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Abstra
tNázov prá
e: Choquetová teória a funk
ionálny kalkulusAutor: Milan KolkusKatedra: Katedra matemati
kej analýzyVedú
í diplomovej prá
e: Prof. RNDr. Jaroslav Luke², DrS
.e-mail vedú
eho: lukes�karlin.m�.
uni.
zAbstrakt: Táto prá
a sa zaoberá moºnos´ami prenesenia známy
h výsledkov z kon-vexnej analýzy do Choquetovej teórie funk£ný
h priestorov, najmä £o sa týka zvazový
hviet. Odvodili sme, ºe funk£ný priestorH je simpli
iálny práve vtedy, ke¤ istá ²pe
iálnatrieda A(H) H-a�nný
h funk
í tvorí zvaz. �al²ím výsledkom je spektrálna veta pretento systém A(H), ktorý stavia i na vy²²ie zmienenej vete. Pre hlb²ie po
hope-nie súvislostí je d�leºitá dobrá znalos´ Rieszový
h priestorov a Bana
hový
h zvazov.Základne pojmy sú stru£ne zhrnuté v úvode. Ako ¤al²í uºito£ný nástroj sa ukazujeabstraktná teória integrá
ie v dvo
h r�zny
h ²truktúra
h - prístup 
ez zvazové inte-grály a tieº pristup 
ez miery s hodnotami v Bana
hovom priestore. Pretoºe sa jednáo pomerne novú problematiku, ve©a otvorený
h problémov a prirodzene vzniknutý
hotázok s náznakmi moºný
h rie²ení je zhrnutý
h v závere prá
e.K©ú£ové slová: Choquetová teória, funk
ionálny kalkulus, abstraktná integá
ia
Title: Choquet theory and fun
tional 
al
ulusAuthor: Milan KolkusDepartment: Department of mathemati
al analysisSupervisor: Prof. RNDr. Jaroslav Luke², DrS
.Supervisor's email addres: lukes�karlin.m�.
uni.
zAbstrak
: This thesis 
on
erns with possibilities of known results transfer from 
onvexanalysis to Choquet theory of fun
tion spa
es, mainly as for latti
e type theorems. Wehave proved that fun
tion spa
e H is a simpli
ial if and only if some family A(H)of spe
ial H-a�ne fun
tions is a latti
e. Next main result is a spe
tral theorem forthis system A(H). For deeper understanding of 
onne
tions it is ne
essary to befamiliar with Riesz spa
es and Bana
h latti
es. Basi
 notions are summarized in theIntrodu
tion. As a further useful tool it appears to be abstra
t integration - latti
eintegrals and Bana
h spa
e valued measures. Open problems and naturally arisedquestions with possible ideas for solutions are 
olle
ted at the end of thesis.Keywords: Choquet theory of fun
tion spa
es, fun
tional 
al
ulus, abstra
t integra-tion 4



Chapter 1Introdu
tionIt appears a 
lose relationship between Choquet theory of fun
tion spa
es and fun
tion
al
ulus in view of an abstra
t integration through integrals on latti
es and Bana
hspa
e valued measures. Comparison of both quite di�erent theories we stated to these
tion Open Problems - Abstra
t integration.In many, not only physi
al motivated tasks, o

urs a ne
essity to put together areal or 
omplex valued fun
tion and an element from a seemingly di�erent mathemat-i
al stru
tures - Bana
h algebras, respe
tive C∗-algebras and σ-
omplete Riesz spa
eswith unit (for the de�nition see paragraph Riesz spa
es in the se
tion Spe
ial spa
es).Further 
onspi
ious questions linked to this theme are 
olle
ted in the present paper inthe Se
tion Open Problems - Spe
tral theory. In the following we 
ompare 
al
ulusesmentioned above. A spe
tral theory for fun
tion spa
es is developed in the Chapter 3.Let sket
h a framework for spe
tral theories for spe
ial algebras with unit e. Namely,on Bana
h algebras one 
an establish Dunford holomorphi
 
al
ulus with the aid of
omplex analysis and its 
omfortable properties su
h that ea
h holomorphi
 fun
tion
an be expressed in Taylor series lo
ally at ea
h point. The 
ounter value is a relativelysmall system of fun
tions from fun
tion 
al
ulus. One 
an improve it, but only for Her-mitian elements of C∗-algebras. Thanks to 
omplex version of the Stone�Weierstrasstheorem we obtain 
al
ulus also for 
ontinuous 
omplex fun
tions on the spe
trum.In both 
ases, it is one of key points a possibility to de�ne a resolvent fun
tion
(λe − x)−1. This resolvent yields useful formulas as the Cau
hy one in the 
ontextof spe
ial algebras. Remind that for Hilbert spa
es one 
an establish also the Borelmeasurable 
al
ulus. In this 
onne
tion let us point out the notions norm 
ompletnessand orthogonality. A natural re�e
tion of the pre
eding notions in σ-
omplete Rieszspa
es with unit u is a σ-
ompletness and a latti
e orthogonality, for de�nitions see these
tion Spe
ial spa
es. By this way de�ned orthogonality produ
e very similar spe
traltheory to the spe
tral theory in Hilbert spa
es. Orthogonal proje
tions, orthogonalsubspa
es are meanigful and fun
tion 
al
ulus is with a resolvent [(λu − x)+]u andintegration over a real spe
trum, 
f. Theorem 1.1. For better understanding of thosemathemati
ally un
ertain 
onsiderations, but very intuitive, we refer to [4℄.One 
an 
on
eptualize a notion of H-a�nity as a generalization of a�nity fromthe 
onvex analysis to the theory of fun
tion spa
es, where H is a subspa
e of C(K).One of an imporant argument why we should deal with fun
tion spa
es instead ofquite simpler 
onvex analysis is its higher �exibility whi
h is 
aused by that we need5



not go over to state spa
e. An introdu
tion to this ni
e theory take over from [10℄.Overview of known fa
ts about spe
ial families of a�ne fun
tions and also some newgeneralizations to the fun
tion spa
e setting are in the Chapter 2. For the �rst view tothis new theory we refer a reader to [12, Phelps℄ and to [3, Choquet℄. Finally, we referto the se
tion Open problems - Fun
tion spa
es for open problems and new possibleideas how to solve them.1.1 Spe
ial spa
esOrdered sets. An ordered set E is 
alled upper dire
ted if for any pair of elements
x, y ∈ E there exists an element z ∈ E su
h that x ≤ z and y ≤ z. Let denote by
x1 ∨ . . . ∨ xn the least upper bound of elements x1, . . . , xn ∈ E (if it exists) and by
∨∞

n=1xn the least upper bound (supremum) of sequen
e xn, n = 1, 2, . . . if it exists. Iffor any x, y ∈ E the supremum x∨y exists, then we say that E is an upper semilatti
e.If E is both upper and lower semilatti
e, then we say that E is a latti
e. The meaningof dual notions a lower dire
ted, a lower semilatti
e and the notation x ∧ y should be
lear.Order 
onvergen
e. Let E be an ordered set. A sequen
e {xn} of elements of Eis said to be in
reasing if m < n implies xm ≤ xn. In this 
ase one writes xn ր. Ifmoreover, the element ∨∞
n=1xn exists, one writes xn ց x and analogous de�nitions for

xn ր. The sequen
e {xn} of elements of E is said to 
onverge with respe
t to the orderrelation to x (abbreviated, (o) - 
onverges to x) if there exist the sequen
es {an}, {bn}of E, su
h that(a) an ≤ xn ≤ bn, n ∈ N,(b) an ց x and bn ր x.In this 
ase one writes x = (o) - lim xn.Dedekind 
ompletness. A latti
e L is said to be Dedekind 
omplete if any subsetof L admit a greates lower bound and a least upper bound. The latti
e L is said tobe relatively 
omplete if any bounded subset of L admits a greates lower bound anda least upper bound. If in the previous de�nitions the subsets of L are assumed tobe 
ountable, then we get the de�nition of the Dedekind σ-
omplete latti
e (relatively
σ-
omplete, respe
tively).Riesz spa
es. A real ve
tor spa
e V is said to be an ordered ve
tor spa
e if an orderrelation has been given in V , su
h that the following 
onditions are satis�ed:(O1) if x1, x2 ∈ V and x1 ≤ x2, then x1 + x ≤ x2 + x for any x ∈ V ,(O2) if x1, x2 ∈ V and x1 ≤ x2, then αx1 ≤ αx2 for any α ∈ R

+.One 
alls a Riesz spa
e (or ve
tor latti
e) any ordered ve
tor spa
e whi
h is latti
e.One 
alls a σ-
omplete Riesz spa
e any ordered ve
tor spa
e whi
h is a relatively
σ-
omplete latti
e. 6



Order sums. The notion of (o) - 
onvergent series 
an be introdu
ed in a naturalmanner: (o) - ∞∑

n=1

xn = (o) - lim
m

m∑

n=1

xn,and (o) - +∞∑

−∞

xn = (o) - ∞∑

n=1

xn + (o) - ∞∑

n=0

x−n,if the right side is meaningful.Example. Let X be an arbitrary nonempty set. Denote by R(X) the set of all realfun
tions on X. R(X) is a 
omplete Riesz spa
e in its natural pointwise ordering.The latti
e operations are also de�ned pointwise. Note that the (o) - 
onvergen
e andpointwise 
onvergen
e in R(X) 
oin
ides.Orthogonality. Let Q be a Riesz spa
e. If x ∈ Q, then the positive part of x is, byde�nition, the element x+ := x ∨ 0; the negative part of x is the element x− := x ∧ 0;the absolute value of x is the element |x| := x+ + x−. Two elements x1, x2 ∈ Q aresaid to be orthogonal if |x1| ∧ |x2| = 0. One writes then x1 ⊥ x2. The orthogonal
omplement of an arbitrary A subset of Q we denote by A⊥ := {x ∈ Q : x ⊥ A}. A set
A of elements of Q is said to be total if A⊥ = {0} .Componets and proje
tors. A subset P of a Riesz spa
e Q is 
alled a 
omponentof Q if any element x ∈ Q 
an be written as x = x′ + x′′, where x′ ∈ P and x′′ ∈ P⊥.The element x′ is 
alled the proje
tion of x onto P and it is denoted by x′ = [P ]x.The mapping x 7→ [P ]x of Q into P is 
alled the proje
tor (it is denoted by [P ]). Ina σ-
omplete Riesz spa
e the set v⊥⊥ is the smallest 
omponent whi
h 
ontains v. Itis 
alled the 
omponent generated by v. The proje
tor determined by v⊥⊥ is 
alled aprin
ipial proje
tor and it is denoted by [v].Riesz spa
e with unit. In a a

ording with the de�nition of a total set, an element
c ∈ Q is said to be total, if x ⊥ c implies x = 0. A Riesz spa
e is said to be Riesz spa
ewith unit u if it has total elements and if a positive total element u is 
hoosen in it.The element u is 
alled a unit element. If Q is a Riesz spa
e with unit, any element
e ∈ Q for whi
h e ∧ (u − e) = 0 is 
alled a unitary element.In what follows let Q be a σ-
omplete Riesz spa
e with unit u.Integration to Q. Let ϕ be a real valued fun
tion de�ned on R, and g be an Q-valued fun
tion de�ned on R. Let us 
onsider a partition △ of the real axis, given bypoints λi(i = 0,±1,±2, . . .), su
h that λi < λi+1 and λi+1 − λi ≤ ε (for a given ε). Letus assume that for any su
h partition and any 
hoi
e of the intermediate points γi (i.e.,
λi ≤ γi ≤ λi+1) the following sum

s△ = (o) - +∞∑

−∞

ϕ(γi)(g(λi+1) − g(λi)) (1.1)7



exists. Let ν(△) := sup(λi+1 − λi) be the norm of the partition △. For any sequen
e
{△n}n∈N

of the partitions, su
h that ν(△n) → 0, we shall 
onsider a sequen
e ofelements of the form (1.1), where the intermediate points are 
hosen arbitrirarily forea
h partition △n. If for any sequen
e {△n}, su
h that ν(△n) → 0, the sequen
e
{s△n

}
n∈N

is (o)-
onvergent to a given element x ∈ Q, whi
h is indenpendent of the
hosen sequen
e of partitions, one writes
x =

∫ +∞

−∞

ϕ(λ)dg(λ).Spe
tral fun
tion. For any element x ∈ Q, the fun
tion gx : R → Q, de�ned by theformula
gx(λ) := [(λu − x)+]u,is 
alled the spe
tral fun
tion of x.Theorem 1.1. Any element x of a σ-
omplete Riesz spa
e with unit 
an be representedin the form

x =

∫ +∞

−∞

λdgx(λ).Bana
h latti
es. Let (B,∨) be a Riesz spa
e. A seminorm ρ on B satisfying ρ(x) ≤
ρ(y) whenever |x| ≤ |y| is 
alled a latti
e seminorm and a latti
e norm if, in addition,
ρ is a norm. In the latter 
ase, (B, || . ||) is 
alled a normed Riesz spa
e. An normedRiesz spa
e whi
h is 
omplete with respe
t to the norm is 
alled a Bana
h latti
e.M-spa
es. A latti
e norm || . || on Riesz spa
e (M,∨) is 
alled a M-norm, if ||x∨y|| =
max{||x||, ||y||} for all positive elements x, y ∈ M . A M-normed Bana
h latti
e M is
alled an M-spa
e. The meaning of notions Bana
h sublatti
e, sub-M-spa
e should be
lear.1.2 Choquet theory of fun
tion spa
esFun
tion spa
es. By a fun
tion spa
e H on a 
ompa
t Hausdor� topologi
al spa
e
K we mean (not ne
essarily 
losed) linear subspa
e of C(K) 
ontaining the 
onstantfun
tions and separating the points of K.Examples. (a) Continuous fun
tions. The whole spa
e C(K) of all 
ontinuousfun
tions on a Hausdor� 
ompa
t spa
e K represents a simple example of a fun
tionspa
e. Clearly, the spa
e C(K) separates the points of K.(
) Convex 
ase � a�ne fun
tions. Let X be a 
onvex 
ompa
t subset of a lo
ally
onvex spa
e E and H the linear spa
e Uc(X) of all 
ontinuous a�ne fun
tions on X.(d) Harmoni
 
ase � harmoni
 fun
tions. Let U be a bounded open subset of theEu
lidean spa
e R

d. The fun
tion spa
e H(U) 
onsists of all 
ontinuous fun
tions on
U whi
h are harmoni
 on U . 8



More generally, we 
an 
onsider a relatively 
ompa
t open subset U of an abstra
tharmoni
 spa
e and the fun
tion spa
e H(U), the linear subspa
e of C(U) of fun
tionswhi
h are harmoni
 on U . We ta
itly assume that 
onstant fun
tions are harmoni
 and
H(U) separates the points of U .Representating measures. Let M1(K) denote the set of all probability Radonmeasures on K. We denote by Mx(H) the set of all H-representating measures for
x ∈ K, that is,

Mx(H) := {µ ∈ M1(K) : f(x) =

∫

K

fdµ for any f ∈ H}.

H-a�ne fun
tions. We de�ne the spa
e Ab(H) of allH-a�ne fun
tions as the fam-ily of all bounded Borel fun
tions l on K satisfying the following bary
entri
 formula:
l(x) =

∫

K

l dµ for ea
h x ∈ K and µ ∈ Mx(H).Sometimes we will write shorter µ(f) instead of ∫
K

fdµ.Upper and lower envelopes. Let f be an upper bounded fun
tion on K. For
x ∈ K, put

f ∗(x) = inf {h(x) : h ∈ H , h ≥ f on K }. (1.2)Obviously, the upper envelope f ∗ is an upper semi
ontinuous fun
tion on K. Similiary,for a lower bounded fun
tion f on K, we de�ne the lower envelope f∗ so that f∗(x) =
−(−f)∗(x), x ∈ K.Proposition 1.2. Let x ∈ K. Then the mapping f 7→ f ∗(x) is sublinear fun
tional on
C(K).Proof. It is easy to verify that

(f + g)∗ ≤ f ∗ + g∗ and (λf)∗ = λf ∗for any f, g ∈ C(K) and λ > 0.Lemma 1.3. Let f ∈ C(K) and x ∈ K. Then
[f∗(x), f ∗(x)] = {µ(f) : µ ∈ Mx(H)} .Proof. Fix an x in K and f ∈ C(K). If µ ∈ Mx(H) and g, h ∈ H, g ≤ f ≤ h,then g(x) = µ(g) ≤ µ(f) ≤ µ(h) = h(x), so that f∗(x) ≤ µ(f) ≤ f ∗(x). Pi
k now

α ∈ [f∗(x), f ∗(x)]. From Lemma 1.2 we know that the mapping p : g 7→ g∗(x) is asublinear fun
tional on C(K). The Hahn�Bana
h theorem provides a linear fun
tional
µf on C(K) su
h that µf(f) = α and µf ≤ p on C(K). Sin
e µf(g) ≤ p(g) = g∗(x) ≤ 0whenever g ∈ C(K) and g ≤ 0, we see that µf is, a

ording to the Riesz representationtheorem, a positive Radon measure on K. Let h ∈ H. Then h∗ = h = h∗, whi
h yields

µf(h) ≤ p(h) = h∗(x) = h(x)9



and simultaneously
−µf (h) = µf(−h) ≤ p(−h) = (−h)∗(x) = −h∗(x) = −h(x) .Hen
e µf (h) = h(x). If h = 1 on K, then µf(h) = h(x) = 1. Thus ||µf || = 1, and wesee that µf ∈ Mx(H).

H-
on
ave and H-
onvex fun
tions
H-
on
ave and H-
onvex fun
tions. A bounded Borel fun
tion f on K is 
alled
H-
onvex, if

f(x) ≤ µ(f) for any x ∈ K and µ ∈ Mx(H).In a similar way we de�ne H-
on
ave fun
tions. Let K(H) denote the family of all H-
onvex fun
tions on K andKc(H) the family of all 
ontinuousH-
onvex ones. Similarly,we de�ne the family of 
ontinuous H-
on
ave fun
tions as
Sc(H) = {f ∈ C(K) : f(x) ≥ µ(f) for any x ∈ K and µ ∈ Mx(H)}.Of 
ourse, Ac(H) = Kc(H)∩Sc(H). Further, let Kusc(H) denote the set of all uppersemi
ontinuous H-
onvex fun
tions on K, S lsc(H) the set of all lower semi
ontinuous

H-
on
ave fun
tion on K. The meaning of notations Klsc(H) and Susc(H) should be
lear.Let denote by f ∨ g the pointwise supremum of bounded real fun
tions f and g.We de�ne analogously the pointwise in�mum as f ∧ g. We denote by f+, resp. f−positive, resp. negative part, more pre
isly f+ = f ∨ 0 and f− = f ∧ 0.Proposition 1.4. The family Sc(H) forms a 
onvex 
one of fun
tions whi
h is min�stable.Proof. Let us just 
he
k that Sc(H) is min�stable: If k1, k2 ∈ Sc(H), then k1 ∧ k2 ∈
Sc(H). Indeed, let x ∈ K and µ ∈ Mx(H). Then

µ(k1 ∧ k2) ≤ min(µ(k1), µ(k2)) ≤ (k1 ∧ k2)(x) .Lemma 1.5. We have f = f ∗ on K for any f ∈ Sc(H).Proof. Pi
k x ∈ K. With the aid of Lemma 1.3, �nd µ ∈ Mx(H) so that f ∗(x) = µ(f).Then
f ∗(x) = µ(f) ≤ f(x) ≤ f ∗(x) .Proposition 1.6. Let f be an upper bounded fun
tion on K. Then

f ∗ = inf {g : g ∈ Ac(H) , g ≥ f on K} = inf {k : k ∈ Sc(H) , k ≥ f on K} .10



Proof. We have
f ∗ ≥ inf {g : g ∈ Ac(H) , g ≥ f on K} ≥ inf {k : k ∈ Sc(H) , k ≥ f on K} .Given k ∈ Sc(H), k ≥ f on K, in view of Lemma 1.5 we get k = k∗ ≥ f ∗. It followsthat

inf {k : k ∈ Sc(H), k ≥ f on K} ≥ f ∗ .Lemma 1.7. Let H be a fun
tion spa
e on K, f be an upper semi
ontinuous fun
tionon K and x ∈ K. Then there exists µ ∈ Mx(H) su
h that f ∗(x) = µ(f).Proof. Denote by G the lower dire
ted set {g ∈ C(K) : g ≥ f on K}. By Lemma 1.3,for any g ∈ G there is a measure µg ∈ Mx(H) su
h that µg(g) = g∗(x). Given ϕ ∈ G,let
Mϕ = {µg : g ∈ G, g ≤ ϕ}.By a 
ompa
tness argument, there is µ ∈

⋂
ϕ∈G

M
w∗

ϕ . A moment's re�e
tion shows that
µ ∈ Mx(H). We observe that

inf
{
ν(ϕ) : ν ∈ Mϕ

}
= inf

{
ν(ϕ) : ν ∈ M

w∗

ϕ

}
≤ µ(ϕ)for ea
h ϕ ∈ G. Hen
e

f ∗(x) ≤ inf {g∗(x) : g ∈ G} = inf {µg(g) : g ∈ G}

≤ inf {inf {µg(ϕ) : g ∈ G, g ≤ ϕ} : ϕ ∈ G} ≤ inf {µ(ϕ) : ϕ ∈ G}

=µ(f) ≤ inf {µ(h) : h ≥ f, h ∈ H} = inf {h(x) : h ≥ f, h ∈ H}

=f ∗(x) ,whi
h are the inequalities needed to �nish the proof.Proposition 1.8. If f is an upper bounded fun
tion on K, then f ∗ is upper semi
on-tinuous and H�
on
ave.Proof. Pi
k x ∈ K and µ ∈ Mx(H). Then
µ(f ∗) = µ

(
inf {h : h ∈ H , h ≥ f}

)
≤ inf {µ(h) : h ∈ H , h ≥ f}

= inf {h(x) : h ∈ H , h ≥ f} = f ∗(x) .This shows that f ∗ is H�
on
ave. It is plain that f ∗ is upper semi
ontinuous.Proposition 1.9. Let f be an upper bounded fun
tion on K. Then f is an uppersemi
ontinuous H�
on
ave if and only if f = f ∗ on K.Proof. Let f ∈ Susc(H) and x ∈ K. By Lemma 1.7, there is a measure µ ∈ Mx(H)su
h that f ∗(x) = µ(f). Then
f ∗(x) = µ(f) ≤ f(x) ≤ f ∗(x) .Conversely, suppose that f = f ∗. By Proposition 1.8, the fun
tion f ∗ is uppersemi
ontinuous and H�
on
ave. 11



Corollary 1.10. Let f be an upper bounded fun
tion on K. Then
f ∗ = inf {l : l ∈ Ausc(H) , l ≥ f on K} = inf {k : k ∈ Susc(H) , k ≥ f on K} .Proof. Re
all that

f ∗ := inf {h : h ∈ H , h ≥ f on K} .Obviously,
f ∗ ≥ inf {l : l ∈ Ausc(H) , l ≥ f on K} ≥ inf {k : k ∈ Susc(H) , k ≥ f on K} .Given l ∈ Ausc(H), l ≥ f , in view of the pre
eding Proposition 1.9 we get

l = l∗ ≥ f ∗ ≥ inf
{
l̃(x) : l̃ ∈ Ausc(H), l̃ ≥ f

}
.Taking the in�mum over all l ≥ f in Ausc(H) �nishes the reasoning.Corollary 1.11. Let g be an upper semi
ontinuous fun
tion on K. Then

g∗ = inf
{
l : l ∈ Alsc(H) , l ≥ g on K

}
= inf

{
k : k ∈ S lsc(H) , k ≥ g on K

}
.Proof. Pi
k x ∈ K and using Lemma 1.7 �nd again µ ∈ Mx(H) su
h that µ(g) = g∗(x).Let k ∈ S lsc(H), k ≥ g. Then

g∗(x) = µ(g) ≤ µ(k) ≤ k(x) .Hen
e
g∗ ≤ inf

{
k : k ∈ S lsc(H) , k ≥ g on K

}
≤ inf

{
l : l ∈ Alsc(H) , l ≥ g on K

}
.The reverse inequality is obvious, thus the proof is 
omplete.If H is a fun
tion spa
e, we denote W(H) := {h1 ∨ · · · ∨ hn : hi ∈ H, i = 1, . . . , n}.Lemma 1.12. Let H be a fun
tion spa
e on a 
ompa
t K. If g is an lower semi
on-tinuous fun
tion on K, f ∈ Kusc(H), g > f on K, then there is a fun
tion k ∈ W(H)su
h that g > k > f on K.Proof. Fix x ∈ K. By Lemma 1.7, there is a measure µ ∈ Mx(H) su
h that g∗ = µ(g).Then

g∗(x) = µ(g) > µ(f) ≥ f(x).Therefore, there exists hx ∈ H su
h that
hx ≤ g on K and hx(x) > f(x).Adding a small 
onstant fun
tion to hx, we may assume that hx < g everywhere on

K and still hx(x) > f(x). We infer from the upper semi
ontinuity of f − hx and a
ompa
tness argument that there exists x1, . . . , xn ∈ K su
h that k := hx1
∨. . .∨hxn

> fon K. The fun
tion K has all properties required.12



Corollary 1.13. Let k be a upper semi
ontinuous H-
onvex fun
tion on K. If
W := {w ∈ W(H) : w > k on K} ,then the set W is lower dire
ted and k = inf W .Proof. It su�
es to establish that k = inf W . Sin
e
k = inf {g ∈ C(K) : g > k on K} ,using Proposition 1.12 we 
on
lude that k = inf W .Now we are given w1, w2 ∈ W , and we wish fo �nd w′ ∈ W so that w′ < w1 ∧ w2.Sin
e (w1 ∧ w2)∗ > k, a new appli
ation of Proposition 1.12 asserts the existen
e of

w′ ∈ W so that w1 ∧ w2 ≥ (w1 ∧ w2)∗ > w > k and the proof is �nished.Theorem 1.14. Let f be an upper bounded fun
tion on K and µ ∈ M1(K). Then
µ(f ∗) = inf {µ(k) : k ∈ Sc(H) , k ≥ f} .Proof. We know from Proposition 1.4 that the family Sc(H) is min�stable, andtherefore the set inf {k : k ∈ Sc(H) , k ≥ f} is lower dire
ted and its in�mum equals

f ∗ by Proposition 1.6. The assertion follows now from more or less familiar theLebesgue monotone 
onvergen
e theorem for lower dire
ted sets of upper semi
ontinu-ous fun
tions.Choquet boundaryChoquet boundary. De�ne the Choquet boundary ChH(K) of a fun
tion spa
e
H as the set of those points x ∈ K for whi
h the Dira
 measure εx is the only H-representating measure for x, that is,

ChH(K) = {x ∈ K : Mx(H) = {εx}}.Theorem 1.15. A point x ∈ K belongs to the Choquet boundary of H if and only if
f(x) = f ∗(x) for every f ∈ C(K).Proof. The assertion is an immediate 
onsequen
e of Lemma 1.3. If x ∈ ChH(K) and

f ∈ C(K), then Mx(H) = {εx}, and therefore f(x) = f ∗(x). Conversely, assume that
f(x) = f ∗(x) for any f ∈ C(K). If µ ∈ Mx(H), then µ(f) = f(x) for any f ∈ C(K).Hen
e µ = εx.Lemma 1.16. A point x belongs to the Choquet boundary of H if and only if

h+(x) = (h+)∗(x) for every h ∈ H,Proof. Suppose x ∈ ChH(K) and h ∈ H. It is 
lear that h+ ∈ C(K) and the pre
edingTheorem 1.15 gives h+(x) = (h+)∗. On the other hand, if x 6∈ ChH(K), then by thede�nition exists µ ∈ Mx(H), su
h that µ 6= εx, that is, there is z ∈ supt µ, z 6= x.Sin
e H separates points of K, we obtain h′ ∈ H, h′(x) < h′(z). Put h = h′ − h′(x), so
h ∈ H and h(x) = 0, h(z) > 0. Therefore

h+(x) = 0 < µ(h+) ≤ µ((h+)∗) ≤ (h+)∗(x),sin
e (h+)∗ is H-
on
ave fun
tion a

ording to Lemma 1.8.13



Maximal measuresChoquet's ordering and maximal measures. The 
onvex 
one Kc(H) of all H-
onvex fun
tions on K determines the partial Choquet ordering on the spa
e M+(K)of all positive Radon measures on K:
µ � ν if µ(f) ≤ ν(f) for ea
h f ∈ Kc(H).Maximal elements ofM+(K) with respe
t to this Choquet ordering are 
alled maximalmeasures(or, more pre
isely, H-maximal measures).We start with trivial observations.Observation 1.17. For any µ ∈ Mx(H), we have εx ≺ µ.Proof. The assertion is just the de�nition of Kc(H): whenever f ∈ Kc(H) and µ ∈

Mx(H), then εx(f) = f(x) ≤ µ(f).Proposition 1.18. Let x ∈ K, µ ∈ Mx(H), ν ∈ M+(K) and µ ≺ ν. Then ν ∈
Mx(H).Proof. Let h ∈ H. Then h(x) = µ(h) = ν(h) sin
e H ⊂ Kc(H)∩−Kc(H). A parti
ular
hoi
e h = 1 yields ||ν|| = 1.Corollary 1.19. Let x ∈ K and µ ∈ M1(K). Then

εx ≺ µ if and only if µ ∈ Mx(H) .In what follows, we need a strengthened form of Lemma 1.3.Lemma 1.20. Let f ∈ C(K) and λ ∈ M1(K). Then
[λ(f∗), λ(f ∗)] =

{
µ(f) : µ ∈ M1(K) , λ ≺ µ

}
.Proof. The proof is almost the same as that given in Lemma 1.3. Pi
k α ∈ [λ(f∗), λ(f ∗)]and imitate it setting

p : g 7→ λ(g∗) , g ∈ C(K) .Then p is a sublinear fun
tional on C(K). The Hahn�Bana
h theorem with the Rieszrepresentation theorem yields a Radon measure µ ∈ M1(K) su
h that
µ(f) = α and µ(g) ≤ p(g) for g ∈ C(K) .It remains to show that λ ≺ µ. To this end pi
k k ∈ Kc(H). Then −k ∈ Sc(H) and anappeal to Lemma 1.5 reveals that (−k)∗ = k. Therefore

µ(−k) ≤ p(−k) = λ((−k)∗) = λ(−k) .Hen
e λ(k) ≤ µ(k), whi
h gives the required in
lusion.For the reverse, let λ ≺ µ, v ∈ Kc(H), k ∈ Sc(H), v ≤ f ≤ k. Then
λ(v) ≤ µ(v) ≤ µ(f) ≤ µ(k) ≤ λ(k) .Using Levi's theorem 1.14 we have

λ(f∗) ≤ µ(f) ≤ λ(f ∗) ,whi
h �nishes the proof. 14



The following result due to G.Mokobodzki 
hara
terizes maximal measures.Theorem 1.21. Let µ be a positive Radon measure on K. The following assertionsare equivalent:(i) µ is maximal,(ii) µ(f) = µ(f ∗) for any f ∈ C(K),(iii) µ(k) = µ(k∗) for any f ∈ Kc(H).Proof. Let λ ∈ M1(K) be maximal and let f ∈ C(K). By Proposition 1.20 there isa measure µ ∈ M1(K) su
h that λ ≺ µ and µ(f) = λ(f ∗). Sin
e λ is maximal, we have
µ = λ, and therefore µ(f) = µ(f ∗). It is obvious that (ii) =⇒ (iii). To see that (iii)
=⇒ (i), assume that a measure λ ∈ M1(K) satis�es λ(v) = λ(v∗) for ea
h v ∈ Kc(H).Let µ ∈ M1(K), λ ≺ µ and �x v ∈ Kc(H). Then, using Levi's theorem 1.14 we get

λ(v) = λ(v∗) = λ(inf {k : k ∈ Sc(H) , k ≥ v}) = inf {λ(k) : k ∈ Sc(H) , k ≥ v}

≥ inf {µ(k) : k ∈ Sc(H) , k ≥ v} ≥ µ(v∗) ≥ µ(v) .Hen
e λ(v) = µ(v). Sin
e the spa
e Kc(H) − Kc(H) is uniformly dense in C(K), we
on
lude that λ = µ.The proof of the following Proposition 1.22 use a fa
t that in a simpli
ial fun
tionspa
e H on a metrizable 
ompa
t there exists 
ontinuous stri
tly H-
onvex fun
tion.Note that in this 
ase ChH(K) is Gδ set. For the proofs of Propostion 1.22 andTheorem 1.23 see [10℄.Proposition 1.22. Let H be a fun
tion spa
e on a 
ompa
t K. If K is a metrizable,then measure µ is maximal, if and only if µ(K \ ChH(K)) = 0.Theorem 1.23 (Choquet representation theorem). Let H be a fun
tion spa
e ona 
ompa
t spa
e K admitting a 
ontinuous stri
tly H�
onvex fun
tion h. Then for ea
h
x ∈ K there exists a Radon measure µ on K su
h that

µ(K \ ChH(K)) = 0 and h(x) =

∫

K

h dµ for any h ∈ H .Theorem 1.24. Let H be fun
tion spa
e on 
ompa
t K. If K is metrizable, thenmeasure µ is maximal, if and only if
µ(h+) = µ((h+)∗) for every h ∈ H.Proof. Suppose µ is maximal. If h ∈ Ac(H), then h+ ∈ C(K). Using Mokobodzki'sTheorem 1.21 we have that the equality µ(h+) = µ((h+)∗) holds for every h ∈ Ac(H).On the other hand, assume that µ is not maximal. Denote by x the bary
enter of themeasure µ. If µ is Dira
 measure at point x, then the 
on
lusion is trivial a

ording toLemma 1.16. If µ is not the Dira
 measure at point x, then there exists z ∈ supt µ su
hthat h(z) > 0 and h(x) = 0, sin
e H separates points of K. So 0 < µ(h+) ≤ µ((h+)∗).Therefore

h+(x) = 0 < µ(h+) ≤ µ((h+)∗) ≤ (h+)∗(x).15



Put
λ :=

µ((h+)∗)

(h+)∗(x)
,then

µ(h+) = λ h+(x) + (µ − λ εx)(h
+) < λ (h+)∗(x) + (µ − λ εx)((h

+)∗) = µ((h+)∗),whi
h 
ontradi
ts our assumption that µ(h+) = µ((h+)∗), for ea
h h ∈ H.The following Theorem 1.25 is based on an appli
ation of well-known Zorn'slemma. For the 
omplete proof, see [10℄.Theorem 1.25. Let µ be a positive Radon measure on K. Then there is a maximalmeasure λ su
h that µ ≺ λ.Simpli
ial fun
tion spa
es.Simpli
ial fun
tion spa
es. A fun
tion spa
e H on a 
ompa
t spa
e K is 
alledsimpli
ial if for ea
h x ∈ K there exists a unique maximal measure δx ∈ Mx(H).Abstra
t Diri
hlet problem. For any bounded Borel fun
tion f on K we de�ne
Hf : x 7→

∫

K

f dδx, x ∈ KThe fun
tion Hf is an (abstra
t) solution of the Diri
hlet problem for the fun
tion f .Let us denote by H mapping
H : f 7→ Hf , for f ∈ Bb(K).Proposition 1.26. Let H be a simpli
ial fun
tion spa
e on a 
ompa
t spa
e K and let

f ∈ Kusc(H). Then fun
tion Hf is an upper semi
ontinuous H-a�ne fun
tion on K.Moreover, f ∗ = Hf on K.Proof. Fix x ∈ K and 
hoose µ ∈ Mx(H). Sin
e f ∗ = inf {h : h ∈ H, h ≥ f}, we have
µ(f) ≤ µ(f ∗) ≤ µ(h) = h(x) for any h ∈ H, h ≥ f . Hen
e µ(f) ≤ µ(f ∗) ≤ f ∗(x). Inparti
ular, δx(f) ≤ f ∗(x).Now appeal to Lemma 1.7 to �nd a measure λ ∈ Mx(H) su
h that f ∗(x) = λ(f).Thanks to Theorem 1.25, there is a maximal measure ν ∈ M+(K) su
h that λ ≺ ν.Proposition 1.18 yields ν ∈ Mx(H). The simpli
iality of H implies that ν = δx, andtherefore

f ∗(x) ≥ ν(f ∗) = inf {ν(k) : k ∈ Sc(H), k ≥ f} ≥

≥ inf {δx(k) : k ∈ Sc(H), k ≥ f} = δx(f
∗) ≥ δx(f) = f ∗(x).

16



Proposition 1.27. The following are equivalent assertions:(i) H is simpli
ial,(ii) For every f ∈ Kc(H), the fun
tion f ∗ ∈ Ausc(H).Proof. The impli
ation (i)=⇒(ii) is exa
tly the pre
eding Proposition 1.26.Now suppose (ii). Let x ∈ K and let µ, ν ∈ Mx(H) be maximal measures. Our aimis to show that µ = ν. Sin
e the spa
e Kc(H)−Kc(H) is dense in C(K), it is su�
ientto show that µ = ν on Kc(H). Making use of Mokobodzki's maximality Theorem 1.21and the de�nition of the H�a�nity, we see that
µ(s) = µ(s∗) = s∗(x) = ν(s∗) = ν(s)for any s ∈ Kc(H). This shows that (ii) implies (i).The proof of the next proposition uses in the 
onvex 
ase the Hahn�Bana
h separa-tion theorem. The general 
ase of a fun
tion spa
e H is solved in J.Spurný's paper [15℄using the transfer of H in to the so-
alled state spa
e of H. In order to apply Theo-rem 4.5 of [15℄, let us note that a H-a�ne fun
tion on a simpli
ial spa
e is 
ompletely

Ac(H)-a�ne.Proposition 1.28. Let H be a simpli
ial spa
e on a 
ompa
t spa
e K. If l ∈ Ausc(H),then the set
Al := {h ∈ Ac(H) : h > l on K}is lower dire
ted and l = inf Al.If, moreover, K is metrizable, then there exists in
reasing sequen
e {ln} ⊂ Al, su
hthat

l = inf ln.Lemma 1.29. Assume that H is a simpli
ial spa
e. Then a measure µ is maximal ifand only if,
µ(l+) = µ((l+)∗) for every l ∈ Ac(H).Proof. Suppose µ is maximal. If l ∈ Ac(H), then l+ ∈ C(K). Using Mokobodzki'stheorem 1.21 we have that the equality µ(l+) = µ((l+)∗) holds for every l ∈ Ac(H).Conversely, we show that µ(l+) = µ((l+)∗) moreover for every l ∈ Ausc(H). A
-
ording to Lemma 1.28, the set Al is lower dire
ted and l = inf Al. Observe that theset

A := {g+ : g ∈ Ac(H), g > l on K}is also lower dire
ted and l+ = inf A. Using the Lebesgue monotonne 
onvergen
etheorem for dire
ted sets we get:
µ(l+) = inf

g∈Al

µ(g+) = inf
g∈Al

µ((g+)∗) ≥ µ((l+)∗) ≥ µ(l+).Now we show that
µ(l1 ∨ . . . ∨ ln) = µ((l1 ∨ . . . ∨ ln)∗) (1.3)17



for any l1, . . . , ln from Ac(H). The 
ase n = 1 is 
lear. Assume that the equality holdsfor some n ≥ 1. Given 
ontinuous H�a�ne fun
tions l1, . . . , ln+1, put
f = (l1 − ln+1) ∨ . . . ∨ (ln − ln+1)Then

l1 ∨ . . . ∨ ln = f+ + ln+1.Simpli
iality of H ensures that f ∗ ∈ Ausc(H), therefore µ((f ∗)+) = µ(((f ∗)+)∗). Thefollowing inequalities show that (1.3) holds.
µ(l1 ∨ . . . ∨ ln+1) = µ(f+) + µ(ln+1) = µ((f ∗)+) + µ(ln+1) = µ(((f ∗)+)∗) + µ(ln+1) ≥

≥ µ((f+)∗) + µ(ln+1) ≥ µ((l1 ∨ . . . ∨ ln+1)
∗) ≥ µ(l1 ∨ . . . ∨ ln+1)Finally, the set {l1 ∨ . . . ∨ ln : l1, . . . , ln ∈ H} is dense in Kc(H) and thanks toTheorem 1.21 measure µ is maximal.

18



Chapter 2Families of H-a�ne fun
tions
2.1 The 
onvex 
aseThere are several types of theorems 
on
erning a stru
ture of simpli
es. We will dealwith two of them: latti
e type theorems and extension type theorems.H.Bauer in [2℄ showed that the set Ac(X) of all 
ontinuous a�ne fun
tions on a
ompa
t 
onvex set X is a Riesz spa
e in its natural ordering if and only if X isa simplex with 
losed set of extreme points ext X (so-
alled Bauer simplex). Theseassertions are equivalent to the extension theorem that for any 
ontinuous boundedfun
tion f on ext X there exists 
ontinuous a�ne fun
tion hf on X su
h that f = hfon ext X, see Theorem 2.1.Metrizable simpli
es were studied by E.M.Alfsen in [1℄ where was inferred extensiontheorem for bounded Borel fun
tions. In parti
ular, every bounded Borel fun
tionon ext X 
an be extended uniquely to a fun
tion from a set A′(X), where A′(X) isthe smallest set of real valued fun
tions whi
h 
ontains both l.s.
. and u.s.
. a�nefun
tions on X and is 
losed under bounded pointwise monotonne limits. Moreover,the set A′(X) 
onsists exa
tly of those bounded Borel fun
tions on ext X for whi
hthe �bary
enter formula� is valid. The above result lean heavily on the fa
t that theset A′(X) over a metrizable simplex is a σ-
omplete Riesz spa
e. This result is notentirely obvious, sin
e ext X 
an be a Gδ set, see Theorem 2.2.U.Krause in [9℄ introdu
ed the de�nition of A(X) as the smallest set of all realvalued fun
tions whi
h 
ontains sums of l.s.
 and u.s.
 fun
tions and is 
losed underbounded pointwise monotonne limits. He used result due to H.Bauer that the set
Ausc(X) of all u.s.
 a�ne fun
tions is an upper semilatti
e if and only if X is a simplex.This yields that Alsc(X) + Ausc(X) is Riesz spa
e. So Krause only repla
e in Alfsen'sde�nition of the A′(X) the word �and� by �sums�. It is reasonable, be
ause this givessimpler proof without assumption of a metrizability. Furthermore A(X) 
oin
ides with
A′(X) for an arbitrary metrizable simplex X, see Theorem 2.3 for more details.Another latti
e type and extension type theorem was obtained by S.Teleman in [16℄in terms of an extended boundary measure µ̃, Choquet topology on ext X, a family
Mb(ext X) of all bounded universally measurable fun
tions on ext X and a family U(X)of all strongly universally measurable fun
tions on X. For the 
ompletness we statehere Teleman's theorem, see Theorem 2.4.19



In what follows, X is a 
ompa
t 
onvex subset of a lo
ally 
onvex spa
e.Theorem 2.1 (Bauer, 1964). The following assertions are equivalent:(i) X is a simplex with 
losed ext X,(ii) Ac(X) is a Riesz spa
e,(iii) for any f ∈ C(ext X) there exists hf ∈ Ac(X) su
h that f = hf on ext X.Theorem 2.2 (Alfsen, 1966). In the following (i) implies (ii) and (ii) implies (iii).(i) X is a metrizable simplex,(ii) A′(X) is a Riesz spa
e,(iii) for any f ∈ Bb(ext X) there exists gf ∈ A′(X) su
h that f = gf on ext X.Theorem 2.3 (Krause, 1970). The following assertions are equivalent:(i) X is a simplex,(ii) Alsc(X) + Ausc(X) is a Riesz spa
e,(iii) A(X) is a Riesz spa
e.Theorem 2.4 (Teleman, 1985). The following assertions are equivalent:(i) X is a simplex,(ii) U(X) is a Riesz spa
e,(iii) for any f ∈ Mb(ext X) there exists uf ∈ U(X) su
h that f = uf on ext X.2.2 The fun
tion spa
e generalizationNow, our aim is how to show we 
an transfer pre
eding results to a more general settingof fun
tion spa
es.Families A(H),A(H) and A
′

(H). We denote by A(H) the smallest family of H�a�ne fun
tions satisfying the following 
onditions:(A1) Alsc(H) + Ausc(H) ⊂ A(H),(A2) if ln ∈ A(H), l real valued fun
tion on K, ln ր l or ln ց l, then l ∈ A(H).If we repla
e in the previous de�nition of A(H) 
ondition (A1) by (A1') we obtainanother interesting family denoted A
′

(H),(A1') Alsc(H),Ausc(H) ⊂ A(H).Denote by A(H) the sup-norm 
losure of the set A(H) in the set of all boundedreal fun
tions on K. 20



Strong envelopes. Let f be an upper bounded fun
tion on K. We de�ne upperstrong envelope as
f ◦(x) = inf {h(x) : h ∈ Alsc(H) , h ≥ f on K }.Similiary, for a lower bounded fun
tion f on K, we de�ne the lower strong envelope f◦so that f◦(x) = −(−f)◦(x), x ∈ K.Family U(H). A bounded fun
tion f on K is 
alled H-strongly universaly measur-able fun
tion, if f◦ = f ◦ on K. Let denote by U(H) the set of allH-strongly universalymeasurable fun
tions f on K.Observation 2.5. If f is a bounded fun
tion on K, then f ≤ f ◦ ≤ f ∗. Moreover, if

f is an upper semi
ontinuous fun
tion, then f ◦ = f ∗.Proof. The �rst part of observation is obvious and the se
ond one is just Corol-lary 1.11.Proposition 2.6. If H is a fun
tion spa
e on 
ompa
t K, then(a) A
′

(H) ⊂ A(H) ⊂ Ab(H),(b) Alsc(H) + Ausc(H) ⊂ U(H).Moreover, if K is metrizable, then(
) A
′

(H) = A(H).Proof. (a) It is obvious that Alsc(H),Ausc(H) ⊂ Alsc(H) + Ausc(H), so in
lusion
A

′

(H) ⊂ A(H) is trivial. The se
ond in
lusion is just Levi's theorem.(b) Pi
k f ∈ Ausc(H). Observation 2.5 implies that f = f ◦. No doubt that
f◦ = f and Proposition 1.9 yields that f ∗ = f . So Ausc(H) ⊂ U(H) and sin
e U(H)is a ve
tor spa
e also Alsc(H) + Ausc(H) ⊂ U(H).(
) Assume that K is a metrizable 
ompa
t. Pi
k f ∈ Alsc(H)+Ausc(H), su
h that
f = g + h, g ∈ Alsc(H), h ∈ Ausc(H). A

ording to se
ond part of Lemma 1.28 thereexists an de
reasing sequen
e hn ∈ Ac(H), hn ≥ h, h = lim hn. So g + hn ∈ Alsc(H)and g + hn ց g + h, therefore g + h ∈ A

′

(H). Sin
e Alsc(H) + Ausc(H) ⊂ A
′

(H), wesee that the equality A(H) = A
′

(H) holds.Theorem 2.7 (Latti
e Theorem). The following propositions are equivalent:(i) H is a simpli
ial spa
e,(ii) Ausc(H) is an upper semilatti
e,(iii) Alsc(H) + Ausc(H) is a Riesz spa
e,(iv) A(H) is a Riesz spa
e.
21



Proof. (i)=⇒(ii). Given g1, g2 ∈ Ausc(H), put f := (g1 ∨ g2)
∗. By Lemma 1.10 f =

inf{g ∈ Ausc(H) : g ≥ g1∨g2 on K} and a

ording to Proposition 1.26 f ∈ Ausc(H),further f = H(g1 ∨ g2). So we 
an de�ne the supremum operation g in Ausc(H) by
g1 g g2 := H(g1 ∨ g2) for every g1, g2 ∈ Ausc(H).Clearly, g is the supremum operation inAusc(H) endowed by natural pointwise orderingof fun
tions.(i)=⇒(iii). The impli
ation (i)=⇒(ii) has just been proved. Let g be the supremumoperation in Ausc(H) su
h that g1 g g2 = H(g1 ∨ g2) for every g1, g2 ∈ Ausc(H). Pi
k

f ∈ Alsc(H) + Ausc(H), f1 ∈ Alsc(H), f2 ∈ Ausc(H), f = f1 + f2. De�ne
f⊕ := H(f+).The equalities

H((f1 + f2)
+) = H((−f1) ∨ f2 + f1) = (−f1) g f2 + f1follow that f⊕ ∈ Alsc(H) + Ausc(H). We see that

f⊕ = H(f+) = (f+)∗ ≥ f+. (2.1)On the other hand, if f ′ ∈ Alsc(H)+Ausc(H), f ′ = f ′
1 +f ′

2, f ′
1 ∈ Alsc(H), f ′

2 ∈ Ausc(H),
f ′ ≥ f+, then

f ′ = f ′
1 + f ′

2 = (f ′
1)∗ + (f ′

2)
∗ = H(f ′

1) + H(f ′
2) = H(f ′).So

f ′ = H(f ′). (2.2)Where we have taken into the a

ount Lemma 1.26. H(f ′) ≥ H(f+) = f⊕ follow
f ′ ≥ f⊕.Sin
e Alsc(H) + Ausc(H) is a ve
tor spa
e, we 
an de�ne the supremum operation
g in Alsc(H) +Ausc(H) (whi
h 
oin
ides with the supremum operation in Ausc(H), soit is reasonable to denote both by the same symbol g) by

f g g := (f − g)⊕ + g for every f, g ∈ Alsc(H) + Ausc(H)and the in�mum operation by
f f g := −(−f) g (−g) for every f, g ∈ Alsc(H) + Ausc(H).(i)=⇒(iv). We have proved (i)=⇒(iii). Let g be the supremum operation in

Alsc(H) + Ausc(H) su
h that f⊕ = H(f+) for any f ∈ Alsc(H) + Ausc(H). Denote
Z := {f ∈ A(H) : H(f+) ∈ A(H)}. We see that Alsc(H)+Ausc(H) ⊂ Z. Using Levi'stheorem we obtain that A(H) ⊂ Z, so A(H) = Z. Therefore, we 
an de�ne

f⊕ := H(f+) for every f ∈ A(H)(the de�nition of f⊕ is 
orre
t, sin
e it 
oin
ides with positive part in the latti
e
Alsc(H) + Ausc(H)). Using Levi's theorem follows from the (2.1) that f⊕ ≥ f+ for22



every f ∈ A(H). For the reverse inequality, pi
k f ′ ∈ A(H), f ′ ≥ f+ and again usingLevi's theorem to (2.2) we obtain that
f ′ = H(f ′) and H(f ′) ≥ H(f+) = f⊕.Sin
e A(H) is a ve
tor spa
e, we 
an de�ne the latti
e operations in it again by f gg :=

(f−g)⊕+g for every f, g ∈ A(H) and the in�mum operation by f fg := −(−f)g(−g)for every f, g ∈ A(H).(ii)=⇒(i). Let Ausc(H) be an upper semilatti
e with the supremum operation g.A

ording to Proposition 1.27 it su�
es to show that for any k ∈ Kc(H) is k∗ ∈
Ausc(H). Let k ∈ Kc(H). The Corollary 1.13 implies that there exists a de
reasingnet wα in W(H), wα = h

(α)
1 ∨ · · · ∨ h

(α)
n(α), h

(α)
1 , . . . , h

(α)
n(α) ∈ H so that wα ≥ k and

k = inf wα. Put vα = h
(α)
1 g · · · g h

(α)
n(α), vα ∈ Ausc(H).We want to show that k∗ = inf vα. Inded, the inequality k∗ ≤ inf vα is obvious.For the 
onverse inequality, pi
k an arbitrary h ∈ H, h > f on K and x ∈ K. Sin
e

k = inf wα, there exists wα0
so that k(x) ≤ wα0

< h(x). Put h′ = h
(α)
1 g · · · g h

(α)
n(α0).So k ≤ h′ on K and h′(x) ≤ h(x). Taking the in�mum over all h > k on K, h ∈ H weobtain that f ∗ ≥ inf vα.(iii)=⇒(i). Let Alsc(H) + Ausc(H) be a latti
e with the supremum operation g.For an arbitrary l1, . . . , ln from H put l = l1 g . . . g ln. Observe that h ≥ l1 ∨ · · · ∨ lnif and only if h ≥ l for any h ∈ H. Taking the in�mum we obtain (l1 ∨ · · · ∨ ln)∗ = l∗.Now we appeal to the Mokobodzki's Theorem 1.21, so the following inequalities holdfor an arbitrary maximal measure µ with bary
enter x ∈ K:

l(x) = µ(l) ≤ µ(l∗) = µ((l1 ∨ · · · ∨ ln)∗) = µ(l1 ∨ · · · ∨ ln) ≤ µ(l) = l(x) (2.3)Therefore
µ(l1 ∨ · · · ∨ ln) = l1 g · · ·g ln.If ν is another maximal measure with bary
enter x ∈ K, then µ(l1 ∨ · · · ∨ ln) =

ν(l1 ∨ · · · ∨ ln). Similarly for f, or using the identities (−f) g (−g) = −(f f g),respe
tively (−f)∨ (−g) = −(f ∧ g). A

ording to the Stone�Weierstrass theorem theset W(H) − W(H) is dense in C(K), so µ = ν and, by de�nition, H is a simpli
ialspa
e.(iv)=⇒(i). The proof of this impli
ation is almost the same as the proof of thepre
eding impli
ation (iii)=⇒(i). Just realize that the bary
enter formula also holdsfor fun
tions from A(H), see Proposition 2.6 (
f. (2.3)).The proof of the pre
eding Theorem 2.7 shows the following observation:Observation 2.8. If H is a simpli
ial fun
tion spa
e, then Alsc(H) + Ausc(H) is asublatti
e of the Riesz spa
e A(H).In what follows, if H is a simpli
ial spa
e, then we denote by g the supremumoperation in A(H), by f⊕ the positive part of fun
tion f ∈ A(H), more pre
isely
f⊕ := f g 0 for any f ∈ A(H). The meaning of notation f⊖ should be 
lear.23



Theorem 2.9. If H is a simpli
ial spa
e, then A(H) is a M-spa
e and the norm
losure A(H) of Alsc(H) + Ausc(H) is an sub-M-spa
e of A(H).Proof. By Theorem 2.7, A(H) is a Riesz spa
e and the de�nition of A(H) impliesthat A(H) is a σ-
omplete Riesz spa
e.Moreover A(H) is a Bana
h spa
e in supremumnorm. Indeed, if ln is a Cau
hy sequen
e in A(H) with uniform limit l in Bb(K), thenuniform 
onvergen
e implies that l is aH-a�ne. For every n ≥ 1 there exists n0(n) ≥ 1,su
h that ||f − li|| ≤ 1/n for all i ≥ n0(n). Sin
e f = infn supi≥n0(n) li, then
f(x) = δx(f) = inf

n
δx

(
supi≥n0(n) li

)
.In A(H), σ-distributivity laws hold, so using Lemma 1.29 we obtain the equality

δx

(
supi≥n0(n) li

)
= gi≥n0(n) li(x).The argument of σ-
ompletness gives that gi≥n0(n)li ∈ A(H) and, of 
ourse, f ∈ A(H).Now we verify that A(H) is a Bana
h latti
e. Let l, l′ ∈ A(H), |l| < |l′|. Using theequality |l| = l g −l we obtain that

l,−l ≤ l g −l ≤ l′ g −l′ ≤ ||l′||,thus ||l|| ≤ ||l′||.We 
he
k that || . || is an M-norm. Indeed, �x l1, l2 ∈ A(H), l1, l2 nonnegative. Theinequality 0 ≤ l1, l2 ≤ l1 g l2 implies that ||l1|| ∨ ||l2|| ≤ ||l1 g l2||. Therefore l1, l2 ≤
||l1|| ∨ ||l2|| ∈ A(H), and thus l1 g l2 ≤ ||l1|| ∨ ||l2||. We see that ||l1 g l2|| ≤ ||l1|| ∨ ||l2||.It remains to prove the last part of the proposition. Alsc(H)+Ausc(H) ⊂ A(H) im-plies that A(H) is a Bana
h subspa
e of A(H). Sin
e Alsc(H)+Ausc(H) is a sublatti
eof A(H), then A(H) is a Bana
h sublatti
e of A(H). Finally, A(H) is an M-spa
e,then of 
ourse A(H) is an M-spa
e.
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Chapter 3Spe
tral measuresLet me start with roughly speaking to give an intuition for a better understanding ofthis 
hapter. In what follows, assume for a reasons of simpli
ity, that H is a Bauersimpli
ial spa
e on K. We have an Diri
hlet operator H whi
h assigns to ea
h 
on-tinuous fun
tion f on K the abstra
t solution of the Diri
hlet problem - a uniquelydetermined 
ontinuous H-a�ne fun
tion on K. It is known that the abstra
t solutiondepends only on the values of f on the Choquet boundary of H.Now 
on
entrate to a deformation of a �xed boundary 
ondition f by an arbitrary
ontinuous fun
tion ϕ on R. Quite pre
isely, 
onsider a mapping If (ϕ) = Hϕ◦f to theset Ac(H) of all 
ontinuous H-a�ne fun
tions on K. Natural task is to extend If to alarger system of real fun
tions whi
h 
ontains at least 
hara
teristi
 fun
tions of an leftunbounded intervals. This is motivated by spe
tral theory, in parti
ular by spe
tralpartitions of H-a�ne fun
tions.One of them is the system Bb(R) of all bounded Borel fun
tions on R. We 
anobtain this system en
losing the set of 
ontinuous bounded (or with 
ompa
t support)to bounded pointwise monotonne limits. So we 
an guess that the range of If extendedto Bb(R) should be at least some ve
tor spa
e E 
losed under bounded pointwisemonotonne limits whi
h 
ontains Ac(H). A 
han
e of extending If strongly dependson an additional stru
ture of E. U. Krause in [9℄ extend If with range A(X). It isa smallest possible range in the sense above. We generalize it to the fun
tion spa
es.The following theorems are based on Krause idea.Note that another spe
tral theory was studied by Rogalski [14℄.In this 
hapter H is a simpli
al spa
e. For an arbitrary f ∈ A(H) de�ne themapping If(ϕ) = H(ϕ ◦ f), ϕ ∈ Bb(R).Theorem 3.1. The following assertions hold:(a) If f ′ ∈ Alsc(H) + Ausc(H), then If ′(C(R)) ⊂ A(H).(b) If f ∈ A(H), then If(C(R)) ⊂ A(H) and If (ϕ1 ∨ ϕ2) = If(ϕ1) g If(ϕ2) for any
ϕ1, ϕ2 ∈ C(R).Proof. (a) Denote B = {r ∈ R : |r| ≤ ||f ′||} and by Ac(B) the set of all 
ontinuousa�ne fun
tions on B and by W(B) = {ϕ1 ∨ · · · ∨ ϕ2 : ϕi ∈ Ac(B)}. If ϕ ∈ Ac(B),25



then 
learly
δx((ϕ1 ∨ · · · ∨ϕn) ◦ f ′) = δx((ϕ1 ◦ f ′)∨ · · · ∨ (ϕn ◦ f ′)) = (ϕ1 ◦ f ′)(x) g · · ·g (ϕn ◦ f ′)(x)for any maximal measure δx with bary
enter x ∈ K or, equivalently, If ′(W(B)) ∈
Alsc(H) + Ausc(H). A

ording to the Stone�Weierstrass theorem W(B) − W(B) isdense in C(B), so I′f(ϕ) ∈ A(H) for any ϕ ∈ C(B).(b) Levi's theorem and the de�nition of A(H) show that If(C(R)) ⊂ A(H). From(a) we know that the equality

If (ϕ1 ∨ ϕ2) = If (ϕ1) g If (ϕ2)holds whenever ϕ1, ϕ2 ∈ W(B). Furthermore,
If(ϕ

+
d ) = If(ϕ1 ∨ ϕ2) − If (ϕ2) = If (ϕ1) g If(ϕ2) − If(ϕ2) = If(ϕd)

⊕where ϕd is a di�eren
e of two fun
tions ϕ1, ϕ2 ∈ W(B). If now ϕ ∈ C(B), then for any
ε > 0 there exists ϕd ∈ W(B)−W(B) su
h that ϕd − ε ≤ f ≤ ϕd + ε on B. Therefore

If(ϕ
+) ≤ If(ϕ

+
d ) = If (ϕd)

⊕ + ε ≤ If(ϕ + ε)⊕ + ε ≤ If(ϕ)⊕ + 2ε.So If(ϕ
+) ≤ If (ϕ)⊕. The reverse inequality is obvious and the proof is �nished.Corollary 3.2. If H is a Bauer simpli
ial spa
e, then we have:(a') If f ′ ∈ Ac(H), then If ′(C(R)) ⊂ Ac(H).Remark 3.3. In the part (b) of the pre
eding Theorem 3.1 we 
ould repla
e uniform
onvergen
e by a bounded pointwise monotonne 
onvergen
e and obtain without usinga Bana
h spa
e stru
ture of A(H) the following:(b') If f ∈ A(H), then If(B

b(R)) ⊂ A(H) and If(ϕ1 ∨ ϕ2) = If (ϕ1) g If (ϕ2) for any
ϕ1, ϕ2 ∈ Bb(R).Natural question arises if any mapping I : C(R) → A(H) 
an be represented by Iffor some f ∈ A(H). The following de�nition spe
i�es assumptions on I.Let χX denotes the 
hara
teristi
 fun
tion of an arbitrary set X.Spe
tral A(H)-integral. A mapping I : C(R) → A(H) is said to be(N) nonnegative if I(ϕ) ≥ 0 for any ϕ ≥ 0,(P) probability if I(χR) = χK ,(PI) probability A(H)-integral if it is nonnegative, probability and linear on C(R).(SI) spe
tral A(H)-integral if it is probability A(H)-integral and further:

I(ϕ1 ∨ ϕ2) = I(ϕ1) g I(ϕ2), for any ϕ1, ϕ2 ∈ C(R).26



In the sequel we will 
onsider only a probability integrals, so we will write shortly anintegral instead of a probability integral.Remark 3.4. The �rst part of the assertion (b) from Theorem 3.1 says that themapping mf de�ned by mf(B) := H(χB ◦ f) for an arbitrary Borel subset B of K is aBana
h spa
e valued measure, sin
e A(H) is a Bana
h spa
e. One 
an prove Lebesgue'stype theorem for an integral with respe
t to the measure mf and sin
e A(H) is also
σ-
omplete Riesz spa
e it follows Levi's type theorem for su
h Bana
h spa
e valuedmeasure; with bounded pointwise monotonne limit of a sequen
e as integrable majorantof this sequen
e. For more details see [5℄. A

ording this it is not entirely obviousfa
t applied to an A(H)-integral I we 
an extend it to an extended A(H)-integral
Ĩ : Bb(R) → A(H) whi
h ful�ls Levi (Lebesgue) type theorem.This not obvious fa
ts are used in the proof of the Extension lemma 3.5 appliedto the A(H)-integral I, respe
tively spe
tral A(H)-integral.Lemma 3.5 (Extension Lemma). If Ĩ is an extended spe
tral A(H)-integral, then

Ĩ(ϕ1 ∨ ϕ2) = Ĩ(ϕ1) g Ĩ(ϕ2), for any ϕ1, ϕ2 ∈ Bb(R).Proof. Denote by Z = {ϕ ∈ Bb(R) : Ĩ(ϕ+) = Ĩ(ϕ)⊕}. By the de�nition Cc(R) ⊂ Z.We show that Z is 
losed under bounded monotonne pointwise limits. Let {ϕn} be anupper bounded in
reasing sequen
e, ϕ = sup ϕn. Observe that ϕ+ = sup ϕ+
n and usingLevi's theorem for spe
tral A(H)-integral, (see Remmark 3.4) we obtain equalities:

Ĩ(ϕ+) = sup Ĩ(ϕ+
n ) = sup(̃I(ϕn)⊕) = sup H(̃I(ϕn)+) =

= H(sup(̃I(ϕn))+) = H((sup Ĩ(ϕn))+) = H(̃I(ϕ)+) = Ĩ(ϕ)⊕,thus ϕ ∈ Z and, similarily, for lower bounded de
reasing sequen
es. We see that
Z = Bb(R) and the proof is �nished.Partition and spe
tral 
lass. The family {lλ}λ∈R ⊂ A(H) is 
alled a partition of
A(H), if the following 
onditions hold:(P1) 0 ≤ lλ ≤ 1,(P2) lλ ≤ lλ′, for λ ≤ λ′,(P3) lλ′ = supλ<λ′ lλ (pointwise),(P4) limλ→+∞ lλ = 1, limλ→−∞ lλ = 0 (pointwise).A partition {lλ}λ∈R of A(H) is 
alled a spe
tral partition of A(H) if, moreover, thefollowing 
ondition holds:(SP) lλ g (1 − lλ) = 1, for every λ ∈ R.Let I be an A(H)-integral. For λ ∈ R de�ne the fun
tion lIλ := I(χ(−∞, λ)) from
A(H). 27



Theorem 3.6. The following assertions hold:(a) If I is an A(H)-integral, then the family of fun
tions {lIλ}λ∈R is the partition of
A(H) 
orresponding to I.(b) If {lλ}λ∈R is a partition of A(H), then there exists a unique A(H)-integral I, su
hthat lλ = lIλ for every λ ∈ R and

I(ϕ)(x) =

∫

R

ϕ(λ)lλ(x)dλ, ϕ ∈ Bb(R).Proof. (a) Probability 
ondition (P) and nonnegativity 
ondition (N) implies (P1) and(P2). Levi's theorem shows that (P3) and (P4) are ful�lled.(b) For x ∈ K, de�ne the fun
tion gx(λ) := lλ(x). (P3) implies that gx is monotonneand 
ontinous from the left, thus the integral ∫
R

ϕ(λ)gx(λ)dλ exists for every ϕ ∈ Cc(R).So we are able to de�ne the fun
tion lϕ : x 7→
∫

ϕ gx, x ∈ K, for every ϕ ∈ Cc(R). One
an prove similiarly as in Lemma 3.5 that lϕ ∈ A(H). Now de�ne the mapping
I(ϕ)(x) =

∫
ϕ gx. Observe that I is an A(H)-integral and lIλ = lλ, λ ∈ R.Denote by B(T ) the family of all Borel subsets of an arbitrary topologi
al spa
e T .Proposition 3.7. If I is an A(H)-integral, then I is a spe
tral A(H)-integral if andonly the partition of A(H) 
orresponding to I is a spe
tral partion.Proof. If I is a spe
tral A(H)-integral, then {IIλ} is a spe
tral partition a

ording tothe Theorem 3.5.On the other hand, let {lλ} be a spe
tral partition. A

ording to the Proposi-tion 3.6 there exists a unique A(H)-integral I, su
h that lλ = lIλ, for every λ ∈ R.Denote by lD = I(χD) for an arbitrary D ∈ B(R). Further denote

D = {D ∈ B(R) : lD g (1 − lD) = 1} .

D is a Dynkin system, that is, a family of subsets of R su
h that: R ∈ D; if D1, D2 ∈ Dand D1 ⊂ D2, then D2 \ D1 ∈ D and if Di ∈ D, i = 1, 2, . . . is a sequen
e of mutuallydisjoint sets from D, then also ∪∞
i=1Di ∈ D.Indeed, given D1, D2 ∈ D, D1 ⊂ D2 denote l1 = lD1

and l2 = lD2
. We see that

l1 f (1 − l1) = 0 and l2 f (1 − l2) = 0, therefore (1 − l2) f (l2 − l1) = 0, so 1 − l1 =
(1 − l2) g (l2 − l1) and (1 − l2) f l1 = 0 also 1 − (l2 − l1) = (1 − l2) g l1. This impliesthat

(1 − (l2 − l1)) g (l2 − l1) = (1 − l2) g l1 g (l2 − l1) = l1 g (1 − l1) = 1.We see that the set theoreti
 di�eren
e of sets D1 and D2 is from D. Now pi
k Di ∈
D, i = 1, 2, . . . a sequen
e of mutually disjoint sets and denote D = ∪∞

i=1Di. Theinequalities (1 − lD) f lDi
≤ (1 − lDi

) f lDi
, i = 1, . . . , k yield that

(1 − lD) f

(
n∑

i=1

lDi

)
≤

n∑

i=1

(1 − lD) f lDi
= 0.28



Sin
e Di are pairwise disjoint we have that∑n

i=1 lDi
= l∪n

i=1
D and then lD = supn

∑n

i=1 lDi
.This implies that lD f (1− lD) = 0, so D ∈ D. We have just veri�ed that D is a Dynkinsystem, hen
e D = B(R).If D1 and D2 are two disjoint Borel sets, then

0 ≤ lD1
g lD2

≤ lR\D2
g lD2

= (1 − lD2
) g lD2

= 0.If D1 and D2 are arbitrary Borel sets, then for disjoint sets D1 \ (D1 ∩ D2) and D2 \
(D1 ∩ D2) the following equalities hold

(lD1
− lD1∩D2

) g (lD2
− lD1∩D2

) = 0,

lD1∩D2
= lD1

f lD2
,

lD1∪D2
= lD1

+ lD2
− lD1∩D2

= lD1
g lD2

.Now let ϕ ∈ B(R) be a simple fun
tion(thus is a fun
tion with �nitely many values
ai ∈ R, i = 1, 2, . . . , n) or, equivalently, ϕ =

∑
i aiχDi

, where Di = r ∈ R : ϕ(r) = ai).We see that the equality ϕ+ =
∑

i a
+
i χDi

holds and then the equality I(ϕ+) =
∑

i a
+
i lDifollows. Sin
e Di are pairwise disjoint sets, then a

ording to the previous part of theproof we obtain that

(∑k

i=1
ailDi

)⊕
=
∑k

i=1
(ailDi

)⊕ =
∑k

i=1
a+

i lDi
.Therefore I(ϕ+) = I(ϕ)⊕. Now, appeal to the know fa
t that the set of all simplefun
tions is dense in the set Bb(R). This shows that I(ϕ+) = I(ϕ)⊕ for an arbitraryfun
tion ϕ ∈ Bb(R) whi
h 
on
ludes the proof.Denote by Id the identity fun
tion on R.Expe
tation of A(H)-integral. Let I be anA(H)-integral. A

ording to Lemma 3.5,we 
an de�ne an expe
tation eI of A(H)-integral I by eI(x) = I(Id)(x) if it exists. Wesee that then in this 
ase eI ∈ A(H).Lemma 3.8. If I is a spe
tral A(H)-integral for whi
h the expe
tation eI exists, then

I(χ(−∞,λ)) = supn(n(λ − eI)
⊕) f 1) for all λ ∈ R.Proof. Pi
k λ0 ∈ R and put ϕ(λ) = λ0 − λ. Lemma 3.5 implies that the expe
ation eIof I exists and eI = I(Id) ∈ A(H), also I(ϕ+) = I(ϕ)⊕ = (λ0 − eI)

⊕. Further from thesame Lemma we obtain that
I((n ϕ+) ∨ 1) = (n(λ0 − Id)⊕) f 1,

I(sup
n

((n ϕ+) ∨ 1)) = sup
n

(n(λ0 − eI)
⊕) f 1.Observe that the following equality supn(n(λ0 − Id)+)∧ 1 = χ(−∞,λ) �nishes the proof.

29



Theorem 3.9. The following assertions hold:(a) If I is a spe
tral A(H)-integral, then the family of fun
tions {lIλ}λ∈R is the spe
tralpartition of A(H) 
orresponding to I.(b) If {lλ}λ∈R is a spe
tral partition of A(H), then there exists a unique spe
tral
A(H)-integral I su
h that lλ = lIλ, for every λ ∈ R. and

I(ϕ)(x) =

∫

R

ϕ(λ)lλ(x)dλ, ϕ ∈ Bb(R).Proof. (a) It is just an appli
ation of the 
ondition (SI) from the de�nition of a spe
tralintegral used to the 
hare
teristi
 fun
tion of an arbitrary left unbounded interval.(b) If {lλ}λ∈R is a spe
tral partition of A(H), then a

ording to the Theorem 3.6there exists a unique A(H)-integral I, su
h that lλ = lIλ for every λ ∈ R. Now the
onlusion immediatly follows from the Proposition 3.7Theorem 3.10. The following assertions hold:(a) If f ∈ A(H), then the mapping If is the spe
tral A(H)-integral with expe
tation f .(b) If I is a spe
tral A(H)-integral for whi
h expe
tation exists, then there existsunique f ∈ A(H) su
h that I = If .Proof. (a) It is just the part (b) of Theorem 3.1.(b) Sin
e expe
tation exists, we 
an put f = I(Id) and by the de�nition we obtainthat I = If . Uniqueness follows from Lemma 3.8.Theorem 3.11 (Spe
tral theorem). For any f ∈ A(H) there exists a uniquelydetermined spe
tral partition {lλ}λ∈R su
h that f =
∫

R
λ lλ(x)dλ.Proof. A

ording to Theorems 3.9 and 3.10 for any f ∈ A(H) there exists a uniquespe
tral A(H)-integral If with expe
tation f su
h that

f = I(Id) =

∫

R

λ l
If
λ dλ.
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Chapter 4Open problemsNoti
e that this 
hapter is more intuitive than formal from the mathemati
al point ofview. It 
ontains 
olle
tion of open problems and rough strategy how try to over
omethem.4.1 Abstra
t integrationOne 
an interpret a measure as (in some sense) an additive set fun
tion or by anothername as an integral. In term of appli
ations it seems demand σ-additivity instead ofadditivity and request for ful�lment of so-
alled Daniell 
ondition for integral. In whatfollows we 
ompare two relatively di�erent approa
hes: a norm one and a latti
e one.For reasons of simpli
ity, (X,S) is a measurable spa
e.Order measures. Let (Q, g) be a σ-
omplete Riesz spa
e with unit e. Set fun
tion
µ : S → Q is said to be(a) nonnegative if µE ≥ 0 for any E ∈ S,(b) order σ-additive if µ(

∑∞
i=1 Ei) = (o) - ∑∞

i=1 µ Ei for an arbitrary sequen
e ofmutually disjoint sets Ei from S,(
) order measure if it is order σ-additive and µ∅ = 0,(d) probability measure if it is a order measure and µX = e,(e) spe
tral measure if it is probability measure and µ(E1∪E2) = µE1gE2, for any E1, E2 ∈
S.Bana
h spa
e valued measures. Let (B, || . ||) be a Bana
h spa
e. A set fun
tion

µ : S → Q is said to be(g) norm σ-additive if µ(
∑∞

i=1 Ei) =
∑∞

i=1 µEi, for an arbitrary sequen
e of mutuallydisjoint sets Ei from S,(h) Bana
h spa
e valued measure or shortly Bana
h measure, if it is norm σ-additiveand µ∅ = 0. 31



A notion of an integral is usually asso
iated with addition respe
t to some measure.For order measures as well as for Bana
h spa
e valued measures one 
an thanks toa linearity de�ne an integral for fun
tions with �nitely many values( so-
alled stepfun
tion). A next step of extending to larger family of fun
tions is markedly di�erent.Note that an extension of integrals depends also on a range of fun
tions whi
hwe would like to integrate. In general tasks it 
an happens that both measure andfun
tion are valued in a di�erent ve
tor spa
es. This 
ase is developed in Din
uleanu [5,1966℄ or a little bit brie�ier in newer [6, 2000℄ or see also [7, 2002℄ both by the sameauthor. For our purposes it su�
es to deal with integration of real fun
tions. Now weroughly outline 
onstru
tions and main di�eren
es between latti
e extending and normextending.Integrals on latti
es. In the 
ase of order measure the set of all step fun
tionsis Riesz spa
e in a natural pointwise ordering. We would like to apply the Daniellextension method, but some te
hni
al problem o

urs sin
e we do not have an ε-te
hnique as in the real 
ase where we use well-known fa
t: if s is a supremum of anarbitrary bounded set M of real numbers, then for any ε > 0 there exists an element
s′ in M su
h that s ≥ s′ > s − ε. In general we are for
ed to assume that Q ful�lsadditional 
onditions. In Cristes
u [4, 1976℄ it is (o)-
ountabilty and σ-regularity. InRie£an [13, 1997℄ it is 
ondition of weak σ-distributivity. Signi�
ant is that for anintegral de�ned in above mentioned papers Levi's theorem holds.Bana
h spa
e valued integration. If Bana
h measure m has a �nite variation µ,then one 
an 
omplete the set of all step fun
tions in an integtral norm ∫

|| . ||dµ andobtain a larger 
lass of m-integrable fun
tions. Give a noti
e that we have no Levi'stheorem even if we 
onsider real fun
tions ordered in a natural pointwise ordering.Instead of Levi's theorem one 
an prove Lebesgue dominated 
onvergen
e theorem.Note that from the standpoint of theory one 
an interpret spe
tral measure as a lat-ti
e homomorphism. In this 
onne
tion 
ite the Kantorovi
h extension theorem basedon Hahn�Bana
h type theorem in the 
ontext of Riesz spa
es, see Meyer-Nieberg [11,1991℄.Situation is more 
ompli
ated when a topology 
omes into e�e
t, that is, if we put
(X,S) := (T, B(T )), where T is a lo
ally 
ompa
t spa
e. An natural question arises ifextending the set of all bounded 
ontinous fun
tions we obtain the set of all boundedBorel fun
tions Bb(T ). A

ording to Cristes
u [4, 1976℄ answer should be yes, but onlyfor T metrizable and his way of extending fails for 
ontinous fun
tions with 
ompa
tsupport Cc(T ), sin
e Cc(T )is not a majorizing subspa
e of Bb(T ). Another situationis dis
ussed in the paper [8, 1976℄ by Khurana, where is inferred a di�erent extensiontheorem from Cc(T ) to the set of all Borel fun
tions with 
ompa
t support. He usednets, duals, biduals, weak topology. For T 
ompa
t, this result is proved in [17, 1972℄by an entirely di�erent method.This se
tion was only introdu
tion to the abstra
t theory of integration. Appli
a-tions of pre
eding metods to solving open problems in fun
tion spa
e theory will bestudied in the following se
tion Fun
tion spa
es.32



4.2 Fun
tion spa
esIn what follows, we deal with three type of problems: problems about bilateral rela-tionship of spe
ial families of H-a�ne fun
tions, problems about stru
ture of spe
ialfamilies of H-a�ne fun
tions and problems about extending spe
ial H-a�ne fun
tions.Further families of H-a�ne fun
tions. Let X be an arbitrary Hausdor� topolog-i
al spa
e. Denote by Bα(X) the set of all Baire fun
tions of the 
lass α and by Bm
α (X)a similiarly de�ned set of fun
tions as Bα(X), whi
h is generated only by boundedpointwise monotonne limits. B(X) denotes the set of all Baire fun
tions on X. Thenotation of Bm(X) should be 
lear. Further, put AB(H) = Ab(H)∩B(K), respe
tively

ABα(H) = Ab(H) ∩ Bα(K). Denote by Aα(H) the α-th 
lass generated by boundedpointwise limits of sequen
e from Ac(H). The meaning of notation Am
α (H) should bealso obvious.

A(H) and U(H). We have showed that Alsc(H) + Ausc(H) ⊂ U(H) (Lemma 2.6).It is not 
lear if A(H) ⊂ U(H). Of 
ourse, it su�
es to show that the set U(H) is
losed under bounded monotonne pointwise limits and this is strongly 
onne
ted witha limit behavior of the equality of strong envelopes f◦ = f ◦. Is it possible interpretstrong envelopes as upper and lower latti
e integrals? Closedness of U(H) is just Levi'stheorem for latti
e integrals. In this 
onne
tion point out that Alsc(H),Ausc(H) areonly semilatti
es and Ac(H) need not to be latti
e even for H simpli
ial. Withoutassumption of simpli
iality we have only some possibilities make use of upward ordownward �lterability. It will be ideal to prove that for any x ∈ K and f universallymeasurable fun
tion there exists H-representing measure µx su
h that f ◦(x) = µx(f).The next open problem is whether as matter of the fa
t U(H) is a latti
e or not.This question is answered only in the 
onvex 
ase by Teleman in [16℄ with the helpof Choquet topologies. We think it is possible to show that U(H) is a latti
e withoutfa
ial topologies. Why? We have proved that A(H) is latti
e, respe
tive A′(H) (
f.Proposition 2.6 (
) and Theorem 2.7 (iv) ) a

ording Alfsen's ideas from the 
onvex
ase. Alfsen has subsequently proved an extension type theorem for the family A′(X).A Teleman's pro
edure was reversed to Alfsen's one. Teleman inferred at �rst anextension type theorem for the fxamily U(X) and then he showed that U(X) is alatti
e. The di�
ulty is that in a nonmetrizable 
ase the set ext X of extreme pointsof X need not to be Borel measurable and maximal measures need not be 
arried by
ext X. The primary topology on K is too insensitive to the set ext X. So this is thereason why we should 
onsider another topology, in Teleman's extension theorem from
ext X is natural Choquet topology. On the other hand, it su�
es to show that for Hsimpli
ial the following equality f ◦ = Hf holds for any universally measurable fun
tion
f . Naturally, we 
an de�ne a supremum operation in U(H) by formula f gg = H(f∨g)similiary as for A(H), moreover A(H) would by sublatti
e of U(H), 
f. Theorem 2.7.
A(H) and AB(H). The next open problem is if the family A(H) 
oin
ides with thefamily AB(H). It is obvious that A(H) ⊂ AB(H). In a metrizable simpli
ial 
aseshould also the reverse in
lusion hold with the aid of simpli
ial verision of the Alfsen's33



theorem 2.2. It should be any problem with a generalization, sin
e all assertions usedin Alfsen's proof hold in the fun
tion spa
e setting. Therefore, for any f ∈ AB(H)is f↾ChH K ∈ Bb(ChH K) and thanks to Alfsen's theorem mentioned above we obtain
H(f↾ChH K) ∈ A′(H). As open problem remains also extension type theorems for A(H).A more deli
ate problem ifAα(H) = ABα(H) requires more �ner approa
h. In whatfollows we aim at the simpler metrizable simpli
ial 
ase. One 
an interpert a mapping
H : C(K) → A(H) as a latti
e integral. It is known that H(B1(K)) = A1(H). A

ordingthe Khuran theorem, see [8℄ we should obtain (o)-
ontinuity of H. It su�
es tothink better of di�eren
es between monotonne σ-
ontinuity and (o)-
ontinuity. So we
on
lude that H(Bα(K)) = ABα(H) and furthemore H(Bm

α (K)) = Am
α (H).A problem if H(Bα(ChH K)) = Aα(H), respe
tively H(Bm

α (ChH K)) = Am
α (H) iswidely 
ompli
ated, sin
e a Choquet boundary is in general a Gδ set and we 
an notapply Khuran's theorem. Nevertheless an extension theorem for latti
e integrals shouldbe su�
ient, but we have to 
he
k ifA(H) is a weakly σ-distributive latti
e. It should benot so surprising, sin
e Bb(ChH K) is a weakly σ-distributive latti
e in natural pointwiseordering. An idea how to verify that A(H) is also weakly σ-distributive latti
e is tryto transfer this 
ondition from Bb(ChH K) to A(H) with the latti
e integral H. Re
allimportant dependen
e H(f) g H(g) = H(f ∨ g), f, g ∈ A(H).4.3 Spe
tral theoryIn this se
tion we sket
h another aspe
t to the interplay between Choquet theory offun
tion spa
es and general spe
tral theory as introdu
ed in the Chapter 3. In whatfollows, we assume that H is a simpli
ial fun
tion spa
e. Krause strategy of inferen
eof spe
tral theory for A(H) is very similiar to the spe
tral theory for latti
es mixed tothe 
ontext of fun
tion spa
es. It would seem that fun
tion 
al
ulus for latti
e A(H)for H simpli
ial is just the spe
ial 
ase of a spe
tral theory for a σ-
omplete Rieszspa
e with unit, but Krause do not use more general theorems. Even, in Chapter 7 of[9℄ he stated a fun
tion 
al
ulus for latti
es and C∗- algebras as an appli
ation by himdeveloped fun
tion 
al
ulus for A(H).Turn for a while to a 
onne
tion between the spe
ial algebras and Riesz spa
es.On Riesz spa
es we have fun
tion 
al
ulus, so we 
an de�ne the produ
t by formula

a.b = 1
4
[(a+b)2−(a−b)2]. On the other hand, on spe
ial algebras we have also fun
tion
al
ulus, so we 
an de�ne the supremum operation by a g b = 1

2
[a + b +

√
(a − b)2]. Itappears that both fun
tion 
al
uluses are in some sense isomorphi
. Sin
e A(H) is aRiesz spa
e, A(H) should be Bana
h algebra. The latti
e stru
ture on A(H) is morenatural then algebra one. Conspi
ious question arises, if for above de�ned produ
t on

A(H) the equality f.g = H(f.g) holds for any f, g in A(H).Draw to a 
lose, let us mention a 
onne
tion with representation theorems. Ea
hBana
h algebra 
an be represented using Gelfand's transformation as a Bana
h algebraof all 
ontinous fun
tions on a some 
ompa
t spa
e. Further, ea
h M-spa
e 
an berepresented a

ording to Kakutani's theorem as an M-spa
e of all 
ontinous fun
tionson another 
ompa
t. It appears as though that the fun
tion 
al
ulus for A(H) is a
onne
ting link between all mentioned 
al
uluses.As the last note we refer to Krause's observation in [9, p. 285℄ where he outlines34



a new possible proof of the Choquet representation theorem, 
f. 1.23. He asserts thatthe Choquet representation theorem is just a reformulation of the spe
tral theorem for
A(H), 
f.3.10, (a). A roughly idea is at �rst apply a general spe
tral theory for latti
esto the latti
e A(H) and obtain spe
tral theorem for A(H). As was mentioned, spe
traltheorem for A(H) is just a reformulation of the Choquet representation theorem.
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Notation Denotes See page
x ∨ y, x1 ∨ . . . ∨ xn supremum of elements x, y; x1, . . . , xn 6, 101
x ∧ y, x1 ∧ . . . ∧ xn in�mum of elements x, y; x1, . . . , xn 6

∨∞
n=1xn supremum of sequen
e xn, if it exists x 6(o) - lim xn order limit of sequen
e {xn}, n = 1, 2, .. 6(o) - ∑∞

1 xn order sum of sequen
e {xn}, n = 1, 2, .. 6(o) - ∑∞
−∞ xn order sum of {xn}, n ∈ Z 6

|x| absolute value of element x 7
x+, x− positive (negative) part of element x 7

x ⊥ y, A⊥ orthogonal elements x,y; orthogonal 
omplement of set A 7
[P ] proje
tor de�ned by P 7(o) - ∫∞

−∞
ϕ(λ)dg(λ) order integral 7

C(K) 
ontinuous fun
tions on K 8
H fun
tion spa
e on Hausdor� 
ompa
t spa
e K 8

H(U) fun
tions, harmoni
 on U and 
ontinuous on U 8
Uc(X) 
ontinuous a�ne fun
tions on X 8
M1(K) probability Radon measures on K 9
M+(K) nonnegative Radon measures on K 14
Mx(H) H-representating measures with bary
enter x 9
f∗, f

∗ lower envelope of f , upper envelope of f 9
Ab(H) Borel bounded H-a�ne fun
tions 9
Ac(H) 
ontinuous H-a�ne fun
tions 10

Alsc(H),Ausc(H) l.s.
 (u.s.
) H-a�ne fun
tions 10
Kc(H),Sc(H) H-
onvex (H-
on
ave) fun
tions 10

Klsc(H),Kusc(H) l.s.
 (u.s.
) H-
onvex fun
tions 10
S lsc(H),Susc(H) l.s.
 (u.s.
) H-
on
ave fun
tions 10

W(H) 'wedge' fun
tions from H 12
ChH(K) Choquet boundary of fun
tion spa
e H 13

εx Dira
 measure in point x 13
δx maximal measure with bary
enter x 14

µ 4 ν Choquet's ordering of measures µ,ν 14
H Diri
hlet operator 16

ext X set of extreme points of X 19
A(X),A′(X) Krause's and Alfsen's spe
ial families 19

U(X) Teleman's family of spe
ial a�ne fun
tions 19
A(H),A′(H) spe
ial families of H-a�ne fun
tions 20

A(H) supremum norm 
losure of A(H) 20
f◦, f

◦ strong lower envelope of f , strong upper envelope of f 20
U(H) H-strongly universally measurable fun
tions 21
g, f supremum (in�mum) operation in A(H) 23

g∞
n=1fn, gn≥n0

fn supremum of sequen
e fn from A(H) 23
f⊕, f⊖ positive (negative) part of fun
tion f in A(H) 23

χX 
hara
teristi
 fun
tion of set X 261From the Se
tion Choquet theory of fun
tion spa
es to the end of this paper ∨ denotes thesupremum operation in the set of real fun
tions on K in its natural pointwise ordering.36



Id identity fun
tion on R 29
eI expe
tation of A(H)-integral I 29

B(T ) family of all Borel subsets of topologi
al spa
e T 28,32
B(X) Baire fun
tions on X 33
Bα(X) fun
tions Baire 
lass α 33
Bm

α (X) monotonne 
lass α 33
Aα(H) spe
ial families of H-a�ne fun
tions 33
Am

α (H) spe
ial families of H-a�ne fun
tions 33
AB(H) H-a�ne bounded Borel fun
tions on K 33
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