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Abstract

Nazov prace: Choquetova tedria a funkcionalny kalkulus
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Abstrakt: Téato praca sa zaobera moznostami prenesenia znamych vysledkov z kon-
vexnej analyzy do Choquetovej teorie funkénych priestorov, najmaé o sa tyka zvazovych
viet. Odvodili sme, ze funkény priestor H je simplicialny prave vtedy, ked ista Specidlna
trieda A(H) H-afinnych funkei tvori zvaz. Dalsim vysledkom je spektralna veta pre
tento systém A(H), ktory stavia i na vysSie zmienenej vete. Pre hlbsie pochope-
nie suvislosti je dolezitd dobra znalost Rieszovych priestorov a Banachovych zvazov.
Zéakladne pojmy st stru¢ne zhrnuté v tvode. Ako dali uzito¢ny nastroj sa ukazuje
abstraktna teodria integracie v dvoch roznych struktirach - pristup cez zvazové inte-
graly a tiez pristup cez miery s hodnotami v Banachovom priestore. Pretoze sa jedn&
o pomerne nova problematiku, vela otvorenych problémov a prirodzene vzniknutych
otazok s ndznakmi moznych rieseni je zhrnutych v zavere prace.
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Abstrakc: This thesis concerns with possibilities of known results transfer from convex
analysis to Choquet theory of function spaces, mainly as for lattice type theorems. We
have proved that function space H is a simplicial if and only if some family A(H)
of special H-affine functions is a lattice. Next main result is a spectral theorem for
this system A(H). For deeper understanding of connections it is necessary to be
familiar with Riesz spaces and Banach lattices. Basic notions are summarized in the
Introduction. As a further useful tool it appears to be abstract integration - lattice
integrals and Banach space valued measures. Open problems and naturally arised
questions with possible ideas for solutions are collected at the end of thesis.

Keywords: Choquet theory of function spaces, functional calculus, abstract integra-
tion



Chapter 1

Introduction

It appears a close relationship between Choquet theory of function spaces and function
calculus in view of an abstract integration through integrals on lattices and Banach
space valued measures. Comparison of both quite different theories we stated to the
section Open Problems - Abstract integration.

In many, not only physical motivated tasks, occurs a necessity to put together a
real or complex valued function and an element from a seemingly different mathemat-
ical structures - Banach algebras, respective C*-algebras and o-complete Riesz spaces
with unit (for the definition see paragraph Riesz spaces in the section Special spaces).
Further conspicious questions linked to this theme are collected in the present paper in
the Section Open Problems - Spectral theory. In the following we compare calculuses
mentioned above. A spectral theory for function spaces is developed in the Chapter 3.

Let sketch a framework for spectral theories for special algebras with unit e. Namely,
on Banach algebras one can establish Dunford holomorphic calculus with the aid of
complex analysis and its comfortable properties such that each holomorphic function
can be expressed in Taylor series locally at each point. The counter value is a relatively
small system of functions from function calculus. One can improve it, but only for Her-
mitian elements of C*-algebras. Thanks to complex version of the Stone-Weierstrass
theorem we obtain calculus also for continuous complex functions on the spectrum.

In both cases, it is one of key points a possibility to define a resolvent function
(Ae — x)~'. This resolvent yields useful formulas as the Cauchy one in the context
of special algebras. Remind that for Hilbert spaces one can establish also the Borel
measurable calculus. In this connection let us point out the notions norm completness
and orthogonality. A natural reflection of the preceding notions in o-complete Riesz
spaces with unit u is a o-completness and a lattice orthogonality, for definitions see the
section Special spaces. By this way defined orthogonality produce very similar spectral
theory to the spectral theory in Hilbert spaces. Orthogonal projections, orthogonal
subspaces are meanigful and function calculus is with a resolvent [(Au — x)*]u and
integration over a real spectrum, cf. THEOREM 1.1. For better understanding of those
mathematically uncertain considerations, but very intuitive, we refer to [4].

One can conceptualize a notion of H-affinity as a generalization of affinity from
the convex analysis to the theory of function spaces, where H is a subspace of C(K).
One of an imporant argument why we should deal with function spaces instead of
quite simpler convex analysis is its higher flexibility which is caused by that we need



not go over to state space. An introduction to this nice theory take over from [10].
Overview of known facts about special families of affine functions and also some new
generalizations to the function space setting are in the Chapter 2. For the first view to
this new theory we refer a reader to [12, Phelps| and to 3, Choquet|. Finally, we refer
to the section Open problems - Function spaces for open problems and new possible
ideas how to solve them.

1.1 Special spaces

Ordered sets. An ordered set E is called upper directed if for any pair of elements
x,y € F there exists an element z € E such that + < z and y < 2. Let denote by
x1 V...V x, the least upper bound of elements w1,...,x, € E (if it exists) and by
Vo, x, the least upper bound (supremum) of sequence z,,n = 1,2,... if it exists. If
for any x,y € E the supremum zV y exists, then we say that E is an upper semilattice.
If E is both upper and lower semilattice, then we say that F is a [attice. The meaning
of dual notions a lower directed, a lower semilattice and the notation x A y should be
clear.

Order convergence. Let E be an ordered set. A sequence {x,} of elements of F
is said to be increasing if m < n implies z,, < x,,. In this case one writes x,, /. If
moreover, the element Vo° ,x,, exists, one writes z,, \, + and analogous definitions for
x, /. The sequence {x,} of elements of E is said to converge with respect to the order
relation to z (abbreviated, (o) -converges to x) if there exist the sequences {a,}, {b,}

of E, such that
(a) an <ap < by, m €N,

(b) a, \, z and b, /" .

In this case one writes z = (0) - lim x,,.

Dedekind completness. A lattice L is said to be Dedekind complete if any subset
of L admit a greates lower bound and a least upper bound. The lattice L is said to
be relatively complete if any bounded subset of L admits a greates lower bound and
a least upper bound. If in the previous definitions the subsets of L are assumed to
be countable, then we get the definition of the Dedekind o-complete lattice (relatively
o-complete, respectively).

Riesz spaces. A real vector space V is said to be an ordered vector space if an order
relation has been given in V', such that the following conditions are satisfied:

(01) if 1,290 € V and 1 < 29, then 27 + x < 9+ 2 for any x € V,

(02) if 21,25 € V and 21 < 29, then ax; < axs for any o € RT.

One calls a Riesz space (or vector lattice) any ordered vector space which is lattice.

One calls a og-complete Riesz space any ordered vector space which is a relatively
o-complete lattice.



Order sums. The notion of (0)-convergent series can be introduced in a natural

manner:
o0 m

(0)- an = (0)- 1im2xn,
n=1 " n=1

and
(0)- an = (0)- an + (o0)- Zx—na

if the right side is meaningful.

Example. Let X be an arbitrary nonempty set. Denote by R(X) the set of all real
functions on X. R(X) is a complete Riesz space in its natural pointwise ordering.
The lattice operations are also defined pointwise. Note that the (o) -convergence and
pointwise convergence in R(X) coincides.

Orthogonality. Let @) be a Riesz space. If z € @), then the positive part of x is, by
definition, the element x* := x Vv 0; the negative part of x is the element = := z A 0;
the absolute value of x is the element |x| := 2+ + 7. Two elements x1,22 € @ are
said to be orthogonal if |x1| A |z2] = 0. One writes then z; L 5. The orthogonal
complement of an arbitrary A subset of Q we denote by A+ :={z € Q:2 L A}. A set
A of elements of @ is said to be total if A+ = {0}.

Componets and projectors. A subset P of a Riesz space @ is called a component
of ) if any element = € () can be written as z = 2’ + 2", where 2’ € P and 2" € P+,
The element 2’ is called the projection of x onto P and it is denoted by 2/ = [P]z.
The mapping x — [P]z of @ into P is called the projector (it is denoted by [P]). In
a o-complete Riesz space the set v+ is the smallest component which contains v. It
is called the component generated by v. The projector determined by v+ is called a
principial projector and it is denoted by [v].

Riesz space with unit. In a according with the definition of a total set, an element
c € @ is said to be total, if z L ¢ implies z = 0. A Riesz space is said to be Riesz space
with unit u if it has total elements and if a positive total element u is choosen in it.
The element u is called a unit element. If ) is a Riesz space with unit, any element
e € () for which e A (u—e) = 0 is called a unitary element.

In what follows let ) be a o-complete Riesz space with unit .
Integration to (). Let ¢ be a real valued function defined on R, and g be an Q-
valued function defined on R. Let us consider a partition /A of the real axis, given by
points \;(i = 0,+1,42,...), such that \; < \;y; and A1 — \; < e (for a given ). Let

us assume that for any such partition and any choice of the intermediate points v; (i.e.,
Ai <7 < A\iyq) the following sum

400
sa=(0)- > (1) (g(Nis1) — g(M)) (1.1)

7



exists. Let v(A) := sup(Aiy1 — A;) be the norm of the partition A. For any sequence
{An},en of the partitions, such that v(A,) — 0, we shall consider a sequence of
elements of the form (1.1), where the intermediate points are chosen arbitrirarily for
each partition A,. If for any sequence {A,}, such that v(A,) — 0, the sequence
{82, ey 18 (0)-convergent to a given element z € @), which is indenpendent of the
chosen sequence of partitions, one writes

=/ T o0)dg ).

[e.9]

Spectral function. For any element x € @), the function ¢* : R — @), defined by the
formula

9" (N) = [(hu — )],
is called the spectral function of x.

Theorem 1.1. Any element x of a o-complete Riesz space with unit can be represented

in the form
+o0
x :/ Adg®(N).

e}

Banach lattices. Let (B, V) be a Riesz space. A seminorm p on B satisfying p(z) <
p(y) whenever |z| < |y| is called a lattice seminorm and a lattice norm if, in addition,
p is a norm. In the latter case, (B,||.]|) is called a normed Riesz space. An normed
Riesz space which is complete with respect to the norm is called a Banach lattice.

M-spaces. A lattice norm ||. || on Riesz space (M, V) is called a M -norm, if ||z Vy|| =
max{||z||,||y||} for all positive elements x,y € M. A M-normed Banach lattice M is
called an M-space. The meaning of notions Banach sublattice, sub-M -space should be
clear.

1.2 Choquet theory of function spaces

Function spaces. By a function space 'H on a compact Hausdorff topological space
K we mean (not necessarily closed) linear subspace of C(K) containing the constant
functions and separating the points of K.

Examples. (a) Continuous functions.  The whole space C(K) of all continuous
functions on a Hausdorff compact space K represents a simple example of a function
space. Clearly, the space C(K) separates the points of K.

(c) Convex case — affine functions. Let X be a convex compact subset of a locally
convex space I and H the linear space 1°(X) of all continuous affine functions on X.

(d) Harmonic case — harmonic functions. Let U be a bounded open subset of the
Euclidean space R?. The function space H(U) consists of all continuous functions on
U which are harmonic on U.



More generally, we can consider a relatively compact open subset U of an abstract

harmonic space and the function space H(U), the linear subspace of C(U) of functions
which are harmonic on U. We tacitly assume that constant functions are harmonic and
H(U) separates the points of U.

Representating measures. Let M!(K) denote the set of all probability Radon
measures on K. We denote by M, (H) the set of all H-representating measures for
r € K, that is,

Mo (H) = {p e MHK): f(z) = /deu for any f € H}.

H-affine functions. We define the space A°(‘H) of all H-affine functions as the fam-
ily of all bounded Borel functions [ on K satisfying the following barycentric formula:

l(z) = / ldu foreach x € K and pu€ M,(H).
K
Sometimes we will write shorter 4(f) instead of [, fdpu.

Upper and lower envelopes. Let f be an upper bounded function on K. For
r € K, put
f*(z) =inf{h(z) :heH, h> fon K }. (1.2)

Obviously, the upper envelope f* is an upper semicontinuous function on K. Similiary,
for a lower bounded function f on K, we define the lower envelope f, so that f.(z) =
—(=f)(z),z € K.

Proposition 1.2. Let x € K. Then the mapping f — f*(z) is sublinear functional on
C(K).

Proof. Tt is easy to verify that

(f+9) <f +g and  (Af)"=Af
for any f,g € C(K) and A\ > 0. O
Lemma 1.3. Let f € C(K) and x € K. Then

[fe(@), f7(@)] = {u(f) : € Ma(H)}.

Proof. Fix an z in K and f € C(K). If p € My (H) and g,h € H, g < f < h,
then g(z) = pu(g) < p(f) < p(h) = h(z), so that f.(z) < u(f) < f*(z). Pick now
a € [fo(z), f*(z)]. From LEMMA 1.2 we know that the mapping p : g — ¢g*(z) is a
sublinear functional on C(K'). The Hahn-Banach theorem provides a linear functional
pg on C(K) such that ps(f) = a and gy < pon C(K). Since ps(g) < p(g) = g*(z) <0
whenever g € C(K) and g < 0, we see that s is, according to the Riesz representation
theorem, a positive Radon measure on K. Let h € ‘H. Then h, = h = h*, which yields

py(h) < p(h) = h*(z) = h(z)

9



and simultaneously

—p(h) = pp(=h) < p(=h) = (=h)"(z) = —h.(x) = —h(z).

Hence pp(h) = h(z). If h =1 on K, then pug(h) = h(z) = 1. Thus ||us|| = 1, and we
see that puy € M, (H). O

‘H-concave and H-convex functions

H-concave and H-convex functions. A bounded Borel function f on K is called
H-convex, if
f(x) <u(f) foranyz € K and pe M,(H).

In a similar way we define H-concave functions. Let KC(H) denote the family of all H-
convez functions on K and K¢(H) the family of all continuous H-convex ones. Similarly,
we define the family of continuous H-concave functions as

SH)={feC(K): f(x) > pu(f) forany z € K and y € M (H)}.

Of course, A°(H) = K¢(H)NS¢(H). Further, let X**¢(H) denote the set of all upper
semicontinuous H-convex functions on K, S*¢(H) the set of all lower semicontinuous
H-concave function on K. The meaning of notations K!*¢(H) and S“*(H) should be
clear.

Let denote by f V g the pointwise supremum of bounded real functions f and g.
We define analogously the pointwise infimum as f A g. We denote by f*, resp. f~
positive, resp. negative part, more precisly f* = fvO0and f~ = f AOQ.

Proposition 1.4. The family S°(H) forms a convex cone of functions which is min—
stable.

Proof. Let us just check that S°(H) is min-stable: If ki, ko € S°(H), then ky A ko €
S¢(H). Indeed, let z € K and p € M, (H). Then

p(ky A k2) < min(u(ky), p(ks)) < (k1 A ko) () -

Lemma 1.5. We have f = f* on K for any f € S°(H).

Proof. Pick x € K. With the aid of LEMMA 1.3, find u € M, (H) so that f*(z) = u(f).
Then

Proposition 1.6. Let f be an upper bounded function on K. Then

[f=inf{g:9€ A(H), g> fon K} =inf{k: k€ S(H), k> fonK} .

10



Proof. We have
ff>inf{g: g€ A°(H), g> fon K} >inf{k: k€ S(H), k> fon K} .

Given k € S°(H), k > f on K, in view of LEMMA 1.5 we get k = k* > f*. It follows
that
inf{k:keS(H), k> fon K} > f*.

O

Lemma 1.7. Let 'H be a function space on K, f be an upper semicontinuous function
on K and x € K. Then there ezists 1 € M,(H) such that f*(x) = u(f).

Proof. Denote by G the lower directed set {g € C(K):g > fon K}. By LEMMA 1.3,
for any g € G there is a measure p, € M, (H) such that p,(g) = ¢*(x). Given ¢ € G,
let

My, ={py: 9€G, g < ¢}

By a compactness argument, there is y € () Mz . A moment’s reflection shows that
peG

p € M, (H). We observe that

inf{v(p): ve M,} =inf{v(p): ve Mz*} < u(p)
for each ¢ € G. Hence
f*(x) <inf{g™(x) : g € G} = inf{py(g) : g € G}

<inf{inf{py(p): 9 € G,9<¢}: p € G} <inf{ulp): v € G}
=u(f) <inf{u(h):h> f, he H} =inf{h(x): h > f, h € H}

=f"(z),
which are the inequalities needed to finish the proof. O

Proposition 1.8. If f is an upper bounded function on K, then f* is upper semicon-
tinuous and H—concave.

Proof. Pick x € K and p € M (H). Then
p(f*) =p(nf{h:heH, h>f}) <inf{u(h):heH, K h> f}
=inf{h(z):heH, h> f}=f"(z).
This shows that f* is H-concave. It is plain that f* is upper semicontinuous. O

Proposition 1.9. Let f be an upper bounded function on K. Then f is an upper
semicontinuous H—concave if and only iof f = f* on K.

Proof. Let f € §**°(H) and x € K. By LEMMA 1.7, there is a measure p € M, (H)
such that f*(z) = p(f). Then

[ (@) =pu(f) < flz) < [ ().

Conversely, suppose that f = f*. By PROPOSITION 1.8, the function f* is upper
semicontinuous and H—concave. O

11



Corollary 1.10. Let f be an upper bounded function on K. Then
ff=mf{l:le A(H), l>fonK}=inf{k:keS"“(H), k> fonK} .

Proof. Recall that
ffr=inf{h:heH, h>fon K}.

Obviously,
ff>inf{l:le A(H), 1> fon K} >inf{k:keS“(H), k> fon K} .

Given | € A*¢(H), | > f, in view of the preceding PROPOSITION 1.9 we get
[=1"> f*> inf{i(x) e Ame(H), 1> f} .

Taking the infimum over all [ > f in A"*('H) finishes the reasoning. O]

Corollary 1.11. Let g be an upper semicontinuous function on K. Then
g=inf{l:le A*(H), I>gonK}=inf{k:keS*(H), k>gonK} .

Proof. Pick z € K and using LEMMA 1.7 find again p € M, (H) such that u(g) = g*(z).
Let k € S¥(H), k > g. Then

9" (z) = p(g) < p(k) < k().
Hence
g <inf{k:keS"*(H), k>gon K} <inf{l:l€ A*(H), I >gon K} .
The reverse inequality is obvious, thus the proof is complete. O
If H is a function space, we denote W(H) :={hyV---Vh,:h; € H,i=1,...,n}.

Lemma 1.12. Let ‘H be a function space on a compact K. If g is an lower semicon-
tinuous function on K, f € K"(H), g > f on K, then there is a function k € W(H)
such that g > k > f on K.

Proof. Fix x € K. By LEMMA 1.7, there is a measure u € M, (H) such that g, = u(g).
Then

9:(x) = plg) > u(f) = f(x).
Therefore, there exists h, € H such that

h, < gon K and h,(x) > f(x).

Adding a small constant function to h,, we may assume that h, < g everywhere on
K and still h,(z) > f(z). We infer from the upper semicontinuity of f — h, and a
compactness argument that there exists x1,...,x, € K such that k := h,,V...Vh,, > f
on K. The function K has all properties required. ]

12



Corollary 1.13. Let k be a upper semicontinuous H-convex function on K. If
W:={weWH):w>konK},

then the set W is lower directed and k = inf W.

Proof. Tt suffices to establish that & = inf W. Since
k=inf{ge C(K):g>kon K},

using PROPOSITION 1.12 we conclude that & = inf W.

Now we are given wy,ws € W, and we wish fo find w’ € W so that w' < w; A ws.
Since (w; A ws), > k, a new application of PROPOSITION 1.12 asserts the existence of
w' € W so that wy A we > (wy A wsy)s > w > k and the proof is finished. O

Theorem 1.14. Let [ be an upper bounded function on K and p € M*(K). Then

p(f*) = inf{u(k) -k € S (H), k> f} .

Proof. We know from PROPOSITION 1.4 that the family S¢(H) is min-stable, and
therefore the set inf {k: k € S(H), k> f} is lower directed and its infimum equals
f* by PROPOSITION 1.6. The assertion follows now from more or less familiar the
Lebesgue monotone convergence theorem for lower directed sets of upper semicontinu-
ous functions. O

Choquet boundary

Choquet boundary. Define the Choquet boundary Chy(K) of a function space
‘H as the set of those points z € K for which the Dirac measure ¢, is the only H-
representating measure for x, that is,

Chy(K)={x € K: M,(H) = {e,}}.
Theorem 1.15. A point x € K belongs to the Choquet boundary of H if and only if
f(z) = f"(x) for every fe€C(K).

Proof. The assertion is an immediate consequence of LEMMA 1.3. If x € Ch’H(K) and
f € C(K), then M (H) = {e,}, and therefore f(z) = f*(x). Conversely, assume that
f(x) = f*(x) for any f € C(K). If p € My (H), then pu(f) = f(z) for any f € C(K).
Hence p = ¢,. O

Lemma 1.16. A point x belongs to the Choquet boundary of H if and only if
ht(z) = (hT)*(x) for every h € H,

Proof. Suppose x € Chy(K) and h € H. It is clear that ht € C(K) and the preceding
THEOREM 1.15 gives h™(z) = (h*)*. On the other hand, if # € C'hy(K), then by the
definition exists u € M, (H), such that pu # e, that is, there is z € supt u, z # x.
Since H separates points of K, we obtain b’ € H, h'(x) < h/(z). Put h = ' — h/(x), so
h € H and h(z) = 0, h(z) > 0. Therefore

P) = 0 < ) < () < (07" (a),

since (h*)* is H-concave function according to LEMMA 1.8. O

13



Maximal measures

Choquet’s ordering and maximal measures. The convex cone K¢(H) of all H-
convex functions on K determines the partial Choquet ordering on the space M™*(K)
of all positive Radon measures on K:

pw=v if u(f) <v(f) for each f € K(H).

Maximal elements of M (K') with respect to this Choquet ordering are called mazimal
measures(or, more precisely, H-mazimal measures).
We start with trivial observations.

Observation 1.17. For any pu € M,(H), we have e, < p.
Proof. The assertion is just the definition of K°(H): whenever f € K°(H) and p €

Ma(H), then e5(f) = f(z) < pu(f). O
Proposition 1.18. Let z € K, up € M,(H), v € MT(K) and pn < v. Then v €
M. (H).

Proof. Let h € H. Then h(z) = u(h) = v(h) since H C K¢(H)N—K¢(H). A particular
choice h = 1 yields ||v|| = 1. O

Corollary 1.19. Let x € K and p € M'(K). Then
ex < p if and only if pe€ My(H).
In what follows, we need a strengthened form of LEMMA 1.3.
Lemma 1.20. Let f € C(K) and A € M (K). Then
MDA = () s o€ MUE) A< i} |

Proof. The proof is almost the same as that given in LEMMA 1.3. Pick a € [A(f.), A(f")]
and imitate it setting

p:g—Ag*), geC(K).
Then p is a sublinear functional on C(K). The Hahn-Banach theorem with the Riesz
representation theorem yields a Radon measure p € M!(K) such that

u(f)=a and u(g) <p(g) for geC(K).

It remains to show that A\ < p. To this end pick k € K¢(H). Then —k € S°(H) and an
appeal to LEMMA 1.5 reveals that (—k)* = k. Therefore

p(=k) <p(=k) = AM(=k)") = M=k).

Hence A(k) < p(k), which gives the required inclusion.
For the reverse, let A < pu, v € K°(H), k € S°(H), v < f < k. Then

W) < () < pulf) < (k) < A(K).

Using Levi’s THEOREM 1.14 we have

A(fe) < u(f) < A),
which finishes the proof. O
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The following result due to G.Mokobodzki characterizes maximal measures.

Theorem 1.21. Let p be a positive Radon measure on K. The following assertions
are equivalent:

(i)  p is mazimal,
(it)  u(f) = pu(f*) for any f € C(K),
(1ii)  p(k) = p(k*) for any f € K°(H).

Proof. Let A € M!(K) be maximal and let f € C(K). By PROPOSITION 1.20 there is
a measure y € M (K) such that A < p and u(f) = A(f*). Since ) is maximal, we have
p = A, and therefore pu(f) = u(f*). It is obvious that (ii) == (iii). To see that (iii)
= (i), assume that a measure A € M!(K) satisfies A(v) = \(v*) for each v € K°(H).
Let p € MY (K), A < p and fix v € K°(H). Then, using Levi’s THEOREM 1.14 we get

Av) =A0") = Xinf{k: k€ S(H), k >v}) =inf {\k): ke S(H), k>v}
>inf{u(k) : k€ S(H), k> v} > pw*) > uv).

Hence A(v) = p(v). Since the space K°(H) — K°(H) is uniformly dense in C(K), we
conclude that A = p. O

The proof of the following PROPOSITION 1.22 use a fact that in a simplicial function
space ‘H on a metrizable compact there exists continuous strictly H-convex function.
Note that in this case Chy(K) is G set. For the proofs of PROPOSTION 1.22 and
THEOREM 1.23 see [10].

Proposition 1.22. Let 'H be a function space on a compact K. If K is a metrizable,
then measure p is mazimal, if and only if u(K \ Chy(K)) = 0.

Theorem 1.23 (Choquet representation theorem). Let H be a function space on
a compact space K admitting a continuous strictly H-convez function h. Then for each
x € K there exists a Radon measure pu on K such that

w(K \ Chy(K)) =0 and h(az):/Khdu for any heH.

Theorem 1.24. Let 'H be function space on compact K. If K is metrizable, then
measure [ 18 mazximal, if and only if

wu(h™) = u((hT)*) for every h € H.

Proof. Suppose p is maximal. If h € A°(H), then ht € C(K). Using Mokobodzki’s
THEOREM 1.21 we have that the equality pu(h™) = u((h*)*) holds for every h € A°(H).

On the other hand, assume that p is not maximal. Denote by = the barycenter of the
measure . If g is Dirac measure at point x, then the conclusion is trivial according to
LEMMA 1.16. If 1 is not the Dirac measure at point x, then there exists z € supt p such
that h(z) > 0 and h(z) = 0, since H separates points of K. So 0 < u(h™) < u((h)*).
Therefore

B (@) = 0 < u(h*) < p((h)7) < (h) ().
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Put

then
p(hT) = ART(2) + (1 = Ae) () < A (D7) () + (1 — Aea) (BT)") = u((hT)"),
which contradicts our assumption that u(h™) = u((h™)*), for each h € H. O

The following THEOREM 1.25 is based on an application of well-known Zorn’s
lemma. For the complete proof, see [10].

Theorem 1.25. Let p be a positive Radon measure on K. Then there is a mazimal
measure X\ such that p < \.

Simplicial function spaces.

Simplicial function spaces. A function space H on a compact space K is called
simplicial if for each x € K there exists a unique maximal measure 6, € M, (H).

Abstract Dirichlet problem. For any bounded Borel function f on K we define
Hf::p»—>/ fdé,, xeK
K

The function Hy is an (abstract) solution of the Dirichlet problem for the function f.
Let us denote by H mapping

H: f+ Hy, for f € B'(K).

Proposition 1.26. Let H be a simplicial function space on a compact space K and let
f € K*(H). Then function Hy is an upper semicontinuous H-affine function on K.
Moreover, f* =Hy on K.

Proof. Fix x € K and choose € M, (H). Since f*=inf{h: h € H, h > f}, we have
u(f) < p(f*) < p(h) = hiz) for any h € H, h > f. Hence u(f) < p(f) < f*(z). In
particular, 6,(f) < f*(x).

Now appeal to LEMMA 1.7 to find a measure A € M, (H) such that f*(z) = A\(f).
Thanks to THEOREM 1.25, there is a maximal measure v € M1 (K) such that A < v.
PROPOSITION 1.18 yields v € M, (H). The simpliciality of H implies that v = J,., and
therefore

f'(@) 2 v(f*) = mt{v(k) : k € S(H), k= f} >
> inf {3, (k) : k € S°(H), k= f} =0.(f") = 6.(f) = f*(2).

O
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Proposition 1.27. The following are equivalent assertions:
(i) H is simplicial,
(ii)  For every [ € K°(H), the function f* € A"(H).

Proof. The implication (i)=>(ii) is exactly the preceding PROPOSITION 1.26.

Now suppose (ii). Let € K and let p, v € M, (H) be maximal measures. Our aim
is to show that y = v. Since the space K°(H) — K°(H) is dense in C(K), it is sufficient
to show that yu = v on K¢(H). Making use of Mokobodzki’s maximality THEOREM 1.21
and the definition of the H-affinity, we see that

for any s € K°(H). This shows that (ii) implies (i). O

The proof of the next proposition uses in the convex case the Hahn—Banach separa-
tion theorem. The general case of a function space H is solved in J.Spurny’s paper [15]
using the transfer of H in to the so-called state space of H. In order to apply THEO-
REM 4.5 of [15], let us note that a H-affine function on a simplicial space is completely
A°(H)-affine.

Proposition 1.28. Let H be a simplicial space on a compact space K. Ifl € A*°(H),
then the set
Ayi={he A°(H) :h>1lon K}

18 lower directed and | = inf A;.
If, moreover, K is metrizable, then there exists increasing sequence {l,,} C A;, such
that
[ =infl,.

Lemma 1.29. Assume that 'H is a simplicial space. Then a measure p is maximal if
and only if,

p(l™) = (M) for every 1€ A(H).

Proof. Suppose p is maximal. If | € A°(H), then [T € C(K). Using Mokobodzki’s
THEOREM 1.21 we have that the equality p(I7) = u((17)*) holds for every [ € A(H).
Conversely, we show that p(I7) = u((I™)*) moreover for every | € A“¢(H). Ac-
cording to LEMMA 1.28, the set A; is lower directed and [ = inf A;. Observe that the
set
A:={¢g":9€ A°(H),g >l on K}

is also lower directed and [* = inf A. Using the Lebesgue monotonne convergence
theorem for directed sets we get:

p(I%) = inf u(g") = inf p((g")") = p((I7)") = p(").

geA; geA;

Now we show that

wly Voo V) =p((lh V.. V)Y (1.3)
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for any [y, ..., [, from A°(H). The case n = 1 is clear. Assume that the equality holds
for some n > 1. Given continuous H-affine functions {4, ...,l,,1, put

f = (ll —ln+1) V...V (ln_anrl)

Then
ll\/...Vln:f+—|—ln+1.

Simpliciality of H ensures that f* € A"““(H), therefore u((f*)") = u(((f*)7)*). The
following inequalities show that (1.3) holds.

p(li VoV lga) = p(f ) + pllasr) = p((f)7) + pllasn) = w(((F)7)) + pllaga) =
> p((f5)) 4 pllnga) 2 (L Vo NV lga)™) 2 (Ve V )

Finally, the set {l; V...V, : l1,...,l, € H} is dense in K£°(H) and thanks to
THEOREM 1.21 measure p is maximal. 0
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Chapter 2

Families of H-affine functions

2.1 The convex case

There are several types of theorems concerning a structure of simplices. We will deal
with two of them: lattice type theorems and extension type theorems.

H.Bauer in [2] showed that the set A°(X) of all continuous affine functions on a
compact convex set X is a Riesz space in its natural ordering if and only if X is
a simplex with closed set of extreme points ext X (so-called Bauer simplex). These
assertions are equivalent to the extension theorem that for any continuous bounded
function f on ext X there exists continuous affine function Ay on X such that f = hy
on ext X, see THEOREM 2.1.

Metrizable simplices were studied by E.M.Alfsen in [1| where was inferred extension
theorem for bounded Borel functions. In particular, every bounded Borel function
on ext X can be extended uniquely to a function from a set A’(X), where A'(X) is
the smallest set of real valued functions which contains both l.s.c. and u.s.c. affine
functions on X and is closed under bounded pointwise monotonne limits. Moreover,
the set A’'(X) consists exactly of those bounded Borel functions on ext X for which
the "barycenter formula” is valid. The above result lean heavily on the fact that the
set A’'(X) over a metrizable simplex is a o-complete Riesz space. This result is not
entirely obvious, since ext X can be a G set, see THEOREM 2.2.

U.Krause in [9] introduced the definition of A(X) as the smallest set of all real
valued functions which contains sums of l.s.c and u.s.c functions and is closed under
bounded pointwise monotonne limits. He used result due to H.Bauer that the set
As¢(X) of all u.s.c affine functions is an upper semilattice if and only if X is a simplex.
This yields that A¢(X) 4+ A%*¢(X) is Riesz space. So Krause only replace in Alfsen’s
definition of the A’(X) the word "and” by "sums”. It is reasonable, because this gives
simpler proof without assumption of a metrizability. Furthermore A(X) coincides with
A'(X) for an arbitrary metrizable simplex X, see THEOREM 2.3 for more details.

Another lattice type and extension type theorem was obtained by S.Teleman in [16]
in terms of an extended boundary measure i, Choquet topology on ext X, a family
Mb(ext X) of all bounded universally measurable functions on ext X and a family U/ (X)
of all strongly universally measurable functions on X. For the completness we state
here Teleman’s theorem, see THEOREM 2.4.
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In what follows, X is a compact convex subset of a locally convex space.

Theorem 2.1 (Bauer, 1964). The following assertions are equivalent:

(i) X is a simplex with closed ext X,

(i) A°(X) is a Riesz space,

(iii) for any f € C(ext X) there exists hy € A°(X) such that f = hy on ext X.
Theorem 2.2 (Alfsen, 1966). In the following (i) implies (ii) and (ii) implies (iii).

(1) X is a metrizable simplet,

(i) A'(X) is a Riesz space,

(iii) for any f € B°(ext X) there exists gy € A'(X) such that f = g; on ext X.
Theorem 2.3 (Krause, 1970). The following assertions are equivalent:

(i) X is a simplez,

(i) A¥(X)+ A*(X) is a Riesz space,

(iii) A(X) is a Riesz space.

Theorem 2.4 (Teleman, 1985). The following assertions are equivalent:
(1) X is a simplez,
(11) U(X) is a Riesz space,

(iii) for any f € MP(ext X) there exists up € U(X) such that f =u; on ext X.

2.2 The function space generalization

Now, our aim is how to show we can transfer preceding results to a more general setting
of function spaces.

Families A(H), A(H) and A (H). We denote by A(H) the smallest family of H-
affine functions satisfying the following conditions:

(A1) AF(H) + A“<(H) C A(H),
(A2) ifl, € A(H),I real valued function on K, I,, /1 or I, \ I, then | € A(H).

If we replace in the previous definition of A(H) condition (A1) by (A1l’) we obtain
another interesting family denoted A'(H),

(A1) ABC(H), A (H) C A(H).

Denote by A(H) the sup-norm closure of the set A(H) in the set of all bounded
real functions on K.
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Strong envelopes. Let f be an upper bounded function on K. We define upper
strong envelope as

fo(x) = inf {h(z) : h € A*(H), h> fon K }.

Similiary, for a lower bounded function f on K, we define the lower strong envelope f,
so that fo(z) = —(—f)°(z),z € K.

Family U/(H). A bounded function f on K is called H-strongly universaly measur-
able function, if f, = f° on K. Let denote by U(H) the set of all H-strongly universaly
measurable functions f on K.

Observation 2.5. If f is a bounded function on K, then f < f° < f*. Moreover, if
f is an upper semicontinuous function, then f° = f*.

Proof. The first part of observation is obvious and the second one is just COROL-
LARY 1.11. 0

Proposition 2.6. If H is a function space on compact K, then
(a) A'(H) C A(H) C A(H),
(b) A(H) + A“(H) C U(H).
Moreover, if K is metrizable, then
(c) A(H)=A(H).

Proof. (a) Tt is obvious that A“(H), A“(H) C A"(H) + A“*(H), so inclusion
A'(H) € A(H) is trivial. The second inclusion is just Levi’s theorem.

(b) Pick f € A"°(H). OBSERVATION 2.5 implies that f = f°. No doubt that
fo = f and PROPOSITION 1.9 yields that f* = f. So A“(H) C U(H) and since U(H)
is a vector space also A"*“(H) + A“(H) C U(H).

(c) Assume that K is a metrizable compact. Pick f € AY¢(H)+ A“(H), such that
f=g+h,gec A*(H), h € A*»(H). According to second part of LEMMA 1.28 there
exists an decreasing sequence h,, € A(H),h, > h, h = limh,. So g+ h, € A®(H)
and g + h, \, g + h, therefore g + h € A'(H). Since A (H) + A“(H) C A'(H), we
see that the equality A(H) = A (H) holds. O

Theorem 2.7 (Lattice Theorem). The following propositions are equivalent:
(i) H is a simplicial space,
(i) A**“(H) is an upper semilattice,

(iii) A“(H) + A“(H) is a Riesz space,

(iv) A(H) is a Riesz space.
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Proof. (i)==(ii). Given g1,g, € A*°(H), put f := (g1 V g2)*. By LEMMA 1.10 f =
inf{g € A“*(H) : g > g1V g2 on K} and according to PROPOSITION 1.26 f € A“*('H),
further f = H(g; V ¢g2). So we can define the supremum operation Y in A"“*(H) by

91 Y go:=H(g1 V go) for every g1, g2 € A"(H).

Clearly, Y is the supremum operation in A"**°(’H) endowed by natural pointwise ordering
of functions.

(i)=(iii). The implication (i)=>(ii) has just been proved. Let Y be the supremum
operation in A"¢(’H) such that g1 Y go = H(g1 V g2) for every g1, g2 € A***(H). Pick
[ e A (H) + A“(H), f € A¥(H), fo» € A(H), f = fi + f2. Define

f@=H(f").
The equalities
H((fi+ f)7) =H((=f)V 2+ fi) = (=f) Y 2+ fr
follow that f® € A"(H) + A“*“(H). We see that
fE=H(T) =)= 1" (2.1)

On the other hand, if f' € A¥(H)+A“(H), ' = fi+ f5, [1 € A*(H), f} € A“(H),
f'= 7, then
=R+ f= )+ ()" =H(f1) + H(f2) = H(f).
S0
f=H(f). (2:2)

Where we have taken into the account LEMmA 1.26. H(f') > H(f") = f9 follow
fr=re.

Since A'*¢(H) + A“*¢(H) is a vector space, we can define the supremum operation

Y in A%¢(H) + A““(H) (which coincides with the supremum operation in A“¢(H), so
it is reasonable to denote both by the same symbol Y) by

fYg:=(f—9)®+gforevery f g€ A(H) + A“(H)
and the infimum operation by
fAg:=—(=f)Y (=g) for every f,g € A®(H) + A“(H).

(i)=(iv). We have proved (i)=-(iii). Let Y be the supremum operation in
AB(H) + A%¢(H) such that f& = H(fT) for any f € A¥(H) + A“<(H). Denote
Z:={fe A(H): H(f") € A(H)}. We see that A"**(H)+ A“(H) C Z. Using Levi’s
theorem we obtain that A(H) C Z, so A(H) = Z. Therefore, we can define

f® :=H(f") for every f € A(H)

(the definition of f® is correct, since it coincides with positive part in the lattice
Ab¢(H) + A*<(H)). Using Levi’s theorem follows from the (2.1) that f® > f* for
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every f € A(H). For the reverse inequality, pick f' € A(H), f' > f* and again using
Levi’s theorem to (2.2) we obtain that

f'=H(f") and H(f) = H(f") = f.

Since A(H) is a vector space, we can define the lattice operations in it again by f Y g :=
(f—9)®+g forevery f,g € A(H) and the infimum operation by f A g := —(—f) Y (—g)
for every f,g € A(H).

(ii)=(i). Let A“**(H) be an upper semilattice with the supremum operation Y.
According to PROPOSITION 1.27 it suffices to show that for any k£ € K°(H) is k* €
A¥¢(H). Let k € K°(H). The COROLLARY 1.13 implies that there exists a decreasing

net we in W(H), wa = hga) VeV hgzo(lzv): hga), . ..,hgzo(lzv) € H so that w, > k and
k = inf Weq,- Put Vo = hga) Y oY h(a) Vg € Ausc(H)

We want to show that k* = in?(zii. Inded, the inequality £* < infwv, is obvious.
For the converse inequality, pick an arbitrary h € H, h > f on K and x € K. Since
k = inf w,, there exists wq, so that k(z) < wa, < h(z). Put B = h{® v - v h,(fzt)lo).
So k < h on K and h/(x) < h(z). Taking the infimum over all h > k on K, h € H we
obtain that f* > inf v,,.

(iii)=>(i). Let A"“(H) + A“**(H) be a lattice with the supremum operation Y.
For an arbitrary l1,...,[, from Hputl =10, Y ...Y [, Observe that h >1[;V---VlI,
if and only if A > [ for any h € H. Taking the infimum we obtain (I; V ---V [,,)* = [*.
Now we appeal to the Mokobodzki’s THEOREM 1.21, so the following inequalities hold

for an arbitrary maximal measure p with barycenter x € K:

Wz) = pl) < p() = p((LV---VI)") = pl V- Vi) < pll) = U(z) (2.3)

Therefore
p(ly Vo VL) =LY Y A,

If v is another maximal measure with barycenter x € K, then p(ly V---V1,) =
v(ly V-~V 1,). Similarly for A, or using the identities (—f) Y (—g) = —(f A g),
respectively (—f)V (—g) = —(f Ag). According to the Stone-Weierstrass theorem the
set W(H) — W(H) is dense in C(K), so u = v and, by definition, H is a simplicial
space.

(iv)==(i). The proof of this implication is almost the same as the proof of the
preceding implication (iii)==(i). Just realize that the barycenter formula also holds
for functions from A(H), see PROPOSITION 2.6 (cf. (2.3)).

U

The proof of the preceding THEOREM 2.7 shows the following observation:

Observation 2.8. If H is a simplicial function space, then A®(H) + A“(H) is a
sublattice of the Riesz space A(H).

In what follows, if H is a simplicial space, then we denote by Y the supremum
operation in A(H), by f® the positive part of function f € A(H), more precisely
f@:=fYO0forany f € A(H). The meaning of notation f© should be clear.
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Theorem 2.9. If ‘H is a simplicial space, then A(H) is a M-space and the norm
closure A(H) of A*(H) + A*“(H) is an sub-M-space of A(H).

Proof. By THEOREM 2.7, A(H) is a Riesz space and the definition of A(H) implies
that A(H) is a o-complete Riesz space.Moreover A(H) is a Banach space in supremum
norm. Indeed, if [, is a Cauchy sequence in A(H) with uniform limit [ in B°(K), then
uniform convergence implies that [ is a H-affine. For every n > 1 there exists ng(n) > 1,
such that [|f — L[| <1/n for all i > ng(n). Since f = inf,, sup;s,, @ li, then

f('r) = 5z(f) = 1%f 5:1: (Supizno(n) lz) .
In A(H), o-distributivity laws hold, so using LEMMA 1.29 we obtain the equality

(51 (supiZno(n) lz) = Yizno(n) ll(ﬂf)

The argument of o-completness gives that Y;>p,m)l; € A(H) and, of course, f € A(H).
Now we verify that A(H) is a Banach lattice. Let [,I’ € A(H),|l| < |I'|. Using the
equality |l| =Y —[ we obtain that

L—l<ly—l<UYy-U<||ll,

thus [[1] < |[1].

We check that || .|| is an M-norm. Indeed, fix l;,ls € A(H), (1, ls nonnegative. The
inequality 0 < I3,1ly < Iy Y Iy implies that ||l1|| V ||l2]] < ||l1 Y I3||. Therefore l;,ly <
L] V|]i2]] € A(H), and thus Iy Y Iy < ||l1]| V|]i2]]. We see that ||13 Y Io]| < |[i1]] V [|l2]]-

It remains to prove the last part of the proposition. A*¢(H)+ A*¢(H) C A(H) im-
plies that A(H) is a Banach subspace of A(H). Since A"“°(H)+.A"(H) is a sublattice
of A(H), then A(H) is a Banach sublattice of A(H). Finally, A(H) is an M-space,
then of course A(H) is an M-space. O
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Chapter 3

Spectral measures

Let me start with roughly speaking to give an intuition for a better understanding of
this chapter. In what follows, assume for a reasons of simplicity, that H is a Bauer
simplicial space on K. We have an Dirichlet operator H which assigns to each con-
tinuous function f on K the abstract solution of the Dirichlet problem - a uniquely
determined continuous H-affine function on K. It is known that the abstract solution
depends only on the values of f on the Choquet boundary of H.

Now concentrate to a deformation of a fixed boundary condition f by an arbitrary
continuous function ¢ on R. Quite precisely, consider a mapping I;(¢) = Hyor to the
set A°(H) of all continuous H-affine functions on K. Natural task is to extend Iy to a
larger system of real functions which contains at least characteristic functions of an left
unbounded intervals. This is motivated by spectral theory, in particular by spectral
partitions of H-affine functions.

One of them is the system B°(R) of all bounded Borel functions on R. We can
obtain this system enclosing the set of continuous bounded (or with compact support)
to bounded pointwise monotonne limits. So we can guess that the range of Iy extended
to B°(R) should be at least some vector space E closed under bounded pointwise
monotonne limits which contains A°(H). A chance of extending I, strongly depends
on an additional structure of E. U. Krause in [9] extend I; with range A(X). It is
a smallest possible range in the sense above. We generalize it to the function spaces.
The following theorems are based on Krause idea.

Note that another spectral theory was studied by Rogalski [14].

In this chapter H is a simplical space. For an arbitrary f € A(H) define the
mapping I;() = H(p o f), ¢ € B'(R).

Theorem 3.1. The following assertions hold:
(a) If f' € A%(H) + A"(H), then 1(C(R)) C A(H).

(b) If f € A(H), then I;(C(R)) C A(H) and Lr(v1 V @2) = Lr(p1) Y If(p2) for any
¢1, 02 € C(R).

Proof. (a) Denote B = {r e R: |r| <||f'||} and by A°(B) the set of all continuous
affine functions on B and by W(B) = {o1 V- Vs :@; € AY(B)}. If p € A%B),
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then clearly

6((p1 V- Vep)of)=0.((prof)V---V(onof)) = (prof ) (@)Y Y (pnof)(z)

for any maximal measure J, with barycenter x € K or, equivalently, Ip,(W(B)) €
ABC(H) + A*¢(H). According to the Stone-Weierstrass theorem W(B) — W(B) is
dense in C(B), so I;(¢) € A(H) for any ¢ € C(B).

(b) Levi’s theorem and the definition of A(H) show that I;(C(R)) C A(H). From
(a) we know that the equality

L (1 V pa) = Ip(1) Y Ip(02)

holds whenever ¢y, 9o € W(B). Furthermore,

Ii(p7) = Tr(e1 V) = T(wa) = Tp(1) Y LIp(02) = I(2) =I5 (pa)®

where ¢, is a difference of two functions ¢y, ¢2 € W(B). If now ¢ € C(B), then for any
e > 0 there exists ¢z € W(B) —W(B) such that g3 —e < f < ¢4+ on B. Therefore

(") < T(pg) =Tp(ea)® +e <Tplp + )% +2 <Tp(9)® + 2.
So Ir(p™) <I¢(¢)®. The reverse inequality is obvious and the proof is finished. O
Corollary 3.2. If 'H is a Bauer simplicial space, then we have:
(a’) If f' € A°(H), then 1;(C(R)) C A°(H).

Remark 3.3. In the part (b) of the preceding THEOREM 3.1 we could replace uniform
convergence by a bounded pointwise monotonne convergence and obtain without using
a Banach space structure of A(H) the following:

(b)) If f € A(H), then I;(B(R)) C A(H) and I;(p1 V ¢2) = 1;(¢1) ¥ I;(p2) for any
1,2 € B'(R).

Natural question arises if any mapping I : C(R) — A(H) can be represented by I;
for some f € A(H). The following definition specifies assumptions on I.
Let yx denotes the characteristic function of an arbitrary set X.

Spectral A(H)-integral. A mapping I: C(R) — A(H) is said to be

(N) nonnegative if 1(¢) > 0 for any ¢ > 0,

)
(P) probability if I(xr) = Xk,
(PI) probability A(H)-integral if it is nonnegative, probability and linear on C(R).
)

(SI) spectral A(H)-integral if it is probability A(H)-integral and further:

(g1 V ¢2) = 1(p1) Y I(pa), for any o1, g2 € C(R).
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In the sequel we will consider only a probability integrals, so we will write shortly an
integral instead of a probability integral.

Remark 3.4. The first part of the assertion (b) from THEOREM 3.1 says that the
mapping my defined by m(B) := H(xp o f) for an arbitrary Borel subset B of K is a
Banach space valued measure, since A(H) is a Banach space. One can prove Lebesgue’s
type theorem for an integral with respect to the measure m; and since A(H) is also
o-complete Riesz space it follows Levi’s type theorem for such Banach space valued
measure; with bounded pointwise monotonne limit of a sequence as integrable majorant
of this sequence. For more details see [5]. According this it is not entirely obvious
fact applied to an A(H)-integral I we can extend it to an extended .A(H)-integral
1: B*(R) — A(H) which fulfils Levi (Lebesgue) type theorem.

This not obvious facts are used in the proof of the EXTENSION LEMMA 3.5 applied
to the A(H)-integral I, respectively spectral A (H)-integral.

Lemma 3.5 (Extension Lemma). If I is an estended spectral A(H)-integral, then

T(@l V ) :T(%) YT(%), for any ¢1, ps € B'(R).

Proof. Denote by Z = {¢ € B'(R) : I(¢*) = I(¢)®}. By the definition C,(R) C Z.
We show that Z is closed under bounded monotonne pointwise limits. Let {¢,} be an
upper bounded increasing sequence, ¢ = sup ¢,. Observe that ¢ = sup ¢,/ and using
Levi’s theorem for spectral A(H)-integral, (see REMMARK 3.4) we obtain equalities:

I[(¢") = supI(yp;) = sup(I(¢,)®) = sup H(I(¢,)") =

= H(sup(I(¢n))") = H((supI(n)) ") = H{I(¢) ") = I(¢)?,

thus ¢ € Z and, similarily, for lower bounded decreasing sequences. We see that
Z = B*(R) and the proof is finished. O

Partition and spectral class. The family {l)} er C A(H) is called a partition of

A(H), if the following conditions hold:
P1) 0 <y <1,

l)\ < l)\/, for A < )\,,

(
(P2
(

-5

)
)
3) Lyv =sup,.y lx (pointwise),

(P4) limy 400 by = 1, limy o Iy = 0 (pointwise).

A partition {ly}rer of A(H) is called a spectral partition of A(H) if, moreover, the
following condition holds:

(SP) I\ Y (1 —=1y) =1, for every A € R.
Let I be an A(H)-integral. For A € R define the function I} := I(x(—o0, \)) from
A(H).
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Theorem 3.6. The following assertions hold:

(a) If 1 is an A(H)-integral, then the family of functions {1} }er is the partition of
A(H) corresponding to 1.

(b) If {ix}xer is a partition of A(H), then there exists a unique A(H)-integral 1, such
that Iy =1} for every A € R and

I(p)(z) = / p(WI(2)dA, o € B'(R).

Proof. (a) Probability condition (P) and nonnegativity condition (N) implies (P1) and
(P2). Levi’s theorem shows that (P3) and (P4) are fulfilled.

(b) For z € K, define the function g,(\) := [\(z). (P3) implies that g, is monotonne
and continous from the left, thus the integral [, ¢(X)g.(A)dX exists for every ¢ € C.(R).
So we are able to define the function I, : v — [ g,,x € K, for every ¢ € C.(R). One
can prove similiarly as in LEMMA 3.5 that [, € A(H). Now define the mapping
I(¢)(z) = [ ¢ gs. Observe that I is an A(H)-integral and I = [, A € R. O

Denote by B(T') the family of all Borel subsets of an arbitrary topological space T'.

Proposition 3.7. If I is an A(H)-integral, then 1 is a spectral A(H)-integral if and
only the partition of A(H) corresponding to 1 is a spectral partion.

Proof. If 1 is a spectral A(H)-integral, then {I}} is a spectral partition according to
the THEOREM 3.5.

On the other hand, let {l,} be a spectral partition. According to the PROPOSI-
TION 3.6 there exists a unique A(H)-integral I, such that [y = [}, for every A € R.
Denote by Ip = I(xp) for an arbitrary D € B(R). Further denote

D={DeBR):lpY (1—1Ip)=1}.

D is a Dynkin system, that is, a family of subsets of R such that: R € D; if Dy, Dy € D
and Dy C D, then Dy \ D; € D and if D; € D,i = 1,2,...is a sequence of mutually
disjoint sets from D, then also U°; D, € D.

Indeed, given Dy,Ds € D, Dy C D, denote l; = lp, and I = lp,. We see that
LhA(1—=1)=0and ly A (1 —=13) =0, therefore (1 —1I3) A (I =) =0,801—1; =
(]_ — lg) Y (lg — ll) and (1 — lg) A ll =0also1— (lg — ll) = (]_ — lg) Y ll. This 1mp11es
that

I=(l—=hL)Y (=) =0=L)YLY(l=0L)=LY(1-0§L)=1.

We see that the set theoretic difference of sets D, and D, is from D. Now pick D; €
D,i = 1,2,... a sequence of mutually disjoint sets and denote D = U, D,. The
inequalities (1 —Ip) Alp, < (1 —1Ip,) Alp,,i =1,...,k yield that

(1—1Ip) A <Zn: lDz.) < Zn:(l —Ip) Alp, = 0.
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Since D; are pairwise disjoint we have that Z?:l lp, = ZU?:lD and then [p = sup,, Z?:l Ip..

7

This implies that Ip A (1—Ip) =0, so D € D. We have just verified that D is a Dynkin
system, hence D = B(R).
If Dy and Dy are two disjoint Borel sets, then

0<Ip, Ylp, <lg\p, YIp,=(1—=1Ip,) YIp, =0.

If Dy and D, are arbitrary Borel sets, then for disjoint sets D; \ (D; N Dy) and Dy \
(D1 N Dy) the following equalities hold

(lDl - ZD10D2) Y (lD2 - ZD10D2) =0,
lD1ﬂD2 = lD1 A lD27

lDIUDQ = lD1 + lD2 - leDz = lDl Y lD2'

Now let ¢ € B(R) be a simple function(thus is a function with finitely many values
a; € Ryi=1,2,...,n) or, equivalently, ¢ = > a;xp,, where D; =r € R: ¢(r) = a;).
We see that the equality o™ = >, af xp, holds and then the equality I(p) = >, aflp,
follows. Since D; are pairwise disjoint sets, then according to the previous part of the
proof we obtain that

(Z; a'ilDi>€B = Z;(ailm)@ = Z; ailp,.

Therefore I(¢") = I(¢)®. Now, appeal to the know fact that the set of all simple
functions is dense in the set BY(R). This shows that I(¢*) = I(p)® for an arbitrary
function ¢ € B°(R) which concludes the proof. O

Denote by Id the identity function on R.

Expectation of A(H)-integral. Let [ be an A(H)-integral. According to LEMMA 3.5,
we can define an ezpectation ey of A(H)-integral I by er(x) = I(Id)(x) if it exists. We
see that then in this case e; € A(H).

Lemma 3.8. If I is a spectral A(H)-integral for which the expectation ey exists, then
I(X(=00,n)) = sup, (n(A —er)®) A 1) for all X € R.

Proof. Pick A\ € R and put p(A) = A\g — A. LEMMA 3.5 implies that the expecation e;
of T exists and e; = I(Id) € A(H), also I(¢T) = I(p)® = (A\g — e1)®. Further from the
same LEMMA we obtain that

(np*) V1) = (n(h — Id)°) & L,
L(sup((n %) V 1)) = sup(n(do = e1)*) 4 L.

n

Observe that the following equality sup,,(n(Ao —Id)*) A1 = x (o, finishes the proof.
U
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Theorem 3.9. The following assertions hold:

(a) If1is a spectral A(H)-integral, then the family of functions {1} } acr is the spectral
partition of A(H) corresponding to 1.

(b) If {lx}rer is a spectral partition of A(H), then there exists a unique spectral
A(H)-integral 1 such that 1, = 1}, for every A € R. and

I(p)(z) = / p(WI(2)dA, o € B'(R).

Proof. (a) It is just an application of the condition (SI) from the definition of a spectral
integral used to the charecteristic function of an arbitrary left unbounded interval.
(b) If {l)} er is a spectral partition of A(H), then according to the THEOREM 3.6
there exists a unique A(H)-integral I, such that [y = [} for every A € R. Now the
conlusion immediatly follows from the PROPOSITION 3.7
O

Theorem 3.10. The following assertions hold:
(a) If f € A(H), then the mapping 1y is the spectral A(H)-integral with expectation f.

(b) If T is a spectral A(H)-integral for which expectation exists, then there exists
unique f € A(H) such that I = I;.

Proof. (a) It is just the part (b) of THEOREM 3.1.
(b) Since expectation exists, we can put f = I(Id) and by the definition we obtain
that I =1I;. Uniqueness follows from LEMMA 3.8. O

Theorem 3.11 (Spectral theorem). For any f € A(H) there exists a uniquely
determined spectral partition {l\} er such that f = [p Nx(x)dA.

Proof. According to THEOREMS 3.9 and 3.10 for any f € A(H) there exists a unique
spectral A(H)-integral Iy with expectation f such that

f=1(1d) = /RMI;dA.

30



Chapter 4

Open problems

Notice that this chapter is more intuitive than formal from the mathematical point of
view. It contains collection of open problems and rough strategy how try to overcome
them.

4.1 Abstract integration

One can interpret a measure as (in some sense) an additive set function or by another
name as an integral. In term of applications it seems demand o-additivity instead of
additivity and request for fulfilment of so-called Daniell condition for integral. In what
follows we compare two relatively different approaches: a norm one and a lattice one.
For reasons of simplicity, (X, S) is a measurable space.

Order measures. Let (), Y) be a o-complete Riesz space with unit e. Set function
1S — @ is said to be

(a) nonnegative if uE > 0 for any E € S,

(b) order o-additive if p(3 .o, E;) = (0)- Y .oy pE; for an arbitrary sequence of
mutually disjoint sets E; from S,

(c) order measure if it is order o-additive and ul) = 0,

(d) probability measure if it is a order measure and pX = e,

(e) spectral measure if it is probability measure and u( EyUFEy) = pEyY Es, for any Ey, By €

S.
Banach space valued measures. Let (B,||.||) be a Banach space. A set function
w:S — @ is said to be

(g) norm o-additive if p(3 .2, E;) = >, puE;, for an arbitrary sequence of mutually
disjoint sets F; from S,

(h) Banach space valued measure or shortly Banach measure, if it is norm o-additive
and uf = 0.
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A notion of an integral is usually associated with addition respect to some measure.
For order measures as well as for Banach space valued measures one can thanks to
a linearity define an integral for functions with finitely many values( so-called step
function). A next step of extending to larger family of functions is markedly different.

Note that an extension of integrals depends also on a range of functions which
we would like to integrate. In general tasks it can happens that both measure and
function are valued in a different vector spaces. This case is developed in Dinculeanu [5,
1966] or a little bit brieflier in newer [6, 2000| or see also |7, 2002] both by the same
author. For our purposes it suffices to deal with integration of real functions. Now we
roughly outline constructions and main differences between lattice extending and norm
extending.

Integrals on lattices. In the case of order measure the set of all step functions
is Riesz space in a natural pointwise ordering. We would like to apply the Daniell
extension method, but some technical problem occurs since we do not have an e-
technique as in the real case where we use well-known fact: if s is a supremum of an
arbitrary bounded set M of real numbers, then for any € > 0 there exists an element
s’ in M such that s > s’ > s —e. In general we are forced to assume that @ fulfils
additional conditions. In Cristescu [4, 1976] it is (0)-countabilty and o-regularity. In
Riecan [13, 1997] it is condition of weak o-distributivity. Significant is that for an
integral defined in above mentioned papers Levi’s theorem holds.

Banach space valued integration. If Banach measure m has a finite variation p,
then one can complete the set of all step functions in an integtral norm [ ||.||du and
obtain a larger class of m-integrable functions. Give a notice that we have no Levi’s
theorem even if we consider real functions ordered in a natural pointwise ordering.
Instead of Levi’s theorem one can prove Lebesgue dominated convergence theorem.

Note that from the standpoint of theory one can interpret spectral measure as a lat-
tice homomorphism. In this connection cite the Kantorovich extension theorem based
on Hahn—Banach type theorem in the context of Riesz spaces, see Meyer-Nieberg [11,
1991].

Situation is more complicated when a topology comes into effect, that is, if we put
(X,S) := (T, B(T)), where T is a locally compact space. An natural question arises if
extending the set of all bounded continous functions we obtain the set of all bounded
Borel functions BY(T'). According to Cristescu [4, 1976] answer should be yes, but only
for T" metrizable and his way of extending fails for continous functions with compact
support C.(T), since C.(T)is not a majorizing subspace of B*(T). Another situation
is discussed in the paper [8, 1976] by Khurana, where is inferred a different extension
theorem from C¢(T) to the set of all Borel functions with compact support. He used
nets, duals, biduals, weak topology. For T' compact, this result is proved in [17, 1972]
by an entirely different method.

This section was only introduction to the abstract theory of integration. Applica-
tions of preceding metods to solving open problems in function space theory will be
studied in the following section Function spaces.
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4.2 Function spaces

In what follows, we deal with three type of problems: problems about bilateral rela-
tionship of special families of H-affine functions, problems about structure of special
families of H-affine functions and problems about extending special H-affine functions.

Further families of H-affine functions. Let X be an arbitrary Hausdorff topolog-
ical space. Denote by B,(X) the set of all Baire functions of the class a and by BZ'(X)
a similiarly defined set of functions as B,(X), which is generated only by bounded
pointwise monotonne limits. B(X) denotes the set of all Baire functions on X. The
notation of B™(X) should be clear. Further, put AB(H) = A°(H)NB(K), respectively
AB,(H) = A*(H) N B,(K). Denote by A,(H) the a-th class generated by bounded
pointwise limits of sequence from A°(H). The meaning of notation A7 (H) should be
also obvious.

A(H) and U(H). We have showed that A'*(H) + A“(H) C U(H) (LEMMA 2.6).
It is not clear if A(H) C U(H). Of course, it suffices to show that the set U(H) is
closed under bounded monotonne pointwise limits and this is strongly connected with
a limit behavior of the equality of strong envelopes f, = f°. Is it possible interpret
strong envelopes as upper and lower lattice integrals? Closedness of U(H) is just Levi’s
theorem for lattice integrals. In this connection point out that A“¢(H), A*¢(H) are
only semilattices and A°(H) need not to be lattice even for H simplicial. Without
assumption of simpliciality we have only some possibilities make use of upward or
downward filterability. It will be ideal to prove that for any x € K and f universally
measurable function there exists H-representing measure p, such that f°(z) = u.(f).

The next open problem is whether as matter of the fact U(H) is a lattice or not.
This question is answered only in the convex case by Teleman in [16] with the help
of Choquet topologies. We think it is possible to show that U(H) is a lattice without
facial topologies. Why? We have proved that A(H) is lattice, respective A'(H) (cf.
PROPOSITION 2.6 (¢) and THEOREM 2.7 (iv) ) according Alfsen’s ideas from the convex
case. Alfsen has subsequently proved an extension type theorem for the family A’(X).
A Teleman’s procedure was reversed to Alfsen’s one. Teleman inferred at first an
extension type theorem for the fxamily U (X) and then he showed that U(X) is a
lattice. The difficulty is that in a nonmetrizable case the set ext X of extreme points
of X need not to be Borel measurable and maximal measures need not be carried by
ext X. The primary topology on K is too insensitive to the set ext X. So this is the
reason why we should consider another topology, in Teleman’s extension theorem from
ext X is natural Choquet topology. On the other hand, it suffices to show that for H
simplicial the following equality f° = Hy holds for any universally measurable function
f. Naturally, we can define a supremum operation in U (H) by formula fY g = H(fVg)
similiary as for A(H), moreover A(H) would by sublattice of U(H), cf. THEOREM 2.7.

A(H) and AB(H). The next open problem is if the family A(H) coincides with the
family AB(H). It is obvious that A(H) C AB(H). In a metrizable simplicial case
should also the reverse inclusion hold with the aid of simplicial verision of the Alfsen’s
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THEOREM 2.2. It should be any problem with a generalization, since all assertions used
in Alfsen’s proof hold in the function space setting. Therefore, for any f € AB(H)
is ficn, x € B?(Chy K) and thanks to Alfsen’s theorem mentioned above we obtain
H(ficn, k) € A'(H). As open problem remains also extension type theorems for A(H).

A more delicate problem if A, (H) = AB,(H) requires more finer approach. In what
follows we aim at the simpler metrizable simplicial case. One can interpert a mapping
H:C(K) — A(H) as alattice integral. It is known that H(B;(K)) = A;(H). According
the Khuran THEOREM, see [8] we should obtain (o0)-continuity of H. It suffices to
think better of differences between monotonne o-continuity and (o)-continuity. So we
conclude that H(B,(K)) = AB,(H) and furthemore H(B?(K)) = A”(H).

A problem if H(B,(Chy K)) = A.(H), respectively H(B?(Chy K)) = AT (H) is
widely complicated, since a Choquet boundary is in general a GGs set and we can not
apply Khuran’s theorem. Nevertheless an extension theorem for lattice integrals should
be sufficient, but we have to check if A(H) is a weakly o-distributive lattice. It should be
not so surprising, since B°(Chy K) is a weakly o-distributive lattice in natural pointwise
ordering. An idea how to verify that A(H) is also weakly o-distributive lattice is try
to transfer this condition from B°(Chy K) to A(H) with the lattice integral H. Recall
important dependence H(f) Y H(g) = H(f V g), f,9 € A(H).

4.3 Spectral theory

In this section we sketch another aspect to the interplay between Choquet theory of
function spaces and general spectral theory as introduced in the Chapter 3. In what
follows, we assume that H is a simplicial function space. Krause strategy of inference
of spectral theory for A(H) is very similiar to the spectral theory for lattices mixed to
the context of function spaces. It would seem that function calculus for lattice A(H)
for ‘H simplicial is just the special case of a spectral theory for a o-complete Riesz
space with unit, but Krause do not use more general theorems. Even, in Chapter 7 of
[9] he stated a function calculus for lattices and C*- algebras as an application by him
developed function calculus for A(H).

Turn for a while to a connection between the special algebras and Riesz spaces.
On Riesz spaces we have function calculus, so we can define the product by formula
a.b = %[(a+b)*—(a—b)?. On the other hand, on special algebras we have also function
calculus, so we can define the supremum operation by a Y b = 1{a+ b+ /(a — b)?]. It
appears that both function calculuses are in some sense isomorphic. Since A(H) is a
Riesz space, A(H) should be Banach algebra. The lattice structure on A(H) is more
natural then algebra one. Conspicious question arises, if for above defined product on
A(H) the equality f.g = H(f.g) holds for any f, g in A(H).

Draw to a close, let us mention a connection with representation theorems. Each
Banach algebra can be represented using Gelfand’s transformation as a Banach algebra
of all continous functions on a some compact space. Further, each M-space can be
represented according to Kakutani’s theorem as an M-space of all continous functions
on another compact. It appears as though that the function calculus for A(H) is a
connecting link between all mentioned calculuses.

As the last note we refer to Krause’s observation in [9, p. 285] where he outlines
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a new possible proof of the Choquet representation theorem, cf. 1.23. He asserts that
the Choquet representation theorem is just a reformulation of the spectral theorem for
A(H), cf.3.10, (a). A roughly idea is at first apply a general spectral theory for lattices
to the lattice A(H) and obtain spectral theorem for A(H). As was mentioned, spectral
theorem for A(H) is just a reformulation of the Choquet representation theorem.
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Notation Denotes
xVy,r1 V...V x, supremum of elements x,y; z1,..., 2,
r ANy, 1 N ... A\ x, infimum of elements z,y; x1,...,x,
Vo 1 Tp, supremum of sequence x,,, if it exists x
(0)- limx,, order limit of sequence {z,},n=1,2,..

(0)- 21" n

x Ly, At
[P]

order sum of sequence {z,},n=1,2,..

order sum of {z,},n € Z

absolute value of element x

positive (negative) part of element z

orthogonal elements z,y; orthogonal complement of set A
projector defined by P

(0)- [ ©(N)dg(X) order integral
C

(K)
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IEm=ST
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TeET2TI
=
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IS
»
o
N

o

o
»
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==

Jou f°
UH)

Y, A
Y;L.Ozlfna YnZnofn
[, f°
XX

continuous functions on K

function space on Hausdorff compact space K
functions, harmonic on U and continuous on U
continuous affine functions on X

probability Radon measures on K
nonnegative Radon measures on K
‘H-representating measures with barycenter x
lower envelope of f, upper envelope of f
Borel bounded H-affine functions

continuous H-affine functions

Ls.c (u.s.c) H-affine functions

H-convex (H-concave) functions

L.s.c (u.s.c) H-convex functions

l.s.c (u.s.c) H-concave functions

'wedge’ functions from H

Choquet boundary of function space H

Dirac measure in point x

maximal measure with barycenter x
Choquet’s ordering of measures p,v

Dirichlet operator

set of extreme points of X

Krause’s and Alfsen’s special families
Teleman’s family of special affine functions
special families of H-affine functions
supremum norm closure of A(H)

strong lower envelope of f, strong upper envelope of f
‘H-strongly universally measurable functions
supremum (infimum) operation in A(H)
supremum of sequence f,, from A(H)

positive (negative) part of function f in A(H)
characteristic function of set X

See page
6, 10!
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'"From the Section Choquet theory of function spaces to the end of this paper V denotes the
supremum operation in the set of real functions on K in its natural pointwise ordering.
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identity function on R

expectation of A(H)-integral I

family of all Borel subsets of topological space T’
Baire functions on X

functions Baire class «

monotonne class «

special families of H-affine functions

special families of H-affine functions

‘H-affine bounded Borel functions on K
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