of the size |Sq|+ |So|, where
item vi is computed as a sum of values from the i-th column of the Afs matrix
multiplied by their corresponding weights from w. The values of Afs can be
enumerated on the fly as they are immediately multiplied by weight and added
to a partial sum. After that, each value vi is multiplied by wi and all the values
are added up. The final addition can be performed either simply by only one
thread, or by standard binary reduction tree technique.

Even thought the vector-parallel approach seems efficient as it does not re-
quire any synchronization (except for a simple barrier), it does not generate very
balanced workload. If the size of the vector (|Sq| + |So|) is equal to k · T , where
k ∈ N and T is the number of threads in the work group, it will work perfectly.
However, this is rarely the case as a fixed number of threads per work group
must be used and the signature sizes vary significantly. The NVIDIA program-
ming guide [34] suggest to use at least 4× as many threads as there are cores
on SMP, so we should use at least 4 × 32 = 128 threads. Smaller signatures
may cause that many threads will be idle. Furthermore, if the |Sq| + |So| is not
divisible by the warp size, there will be one warp in which some of the threads
are working and some are just blocking available cores.

Any other column-wise or row-wise approach to dividing the Afs matrix will
suffer the same problems as the vector-parallel algorithm. Better load balance
must be achieved by computing all the elements of the similarity matrix concur-
rently. We can easily linearize the elements of the matrix and assign them to
threads in round robin manner. This technique is also used in our approach, so
we describe it later in more detail. The problem is, how to efficiently deal with
the synchronization of the access to the intermediate result produced by the first
multiplication. We have explored several possibilities.

The operation performed by the threads is in fact an atomic addition. Each
thread computes a result of the fs function, multiplies it with corresponding
weight and adds it to a partial sum in the intermediate vector. Unfortunately,
all the values are represented as float numbers and OpenCL does not provide
atomic add for floats [38]. CUDA specifies atomic add on 32 bit floats; however,
such solution would not be portable. We can emulate atomic add using atomic
compare-and-exchange in a while loop, but such solution is quite slow.
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We have tried to devise other methods how to mutually exclude the addition
operations, but none of them was both thread-safe and efficient. A standard
implementation technique would be to use privatization. The shared data are
replicated, so each thread has its own copy. These copies are merged, when the
main part of the algorithm finishes. Unfortunately, there is not enough room to
fit so many copies of the vector in the local memory.

Our Approach

Our approach tries to take the best ideas from the presented alternatives and
combine them together. The key difference is, that we resent the näıve approach
and we do not construct the intermediate vector v of the first multiplication w·Afs

in the local memory. For the purpose of our algorithm, we define a weighted
similarity matrix Aw

fs
as

Aw
fs : a

w
ij = wi · aij · wj = wi · fs(ci, cj) · wj,

assuming the w = (wq| − wo) and i, j ∈ {1, . . . , N} if we denote N the rank of
the matrix (N = |Sq| + |So|). According to laws of distributivity, the SQFD is
then computed as

dSQFDfs
(Sq, So) =

√

∑

awij∈A
w
fs

awij =

√

√

√

√

N−1
∑

i=0

N−1
∑

j=0

wi · fs(ci, cj) · wj.

In other words, the items of the weighted similarity matrix are created by
enumerating fs function and multiplying the fs values by their corresponding
weights. The result is then produced as the sum of the values of the weighted
matrix.

Proof. We need to prove, that this modification produces the same result as
the originally defined SQFD formula. We start with the original vector-matrix
multiplications beneath the square root. For better reading, the algebraic multi-
plication of two numbers is denoted · while vector and matrix multiplications are
denoted ×.

w × Afs × wT =

N−1
∑

j=0

(w ×Afs)j · wj =

N−1
∑

j=0

(

N−1
∑

i=0

wi · fs(ci, cj)) · wj

=
N−1
∑

j=0

N−1
∑

i=0

wi · fs(ci, cj) · wj =
N−1
∑

i=0

N−1
∑

j=0

wi · fs(ci, cj) · wj

The first two equivalences only apply rules of matrix multiplication. The third
equivalence uses the law of distributivity, and the final one the fact, that addition
on real numbers is an associative operation.

Let us note that the presented proof is valid from a mathematical point of
view. However, real numbers are approximated by their discrete representation
with limited accuracy. It is known, that float numbers are not completely as-
sociative due to inherent rounding errors. We have confirmed empirically, that
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the results produced by the modified SQFD differs from the original results, but
these differences are negligible and have no measurable effect on the similarity
search precision.

The weighted similarity matrix approach produce the same result as the näıve
approach, but it is clearly suboptimal in the number of arithmetic operations per-
formed. As we used distributivity to multiply every element of the matrix with
both weights, the number of float multiplications increased by N2 − N . On the
other hand, this increase is hardly measurable as each core has its own float-
ing point unit and the computations in the fs function surpass these additional
multiplications by orders of magnitude.

Furthermore, our approach helps us better exploit the optimization presented
at the end of Section 4.1.4. The weighted similarity matrix can be divided into
four regions the same way the orignal similarity matrix was. Both self-similarity
submatrices can be computed in advance, and since we are interested only in
the sum of all the elements, we can save them as partial sums. Let us denote
these partial sums σq and σo for the query q and the database object o respec-
tively. The remaining two submatrices that represent the inter-similarity are in
fact symmetric, since fs is based on a metric distance. If we denote the par-
tial sum of one inter-similarity submatrix σq,o, the distance can be computed as
dSQFD(S

q, So) =
√

σq + σo + 2σq,o.

Work Decomposition

It has been demonstrated, that we need to enumerate weighted matrix Aw
fs

and
sum up all the values in order to compute SQFD. All the elements of the matrix
can be computed independently, so we need to focus only two things:

• how to decompose the matrix amongst the worker threads to achieve the
best load balance

• and how to perform effective parallel summation.

The first problem is solved with straightforward linearization of the matrix
and by assigning the items to threads in a round robin fashion. Each element aij
of the matrix has linear index3 l = width ·(i−1)+(j−1), and each thread process
elements with indices kT + TID , where k = 0, 1, . . ., T is the number of threads
in the group, and TID is the ID of a thread. This method is easily adopted for
rectangular section of the matrix as well, so we can compute only the σq,o of the
inter-similarity submatrix. The partitioning principle is depicted in Figure 4.12.

The second problem is solved in two steps. We cannot have a single variable
to hold the sum of the weighted matrix as it would become a serious bottleneck
due to synchronization. Fortunately, the privatization technique can be used here,
since only one variable needs to be replicated. A partial sum variable is allocated
per thread in the local memory and each thread adds computed elements of the
Aw

fs
matrix to its private variable.
At the end, all the partial sums need to be added up into one final sum. This

can be solved the same way as in the vector-parallel approach. A single thread

3Even though we normally use natural numbers for mathematical indices, the linear index
is zero based for computational purposes. That is why we had to decrement i and j.
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Figure 4.12: Dividing similarity matrix elements amongst the SMP threads (vi-
sualized for 16 threads)

can be dedicated to sum the partial results or a standard reduction tree can be
used. Even though the tree reduction has time complexity O(log T ), it did not
provide a measurable improvement, since all the threads must synchronize on
a barrier after every step and the final summation is only a very small fragment
of the overall work.

4.5 Parallel Approach to Metric Indexing

In the previous section, we have proposed a parallel implementation of SQFD for
GPUs. The framework was designed to be used with any type of metric access
method and we have tested it with pivot table prefiltering (2-phase LAESA). It
was empirically observed, that the prefiltering step may not be sufficiently fast to
supply blocks of candidates to GPUs. Especially if multiple GPUs are used and
more expensive prefiltering is used, like the Ptolemaic prefiltering for instance.

4.5.1 Problem Analysis

To better understand the problem, we have studied how the effectiveness of the
prefiltering step during standard kNN query evaluation on larger database. In
this analysis, we hold to an assumption that the database is randomized. This
assumption is quite realistic for pivot table indexing methods and we focus es-
pecially on the pivot table prefiltering. Figure 4.13 presents the prefiltering ef-
fectiveness ratio based on how large portion of the database has been already
processed. These data were collected in sequential version of the kNN algorithm
with combined triangular and Ptolemaic pivot table prefiltering, where filtering
range value was updated after each candidate.

The horizontal axis represent the number of database objects processed so
far. The vertical axis represent the prefiltering ratio, which is computed as the
number of candidates yielded for distance computation divided by the number of
total objects processed.
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Figure 4.13: Pivot table prefiltering effectiveness of the kNN query performed on
CoPhIR image database (10 randomly selected query objects, α = 0.2)

As the data clearly show, most of the queries get close to the filtering range
of 0.01 quite soon. This prefiltering range means, that at most one object of 100
makes it to the candidate block in average. If 32 pivots are used for Ptolemaic
inequality, the prefiltering step must compute |P |(|P | − 1)/2 = 32 · 31/2 = 496
elementary lower bounds4 to compute final lower bound for one object and 49, 600
elementary lower bounds to get one positive candidate. Even if we employ ear-
ly termination optimization, which terminates the prefiltering immediately when
a pivot is found that prunes the object out, (as described at the end of Sec-
tion 4.2.2), the workload required to test one candidate on CPU starts to compete
with the workload of the one distance computation on the GPU.

Possible Solutions

Both prefiltering and filtering steps are executed in turns by the main thread
loop. The prefiltering step must be executed on CPU as it limits the number
of signatures transferred to the GPU. If we moved the prefiltering to GPU, the
entire database would have to be transferred to the GPU in blocks as if the
sequential scan is being performed. In such case, the data transfers dominate the
computational workload significantly.

Since the prefiltering must remain on the CPU, multiple cores could be used
to accelerate the problem. As though this might help in some situations, such
as the range query, it is definitely not suitable for kNN queries. A kNN query
requires constant feedback between filtering and prefiltering as the partial top-k
result, which is modified by the filtering step, provides a filtering range value for

4One elementary lower bound comprises a few elementary float number operations.
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the prefiltering step. When divided into separate threads, a synchronization of
the top-k result will be required. We have estimated that this synchronization
would either create a serious bottleneck or the prefiltering step would be far less
effective.

For these reasons, we have decided to keep both prefiltering and filtering
steps in the main thread and accelerate the prefiltering by precomputing the
lower bounds on GPU.

4.5.2 Precomputing Lower Bounds

To reduce the amount of work performed in the prefiltering step, the lower bounds
for all database object are precomputed on the GPU(s) before the query is evalu-
ated. In order to do so, the early termination optimization must be sacrificed and
the implementation of the prefiltering step falls back to the condition lbP (q, c) ≤ r,
where r is the filtering range and lbP is the combined lower bound for pivot set
P .

The 2-phase LAESA algorithm is extended into 3-phase version. The first
phase remains the same – distances from query q to all pivots in P are computed.
The new second phase computes lower bounds of all objects in the database. The
third phase performs the same work as in original algorithm, only the prefiltering
step is much cheaper thanks to precomputed lbP values.

Lower-bounds on GPU

The computation of lower bounds on the GPU is very straightforward. Each lower
bound is computed as the minimum of |P |(|P |−1)/2 values and two lower bounds
can be computed independently, thus it is a perfect data parallel task. Each lower
bound lbP (q, o) computation require only |P | distances between query and pivots,
|P | distances between examined object o and pivots, and pivot-to-pivot distance
matrix. Since query-to-pivot and pivot-to-pivot distances are shared amongst the
threads, these data easily fit the local memory of an SMP. Therefore, one lower
bound can be computed by one thread.

Threads in a group start their work by a cooperative load of shared data
(query-to-pivot distances and pivot distance matrix) and corresponding part of
the pivot table to the local memory. When the load is completed all the threads
synchronize on a barrier and then continue with their own work.

If multiple GPUs are used, the total amount of work can be divided amongst
them. In case the GPUs are of the same type and speed, the work may be
divided evenly. Otherwise a speed estimation model would be required and the
work should be divided in the ratio of the speeds of GPUs.

Pivot Table Representation

The only complication is finding an efficient representation of the pivot table as
there are several requirements imposed.

• The pivot table must be easily divisible, so that each thread group can copy
only the part required by its member threads.
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• The pivot table must be organized, so it can be divided amongst multiple
GPUs in an arbitrary ratio.

• The data must conform to the properties of the GPU memory, especially
the banking mechanism of local memory.

Unfortunately, both row-wise and column-wise representations do not satisfy
all the requirements. The row-wise approach is better for the pivot table parti-
tioning. As the distances from each pivot to one object are gathered in a compact
block, the data required by one thread group are in one continuous range, so they
can be easily copied. Furthermore, the pivot table can be easily divided amongst
the GPUs when necessary. On the other hand, this approach will cause many
bank collisions in the local memory. Two consecutive threads access distances of
two consecutive objects of the same pivot at the same time. This memory access
is strided as these values are aligned to the number of pivots. If the number of
pivots and the number of threads in warp have a common divisor larger than 1,
bank conflicts are inevitable.

The column-wise approach has worked for us well in the past situations. The
data are reorganized, so that distances from all objects to one pivot are compacted
together. Therefore, the memory access pattern of the threads in a group will
guarantee, that there will be no bank collisions what so ever, no matter how many
pivots we have. On the other hand, it is much harder to divide the pivot table
as the data required by one thread group or one GPU are fragmented into |P |
continuous blocks.

We create a compromise between both approaches called packed pivot table
representation. The format is visualized in Figure 4.14. The pivot table is frag-
mented in row-wise manner into blocks of size B and within each block, the data
are organized in column-wise manner.

Figure 4.14: Packed pivot table representation

The packed pivot table can be easily divided with the granularity of the block
size B, thus smaller sizes are prefered. The size of the block B must be a multiple
of the warp size for obvious reasons. Considering the requirements, we have
chosen block size of 256 as it is also the size of the work group, so each thread
loads exactly one object (per pivot) from the block. The internal column-wise
organization guarantees no bank collisions, each work group loads exactly one
data block, and 256 is small enough for a fine grained division of the pivot table
amongst multiple GPUs.
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Persistent Pivot Table

An iterative approach can be chosen to compute the lower bounds, as it was used
for SQFD. However, the pivot table is much smaller than signatures. If 32 pivots
are used, each database object requires 128 B of space in the pivot table. Current
Tesla GPU cards contain 6 GB of global memory, thus they can keep a block of
pivot table for 48 million objects.

In case of smaller databases (tens of millions of objects), the pivot table can
be kept persistently in the memory of the GPUs along with the buffers required
for computing SQFDs in iterative manner. A comparison of signature sizes and
pivot table record sizes leads to an assumption that if the object signatures can
be cached in the host memory, the pivot table can be cached in the memory of
GPUs.

4.6 Prefiltering for k Nearest Neighbours

The sequential scan algorithm for both range queries and k nearest neighbour
queries can be easily parallelized. However, when a metric indexing is combined
with the kNN query, a serious data dependency is created that prevents efficient
parallelization. The prefiltering step requires the filtering range value which is
updated by the filtering process as the partial top-k result is being updated.

This dependency renders the optimal prefiltered kNN algorithm serial in na-
ture. If multiple distances are being computed concurrently, the update of the
filtering range will be inevitably delayed. Some of the distances may be computed
in vain as their corresponding objects could be pruned by the prefiltering if the
filtering range was updated without delay.

This issue brings us a serious dilemma as the parallelism and the prefilter-
ing effectiveness goes against each other. If the distance function is extremely
expensive, it may be better to parallelize only the internal computations of the
distance [108]. On the other hand, models with cheap distance functions or
databases with high intrinsic dimensionality may not benefit from the prefilter-
ing at all as it might be faster to compute a few cheap distances in highly parallel
fashion than delay the candidate dispatching with prefiltering.

4.6.1 Block Dispatching Strategies

In our work, we have been working strictly with the SQFD, which stands some-
where in the middle from the perspective of our dilemma. The prefiltering is defi-
nitely improving the query evaluation performance. On the other hand, comput-
ing a few more distances in the multi-GPU setting is hardly measurable. Hence,
we need to find a balance between the benefits of concurrent execution and pre-
filtering.

As it is quite hard to accurately predict the results of different strategies,
an empirical approach was taken. We have implemented several strategies and
observed the measured times for the same database and query set. Here, we
would like to summarize our experience gained from the experiments.
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Fixed Block Size and Limit

The simplest solution is to generate candidate blocks of fixed size and impose
a limit on the number of pending blocks being dispatched to the GPUs. The
strategy is summarized in Algorithm 4.8. It is is configured by two parameters:
the Bsize is the size of the blocks being dispatched to the GPUs and the Bcount is
the maximal number of pending blocks.

Data: database D, query q, k, block size Bsize , pending blocks limit Bcount

Result: list R of the k closest objects (and their distances)
R← ∅, B ← ∅, C ← D
while C 6= ∅ ∨ a pending block exists do

if C = ∅ ∨# pending blocks ≥ Bcount then
wait for next block of distances

end
if block of distances d is waiting in output queue then

filter d to update R
else

select object o ∈ C, C ← C \ {o}
if o passed prefiltering then

B ← B ∪ {o} // add a new candidate

if |B| ≥ Bsize ∨ C = ∅ then
dispatch B to feeding threads
B ← ∅

end

end

end

end
Algorithm 4.8: Fixed block size and limit strategy

The algorithm prefilters the candidates and assemble them into block B.
When the block reaches critical mass of Bsize , it is dispatched to the feeding
threads. The loop checks for the number of pending blocks and if it reaches the
Bcount limit, the main thread is suspended until a block of computed distances
appears in the output queue of the GPU part. The filtering step is invoked when-
ever there is a block of distances ready, so the filtering range is updated as soon
as possible.

The only remaining thing is to find optimal combination of Bsize and Bcount .
The empirical results indicate that optimal Bcount is 2 ·G, where G is the number
of available GPUs. The block size depends on some other factors. The data are
summarized in the experimental section 4.7.3.

Adaptative Block Sizes

A natural extension of the previous strategy is to vary the Bsize and Bcount during
the computation. The basic outline remains the same as in Algorithm 4.8. The
only difference is that the two parameters can change in every iteration based
on a predefined pattern, heuristic function, or some monitored properties of the
query evaluation.
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The idea behind this approach is that the prefiltering effectiveness increases
as the top-k result gets closer to the query. Thus, at the beginning, the algorithm
may benefit from more frequent updates of the filtering range, so smaller blocks
are dispatched to the GPUs. As the prefiltering gets better, the size of the blocks
can get larger, so the dispatching overhead is reduced.

We have tried several variations, but all of none of them was faster than the
optimal fixed-size strategy. We strongly suspect, that this approach may work,
but the block size changing pattern must be tailored to the dataset and to the
query, which is extremely difficult to achieve.

Two-phase Approach

Inspired by the previous strategy is a two-phase approach. The idea that inspired
adaptative approach is based on the fact that the prefiltering works poorly at
the beginning of the query evaluation and improves rapidly as the intermediate
top-k result is perfected. It was difficult to predict the pattern how the block size
should change, so we simplify the situation.

The search is conducted in two phases. The first phase process only a small
portion of the database, first several thousand objects for instance. In this phase,
no prefiltering is used, so all the distances are computed. This should not be
much worse than the previous strategies as the prefiltering does not do much
good in the start. On the other hand, the absence of prefiltering unties our hands
in matters of parallelism, so we can dispatch all the distances of the first phase
at once to be computed concurrently.

In the second phase, the algorithm reverts to the original prefiltering with
fixed-size blocks. The theory was that finding a switch point between first and
second phase should be much easier than finding a (potentially very) complex
pattern of the block size variation. Unfortunately, the empirical results were still
below expectations. On the other hand, these results provided another insight to
the problem, which was used to create range estimation algorithm presented in
the following section.

4.6.2 Range Estimation Algorithm

Let us define an optimal range ropt for a given query q and parameter k as
a filtering range for the range query algorithm that produces result set Rropt ,
which is equal to the result set RkNN produced by the kNN algorithm for the same
query. If we knew the ropt in advance, we could easily convert the kNN algorithm
to the range algorithm, which would compute significantly less distances, and
which would be perfectly parallelable.

Since we do not know ropt in advance, we propose a range estimation algo-
rithm. It computes a range estimate rest ≥ ropt , which is then used for processing
a range query. The result of the range query Rrest is obviously a superset of the
kNN result since rest ≥ ropt ⇒ Rrest ⊇ Rropt = RkNN . The final kNN result can
quickly be extracted from the Rrest by standard filtering as the distances have
already been computed.
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The Range Estimation

The most essential part of the algorithm is the range estimation process. The
algorithm selects a range estimation set E ⊂ D of predefined size |E| = Esize .
This set is used in the first phase of the algorithm where standard kNN query
without any prefiltering is resolved. We assume that the Esize ≥ k, so we can
take the distance of k-th item of the result as estimate range rest .

The quality of the range estimate is affected by the selection of estimate
set E. We need to find a cheap way of selecting objects for E that gives us the
best possible estimate. Our approach is based on the observation that the filtering
works significantly better, if the database objects are sorted by their lower bounds
and processed in ascending order. Therefore, Esize objects with the smallest lower
bounds of D should be selected in set E (i.e., ∀e ∈ E, ∀o ∈ D : lb(e) ≤ lb(o)).

The sorting process takes a significant amount of time, even if performed
on the GPUs. Fortunately, we do not need to sort the database to select top
Esize objects based on their lower bounds. The same approach which uses the
kNN filtering step can be employed here. A 2-regular heap with limited size of
Esize is created and all the lower bound values are inserted into this heap, so the
heap ends up with Esize smallest lower bounds and their respective objects. This
step can be accelerated further by the GPU as the lower bounds are computed
there anyway, but the code profiling indicate that this step is so cheap, it can be
performed on CPU without causing any measurable drop of performance.

Algorithm Formalization

The range estimation approach is formalized in Algorithm 4.9. The first phase
of the algorithm, which estimates the filtering range, has been already described.
The most time of the first phase is spent by distance computations of the kNN
query, but these distances can be computed on the GPUs in highly parallel fashion
since no prefiltering is used.

The second phase consist of a range query algorithm performed on the remain-
ing objects of the database. The range query employs pivot table prefiltering, but
with fixed range, the distances can be computed concurrently without any depen-
dencies. The results of the range query can be easily integrated to the result set
yielded by the first phase. In fact, this can be done on the fly without explicitly
constructing the Rrest set.

Data: database D, pivots P , query q, k, estimate set size Esize

Result: list R of the k closest objects (and their distances)
compute d(q, p) for each p ∈ P
compute lower bounds lbP on the GPU(s)
// range estimation phase

select E ⊆ D of size Esize , so that ∀e ∈ E, o ∈ D \ E : lbP (q, e) ≤ lbP (q, o)
R← kNNQuery(q, k, E) // no prefiltering

rest ← max{d(q, o)|o ∈ R}
// range query phase

Rrest ← RangeQuery(q, rest , D \ E) // pivot table prefiltering

update R with the results from Rrest

Algorithm 4.9: The range estimation algorithm for kNN query
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The algorithm is left with one parameter, that affects the performance. The
optimal size of the estimate set depends on the properties of the database (such
as intrinsic dimensionality), on the time complexity of the distance function,
on the strength of available GPU devices, and on the query itself. We provide
empirical results in the experimental section 4.7.4 that should give us at least
some estimates for our datasets. This matter requires additional research, which
is beyond the scope of this thesis.

The Misestimation Problem

The greatest (and perhaps the only serious) problem of the range estimation
algorithm is the possibility of range misestimation. If the first phase yields a range
estimate that is many times higher than the optimal range ropt , the algorithm
will not perform much better than sequential scan.

One of the possible solutions is to switch to kNN algorithm with the fixed block
size strategy. This approach should not be worse than the original kNN algorithm,
as the set E usually represents only a very small portion of the database and the
prefiltering does not work very well in the start. The decision, whether to use
range query or fall back to kNN query can be done in runtime. In order to do
so, we need some evaluation mechanism which can predict the quality of the
estimated range. This mechanism is a subject of future research.

4.7 Experiments

The experiments are divided into three parts that correspond to the contribu-
tion sections in this chapter. The first part evaluates the performance of our
new SQFD implementation for GPUs. It is followed by experiments focusing on
combining metric indexing with our parallel SQFD and accelerating the indexing
by lower bounds precomputations on GPUs. Finally, we address the question of
efficient parallel kNN query with pivot table prefiltering and the performance of
newly proposed range estimation algorithm.

4.7.1 Hardware and Methodology

Before we present our empirical data, let us introduce the hardware setup, used
datasets, and the methodology of measurement.

Hardware

The GPU experiments were performed on a server built on a special motherboard
(FT72-B7015) designed to embrace up to 8 GPU cards. The server was equipped
with Xeon E5645 processor comprising 6 physical (12 logical) cores running at
2.4 GHz, 96 GB of DDR3-1333 RAM, and 4 NVIDIA Tesla M2090 GPU cards
based on Fermi architecture. Each GPU chip consists of 512 cores (32 cores per
16 SMPs) and 6 GB of memory.

We also tested the GPU implementation on a commodity PC with two gaming
cards NVIDIA GTX 580. These cards have also 512 cores, but only 1.5 GB of
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memory. We have found that the GTX 580 cards have similar performance as
the Teslas, thus we do not provide more detailed comparison.

Tests conducted on the multi-core CPU server platform are denoted CPU1 –
CPU48 in the figures. We used Dell M910 server with four six-core Intel Xeon
E7540 processors with hyperthreading (i.e., 48 logical cores) clocked at 2.0 GHz.
The server was equipped with 128 GB of RAM organized as 4-node cache coherent
NUMA. A RedHat Enterprise Linux 6.3 was used as operating system on all
machines.

Data

We use three datasets in our experiments. All these datasets represent real world
image sets, but they differ in the number of objects, sizes of the signatures, and
indexability properties. The smallest one is The Amsterdam Library of Object
Images (ALOI) [118], which consists of 72, 000 images. The ALOI database is too
small for some experiments, but it can be used for sequential scan tests, which
are quite slow.

A medium-size dataset is the CoPhIR [119], which is a wellknown dataset for
content-based image retrieval testing. It was designed to test both effectiveness
and efficiency of the image retrieval systems. Our subset comprises of 951, 532
randomly chosen images.

Finally, the largest set is the Profimedia [120]. Profimedia is a commercial
image database available on the internet. It offers photographs that can be used
for illustrational purposes in advertising, propagation, and many other domains.
We have a subset of 17.5 million randomly chosen images.

All the datasets have been randomly shuffled and feature signatures were
extracted for them. The shuffling was performed by Algorithm 4.10, where the
random function is a pseudo-random generator implemented in standard C++
library. We do realize that this generator does not produce completely random
numbers, but since we are not trying to ensure cryptographic safety, the pseudo-
random numbers ensure sufficient shuffling.

Data: array A of N items (indexed from 1 to N)
Result: shuffled array A
for i← 1 . . . N − 1 do

j ← random(i, N) // j ∈ {i, . . . , N}
if i 6= j then

swap A[i] and A[j]
end

end

Algorithm 4.10: The random shuffling algorithm

The database is shuffled for two reasons. First of all, we need to normalize
our results as we would like to show, how our methods work with unknown
query on any data. If the objects in the database use some specific ordering, it
would be hard to prove that our experiments were not tuned for this particular
ordering. Second reason is, that the pivot table prefiltering expects the objects
to be randomized. Unlike other metric access methods, this prefiltering traverses

93



the entire database, so it would be better if it has a chance to encounter any
object with the same probability.

The first 32 objects were used as pivots for the pivot table prefiltering. We
need to select random objects as pivots, but since the database was already
randomized, the first 32 objects are as good selection as any. A subset comprising
100 objects was selected and excluded from the database. Objects in this subset
were used only as testing queries. Again, we wanted to select query objects
randomly, so we choose last 100 objects of the shuffled database.

Methodology

The tests were performed using 100 query signatures with different numbers of
centroids. The time of evaluation was measured using the system real time clock.
Each experiment was measured at least three times and the presented results are
the mean values of the measured times. If any of the measured values deviated
from the average by more than 15%, the value was discarded as tainted and the
test was repeated.

The most of the presented values are the average times computed from 100
queries. The only exception are the box plots, where the distribution of all 100
times is presented.

4.7.2 Parallel SQFD

In this section, we evaluate the performance of standard sequential scan algo-
rithm where the distances are computed concurrently on GPUs. All presented
experiments resolve a kNN query, where k = 100. No range queries were pre-
sented as they exhibit almost identical performance results. The filtering steps
of both query types consume similar amount of time and the most of the time is
spent in the distance computations anyway.

Finding Optimal Block Size
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Figure 4.15: Impact of the block sizes on sequential scan (1 GPU)
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First of all, we would like to find an optimal number of distances being com-
puted at once in one block. We use single-query setup, thus for a block size B,
B + 1 signatures are dispatched in each block and B distances are computed.
There are always two blocks being dispatched to each GPU. One of the blocks is
being processed, while the other is being transferred.

The results depicted in Figure 4.15 confirm our general assumption, that
smaller blocks have higher overhead, thus processing the query is faster when
the blocks are larger. The block size should be at least 2048 for both datasets.
All the remaining SQFD experiments are performed with block size 4096 unless
explicitly stated otherwise.

Self-similarity Precomputation

The SQFD can be optimized by precomputing the self-similarity matrices of all
database object and the self-similarity matrix of the query object before the query
evaluation starts. As shown in Section 4.4.3, each self-similarity matrix can be
stored as one partial sum. We have tested the impact of this optimization on the
performance.
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Figure 4.16: Impact of the self-similarity precomputation (1 GPU)

Figure 4.16 presents the measured improvement in box plots, which demon-
strate also the distributions of times. The data denoted orig. represent times for
the SQFD implementation, which precomputes the query self-similarity matrix so
it is not computed repetitively with every distance, but the self-similarity values of
the database objects are not precomputed. The opt. results have all self-similarity
values precomputed, thus each distance enumerates only the inter-similarity ma-
trix. The improvement graph shows the speedup values for individual queries
computed as Torig ./Topt . ratio.

We can observe, that the speedup of opt. version varied significantly over the
query set. This is caused by different sizes of the signatures which affects the
ratio of precomputed work to total work. Furthermore, the CoPhIR database
has larger signatures (according to histogram in Figure 4.9), thus more work is
saved when the self-similarity matrices are precomputed.
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Sequential Scans on Various Hardware Configurations

To demonstrate the impact of GPU acceleration, we have performed series of
queries with optimal settings on several platforms. The CPUn denotes exper-
iments running on our NUMA server comprising 4 processors, 6 physical cores
with hyperthreading each. The CPU implementation used Threading Building
Blocks managed thread pool with n threads. The SQFD was compiled to exploit
SSE instruction, so the CPU was utilized to the best of its abilities. The GPUn
tests denote the results for GPU implementation restricted to n devices.
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Figure 4.17: Results of 100NN queries on ALOI database for various architectures
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Figure 4.18: Results of 100NN queries on CoPhIR database for various architec-
tures

Figures 4.17 and 4.18 presents the results measured on ALOI and CoPhIR
datasets respectively. The CPU results revealed interesting anomaly, as the
CPU24 version was faster than CPU48 version. The server has 24 physical and 48
logical cores. Hyperthreading technology has obviously its limits and the work-
load of SQFD is capable of utilizing most of the CPU internal units. When two
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threads are competing for the resources of the physical core, no additional per-
formance is gained and the overhead of the parallel execution causes slight drop
in performance.

The speedups relative to the single core version are shown in Figure 4.19. The
GPU speedups are in fact comparing two completely different platforms and they
should be perceived in such context. However, they give us a general idea, how
much the performance is improved by employing GPUs for similarity search.
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Figure 4.19: Speedup to the serial version for various platforms

The ALOI database exhibits significantly lower speedup than the CoPhIR
dataset. This is most likely caused by the data properties of ALOI as it comprises
only 72, 000 objects. Hence, the GPUs are provided only few signature blocks
each thus the pipeline effect is not exploited to its full potential. Furthermore,
the ALOI has smaller signatures, thus the ratio of computational work to data
transfers is significantly lower than in case of CoPhIR.

4.7.3 Metric and Ptolemaic Indexing

We have proven that GPUs can really help accelerate distance computations.
Now we focus on metric access methods, since they are often used in combination
with SQFD.
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The Alpha Parameter

First of all, we would like to demonstrate the impact of the SQFD parameter
α on the indexing effectiveness. The Figure 4.20 shows the results of 100NN
query with triangular pivot table prefiltering using different values of α. The
fixed block size strategy was used to deal with the dependency problem of the
parallel kNN queries that employ prefiltering. The block size determines the
number of distances being computed in one block and at most 2 blocks per GPU
are dispatched simultaneously.
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Figure 4.20: Fixed block size 100NN query with triangular pivot table prefiltering
performed on 4 GPUs

The values α = 0.01, 0.2, and 3 were selected according to previous research
[121]. The α = 0.01 exhibits the best indexability properties, α = 3 has the best
similarity precision, and α = 0.2 is the best compromise between indexability and
precision.

As expected, the indexability affects the performance significantly. The lowest
α causes that more objects can be pruned in the prefiltering phase, thus less
distances are computed. On the other hand, the α = 3 does not seem to benefit
from the prefiltering at all as it exhibits similar results to a simple sequential scan
algorithm (Figure 4.18).

The optimal block size also depends on α. When α = 0.01, smaller blocks
work better as the filtering range is updated more often. Slightly larger blocks
(from 256 to 512 objects) are required for α = 0.2, since the balance between index
effectiveness and GPU distance computations overhead shifts with the decrease
of the indexability.

Precomputing Lower Bounds on GPUs

We have proposed to compute the lower bounds on GPU(s) in order to accelerate
the prefiltering step and achieve faster dispatching of candidates. The impact
of the precomputation is assessed independently for all types of prefiltering us-
ing 1 and 4 GPUs on CoPhIR database (Figure 4.21) and Profimedia database
(Figure 4.22). Method tri denotes standard triangular prefiltering, pto stands
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for Ptolemaic prefiltering, and cmb is combined (triangular and Ptolemaic) pre-
filtering. The versions suffixed with asterisk (tri*, pto*, and cmb* ) precompute
their lower bounds on GPU(s) and employ 3-phase LAESA access method. Let
us emphasize, that the methods with precomputed lower bounds are timed so
that all phases (including the precomputation) are encompassed in the measured
time.

All methods use 32 pivots. Let us revise that triangular prefiltering use one
pivot for each individual lower bound estimate, thus computing the lb△P has time
complexity O(|P |). Ptolemaic prefiltering lbPtP uses a pair of pivots for each lower
bound, hence its time complexity is O(|P |2).
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Figure 4.21: Fixed block size 100NN query with various types of pivot table
prefiltering on CoPhIR database (α = 0.2)

The CoPhIR database results confirm our assumptions. When one GPU is
used, we can observe two important things. First of all, the Ptolemaic prefiltering
is more effective on the same set of pivots as it can give us better lower bound
estimates and combined prefiltering is the best as it yields the better of the
lower bounds produced by previous two methods. Furthermore, the lower bound
precomputation can save some time as tri*, pto*, and cmb* versions are faster
than tri, pto, and cmb respectively.

The situation gets slightly different as more parallel computational power is
available. The four-GPU version exhibit strange behaviour, since the triangu-
lar prefiltering on CPU outperformed both Ptolemaic and combined prefiltering.
The explanation of this anomaly is apparent, when we compare the prefiltering
methods which have the lower bounds precomputed. Without precomputation,
the CPU cannot supply candidates to GPUs fast enough. Hence, the better per-
formance is achieved, when cheaper (triangular) prefiltering is employed. The
triangular prefiltering causes that more distances are computed by the GPUs,
but the GPUs do not get stalled by the main CPU thread. When we precompute
the lower bounds, the combined prefiltering method is the best, since it prunes
more objects and fast prefiltering does not stall the GPUs.

The results measured on Profimedia database also confirms that the prefilter-
ing with precomputed lower bounds is better. However, the data exhibit some
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Profimedia (1 GPU)

block size

re
al

 ti
m

e 
(m

s,
 lo

g.
 s

ca
le

)

16 32 64 128 256 512 1024 2048 4096

30
0

40
0

50
0

60
0

70
0

tri
pto
cmb

tri*
pto*
cmb*

Profimedia (4 GPUs)

block size

re
al

 ti
m

e 
(m

s,
 lo

g.
 s

ca
le

)

16 32 64 128 256 512 1024 2048 4096

20
0

40
0

60
0

80
0

tri
pto
cmb

tri*
pto*
cmb*

Figure 4.22: Fixed block size 100NN query with various types of pivot table
prefiltering on Profimedia database (α = 0.2)

other unexpected anomalies we need to explain. First of all, in almost every
case, the triangular prefiltering outperformed Ptolemaic and combined prefilter-
ing, even when the lower bounds are precomputed. The reason is that the Profi-
media database has better indexability than CoPhIR, thus even simple triangu-
lar inequality is sufficient to rule out many objects in the prefiltering step. The
Ptolemaic prefiltering is much more expensive and it improves the pruning only
slightly. Therefore, it is better to use cheaper prefiltering in this case.

Second important observation is that the combined prefiltering with precom-
puted lower bounds is slower than the CPU prefiltering. This behaviour is caused
by the early termination optimization that is employed on CPUs. We have al-
ready established, that the triangular prefiltering works very well on Profimedia
dataset. If the prefiltering of an object is terminated as soon as a pivot (or a pair
of pivots in case of Ptolemaic inequality) is found that gives us a lower bound
exceeding the filtering range, a lot of computational work will be saved.

The precomputation of 17.5 million lower bounds on one GPU takes about 75
milliseconds in case of triangular inequality, around 375 milliseconds for Ptolemaic
inequality. If the CPU prefiltering becomes cheap enough so it overlaps signifi-
cantly with the distance computations and does not stall the GPUs, the overall
performance may be better than in case a long time is spent by precomputing
the lower bounds on GPU(s).

4.7.4 Parallel k Nearest Neighbours with Prefiltering

Finally, we address the problems of parallel kNN queries with pivot table pre-
filtering. So far, we have presented only the results of fixed block size approach.
Now, we examine the range estimate algorithm, which should outperform the
traditional fixed block size approach in most cases.
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Size of the Range Estimation Set

First of all, we need to determine optimal estimate set size. For this purpose
we have measured the performance of the range estimate algorithm with Esize

between 128 and 16, 384. Since we test kNN queries where k = 100 and Esize

is required to be greater than k, we did not consider any smaller sets. The
performance starts dropping significantly, when the estimate set exceeds the size
of 16, 384, thus we did not consider to include larger sets either.

To see how the Esize parameter depends on other properties, we conducted
the experiment on one and four GPUs using α value of 0.01 and 0.2. It has been
established that α = 3 does not benefit from indexing, so we did not include
it to this experiments. All the experiments were using combined triangular and
Ptolemaic prefiltering method.
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Figure 4.23: Finding optimal Esize for different databases and configurations

The results presented in Figure 4.23 match the observations from the fixed
block size approach (Figure 4.20). Smaller estimate sets (up to 512) are better
for α = 0.01, as it has the best indexability. If we change α to 0.2, slightly larger
estimate sets are optimal.

The Profimedia database exhibit much lower variance in the performance
across the Esize parameter domain. This is caused by the same problem, that
was observed in the previous section. The range estimation algorithm needs to
precompute all the lower bounds to select the estimate set. The precomputation
itself takes significant portion of time in case of Profimedia, and this time depends
mostly on the size of the database.

It has been also observed, that the optimal estimate set size is different for
each query. The data presented in Figure 4.23 are computed as average time for
100 randomly selected queries, so we can assume that the optimal sizes found
in the graph work well in average. However, it might be better to select the
estimate set size based also on some preliminary information about the query.
This research is still to be concluded.
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Overall Comparison

To assess the benefits of the range estimation algorithm, we compare it with the
fixed block size approach. On the following graph (Figure 4.24), fixed denotes the
fixed block size method, range denotes the range estimation algorithm, and divine
denotes the optimal range estimation algorithm. The optimal range estimation
algorithm uses oraculum to guess the optimal filtering range and then performs
parallel range query as a substitution for the kNN query. The divine method
is obviously theoretical, but it provides a baseline as the kNN query with pivot
table prefiltering cannot be resolved any faster.

The results presented in Figure 4.24 are the average times of 100 queries per-
formed with the optimal parameters (block sizes or estimate set sizes) determined
for each configuration independently by the previous experiments. Combined pre-
filtering method was used in the experiments.
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Figure 4.24: Comparison of presented algorithms for kNN queries with prefiltering

In case of CoPhIR database, the results clearly prove, that the range estima-
tion algorithm outperforms the fixed block size approach and for α = 0.2 it gets
quite close to the results of the divine algorithm. The Profimedia dataset exhibits
the anomaly described earlier. The range estimation algorithm needs to compute
all lower bounds on the GPU(s). In one-GPU configuration, this precomputation
takes 375 milliseconds, which alone is much longer than the time required by the
fixed block size approach.
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5. Image Feature Extraction

In the previous chapter, we used the GPUs to accelerate the content-based re-
trieval methods on the image databases. In this chapter, we focus on another
computationally expensive problem of the similarity search – the construction of
object descriptors. The images are represented by the feature signatures, which
can be easily compared by the SQFD function to test their dissimilarity. The fea-
ture extraction process that constructs these signatures is quite time consuming.
We propose a GPU accelerated extractor, which can speedup this process by two
orders of magnitude.

5.1 Introduction

This chapter continues the work on similarity search problems presented in the
previous chapter. The image feature signatures have been introduced in Sec-
tion 4.1.2. We revise the feature signatures in more detail and present the feature
extraction process in Section 5.2. The performance issues and our GPU acceler-
ated implementation are addressed afterwards in Section 5.3.

5.1.1 Motivation

The efficiency of feature extraction could seem little of importance, since the
extraction process is usually performed only once for each image. The images are
processed independently, so multiple extractions can be performed concurrently,
even on separate machines. Hence, we can achieve desired extraction throughput
by purchasing enough hardware or computational time in a cloud. However, there
are several reasons, why we should consider using GPUs for the extraction:

• We have already employed GPUs for similarity search, so we can assume
that the GPU devices are available for the database system. It might be
beneficial to utilize their computational power for all computationally ex-
pensive problems.

• The GPUs have much better performance to cost and performance to power
consumption ratios. Therefore, it may be cheaper to acquire sufficient com-
putational power employing GPUs, instead of traditional multi-core CPUs
and NUMA systems. Analogically, we can process larger datasets in feasible
time with limited hardware budget.

• The extraction algorithms has many configuration parameters. Finding an
optimal configuration via experimental approach requires many iterations
of the extraction process and subsequent precision verification. If we reduce
the time required by the extraction process, we can explore later parame-
ter space, or even switch to dynamic configuration model which tunes the
parameters specificly for each dataset.

Presented reasons are emphasized in the light of our research and related
projects. The GPU extractor reduced feature extraction time of large datasets
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that we require for related experiments from matter of weeks to matter of hours.
Furthermore, we were able to perform quite extensive search of optimal parameter
configuration on a database with ground truth in matter of weeks, while the same
experiments would take more than a year on common multi-core CPU.

5.1.2 Related Work

Several types of image descriptors were already introduced in Section 4.1.2. The
extraction algorithm for feature signatures consists of feature sampling and clus-
tering, so we focus on related work in parallel image processing and GPU imple-
mentations of the k-means clustering.

GPU Image Processing

Employing GPUs for image color processing was suggested first in the work of
Colantoni et al. [122] in 2003. Among other things, they have utilized GPU cards
of the time for color conversions from RGB to Lab and to HSV color spaces. They
have used fragment shaders to compute the conversions and achieved 10× speedup
with respect to single-core CPUs.

Methods of computer vision are employed to extract more complex features
than colors. One of the first attempts to utilize GPU devices for this task was
presented by James Fung in the book of GPU Gems [123]. He proposed using
GPU shaders to accelerate several algorithms for edge detection, hands tracking,
or feature vector computations.

One of the most important problems in the computer vision and feature ex-
traction is the edge detection. Perhaps the most famous algorithm was presented
by Canny [124], so it is called Canny Edge Detection algorithm. A GPU imple-
mentation of this algorithm was proposed by Roodt et al. [125], in 2007. Their
solution was based on graphical approach and implemented in GLSL language
using OpenGL API. They have achieved a throughput of 80 frames per second
on 2, 048×2, 048 images on one NVIDIA GeForce 8800 GTX, which is enough to
perform realtime processing of HD video. Unfortunately, no detailed comparison
with CPU performance was given.

Independently on the work of Roodt, similar paper was presented one year
later by Luo et al. [126]. Their implementation used CUDA framework and
achieved similar results on the same hardware. They have also implemented the
hystersis step that post-process the detected edges. Two years later, Ogawa et
al. claimed that the algorithm of Luo has a flaw as it does not correctly traverse
all weak edge pixels, so they propose a correction of the algorithm [127].

Another type of feature signatures can be generated using Scale Invariant
Feature Transform (SIFT) method. This method is usually used to detect ob-
jects by their shapes, since it is highly resilient to changes in rotation, scaling,
and lightning conditions. Heymann et al. [128] proposed an implementation op-
timized for GPUs. They have used OpenGL to accelerate individual steps of the
extraction, such as gradient transformations, gaussian convolution or key point
filtering. They have achieved 6× speedup with respect to a single-core CPU.
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K-means Clustering on GPUs

One of the first attempts to parallelize clustering was presented in 1989 by Xiaobo
Li et al. [129]. They designed several parallel clustering algorithms for Hypercube
SIMD computer model. Their approach was purely theoretical, but designed for
an existing architecture.

The first attempt to accelerate k-means clustering on GPUs that we know
of was made by Shalom et al. [130]. Their implementation did not use any es-
tablished computational framework, but rather convert the clustering into image
rendering problem. They have tried several approaches with the OpenGL plat-
form, such as using the texture buffer or using the depth and stencil buffer. The
shaders that perform the computations were written in GLSL and they performed
multi-pass rendering to perform the iterative refinements.

Independently on the work of Shalom, Farivar and his team presented work
[131], which used CUDA to compute the k-means. Their implementation was
designed to accelerate the two most expensive steps – the cluster assignment and
the computation of centroids.

One year later, another two papers on the subject was presented by Hong-tao
[132] and by Zechner [133]. They have achieved slightly better performance, but
the general idea of the algorithm remained the same in both papers.

All the presented work on GPU k-means clustering that we know of tries to
accelerate one instance of k-means problems with explicit CPU-GPU synchro-
nization after each step in the main loop. Our problem is different not only
because we use modified version of k-means algorithm, but also because we need
to solve clustering problem on multiple smaller datasets. Furthermore, no one
has presented work that utilizes multi-GPU configurations yet, at least not to
our best knowledge.

5.2 The Feature Extraction

The feature extraction process takes an image and produces its feature signature
descriptor. We expect that the image is represented in some standard raster for-
mat, so we can access the color information of each pixel directly. The signatures
produced by the extraction process were briefly introduced in Section 4.1.2. We
revise the feature signature in more detail and explain, how they are extracted
from the image.

5.2.1 Extraction Overview

The signature So is a set of features, which are points from feature space Fs. Our
feature space is in fact a subset of R7, where each dimension has special meaning.
A point f ∈ Fs looks like f = (x, y, L, a, b, c, e). The (x, y) coordinates represent
a position within the image. This position is the center of a sampling area where
the other features are taken. The (L, a, b) properties hold the color information
of that area and (c, e) are the contrast and entropy values of the texture in that
area.

Each feature f from the signature So is accompanied by a weight value wf ∈
R

+, that summarizes the importance of the feature within the set. In other words,
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how large portion of the image does the feature represent. A larger area with the
same color and texture can be represented by a single feature with greater weight
while more heterogeneous areas are represented by multiple features with smaller
weights.

The features are determined by a clustering process, so we also denote them
centroids. Since the features and weights are provided together in the signature,
we can mend the original definition as follows. The signature So is a set of ordered
pairs (fi, wi) (or (ci, wi)), where fi are the features (or ci are the centroids) and
wi are the weights.

The Extraction Process

The extraction process consist of following steps:

1. Image preprocessing

2. Feature sampling

3. Clustering

The image preprocessing can be used to change the size of the image or apply
some graphical filters such as blur distortion. These procedures can be used to
normalize the images in the database (e.g., to the same size and proportions) and
to reduce information noise.

In our implementation, we have resized all the images into thumbnails of
150 × 150 pixels, which were saved as RGB bitmaps using 8-bits per channel.
Even though the original images do not have rectangular size, this method is
designed to operate on photographs or similar type of imagery, which can benefit
from such normalization. No additional filters were applied.

The image preprocessing is not very interesting as the image resampling tech-
niques, as well as filtering algorithms, are thoroughly described in the litera-
ture [134] and we do not address them in this work. The feature sampling and
the clustering process are described in the following two sections.

5.2.2 Sampling Features

The entire picture contains too many information, so a sampling technique is used
to select only some representatives. The sampling is used mainly to speedup the
extraction process, but it can be also used to prioritize certain parts of the image
if nonuniform distribution is selected.

To sample an image, we generate a set of points Ps ⊂ (0, 1)2 of predefined
magnitude. These points are used to compute the (x, y) values of the feature space
and pixel coordinates xp, yp. For sampling point s ∈ Ps, the pixel coordinates are
computed as follows

xp = round(sx · (width − 1)),

yp = round(sy · (height − 1)),

where width and heigth represent the size of the sampled image in pixels and the
round() function is standard rounding to the nearest number from N. The feature
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properties x, y are computed from pixel coordinates xp, yp by normalization back
to 〈0, 1) range:

x = ⌊xp/width⌋,

y = ⌊yp/height⌋.

This way, the feature coordinates are snapped to the pixel borders, thus they
more adequately correspond to other properties gathered from the pixel (i.e., the
color and the surrounding texture).

Grid Uniform Gaussian

Figure 5.1: Examples of sampling distributions

The sampling set Ps can be generated several ways, some of which are depicted
in Figure 5.1. We can use a regular pattern (a grid for instance) or random
pattern. In case of random patterns, there are various distributions that can be
used such as uniform distribution where all points of (0, 1)2 are selected with
the same probability, or Gaussian distribution, which tends to select more points
from the center of the image. In our work, we have chosen a random selection of
gaussian distribution with mean value (0.5, 0.5), as it helps avoiding alias effect of
regular sampling and the center of the image often contains the most important
objects from the perspective of similarity.

Color Information

The color information is extracted from the pixel, at the feature coordinates.
Optionally, an average color from some small surrounding can be computed as
the representative color, but since we already use rather small thumbnails, the
pixel represents sufficiently large area of the image. There are many color spaces
that can be used to represent the information. Most of them use three-component
systems, so we assume the color information is stored in three dimensions of the
feature space. The problem is, that we need to find a color space where Euclidean
distance (which is used as the basis for the ground distance in SQFD) reflects the
color similarity perception of a human eye and brain.

The image is usually represented in the RGB color space. However, the human
eye is more perceptive to changes in illumination than to changes in tone of
the color. Furthermore, the red, green, and blue components of the color are
perceived with different intensities. A very good results have been achieved with
the CIE LAB [81] (or Lab) color space, so we use this representation in our
implementation.
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The Lab color space represent colors by three properties L, a, and b. The L
stands for lightning component, a and b are the color-opponent properties. The
representation is based on nonlinearly compressed CIE XYZ color space [135],
which was designed with respect to the perception properties of human eye. To
convert color from RGB to Lab, we need to convert it to the XYZ first and then
compress it to Lab.

Let us have color represented by values R, G, and B in RGB space, where the
values are normalized to interval 〈0, 1〉. The conversion to XYZ is performed as
follows. First, the RGB values are transformed by function frgb, which is defined
as

frgb(t) =

{

( t+0.055
1.055

)2.2 for t > 0.04045,
t

12.92
otherwise.

The transformed values are denoted r̄ = frgb(R), ḡ = frgb(G), and b̄ = frgb(B).
Then, the XYZ values are computed as a simple linear combination:

X = 0.4124 · r̄ + 0.3576 · ḡ + 0.1805 · b̄

Y = 0.2126 · r̄ + 0.7152 · ḡ + 0.0722 · b̄

Z = 0.0193 · r̄ + 0.1192 · ḡ + 0.9505 · b̄

When the color is transformed to XYZ space, we can compress it to the Lab
space. The compression requires transformation fxyz defined as

fxyz(t) =

{

t1/3 for t > ( 6
29
)3,

1
3
(29
6

2
)t+ 4

29
otherwise.

Using this function, the L, a, b values are computed as:

L = 116fxyz(Y/Yw)− 16,

a = 500(fxyz(X/Xw)− fxyz(Y/Yw)),

b = 200(fxyz(Y/Yw)− fxyz(Z/Zw)).

The XwYwZw color is the reference white point used for white balancing. We
use white point D65, which has values Xw = 0.9505, Yw = 1, and Zw = 1.0890.

Contrast and Entropy

The last two dimensions of the feature space are denoted contrast and entropy.
They represent the texture properties in the vicinity of the sample coordinates.
These features are based on changes in the illumination, thus they are computed
from an image converted to greyscale. A square area around the selected pixel
called the lookup window is established in the image. Pixels in the lookup window
are scanned and co-occurrence matrix Γ is constructed [136]. The contrast and
entropy values are then computed from this matrix.

Greyscale value (i.e., the illumination component) of a pixel is computed as
weighted sum of its RGB components. The greyscale is quantized to fixed number
of discrete values. We denote Gs the maximal value on the scale, and the values
are zero based (i.e., the greyscale goes from 0 to Gs). The quantized greyscale
value is computed from normalized RGB color as
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G = round((0.299 ·R + 0.587 ·G+ 0.114 · B) ·Gs).

Once we have a greyscale representation of the image, a lookup window for
the sample is established. If the xp, yp are the pixel coordinates of the sampled
point, the top-left corner of the window will be [max(0, xp− rce),max(0, yp− rce)]
and the bottom-right corner will be [min(width, xp + rce),min(height , yp + rce)],
where rce ∈ N is the contrast-entropy window radius and (width, height) are
the proportions of the image in pixels. So the window is usually a rectangle
comprising (2rce + 1)2 pixels, but it is cropped if the sampled point is too close
to the border of the image.

The co-occurrence matrix Γ is a rectangular matrix of Gs×Gs elements. Each
element γi,j is in fact the number of adjacent pixel pairs (horizontally, vertically,
or diagonally) within the lookup window, where one of the pixels has greyscale
value i and the other one j. If we denote Gx,y the greyscale value of pixel [x, y],
the formal definition will be

γi,j =

right−1
∑

x=left

bottom−1
∑

y=top

(

ti,j(Gx,y, Gx+1,y) + ti,j(Gx,y, Gx,y+1) +

+ ti,j(Gx,y+1, Gx,y+1) + ti,j(Gx+1,y, Gx,y+1)
)

,

where left = max(0, xp− rce), right = min(width, xp + rce), top = max(0, yp−
rce), and bottom = min(height , yp + rce). The testing function ti,j is a binary
operator that returns 1 if the test succeed, and 0 when it fails:

ti,j(g1, g2) =

{

1 if g1 = i ∧ g2 = j,

0 otherwise.

Figure 5.2: Construction of co-occurrence matrix from greyscale lookup window

The principle of co-occurrence matrix construction is depicted in Figure 5.2.
To compute contrast and entropy, we require the co-occurrence matrix to be
symmetric and normalized. For this reason, we define a normalized co-occurrence
matrix Γ̄ as follows:
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γ̄i,j =

{

(γi,j + γj,i)/n for i 6= j,

γi,j/n for i = j.

The normalization constant n is the sum of all items in the original co-
occurrence matrix Γ. It also happens to be the size of the lookup window (reduced
by one from each side) multiplied by four, as each 2×2 subwindow of this window
contributes to the co-occurrence matrix four times by the testing function ti,j.

n =
∑

i,j

γi,j = 4(right − left)(bottom − top)

Finally, the contrast c and entropy e is defined as follows. Let us emphasize
that only a triangular submatrix is summed as the normalized co-occurrence
matrix has been symmetrized.

c =
Gs
∑

i=0

i
∑

j=0

(i− j)2 · γ̄i,j

e =
Gs
∑

i=0

i
∑

j=0

− ln(γ̄i,j) · γ̄i,j

5.2.3 K-means Clustering

The feature samples extract the important image properties, but the information
about them is scattered. We need to perform some kind of data mining to extract
important trends. An obvious choice in this situation is to perform clustering on
the feature space. The clusters will represent important parts of the image with
similar color and texture.

Our solution is based on K-means clustering algorithm [137], which we have
modified for the needs of feature extraction. The algorithm tries to group together
feature samples based on their proximity in the feature space. To determine
distances in the feature space, standard Lp metric on R

7 is used. First, we revise
a standard K-means algorithm. The modifications made for the purposes of the
feature extraction are described afterwards.

The K-means Algorithm

The k-means is an approximation algorithm for a cluster analysis problem that
tries to partition a set of observations into k clusters, where each observation
is assigned to a cluster with the nearest mean value. Therefore, the clustering
creates space partitioning into Voronoi cells [138]. Since the original clustering
problem is NP-hard, the k-means use an iterative refinement approach to get an
approximate partitioning.

The k-means algorithm takes set S of points from R
d and produce a set of

clusters C, where |C| = k,
⋃

Ci ∈ C = S, and ∀Ci, Cj ∈ C : i 6= j ⇒ Ci∩Cj = ∅.
Algorithm 5.1 presents the basic idea of the iterative refinement.
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Data: points S ⊂ R
d, number of clusters k (|S| ≥ k)

Result: set of clusters C, so that |C| = k

select (m
(1)
1 , . . .m

(1)
k ), m

(1)
i ∈ S // initial mean set

I ← 0 // iteration counter

while I ≤ 1 ∨ C(I) 6= C(I−1) do
I ← I + 1
// Assignment step: new assignment of points to clusters

for i = 1, . . . , k do

C
(I)
i ← {x ∈ S : ‖x−m

(I)
i ‖ ≤ ‖x−m

(I)
j ‖, ∀j = 1, . . . , k}

end
// Update step: compute new means as cluster centroids

for i = 1, . . . , k do

m
(I+1)
i = 1

|C
(I)
i |

∑

xj∈C
(I)
i

xj

end

end

C ← C(I)

Algorithm 5.1: Standard k-means algorithm

At the beginning, an initial set of mean approximates m
(1)
i is selected from S.

There are some elaborate approaches to this step, but usually a random selection
is sufficient. After that, the algorithm iteratively computes the cluster assignment
using the mean values. Each cluster C

(I)
i , where i = 1, . . . , k is the cluster index

and I ∈ N is the number of iteration, is constructed as a set of points, for which
the m

(I)
i is the closest mean value in the terms of selected Lp distance. Each

point is always assigned to only one cluster, even when it lies at the border of
two Voronoi cells.

After the first step, where new assignment of points to clusters is established,
the mean values need to be updated. The new means are computed as centroids
of their corresponding clusters. Coordinates of the centroid are computed as an
average value in each dimension of all points in the cluster.

The algorithm ends when the approximation becomes stable (i.e., when two
subsequent assignments C(I) and C(I+1) are identical). The last computed as-
signment C(Ilast ) is then yielded as the result.

Until now, we have assumed that each iteration assigns at least one point to
every cluster. However, there is a possibility, that a cluster ends with no points
at all. In such case, we can create a new cluster as a replacement by dividing one
of the other clusters in two.

K-means Specialization for Feature Extraction

Usually, the most interesting information gathered from the clustering is the as-
signment of points to clusters. However, our objectives are slightly more specific.
In cooperation with domain experts from SIRET research group [139], the fol-
lowing major modifications were proposed to the k-means algorithm:

• Most importantly, we are performing clustering to get the cluster centroids
as feature space representatives and their weights, which are computed from
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the numbers of points assigned to each cluster. Since we do not require the
assignment information, we can avoid explicit construction of the C

(I)
i sets.

• The number of centroids in the signature should reflect the complexity of
the image. Hence, the k-means algorithm needs to be modified to select the
number of clusters adaptively. We have chosen a pruning approach. The
algorithm starts with k clusters and the cluster can be removed under some
conditions.

• There are two conditions upon which the clusters are being removed. Very
small clusters can be pruned as they are likely to represent some insignificant
part of the image or even contain information noise. Furthermore, when
two mean values are close together, one of them can be removed and the
corresponding clusters can be merged.

• When clusters are being pruned, the main loop condition must be altered,
as there may be no stable state in which the algorithm ends. A fixed number
of iterations was chosen since it is a simple solution that works very well.

Data: points S, parameters k, Cmin , dmin , Imax

Result: centroids M (|M | ≤ k), weights wmi
(∀mi ∈M)

M (0) ← (m
(0)
1 , . . .m

(0)
k ), m

(0)
i ∈ S, w

(0)
mi ← 0 // initial mean set

I ← 0 // iteration counter

while I ≤ Imax do

foreach m
(I)
i ∈M (I) do // prune small clusters

if w
(I)
mi < Cmin · I then M (I) ← M (I) \ {m(I)

i } // rem. cluster i
end

foreach m
(I)
i , m

(I)
j ∈M (I) do // join clusters with close means

if ‖m(I)
i −m

(I)
j ‖ < dmin then M (I) ←M (I) \ {m(I)

j } // merge i, j

end
I ← I + 1 // going for a new iteration

foreach m
(I−1)
i ∈M (I−1) do

prepare m
(I)
i ← ~0 and w

(I)
mi ← 0

M (I) ←M (I) ∪ {m(I)
i }

end
foreach x ∈ S do

find i, so ‖x−m
(I)
i ‖ ≤ ‖x−m

(I)
j ‖, ∀j = 1, . . . , k

m
(I)
i ← m

(I)
i + x // (per dimension)

w
(I)
mi ← w

(I)
mi + 1

end

∀m(I)
i ∈M (I) : m

(I)
i ← m

(I)
i /w

(I)
mi // (per dimension)

end

M ←M (I) and wmi
← w

(I)
mi

Algorithm 5.2: Adaptation of k-means algorithm for feature extraction
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These modifications are presented in the Algorithm 5.2. Since the explicit
construction of C

(I)
i was omitted, the assignment and update steps were merged.

Each cluster i is represented only by its mean mi and weight wi, which is equal
to the number of points that fall into that cluster. Hence, the pruning steps are
performed only on the sets of means and weights.

5.2.4 Extraction Parameters

Each part of the feature extraction process has many configuration parameters,
like the number of sampling points, or the number of iterations of the modified k-
means algorithm. These parameters are important, since they affect the quality of
the extracted features in the means of similarity search precision and indexability
of the database. One of our objectives is to find optimal parameter combination
that will create the best signatures possible.

Sampling Parameters

Parameters that affect the feature sampling procedure are listed in the following
table.

Name Description

Ps Initial set of sampling points from (0, 1)2.

Gs Maximal value of the greyscale. The greyscale goes from 0 to Gs.
The value 15 means, that each pixel is represented by 4 bits.

rce Radius of the lookup window. The window has size (2rce+1)2 (e.g.,
in case of rce = 3, the window is 7× 7 pixels large).

fm, fa Linear transformation of the feature space. Each feature is trans-
formed after sampling as f ′ = fm · f + fa, where fm, fa ∈ R

7. In
our similarity model, the translation of dimensions have no effect,
thus we use fa = (0, 0, 0, 0, 0, 0, 0) in all settings.

The initial point set Ps consist of several thousand points generated randomly
with normal (Gaussian) distribution. The Gs limit is usually selected as 2i − 1,
so the grey scale fully utilizes i bits. The 16-value scale was empirically observed
as a good compromise. The rce value is usually smaller or equal 5 when image
thumbnails of 150× 150 pixels are used. Larger lookup windows overlap greatly,
thus producing less localized information for the feature samples.

Clustering Parameters

The parameters that affect k-means clustering are listed below.
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Name Description

k The number of initial seeds (and the maximal number of clusters).

Imax The number of refining iterations.

Cmin Constant used for pruning small clusters. In each iteration, clusters
smaller than Cmin · I are removed.

dmin Joining distance for mean values. If the distance of two means is
smaller than this parameter, one of the cluster is dissolved.

Lp A function used to measure distance between mean values. Usually,
L2 (Euclidean) distance is used.

The number of initial seeds k is better to keep higher as the clusters get pruned
quite intensively. If the signature of an average image should end with 50-100
centroids, there must be at least several hundred of initial seeds.

All these parameters affect precision of the similarity model and indexability
of the database, which corresponds closely with efficiency. We have conducted
extensive experiments to find optimal configuration. Some of these experiments
and their results are presented in Section 5.4.3.

5.3 GPU Implementation

This section presents our contributions to the field. We propose an implementa-
tion of the feature extraction process that utilizes computational power of modern
GPUs. Before describing our proposed solution, a brief analysis of the problem is
performed in Section 5.3.1. It is followed by the overall description of the extrac-
tor architecture and two the most important algorithmic parts – feature sampling
process and k-means clustering.

5.3.1 Problem Analysis

The extractor is designed to process many images in single batch, as it is usually
used to index the entire database. It can be used to extract features from one or
only a few images, but since it is rarely the case and the response time has much
lower priority than processing throughput, we do not optimize for this special
case.

The situation is similar to block-wise distance computations from the previ-
ous chapter. The entire collection of images is unlikely to fit the GPU(s), thus
an iterative approach must be used. For this reason, we utilize the GPU frame-
work presented in Section 3.4, which was successfully employed for the distance
computations.

The iterative approach computes signatures in batches called blocks. The
question remains, how the workload is mapped to GPU threads and work groups.
The most direct solution would be to assign one thread per image (signature) in
the block. However, this solution is unfeasible for the same reasons it was not
employed for SQFD computations. Feature extraction of one image is quite com-
plex task that requires rather large portion of local memory to cache the data
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and intermediate results. Furthermore, images of different complexities produce
imbalanced workload for the threads running in lockstep and scattered memory
access patterns. Many steps of the extraction process can be performed concur-
rently, so we can use more fine grained parallelism. Communication and synchro-
nization between work groups is always complicated, so we assign one work group
to extract signature from one image. The threads in the work group cooperate
to perform each step in parallel manner.

Data

The block of input images is best to store in one continuous array as it makes
the upload from host memory much faster. If all images are normalized to the
same size, the offset of each image can be easily computed. Otherwise, an index
has to be built, so each work group can locate its image and determine its size.
The situation with output data is a little bit more complicated. The signatures
differ in their sizes, thus the lengths have to be saved along with the signatures.
Furthermore, we need to deal with fact, that the global memory for the results
has to be allocated before the kernel starts.

The extraction process itself has two phases. The first phase reads the input
image and produces a set of feature samples. The feature samples are used as in-
put for modified k-means clustering. It produces the centroids and weights, which
in fact form the feature signature. The input images and the output signatures
has to be stored in global memory due to data transfer limitations from/to host
memory. The sampled features are accessed only by threads in one work group,
so it would be best to keep them in the local memory of the SMP. Unfortunately,
the local memory of current GPU architectures cannot accomodate the number
of samples we require, thus they need to be stored in global memory as well.

The computation of contrast and entropy in the sampling process requires the
image data converted to greyscale. We can convert the colors on the fly or we
can create an explicit copy of the image in greyscale representation. Greyscale
value of many pixels are required multiple times as the lookup windows of some
samples may overlap and each lookup window is scanned with 2× 2 subwindow.
It is rather difficult to cache converted colors, so a greyscale copy of the image
seems to be a better choice, especially if we manage to keep it in the local memory.

The co-occurrence matrix, which is also required for computation of contrast
and entropy, is small enough to fit the local memory for all reasonable values of
Gs. Actually, the local memory can accomodate multiple matrices, so we can
compute multiple samples concurrently.

The subsequent clustering phase requires the mean values and the weights
that represent the clusters. In fact, we need two subsequent copies of the means
and weights as the new copy is computed the from the last copy in each iteration.
These values are accessed multiple times when nearest mean is being found for
each point. Furthermore, they are accessed in a highly random pattern when the
new copy is computed. For these reasons, we chose to limit the maximal number
of clusters, so the means and weights can be kept in the local memory during the
clustering.
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Profiling and Code Analysis

For the purposes of optimization, we have profiled the code of the extractor to
determine, which steps take the most time and will benefit from optimizations
the most. We do not present any exact results as they vary significantly based
on configuration parameters, but only a general overview.

The most expensive of the feature sampling phase is the computation of con-
trast and entropy. The explicit construction and processing of co-occurrence ma-
trix for each sample requires much more time than a straightforward conversion
formula that computes Lab color from RGB.

In the k-means clustering, the most time is spent by finding the assignment
of each point to its nearest cluster. This step takes O(nk) time, where n is the
number of points and k is the number of clusters, as the distance between every
point and every cluster mean has to be computed and tested. There are specific
data structures (like kd-trees [140]), which can accelerate the search process;
however, they are difficult to implement efficiently in the GPU memory and they
would not help much, since we have limited the number of clusters significantly.

The pruning steps require O(k) and O(k2) time, so they are much cheaper as k
is significantly smaller than n. The cluster joining step is more complicated than
filtering of small clusters as it requires either serial execution or a fine grained
synchronization. We address this problem later, in Section 5.3.4.

5.3.2 The Design of the Extractor

The extractor is built using OpenCL library and the framework presented in
Section 3.4. This section presents the high-level design of the extractor and the
format of global memory data structures.

The Architecture

External architecture of the extractor is very similar to the architecture of GPU
accelerated SQFD engine, that does not employ any metric access method (i.e.,
the sequential search algorithm). The images to be extracted are grouped to
blocks, and dispatched via feeding threads to the GPUs. Each GPU has attached
two feeding threads and there are two blocks dispatched to each GPU (one block
is being computed, one block is being transferred). The feeding threads are
responsible for gathering all images into single memory block, so they can be
copied to GPU device in one transaction. The signatures received from GPU are
scattered due to different sizes of the signatures. They are compacted by feeding
threads postprocessing.

The internal architecture of the extractor is depicted in Figure 5.3. As men-
tioned before, each image is processed by one work group. Sampled features,
which are produced by the first phase of the extraction, are kept in global mem-
ory. Even though there is only one buffer required per running work group,
we statically allocate one buffer per image, so the work groups do not have to
claim/release the buffers dynamically. The entire local memory is allocated for
the work group as one large buffer and the threads use different partitioning of
the buffer for different steps of the extraction algorithm.
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Figure 5.3: Internal architecture of the extractor

Data Representation

The images are stored in one continuous array, each image linearized in row-wise
manner. The color values of the pixels are stored in RGB format, where each
channel is encoded in 8 bits, aligned to 32-bit words, so each pixel can be loaded
by one read operation. All the images have the same size (150× 150 in our case)
and the resolution (width, height) is kept along with the configuration parameters.

The feature signatures are represented in the same column-oriented format,
which is used for distance computations as described at the end of Section 4.4.2.
The only problem is, that individual signatures differ in size. For this reason,
we allocate memory buffer for the signatures as if each signature has maximal
possible number of clusters k. The starting offset of each signature is aligned to
the maximal size of the signature, so it can be easily computed. However, the
signature may not use its entire preallocated space.

A second buffer is allocated for the signatures, where each work group writes
the size of the signature it has extracted. These sizes are used to compact the
signature buffer and to create index for the signatures. The compacting and
indexing is performed by the feeding threads after the data are transferred to the
host memory.

The intermediate buffers for sampled features use the same column-wise rep-
resentation as the signatures. Each buffer consist of seven arrays, each one con-
taining |PS| 32-bit float numbers. Adjacent threads in the group always work
with adjacent sampled features, so the loading and writing of the feature values
is executed by the whole warp at once, thus in coalesced manner.

The configuration parameters are described in Section 5.2.4. All of them,
except for the set of sampling points PS and chosen Lp distance function are
stored in a data structure in constant memory. All the values are either real
numbers or integers, so they can all be stored in 32-bit words. The sampling
points PS are stored in global memory in column representation (i.e., as array of
x values followed by array of y values) and the size of the set |PS| is kept with the
configuration parameters. The Lp is hardwired in the kernel code, but it can still
be selected in the runtime as the kernel compilation is performed dynamically by
OpenCL.
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5.3.3 Sampling Features

As described before, the first phase of the extraction process is the feature sam-
pling. The process takes image data in RGB format and the set of initial points
to produce a list of feature samples. Both input and output data are stored in the
global memory of the GPU as neither fit the local memory and the local memory
is utilized to store the intermediate data.

The sampling is performed in three steps. First, the color information and
the spatial coordinates are extracted. Then, the entire RGB image is converted
to its greyscale representation, which is stored in local memory. Finally, the
greyscale image is used to compute contrast and entropy values for each sample.
We describe these steps in more detail.

Color Information

The color extraction is quite straightforward. Each sample can be extracted
independently and there are more than enough samples to occupy all the threads.
Equations for converting color from RGB space to CIE LAB space have been
described in Section 5.2.2. These equations are computed by fixed number of
instruction, thus they provide a stable workload for the threads.

The color information of each pixel is encoded in 32-bit word, so each thread
loads exactly one value. Threads are accessing the pixels randomly as they use
randomly generated sampling points from Ps. Unfortunately, 150 × 150 image
with 32-bit encoding requires 90, 000 bytes of space, so it cannot be cached in
the local memory of current GPUs. On the other hand, the situation is not that
serious as each pixel is required only once in this step and the inefficiency of data
access pattern is moderated by L1 and L2 caches.

The following step requires also the color information of the pixels. We have
considered several possibilities, how to cache at least some of the pixels loaded
from global memory, but we were unable to design any mechanism that would
improve the performance.

Greyscale Image

The computation of contrast and entropy requires a lookup window for each
sample. Theoretically, we could load and convert only those parts of the image,
but in most cases, these windows cover significant amount of the image pixels1. In
this case, it is better to convert entire image into greyscale bitmap even though
some of the pixels are converted in vain. The unnecessary work performed is
significantly outweighed by the improvement of performance, as the conversion of
the entire image produces much more regular workload and data access pattern.

The greyscale bitmap is encoded in highly packed format, which respects the
32-bit word boundaries as the GPU works natively with 32-bit values. Each word
encodes ⌊32/⌈log2(Gs + 1)⌉⌋ pixels, since ⌈log2(Gs + 1)⌉ is the smallest amount
of bits required for encoding values from 0 to Gs.

1 For instance, if we use two thousand samples with 7 × 7 lookup window, total 98, 000
pixels are traversed. But 150× 150 image has only 22, 500 pixels, thus it would take less work
to convert the entire image.
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Figure 5.4: Construction of 5-bit packed greyscale image in SIMT mode

The construction process is illustrated in Figure 5.4. The space allocated for
the bitmap in the local memory is first filled with zeros. After that, the threads
process independent pixels, compute the greyscale value from the RGB color and
use atomic OR operation to save the value into the bitmap. The threads need
to use logical OR as each numeric operation is performed on 32-bit words and
the pixel is represented by only a few bits. The OR must be atomic as multiple
threads may write to the same word at the same time.

This method clearly causes bank conflicts as adjacent threads often write not
only to the same memory bank, but to the same memory cell. On the other
hand, loading data from global memory takes much longer than writing to local
memory, so the loads of one warp will overlap with stores of another one even
though the writes are slowed down several times by serialization.

Contrast and Entropy

For each contrast and entropy value a co-occurrence matrix must be computed
first. This matrix must be explicitly constructed, so a memory buffer has to be
allocated for it. Even though each lookup window could be traversed concur-
rently by multiple threads, the final contrast and entropy values are better to
be computed serially. Furthermore, the lookup window is usually quite small
to truly benefit from parallel processing, especially when the synchronization of
increments in co-occurrence matrix has to be considered.

For these reasons, we have decided to use the same approach as for color
extraction. Each thread in the group computes contrast and entropy values (thus
the co-occurrence matrix) for a different feature sample. This means that multiple
co-occurrence matrices have to be stored in the local memory. The co-occurrence
matrix uses the same compact format as the greyscale bitmap. Each 32-bit word
encode ⌊32/⌈log2(4(2rce)

2)⌉⌋, since (2rce + 1)2 is the size of the lookup window
and each 2×2 sub-window produces four increments in the co-occurrence matrix.
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For instance, when 4-bit greyscale is used (Gs = 15) and rce = 3 (the lookup
window of 7 × 7 pixels), the local memory is utilized as follows. The greyscale
bitmap stores 32/4 pixels in each word (two in each byte), so the 150×150 image
takes 11, 250 bytes. One co-occurrence matrix has (Gs + 1)2 = 256 elements
and 4(2rce)

2 = 144, so each element fits in one byte. Therefore, we can store
⌊(49, 152 − 11, 250)/256⌋ = 148 matrices in the local memory along with the
greyscale bitmap.

Figure 5.5: Computing contrast and entropy by the entire work group

The algorithm calculates, how many co-occurrence matrices can be allocated
in the local memory based on parameters Gs, rce, and the size of the memory.
A thread from the work group is assigned to each matrix and threads without
the matrix become idle. Active threads load the sampling points in round robin
fashion, construct their own co-occurrence matrix, and compute corresponding
contrast and entropy. The schema of the algorithm is depicted in Figure 5.5.

The construction of each co-occurrence matrix still uses logical bit operations
to update the values in compacted format; however, these operations need not to
be atomic as each matrix is constructed by just one thread. The bank conflicts
during matrix construction cannot be avoided since the access pattern is com-
pletely dependent on the image data. To avoid bank conflicts when the matrices
are read, their size can be aligned to the nearest greater number which is not
divisible by the number of banks.

In case the number of allocated matrices is higher than the size of the warp,
it might be beneficial to reduce their amount. If the working threads and the
idle threads are aligned to the warp boundary, all the threads in each warp either
compute or skip the computation, therefore the SMP cores will be utilized better.

5.3.4 K-means Clustering

It has been already established that the sampled features cannot be cached in
the local memory of the SMP. However, we can store up to 1536 mean values and
weights in 48 kB of memory. We do not need to keep means and weights from
each iteration. No more than two subsequent iterations have to coexist in the
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memory at any given time as one version is used to compute the next. Therefore,
there can be up to 768 seeds for the k-means on current GPU architectures. This
amount was empirically verified to be more than sufficient.

The SIMT code uses similar outline as Algorithm 5.2. All threads in the work
group advances through the main loop together and there is a barrier after each
step. The individual steps are preformed in SIMT manner whenever possible.

At the beginning, the the threads cooperatively copy the first k feature sam-
ples as initial mean values. The sampling points are randomized, so we can take
any part of them as a random subset. The weights are initialized to zeros. After
that, Imax iterations of the main loop are performed. Last version of the mean
values and their corresponding weights is written cooperatively by all threads in
the group to the designated arrays in global memory. The number of clusters
that remained after the last iteration is written to the global index by the leading
thread of the group.

Computing Next Version of Means

The next version of the mean values and their weights is computed in three steps.
An explicit synchronization on a barrier is performed after each one of them.

1. The buffers for the next version of means and weights are filled with zeros.

2. The sampled features are scanned in parallel and the nearest cluster is found
for each one. The feature value is added (per dimension) to the new mean
of the nearest cluster and its weight is incremented.

3. Coordinates of the new means of nonempty clusters are divided by their
corresponding weights (to compute a centroid of the newly formed cluster).

All three steps are conducted in parallel by all threads in the group. The
workload is processed by the threads in round robin fashion. The only problem
is that two threads may need to add a value to the mean or increment the weight
of the same cluster at the same time.

The atomic increment is available in the arsenal of the OpenCL builtin func-
tions [38]. Unfortunately, atomic versions of arithmetic operations are restricted
to integers only. The CUDA framework implements also the atomic add function
for 32-bit floats, but such solution is not portable.

We have implemented emulation of atomic add using atomic compare-and-
exchange function. The code is presented in Algorithm 5.3.

Data: variable x, number to add a
Result: update variable x, and return the value of x before addition
old ← x
repeat

assumed ← old
old ← cmpxchg(x, assumed , assumed + a)

until assumed 6= old
return old

Algorithm 5.3: Emulation of atomic addition using compare-and-exchange
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The cmpxchg function takes three arguments (var , old , new). It atomically
tests, whether var = old and if it does, the var ← new . The function returns old
value if the swap was performed or the actual value of var if no swapping was
done.

This emulation works quite efficiently when the collisions are rare. However,
when there are only a few clusters left, it might be better to use some other
approach, like variable privatization for instance. More extensive research on this
particular topic is still required.

Parallel Pruning

There are two pruning steps. The first one removes all clusters that are smaller
than Cmin · I, where Cmin is a configuration parameter and I is the number of
current iteration. The second one tests each pair of clusters and join those which
have centroids closer than dmin .

In the serial algorithm, the array of means and weights can be easily kept
compacted. When a cluster (i.e., the mean and weight values) is being removed,
its values are overwritten by the values of the last item in the array and the
size of the array is decremented. Such operation has O(1) time complexity, so it
does not affect the efficiency of the pruning. However, we cannot use the same
technique in parallel execution without explicit locking of the items in the array.
Instead, we only mark deleted clusters by setting their weights to zero. The array
is compacted by a parallel algorithm after the pruning concludes.

At this point, we have slightly modified the original algorithm by changing the
order of the pruning steps. First, the clusters with centroids closer than dmin are
joined. Then, the small clusters are removed. Furthermore, we have merged the
second pruning step with the compacting step. The compacting is designed to
remove empty clusters and clusters marked for deletion. It can be easily modified
to remove not only empty clusters, but clusters smaller than given constant.

The join of two clusters is in fact achieved by deleting one of them. When
conducted in parallel, it may happen that two threads finds the same pair of
clusters, but one of the threads decides to dissolve the first cluster and the other
thread dissolves the second cluster. We could add some deterministic rules, like
when clusters i, j are being joined, the cluster with greater index is removed.

Unfortunately, these rules cannot cover all the possibilities as we demonstrate
on a simple example. Let us have three clusters i < j < k. One thread discovers
that i, j are close enough to be joined and second thread wants to join j, k. If
we apply rules like the one described in the previous paragraph, the first thread
removes cluster j and the second one cluster k. But if the conditions were tested
serially, the cluster j would be removed first, so there will be no test performed
between j, k.

There are many possible solutions but most of them are quite complex. We
have settled for a simple yet sufficiently efficient one. The remaining nonempty
clusters are tested in steps. In each step i, the cluster i is being tested, whether it
should be removed. The cluster is removed, if there is a cluster j (j > i), so that
means of i and j are closer than dmin . These steps are executed sequentially with
an explicit barrier at the end. The search for cluster j is performed concurrently
by all available threads. When a thread finds cluster that is close enough to i, it
assigns zero to wi, so it marks cluster i as deleted. Multiple threads may perform
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this assignment simultaneously but that does not change the result as it is an
idempotent operation.

Our approach may be suboptimal as the synchronization after each step limits
the parallelism. However, this approach is easy to implement and it produces
stable results. We tried some improvements but with no measurable impact on
the performance. We believe that it does not worth optimizing this step any
further as the major part of the work is performed in the computations of the
next version of mean values and weights.

Compacting Step

The compacting step takes one instance of mean values and weights and produce
another instance, where all clusters with weights smaller than Cmin · I are dis-
missed. The remaining records shift towards lower indices to fill in the gaps, so
the newly created arrays of means and weights are compact. This step is very
important, since it ensures that the cluster records are always kept in the small-
est array possible, thus it takes the least amount of time to scan them, when the
nearest mean needs to be found for each point. The compacting step also takes
care of one of the cluster pruning steps.

The compacting step has two phases. First, we compute compacting index
O[i] for each item i in the new array and the number of the remaining items.
Index O holds the moving instructions for the following phase as the i-th mean
and weight values in the new index are copied from the position O[i] of the old
arrays. After computing the index O, threads in the work group process items in
the new arrays in round robin fashion. They copy the mean values m′

i ← mO[i]

and the weight values w′
i ← wO[i], where m′, w′ denote new arrays and m,w

denote old arrays of means and weights respectively.
The copying phase is quite straightforward, optimal in the number of opera-

tions performed, and completely data parallel. We need only to find an efficient
way how to compute index O. The simplest solution would be to compute the
index by one-pass scan performed by a single thread. Such approach would be
easy to implement and optimal in the number of operations; however, it is strictly
serial. Despite the serial nature of this approach, it can be used in the implemen-
tation since there are only several hundred clusters (due to limitations imposed
by local memory size) and only a trivial test is performed on the weight value of
each cluster.

We attempted to improve the solution and utilize the computational power of
all cores of the SMP by employing an approach based on parallel reduction trees.
First, a prefix-sum array S is constructed, so that S[i] = |{wj : wj ≥ Cmin · I, j =
1, . . . , i}|. In other words, S[i] is the number of items from the range 1, . . . , i
which are not being removed by the compacting step.

The computation of S is illustrated in Figure 5.6. At the beginning, each
item S[i] is set to 1 if the item i is kept, or to 0 if item i is being removed by the
compacting step. The first log2(|S|) steps corresponds to standard reduction tree
that uses numeric addition as the joining operator. The following log2(|S|) − 1
steps use reverse reduction to update the remaining values in S.

When S is computed, the O is constructed as inverse index of S. The threads
scan the weights again and for each wi ≥ Cmin · I the O[S[i]] ← i is set. We
can make an observation that for any two wi, wj, which are both greater or equal
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Figure 5.6: Computing prefix-sum S for 16 items

to the minimal cluster size, the S[i] 6= S[j], so the writes to the index O do not
collide.

Despite our effort, the overall performance improved only slightly. The dom-
inant portion of the work is performed in the combined step that determines
the assignment of each point and compute new version of mean values. Howev-
er, we have tested that this approach is vital and can be used in other parallel
algorithms.

5.4 Experiments

The experiments are divided into two parts. The first set of experiments was
designed to test the performance of the new extractor and compare the speedup
with respect to the CPU platform. The second part of this section presents
some of the experiments performed to find an optimal configuration parameters
for the extractor. These tests are very extensive and our primary objective was
to accelerate the extraction process, so these results are presented only as an
illustration of the possibilities that were opened by the GPU extraction.

5.4.1 Hardware and Methodology

The experimental hardware has already been presented in Section 4.7.1. Let
us quickly revise that the GPU server is equiped with Xeon E5645 processor
comprising 6 physical (12 logical) cores running at 2.4 GHz, 96 GB of DDR3-
1333 RAM, and 4 NVIDIA Tesla M2090 GPU cards based on Fermi architecture.
Each GPU chip have of 512 cores (32 cores per 16 SMPs) and 6 GB of memory.

Again, we tested the GPU implementation on a commodity PC with two
gaming cards NVIDIA GTX 580 (512 cores and 1.5 GB of memory each). The
extractor has similar performance on the gaming GPUs as on Teslas, thus we do
not provide any further details.

The CPU tests were conducted only on the GPU server. The CPU imple-
mentation of the extractor scales almost lineary with the number of CPU cores,
thus it is reasonable to assume, that the NUMA server with four Xeon CPUs (24
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physical cores) will have approximately four times higher throughput than GPU
server with single Xeon (6 physical cores).

Data

The experiments were performed on two datasets. The first one is the Thematic
Web Images Collection (TWIC) [141], which comprises 11, 555 images. This
collection is rather small for extensive performance testing, but the dataset is
annotated, so we have the ground truth for precision experiments. The images
are divided into 200 classes and one testing query is selected from each class.

For the performance tests we selected the Profimedia [120] dataset. Let us
revise that Profimedia is a commercial image database available on the internet.
Our sample consist of 17.5 million randomly chosen images. Since the entire
database does not fit in RAM, we have performed two types of tests. We have
selected a subset of 1 million images which can be cached in RAM to test the
peak performance of the GPU extractor. We have also used the entire dataset to
create more realistic experiments that incorporate the loading times of the images
from the disk.

All the images in both datasets were converted to RGB bitmaps and resam-
pled to 150 × 150 by bicubic interpolation. Theoretically, the image decoding
and resampling can be also performed by the extractor on the GPU, but these
operations are beyond the scope of this work. We have created binary files that
aggregate multiple images, to reduce the loading time from the disk. The en-
tire TWIC dataset is stored in one large file and the Profimedia was divided
into blocks of 10, 000 images per file. These binary files allows us to minimize
the overhead of the operating system calls, such as opening/closing the files or
traversing large directories.

Methodology

The performance tests were repeated at leas three times and the time of extraction
was measured using the system real time clock. If any of the measured values
deviated from the average by more than 15%, the value was discarded as tainted
and the test was executed again. Experiments that tested the peak performance
of the extractor have the images preloaded in the operating memory. The large
scale test which also measure the loading time have purged the disk I/O buffers,
so no data were cached in RAM.

The precision tests that search for an optimal configuration were performed
only once since they are deterministic. We have verified some of their results to
ensure that the GPU extractor produces the same signatures as its CPU coun-
terpart.

5.4.2 Performance Evaluation

The first set of tests is designed to evaluate the performance of the GPU extractor
and compare it to the CPU implementation. The main portion of the tests
were performed on the TWIC dataset, since we want to use them in the same
perspective as the precision tests presented in Section 5.4.3. The large scale
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tests on the Profimedia database, which determine the peak performance of the
extractor, are presented at the end of this section.

Preliminary Tests on TWIC

These tests does not reveal the full potential of the extractor, since the TWIC
dataset is rather small. However, they are quite interesting as they indicate, how
much the training process of the configuration parameters can benefit from the
GPU acceleration. The following tests use 2, 000 points for feature sampling,
where the contrast and entropy are computed using 7× 7 lookup window (rce =
3) and greyscale of 16 values (4 bits per pixel). The k-means clustering was
performed in 5 iterations, using 400 initial seeds, with parameters Cmin = 2 and
dmax = 0.2 while L2 was the clustering metric.
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Figure 5.7: Results of preliminary performance tests on TWIC dataset

The results are depicted in Figure 5.7. The problem scales almost linearly with
the number of CPU cores and GPU devices. The extraction of entire database
takes approximately 400 seconds on single CPU core and 70 seconds on the 12-
core CPU, but it can be done in 1.4 seconds on four GPUs. This corresponds to
the 282× speedup over a single-core and 50× speedup over 12 CPU cores. The
amount of work we can compute in one day on the GPUs would take nearly two
month on a multi-core Xeon and almost a year on a single-core CPU.

Impact of Various Parameters on Performance

Some of the configuration parameters can affect the performance of the extraction.
The performance of feature sampling is affected by the size of the initial set of
point |PS|, the grey scale size GS, and the radius of lookup window rce . The linear
transformation of the feature space does not affect the speed of the sampling
process; however, it may have indirect impact on the speed of the clustering
process.

The impact of the size of the sampling points set |PS| is rather obvious as the
sampling process has time complexity O(|PS|). On the other hand, the parame-
ters that configure the contrast and entropy computations affect the algorithm in
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a more complex way, thus we have measured their impact empirically. The results
are depicted in Figure 5.8. The greyscale range tests use fixed radius rce = 3 and
the lookup window tests use fixed greyscale of 4-bits (GS = 15).
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Figure 5.8: Performance impact of greyscale size (GS) and radius of the lookup
window rce for the contrast and entropy computations

The greyscale size GS exhibit a significant drop in performance when more
than 4 bits are used to represent each pixel. The reason is that the GS parameter
affects both the memory taken by the greyscale image and the size of the co-
occurrence matrices used to compute contrast and entropy. When 5-bit greyscale
is used (GS = 25− 1 = 31), the converted image takes 15, 000 B of local memory,
so we can fit only 35 buffers for co-occurrence matrices of 31 × 31 items. This
is barely enough to keep one warp of threads occupied, thus the parallelism is
severely reduced. The situation gets much worse in case of 6-bit greyscale (GS =
26 − 1 = 63). The image takes 18, 000 B of local memory, so only 7 matrices
(63× 63) can be stored along with the image.

We can improve the situation by two possible modifications. The co-occurrence
matrix becomes quite sparse when the GS grows and the lookup window keeps
its size. A sparse representation of the matrices can be implemented, so more of
them can be stored simultaneously in the memory. Second possibility is to adjust
the workload mapping and let each co-occurrence matrix to be constructed and
traversed by more than one thread. However, we found that both modifications
might be unnecessary, as 4-bit greyscale was proven to have enough precision for
the similarity model.

The size of the lookup window is quadratically dependent on the radius as it
has (2rce + 1)2 pixels. Furthermore, the memory required by the co-occurrence
matrix depends on rce , as the range of their values are limited by 4 · (2rce + 1)2.
The significant drop in performance between rce values 7 and 8 can be explained
by two causes. First of all, the co-occurrence matrix can no longer fit three values
to each 32-bit word and when it switches to two values per word, the memory
required by the matrix is increased by factor 3/2. Second, we believe that at
this point the workload of traversing the lookup window exceeds the workload of
traversing the co-occurrence matrix and since the lookup windows are picked up
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by random sampling points, the number of bank conflicts on the local memory
rise significantly.

The impact of two the most important parameters of the k-means clustering
is depicted in Figure 5.9. We have focused on the number of iterations and the
selected Lp metric. The impact of the number of initial seeds (parameter k) is
rather straightforward, so we need not test it. The impact of other parameters,
such as the minimal cluster size Cmin or the joining distance dmin , corelates strong-
ly with the distribution of feature samples, hence the result vary from image to
image.
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Figure 5.9: Performance impact of the number of k-means iterations and used Lp

metric

As expected, the speed of the extractor is linearly dependent on the number of
k-means iterations. The selected Lp metric affects the performance significantly
as it is the dominant operation performed when the assignment of the points
is computed. Traditional metrics like L1 (Manhattan metric) and L2 (Euclidean
metric) are easy to compute with only a few arithmetic operations. Other metrics
require significantly more computations, or even the utilization of mathematical
functions, which are performed by special units.

Large Scale Tests

To verify that our extractor can sustain the same level of throughput continu-
ously, we performed a large scale tests on Profimedia dataset. The results are
summarized in Figure 5.10. The first graph presents the extraction times (in mil-
liseconds) per signature for various architectures. The second graph shows the
throughput of the extractor in signatures per second.

Results denoted CPU1 and CPU12 were conducted on entire Profimedia
database using single core and 12 logical cores of one CPU respectively. Re-
sults denoted GPU1, GPU2, and GPU4 were measured on the entire database
using one, two, and four GPU devices. The GPU4* results were measured on
a subset of 1 million images, which were pre-cached in RAM, so the extractor
was not delayed by data transactions from/to a persistent memory storage. The
results are comparable since the times are normalized per signature.
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Figure 5.10: Large scale tests on Profimedia dataset

The peak performance of the extractor is 8244 signatures per second when
the data are cached in RAM. Since each image has the size of approximately 33.9
KB, the system would require a persistent storage that is capable of reading data
at the minimum rate of 273.3 MB/s to feed the GPUs continuously, which cannot
be easily achieved by common hard disk drives. Based on the empirical data, we
speculate that the feature extraction system would require at least 4 modern SSD
drives connected in RAID 0 to achieve such throughput.

All the remaining experiments used two 1 TB commodity hard drives (7, 200
rpm) connected in RAID 0 to store input images and another two hard drives in
RAID 0 where the extracted signatures are written. The speed of the extractor
has dropped to 3661 signatures per second, when all four GPUs were utilized.
Relatively speaking, the hard drives caused 2.25× drop in performance, which
is quite significant. On the other hand, the CPU12 results indicate, that fully
utilized Xeon achieves throughput of 303 signatures per second, thus it is hardly
affected by the data loading and storing.

5.4.3 Traversing the Parameter Space

The second set of experiments was designed to search the parameter space of
the extractor and find the optimal configuration for our model. The experiments
were performed on the TWIC dataset, so the optimal configuration applies to
this dataset alone. It is not certain yet, which parameters are data-specific and
which can be used for any dataset. This problem is a topic of our future research.

Furthermore, we would like to emphasize that the amount of tests performed
is far beyond the scope of this work. We have selected only a few interesting
results that illustrate the search process for optimal configuration.

Evaluating Similarity Model Precision

The similarity model is evaluated against ground truth, an annotation created
by a domain expert where images are divided into classes. Each class has one
representative image, which is used as query. The other images in the same class

129



are considered similar to the representative image. This classification is in fact a
manually created clustering of the database, as images of each class are similar to
each other (i.e., close from the perspective of the distance function) while images
from different classes are not similar. Let us denote GT i ⊆ D the i-th class of
the ground truth GT for a database D. Each image belongs to exactly one class
(GT i ∩GT j = ∅ iff i 6= j) and every image is classified (∀i of GT :

⋃

GT i = D).
The query object of i-th class is denoted qGT

i (qGT
i ∈ GT i).

For given similarity model represented by distance function d, we define an av-
erage precision AP i for class GT i as follows. Let us have a sequence of database
objects sij ∈ D\{qGT

i }, where j = 1, . . . , |D|−1, sorted by their distance d to the
query object qGT

i in ascending order. In other words for j, k ∈ {1, . . . , |D|−1} and
j < k, the d(qGT

i , sij) ≤ d(qGT
i , sik). The average precision is then computed as

AP i =

∑|D|−1
j=1 hit(sij)

|{sik : k = 1, . . . , |D| − 1 ∧ sik ∈ GT i}|
,

where the hit function is

hit(sij) =

{

|{si
k
:k=1,...,j∧si

k
∈GT i}|

j
for sij ∈ GT i,

0 otherwise.

Let us note that the average precision is equal to 1 if the sequence sij contains
the members of GT i at the beginning, before any other object. The precision of
the similarity model is then computed as the mean average precision (MAP) of
the average precision of all classes. Formally, the MAP is defined as

MAP =
1

|GT |

|GT |
∑

i=1

AP i

The mean average precision is always in the (0, 1〉 range, where values close
to 0 are very poor and 1 would be achieved by an ideal similarity model. Let
us emphasize that these values are also affected by the ground truth, thus the
same model gets different MAP values on different datasets. Our testing dataset
(TWIC) is considered rather difficult from the perspective of precision, so the
MAP values above 0.3 are considered good. The most important for us is the
relative change in the MAP on the same dataset for different similarity models
or different model configurations.

A secondary evaluation criterium is the intrinsic dimensionality of the database
(iDim). It reflects the indexability of the database by the metric access methods.
The lower intrinsic dimensionality is better as the prefiltering methods can prune
out more objects and save more unnecessary distance computations. If we de-
note X a random variable, values of which are the distances d(o1, o2) between two
randomly selected objects o1 6= o2, the intrinsic dimensionality is computed as

iDim =
(EX)2

2 · Var(X)
,

where E stands for mean value and Var is the variance.
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We take statistical approach to compute the mean and variance of X. Let us
have a set D = {d(o1, o2) : ∀o1, o2 ∈ D ∧ o1 6= o2}. The mean and variance are
computed as

EX =
1

|D|

∑

δ∈D

δ, Var(X) =
1

|D|

∑

δ∈D

(EX− δ)2.

Selecting SQFD Parameters

The precision of the similarity model (i.e., the MAP and iDim results) is also
affected by the selection of the α parameter and the Lp metric used in the ground
distance of the SQFD. Figure 5.11 presents measured precision and intrinsic di-
mensionality for various Lp metrics and α values.
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Figure 5.11: The impact of SQFD parameters on precision and iDim

As we can see, the best results are achieved for α around 1.28, with Euclidean
metric L2 in the ground distance. However, greater α also exhibit greater iDim,
which is bad for indexability. For this reason, we have selected α = 0.64 as a
compromise between optimal MAP and iDim for the following experiments.

Sampling Parameters

The sampling is significantly affected by the selection of the initial set of points.
Figure 5.12 presents the precision results of two sampling point sets. Both sets
(Gauss1 and Gauss2 ) are randomly generated using normal distribution with
mean value of 0.5 and σ around 0.25 in both dimensions. The data were cropped
to the 〈0, 1〉2 square by dismissing points that were out of the range. The Gauss1
uses greater standard deviation σ, so it is closer to uniform distribution than
Gauss2.

The results revealed two things. First of all, the sampling set that was more
focused on the center of the image (Gauss2 ) has better both precision and intrin-
sic dimensionality. Second, at least 1, 000 points need to be used to sample the
image properly. A sampling set of about 2, 500 points present a good compromise
between precision and extraction speed as the MAP improves only slightly when
more points are used.
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Figure 5.12: Precision of various selections of sampling point sets

Second set of tests were performed to determine the impact of greyscale size
and lookup window on the quality of extracted features. Figure 5.13 shows the
precision and intrinsic dimensionality of the signatures extracted with various
values of GS and rce .
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Figure 5.13: The impact of greyscale size and lookup window radius on precision

The precision rises steadily when larger greyscale is used. However, we argue
that four bits (GS = 15) is the best choice. The increase in MAP is rather
small when more bits are used and we observe a significant rise in iDim for 5-
bit greyscale. Furthermore, according to performance evaluation presented in
Figure 5.8, the 4-bit configuration is still quite efficient while a significant drop
in performance is observed for 5-bits and more.

The size of the lookup window have only negligible impact on precision. The
best compromise in this case would be a window of 7×7 pixels (rce = 3) as it has
the best MAP in case of 4-bit greyscale and reasonable performance according to
Figure 5.8.
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We have also performed tests to determine the optimal linear transformation of
the feature space. These tests are to extensive to present here as they search over
7-dimensional space of multiplicative constants. The best configuration found
so far was (8, 8, 1/50, 1/50, 1/50, 2/25, 1/2) for the vector of (x, y, L, a, b, c, e). It
achieved the mean average precision of almost 0.4. In practice, we use a combi-
nation of (8, 8, 1/100, 1/50, 1/50, 1/25, 1/4), which has only slightly worse MAP,
but significantly better iDim.

K-means Parameters

The most interesting results from the k-means parameters are from the tests that
determine the impact of the number of iterations and the Cmin value used for
pruning small clusters. Let us revise that, clusters smaller than Cmin · I are
dismissed in each iteration, where I is the number of the iteration.
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Figure 5.14: The impact of cluster pruning on precision

The results are presented in Figure 5.14. The best precision is achieved when
the value of Cmin ·I remains small in all iterations. The more iterations we perform
or the larger the Cmin parameter is, the more clusters are pruned, which does not
reflect positively on the model. On the other hand, smaller signatures can be
cached in larger quantities and reduce the computational time of the SQFD. As
a compromise between speed and precision, the Cmin = 2 and Imax = 10 were
selected.

The remaining parameters have only minimal impact on the precision, when
they are selected reasonably. We use L2 metric to measure distances during
clustering, the joining distance dmin = 0.2, and 400 seeds as initial mean values.
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Conclusion

In the conclusion, let us summarize the contributions of this thesis, put them in
the context of our related research, and outline our future endeavours.

Contributions and Achieved Objectives

We have successfully met all of our outlined objectives. Our prototype implemen-
tations were proven efficient by extensive empirical tests and the GPU platform
was found more than suitable for this type of problems. The proposed algorithm
modifications and parallelization techniques were published in reviewed proceed-
ings of several conferences and one impacted journal and accepted by the scientific
community.

The most important contribution was made in the field of similarity search
in image datasets. We have modified the SQFD distance function, which mea-
sures the dissimilarity of image feature signatures, for the GPU architecture and
accelerated the similarity search process by more than two orders of magnitude.
Our first results were presented at the international CIKM conference [11]. The
complete work, which also included the acceleration of metric access methods,
was published in the Journal of Distributed and Parallel Databases [12]. Our
latest research in the field of parallel kNN queries with pivot table prefiltering is
yet to be published.

The followup work on the acceleration of the extraction process, which creates
feature signatures from images, achieved a similar speedup. We have successfully
adopted all parts of the extraction algorithm, so it can be executed on GPUs. The
parallelization of the k-means algorithm is particularly interesting, since this algo-
rithm is used in many other data-mining problems. The proposed modifications
were presented at the international Multimedia Modeling (MMM) conference [13].

In order to achieve such excellent results, we had to study the behaviour of the
GPU devices. Especially, the nuances of task scheduling on CPU cores and GPU
devices to ensure that the GPU does not wait for the CPU and vice versa. Our
proposed solution was published at the ITAT conference [10] and implemented
as an OpenCL wrapper framework, which is going to be published soon.

Related Research and Work in Progress

This thesis presents only a subset of a broad research on the topic of employing
parallel architectures in large data processing, which is being conducted at the
Departement of Software Engineering, Charles University in Prague. We have
studied various database and big-data problems besides the similarity search.

The most challenging problems were found for the semi-structured data or-
ganized in trees (e.g., XML) and graphs (e.g., RDF). In case of XML, we have
studied the possibilities of accelerating XPath queries using multi-core CPUs and
NUMA servers. The work was summarized in a master thesis [142] and published
at DATESO [143] and NDT [144] conferences.

As these data problems are very time consuming and share a lot of technical
issues, a long-term project of developing a highly parallel framework for data
processing was started at our departement. The prototype called Bobox [41, 40]
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is currently very competitive in the domain of data processing. It has a very so-
phisticated task scheduler and memory allocator [145], while it offers very simple
API to the programmer. The implementation of the SPARQL query language
for RDF data [65] that utilizes Bobox framework outperform other known imple-
mentations in orders of magnitude.

In the domain of relational databases, we focused on one of the most time
consuming operations – the database join. We tried to accelerate the natural join
operation of tables with numerical keys by the means of both multi-core CPUs
and many-core GPUs. The results were presented at the DATESO conference
[72]. This work was significantly extended by one of our master students and
an extensive comparison of GPU hashing methods was presented in his master
thesis [146].

Future Work in Similarity Search

In the future, we would like to continue the work on the similarity search and con-
tent based retrieval in image databases. The GPUs have proven more than useful
for accelerating the SQFD function, so we hope they can achieve similar results
for the Earth Mover’s Distance function (EMD), which is even more time con-
suming than the SQFD. Furthermore, we would like to try to adopt other metric
access methods for GPUs besides the already implemented 2-phase LAESA.

The metric indexing in a parallel environment presents far more challenges
than it has been revealed. In Section 4.6, we presented the problem of kNN
query with pivot table prefiltering. It has been established that any parallel solu-
tion must be suboptimal in the number of computed distances. We have proposed
a novel algorithm, which achieved better results than the näıve implementation
of parallel kNN, but we have tested it only on the SQFD distance function and
image feature signatures. Similarity models with significantly cheaper or signifi-
cantly more expensive distance functions (e.g., the structural matching of protein
structures [108]) are likely to achieve better results with other approaches. Our
objective is to map multiple similarity models and design a generic method of
selecting the best possible parallel approach based on a cost estimation of the
distance function.

Since we now posses a fast extractor and a fast similarity search engine, we
are going to employ them for some real-time tasks in the computer vision. We
would like to test these methods on video streams from HD camera and video
streams with depth information from the Microsoft Kinect device to detect and
identify predefined objects.

So far, our research on the topic of similarity search focused solely on the
image data. It has been discovered that similar methods can be utilized also
in the field of astrophysics. We have initiated a collaboration with a physics
departement to analyze the radiation spectra of stars by the means of a parallel
similarity search. Our main objective is to create a classification based solely on
clustering techniques, where similar spectra are grouped to one class.

Future Work in Data Processing

We have mentioned our work in the domain of relational databases. So far, we
have been able to explore the problems of hash-based joins that use numerical
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indices and accelerate them using a single GPU device. In the future, we would
also like to research the parallelization of nested loops, hashing algorithms for
string keys, and the utilization of multi-GPU configurations.

In case of semi-structured data, we have been succesful in implementing
a highly optimized XPath search engine, which was capable of utilizing many
CPU cores. Our approach was based on creating special linearized indices over
the XML tree structures, which can be easily traversed concurrently. We hope
that this approach can be adopted for the GPU implementation as well. Further-
more, we would like to test this approach on tree-like data other than XML.

The graph-like data, such as RDF or linked-data, are even more challeng-
ing. First of all, we would like to integrate the GPU devices into the Bobox
framework, so we can utilize some of the existing coding, especially the SPARQL
frontend. After that, we plan to design specific graph indices tailored to the GPU
architecture, so we can run most of the operations on the GPU.

Most of our work was conducted on the NVIDIA GPUs with the Fermi archi-
tecture. At the end of 2012, NVIDIA released Tesla GPUs with a new architecture
called Kepler. This architecture brings some significant innovations, such as the
dynamic parallelism that allows the creation of nested parallel loops or a signif-
icant increase in the number of integrated cores. Furthermore, we would like to
test our algorithms on the new Intel many-core architecture presented as Xeon
Phi [5], which has been introduced for the general market this year.
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Attached Digital Content

An optical disk with attached data is being distributed with the thesis. The disk
has the following content:

• A digital representation of this thesis in PDF and PostScript (thesis.pdf
and thesis.ps files in the root directory).

• LaTeX source codes for the thesis with all the figures and graphs (the
latex-src directory). A makefile is also attached to provide a conve-
nient way for building the thesis. The latex-src/pic directory contains
all the embedded figures in encapsulated PostScript and SVG formats.
The latex-src/graph directory contains all the graphs in encapsulated
PostScript and their source codes for the R-Project software, which was
used to create them (http://www.r-project.org/).

• The C++ source codes of the GPU framework (that contains the OpenCL
wrapper and feeding thread pool), the prototype of the SQFD search en-
gine and the GPU feature extractor are stored in the src directory. The
entire code is gathered in one Visual Studio solution package, and both
SQFD and feature extractor have also their own makefiles for Linux. See
src/readme.txt for more details regarding the source codes.

• The measured results and related data are in the data directory. The
04-sqfd and the 04-indexing subdirectories contain experimental results
for SQFD and indexing experiments conducted in Chapter 4. The experi-
mental results from Chapter 5 are in 05-feature extraction subdirectory.
Finally, the images directory contains the TWIC dataset and part of ALOI
dataset (both images and extracted feature signatures). Each subdirectory
has a readme.txt file, which contains more detailed information about its
contents.

The digital content can also be loaded from:

http://www.ksi.mff.cuni.cz/~krulis/thesis/

The contents is divided into two parts, both are compressed into zip package
and into tar.gz package, so they can be decompressed on Windows and on various
unices conveniently.

• thesis-dvd-content.{zip|tar.gz} files contain everything except the
images and feature signatures (i.e., the data/images subdirectory).

• thesis-dvd-content-images.{zip|tar.gz} files contain the TWIC and
ALOI images and feature signatures.
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[142] Krulǐs, M.: Algorithms for Parallel Searching in XML Datasets. Master’s
thesis, Faculty of Mathematics and Physics, Charles University in Prague
(2009)
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