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AbstratNázov práe: Choquetová teória a funkionálny kalkulusAutor: Milan KolkusKatedra: Katedra matematikej analýzyVedúí diplomovej práe: Prof. RNDr. Jaroslav Luke², DrS.e-mail vedúeho: lukes�karlin.m�.uni.zAbstrakt: Táto práa sa zaoberá moºnos´ami prenesenia známyh výsledkov z kon-vexnej analýzy do Choquetovej teórie funk£nýh priestorov, najmä £o sa týka zvazovýhviet. Odvodili sme, ºe funk£ný priestorH je simpliiálny práve vtedy, ke¤ istá ²peiálnatrieda A(H) H-a�nnýh funkí tvorí zvaz. �al²ím výsledkom je spektrálna veta pretento systém A(H), ktorý stavia i na vy²²ie zmienenej vete. Pre hlb²ie pohope-nie súvislostí je d�leºitá dobrá znalos´ Rieszovýh priestorov a Banahovýh zvazov.Základne pojmy sú stru£ne zhrnuté v úvode. Ako ¤al²í uºito£ný nástroj sa ukazujeabstraktná teória integráie v dvoh r�znyh ²truktúrah - prístup ez zvazové inte-grály a tieº pristup ez miery s hodnotami v Banahovom priestore. Pretoºe sa jednáo pomerne novú problematiku, ve©a otvorenýh problémov a prirodzene vzniknutýhotázok s náznakmi moºnýh rie²ení je zhrnutýh v závere práe.K©ú£ové slová: Choquetová teória, funkionálny kalkulus, abstraktná integáia
Title: Choquet theory and funtional alulusAuthor: Milan KolkusDepartment: Department of mathematial analysisSupervisor: Prof. RNDr. Jaroslav Luke², DrS.Supervisor's email addres: lukes�karlin.m�.uni.zAbstrak: This thesis onerns with possibilities of known results transfer from onvexanalysis to Choquet theory of funtion spaes, mainly as for lattie type theorems. Wehave proved that funtion spae H is a simpliial if and only if some family A(H)of speial H-a�ne funtions is a lattie. Next main result is a spetral theorem forthis system A(H). For deeper understanding of onnetions it is neessary to befamiliar with Riesz spaes and Banah latties. Basi notions are summarized in theIntrodution. As a further useful tool it appears to be abstrat integration - lattieintegrals and Banah spae valued measures. Open problems and naturally arisedquestions with possible ideas for solutions are olleted at the end of thesis.Keywords: Choquet theory of funtion spaes, funtional alulus, abstrat integra-tion 4



Chapter 1IntrodutionIt appears a lose relationship between Choquet theory of funtion spaes and funtionalulus in view of an abstrat integration through integrals on latties and Banahspae valued measures. Comparison of both quite di�erent theories we stated to thesetion Open Problems - Abstrat integration.In many, not only physial motivated tasks, ours a neessity to put together areal or omplex valued funtion and an element from a seemingly di�erent mathemat-ial strutures - Banah algebras, respetive C∗-algebras and σ-omplete Riesz spaeswith unit (for the de�nition see paragraph Riesz spaes in the setion Speial spaes).Further onspiious questions linked to this theme are olleted in the present paper inthe Setion Open Problems - Spetral theory. In the following we ompare alulusesmentioned above. A spetral theory for funtion spaes is developed in the Chapter 3.Let sketh a framework for spetral theories for speial algebras with unit e. Namely,on Banah algebras one an establish Dunford holomorphi alulus with the aid ofomplex analysis and its omfortable properties suh that eah holomorphi funtionan be expressed in Taylor series loally at eah point. The ounter value is a relativelysmall system of funtions from funtion alulus. One an improve it, but only for Her-mitian elements of C∗-algebras. Thanks to omplex version of the Stone�Weierstrasstheorem we obtain alulus also for ontinuous omplex funtions on the spetrum.In both ases, it is one of key points a possibility to de�ne a resolvent funtion
(λe − x)−1. This resolvent yields useful formulas as the Cauhy one in the ontextof speial algebras. Remind that for Hilbert spaes one an establish also the Borelmeasurable alulus. In this onnetion let us point out the notions norm ompletnessand orthogonality. A natural re�etion of the preeding notions in σ-omplete Rieszspaes with unit u is a σ-ompletness and a lattie orthogonality, for de�nitions see thesetion Speial spaes. By this way de�ned orthogonality produe very similar spetraltheory to the spetral theory in Hilbert spaes. Orthogonal projetions, orthogonalsubspaes are meanigful and funtion alulus is with a resolvent [(λu − x)+]u andintegration over a real spetrum, f. Theorem 1.1. For better understanding of thosemathematially unertain onsiderations, but very intuitive, we refer to [4℄.One an oneptualize a notion of H-a�nity as a generalization of a�nity fromthe onvex analysis to the theory of funtion spaes, where H is a subspae of C(K).One of an imporant argument why we should deal with funtion spaes instead ofquite simpler onvex analysis is its higher �exibility whih is aused by that we need5



not go over to state spae. An introdution to this nie theory take over from [10℄.Overview of known fats about speial families of a�ne funtions and also some newgeneralizations to the funtion spae setting are in the Chapter 2. For the �rst view tothis new theory we refer a reader to [12, Phelps℄ and to [3, Choquet℄. Finally, we referto the setion Open problems - Funtion spaes for open problems and new possibleideas how to solve them.1.1 Speial spaesOrdered sets. An ordered set E is alled upper direted if for any pair of elements
x, y ∈ E there exists an element z ∈ E suh that x ≤ z and y ≤ z. Let denote by
x1 ∨ . . . ∨ xn the least upper bound of elements x1, . . . , xn ∈ E (if it exists) and by
∨∞

n=1xn the least upper bound (supremum) of sequene xn, n = 1, 2, . . . if it exists. Iffor any x, y ∈ E the supremum x∨y exists, then we say that E is an upper semilattie.If E is both upper and lower semilattie, then we say that E is a lattie. The meaningof dual notions a lower direted, a lower semilattie and the notation x ∧ y should belear.Order onvergene. Let E be an ordered set. A sequene {xn} of elements of Eis said to be inreasing if m < n implies xm ≤ xn. In this ase one writes xn ր. Ifmoreover, the element ∨∞
n=1xn exists, one writes xn ց x and analogous de�nitions for

xn ր. The sequene {xn} of elements of E is said to onverge with respet to the orderrelation to x (abbreviated, (o) - onverges to x) if there exist the sequenes {an}, {bn}of E, suh that(a) an ≤ xn ≤ bn, n ∈ N,(b) an ց x and bn ր x.In this ase one writes x = (o) - lim xn.Dedekind ompletness. A lattie L is said to be Dedekind omplete if any subsetof L admit a greates lower bound and a least upper bound. The lattie L is said tobe relatively omplete if any bounded subset of L admits a greates lower bound anda least upper bound. If in the previous de�nitions the subsets of L are assumed tobe ountable, then we get the de�nition of the Dedekind σ-omplete lattie (relatively
σ-omplete, respetively).Riesz spaes. A real vetor spae V is said to be an ordered vetor spae if an orderrelation has been given in V , suh that the following onditions are satis�ed:(O1) if x1, x2 ∈ V and x1 ≤ x2, then x1 + x ≤ x2 + x for any x ∈ V ,(O2) if x1, x2 ∈ V and x1 ≤ x2, then αx1 ≤ αx2 for any α ∈ R

+.One alls a Riesz spae (or vetor lattie) any ordered vetor spae whih is lattie.One alls a σ-omplete Riesz spae any ordered vetor spae whih is a relatively
σ-omplete lattie. 6



Order sums. The notion of (o) - onvergent series an be introdued in a naturalmanner: (o) - ∞∑

n=1

xn = (o) - lim
m

m∑

n=1

xn,and (o) - +∞∑

−∞

xn = (o) - ∞∑

n=1

xn + (o) - ∞∑

n=0

x−n,if the right side is meaningful.Example. Let X be an arbitrary nonempty set. Denote by R(X) the set of all realfuntions on X. R(X) is a omplete Riesz spae in its natural pointwise ordering.The lattie operations are also de�ned pointwise. Note that the (o) - onvergene andpointwise onvergene in R(X) oinides.Orthogonality. Let Q be a Riesz spae. If x ∈ Q, then the positive part of x is, byde�nition, the element x+ := x ∨ 0; the negative part of x is the element x− := x ∧ 0;the absolute value of x is the element |x| := x+ + x−. Two elements x1, x2 ∈ Q aresaid to be orthogonal if |x1| ∧ |x2| = 0. One writes then x1 ⊥ x2. The orthogonalomplement of an arbitrary A subset of Q we denote by A⊥ := {x ∈ Q : x ⊥ A}. A set
A of elements of Q is said to be total if A⊥ = {0} .Componets and projetors. A subset P of a Riesz spae Q is alled a omponentof Q if any element x ∈ Q an be written as x = x′ + x′′, where x′ ∈ P and x′′ ∈ P⊥.The element x′ is alled the projetion of x onto P and it is denoted by x′ = [P ]x.The mapping x 7→ [P ]x of Q into P is alled the projetor (it is denoted by [P ]). Ina σ-omplete Riesz spae the set v⊥⊥ is the smallest omponent whih ontains v. Itis alled the omponent generated by v. The projetor determined by v⊥⊥ is alled aprinipial projetor and it is denoted by [v].Riesz spae with unit. In a aording with the de�nition of a total set, an element
c ∈ Q is said to be total, if x ⊥ c implies x = 0. A Riesz spae is said to be Riesz spaewith unit u if it has total elements and if a positive total element u is hoosen in it.The element u is alled a unit element. If Q is a Riesz spae with unit, any element
e ∈ Q for whih e ∧ (u − e) = 0 is alled a unitary element.In what follows let Q be a σ-omplete Riesz spae with unit u.Integration to Q. Let ϕ be a real valued funtion de�ned on R, and g be an Q-valued funtion de�ned on R. Let us onsider a partition △ of the real axis, given bypoints λi(i = 0,±1,±2, . . .), suh that λi < λi+1 and λi+1 − λi ≤ ε (for a given ε). Letus assume that for any suh partition and any hoie of the intermediate points γi (i.e.,
λi ≤ γi ≤ λi+1) the following sum

s△ = (o) - +∞∑

−∞

ϕ(γi)(g(λi+1) − g(λi)) (1.1)7



exists. Let ν(△) := sup(λi+1 − λi) be the norm of the partition △. For any sequene
{△n}n∈N

of the partitions, suh that ν(△n) → 0, we shall onsider a sequene ofelements of the form (1.1), where the intermediate points are hosen arbitrirarily foreah partition △n. If for any sequene {△n}, suh that ν(△n) → 0, the sequene
{s△n

}
n∈N

is (o)-onvergent to a given element x ∈ Q, whih is indenpendent of thehosen sequene of partitions, one writes
x =

∫ +∞

−∞

ϕ(λ)dg(λ).Spetral funtion. For any element x ∈ Q, the funtion gx : R → Q, de�ned by theformula
gx(λ) := [(λu − x)+]u,is alled the spetral funtion of x.Theorem 1.1. Any element x of a σ-omplete Riesz spae with unit an be representedin the form

x =

∫ +∞

−∞

λdgx(λ).Banah latties. Let (B,∨) be a Riesz spae. A seminorm ρ on B satisfying ρ(x) ≤
ρ(y) whenever |x| ≤ |y| is alled a lattie seminorm and a lattie norm if, in addition,
ρ is a norm. In the latter ase, (B, || . ||) is alled a normed Riesz spae. An normedRiesz spae whih is omplete with respet to the norm is alled a Banah lattie.M-spaes. A lattie norm || . || on Riesz spae (M,∨) is alled a M-norm, if ||x∨y|| =
max{||x||, ||y||} for all positive elements x, y ∈ M . A M-normed Banah lattie M isalled an M-spae. The meaning of notions Banah sublattie, sub-M-spae should belear.1.2 Choquet theory of funtion spaesFuntion spaes. By a funtion spae H on a ompat Hausdor� topologial spae
K we mean (not neessarily losed) linear subspae of C(K) ontaining the onstantfuntions and separating the points of K.Examples. (a) Continuous funtions. The whole spae C(K) of all ontinuousfuntions on a Hausdor� ompat spae K represents a simple example of a funtionspae. Clearly, the spae C(K) separates the points of K.() Convex ase � a�ne funtions. Let X be a onvex ompat subset of a loallyonvex spae E and H the linear spae Uc(X) of all ontinuous a�ne funtions on X.(d) Harmoni ase � harmoni funtions. Let U be a bounded open subset of theEulidean spae R

d. The funtion spae H(U) onsists of all ontinuous funtions on
U whih are harmoni on U . 8



More generally, we an onsider a relatively ompat open subset U of an abstratharmoni spae and the funtion spae H(U), the linear subspae of C(U) of funtionswhih are harmoni on U . We taitly assume that onstant funtions are harmoni and
H(U) separates the points of U .Representating measures. Let M1(K) denote the set of all probability Radonmeasures on K. We denote by Mx(H) the set of all H-representating measures for
x ∈ K, that is,

Mx(H) := {µ ∈ M1(K) : f(x) =

∫

K

fdµ for any f ∈ H}.

H-a�ne funtions. We de�ne the spae Ab(H) of allH-a�ne funtions as the fam-ily of all bounded Borel funtions l on K satisfying the following baryentri formula:
l(x) =

∫

K

l dµ for eah x ∈ K and µ ∈ Mx(H).Sometimes we will write shorter µ(f) instead of ∫
K

fdµ.Upper and lower envelopes. Let f be an upper bounded funtion on K. For
x ∈ K, put

f ∗(x) = inf {h(x) : h ∈ H , h ≥ f on K }. (1.2)Obviously, the upper envelope f ∗ is an upper semiontinuous funtion on K. Similiary,for a lower bounded funtion f on K, we de�ne the lower envelope f∗ so that f∗(x) =
−(−f)∗(x), x ∈ K.Proposition 1.2. Let x ∈ K. Then the mapping f 7→ f ∗(x) is sublinear funtional on
C(K).Proof. It is easy to verify that

(f + g)∗ ≤ f ∗ + g∗ and (λf)∗ = λf ∗for any f, g ∈ C(K) and λ > 0.Lemma 1.3. Let f ∈ C(K) and x ∈ K. Then
[f∗(x), f ∗(x)] = {µ(f) : µ ∈ Mx(H)} .Proof. Fix an x in K and f ∈ C(K). If µ ∈ Mx(H) and g, h ∈ H, g ≤ f ≤ h,then g(x) = µ(g) ≤ µ(f) ≤ µ(h) = h(x), so that f∗(x) ≤ µ(f) ≤ f ∗(x). Pik now

α ∈ [f∗(x), f ∗(x)]. From Lemma 1.2 we know that the mapping p : g 7→ g∗(x) is asublinear funtional on C(K). The Hahn�Banah theorem provides a linear funtional
µf on C(K) suh that µf(f) = α and µf ≤ p on C(K). Sine µf(g) ≤ p(g) = g∗(x) ≤ 0whenever g ∈ C(K) and g ≤ 0, we see that µf is, aording to the Riesz representationtheorem, a positive Radon measure on K. Let h ∈ H. Then h∗ = h = h∗, whih yields

µf(h) ≤ p(h) = h∗(x) = h(x)9



and simultaneously
−µf (h) = µf(−h) ≤ p(−h) = (−h)∗(x) = −h∗(x) = −h(x) .Hene µf (h) = h(x). If h = 1 on K, then µf(h) = h(x) = 1. Thus ||µf || = 1, and wesee that µf ∈ Mx(H).

H-onave and H-onvex funtions
H-onave and H-onvex funtions. A bounded Borel funtion f on K is alled
H-onvex, if

f(x) ≤ µ(f) for any x ∈ K and µ ∈ Mx(H).In a similar way we de�ne H-onave funtions. Let K(H) denote the family of all H-onvex funtions on K andKc(H) the family of all ontinuousH-onvex ones. Similarly,we de�ne the family of ontinuous H-onave funtions as
Sc(H) = {f ∈ C(K) : f(x) ≥ µ(f) for any x ∈ K and µ ∈ Mx(H)}.Of ourse, Ac(H) = Kc(H)∩Sc(H). Further, let Kusc(H) denote the set of all uppersemiontinuous H-onvex funtions on K, S lsc(H) the set of all lower semiontinuous

H-onave funtion on K. The meaning of notations Klsc(H) and Susc(H) should belear.Let denote by f ∨ g the pointwise supremum of bounded real funtions f and g.We de�ne analogously the pointwise in�mum as f ∧ g. We denote by f+, resp. f−positive, resp. negative part, more preisly f+ = f ∨ 0 and f− = f ∧ 0.Proposition 1.4. The family Sc(H) forms a onvex one of funtions whih is min�stable.Proof. Let us just hek that Sc(H) is min�stable: If k1, k2 ∈ Sc(H), then k1 ∧ k2 ∈
Sc(H). Indeed, let x ∈ K and µ ∈ Mx(H). Then

µ(k1 ∧ k2) ≤ min(µ(k1), µ(k2)) ≤ (k1 ∧ k2)(x) .Lemma 1.5. We have f = f ∗ on K for any f ∈ Sc(H).Proof. Pik x ∈ K. With the aid of Lemma 1.3, �nd µ ∈ Mx(H) so that f ∗(x) = µ(f).Then
f ∗(x) = µ(f) ≤ f(x) ≤ f ∗(x) .Proposition 1.6. Let f be an upper bounded funtion on K. Then

f ∗ = inf {g : g ∈ Ac(H) , g ≥ f on K} = inf {k : k ∈ Sc(H) , k ≥ f on K} .10



Proof. We have
f ∗ ≥ inf {g : g ∈ Ac(H) , g ≥ f on K} ≥ inf {k : k ∈ Sc(H) , k ≥ f on K} .Given k ∈ Sc(H), k ≥ f on K, in view of Lemma 1.5 we get k = k∗ ≥ f ∗. It followsthat

inf {k : k ∈ Sc(H), k ≥ f on K} ≥ f ∗ .Lemma 1.7. Let H be a funtion spae on K, f be an upper semiontinuous funtionon K and x ∈ K. Then there exists µ ∈ Mx(H) suh that f ∗(x) = µ(f).Proof. Denote by G the lower direted set {g ∈ C(K) : g ≥ f on K}. By Lemma 1.3,for any g ∈ G there is a measure µg ∈ Mx(H) suh that µg(g) = g∗(x). Given ϕ ∈ G,let
Mϕ = {µg : g ∈ G, g ≤ ϕ}.By a ompatness argument, there is µ ∈

⋂
ϕ∈G

M
w∗

ϕ . A moment's re�etion shows that
µ ∈ Mx(H). We observe that

inf
{
ν(ϕ) : ν ∈ Mϕ

}
= inf

{
ν(ϕ) : ν ∈ M

w∗

ϕ

}
≤ µ(ϕ)for eah ϕ ∈ G. Hene

f ∗(x) ≤ inf {g∗(x) : g ∈ G} = inf {µg(g) : g ∈ G}

≤ inf {inf {µg(ϕ) : g ∈ G, g ≤ ϕ} : ϕ ∈ G} ≤ inf {µ(ϕ) : ϕ ∈ G}

=µ(f) ≤ inf {µ(h) : h ≥ f, h ∈ H} = inf {h(x) : h ≥ f, h ∈ H}

=f ∗(x) ,whih are the inequalities needed to �nish the proof.Proposition 1.8. If f is an upper bounded funtion on K, then f ∗ is upper semion-tinuous and H�onave.Proof. Pik x ∈ K and µ ∈ Mx(H). Then
µ(f ∗) = µ

(
inf {h : h ∈ H , h ≥ f}

)
≤ inf {µ(h) : h ∈ H , h ≥ f}

= inf {h(x) : h ∈ H , h ≥ f} = f ∗(x) .This shows that f ∗ is H�onave. It is plain that f ∗ is upper semiontinuous.Proposition 1.9. Let f be an upper bounded funtion on K. Then f is an uppersemiontinuous H�onave if and only if f = f ∗ on K.Proof. Let f ∈ Susc(H) and x ∈ K. By Lemma 1.7, there is a measure µ ∈ Mx(H)suh that f ∗(x) = µ(f). Then
f ∗(x) = µ(f) ≤ f(x) ≤ f ∗(x) .Conversely, suppose that f = f ∗. By Proposition 1.8, the funtion f ∗ is uppersemiontinuous and H�onave. 11



Corollary 1.10. Let f be an upper bounded funtion on K. Then
f ∗ = inf {l : l ∈ Ausc(H) , l ≥ f on K} = inf {k : k ∈ Susc(H) , k ≥ f on K} .Proof. Reall that

f ∗ := inf {h : h ∈ H , h ≥ f on K} .Obviously,
f ∗ ≥ inf {l : l ∈ Ausc(H) , l ≥ f on K} ≥ inf {k : k ∈ Susc(H) , k ≥ f on K} .Given l ∈ Ausc(H), l ≥ f , in view of the preeding Proposition 1.9 we get

l = l∗ ≥ f ∗ ≥ inf
{
l̃(x) : l̃ ∈ Ausc(H), l̃ ≥ f

}
.Taking the in�mum over all l ≥ f in Ausc(H) �nishes the reasoning.Corollary 1.11. Let g be an upper semiontinuous funtion on K. Then

g∗ = inf
{
l : l ∈ Alsc(H) , l ≥ g on K

}
= inf

{
k : k ∈ S lsc(H) , k ≥ g on K

}
.Proof. Pik x ∈ K and using Lemma 1.7 �nd again µ ∈ Mx(H) suh that µ(g) = g∗(x).Let k ∈ S lsc(H), k ≥ g. Then

g∗(x) = µ(g) ≤ µ(k) ≤ k(x) .Hene
g∗ ≤ inf

{
k : k ∈ S lsc(H) , k ≥ g on K

}
≤ inf

{
l : l ∈ Alsc(H) , l ≥ g on K

}
.The reverse inequality is obvious, thus the proof is omplete.If H is a funtion spae, we denote W(H) := {h1 ∨ · · · ∨ hn : hi ∈ H, i = 1, . . . , n}.Lemma 1.12. Let H be a funtion spae on a ompat K. If g is an lower semion-tinuous funtion on K, f ∈ Kusc(H), g > f on K, then there is a funtion k ∈ W(H)suh that g > k > f on K.Proof. Fix x ∈ K. By Lemma 1.7, there is a measure µ ∈ Mx(H) suh that g∗ = µ(g).Then

g∗(x) = µ(g) > µ(f) ≥ f(x).Therefore, there exists hx ∈ H suh that
hx ≤ g on K and hx(x) > f(x).Adding a small onstant funtion to hx, we may assume that hx < g everywhere on

K and still hx(x) > f(x). We infer from the upper semiontinuity of f − hx and aompatness argument that there exists x1, . . . , xn ∈ K suh that k := hx1
∨. . .∨hxn

> fon K. The funtion K has all properties required.12



Corollary 1.13. Let k be a upper semiontinuous H-onvex funtion on K. If
W := {w ∈ W(H) : w > k on K} ,then the set W is lower direted and k = inf W .Proof. It su�es to establish that k = inf W . Sine
k = inf {g ∈ C(K) : g > k on K} ,using Proposition 1.12 we onlude that k = inf W .Now we are given w1, w2 ∈ W , and we wish fo �nd w′ ∈ W so that w′ < w1 ∧ w2.Sine (w1 ∧ w2)∗ > k, a new appliation of Proposition 1.12 asserts the existene of

w′ ∈ W so that w1 ∧ w2 ≥ (w1 ∧ w2)∗ > w > k and the proof is �nished.Theorem 1.14. Let f be an upper bounded funtion on K and µ ∈ M1(K). Then
µ(f ∗) = inf {µ(k) : k ∈ Sc(H) , k ≥ f} .Proof. We know from Proposition 1.4 that the family Sc(H) is min�stable, andtherefore the set inf {k : k ∈ Sc(H) , k ≥ f} is lower direted and its in�mum equals

f ∗ by Proposition 1.6. The assertion follows now from more or less familiar theLebesgue monotone onvergene theorem for lower direted sets of upper semiontinu-ous funtions.Choquet boundaryChoquet boundary. De�ne the Choquet boundary ChH(K) of a funtion spae
H as the set of those points x ∈ K for whih the Dira measure εx is the only H-representating measure for x, that is,

ChH(K) = {x ∈ K : Mx(H) = {εx}}.Theorem 1.15. A point x ∈ K belongs to the Choquet boundary of H if and only if
f(x) = f ∗(x) for every f ∈ C(K).Proof. The assertion is an immediate onsequene of Lemma 1.3. If x ∈ ChH(K) and

f ∈ C(K), then Mx(H) = {εx}, and therefore f(x) = f ∗(x). Conversely, assume that
f(x) = f ∗(x) for any f ∈ C(K). If µ ∈ Mx(H), then µ(f) = f(x) for any f ∈ C(K).Hene µ = εx.Lemma 1.16. A point x belongs to the Choquet boundary of H if and only if

h+(x) = (h+)∗(x) for every h ∈ H,Proof. Suppose x ∈ ChH(K) and h ∈ H. It is lear that h+ ∈ C(K) and the preedingTheorem 1.15 gives h+(x) = (h+)∗. On the other hand, if x 6∈ ChH(K), then by thede�nition exists µ ∈ Mx(H), suh that µ 6= εx, that is, there is z ∈ supt µ, z 6= x.Sine H separates points of K, we obtain h′ ∈ H, h′(x) < h′(z). Put h = h′ − h′(x), so
h ∈ H and h(x) = 0, h(z) > 0. Therefore

h+(x) = 0 < µ(h+) ≤ µ((h+)∗) ≤ (h+)∗(x),sine (h+)∗ is H-onave funtion aording to Lemma 1.8.13



Maximal measuresChoquet's ordering and maximal measures. The onvex one Kc(H) of all H-onvex funtions on K determines the partial Choquet ordering on the spae M+(K)of all positive Radon measures on K:
µ � ν if µ(f) ≤ ν(f) for eah f ∈ Kc(H).Maximal elements ofM+(K) with respet to this Choquet ordering are alled maximalmeasures(or, more preisely, H-maximal measures).We start with trivial observations.Observation 1.17. For any µ ∈ Mx(H), we have εx ≺ µ.Proof. The assertion is just the de�nition of Kc(H): whenever f ∈ Kc(H) and µ ∈

Mx(H), then εx(f) = f(x) ≤ µ(f).Proposition 1.18. Let x ∈ K, µ ∈ Mx(H), ν ∈ M+(K) and µ ≺ ν. Then ν ∈
Mx(H).Proof. Let h ∈ H. Then h(x) = µ(h) = ν(h) sine H ⊂ Kc(H)∩−Kc(H). A partiularhoie h = 1 yields ||ν|| = 1.Corollary 1.19. Let x ∈ K and µ ∈ M1(K). Then

εx ≺ µ if and only if µ ∈ Mx(H) .In what follows, we need a strengthened form of Lemma 1.3.Lemma 1.20. Let f ∈ C(K) and λ ∈ M1(K). Then
[λ(f∗), λ(f ∗)] =

{
µ(f) : µ ∈ M1(K) , λ ≺ µ

}
.Proof. The proof is almost the same as that given in Lemma 1.3. Pik α ∈ [λ(f∗), λ(f ∗)]and imitate it setting

p : g 7→ λ(g∗) , g ∈ C(K) .Then p is a sublinear funtional on C(K). The Hahn�Banah theorem with the Rieszrepresentation theorem yields a Radon measure µ ∈ M1(K) suh that
µ(f) = α and µ(g) ≤ p(g) for g ∈ C(K) .It remains to show that λ ≺ µ. To this end pik k ∈ Kc(H). Then −k ∈ Sc(H) and anappeal to Lemma 1.5 reveals that (−k)∗ = k. Therefore

µ(−k) ≤ p(−k) = λ((−k)∗) = λ(−k) .Hene λ(k) ≤ µ(k), whih gives the required inlusion.For the reverse, let λ ≺ µ, v ∈ Kc(H), k ∈ Sc(H), v ≤ f ≤ k. Then
λ(v) ≤ µ(v) ≤ µ(f) ≤ µ(k) ≤ λ(k) .Using Levi's theorem 1.14 we have

λ(f∗) ≤ µ(f) ≤ λ(f ∗) ,whih �nishes the proof. 14



The following result due to G.Mokobodzki haraterizes maximal measures.Theorem 1.21. Let µ be a positive Radon measure on K. The following assertionsare equivalent:(i) µ is maximal,(ii) µ(f) = µ(f ∗) for any f ∈ C(K),(iii) µ(k) = µ(k∗) for any f ∈ Kc(H).Proof. Let λ ∈ M1(K) be maximal and let f ∈ C(K). By Proposition 1.20 there isa measure µ ∈ M1(K) suh that λ ≺ µ and µ(f) = λ(f ∗). Sine λ is maximal, we have
µ = λ, and therefore µ(f) = µ(f ∗). It is obvious that (ii) =⇒ (iii). To see that (iii)
=⇒ (i), assume that a measure λ ∈ M1(K) satis�es λ(v) = λ(v∗) for eah v ∈ Kc(H).Let µ ∈ M1(K), λ ≺ µ and �x v ∈ Kc(H). Then, using Levi's theorem 1.14 we get

λ(v) = λ(v∗) = λ(inf {k : k ∈ Sc(H) , k ≥ v}) = inf {λ(k) : k ∈ Sc(H) , k ≥ v}

≥ inf {µ(k) : k ∈ Sc(H) , k ≥ v} ≥ µ(v∗) ≥ µ(v) .Hene λ(v) = µ(v). Sine the spae Kc(H) − Kc(H) is uniformly dense in C(K), weonlude that λ = µ.The proof of the following Proposition 1.22 use a fat that in a simpliial funtionspae H on a metrizable ompat there exists ontinuous stritly H-onvex funtion.Note that in this ase ChH(K) is Gδ set. For the proofs of Propostion 1.22 andTheorem 1.23 see [10℄.Proposition 1.22. Let H be a funtion spae on a ompat K. If K is a metrizable,then measure µ is maximal, if and only if µ(K \ ChH(K)) = 0.Theorem 1.23 (Choquet representation theorem). Let H be a funtion spae ona ompat spae K admitting a ontinuous stritly H�onvex funtion h. Then for eah
x ∈ K there exists a Radon measure µ on K suh that

µ(K \ ChH(K)) = 0 and h(x) =

∫

K

h dµ for any h ∈ H .Theorem 1.24. Let H be funtion spae on ompat K. If K is metrizable, thenmeasure µ is maximal, if and only if
µ(h+) = µ((h+)∗) for every h ∈ H.Proof. Suppose µ is maximal. If h ∈ Ac(H), then h+ ∈ C(K). Using Mokobodzki'sTheorem 1.21 we have that the equality µ(h+) = µ((h+)∗) holds for every h ∈ Ac(H).On the other hand, assume that µ is not maximal. Denote by x the baryenter of themeasure µ. If µ is Dira measure at point x, then the onlusion is trivial aording toLemma 1.16. If µ is not the Dira measure at point x, then there exists z ∈ supt µ suhthat h(z) > 0 and h(x) = 0, sine H separates points of K. So 0 < µ(h+) ≤ µ((h+)∗).Therefore

h+(x) = 0 < µ(h+) ≤ µ((h+)∗) ≤ (h+)∗(x).15



Put
λ :=

µ((h+)∗)

(h+)∗(x)
,then

µ(h+) = λ h+(x) + (µ − λ εx)(h
+) < λ (h+)∗(x) + (µ − λ εx)((h

+)∗) = µ((h+)∗),whih ontradits our assumption that µ(h+) = µ((h+)∗), for eah h ∈ H.The following Theorem 1.25 is based on an appliation of well-known Zorn'slemma. For the omplete proof, see [10℄.Theorem 1.25. Let µ be a positive Radon measure on K. Then there is a maximalmeasure λ suh that µ ≺ λ.Simpliial funtion spaes.Simpliial funtion spaes. A funtion spae H on a ompat spae K is alledsimpliial if for eah x ∈ K there exists a unique maximal measure δx ∈ Mx(H).Abstrat Dirihlet problem. For any bounded Borel funtion f on K we de�ne
Hf : x 7→

∫

K

f dδx, x ∈ KThe funtion Hf is an (abstrat) solution of the Dirihlet problem for the funtion f .Let us denote by H mapping
H : f 7→ Hf , for f ∈ Bb(K).Proposition 1.26. Let H be a simpliial funtion spae on a ompat spae K and let

f ∈ Kusc(H). Then funtion Hf is an upper semiontinuous H-a�ne funtion on K.Moreover, f ∗ = Hf on K.Proof. Fix x ∈ K and hoose µ ∈ Mx(H). Sine f ∗ = inf {h : h ∈ H, h ≥ f}, we have
µ(f) ≤ µ(f ∗) ≤ µ(h) = h(x) for any h ∈ H, h ≥ f . Hene µ(f) ≤ µ(f ∗) ≤ f ∗(x). Inpartiular, δx(f) ≤ f ∗(x).Now appeal to Lemma 1.7 to �nd a measure λ ∈ Mx(H) suh that f ∗(x) = λ(f).Thanks to Theorem 1.25, there is a maximal measure ν ∈ M+(K) suh that λ ≺ ν.Proposition 1.18 yields ν ∈ Mx(H). The simpliiality of H implies that ν = δx, andtherefore

f ∗(x) ≥ ν(f ∗) = inf {ν(k) : k ∈ Sc(H), k ≥ f} ≥

≥ inf {δx(k) : k ∈ Sc(H), k ≥ f} = δx(f
∗) ≥ δx(f) = f ∗(x).

16



Proposition 1.27. The following are equivalent assertions:(i) H is simpliial,(ii) For every f ∈ Kc(H), the funtion f ∗ ∈ Ausc(H).Proof. The impliation (i)=⇒(ii) is exatly the preeding Proposition 1.26.Now suppose (ii). Let x ∈ K and let µ, ν ∈ Mx(H) be maximal measures. Our aimis to show that µ = ν. Sine the spae Kc(H)−Kc(H) is dense in C(K), it is su�ientto show that µ = ν on Kc(H). Making use of Mokobodzki's maximality Theorem 1.21and the de�nition of the H�a�nity, we see that
µ(s) = µ(s∗) = s∗(x) = ν(s∗) = ν(s)for any s ∈ Kc(H). This shows that (ii) implies (i).The proof of the next proposition uses in the onvex ase the Hahn�Banah separa-tion theorem. The general ase of a funtion spae H is solved in J.Spurný's paper [15℄using the transfer of H in to the so-alled state spae of H. In order to apply Theo-rem 4.5 of [15℄, let us note that a H-a�ne funtion on a simpliial spae is ompletely

Ac(H)-a�ne.Proposition 1.28. Let H be a simpliial spae on a ompat spae K. If l ∈ Ausc(H),then the set
Al := {h ∈ Ac(H) : h > l on K}is lower direted and l = inf Al.If, moreover, K is metrizable, then there exists inreasing sequene {ln} ⊂ Al, suhthat

l = inf ln.Lemma 1.29. Assume that H is a simpliial spae. Then a measure µ is maximal ifand only if,
µ(l+) = µ((l+)∗) for every l ∈ Ac(H).Proof. Suppose µ is maximal. If l ∈ Ac(H), then l+ ∈ C(K). Using Mokobodzki'stheorem 1.21 we have that the equality µ(l+) = µ((l+)∗) holds for every l ∈ Ac(H).Conversely, we show that µ(l+) = µ((l+)∗) moreover for every l ∈ Ausc(H). A-ording to Lemma 1.28, the set Al is lower direted and l = inf Al. Observe that theset

A := {g+ : g ∈ Ac(H), g > l on K}is also lower direted and l+ = inf A. Using the Lebesgue monotonne onvergenetheorem for direted sets we get:
µ(l+) = inf

g∈Al

µ(g+) = inf
g∈Al

µ((g+)∗) ≥ µ((l+)∗) ≥ µ(l+).Now we show that
µ(l1 ∨ . . . ∨ ln) = µ((l1 ∨ . . . ∨ ln)∗) (1.3)17



for any l1, . . . , ln from Ac(H). The ase n = 1 is lear. Assume that the equality holdsfor some n ≥ 1. Given ontinuous H�a�ne funtions l1, . . . , ln+1, put
f = (l1 − ln+1) ∨ . . . ∨ (ln − ln+1)Then

l1 ∨ . . . ∨ ln = f+ + ln+1.Simpliiality of H ensures that f ∗ ∈ Ausc(H), therefore µ((f ∗)+) = µ(((f ∗)+)∗). Thefollowing inequalities show that (1.3) holds.
µ(l1 ∨ . . . ∨ ln+1) = µ(f+) + µ(ln+1) = µ((f ∗)+) + µ(ln+1) = µ(((f ∗)+)∗) + µ(ln+1) ≥

≥ µ((f+)∗) + µ(ln+1) ≥ µ((l1 ∨ . . . ∨ ln+1)
∗) ≥ µ(l1 ∨ . . . ∨ ln+1)Finally, the set {l1 ∨ . . . ∨ ln : l1, . . . , ln ∈ H} is dense in Kc(H) and thanks toTheorem 1.21 measure µ is maximal.
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Chapter 2Families of H-a�ne funtions
2.1 The onvex aseThere are several types of theorems onerning a struture of simplies. We will dealwith two of them: lattie type theorems and extension type theorems.H.Bauer in [2℄ showed that the set Ac(X) of all ontinuous a�ne funtions on aompat onvex set X is a Riesz spae in its natural ordering if and only if X isa simplex with losed set of extreme points ext X (so-alled Bauer simplex). Theseassertions are equivalent to the extension theorem that for any ontinuous boundedfuntion f on ext X there exists ontinuous a�ne funtion hf on X suh that f = hfon ext X, see Theorem 2.1.Metrizable simplies were studied by E.M.Alfsen in [1℄ where was inferred extensiontheorem for bounded Borel funtions. In partiular, every bounded Borel funtionon ext X an be extended uniquely to a funtion from a set A′(X), where A′(X) isthe smallest set of real valued funtions whih ontains both l.s.. and u.s.. a�nefuntions on X and is losed under bounded pointwise monotonne limits. Moreover,the set A′(X) onsists exatly of those bounded Borel funtions on ext X for whihthe �baryenter formula� is valid. The above result lean heavily on the fat that theset A′(X) over a metrizable simplex is a σ-omplete Riesz spae. This result is notentirely obvious, sine ext X an be a Gδ set, see Theorem 2.2.U.Krause in [9℄ introdued the de�nition of A(X) as the smallest set of all realvalued funtions whih ontains sums of l.s. and u.s. funtions and is losed underbounded pointwise monotonne limits. He used result due to H.Bauer that the set
Ausc(X) of all u.s. a�ne funtions is an upper semilattie if and only if X is a simplex.This yields that Alsc(X) + Ausc(X) is Riesz spae. So Krause only replae in Alfsen'sde�nition of the A′(X) the word �and� by �sums�. It is reasonable, beause this givessimpler proof without assumption of a metrizability. Furthermore A(X) oinides with
A′(X) for an arbitrary metrizable simplex X, see Theorem 2.3 for more details.Another lattie type and extension type theorem was obtained by S.Teleman in [16℄in terms of an extended boundary measure µ̃, Choquet topology on ext X, a family
Mb(ext X) of all bounded universally measurable funtions on ext X and a family U(X)of all strongly universally measurable funtions on X. For the ompletness we statehere Teleman's theorem, see Theorem 2.4.19



In what follows, X is a ompat onvex subset of a loally onvex spae.Theorem 2.1 (Bauer, 1964). The following assertions are equivalent:(i) X is a simplex with losed ext X,(ii) Ac(X) is a Riesz spae,(iii) for any f ∈ C(ext X) there exists hf ∈ Ac(X) suh that f = hf on ext X.Theorem 2.2 (Alfsen, 1966). In the following (i) implies (ii) and (ii) implies (iii).(i) X is a metrizable simplex,(ii) A′(X) is a Riesz spae,(iii) for any f ∈ Bb(ext X) there exists gf ∈ A′(X) suh that f = gf on ext X.Theorem 2.3 (Krause, 1970). The following assertions are equivalent:(i) X is a simplex,(ii) Alsc(X) + Ausc(X) is a Riesz spae,(iii) A(X) is a Riesz spae.Theorem 2.4 (Teleman, 1985). The following assertions are equivalent:(i) X is a simplex,(ii) U(X) is a Riesz spae,(iii) for any f ∈ Mb(ext X) there exists uf ∈ U(X) suh that f = uf on ext X.2.2 The funtion spae generalizationNow, our aim is how to show we an transfer preeding results to a more general settingof funtion spaes.Families A(H),A(H) and A
′

(H). We denote by A(H) the smallest family of H�a�ne funtions satisfying the following onditions:(A1) Alsc(H) + Ausc(H) ⊂ A(H),(A2) if ln ∈ A(H), l real valued funtion on K, ln ր l or ln ց l, then l ∈ A(H).If we replae in the previous de�nition of A(H) ondition (A1) by (A1') we obtainanother interesting family denoted A
′

(H),(A1') Alsc(H),Ausc(H) ⊂ A(H).Denote by A(H) the sup-norm losure of the set A(H) in the set of all boundedreal funtions on K. 20



Strong envelopes. Let f be an upper bounded funtion on K. We de�ne upperstrong envelope as
f ◦(x) = inf {h(x) : h ∈ Alsc(H) , h ≥ f on K }.Similiary, for a lower bounded funtion f on K, we de�ne the lower strong envelope f◦so that f◦(x) = −(−f)◦(x), x ∈ K.Family U(H). A bounded funtion f on K is alled H-strongly universaly measur-able funtion, if f◦ = f ◦ on K. Let denote by U(H) the set of allH-strongly universalymeasurable funtions f on K.Observation 2.5. If f is a bounded funtion on K, then f ≤ f ◦ ≤ f ∗. Moreover, if

f is an upper semiontinuous funtion, then f ◦ = f ∗.Proof. The �rst part of observation is obvious and the seond one is just Corol-lary 1.11.Proposition 2.6. If H is a funtion spae on ompat K, then(a) A
′

(H) ⊂ A(H) ⊂ Ab(H),(b) Alsc(H) + Ausc(H) ⊂ U(H).Moreover, if K is metrizable, then() A
′

(H) = A(H).Proof. (a) It is obvious that Alsc(H),Ausc(H) ⊂ Alsc(H) + Ausc(H), so inlusion
A

′

(H) ⊂ A(H) is trivial. The seond inlusion is just Levi's theorem.(b) Pik f ∈ Ausc(H). Observation 2.5 implies that f = f ◦. No doubt that
f◦ = f and Proposition 1.9 yields that f ∗ = f . So Ausc(H) ⊂ U(H) and sine U(H)is a vetor spae also Alsc(H) + Ausc(H) ⊂ U(H).() Assume that K is a metrizable ompat. Pik f ∈ Alsc(H)+Ausc(H), suh that
f = g + h, g ∈ Alsc(H), h ∈ Ausc(H). Aording to seond part of Lemma 1.28 thereexists an dereasing sequene hn ∈ Ac(H), hn ≥ h, h = lim hn. So g + hn ∈ Alsc(H)and g + hn ց g + h, therefore g + h ∈ A

′

(H). Sine Alsc(H) + Ausc(H) ⊂ A
′

(H), wesee that the equality A(H) = A
′

(H) holds.Theorem 2.7 (Lattie Theorem). The following propositions are equivalent:(i) H is a simpliial spae,(ii) Ausc(H) is an upper semilattie,(iii) Alsc(H) + Ausc(H) is a Riesz spae,(iv) A(H) is a Riesz spae.
21



Proof. (i)=⇒(ii). Given g1, g2 ∈ Ausc(H), put f := (g1 ∨ g2)
∗. By Lemma 1.10 f =

inf{g ∈ Ausc(H) : g ≥ g1∨g2 on K} and aording to Proposition 1.26 f ∈ Ausc(H),further f = H(g1 ∨ g2). So we an de�ne the supremum operation g in Ausc(H) by
g1 g g2 := H(g1 ∨ g2) for every g1, g2 ∈ Ausc(H).Clearly, g is the supremum operation inAusc(H) endowed by natural pointwise orderingof funtions.(i)=⇒(iii). The impliation (i)=⇒(ii) has just been proved. Let g be the supremumoperation in Ausc(H) suh that g1 g g2 = H(g1 ∨ g2) for every g1, g2 ∈ Ausc(H). Pik

f ∈ Alsc(H) + Ausc(H), f1 ∈ Alsc(H), f2 ∈ Ausc(H), f = f1 + f2. De�ne
f⊕ := H(f+).The equalities

H((f1 + f2)
+) = H((−f1) ∨ f2 + f1) = (−f1) g f2 + f1follow that f⊕ ∈ Alsc(H) + Ausc(H). We see that

f⊕ = H(f+) = (f+)∗ ≥ f+. (2.1)On the other hand, if f ′ ∈ Alsc(H)+Ausc(H), f ′ = f ′
1 +f ′

2, f ′
1 ∈ Alsc(H), f ′

2 ∈ Ausc(H),
f ′ ≥ f+, then

f ′ = f ′
1 + f ′

2 = (f ′
1)∗ + (f ′

2)
∗ = H(f ′

1) + H(f ′
2) = H(f ′).So

f ′ = H(f ′). (2.2)Where we have taken into the aount Lemma 1.26. H(f ′) ≥ H(f+) = f⊕ follow
f ′ ≥ f⊕.Sine Alsc(H) + Ausc(H) is a vetor spae, we an de�ne the supremum operation
g in Alsc(H) +Ausc(H) (whih oinides with the supremum operation in Ausc(H), soit is reasonable to denote both by the same symbol g) by

f g g := (f − g)⊕ + g for every f, g ∈ Alsc(H) + Ausc(H)and the in�mum operation by
f f g := −(−f) g (−g) for every f, g ∈ Alsc(H) + Ausc(H).(i)=⇒(iv). We have proved (i)=⇒(iii). Let g be the supremum operation in

Alsc(H) + Ausc(H) suh that f⊕ = H(f+) for any f ∈ Alsc(H) + Ausc(H). Denote
Z := {f ∈ A(H) : H(f+) ∈ A(H)}. We see that Alsc(H)+Ausc(H) ⊂ Z. Using Levi'stheorem we obtain that A(H) ⊂ Z, so A(H) = Z. Therefore, we an de�ne

f⊕ := H(f+) for every f ∈ A(H)(the de�nition of f⊕ is orret, sine it oinides with positive part in the lattie
Alsc(H) + Ausc(H)). Using Levi's theorem follows from the (2.1) that f⊕ ≥ f+ for22



every f ∈ A(H). For the reverse inequality, pik f ′ ∈ A(H), f ′ ≥ f+ and again usingLevi's theorem to (2.2) we obtain that
f ′ = H(f ′) and H(f ′) ≥ H(f+) = f⊕.Sine A(H) is a vetor spae, we an de�ne the lattie operations in it again by f gg :=

(f−g)⊕+g for every f, g ∈ A(H) and the in�mum operation by f fg := −(−f)g(−g)for every f, g ∈ A(H).(ii)=⇒(i). Let Ausc(H) be an upper semilattie with the supremum operation g.Aording to Proposition 1.27 it su�es to show that for any k ∈ Kc(H) is k∗ ∈
Ausc(H). Let k ∈ Kc(H). The Corollary 1.13 implies that there exists a dereasingnet wα in W(H), wα = h

(α)
1 ∨ · · · ∨ h

(α)
n(α), h

(α)
1 , . . . , h

(α)
n(α) ∈ H so that wα ≥ k and

k = inf wα. Put vα = h
(α)
1 g · · · g h

(α)
n(α), vα ∈ Ausc(H).We want to show that k∗ = inf vα. Inded, the inequality k∗ ≤ inf vα is obvious.For the onverse inequality, pik an arbitrary h ∈ H, h > f on K and x ∈ K. Sine

k = inf wα, there exists wα0
so that k(x) ≤ wα0

< h(x). Put h′ = h
(α)
1 g · · · g h

(α)
n(α0).So k ≤ h′ on K and h′(x) ≤ h(x). Taking the in�mum over all h > k on K, h ∈ H weobtain that f ∗ ≥ inf vα.(iii)=⇒(i). Let Alsc(H) + Ausc(H) be a lattie with the supremum operation g.For an arbitrary l1, . . . , ln from H put l = l1 g . . . g ln. Observe that h ≥ l1 ∨ · · · ∨ lnif and only if h ≥ l for any h ∈ H. Taking the in�mum we obtain (l1 ∨ · · · ∨ ln)∗ = l∗.Now we appeal to the Mokobodzki's Theorem 1.21, so the following inequalities holdfor an arbitrary maximal measure µ with baryenter x ∈ K:

l(x) = µ(l) ≤ µ(l∗) = µ((l1 ∨ · · · ∨ ln)∗) = µ(l1 ∨ · · · ∨ ln) ≤ µ(l) = l(x) (2.3)Therefore
µ(l1 ∨ · · · ∨ ln) = l1 g · · ·g ln.If ν is another maximal measure with baryenter x ∈ K, then µ(l1 ∨ · · · ∨ ln) =

ν(l1 ∨ · · · ∨ ln). Similarly for f, or using the identities (−f) g (−g) = −(f f g),respetively (−f)∨ (−g) = −(f ∧ g). Aording to the Stone�Weierstrass theorem theset W(H) − W(H) is dense in C(K), so µ = ν and, by de�nition, H is a simpliialspae.(iv)=⇒(i). The proof of this impliation is almost the same as the proof of thepreeding impliation (iii)=⇒(i). Just realize that the baryenter formula also holdsfor funtions from A(H), see Proposition 2.6 (f. (2.3)).The proof of the preeding Theorem 2.7 shows the following observation:Observation 2.8. If H is a simpliial funtion spae, then Alsc(H) + Ausc(H) is asublattie of the Riesz spae A(H).In what follows, if H is a simpliial spae, then we denote by g the supremumoperation in A(H), by f⊕ the positive part of funtion f ∈ A(H), more preisely
f⊕ := f g 0 for any f ∈ A(H). The meaning of notation f⊖ should be lear.23



Theorem 2.9. If H is a simpliial spae, then A(H) is a M-spae and the normlosure A(H) of Alsc(H) + Ausc(H) is an sub-M-spae of A(H).Proof. By Theorem 2.7, A(H) is a Riesz spae and the de�nition of A(H) impliesthat A(H) is a σ-omplete Riesz spae.Moreover A(H) is a Banah spae in supremumnorm. Indeed, if ln is a Cauhy sequene in A(H) with uniform limit l in Bb(K), thenuniform onvergene implies that l is aH-a�ne. For every n ≥ 1 there exists n0(n) ≥ 1,suh that ||f − li|| ≤ 1/n for all i ≥ n0(n). Sine f = infn supi≥n0(n) li, then
f(x) = δx(f) = inf

n
δx

(
supi≥n0(n) li

)
.In A(H), σ-distributivity laws hold, so using Lemma 1.29 we obtain the equality

δx

(
supi≥n0(n) li

)
= gi≥n0(n) li(x).The argument of σ-ompletness gives that gi≥n0(n)li ∈ A(H) and, of ourse, f ∈ A(H).Now we verify that A(H) is a Banah lattie. Let l, l′ ∈ A(H), |l| < |l′|. Using theequality |l| = l g −l we obtain that

l,−l ≤ l g −l ≤ l′ g −l′ ≤ ||l′||,thus ||l|| ≤ ||l′||.We hek that || . || is an M-norm. Indeed, �x l1, l2 ∈ A(H), l1, l2 nonnegative. Theinequality 0 ≤ l1, l2 ≤ l1 g l2 implies that ||l1|| ∨ ||l2|| ≤ ||l1 g l2||. Therefore l1, l2 ≤
||l1|| ∨ ||l2|| ∈ A(H), and thus l1 g l2 ≤ ||l1|| ∨ ||l2||. We see that ||l1 g l2|| ≤ ||l1|| ∨ ||l2||.It remains to prove the last part of the proposition. Alsc(H)+Ausc(H) ⊂ A(H) im-plies that A(H) is a Banah subspae of A(H). Sine Alsc(H)+Ausc(H) is a sublattieof A(H), then A(H) is a Banah sublattie of A(H). Finally, A(H) is an M-spae,then of ourse A(H) is an M-spae.
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Chapter 3Spetral measuresLet me start with roughly speaking to give an intuition for a better understanding ofthis hapter. In what follows, assume for a reasons of simpliity, that H is a Bauersimpliial spae on K. We have an Dirihlet operator H whih assigns to eah on-tinuous funtion f on K the abstrat solution of the Dirihlet problem - a uniquelydetermined ontinuous H-a�ne funtion on K. It is known that the abstrat solutiondepends only on the values of f on the Choquet boundary of H.Now onentrate to a deformation of a �xed boundary ondition f by an arbitraryontinuous funtion ϕ on R. Quite preisely, onsider a mapping If (ϕ) = Hϕ◦f to theset Ac(H) of all ontinuous H-a�ne funtions on K. Natural task is to extend If to alarger system of real funtions whih ontains at least harateristi funtions of an leftunbounded intervals. This is motivated by spetral theory, in partiular by spetralpartitions of H-a�ne funtions.One of them is the system Bb(R) of all bounded Borel funtions on R. We anobtain this system enlosing the set of ontinuous bounded (or with ompat support)to bounded pointwise monotonne limits. So we an guess that the range of If extendedto Bb(R) should be at least some vetor spae E losed under bounded pointwisemonotonne limits whih ontains Ac(H). A hane of extending If strongly dependson an additional struture of E. U. Krause in [9℄ extend If with range A(X). It isa smallest possible range in the sense above. We generalize it to the funtion spaes.The following theorems are based on Krause idea.Note that another spetral theory was studied by Rogalski [14℄.In this hapter H is a simplial spae. For an arbitrary f ∈ A(H) de�ne themapping If(ϕ) = H(ϕ ◦ f), ϕ ∈ Bb(R).Theorem 3.1. The following assertions hold:(a) If f ′ ∈ Alsc(H) + Ausc(H), then If ′(C(R)) ⊂ A(H).(b) If f ∈ A(H), then If(C(R)) ⊂ A(H) and If (ϕ1 ∨ ϕ2) = If(ϕ1) g If(ϕ2) for any
ϕ1, ϕ2 ∈ C(R).Proof. (a) Denote B = {r ∈ R : |r| ≤ ||f ′||} and by Ac(B) the set of all ontinuousa�ne funtions on B and by W(B) = {ϕ1 ∨ · · · ∨ ϕ2 : ϕi ∈ Ac(B)}. If ϕ ∈ Ac(B),25



then learly
δx((ϕ1 ∨ · · · ∨ϕn) ◦ f ′) = δx((ϕ1 ◦ f ′)∨ · · · ∨ (ϕn ◦ f ′)) = (ϕ1 ◦ f ′)(x) g · · ·g (ϕn ◦ f ′)(x)for any maximal measure δx with baryenter x ∈ K or, equivalently, If ′(W(B)) ∈
Alsc(H) + Ausc(H). Aording to the Stone�Weierstrass theorem W(B) − W(B) isdense in C(B), so I′f(ϕ) ∈ A(H) for any ϕ ∈ C(B).(b) Levi's theorem and the de�nition of A(H) show that If(C(R)) ⊂ A(H). From(a) we know that the equality

If (ϕ1 ∨ ϕ2) = If (ϕ1) g If (ϕ2)holds whenever ϕ1, ϕ2 ∈ W(B). Furthermore,
If(ϕ

+
d ) = If(ϕ1 ∨ ϕ2) − If (ϕ2) = If (ϕ1) g If(ϕ2) − If(ϕ2) = If(ϕd)

⊕where ϕd is a di�erene of two funtions ϕ1, ϕ2 ∈ W(B). If now ϕ ∈ C(B), then for any
ε > 0 there exists ϕd ∈ W(B)−W(B) suh that ϕd − ε ≤ f ≤ ϕd + ε on B. Therefore

If(ϕ
+) ≤ If(ϕ

+
d ) = If (ϕd)

⊕ + ε ≤ If(ϕ + ε)⊕ + ε ≤ If(ϕ)⊕ + 2ε.So If(ϕ
+) ≤ If (ϕ)⊕. The reverse inequality is obvious and the proof is �nished.Corollary 3.2. If H is a Bauer simpliial spae, then we have:(a') If f ′ ∈ Ac(H), then If ′(C(R)) ⊂ Ac(H).Remark 3.3. In the part (b) of the preeding Theorem 3.1 we ould replae uniformonvergene by a bounded pointwise monotonne onvergene and obtain without usinga Banah spae struture of A(H) the following:(b') If f ∈ A(H), then If(B

b(R)) ⊂ A(H) and If(ϕ1 ∨ ϕ2) = If (ϕ1) g If (ϕ2) for any
ϕ1, ϕ2 ∈ Bb(R).Natural question arises if any mapping I : C(R) → A(H) an be represented by Iffor some f ∈ A(H). The following de�nition spei�es assumptions on I.Let χX denotes the harateristi funtion of an arbitrary set X.Spetral A(H)-integral. A mapping I : C(R) → A(H) is said to be(N) nonnegative if I(ϕ) ≥ 0 for any ϕ ≥ 0,(P) probability if I(χR) = χK ,(PI) probability A(H)-integral if it is nonnegative, probability and linear on C(R).(SI) spetral A(H)-integral if it is probability A(H)-integral and further:

I(ϕ1 ∨ ϕ2) = I(ϕ1) g I(ϕ2), for any ϕ1, ϕ2 ∈ C(R).26



In the sequel we will onsider only a probability integrals, so we will write shortly anintegral instead of a probability integral.Remark 3.4. The �rst part of the assertion (b) from Theorem 3.1 says that themapping mf de�ned by mf(B) := H(χB ◦ f) for an arbitrary Borel subset B of K is aBanah spae valued measure, sine A(H) is a Banah spae. One an prove Lebesgue'stype theorem for an integral with respet to the measure mf and sine A(H) is also
σ-omplete Riesz spae it follows Levi's type theorem for suh Banah spae valuedmeasure; with bounded pointwise monotonne limit of a sequene as integrable majorantof this sequene. For more details see [5℄. Aording this it is not entirely obviousfat applied to an A(H)-integral I we an extend it to an extended A(H)-integral
Ĩ : Bb(R) → A(H) whih ful�ls Levi (Lebesgue) type theorem.This not obvious fats are used in the proof of the Extension lemma 3.5 appliedto the A(H)-integral I, respetively spetral A(H)-integral.Lemma 3.5 (Extension Lemma). If Ĩ is an extended spetral A(H)-integral, then

Ĩ(ϕ1 ∨ ϕ2) = Ĩ(ϕ1) g Ĩ(ϕ2), for any ϕ1, ϕ2 ∈ Bb(R).Proof. Denote by Z = {ϕ ∈ Bb(R) : Ĩ(ϕ+) = Ĩ(ϕ)⊕}. By the de�nition Cc(R) ⊂ Z.We show that Z is losed under bounded monotonne pointwise limits. Let {ϕn} be anupper bounded inreasing sequene, ϕ = sup ϕn. Observe that ϕ+ = sup ϕ+
n and usingLevi's theorem for spetral A(H)-integral, (see Remmark 3.4) we obtain equalities:

Ĩ(ϕ+) = sup Ĩ(ϕ+
n ) = sup(̃I(ϕn)⊕) = sup H(̃I(ϕn)+) =

= H(sup(̃I(ϕn))+) = H((sup Ĩ(ϕn))+) = H(̃I(ϕ)+) = Ĩ(ϕ)⊕,thus ϕ ∈ Z and, similarily, for lower bounded dereasing sequenes. We see that
Z = Bb(R) and the proof is �nished.Partition and spetral lass. The family {lλ}λ∈R ⊂ A(H) is alled a partition of
A(H), if the following onditions hold:(P1) 0 ≤ lλ ≤ 1,(P2) lλ ≤ lλ′, for λ ≤ λ′,(P3) lλ′ = supλ<λ′ lλ (pointwise),(P4) limλ→+∞ lλ = 1, limλ→−∞ lλ = 0 (pointwise).A partition {lλ}λ∈R of A(H) is alled a spetral partition of A(H) if, moreover, thefollowing ondition holds:(SP) lλ g (1 − lλ) = 1, for every λ ∈ R.Let I be an A(H)-integral. For λ ∈ R de�ne the funtion lIλ := I(χ(−∞, λ)) from
A(H). 27



Theorem 3.6. The following assertions hold:(a) If I is an A(H)-integral, then the family of funtions {lIλ}λ∈R is the partition of
A(H) orresponding to I.(b) If {lλ}λ∈R is a partition of A(H), then there exists a unique A(H)-integral I, suhthat lλ = lIλ for every λ ∈ R and

I(ϕ)(x) =

∫

R

ϕ(λ)lλ(x)dλ, ϕ ∈ Bb(R).Proof. (a) Probability ondition (P) and nonnegativity ondition (N) implies (P1) and(P2). Levi's theorem shows that (P3) and (P4) are ful�lled.(b) For x ∈ K, de�ne the funtion gx(λ) := lλ(x). (P3) implies that gx is monotonneand ontinous from the left, thus the integral ∫
R

ϕ(λ)gx(λ)dλ exists for every ϕ ∈ Cc(R).So we are able to de�ne the funtion lϕ : x 7→
∫

ϕ gx, x ∈ K, for every ϕ ∈ Cc(R). Onean prove similiarly as in Lemma 3.5 that lϕ ∈ A(H). Now de�ne the mapping
I(ϕ)(x) =

∫
ϕ gx. Observe that I is an A(H)-integral and lIλ = lλ, λ ∈ R.Denote by B(T ) the family of all Borel subsets of an arbitrary topologial spae T .Proposition 3.7. If I is an A(H)-integral, then I is a spetral A(H)-integral if andonly the partition of A(H) orresponding to I is a spetral partion.Proof. If I is a spetral A(H)-integral, then {IIλ} is a spetral partition aording tothe Theorem 3.5.On the other hand, let {lλ} be a spetral partition. Aording to the Proposi-tion 3.6 there exists a unique A(H)-integral I, suh that lλ = lIλ, for every λ ∈ R.Denote by lD = I(χD) for an arbitrary D ∈ B(R). Further denote

D = {D ∈ B(R) : lD g (1 − lD) = 1} .

D is a Dynkin system, that is, a family of subsets of R suh that: R ∈ D; if D1, D2 ∈ Dand D1 ⊂ D2, then D2 \ D1 ∈ D and if Di ∈ D, i = 1, 2, . . . is a sequene of mutuallydisjoint sets from D, then also ∪∞
i=1Di ∈ D.Indeed, given D1, D2 ∈ D, D1 ⊂ D2 denote l1 = lD1

and l2 = lD2
. We see that

l1 f (1 − l1) = 0 and l2 f (1 − l2) = 0, therefore (1 − l2) f (l2 − l1) = 0, so 1 − l1 =
(1 − l2) g (l2 − l1) and (1 − l2) f l1 = 0 also 1 − (l2 − l1) = (1 − l2) g l1. This impliesthat

(1 − (l2 − l1)) g (l2 − l1) = (1 − l2) g l1 g (l2 − l1) = l1 g (1 − l1) = 1.We see that the set theoreti di�erene of sets D1 and D2 is from D. Now pik Di ∈
D, i = 1, 2, . . . a sequene of mutually disjoint sets and denote D = ∪∞

i=1Di. Theinequalities (1 − lD) f lDi
≤ (1 − lDi

) f lDi
, i = 1, . . . , k yield that

(1 − lD) f

(
n∑

i=1

lDi

)
≤

n∑

i=1

(1 − lD) f lDi
= 0.28



Sine Di are pairwise disjoint we have that∑n

i=1 lDi
= l∪n

i=1
D and then lD = supn

∑n

i=1 lDi
.This implies that lD f (1− lD) = 0, so D ∈ D. We have just veri�ed that D is a Dynkinsystem, hene D = B(R).If D1 and D2 are two disjoint Borel sets, then

0 ≤ lD1
g lD2

≤ lR\D2
g lD2

= (1 − lD2
) g lD2

= 0.If D1 and D2 are arbitrary Borel sets, then for disjoint sets D1 \ (D1 ∩ D2) and D2 \
(D1 ∩ D2) the following equalities hold

(lD1
− lD1∩D2

) g (lD2
− lD1∩D2

) = 0,

lD1∩D2
= lD1

f lD2
,

lD1∪D2
= lD1

+ lD2
− lD1∩D2

= lD1
g lD2

.Now let ϕ ∈ B(R) be a simple funtion(thus is a funtion with �nitely many values
ai ∈ R, i = 1, 2, . . . , n) or, equivalently, ϕ =

∑
i aiχDi

, where Di = r ∈ R : ϕ(r) = ai).We see that the equality ϕ+ =
∑

i a
+
i χDi

holds and then the equality I(ϕ+) =
∑

i a
+
i lDifollows. Sine Di are pairwise disjoint sets, then aording to the previous part of theproof we obtain that

(∑k

i=1
ailDi

)⊕
=
∑k

i=1
(ailDi

)⊕ =
∑k

i=1
a+

i lDi
.Therefore I(ϕ+) = I(ϕ)⊕. Now, appeal to the know fat that the set of all simplefuntions is dense in the set Bb(R). This shows that I(ϕ+) = I(ϕ)⊕ for an arbitraryfuntion ϕ ∈ Bb(R) whih onludes the proof.Denote by Id the identity funtion on R.Expetation of A(H)-integral. Let I be anA(H)-integral. Aording to Lemma 3.5,we an de�ne an expetation eI of A(H)-integral I by eI(x) = I(Id)(x) if it exists. Wesee that then in this ase eI ∈ A(H).Lemma 3.8. If I is a spetral A(H)-integral for whih the expetation eI exists, then

I(χ(−∞,λ)) = supn(n(λ − eI)
⊕) f 1) for all λ ∈ R.Proof. Pik λ0 ∈ R and put ϕ(λ) = λ0 − λ. Lemma 3.5 implies that the expeation eIof I exists and eI = I(Id) ∈ A(H), also I(ϕ+) = I(ϕ)⊕ = (λ0 − eI)

⊕. Further from thesame Lemma we obtain that
I((n ϕ+) ∨ 1) = (n(λ0 − Id)⊕) f 1,

I(sup
n

((n ϕ+) ∨ 1)) = sup
n

(n(λ0 − eI)
⊕) f 1.Observe that the following equality supn(n(λ0 − Id)+)∧ 1 = χ(−∞,λ) �nishes the proof.
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Theorem 3.9. The following assertions hold:(a) If I is a spetral A(H)-integral, then the family of funtions {lIλ}λ∈R is the spetralpartition of A(H) orresponding to I.(b) If {lλ}λ∈R is a spetral partition of A(H), then there exists a unique spetral
A(H)-integral I suh that lλ = lIλ, for every λ ∈ R. and

I(ϕ)(x) =

∫

R

ϕ(λ)lλ(x)dλ, ϕ ∈ Bb(R).Proof. (a) It is just an appliation of the ondition (SI) from the de�nition of a spetralintegral used to the hareteristi funtion of an arbitrary left unbounded interval.(b) If {lλ}λ∈R is a spetral partition of A(H), then aording to the Theorem 3.6there exists a unique A(H)-integral I, suh that lλ = lIλ for every λ ∈ R. Now theonlusion immediatly follows from the Proposition 3.7Theorem 3.10. The following assertions hold:(a) If f ∈ A(H), then the mapping If is the spetral A(H)-integral with expetation f .(b) If I is a spetral A(H)-integral for whih expetation exists, then there existsunique f ∈ A(H) suh that I = If .Proof. (a) It is just the part (b) of Theorem 3.1.(b) Sine expetation exists, we an put f = I(Id) and by the de�nition we obtainthat I = If . Uniqueness follows from Lemma 3.8.Theorem 3.11 (Spetral theorem). For any f ∈ A(H) there exists a uniquelydetermined spetral partition {lλ}λ∈R suh that f =
∫

R
λ lλ(x)dλ.Proof. Aording to Theorems 3.9 and 3.10 for any f ∈ A(H) there exists a uniquespetral A(H)-integral If with expetation f suh that

f = I(Id) =

∫

R

λ l
If
λ dλ.
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Chapter 4Open problemsNotie that this hapter is more intuitive than formal from the mathematial point ofview. It ontains olletion of open problems and rough strategy how try to overomethem.4.1 Abstrat integrationOne an interpret a measure as (in some sense) an additive set funtion or by anothername as an integral. In term of appliations it seems demand σ-additivity instead ofadditivity and request for ful�lment of so-alled Daniell ondition for integral. In whatfollows we ompare two relatively di�erent approahes: a norm one and a lattie one.For reasons of simpliity, (X,S) is a measurable spae.Order measures. Let (Q, g) be a σ-omplete Riesz spae with unit e. Set funtion
µ : S → Q is said to be(a) nonnegative if µE ≥ 0 for any E ∈ S,(b) order σ-additive if µ(

∑∞
i=1 Ei) = (o) - ∑∞

i=1 µ Ei for an arbitrary sequene ofmutually disjoint sets Ei from S,() order measure if it is order σ-additive and µ∅ = 0,(d) probability measure if it is a order measure and µX = e,(e) spetral measure if it is probability measure and µ(E1∪E2) = µE1gE2, for any E1, E2 ∈
S.Banah spae valued measures. Let (B, || . ||) be a Banah spae. A set funtion

µ : S → Q is said to be(g) norm σ-additive if µ(
∑∞

i=1 Ei) =
∑∞

i=1 µEi, for an arbitrary sequene of mutuallydisjoint sets Ei from S,(h) Banah spae valued measure or shortly Banah measure, if it is norm σ-additiveand µ∅ = 0. 31



A notion of an integral is usually assoiated with addition respet to some measure.For order measures as well as for Banah spae valued measures one an thanks toa linearity de�ne an integral for funtions with �nitely many values( so-alled stepfuntion). A next step of extending to larger family of funtions is markedly di�erent.Note that an extension of integrals depends also on a range of funtions whihwe would like to integrate. In general tasks it an happens that both measure andfuntion are valued in a di�erent vetor spaes. This ase is developed in Dinuleanu [5,1966℄ or a little bit brie�ier in newer [6, 2000℄ or see also [7, 2002℄ both by the sameauthor. For our purposes it su�es to deal with integration of real funtions. Now weroughly outline onstrutions and main di�erenes between lattie extending and normextending.Integrals on latties. In the ase of order measure the set of all step funtionsis Riesz spae in a natural pointwise ordering. We would like to apply the Daniellextension method, but some tehnial problem ours sine we do not have an ε-tehnique as in the real ase where we use well-known fat: if s is a supremum of anarbitrary bounded set M of real numbers, then for any ε > 0 there exists an element
s′ in M suh that s ≥ s′ > s − ε. In general we are fored to assume that Q ful�lsadditional onditions. In Cristesu [4, 1976℄ it is (o)-ountabilty and σ-regularity. InRie£an [13, 1997℄ it is ondition of weak σ-distributivity. Signi�ant is that for anintegral de�ned in above mentioned papers Levi's theorem holds.Banah spae valued integration. If Banah measure m has a �nite variation µ,then one an omplete the set of all step funtions in an integtral norm ∫

|| . ||dµ andobtain a larger lass of m-integrable funtions. Give a notie that we have no Levi'stheorem even if we onsider real funtions ordered in a natural pointwise ordering.Instead of Levi's theorem one an prove Lebesgue dominated onvergene theorem.Note that from the standpoint of theory one an interpret spetral measure as a lat-tie homomorphism. In this onnetion ite the Kantorovih extension theorem basedon Hahn�Banah type theorem in the ontext of Riesz spaes, see Meyer-Nieberg [11,1991℄.Situation is more ompliated when a topology omes into e�et, that is, if we put
(X,S) := (T, B(T )), where T is a loally ompat spae. An natural question arises ifextending the set of all bounded ontinous funtions we obtain the set of all boundedBorel funtions Bb(T ). Aording to Cristesu [4, 1976℄ answer should be yes, but onlyfor T metrizable and his way of extending fails for ontinous funtions with ompatsupport Cc(T ), sine Cc(T )is not a majorizing subspae of Bb(T ). Another situationis disussed in the paper [8, 1976℄ by Khurana, where is inferred a di�erent extensiontheorem from Cc(T ) to the set of all Borel funtions with ompat support. He usednets, duals, biduals, weak topology. For T ompat, this result is proved in [17, 1972℄by an entirely di�erent method.This setion was only introdution to the abstrat theory of integration. Applia-tions of preeding metods to solving open problems in funtion spae theory will bestudied in the following setion Funtion spaes.32



4.2 Funtion spaesIn what follows, we deal with three type of problems: problems about bilateral rela-tionship of speial families of H-a�ne funtions, problems about struture of speialfamilies of H-a�ne funtions and problems about extending speial H-a�ne funtions.Further families of H-a�ne funtions. Let X be an arbitrary Hausdor� topolog-ial spae. Denote by Bα(X) the set of all Baire funtions of the lass α and by Bm
α (X)a similiarly de�ned set of funtions as Bα(X), whih is generated only by boundedpointwise monotonne limits. B(X) denotes the set of all Baire funtions on X. Thenotation of Bm(X) should be lear. Further, put AB(H) = Ab(H)∩B(K), respetively

ABα(H) = Ab(H) ∩ Bα(K). Denote by Aα(H) the α-th lass generated by boundedpointwise limits of sequene from Ac(H). The meaning of notation Am
α (H) should bealso obvious.

A(H) and U(H). We have showed that Alsc(H) + Ausc(H) ⊂ U(H) (Lemma 2.6).It is not lear if A(H) ⊂ U(H). Of ourse, it su�es to show that the set U(H) islosed under bounded monotonne pointwise limits and this is strongly onneted witha limit behavior of the equality of strong envelopes f◦ = f ◦. Is it possible interpretstrong envelopes as upper and lower lattie integrals? Closedness of U(H) is just Levi'stheorem for lattie integrals. In this onnetion point out that Alsc(H),Ausc(H) areonly semilatties and Ac(H) need not to be lattie even for H simpliial. Withoutassumption of simpliiality we have only some possibilities make use of upward ordownward �lterability. It will be ideal to prove that for any x ∈ K and f universallymeasurable funtion there exists H-representing measure µx suh that f ◦(x) = µx(f).The next open problem is whether as matter of the fat U(H) is a lattie or not.This question is answered only in the onvex ase by Teleman in [16℄ with the helpof Choquet topologies. We think it is possible to show that U(H) is a lattie withoutfaial topologies. Why? We have proved that A(H) is lattie, respetive A′(H) (f.Proposition 2.6 () and Theorem 2.7 (iv) ) aording Alfsen's ideas from the onvexase. Alfsen has subsequently proved an extension type theorem for the family A′(X).A Teleman's proedure was reversed to Alfsen's one. Teleman inferred at �rst anextension type theorem for the fxamily U(X) and then he showed that U(X) is alattie. The di�ulty is that in a nonmetrizable ase the set ext X of extreme pointsof X need not to be Borel measurable and maximal measures need not be arried by
ext X. The primary topology on K is too insensitive to the set ext X. So this is thereason why we should onsider another topology, in Teleman's extension theorem from
ext X is natural Choquet topology. On the other hand, it su�es to show that for Hsimpliial the following equality f ◦ = Hf holds for any universally measurable funtion
f . Naturally, we an de�ne a supremum operation in U(H) by formula f gg = H(f∨g)similiary as for A(H), moreover A(H) would by sublattie of U(H), f. Theorem 2.7.
A(H) and AB(H). The next open problem is if the family A(H) oinides with thefamily AB(H). It is obvious that A(H) ⊂ AB(H). In a metrizable simpliial aseshould also the reverse inlusion hold with the aid of simpliial verision of the Alfsen's33



theorem 2.2. It should be any problem with a generalization, sine all assertions usedin Alfsen's proof hold in the funtion spae setting. Therefore, for any f ∈ AB(H)is f↾ChH K ∈ Bb(ChH K) and thanks to Alfsen's theorem mentioned above we obtain
H(f↾ChH K) ∈ A′(H). As open problem remains also extension type theorems for A(H).A more deliate problem ifAα(H) = ABα(H) requires more �ner approah. In whatfollows we aim at the simpler metrizable simpliial ase. One an interpert a mapping
H : C(K) → A(H) as a lattie integral. It is known that H(B1(K)) = A1(H). Aordingthe Khuran theorem, see [8℄ we should obtain (o)-ontinuity of H. It su�es tothink better of di�erenes between monotonne σ-ontinuity and (o)-ontinuity. So weonlude that H(Bα(K)) = ABα(H) and furthemore H(Bm

α (K)) = Am
α (H).A problem if H(Bα(ChH K)) = Aα(H), respetively H(Bm

α (ChH K)) = Am
α (H) iswidely ompliated, sine a Choquet boundary is in general a Gδ set and we an notapply Khuran's theorem. Nevertheless an extension theorem for lattie integrals shouldbe su�ient, but we have to hek ifA(H) is a weakly σ-distributive lattie. It should benot so surprising, sine Bb(ChH K) is a weakly σ-distributive lattie in natural pointwiseordering. An idea how to verify that A(H) is also weakly σ-distributive lattie is tryto transfer this ondition from Bb(ChH K) to A(H) with the lattie integral H. Reallimportant dependene H(f) g H(g) = H(f ∨ g), f, g ∈ A(H).4.3 Spetral theoryIn this setion we sketh another aspet to the interplay between Choquet theory offuntion spaes and general spetral theory as introdued in the Chapter 3. In whatfollows, we assume that H is a simpliial funtion spae. Krause strategy of infereneof spetral theory for A(H) is very similiar to the spetral theory for latties mixed tothe ontext of funtion spaes. It would seem that funtion alulus for lattie A(H)for H simpliial is just the speial ase of a spetral theory for a σ-omplete Rieszspae with unit, but Krause do not use more general theorems. Even, in Chapter 7 of[9℄ he stated a funtion alulus for latties and C∗- algebras as an appliation by himdeveloped funtion alulus for A(H).Turn for a while to a onnetion between the speial algebras and Riesz spaes.On Riesz spaes we have funtion alulus, so we an de�ne the produt by formula

a.b = 1
4
[(a+b)2−(a−b)2]. On the other hand, on speial algebras we have also funtionalulus, so we an de�ne the supremum operation by a g b = 1

2
[a + b +

√
(a − b)2]. Itappears that both funtion aluluses are in some sense isomorphi. Sine A(H) is aRiesz spae, A(H) should be Banah algebra. The lattie struture on A(H) is morenatural then algebra one. Conspiious question arises, if for above de�ned produt on

A(H) the equality f.g = H(f.g) holds for any f, g in A(H).Draw to a lose, let us mention a onnetion with representation theorems. EahBanah algebra an be represented using Gelfand's transformation as a Banah algebraof all ontinous funtions on a some ompat spae. Further, eah M-spae an berepresented aording to Kakutani's theorem as an M-spae of all ontinous funtionson another ompat. It appears as though that the funtion alulus for A(H) is aonneting link between all mentioned aluluses.As the last note we refer to Krause's observation in [9, p. 285℄ where he outlines34



a new possible proof of the Choquet representation theorem, f. 1.23. He asserts thatthe Choquet representation theorem is just a reformulation of the spetral theorem for
A(H), f.3.10, (a). A roughly idea is at �rst apply a general spetral theory for lattiesto the lattie A(H) and obtain spetral theorem for A(H). As was mentioned, spetraltheorem for A(H) is just a reformulation of the Choquet representation theorem.
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Notation Denotes See page
x ∨ y, x1 ∨ . . . ∨ xn supremum of elements x, y; x1, . . . , xn 6, 101
x ∧ y, x1 ∧ . . . ∧ xn in�mum of elements x, y; x1, . . . , xn 6

∨∞
n=1xn supremum of sequene xn, if it exists x 6(o) - lim xn order limit of sequene {xn}, n = 1, 2, .. 6(o) - ∑∞

1 xn order sum of sequene {xn}, n = 1, 2, .. 6(o) - ∑∞
−∞ xn order sum of {xn}, n ∈ Z 6

|x| absolute value of element x 7
x+, x− positive (negative) part of element x 7

x ⊥ y, A⊥ orthogonal elements x,y; orthogonal omplement of set A 7
[P ] projetor de�ned by P 7(o) - ∫∞

−∞
ϕ(λ)dg(λ) order integral 7

C(K) ontinuous funtions on K 8
H funtion spae on Hausdor� ompat spae K 8

H(U) funtions, harmoni on U and ontinuous on U 8
Uc(X) ontinuous a�ne funtions on X 8
M1(K) probability Radon measures on K 9
M+(K) nonnegative Radon measures on K 14
Mx(H) H-representating measures with baryenter x 9
f∗, f

∗ lower envelope of f , upper envelope of f 9
Ab(H) Borel bounded H-a�ne funtions 9
Ac(H) ontinuous H-a�ne funtions 10

Alsc(H),Ausc(H) l.s. (u.s.) H-a�ne funtions 10
Kc(H),Sc(H) H-onvex (H-onave) funtions 10

Klsc(H),Kusc(H) l.s. (u.s.) H-onvex funtions 10
S lsc(H),Susc(H) l.s. (u.s.) H-onave funtions 10

W(H) 'wedge' funtions from H 12
ChH(K) Choquet boundary of funtion spae H 13

εx Dira measure in point x 13
δx maximal measure with baryenter x 14

µ 4 ν Choquet's ordering of measures µ,ν 14
H Dirihlet operator 16

ext X set of extreme points of X 19
A(X),A′(X) Krause's and Alfsen's speial families 19

U(X) Teleman's family of speial a�ne funtions 19
A(H),A′(H) speial families of H-a�ne funtions 20

A(H) supremum norm losure of A(H) 20
f◦, f

◦ strong lower envelope of f , strong upper envelope of f 20
U(H) H-strongly universally measurable funtions 21
g, f supremum (in�mum) operation in A(H) 23

g∞
n=1fn, gn≥n0

fn supremum of sequene fn from A(H) 23
f⊕, f⊖ positive (negative) part of funtion f in A(H) 23

χX harateristi funtion of set X 261From the Setion Choquet theory of funtion spaes to the end of this paper ∨ denotes thesupremum operation in the set of real funtions on K in its natural pointwise ordering.36



Id identity funtion on R 29
eI expetation of A(H)-integral I 29

B(T ) family of all Borel subsets of topologial spae T 28,32
B(X) Baire funtions on X 33
Bα(X) funtions Baire lass α 33
Bm

α (X) monotonne lass α 33
Aα(H) speial families of H-a�ne funtions 33
Am

α (H) speial families of H-a�ne funtions 33
AB(H) H-a�ne bounded Borel funtions on K 33
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