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I. SUMMARY
Background and Aims: Dietary intervention is one of the key components in type 2
diabetes (T2D) management . Vegetarian diet is a promising alternative in the
nutritional treatment of T2D. The aims of our study were:
1. To compare the effects of vegetarian and conven tional diabetic diet with the same
caloric restriction on insulin resistance, volume of visceral fat and plasma
concentrations of oxidative stress markers after a 12-weeks-diet-intervention and
subsequent 12-weeks of diet plus aerobic exercise training in subjects with T2D.
2. To explore the effect of 12 weeks of diet intervention and subsequent 12 weeks of
diet combined with aerobic exercise training on β-cell function and to evaluate the
role of gastrointestinal peptides in subjects with T2D.
3. To study quality of life, Beck depression score and  changes in eating behaviour in
response to a vegetarian and a conventional diabetic diet.
4. To explore the role of changes in fatty acid composition of serum phospholipids in
diet-induced changes in insulin s ensitivity in subjects with T2D.
5. To follow-up our patients 1 year from the end of the intervention.
Methods: Subjects with T2D (n=74) were randomly assigned to experimental group
(EG, n=37) following vegetarian diet or control group (CG, n=37) following
conventional diabetic diet with the same caloric restriction. Participants were
examined at baseline, 12 weeks of diet intervention and 24 weeks (second 12 weeks
of diet were combined with aerobic exercise). Insulin sensitivity was measured by
hyperinsulinemic isoglycemic clamp. Visceral and subcutaneous fat w ere measured
by magnetic resonance imaging. β-cell function was assessed during standard meal
tests and quantified with a mathematical model. Quality of life was assessed using 2
questionnaires: Weight-Loss Quality-of-Life (OWLQOL) and Weight -Related
Symptoms (WRSM). We used the Three -Factor Eating Questionnaire to monitor
changes in eating behaviour and the Beck Depression Inventory to screen for
depressive symptoms. The fatty acid composition of serum phospholipids was
measured by gas liquid chromatography.
Results: 43% of EG and 5% of CG partici pants reduced diabetes medication. Body
weight decreased by 6.2±5.8 kg in EG and by 3.2±4.5 kg in CG (interaction group x
time p=0.001). Insulin sensitivity increased more in EG (by 30% vs. 20% in CG,
interaction group x time p=0.04). Visceral and subcutan eous fat decreased more in
EG (interaction group x time p=0.007 and p=0.02, respectively). Plasma adiponectin
increased in EG (p=0.02); leptin decreased in EG (p=0.02). Vitamin C, superoxide
dismutase and reduced glutathione increased in EG (p=0.002, p<0.0 01 and p=0.02,
respectively). Difference between groups enlarged after exercise. Changes in insulin
sensitivity and enzymatic oxidative stress markers correlated with changes in visceral
fat.
Both insulin secretion at the reference level and glucose sensi tivity increased in weeks
0-12 (by 33±54% and by 26±53%, respectively, p<0.001) and remained unchanged in
weeks 12-24. Plasma concentrations of pancreatic polypeptide (PP) decreased in
weeks 0-12 (p<0.05) and did not change significantly in weeks 12 -24. Changes in
parameters of β-cell function correlated negatively with plasma concentrations of PP.
Both diets elicited a positive effect on the quality of life , mood and eating behaviour,
however the positive effects of a vegetarian diet were greater.
Linoleic acid (18:2n6) increased in EG (p=0.04) while it decreased in CG (p=0.04) in
response to dietary interventions. In EG, changes in 18:2n6 correlated positively with
changes in MCR (r=+0.22; p=0.04) and negatively with cha nges in visceral fat (r=-
0.43; p=0.01).
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Neither weight nor waist circumference changed significantly in either group. HbA1c
increased (p≤0.05) similarly in both groups.
Conclusions: Insulin sensitivity increased more with vegetarian diet. Vegetarian diet
led to a greater reduction in visceral fat and greater improvement in plasma
concentrations of adipokines and oxidative stress markers. Differences between
groups enlarged after addition of exercise. After diet -induced weight loss, β-cell
function improved in T2D subjects and remained unchanged after the addition of
exercise. We demonstrate for the first time that these changes are associa ted with a
decrease in PP secretion. Both diets elicited a positive effect on the quality of life ,
mood and eating behaviour, however the p ositive effects of a vegetarian diet were
greater. We demonstrated that the insulin -sensitizing effect of vegetarian diet might
be related to the increased proportion of 18:2n6 in serum phospholipids. 1 year after
the end of the intervention, the positive effects of a vegetarian diet compared to a
conventional diet were partially maintained.
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SOUHRN

Úvod a cíle: Dietní intervence je pilířem léčby diabetu 2. typu (T2D). Vegetariánská
strava je zajímavou alternativou.
Cíle naší studie byly  následující:
1. Porovnat účinky vegetariánské a konvenční diabetické diety se srovnatelnou
kalorickou restrikcí na inzulínovou rezistenci, objem viscerálního tuku a plazmatické
koncentrace markerů oxidačního stresu po 12 -týdenní dietní intervenci a dalších 12
týdnech diety plus fyzické aktivity u pacientů s T2D.
2. Zkoumat účinek 12-týdenní dietní intervence a dalších 12 týdnů diety plus fyzické
aktivity na funkci β-buněk a vyhodnotit potenciální roli gastrointestinálních peptidů u
pacientů s T2D.
3. Porovnat účinek vegetariánské a konvenční diabetické diety na kvalitu života,
Beckovo skóre deprese a jídelní chování u pacientů s T2D.
4. Zkoumat roli změn složení mastných kyselin v sérových fosfolipidech ve změnách
v inzulínové senzitivitě u pacientů s T2D.
5. Sledovat naše pacienty 1 rok od ukončení studie.
Metody: Pacienti s T2D (n=74) byli náhodně rozděleni do exper imentální skupiny
(ES, n=37), která konzumovala vegetariánskou stravu, a kontrolní skupiny (KS,
n=37), která dodržovala konvenční diabetickou dietu se stejnou kalorickou restrikcí.
Účastníky studie jsme vyšetřili na začátku , po 12 týdnech dietní intervence a po 24
týdnech (druhých 12 týdnů dietní intervence bylo kombinováno s aerobním
cvičením). Inzulínovou senzitivitu jsme měřili pomocí hyperinzulínového
isoglykemického clampu. Objem viscerálního a podkožního tuku byl stanoven
pomocí zobrazování magnetickou rezonancí. Funkce β-buněk byla stanovena během
standardního meal testu a kvantifikována pomocí matematického modelu. Kvalita
života byla stanovena pomocí 2 dotazníků : Weight-Loss Quality-of-Life (OWLQOL)
a Weight-Related Symptoms (WRSM). Použili jsme Třífaktorový dotazník ke zjištění
změn jídelního chování a Beckův dotazník ke zjištění depresivních příznaků. Složení
mastných kyselin v sérových fosfolipidech jsme měřili pomocí plynové kapalinové
chromatografie.
Výsledky: U 43% účastníků v ES a 5% v KS jsme snížili antidiabetika. Tělesná
hmotnost se snížila o 6,2±5,8 kg v ES a o 3,2±4,5 kg v KS (interakce skupina x čas
p=0,001). Inzulínová senzitivita se zvýšila více v ES (o 30% vs. 20% v KS, interakce
skupina x čas p=0,04). Objem viscerálního a podkožního tuku se snížil více v ES
(interakce skupina x čas p=0,007 a p=0,02). Plazmatické koncentrace adiponektinu se
zvýšily v ES (p=0,02); leptin klesl v ES (p=0,02). Vitamín C, superoxiddismutáza a
redukovaný glutathion stouply v ES (p=0,002, p<0,001 a p=0,02). Rozdíly mezi
skupinami se zvětšily během cvičebního programu . Změny v inzulínové senzitivitě a
enzymatických markerech oxidačního stresu korelovaly se změnami v objemu
viscerálního tuku.
Sekrece inzulínu při referenční glykémii a glukózová senzitivita se zvýšily v týdnech
0-12 (o 33±54% a o 26±53%, p<0,001), beze změny v týdnech 12-24. Plazmatické
koncentrace pankreatického polypeptidu (PP) klesly v týdnech 0-12 (p<0,05), beze
změny v týdnech 12-24. Změny v parametrech funkce β-buněk korelovaly negativně
se změnami v plazmatických koncentracích PP.
Obě diety měly pozitivní účinek na kvalitu života, náladu a jídelní chování , nicméně
pozitivní účinky byly větší u vegetariánské stravy.
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Kyselina linolová (18:2n6) se zvýšila v ES (p=0,04) a klesla v KS (p=0,04). V ES
korelovaly změny v 18:2n6 pozitivně se změnami v MCR (r=+0,22; p=0, 04) a
negativně se změnami ve viscerá lním tuku (r=-0,43; p=0,01).
Hmotnost i obvod pasu se 1 rok od ukončení intervence ani v jedné skupině
významně nezměnily. HbA1c stoupl (p≤0,05) srovnatelně v obou skupinách.
Závěry: Inzulínová senzitivita se zvýšila více při vegetariánské stravě . Vegetariánská
strava vedla k většímu poklesu viscerálního tuku a většímu zlepšení plazmatických
koncentrací adipokinů a markerů oxidačního stresu. Rozdíly mezi skupinami se
zvětšily během cvičebního programu . Během váhového úbytku v důsledku dietní
intervence došlo ke zlepšení funkce β-buněk. Poprvé jsme ukázali, že tyto změny jsou
spojeny s poklesem sekrece PP. Obě diety měly pozitivní účinek na kvalitu života,
náladu a jídelní chování , nicméně pozitivní účinky byly větší u vegetariánské stravy.
Ukázali jsme, že pozitivní účinky vegetariánské stravy na inzulínovou senzitivitu jsou
spojeny se zvýšeným obsahem 18:2n6 v sérových fosfolipidech. 1 rok od konce
intervence přetrvaly částečně pozitivní účinky vegetariánské stravy ve srovnání
s konvenční diabetickou dietou .
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I. PATHOPHYSIOLOGICAL MECHANISMS OF INSULIN RESISTANCE
AND Β-CELL FAILURE IN TYPE 2 DIABETES

1. Introduction

Insulin resistance and β-cell failure represent the core pathophysiologic al defects in

type 2 diabetes. It has been recognized that the β-cell failure occurs much earlier and

is more severe than previously thought. Subjects in the upper tertile of impaired

glucose tolerance (IGT) are maxima lly insulin resistant and have lost over 80% of

their β-cell function. In addition to the muscle, liver, and β-cell, the fat cell

(accelerated lipolysis), gastrointestinal tract (incretin deficiency or resistance), β-cell

(hyperglucagonemia), kidney (increased glucose reabsorption), and brain (insulin

resistance) all play important roles in the development of glucose intolerance in

subjects with type 2 diabetes (1). Collectively, these eight players comprise the

ominous octet (2) (Fig. 1) and indicate that therapy must be started early to prevent or

slow the progressive β-cell failure that already is well established in IGT subjects. A

treatment paradigm shift is recommended in which combination therapy is initiated

with lifestyle intervention (diet and exercise), metformin (which improves insulin

sensitivity and has antiatherogenic effects), a thiazolidinedione (which improves

insulin sensitivity, preserves β-cell function, and exerts antiatherogenic effects), and

an incretin analogue (which preserves β-cell function and promotes weight loss).

Sulfonylureas are not recommended because, after an initial improvement in glycemic

control, they are associated with a progressive rise in HbA1C and progressive loss of

β-cell function.

FIG. 1. The ominous octet. See text for a more detailed explanation (2).
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1.1. Natural history of type 2 diabetes

The natural history of type 2 diabetes has been well described in multiple populations

(3). Individuals prone to develop type 2 diabetes inherit a set of genes from their

parents that make their tissues resistant to insulin (4). In liver, the insulin resistance is

manifested by an overproduction of glucose during the basal state despite the

presence of fasting hyperinsulinemia (5) and an impaired suppression of hepatic

glucose production (HGP) in response to insulin (6), as occurs following a meal (7).

In muscle, the insulin resistance is manifest ed by impaired glucose uptake following

ingestion of a carbohydrate meal and results in postprandial hyperglycemia (7,8).

Although the origins of the insulin resistance can be traced to their genetic

background (4), the epidemic of diabetes that has developed in western countries is

related to the epidemic of obesity and physical inactivity (9). Both obesity (10) and

decreased physical activity (11) are insulin-resistant states and, when added to the

genetic burden of the insulin resistance, place a major stress on the pancreatic β-cells

to augment their secretion of insulin to offset the defect in insulin action. As long as

the β-cells are able to augment their secretion of insulin sufficiently to offset the

insulin resistance, glucose tolerance remains normal (12). However, with time the β-

cells begin to fail and initially the postprandial plasma glucose levels and

subsequently the fasting plasma glucose concentration begin to rise, leading to the

onset of overt diabetes (13). Collectively, the insulin resistance in muscle and liver

and β-cell failure, have been referred to as the triumvirate (14). The resultant

hyperglycemia and poor metabolic control may cause a further decline in insulin

sensitivity, but it is the onset and pace of progressive β-cell failure that determines the

rate of diabetes progression.

2. Insulin resistance

Both the liver and muscle are severely resistant to insulin in individuals with type 2

diabetes (3). However, when discussing insulin resistance, it is important to

distinguish what is responsible for the insulin resistance in the basal or fasting state

and what is responsible for the insulin resistance in the insulin -stimulated state.
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2.1. Insulin signal transduction

For insulin's action, it must first bind to and then activate the insulin receptor by

phosphorylating key tyrosine residues on the β chain (15,16). This results in the

translocation of insulin receptor substrate (IRS) -1 to the plasma membrane, where it

interacts with the insulin receptor and also undergoes tyrosine phosphorylation. This

leads to the activation of PI 3 -kinase and Akt, resulting in glucose transport into the

cell, activation of nitric oxide synthase with arterial vasodilation (17,18), and

stimulation of multiple intracellular metabolic processes.

It has been demonstrated that the ability of insulin to tyrosine phosphorylate IRS-1 is

severely impaired in lean type 2 diabetic individuals (16,19), in obese normal glucose

tolerant individuals (19), and in the insulin-resistant, normal glucose tolerant

offspring of two type 2 diabetic parents (20) (Fig. 2). This defect in insulin signaling

leads to decreased glucose transport, impaired release of nitric oxide with endothelial

dysfunction, and multiple defects in intramyocellular glucose metabolism. In contrast

to the severe defect in IRS-1 activation, it has been shown that the mitogen-activated

protein (MAP) kinase pathway, which can be activated by Shc, is normally responsive

to insulin (19) (Fig. 2). The MAP kinase pathway, when stimulated, leads to the

activation of a number of intracellular pathways involved in inflammation, cellular

proliferation, and atherosclerosis (21,22).

Thus, the block at the level of IRS -1 impairs glucose transport into the cell and the

resultant hyperglycemia stimulates insulin secretion. Because the MAP kinase

pathway retains its sensitivity to insulin (19,23), this causes excessive stimulation of

this pathway and activation of multiple intracellular pathways involved in

inflammation and atherogenesis. This, in part, explains the strong association between

insulin resistance and atherosclerotic cardiovascular disease in nondiabetic, as well as

in type 2 diabetic, subjects (24–26).
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FIG. 2. Relationship between impaired insulin signal transduction and accelerated atherogenesis in insulin -
resistant subjects, i.e., type 2 diabetes and obesity (16),(19).

2.2. Liver

The brain has an obligate need for glucose and is responsible for 50% of glucose

utilization under basal or fasting conditions. This glucose demand is met primarily by

glucose production by the liver and to a smaller extent the kidneys. The fasting

hepatic glucose production (HGP) in increased in patients with type 2 diabetes

compared to healthy subjects (5). As the rate of basal HGP rises, so also does the

fasting plasma glucose concentration, and these two variables are strongly correlated

with an R value of 0.847 (P<0.001). This overproduction of glucose by the liv er

occurs in the presence of fasting plasma insulin levels that are increased 2.5- to 3-

fold, indicating severe resistance to the suppressive effect of insulin on HGP. The

increase in basal HGP is explained entirely by an increase in hepatic gluconeogenesis

(27).

In addition to hepatic insulin resistance, multiple other factors contribute to

accelerated rate of HGP including: 1) increased circulating glucagon levels and

enhanced hepatic sensitivity to glucagon (28); 2) lipotoxicity leading to increased

expression and activity of phosphoenolpyruvate carboxykinase and pyruvate

carboxylase (29), the rate-limiting enzymes for gluconeogenesis; and 3) glucotoxicity,
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leading to increased expression and activity of glucose -6-phosphatase, the rate-

limiting enzyme for glucose escape from the liver (30).

2.3. Muscle

Using the euglycemic insulin clamp technique in combination with tritiated glucose to

measure total body glucose disposal, it has been demonstrated that lean type 2

diabetic individuals are severely resistant (3). In patients with type 2 diabetes, the

presence of multiple intramyocellular defects in insulin action has been documented

(31), including impaired glucose transport and phosphorylation (8), reduced glycogen

synthesis (32), and decreased glucose oxidation (33). However, more proximal

defects in the insulin signal transduction system play a paramount role in the muscle

insulin resistance (19).

2.4. β-cell function

Although the plasma concentrations of insulin are typically increased in response to

the development of insulin resistance during the natural history of type 2 diabetes, this

does not mean that the β-cell is functioning normally. To the contrary, recent studies

have demonstrated that the onset of β-cell failure occurs much earlier and is more

severe than previously appreciated. By the time when the diagnosis of diabetes is

made, the patient has lost over 80% of his/her β-cell function, and it is essential that

the physician intervene aggressively with therapies known to correct known

pathophysiological disturbances in β-cell function.

There are no cut points that distinguish normal glucose tolerance (NGT) from IGT

and from type 2 diabetes. Rather, glucose intolerance is a continuum; therefore, the

current diagnostic criteria (34) for IGT and type 2 diabetes are quite arbitrary and, like

plasma cholesterol, glucose tolerance should be viewed as a continuum of risk. The

higher the 2-h plasma glucose concentration, even within the range of IGT, the greater

is the risk for microvascular complications.

In a postmortem analysis, Butler et al. (35) quantified relative β-cell volume and

related it to the fasting plasma glucose concentration. As individuals progressed from

NGT to impaired fasting glucose (IFG), there was a 50% decline in β-cell volume,
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suggesting a significant loss of β-cell mass long before the onset of type 2 diabetes.

With the progression to overt diabetes, there was a further and significant loss of β-

cell volume. Although β-cell volume should not be viewed to be synonymous with

β-cell mass, these results suggest that significant loss of β-cell mass occurs long

before the onset of type 2 diabetes, according to current diagnostic criteria (34).

2.5. Adipocytes

Considerable evidence implicate s impaired adipocyte metabolism and altered fat

topography in the pathogenesis of glucose intolerance in type 2 diabetes (36,37). Fat

cells are resistant to insulin’s anti -lipolytic effect, leading to day-long elevation in the

plasma FFA concentrations (36,37). Chronically increased plasma FFA levels

stimulate gluconeogenesis (38), induce insulin resistance (39), and impair insulin

secretion (39). These FFA-induced disturbances are referred to as lipotoxicity.

Dysfunctional fat cells produce excessive amounts of insulin resistance–inducing,

inflammatory, and atherosclerotic provoking adipocytokines and fail to secrete

normal amounts of insulin-sensitizing adipocytokines such as adiponectin (36).

Enlarged fat cells are insulin resistant and have diminished capacity to store fat (40).

When adipocyte storage capacity is exceeded, lipid “overflows” into muscle, liver,

and β-cells, causing muscle/hepatic insulin resistance and impaired insulin secretion

(36). Lipid can also overflow into arterial vascular smooth cells, leading to the

acceleration of atherosclerosis.

It has been demonstrated that a physiological elevation in the plasma FFA

concentration stimulates HGP (41) and impairs insulin-stimulated glucose uptake in

liver (42) and muscle (43,44). It has also been shown that elevated plasma FFA levels

inhibit insulin secretion.

2.6. Gastrointestinal tract

Glucose ingestion elicits a much greater insulin response than an intravenous glucose

infusion that mimics the plasma glucose concentration profile observed with oral

glucose (45). Most of this incretin effect can be explained by two hormones: GLP -1

and GIP. GLP-1 secretion by the L-cells of the distal small intestine is deficient, while

GIP secretion by the K-cells of the more proximal small intestine is increased, but



Hana Kahleová, Effective diet against ominous octet

18

there is resistance to the stimulatory effect of GIP on insulin secretion (46). GLP-1

also is a potent inhibitor of glucagon secretion (45), and the deficient GLP-1 response

contributes to the paradoxical rise in plasma glucagon secretion and impaired

suppression of HGP that occurs after ingestion of a mixed meal (47).

The gut microbiota, composed of hundreds of billions of bacteria, play an important

role in maintaining key physiologic functions for the human body (48) Experimental

data explored how the gut microbiota were able to control the energy metabolism, and

thereby the development of adiposity (49). Some nutrients with prebiotic properties,

which escape the digestion in the upper part of the gut, modify the composition of the

gut microbiota in favor of bacteria that could play a beneficial role on glucose

homeostasis, namely by modulating the endocrine function of the gut, and by

reinforcing the gut barrier (48). Clearly, the gut is a major end ocrine organ and

contributes to the pathogenesis of type 2 diabetes.

2.7. Pancreatic α-cells

It has been demonstrated that the basal plasma glucagon concentration is elevated in

patients with type 2 diabetes (28). The important contribution of elevated fasting

plasma glucagon levels to the increased basal rate of HGP in patients with type 2

diabetes was provided by Baron et al. (50). Compared with control subjects, patients

with type 2 diabetes had a markedly elevated rate of basal HGP, which correlated

closely with the increase in fasting plasma glucagon concentration. Following

somatostatin infusion, plasma glucagon concentrations declined by 44%, while basal

HGP decreased by 58%. These results conclusively demonstrate the important role of

hyperglucagonemia in the pathogenesis of fasting hyperglycemia in type 2 diabetes.

There also is evidence that the liver may be hypersensitive to the stimulatory effect of

glucagon in hepatic gluconeogenesis (28).

2.8. Kidney

The kidney filters about 162 g of glucose every day. 90% of the filtered glucose is

reabsorbed by the high capacity SGLT2 transporter in the convoluted segment of the

proximal tubule, and the remaining 10% of the filtered glucose is reabsorbed by the

SGLT1 transporter in the straight segment of the descending proximal tubule (51).
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The result is that no glucose appears in the urine. In animal models of both type 1 and

type 2 diabetes, the maximal renal tubular reabsorptive capacity (Tm), for glucose is

increased (52). In humans with type 1 diabetes, the Tm for glucose has been shown to

be increased. In human type 2 diabetes, the Tm for glucose has not been

systematically examined. No studies in either type 1 or type 2 diabetic individuals

have examined the splay in the glucose titration curve in h umans. However, cultured

human proximal renal tubular cells from type 2 diabetic patients demonstrate

markedly increased levels of SGLT2 mRNA and protein and a fourfold increase in the

uptake of α-methyl-D-glucopyranoside (AMG), a nonmetabolizeable glucose analog

(53).

The adaptive response of the kidney to conserve glucose, which is essential to meet

the energy demands of the body, especially the brain and other neural tissues, which

have an obligate need for glucose, becomes maladaptive in the diabetic patient.

Instead of dumping glucose in the urine to correct the hyperglycemia, the kidney

chooses to hold on to the glucose. Even worse, the ability of the diabetic kidney to

reabsorb glucose appears to be augmented by an absolute increase in the renal

reabsorptive capacity for glucose.

2.9. Brain

It is well established that the current epidemic of diabetes is being driven by the

epidemic of obesity (54). It has been demonstrated that, in rodents, insulin is a

powerful appetite suppressant (55). Obese individuals, both diabetic and nondiabetic,

are characterized by insulin resistance and compensatory hyperinsulinemia.

Nonetheless, food intake is increased in obese subjects despite the presence of

hyperinsulinemia, and one could postulate that the insulin resistance in peripheral

tissues also extends to the brain.

Impaired appetite regulation by insulin in obese subjects has been studied using

functional magnetic resonance imaging (MRI) to examine the cerebral response to an

ingested glucose load (56). After glucose ingestion, two hypothalamic areas with

consistent inhibition were noted: the lower posterior hypothalamus, which contains

the ventromedial nuclei, and the upper posterior hypothalamus , which contains the
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paraventricular nuclei. In both of these hypothalamic areas, which are key centers for

appetite regulation, the magnitude of the inhibitory response following glucose

ingestion was reduced in obese, insulin -resistant, normal glucose tolerant subjects,

and there was a delay in the time taken to reach the maximum inhibitory response,

even though the plasma insulin response was markedly increased in the obese group.

Whether the impaired functional MRI response in obese subjects contributes to or is a

consequence of the insulin resistance and weight gain remains to be determined.

Nonetheless, these results suggest that the brain, like other organs (liver, muscle, and

fat) in the body, may be resistant to insulin. Studies by Obici et al. (57,58) in rodents

have also provided evidence for cerebral insulin resistance leading to increased HGP

and reduced muscle glucose uptake.

3.  Pathogenesis of β-cell failure

3.1. Age

Advancing age plays an important role in the progressive β-cell failure that

characterizes type 2 diabetes. A progressive age-related decline in β-cell function has

been demonstrated (59). This is consistent with the well-established observation that

the incidence of diabetes increases progressively with advancing age.

3.2. Genes

β-cell failure also clusters in families, and studies in first-degree relatives of type 2

diabetic parents and in twins have provided strong evidence for the genetic basis of

the β-cell dysfunction (60,61). Impaired insulin secretion has been shown to be an

inherited trait in Finnish families with type 2 diabetes with evidence for a

susceptibility locus on chromosome 12 (62). Recently, a number of genes associated

with β-cell dysfunction in subjects with type 2 diabetes have been described , the

transcription factor TCF7L2 being the best established (63,64).

Unfortunately, at present there are no known therapeutic interventions that can

reverse either the age-related decline or genetic-related factors responsible for

impaired insulin secretion. However, there are a number of causes of β-cell failure
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that can be reversed or ameliorated.

3.3. Insulin resistance

Insulin resistance, by placing an increased demand on the β-cell to hypersecrete

insulin, also plays an important role in the progressive β-cell failure of type 2

diabetes. Therefore, interventions aimed at enhancing insulin sensitivity are of

paramount importance. The precise mechanisms, via which insulin resistance leads to

β-cell failure, remain unknown. It commonly is stated that the β-cell, by being forced

to continuously hypersecrete insulin, eventually wears out. Although simplistic in

nature, this explanation lacks a mechanistic cause. An alternate hypothesis, for which

considerable evidence exists, is that the cause of the insulin resistance is also directly

responsible for the β-cell failure. Thus, just as excess deposition of fat (LC -fatty acyl

CoAs, diacylglycerol, and ceramide) in liver and muscle has been shown to cause

insulin resistance in these organs, deposition of fat in the β-cell leads to impaired

insulin secretion and β-cell failure. Similarly, hypersecretion of islet amyloid

polypeptide (IAPP), which is co -secreted in a one-to-one ratio with insulin, can lead

to progressive β-cell failure.

3.4. Lipotoxicity

Elevated plasma free fatty acid (FFA) concentrations impair insulin secretion, and this

has been referred to as lipotoxicity (65). Interventions, such as weight loss and

thiazolidinediones, that mobilize fat out of the β-cell would be expected to reverse

lipotoxicity and preserve β-cell function.

3.5. Glucotoxicity

Chronically elevated plasma glucose levels also impair β-cell function, and this has

been referred to as glucotoxicity (66). Strict glycemic control is esse ntial not only to

prevent the microvascular complications of diabetes but also to reverse the glucotoxic

effect of chronic hyperglycemia on the β-cells (67,68), as well as on hepatic and

muscle insulin resistance.
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3.6. Incretins

Abnormalities in the incretin axis have been shown to play an important role in the

progressive β-cell failure of type 2 diabetes. GLP-1 and glucose-dependent

insulinotrophic polypeptide (also called gastric inhibitory polypeptide [GIP]) account

for 90% of the incretin effect (45). In type 2 diabetes, there is a deficiency of GLP -1

(45) and resistance to the action of GIP (46). The deficiency of GLP-1 can be

observed in individuals with IGT and worsens progressively with progression to type

2 diabetes (69). In addition to deficiency of GLP -1, there is resistance to the

stimulatory effect of GLP-1 on insulin secretion (70). In contrast to GLP-1, plasma

levels of GIP are elevated in type 2 diabetes, yet circulating plasma insulin levels are

reduced (71). This suggests that there is β-cell resistance to the stimulatory effect of

GIP on insulin secretion, and this, in fact, has been demonstrated (46). Recent studies

have shown that tight glycemic control can restore the β-cells’ insulin secretory

response to GIP (72). Thus, β-cell resistance to GIP is another manifestation of

glucotoxicity.

4. Effective diet against ominous octet

4.1. Caloric restriction

Caloric restriction is the number one strategy to lose weight and to improve glycemic

control. Weight loss is typically accompani ed by improvements in glycemic control

and insulin sensitivity. A reduction in caloric intake can have profound effects on

glucose control, insulin secretion and insulin resistance before any changes in obesity

occur (73,74). To further study this, Kelley et al. (75) measured insulin sensitivity by

a hyperinsulinemic euglycemic clamp in obese patient s with type 2 diabetes after: 1) 1

week of bodyweight maintenance; 2) 1 week of caloric restriction (800 kcal/day); 3) 2

months of further restriction (400 kcal/day), followed by 1 month of refeeding (intake

was increased by 200 kcal/week during this month) , and 1 week of a diet aimed at

bodyweight maintenance; and 4 ) 1 week of energy restriction (800 kcal/day). Under

these highly controlled conditions, the reduction in hepatic glucose production and

improvement in insulin secretion and insulin sensitivity w ere substantial after the

initial energy restriction and only insulin sensitivity showed a further improvement

after the bodyweight loss (12.7 ±2.0 kg). The final week of energy restriction did not
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affect these parameters.

In addition to bodyweight, alter ations in dietary composition may also be associated

with changes in insulin resistance. There is currently debate regarding the best diet for

patients with type 2 diabetes with respect to the percentage of fat and carbohydrate in

the diet. It has been recommended that fat intake is less than 35% of total energy,

protein 10-20%, and carbohydrates 45-60% of total energy intake. Both t he American

Diabetes Association and the European Association for the Study of Diabetes have

opted to individualize the diet to meet the patient’s needs with the goal of minimizing

diabetic complications (76,77).

4.2. Reduced intake of saturated fatty acids

A few studies have reported that dietary saturated fat can adversely affect insulin

sensitivity (78,79). In a study of 162 healthy men and women, insulin sensitivity was

significantly impaired (–10%, P = 0.03) after administration of a diet high in saturated

fatty acids (17% of energy) for 3 months (78). Likewise, Xiao et al. (79) reported a

decrease in insulin sensitivity following oral ingestion of emulsions containing

predominantly saturated fatty acids (45% of energy) over 24 h in overweight men and

women. Reductions in saturated fat intake have been reported to in crease insulin

sensitivity, an effect that is independent of changes in body weight (2,80).

4.3. Polyunsaturated fatty acids

Previous studies have suggested that the consumption of specific dietary fats,

particularly low omega-6 polyunsaturated fatty acids and high trans unsaturated fatty

acids, increases the risk of type 2 diabetes, but the role of omega-3 fats remains

unclear (81).

Omega-3 fatty acids, particularly long-chain omega-3 fatty acids from seafood

sources, alter the expression of peroxisome proliferator –activator receptor genes,

which are involved in signaling nutrition status (82), and of the production of

inflammatory cytokines, which are associated with type 2 diabetes (83). These

findings suggest that omega -3 fatty acids could lower the risk of type 2 diabetes (84).

In epidemiologic studies, intake of long -chain omega-3 fatty acids was associated
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with better glucose tolerance in some studies (85,86), but not in others (87,88). Some

intervention studies have found that omega-3 intake resulted in an increase in

glycated hemoglobin (89,90), and in fasting blood glucose (87,90).

Epidemiologic studies of the relation of long-chain fatty acid intake with T2DM have

reported conflicting results (91–96). Furthermore, because studies have suggested that

environmental contaminants such as dioxins (97), found in fish, might raise the risk of

type 2 diabetes, the risks and benefits of fish intake remain controversial (98).

Recently, the association was examined between dietary long-chain fatty acids and

incidence of type 2 diabetes in 3 prospective cohorts of women and men. 195,204 US

adults (152,700 women and 42,504 men) without preexisting chronic disease at

baseline were followed for 14 to 18 years. No evidence was found that higher

consumption of long-chain fatty acids and fish reduced the risk of type 2 diabetes.

Instead, higher intakes may modestly increase the incidence of this disease (99).

4.4. Reduced glycemic index

In a recent meta-analysis of prospective cohort studies, there was a 40% increase in

risk of type 2 diabetes in participants whose diets were in the highest quintile of

glycemic index versus the lowest (99). A meta-analysis by Brand-Miller et al. (100)

of 14 randomized clinical trials reported that low glycemic index diets reduced

HbA1c by 0.43 percentage points (95% CI 0.13 –0.73) more than high-glycemic index

diets in individuals with diabetes.

4.5. Increased intake of die tary fiber

In a randomized, crossover study in patients with type 2 diabetes, consuming a diet

containing 50 g/day of dietary fiber for 6 weeks decreased 24-h glucose and insulin

concentrations by 10% and 12%, respectively, compared to a diet containing a more

moderate amount of fiber (24 g/day) (101). In observational studies, dietary fiber

intake is inversely associated with diabetes incidence (102) and insulin resistance

(103). Dietary fiber, in particular viscous fibers (104), may improve glycemic control

by 1) delaying gastric emptying, which reduces the rate of glucose absorption, 2)

decreasing the rate of glucose uptake by increasing the thickness of the unstirred

water layer, 3) being fermented into propionate in the colon, which inhibits glucose
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production in hepatocytes, and 4) increasing satiety, which promotes weight loss and

improved insulin sensitivity (104,105).

4.6. Vitamins and micronutrients

People with diabetes should be encouraged to consume adequate amounts of vitamins

and minerals from natural food sources, particularly fruits, nuts, and vegetables

(76,106). Foods rich in antioxidants (tocopherols, carotenoids, vitamin C, and

flavonoids) and other water and fat -soluble vitamins are especially encouraged.

Consumption of foods rich in folate (e.g. citrus fruits and legumes) will ensure

adequate folate status, and possibly reduce risk of coronary heart disease, while diets

that include oily fish (e.g. salmon, tuna) and whole grain breads or cereals provide fat -

and water-soluble vitamins (76,77).

Supplementation with a multivitamin preparation is recommended for selected

patients with diabetes (e.g. the elderly, pregnant or lactating women, and individuals

on strict calorie-restricted diets) who may be at particular risk of micronutrient

deficiency (76). There are some claims that chromium and vanadium supplementation

may improve glycemic control, but there is still in sufficient evidence to support such

claims, and megadose supplementation may actually be unsafe (76,77).

4.6.1. Vitamin D

Vitamin D deficiency has been shown to alter insulin synthesis and secretion in both

humans and animal models (107,108). It has been reported that vitamin D deficiency

may predispose to glucose intolerance, altered insulin secretion and type 2 diabetes

mellitus. Vitamin D replenishment improves glycaemia and insulin secre tion in

patients with type 2 diabetes with established hypovitaminosis D, thereby suggesting

a role for vitamin D in the pathogenesis of type 2 diabetes mellitus. The presence of

vitamin D receptors (VDR) and vitamin D -binding proteins (DBP) in pancreatic tissue

and the relationship between certain allelic variations in the VDR and DBP genes

with glucose tolerance and insulin secretion have further supported this hypothesis

(109,110). The mechanism of action of vitamin D in type 2 diabetes is thought to be

mediated not only through regulation of plasma calcium levels, which regulate insulin

synthesis and secretion, but also through a direct action on pancreatic beta -cell
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function (111).

4.6.2. Reduction in heme-iron intake

Serum ferritin, the storage form of iron, was positively correlated with insulin

resistance (112,113), and predicted the development of hyperglycemia (114) and type

2 diabetes (115) in observational studies. Hua et al. (116) reported greater insulin

sensitivity and lower serum ferritin levels in lacto-ovo vegetarians compared with

omnivores matched for age and body mass index. In this study, serum ferritin and

insulin resistance were strongly and positively cor related (r = 0.80, P = 0.0001).

Lowering body iron by phlebotomy in six male omnivores to levels similar to those

seen in vegetarians resulted in a 40% enhancement of insulin -mediated glucose

disposal (116). Heme-iron intake has been positively related to diabetes incidence,

whereas non-heme iron, found in plants, was negatively correlated (117).

4.7. Vegetarian diet and type 2 diabetes

Observational and clinical trials indicate a benefit of vegetarian and vegan diets for

diabetes management. The consistency of observed beneficial outcomes from studies

employing vegetarian and vegan diets warrant additional research and future

expansion of dietary guidelines to endorse vegan and vegetarian diets as a viable

alternative to conventional dietary interventions (118,119).

Several possible mechanisms may explain the beneficial effects of vegetarian diet for

diabetes management (120): higher intake of fiber (101), lower intake of saturated fat

(and a higher P/S ratio) (2), higher intake of non-heme iron and reduction in iron

stores (121), higher intake of vegetable protein in place of animal protein (122),

higher intake of antioxidants (123) and plant sterols (124).

4.7.1. Observational studies

Several studies have repor ted that diabetes prevalence is lower among vegetarians

compared with omnivores (125–127). Seventh-day Adventists are a population of

interest because nearly all avoid tobacco, alcohol, and caffeine, while roughly half are

omnivores and half are vegetarians. Overall, Adventists have only 45% of the
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diabetes prevalence of the general population (126). In three large Adventist cohort

studies, the prevalence of diagnosed diabetes was 1.6 to 2 times higher among non-

vegetarians compared with vegetarians or vegans (125–127). Further adjustment for

body weight reduced this difference only slightly. Regular consumption of even small

amounts of meat was associated with an increased risk of diabetes in this population

(127). In a 17-year study of 8401 Seventh-day Adventists, those who ate meat at least

once per week were 29% more likely to develop diabetes compared with those eating

no meat. Those who consumed any processed meats (specifically salted fish and

frankfurters) were 38% more likely to develop diabetes. Long -term adherence (over

17 years) to a vegetarian diet was associated with a 74% reduced risk of developing

diabetes relative to long-term adherence to a diet that included at least weekly meat

intake. There was no association between an index of animal product consumption

(meats, dairy, and eggs), with diabetes incidence. Other large cohort studies have also

reported that meat consumpt ion is associated with an increased risk of type 2 diabetes

(128,129).

4.7.2. Interventional trials

Because vegetarian and vegan diets are associated with a lower body weight (130),

increased insulin sensitivity (131,132) and reduced risk of diabetes, intervention trials

have tested their effectiveness for diabetes management. Early studies reported a

dramatic decrease in medication use when following a plant-based diet. Subsequent

studies demonstrated a greater improvement in insulin sensitivity and glycemic

control with a vegetarian diet compared to the conventional diabetic diet.

Anderson and Ward (133) tested the effect of a low-fat, high-carbohydrate (9% of

energy from fat, 70% from carbohydrate) near-vegetarian diet containing 65 g of fiber

and 65 g of cholesterol per day in 20 normal -weight men with type 2 diabetes treated

by insulin in a 16-day trial. Energy intake was individualized to prevent changes in

body weight. By the end of the study period, insulin use was discontinued in nine

participants and, in the remainder was reduced from a mean of 26 to 11 units per day

(P < 0.001).

The effect of a low-fat vegan diet on type 2 diabetes was first tested in a small 12 -
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week pilot study in 1999, which included 11 patients with T2D (134). Fasting plasma

glucose decreased 28%, compared to 12% for a more conventional portion -controlled,

energy-restricted diabetes diet, and weight loss was also significantly greater in the

vegan group (7.2 kg, compared to 3.8 kg). Of six participants in the vegan group on

oral hypoglycemic agents, medication use was discontinued in one and reduced in

three. Insulin was reduced in both vegan -group participants using insulin. In contrast,

none of the control-group participants on oral hypoglycemic agents reduced

medication use.

A similar dietary intervention was subsequently tested in 64 healthy (non-diabetic),

postmenopausal, overweight women with no energy intake limit. After 14 weeks,

weight decreased by 5.8 kg in the low-fat vegan group, compared to a 3.8 kg weight

reduction in a control group asked to follow the diet guidelines of the National

Cholesterol Education Program ( P = 0.012) (135). The index of insulin sensitivity

increased by 24% in the intervention group, but remained unchanged in the control

group. After an additional 2 years of observation, net weight reduction continued to

be greater for participants in the low-fat vegan group compared with the control group

(-3.1 kg versus -0.8 kg, P = 0.02) (136).

In a 22-week randomized trial, 99 individuals with type 2 diabetes were randomly

assigned to either a low-fat, low-glycemic-index, vegan diet with no limits on energy

or carbohydrate intake and no restrictions on portion sizes, or to a control group, in

which each member received individualized diet instruction according to 2003

American DiabetesAssociation (ADA) guidelines (137). Overall, HbA1c decreased

by 0.96 percentage points in the vegan group and 0.56 points in the control group (P =

0.09). Excluding those who changed medications during the study period,HbA 1c

decreased 1.2 points in the vegan group, compared to 0.4 points in the ADA group (P

= 0.01); body weight decreased 6.5 kg in the vegan group and 3.1 kg in the control

group (P < 0.001).

Following the same patients for an additional year showed that clinical improvements

were partially preserved (138). HbA1c changes from baseline to last available value

or last value before medication adjustment were -0.40 in the vegan group and +0.01 in

the ADA group (P = 0.03). Body weight changes, compared to baseline values, were



Hana Kahleová, Effective diet against ominous octet

29

largely maintained in both the vegan group (-4.4 kg) and the ADA group ( -3.0 kg),

without a significant between-group difference (P = 0.25).

II. OUR RESEARCH

The thesis comprises of 5 related papers that investigate the potential of a vegetarian

diet compared to a conventional hypocaloric diet in the treatment of type 2 diabetes.

Paper 1 describes the effect of both diets on insulin resistance, visceral f at and

oxidative stress markers. Paper 2 explores the potential of both hypocaloric diets to

improve β-cell function and the connectedness with the secretion of gastrointestinal

peptides. Paper 3 compares the effect of both diets on quality of life, mood and eating

behaviour. Paper 4 explores the possible mechanisms of the insulin -sensitizing

properties of a vegetarian diet, i.e. the effect on the fatty acid profile in membrane

phospholipids. Paper 5 presents the results of a post -trial monitoring 1 year after the

end of the diet intervention.

5.1. Aims and hypotheses

Vegetarian Diet Improves Insulin R esistance and Oxidative Stress Markers More

Than Conventional Diabetic Diet in Subjects with Type 2 Diabetes (Appendix 1)

Aim: The aim of our study was to compare the effects of vegetarian and conventional

diabetic diet with the same caloric restriction o n insulin resistance, volume of visceral

fat and plasma concentrations of oxidative stress markers after a 3 -months-diet-

intervention and to test whether the positive changes will be sustainable or even

augmented after adding aerobic exercise training for other 3 months.

Hypothesis: Our hypothesis was that vegetarian diet would be more effective in

reducing insulin resistance and volume of visceral fat and improving oxidative stress

markers than conventional diabetic diet and that the difference between gr oups would

enlarge after addition of exercise.
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Improvement in β-cell function after Diet-induced Weight Loss is Associated with

Decrease in Pancreatic Polypeptide in Subjects with Type 2 Diabetes (Appendix 2)

Aim: The aim of our study was to explore the effect of a lifestyle intervention

program (12 weeks of diet intervention and subsequent 12 weeks of diet combined

with aerobic exercise training) on β-cell function and to evaluate the role of GIP and

anorectic gut hormones PYY, PP and oxyntomodulin in subjects with T2D.

Hypothesis: Our hypothesis was that a lifestyle intervention program would improve

β-cell function and this improvement might be related to changes in gastrointestinal

peptides.

Vegetarian diet improves quality of life and mood more th an conventional diet in

patients with type 2 diabetes (Appendix 3)

Aim: The aim was to study quality of life, Beck depression score and changes in

eating behaviour in response to a vegetarian and a conventional diabetic diet.

Hypothesis: Our hypothesis was that both hypocaloric diets would affect the studied

parameters similarly.

Beneficial effect of a vegetarian diet on the fatty acid profile in membrane

phospholipids in subjects with type 2 diabetes (Appendix 4)

Aim: The aim was to explore the role of changes in fatty acid composition of serum

phospholipids in diet-induced changes in MCR in subjects with type 2 diabetes

(T2D).

Hypothesis: Our hypothesis was that increased insulin sensitivity induced by a

vegetarian diet would be related to changes in th e serum phospholipids fatty acid

pattern.
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Vegetarian vs. conventional diabetic diet – a 1-year-follow-up (Appendix 5)

Aim: The aim of the post-trial monitoring was to follow-up our patients at 6 months

and 1 year from the end of the intervention.

Hypothesis: Our hypothesis was that the vegetarian participants in our study should

be able to maintain their reduced weight and improved glycemic control more than

the participants consuming a conventional diet.

5.2. Methods

This chapter briefly describe s the investigational and analytical methods used in the

interventional study (paper 1 -4) and in the post-trial monitoring (paper 5).

A 24-week, randomized, open, parallel design was used. Seventy -four patients with

Type 2 diabetes were randomly assigned to either the experimental group (n = 37),

which received a vegetarian diet, or the control group (n = 37), which received a

conventional diabetic diet. Both diets were isocaloric, calorie restricted ( -500 kcal ⁄

day). All meals during the study were provi ded. The second 12 weeks of the diet were

combined with aerobic exercise. Participants were examined at baseline, 12 weeks

and 24 weeks.

5.2.1. Power analysis for planning of the study:

The power analysis of the repeated measures model was performed using statistical

software PASS 2005 (Number Cruncher Statistical Systems, Kaysville, UT, USA; 24 -

28). The factors included in the model are the between -subject factor (control group

vs. experimental group), within -subject factor (individual stages of the trial) and

between-factor interaction. The last term expresses the measure of divergence

between the courses of the time profiles in control and experimental groups.

Insulin resistance: Assumptions: The insulin resistance in the control group should

decrease by 5% within the first 3 months and by 10% within the additional 3 -month

period, while the declines in the treated group should be 20% within each period. We
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assume about 5% standard deviation for repeated sampling and the autocorrelation

within the subject reaching the value about 0.7. Result: The probability that 5 subjects

per group are sufficient for finding significance at the 95% level of statistical

significance for both factors and the between factor interaction is more than 95%.

Weight loss: Assumptions: The weight in the control group should decr ease from 95

kg by 1 kg within each period, while the declines in the treated group should be 3 kg

within each period. We assume about 1 % standard deviation for repeated sampling

and the autocorrelation wi thin the subject reaching the value about 0.7. Result: The

probability that 7 subjects per group are sufficient for finding significance at the 95%

level of statistical significance for both factors and the between factor interaction is

more than 95%.

Body composition: Assumptions: The ratio of subcutaneous to visceral fat in the

control group should be constant within the first 3 months and should decrease by 5%

within the additional 3-month period, while the declines in the experimental group

should be 10% and 20% within the first and the second period, respectively. We

assume about 10% standard deviation for repeated sampling and the autocorrelation

within the subject reaching the value about 0.7. Result: The probability that 19

subjects per group are sufficient for finding significance at the 95% level of statistical

significance for both factors and the between factor interaction is more than 95%.

5.2.2. Subjects

Subjects with Type 2 diabetes treated by oral hypoglycaemic agents were recruited

from February to May 2008. Inclusion criteria were: Type 2 diabetes, age 30 –70

years, HbA1c between 6 and 11% (42 –97 mmol ⁄ mol), BMI between 25 and 53 kg ⁄

m2, and willingness to change dietary habits and follow a prescribed exercise

program. Exclusion criteria were HbA1c < 6% (< 42 mmol ⁄ mol) or > 11% (> 97

mmol ⁄ mol), use of insulin, abuse of alcohol or drugs, pregnancy, lactation, or current

use of a vegetarian diet. Out of 161 patients pre -chosen by their endocrinologists, 74

met the inclusion criteria and gave written informed consent (Fig. 1). Baseline

characteristics of the study population is given in Table 1. For detailed characteristics

please refer to Appendix 1.
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Figure 1. Enrollment of the Participants and Completion of the Study.

161 persons with T2DM were
screened

74 underwent
randomization

87 were excluded
32 did not meet inclusion criteria
55 refused to participate

37 were assigned to
vegetarian diet

37 were assigned to
conventional diabetic diet

2 withdrew owing to
lack of motivation

35 completed 3 months
of diet intervention

31 completed another 3
months of diet and

exercise

4 withdrew owing to
lack of motivation

37 were included in the
analysis

4 withdrew
2 lacked motivation
2 had personal reasons

35 completed 3 months
of diet intervention

31 completed another 3
months of diet and

exercise

2 withdrew owing to
lack of motivation

37 were included in the
analysis

February – May 2008

June 2008

November -
December
2008

February -
March 2009
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Characteristic Experimental group (n=37) Control group (n=37)
Age - years 54.6±7.8 57.7±4.9
Sex - no. (%)

Male 17 (46) 16 (48)
Female 20 (54) 17 (52)

Smokers - no. (%) 9 (24) 5 (15)
Weight - kg 101.1±17.1 100.8±17.8
BMI - kg.m-2 35.1±6.1 35.0±4.6
Waist circumference - cm 113.7±11.2 113.8±13.1
Blood biomarkers

Cholesterol total - mmol.l-1 4.4±0.8 4.2±0.9
LDL-cholesterol - mmol.l-1 2.54±0.6 2.57±0.8
HDL-cholesterol - mmol.l-1 1.07±0.3 1.09±0.2
Triglycerides - mmol.l-1 2.1±0.9 2.1±0.9
HbA1c - % 6.3±1.4 6.2±1.2

Medications
Oral hypoglycemic agents - no. (%)

Metformin 29 (78) 28 (85)
Sulfonylurea 20 (54) 13 (39)
Thiazolidinedione 7 (19) 5 (15)
Other 8 (22) 3 (9)

Lipid-lowering therapy - no. (%) 22 (59) 16 (48)
Antihypertensive therapy - no.
(%) 25 (68) 22 (67)

Table 1. Baseline characteristics of the study population

5.2.3. Study design

A 24-week, randomized, open, parallel, metabolically controlled des ign was used.

The subjects were randomly assigned to either the experimental group (n = 37), which

received a vegetarian diet, or the control group (n = 37), which received a

conventional diabetic diet. Both diets were designed to be isocaloric and calorie

restricted (-500 kcal ⁄ day), with caloric intakes based on the measurement of resting

energy expenditure of each subject by indirect calorimetry (metabolic monitor

VMAX; Sensor Medics, Anaheim, CA, USA) (139). The second 12 weeks of the diet

were combined with aerobic exercise. All participants started with a 1 -week tutorial,

where they learned in detail how to compose and prepare their diet. Participants

attended weekly 1-h meetings with lectures and cooking classes. All meals duri ng the

study were provided. Participants were examined at baseline, 12 weeks and 24 weeks.

The study protocol was approved by the Institutional Ethics Committee.
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5.2.4. Diet

The vegetarian diet (~60% of energy from carbohydrates, 15% protein and 25% fat)

consisted of vegetables, grains, legumes, fruits and nuts. Animal products were

limited to maximum of one portion of low -fat yogurt a day. The conventional diabetic

diet was administered according to the dietary guidelines of the Diabetes and

Nutrition Study Group (DNSG) of the European Association for the Study of

Diabetes (EASD). It contained 50% of total energy from carbohydrates, 20% protein,

less than 30% fat (≤ 7% saturated fat, < 200 mg ⁄ day of cholesterol ⁄ day).

Vegetarian meals were provided in tw o vegetarian restaurants and the conventional

diabetic diet meals were provided at the Institute for Clinical and Experimental

Medicine, Prague. To meet the vitamin B12 needs of the experimental group, while

maintaining the same level of intervention in th e two groups, vitamin B12 was

supplemented in both the experimental group and the control group (50 µg/day).

Alcoholic beverages were limited to one per day for women and two per day for men.

5.2.5. Exercise program

Participants were asked not to alter the ir exercise habits during the first 12 weeks.

During weeks 13–24 they were prescribed an individualized exercise program based

on their history of physical activity and an initial spiroergometric examination.

Participants exercised at 60% of their maximal heart rate twice a week for 1 h under

professional supervision, plus once a week at home or at the sports centre with the

same intensity; they were given a sport -tester Polar FT4 (Polar, Kempele, Finnland)

and a pedometer (Omron HJ-113, Omron, Kyoto, Japan) for individual physical

activities and were repeatedly instructed on how to use them.

5.2.6. Compliance

Records of all visits to pick up meals were kept. At weeks 0, 12 and 24, a 3 -day

dietary record was completed by each participant (two weekdays and on e weekend

day). A registered dietician analysed all 3 -day dietary records using a country -

specific food-nutrient database (140). At weeks 3, 8, 14 and 19, a registered dietician

made unannounced telephone calls and each participant recal led his or her 24-h diet.

This data set was not statistically analysed, but allowed the investigators to check the
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adherence and to provide additional counseling. Participants were divided according

to their adherence to the prescribed diet into the high, medium or low adherence

group. High adherence was defined as the average daily energy intake being no more

than 100 kcal in excess of the intake prescribed; medium adherence was less than 200

kcal in excess. If criteria for neither high nor medium adherenc e were met, the

participants were included in the low adherence group. An additional criterion for

high adherence to the vegetarian diet was the average daily cholesterol intake being £

50 mg and, for medium adherence, being less than 100 mg. In the contro l group, the

average daily cholesterol limit was less than 200 mg for high adherence and less than

300 mg for medium adherence.

5.2.7. Physical activity

Physical activity was assessed by pedometer Omron HJ -113 (Omron, Kyoto, Japan;

each participant comple ted a 3-day record, 2 weekdays and 1 weekend day) and with

two questionnaires: the International Physical Activity Questionnaire (IPAQ) (141)

and the Baecke questionnaire (142) at weeks 0, 12, and 24. Records of each

participant’s visits at the sports centre were kept. Adherence to the exercise program

was defined as more than 75% of prescribed visits at the centre (18/24).

5.2.8. Medication

Participants were asked to continue their preexisting medication regimens, except

when hypoglycemia occurred repeatedly (fasting plasma glucose determined at the

laboratory <4.4 mmol.l -1 or capillary glucose reading <3.4 mmol.l -1 accompanied by

hypoglycemic symptoms). In such cases, medications were reduced by a study

physician following the medication protocol. All participants were given an Accu -

Chek Go glucometer (Roche, Basel, Switzerland) and were instructed on how to use

it.

5.2.9. Procedures

All measurements were performed at 0, 12, and 24 weeks on an outpatient basis, after

10-12h overnight fasting with only tap water allowed ad libitum. Height and weight

were measured using a periodically calibrated scale accurate to 0.1 kg. Waist

circumference was measured with a tape measure placed at the midpoint between the
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lowest rib and the upper part of the iliac bone. Blood pressure and heart rate were

measured after participants had rested in a seated position for 5 min using a digital

M6 Comfort monitor (Omron, Kyoto, Japan). Three measurements were taken at 2 -

min intervals. The first measurement was disregarded, and a mean value was

calculated for the remaining two measurements.

5.2.9.1. Hyperinsulinemic isoglycemic clamp. The hyperinsulinemic (1 mU.kg-1.min-

1) isoglycemic clamp, lasting 3 hours, was conducted as previously described (143).

Insulin sensitivity was estimated as the metabolic clearance rate of glucose (MCR)

calculated during the last 20 min. of the clamp after correction for changes in glucose

pool size (143).

5.2.9.2. Meal tests. Insulin secretion was tested after stimulation with standard

breakfast (453 kcal, 45% carbohydrates, 17% proteins, 38% lipids). Plasma

concentrations of glucose, immunoreactive insulin and C -peptide were measured at 0,

30, 60, 120, and 180 min.

5.2.9.3. Magnetic resonance imaging. 27 water-suppressed magnetic resonance

images centered to the intervertebral disc of L2/L3 with TR/TE=450/10 ms and

thickness of 10 mm were acquired in breath -hold. The post-processing of MRI with

the calculation of subcutaneous and visceral abdominal fat volume was done in

MATLAB (The Math Works, Natick, Massachusetts, USA); the inner border of

subcutaneous region was detected semi -automatically (144) while the abdominal fat

voxels were selected by thresholding.

5.2.10. Analytical methods

Serum glucose was analyzed using the Beckman Analyzer glucose -oxidase method

(Beckman Instruments Inc., Fullerton, CA, USA). Plasma immunoreactive i nsulin and

C-peptide concentrations were determined using Insulin and C -peptide IRMA kits

(Immunotech, Prague, Czech Republic). HbA1c was measured by HPLC (Tosoh,

Tokyo, Japan).  Plasma lipids concentrations were measured by enzymatic methods

(Roche, Basel, Switzerland). HDL -cholesterol was measured after double



Hana Kahleová, Effective diet against ominous octet

38

precipitation with dextran and MgCl2. LDL-cholesterol was estimated using the

Friedewald equation, if triglyceride concentration was within normal limits.

5.2.10.1. Oxidative stress markers. The amount of lipid peroxidation was determined

as thiobarbituric acid reactive substan ces (TBARS) (145) using home-made kits. The

activity of superoxide dismutase, catalase, seleno -dependent glutathione peroxidase,

and the level of ascorbic acid were analyzed by standard methods (146),(147) using

following kits: Superoxide dismutase assay kit (Sigma-Aldrich Corp., St. Louis, MO,

USA), Catalase and Glutathione peroxidase assay kits (Cayman Chemical, Ann

Arbor, MI, USA), and home-made kits for ascorbic acid . Glutathione reductase

activity was measured by the decrease of NADPH (Sigma -Aldrich Corp., St. Louis,

MO, USA). The whole blood level of reduced glutathione was determined by HPLC

kit Glutathione in whole blood (Chromsystems, Munich, Germany).

5.2.10.2. Adipokines. Plasma concentrations of total adiponectin and resistin were

measured using ELISA kits (Raybiotech, Norcross, GA, USA), HMW -adiponectin

using ELISA kits (Millipore, Billerica, MA, USA) and leptin using Milliplex

(Millipore, Billerica, MA, USA).

5.2.10.3. Gastrointestinal peptides. Plasma concentrations of chosen gastrointestinal

peptides were measured in fasting state and after clamp -induced hyperinsulinemia (at

180 min. of hyperinsulinemic isoglycemic clamp). Concentrations of GIP, PP and

PYY were measured using Milliplex kits (Millipore, Billerica, MA, USA).

Oxyntomodulin was measured using ELISA kits (Millipore, Billerica, MA, USA).

5.2.10.4. Fatty acid composition in serum phospholipids . Serum lipids were extracted

according to Folch (148). Lipid classes were separated by thin layer chromatography

using hexane-diethylether-acetic acid (80:20:3, v/v) as a solvent system. Fatty acid in

serum phospholipids was converted to methyl esters using 1% solution of Na in

methanol and the fatty acid methyl esters were el uted with hexane. Gas

chromatography of the fatty acid methyl esters was performed on a GS 5890A

(Hewlett Packard, USA) instrument equipped with a flame -ionization detector. A

carbowax-fused silica capillary column (25m x 0.25 mm i.d.) was used. The column

temperature was 150, 225°C (2°C/min), hydrogen was used as the carrier gas.
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Individual peaks of fatty acid methyl esters were identified by comparing retention

times with those of authentic standards (Sigma, Czech Republic). The composition of

serum fatty acid (spectrum of 17 main fatty acid) was analyzed. The

product/precursor ratios of the serum fatty acid were used to calculate indices

reflecting the activities of enzymes involved in hepatic fatty acid metabolism:

elongase (18:0/16:0), D6 desaturase (18 :3n8/18:2n6), D5 desaturase (20:4n6/20:3n6,

and D9 desaturase (16:1n7/16:0) (149,150).

5.2.11. Modeling analysis of β-cell function

Insulin secretory rates (ISRs) were calculated from plasma C -peptide levels by

deconvolution (151) and expressed per square meter of estimated body surface area.

The dependence of ISR on glucose le vels was modeled separately for each patient and

each study day. The β-cell model used in the present study, describing the relationship

between insulin secretion and glucose concentration, has been described previously in

detail (152,153).

Insulin secretion consists of two components. The first component represents the

dependence of insulin secretion on absolute glucose con centration (G) at any time

point and is characterized by a dose -response function, f(G), relating the two

variables. Characteristic parameters of the dose response are insulin secretion at a

fixed glucose concentration of 9 mmol/litre (approximately the fa sting glucose level

in diabetic subjects) and the mean slope in the observed glucose range. The dose

response is modulated by a potentiation factor, P(t), which accounts for several

potentiating agents (prolonged exposure to hyperglycemia, nonglucose subst rates,

gastrointestinal hormones, and neurotransmitters). The first secretion component is

thus the product, P(t)f(G).

The potentiation factor is set to be a positive function of time and to average one

during the experiment. It thus expresses a relative potentiation of the secretory

response to glucose. The excursion of the potentiation factor was quantified using

ratios between mean values at times 160 –180 and 0–20 min.

The second insulin secretion component represents a dynamic dependence of insulin
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secretion on the rate of change of glucose concentration. This component is termed

the derivative component and is determined

by a single parameter. Rate sensitivity is related to early insulin release (152,153).

The model parameters [the parameters of the dose response, f(G), and the potentiation

factor, P(t)] were estimated from glucose and C -peptide concentration by regularized

least squares, as described previously (154,155). Regularization involves the choice of

smoothing factors that were selected to obtain glucose and C -peptide model residuals

with SDs close to the expected measurement error ( ∼ 1% for glucose and ∼ 5% for

C-peptide). Estimation of the individual model parameters was performed blinded to

the randomization of patients for treatment.

5.2.12. Assessment of quality of life, mood and eating behaviour

Quality of life was assessed using 2 questionnaires: Weight -Loss Quality-of-Life

(OWLQOL) and Weight-Related Symptoms (WRSM) (156). We used the Three-

Factor Eating Questionnaire (157) to monitor changes in eating behavio ur and the

Beck Depression Inventory to screen for depressive symptoms (158).

5.12.13. Follow-up

62 patients (31 from V and 31 from C) who completed the study were invited for a

follow-up 6 at months and 1 year after the end of the intervention. 47 patients (76%;

23 from V and 24 from C) attended the 6 -month-follow-up, 44 (71%; 21 from V and

23 from C) attended the 1-year-follow-up. During one year after the end of the

intervention, the patients had discontinued the original diet intervention and they

consumed comparable diets. We measured their weight, waist circumference, HbA1c

and blood lipids. The patients completed a 3 -day dietary record and their physical

activity was assessed by a Omron HJ -113 pedometer (Omron, Kyoto, Japan).

5.2.14. Statistical analyses

The intention-to-treat analysis included all participants. For evaluation of the

relationships between continuous variables and factors we used a repeated measures
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ANOVA model with between-subject and within-subject factors and interactions.

Factors group, subject and time were included in the model. Interaction between

group and time (group x time) was calculated for each variable. Within each group,

paired comparison t tests were calculated to test whether the changes from baseline to

three months, from baseline to six months and from three to six months were

statistically significant. Pearson correlations were calculated for the relationship

between dependent and independent variables .

5.3. Results

Vegetarian Diet Improves Insulin Resistance and Oxidative Stress Markers More

Than Conventional Diabetic Diet in Subjects with Type 2 Diabetes (Appendix 1)

92% of the participants completed the first three months (95% in EG, and 89% in

CG); 84% of participants in each group completed all six months. Adherence to the

prescribed diet at six months was high among 55% participants in EG and 32% in

CG, medium among 22.5% in EG and 39% in CG, and low among 22.5% in EG and

29% in CG. Pedometer readings and self -reported energy expenditure showed no

significant between-group differences. Adherence to the prescribed exercise program

was 85.5% (90.3% in EG and 80.6% in CG).

5.3.1. Dietary intake

Both groups reduced energy intake (p<0.001 for each group). Percentage of consumed

carbohydrates (out of daily caloric intake) increase d in EG (p=0.002). Percentage of

consumed fats decreased in both groups (p=0.03). Percentage of consumed proteins

decreased in EG (p<0.001). Cholesterol intake decreased in EG (p<0.001). For details

of baseline dietary intake and its changes please refer to Appendix 1.

5.3.2. Glycemic control, insulin sensitivity

Diabetes medication was reduced in cases of repeated hypoglycemia in 43% of EG

participants and in 5% of CG participants. HbA1c fell in both groups during the first

12 weeks (p<0.001). It remained reduced after exercise. Decrease from baseline to six
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months was significant only in EG ( -0.65±1%; p=0.002 vs. -0.21±1.1%; ns. in CG),

however the difference between groups was not statistically significant. Metabolic

clearance rate of glucose (MCR) increa sed in both groups during the first 12 weeks

(p<0.001 for each group). After exercise there were insignificant trends toward

increase in EG and toward decrease in CG. MCR increased more in EG from baseline

to six months (by 30% vs. 20% in CG; group x time p=0.04; Fig. 2F).

5.3.3. Body weight and abdominal fat

Body weight decreased in both groups after diet intervention (p<0.001) and it was

maintained after exercise. Weight loss was greater in EG ( -6.2±5.8 kg vs. -3.2±4.5 kg

in CG; group x time p=0.001; Fig. 2A). Waist circumference decreased in both groups

after diet intervention (p<0.001), more in EG ( -6.4±3.5 cm in EG vs. -5.3±3.5 cm in

CG; group x time p=0.001). After exercise it further decreased in EG ( -1.9±3 cm;

p<0.01) whereas it remained unchanged in CG (+0.72±3.8 cm; ns). Volume of

subcutaneous fat decreased in both groups after diet intervention (p<0.001). After

exercise it further decreased in EG by 2% (p<0.05) whereas it insignificantly

increased in CG by 2% (p=0.06; group x time p=0.02; Fig. 2D). Volume of visceral

fat decreased in both groups after diet intervention (p<0.001). After exercise it further

decreased in EG by 4%, whereas it remained unchanged in CG (group x time

p=0.007; Fig. 2E).

5.3.4. Oxidative stress markers

Plasma concentrations of vitamin C increased by 16% in EG after diet intervention

(p=0.002) and remained elevated after exercise whereas changes were not significant

in CG (group x time p=0.002; Fig. 3A). Superoxide dismutase increased in EG in

successive steps by 49% (p<0.001 ) whereas in CG it gradually decreased by 30%

(p<0.001; group x time p<0.001; Fig. 3B). Catalase increased in both groups

(p<0.01). TBARS decreased in both groups (p<0.001). Reduced glutathione increased

in EG gradually by 27% (p=0.02; Fig. 3C) whereas it decreased in CG by 11%

(p=0.05; group x time p<0.001). Glutathione reductase decreased in EG gradually by

42% (p<0.001; Fig. 3D) while glutathione peroxidase increased in CG by 20%
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(p<0.001; Fig. 3E) and glutathione transferase increased in both groups, mo re in CG

(by 59% vs. 14% in EG; group x time p=0.003; Fig. 3F).

Figure 2. Anthropometric Parameters, LDL -cholesterol and Insulin Sensitivity during the Study.

Error bars represent standard error of the mean. P -values for interaction between group a nd time

assessed by repeated measures ANOVA are p<0.001 for Weight (A), p<0.001 for Waist Circumference

(B), p=0.05 for LDL-cholesterol (C), p=0.02 for Subcutaneous Fat (D), p=0.007 for Visceral Fat (E),

p=0.04 for Metabolic Clearance Rate of Glucose (F).
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5.3.5. Adipokines

Plasma concentrations of both total and HMW adiponectin increased in EG by 19%

and 15%, respectively from baseline to six months while it did not change

significantly in CG (group x time p=0.02; Fig. 3G and group x time p=0.05,

respectively). Resistin decreased after diet intervention in EG by 19% and remained

reduced after exercise whereas it did not change in CG first (week 12) and after

exercise it increased by 24% (p=0.01; group x time p=0.005; Fig. 3H). Leptin

decreased similarly in both groups after diet intervention. It increased back in CG

after exercise. Decrease from baseline to six months was significant only in EG (by

35%; p=0.02; group x time p=0.05; Fig. 3I).

5.3.6. Risk factors of atherosclerosis

LDL-cholesterol decreased by 8% in EG after diet intervention (p=0.05) and

remained reduced after exercise while it did not change in CG (group x time p=0.05;

Fig. 2C). HDL-cholesterol increased by 5% in CG from baseline to six months

(p<0.01). It increased by 6% in EG after exerci se training (p=0.02; group x time

p=0.07). Fibrinogen decreased in both groups after exercise training (p=0.02 for EG

and p=0.04 for CG).

5.3.7. Regression analysis, correlations

Regression analysis showed that changes in volume of visceral fat volume wer e

strongly associated with changes in MCR and plasma concentrations of enzymatic

oxidative stress markers; each kilogram of lost visceral fat was associated with an

increase in MCR by 1.2 ml.kg -1.min-1, with an increase in superoxide dismutase by

1.7 U.ml-1 and with an increase in reduced glutathione by 0.9 mmol.l-1. The Pearson's

correlation of MCR change with change in volume of visceral fat was r= -0.63;

p<0.001. Correlation of changes in superoxide dismutase and reduced glutathione

with changes in volume of visceral fat was r=-0.55; p<0.001and r=-0.45; p=0.02,

respectively.
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Figure 3. Plasma Levels of Oxidative Stress Markers and Adipokines During the Study. Error

bars represent standard error of the mean. P -values for interaction between group and ti me assessed by

repeated measures ANOVA are P=0.002 for Vitamin C (A), p<0.001 for Superoxide dismutase (B),
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p<0.001 for Reduced Glutathione (C), p<0.001 for Glutathione Reductase (D), P=0.004 for Glutathione

Peroxidase (E), P=0.003 for Glutathione Transfe rase (F), P=0.02 for Adiponectin (G), P=0.005 for

Resistin (H) and P=0.05 for Leptin (I).

Improvement in β-cell function after Diet-induced Weight Loss is Associated with

Decrease in Pancreatic Polypeptide in Subjects with Type 2 Diabetes (Appendix 2)

5.3.8. Glucose, immunoreactive insulin, C -peptide

Changes in plasma concentrations of glucose , immunoreactive insulin and C -peptide

after standard breakfast are shown in Fig. 4 . Both fasting and stimulated plasma

concentrations of glucose decreased in the first 12 weeks (p<0.001). Further decrease

of glucose after the addition of exercise was sign ificant only at 120 minutes of the

meal test (p=0.04), but the decrease of stimulated plasma concentrations of glucose as

a whole was not significant (p=0.08). Both fasting and stimulated plasma

concentrations of immunoreactive insulin decreased in the fir st 12 weeks (p<0.001).

After the addition of exercise stimulated plasma concentrations of immunoreactive

insulin further decreased (p=0.02) due to decrease in concentrations at 120 and 180

minutes. Both fasting and stimulated plasma concentrations of C -peptide decreased in

the first 12 weeks (p<0.001). After the addition of exercise, stimulated plasma

concentrations of C-peptide further decreased (p=0.01) due to decrease in

concentrations at 120 and 180 minutes.
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Figure 4. Plasma concentrations after standard breakfast at start (circles, dotted line), 12 weeks
(triangles, dashed line), and 24 weeks (sqauares, full line). Error bars represent 95% CIs. P -values: *
p<0.05, ** p<0.01, *** p<0.001. A: Glucose. F(64;2) = 217.6; p<0.001. B: Immunoreactive ins ulin.
F(64;2) = 350.6; p<0.001. C: C-peptide. F(64;2) = 547.7; p<0.001.
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5.3.9. β-cell function

Changes in parameters of β -cell function during the study are shown in Fig. 5 . Insulin

secretion at glucose level 9 mmol/l increased by 33% in the first 12 weeks (p<0.001;

from 184 pmol.min -1.m-2 [95% CI, 169 to 201] to 244 pmol.min -1.m-2 [95% CI, 226 to

264]) and remained unchanged after addition of exercise (244 pmol.min -1.m-2 [95%

CI, 224 to 264]). Glucose sensitivity increased by 26% in the first 12 weeks (p<0.001;

from 42 pmol.min -1.m-2.mM-1 [95% CI, 39 to 46] to 53 pmol.min -1.m-2.mM-1 [95% CI,

49 to 58]) and remained unchanged after the addition of exercise (56 pmol.min -1.m-

2.mM-1 [95% CI, 51 to 61]). Neither rate sensitivity nor excursion of potentiation

factor changed significantly during the study.

5.3.10. Gastrointestinal peptides

The concentrations of gastrointestinal peptides at baseline, week 12 and 24 are shown

in Table 2 in Appendix 2. Fasting plasma concentration of PP decreased by 17% from

start to 12 weeks (p=0.03) and it did not change significantly from week 12 to week

24. Fasting plasma concentration of GIP did not change significantly from start to 12

weeks; however, it decreased by 19% from start to 24 weeks (p=0.002). Fasting

plasma concentrations of oxyntomodulin and PYY did not change significantly during

the study.

After clamp-induced hyperinsulinemia (evaluating all the clamps), plasma

concentrations of GIP decreased by 14% (p=0.02), PYY decreased by 12% (p=0.02),

and PP increased by 20% (p=0.005). Plasma concentrations of oxyntomodulin did not

change after hyperinsulinemia.

Plasma concentration of PP after clamp -induced hyperinsulinemia decreased from

start to 12 weeks (p=0.01). It did not change significantly from week 12 to week 24.

Changes in plasma concentrations of no other chosen gastointestinal peptid e after

clamp-induced hyperinsulinemia were significant.
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Figure 5. Parameters of β-cell function. Error bars represent 95% CIs. P -values: *** p<0.001. A:
Insulin secretion at glucose level 9 mmol/l. F(64;2) = 7.5; p<0.001. B: Glucose sensitivity. F (64;2) =
10.8; p<0.001. C: Metabolic clearance rate of glucose (MCR). F(64;2) = 6.5; p<0.01.
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5.3.11. Correlations between changes in parameters of β -cell function and changes in

gastrointestinal peptides

Changes in insulin secretion at the reference le vel correlated negatively with changes

in plasma concentrations of PP during hyperinsulinemia (r= -0.36; p<0.001; after

adjustment for changes in BMI: r= -0.31; p=0.001; Fig. 6A) and with changes in

volume of visceral fat (r=-0.22; p=0.04). Glucose sensitivi ty correlated negatively

with plasma concentrations of PP - both fasting and during hyperinsulinemia (r= -0.21;

p=0.01 and r=-0.22; p=0.01, respecively; after adjustment for changes in BMI: r= -

0.23; p=0.007 and r=-0.2; p=0.04, respectively; Fig. 6 B and C). No correlation was

found between duration of diabetes and improvement in either parameter of β -cell

function.

Changes in volume of subcutaneous fat correlated positively with changes in fasting

plasma concentrations of PP (r=+0.41; p<0.001) and with chang es in fasting plasma

concentrations of PYY (r=+0.39; p=0.001). Changes in volume of visceral fat did not

correlate with changes in plasma concentrations of any measured gastrointestinal

peptide.
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Figure 6. Correlations between changes in parameters of β-cell function and changes in

gastroitestinal peptides . Full line… the main correlation axis, dotted line…the 95% confidence

ellipsoid. A: Correlation between changes in insulin secretion at 8 mmol/l and changes in plasma

concentrations of pancreatic polypeptide (PP) during hyperinsulinemia; r= -0.36, p< 0.001; B:

Correlation between changes in glucose sensitivity and changes in fasting plasma concentrations of PP;

r=-0.21, p= 0.01; C: Correlation between changes in glucose sensitivity and changes in plasma

concentrations of PP during hyperinsulinemia; r= -0.22, p= 0.01.
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Vegetarian diet improves quality of life and mood more than conventional diet in

patients with type 2 diabetes (Appendix 3)

5.3.12. Quality of life and Beck Depression Inventory

The parameters of quality of life, Beck Depression Inventory and Three -Factor Eating

Questionnaire are shown in Fig. 7 . Quality of life (the OWLQoL score) increased in

both groups comparably in weeks 12 -0. It further increased in VG in weeks 24 -12

while it did not change significantly in CG. Quality of life increased more in VG from

baseline to 24 weeks (group x time p=0.01 ; Fig. 7A). The negative weight-related

symptoms (WRSM) decreased in both groups in weeks 12 -0 and remained reduced in

weeks 24-12 (Fig. 7B). The Beck depression score decreased in both groups in weeks

12-0, but the decrease was significant only in VG from baseline to 24 weeks

(p<0.001; group x time p=0.03; Fig. 7C).

5.3.13. Eating behaviour

Dietary restraint increased in both groups in weeks 12-0, more in CG, and did not

change significantly in weeks 24 -12 in either group (group x time p=0.04; Fig. 7D).

Disinhibition decreased in both groups in weeks 12 -0, but the decrease was significant

only in VG from baseline to 24 weeks ( p<0.001; group x time p=0.01; Fig. 7E).

Feelings of hunger decreased in both groups in weeks 12 -0 with a trend toward a

greater decrease in VG and did not change significantly in weeks 24 -12 in either

group (Fig. 7F).
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Fig.7. Quality of life, Beck Depression Inve ntory and Three-Factor Eating Questionnaire. Data

are means ± 95% Confidence intervals. Significant changes from baseline to 12 weeks and from 12 to

24 weeks for within-group changes assessed by paired comparison t -tests are indicated by * for p<0.05,

** for p<0.01, and *** for p<0.001. Gxt … p -value for the interaction between group (vegetarian and

control group) and time (0,12 and 24 weeks) assessed by repeated measures ANOVA.
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Beneficial effect of a vegetarian diet on the fatty acid profile in me mbrane

phospholipids in subjects with type 2 diabetes (Appendix 4)

5.3.13. Fatty acid composition in serum phospholipids

Relative contents of all measured fatty acids in serum phospholipids at weeks 0, 12

and 24 in both groups are shown in Table 2 in Appendix 4.

N6 polyunsaturated fatty acids (the sum of 18:2n6, 18:3n6, 20:2n6, 20:3n6, 20:4n6

and 22:4n6) did not change in either group in response to dietary interventions. They

decreased after the addition of exercise training in VG (p<0.001) while the tr end

toward decrease in CG was insignificant. There were no significant differences in the

total n-6 polyunsaturated fatty acids between the groups. Patients in the VG exhibited

increased content of linoleic acid (18:2n6) by 10% compared to the CG (group x time

p<0.001; Figure 8A).

N3 polyunsaturated fatty acids (the sum of 18:3n3, 20:5n3, 22:5n3 and 22:6n3) did

not change in VG in response to dietary intervention while there was a insignificant

trend toward an increase in CG. After the addition of exercise , they decreased in VG

(p<0.001) while the trend toward a decrease in CG was insignificant.

Monounsaturated fatty acids (the sum of 16:1n7, 18:1n9, 18:1n7, 20:1n9) did not

change in either group in either period.

Saturated fatty acids (the sum of 14:00, 16:00, 18:00 and 20:00) did not change in

either group in response to dietary interventions. After the addition of exercise both

groups exhibited significantly increased content of saturated fatty acids, mainly the

palmitic acid (16:00). However, stearic a cid (18:00) was decreased in the VG after the

addition of exercise.

The ratio of saturated to unsaturated fatty acids did not change in either group in

response to dietary interventions. After the addition of exercise it increased in VG

(p<0.001) while the increase in CG was not significant.
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The enzymes:

There were no significant changes in fatty acid enzyme activity in response to dietary

intervention in either group. However, after the addition of exercise, decreased

activity of elongase (p<0.01) and increased activity of Δ9 desaturase (p=0.003) were

observed in both groups.

Correlations

In VG, changes in the linoleic acid (18:2 n6) correlated positively with changes in

metabolic clearance rate of glucose (r=+0.22; p=0.04; Fig. 8B) and negatively with

changes in volume of visceral fat (r=-0.43; p=0.01; Fig. 1C). After adjustment for

changes in BMI, the association between linoleic acid and metabolic clearance rate of

glucose was no longer significant. Furthermore, changes in the linoleic acid (18:2 n6)

correlated positively with changes in HDL -cholesterol (r=+0.36; p=0.01). The

correlation between changes in the 18:2 n6 and neither triglycerides, total cholesterol

nor LDL-cholesterol was significant (p=0.07; p=0.08 and p=0.27, respectively).

In CG, changes in the docosapentaenoic acid (20:5 n3) correlated positively with

changes in metabolic clearance rate of glucose (r=+0.2; p=0.05) and negatively with

changes in volume of visceral fat (r=-0.36; p=0.03).
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Figure 8. A: The content of linoleic acid (18:2 n6) in serum phospholipids at start, 12 weeks and  24

weeks. The control group (CG): triangles, full line; the vegetarian group (VG):

circles, dashed line. Error bars represent 95% CIs. P -values: * p< 0.05, *** p< 0.001. Gxt… p value for

interaction group x time. B: Correlation between changes in linoleic acid (18:2 n6) and changes in

MCR (Metabolic clearance rate of glucose) in VG. Full line… the main correlation axis, dotted line…

the 95% confidence ellipsoid. C: Correlation between changes in linoleic a cid (18:2 n6) and changes in

volume of visceral fat in VG. Full line… the main correlation axis, dotted line… the 95% confidence

ellipsoid.
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Vegetarian vs. conventional diabetic diet – a 1-year-follow-up (Appendix 5)

5.3.15. Diet and physical activity

Parameters of dietary intake and pedometer readings are given in Table 1 in Appendix

5. We did not observe any differences between the groups in either parameter.

5.3.16. Oral hypoglycemic agents , which were reduced in 43% of the participants in

V vs. 5% in C during the intervention, had to be increased in 14% (3/21) in V and in

26% (6/23) in C during 1 year after the end of the intervention. Insulin therapy was

started in 5% (1/21) in V and in 13% (3/23) in C (Fig. 9 A).

5.3.17. Body weight, which was reduced more in V during the intervention ( -6.2±5.8

kg vs. -3.2±4.5 kg in C group x time p=0.001), increased (p≤0.05) slightly 6 months

after the intervention in both groups (+1.7±3.1 kg in V and +1.5±3.1 kg in C; group x

time p≤0.05). One year after the in tervention, the trend toward weight gain was not

statistically significant in either group (Fig. 9B).

5.3.18. Waist circumference , which was reduced more in V during the intervention ( -

8.7±4.7 cm vs. -4.7±4.7 cm in C group x time p=0.001), increased 6 months after the

end of the intervention in V (+1.9±2.7 cm; p <0.01), while the trend toward increase

was not statistically significant in C (group x time p ≤0.01). One year after the

intervention, the trend toward increase was not statistically sig nificant in either group

(Fig. 9C).

5.3.19. HbA1c, which was reduced more in V during the intervention ( -0.7±1% vs. -

0.2±1% in C group x time p=0.08), increased 6 months after the end of the

intervention in V (+0.7±0.9 %; p <0.01), while the trend towards an increase was not

statistically significant in C. One year after the int ervention, the increase in HbA1c

was comparable in both groups (+0.49±1.04%; p =0.05 in V vs. +0.42±0.8%; p<0.05

in C; group x time p=0.31; Fig. 9D).

5.3.20. Blood lipids: Hypolipidemic agents were discontinued after the end of the

intervention in 29% patients (6/21) in V and in 0% (0/23) in C. LDL cholesterol,
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which decreased during the study only in V ( -0.2±0.6 mmol/l; p=0.05), did not change

significantly in either group either 6 months or 1 year after the end of the intervention,

although a trend toward an increase was evident in both groups (Fig. 9 E). Total

cholesterol, HDL-cholesterol nor triglycerides changed significantly in either group

either at 6 months or 1 year after the end of the intervention .
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Figure 9. Diabetes medication, anthropometr ic and laboratory parameters during and 1 year
after the intervention. Error bars represent 95% CIs. P -values for interaction between group and time:
* p< 0.05, ** p< 0.01, *** p< 0.001. A: Diabetes medication 1 year after the intervention, B: Weight,
C: Waist circumference, D: HbA1c, E: LDL -cholesterol.

5.4. Discussion

Vegetarian Diet Improves Insulin Resistance and Oxidative Stress Markers More

Than Conventional Diabetic Diet in Subjects with Type 2 Diabetes (Appendix 1)

We found that vegetarian diet increased insulin sensitivity, reduced volume of

visceral fat and improved plasma concentrations of adipokines and oxidative stress

markers more than conventional diabetic diet. Difference between groups enlarged

after addition of exercise. To our best kno wledge this is the first study that uncovered

the effect of vegetarian diet on these parameters after diet intervention and after

addition of exercise. The advantageous effects of vegetarian diet may be partly

explained by weight loss, especially loss of v isceral fat and consequent increase in

insulin sensitivity.

Several possible mechanisms may explain the beneficial effects of vegetarian diet

(120): higher intake of fiber (101), lower intake of saturated fat (and a highe r P/S

ratio) (159), higher intake of non-heme iron and reduction in iron stores (121), higher

intake of vegetable protein in place of animal protein (122), higher intake of

antioxidants (123) and plant sterols (124). Vegetarian diet was reported to reduce

intramyocellular lipid concentrations (160) and this together with the effect on

visceral fat which we observed might be responsible for a substantial portion of the

effect of vegetarian diet on insulin sensitivity and enzymatic oxidative stress markers.

Our data suggest that vegetarian diet leads to a complex improvement of enzymatic

and nonenzymatic oxidative stress markers. Both enzymatic and nonenzymatic

antioxidant defense mechanisms work in synergy against different types of free

radicals (161), which play a major role in the development and progression of

diabetes and its complications (162). The changes we observed in plasma

concentrations of adipokines reflect loss of adipose tissue.
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Reduction of LDL-cholesterol we observed with vegetarian diet is i n concordance

with previous studies where vegetarian diet has been shown to reduce LDL -

cholesterol (137), postprandial lipids (163), and to reverse atherosclerosis progression

(164). Of interest is different dynamics of changes in HDL -cholesterol (although the

difference between groups was not significant): whereas it increased in CG from

baseline to six months with no significant increase in either period, it increased in EG

only after addition of exercise. Previous studies showed no increase or even decrease

in HDL-cholesterol with vegetarian diets, however this decrease is lower than

reduction in LDL-cholesterol. Isolated increase in HDL -cholesterol observed in other

diets does not by far confer the same benefits (165).

The strengths of the study include the parallel design, in which all participants started

simultaneously, allowing the investigators to use weekly meetings in both groups to

encourage further compliance. Providing all meals for the participants and exercising

under professional supervision ensured the best possible compliance. The study

duration was reasonably long allowing sufficient time for adaptation to the diet. The

study investigated several metabolic parameters, the results giving well -matched

pieces of a puzzle, applicable outside the research setting.

We are aware of several limitations of our study. T he number of subjects did not

allow confirming the superior effect of vegetarian diet on HbA1c observed by

Barnard et al. (137). Lower adherence to the prescribed diet in the control group

during the exercise is pointing out to the potenti al weakness of the conventional

diabetic diet: portion size limits may increase feelings of hunger during exercise,

leading inevitably to exceeding of prescribed energy intake limits.

The limited adherence to conventional diabetic diet has been a common problem in

dietary intervention studies for a long time (166),(137). Especially during exercise it

became evident that it is easier to follow vegetarian diet than conventional diabetic

diet. This may be partly responsible for greater reduction in volume of visceral fat and

insulin resistance with vegetarian diet after aerobic exercise.

In conclusion, our results indicate that vegetarian diet is more effective in increasing
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insulin sensitivity, reducing volume of visceral fat and improving plasma

concentrations of adipokines and oxidative stress markers than conventional diabetic

diet. Vegetarian diet could be a more convenient alternative in nutritional therapy of

T2D, especially in combination with aerobic exercise.

Improvement in β-cell function after Diet-induced Weight Loss is Associated with

Decrease in Pancreatic Polypeptide in Subjects with Type 2 Diabetes (Appendix 2)

12-weeks of diet-induced weight loss resulted in improvement of β -cell function

(implicated by increase in both insulin secretion at the reference level and glucose

sensitivity). After the addition of exercise for subsequent 12 weeks the parameters of

β-cell function did not change (although a trend toward increase was observed). This

finding is in accordance with previous work showing that lifestyle intervention with

weight loss has the potential to restore β -cell function in subjects with T2D (167).

Predominant role of reduced β -cell glucose sensitivity and glucose -stimulated insulin

response over insulin resistance in peripheral tissues has been documented in

progression from normal glucose tolerance to diabetes (168). Improvement in β-cell

function, namely the increase in insulin secretion at the reference level and glucose

sensitivity after diet-induced weight loss observed in our study, may be, in light of our

study, a physiological way to possibly reverse diabetes.

The improvement in β-cell function may be related to other potential factors involved

in response to diet-induced weight loss: reduced lipotoxicity, glucotoxicity, oxidative

stress, inflammatory cytokines, adopokines and mediators produced in the liver,

endothelium, central nervous system and gastrointestinal tract.

We observed decrease in both fasting and hyperinsulinemic plasma concentrations of

PP in response to dietary intervention. This is in accordance with the finding that

normalisation of fasting p lasma glucose by short-term treatment with diet plus insulin

is associated with decreases in basal and stimulated secretory activity of the

pancreatic polypeptide cells in type 2 diabetes (169).  Thus, the decrease of PP in our

study may be caused by a decrease in fasting plasma glucose. We suggest that

elevated plasma concentrations of PP may be viewed as a negative marker, in

accordance with the finding that Pima Indians, who have a high risk of type 2
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diabetes, exhibit marked hyperinsuli nemia and elevated plasma levels of PP (170). In

this light, the decrease of PP concentrations in response to dietary intervention in our

study may be perceived positively. In our study, changes in both parameters of β -cell

function correlated negatively with plasma concentrations of PP. The correlations

remained significant after adjustment for chang es in BMI. To our best knowledge this

is a new finding.

In our study, we observed a decrease in fasting plasma concentrations of GIP. GIP,

secreted strongly in response to fat ingestion, plays a role in the translation of

excessive amounts of dietary fat into adipocyte tissue stores (171). Patients with T2D

are resistant to the biological effects of GIP (172). Specific GIP receptor antagonists

improve glucose tolerance and β-cell function by amelioration of insulin resistance in

ob/ob mice (173). These effects are similar to improvements of metabolism after

bariatric surgery in humans (174). The blockade of GIP action offers promise as a

new and potentially important app roach to treat obesity-related diabetes (175). Thus,

it may be that the diet intervention induces cellular changes in the β -cell and the K

cell, which in turn helps to restore normal incretin function. The identification of the

factors that mediate this effect and its related mechanism could not be accomplished

in the current study but represents an area of emerging interest. Collectively, these

observations lead us to suggest that weight loss is an important determinant of

improved β-cell function, improved K cell function, and possibly the cross -talk

between these cells.

We used physiological stimulation by standard mixed meal where insulin secr etory

responses are related to the incretin axis, which allows clinical scientists to study β -

cell function during a physiological postprandial pertubation. A potential weakness of

our study is that due to lack of appropriate inhibitor we did not measure the

concentrations of GLP-1. We realize that alterations in GLP -1 levels may contribute

to the changes we observed in β -cell function. Our analysis did not find any

relationship between β-cell function and GIP as Solomon did (167), but we measured

the fasting plasma concentrations of the gastrointestinal hormones and their

concentrations after clamp-induced hyperinsulinemia, not the concentrations during

the meal test. Diet-induced weight loss involved reduction in volume of both visceral

and subcutaneous fat. Reduction in volume of visceral fat was greater and gradual,



Hana Kahleová, Effective diet against ominous octet

63

with further significant reduction during the exercise period whereas volume of

subcutaneous fat decreased only during the f irst 12 weeks and did not change

significantly after the addition of exercise training. Changes in insulin secretion at the

reference level correlated negatively with changes in volume of visceral fat.  This

finding corresponds well with the recent focus o n ectopic fat accumulation and

lipotoxicity as a possible mechanism of compromising the β -cell function (173). We

may assume that while volume of visce ral fat was reduced as well as ectopic fat in

muscle, liver, cardiomyocytes and β -cells diminished.

Changes in volume of visceral fat did not correlate with changes in plasma

concentrations of any measured gastrointestinal peptide. Changes in volume of

subcutaneous fat correlated positively with changes in fasting plasma concentrations

of PP and PYY. The correlation between changes in the volume of subcutaneous fat

and those in fasting plasma concentrations of PP is a new finding and it is in contrast

to the study by Tong et al. demonstrating an association between PP levels and

volume of visceral fat, but not subcutaneous fat, as measured by CT scan, in healthy

individuals (176).  Regarding PYY, Lien et al. showed decrease in plasma

concentrations of PYY after weight loss but it is not clear whether the decrease in

PYY concentrations was related to loss of visceral or subcutaneous fat (177). On the

other hand, Kim et al. did not prove any correlation between fasting and stimulated

PYY levels and body mass index (178). Further studies are needed to elucidate the

possible relationship between subcutaneous fat and plasma concentrations of PP and

PYY suggested by the results of our study.

In our study, hyperinsulinemic -isoglycemic-clamp-induced hyperinsulinemia resulted

in increased plasma concentrations of PP.  This finding, together with the observed

decrease in plasma concentrations of PP after diet -induced weight loss and

consequent decrease in both fasting and stimulated insulinemia, and togeth er with the

negative correlation of plasma concentrations of PP and insulin secretion at the

reference level and glucose sensitivity of the β-cells, suggests a possible feedback of

insulin secretion and secretion of PP (probably via paracrine signalling): Insulin

secretion might increase secretion of PP and PP would in turn decrease insulin

secretion. The dearth of experimental data at present in this respect does not allow us

to draw any conclusions and leaves this possible physiological regulation
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hypothetical. Also, possible PP resistance and its relationship to insulin resistance

have so far not been described.

In conclusion, after 12 weeks of diet-induced weight loss, β-cell function improved in

T2DM and remained unchanged after addition of exercise for subsequent 12 weeks.

We demonstrate for the first time that these changes are associated with decrease in

PP secretion. Data from this study provide evidence that calori c restriction can

improve β-cell function, insulin resistance, and the role of gastrointestinal hormones,

all of which are imperative in the treatment of T2D. We suggest that PP may play an

important role in mediating the improvement of β-cell function and that combined

diet and exercise interventions provide an effective means to up -regulate gut peptide

function in subjects with T2D.

Vegetarian diet improves quality of life and mood more than conventional diet in

patients with type 2 diabetes (Appendix 3)

Both hypocaloric diets elicited a positive effect on the quality of life and Beck

Depression Inventory (although the average Beck Depression Inventory score of our

patients did not reach the threshold of depressive symptoms). The positive effect was

greater with a vegetarian diet. The positive effect of a vegetarian diet on health -

related quality of life has been shown previously (179). It has been demonstrated that

restriction in meat intake may improve mood (180) and that vegetarian diet is

associated with less negative emotions compared to omnivores (181).

The mechanism by which a vegetarian diet improves mood may partly be explained

by the differences in the rate of neurotransmitter synthesis and receptor dynamics

which has been reported in some studies (182).

The Three-Factor Eating Questionnaire revealed that the dietary restraint increased in

both groups, suggesting an increase in the voluntary control over food intake with the

aim to influence the body weight. The increase was greater in CG , suggesting that the

participants in CG felt more constrained by their prescribed diet than did the

participants in VG. This in accordance with the Barnard’s study showing a less

pronounced dietary restraint with a calorie -restricted vegan diet compared to a

conventional diabetes diet (183). Disinhibition decreased in both groups in response
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to the dietary interventions (weeks 12 -0), but the decrease was significant only in VG

from baseline to 24 weeks, suggesting that the participants in VG were less likely to

overeat e.g. in stressful situations. Feelings of h unger decreased in both groups in

response to the dietary interventions (weeks 12-0) with a trend toward a greater

decrease in VG. This would suggest an easier adherence with a vegetarian diet i n the

long-term.

Generally, the changes in the studied parameters were more marked in response to the

dietary interventions (in weeks 12 -0) and did not change dramatically after the

addition of exercise (in weeks 24 -12). Differences between study groups were

significant despite large inter -individual variations in the studied parameters.

In conclusion, a vegetarian diet led to a greater improvement in the quality of life and

mood.  Patients consuming a vegetarian diet felt less constrained than those

consuming the conventional diet. Disinhibition decreased with a vegetarian diet.

Feelings of hunger decreased in both groups in response to the dietary interventions

with a trend toward a greater decrease in vegetarian group. All these results suggest

that vegetarian diet is sustainable in the long -term and may exhibit desired

improvements not only in physical, but also in mental health, of  patients with type 2

diabetes.

Beneficial effect of a vegetarian diet on the fatty acid profile in membrane

phospholipids in subjects with type 2 diabetes (Appendix 4)

We demonstrated that vegetarian diet increases the content of linoleic acid (18:2 n6)

in serum phospholipids. Increased content of linoleic acid (18:2 n6) was associated

with increased insulin sensitiv ity in VG. This result is in accordance with previous

research showing the beneficial effects of increased content of linoleic acid in serum

phospholipids on insulin action (150,184).  It suggests that increased content of

linoleic acid (18:2 n6) may be a potential mechanism of the insulin -sensitizing effect

of a vegetarian diet.

According to the metabonomic research, linoleic and palmitic acids belong to the

metabolites which were identified as potential biomarkers for diabetes mellitus (185).
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In a cohort of middle-aged normoglycemic men (n = 895) in a Finnish prospective

cohort study with follow-up after 4 years, men with a high proportion of linoleic acid

in plasma fatty acids, indicating a high intake of dietary linoleic acid, had a lower risk

of developing diabetes and showed lower increases in serum insulin and blood

glucose over the follow-up period. This is comparable with earlier findings (186) and

is also in line with dietary epidemiology (187), which indicated that individuals with a

low proportion of linoleic acid or vegetable fat in the diet have an increased r isk of

developing type 2 diabetes.

Content of linoleic acid in plasma lipids has also been directly related to other

features of the metabolic syndrome, particularly plasma lipid concentrations and

blood pressure. The increase in the proportion of linolei c acid (18:2n-6) in serum

phospholipids corresponded with decreases in serum cholesterol (188) and was

inversely related to the incidence of hypertension (189). Low proportion of linoleic

acid predicted the development of left ventricular hypertrophy (190). Furthermore, the

content of linoleic acid was positively related to an endothelial function index.

Endothelial dysfunction may represent a possible link between diet, fatty acid profile

in plasma, sustained hypertension and left ventricular hyper trophy (191). In our study,

we confirmed a positive association between changes in the content of linole ic acid in

serum phospholipids and plasma HDL -cholesterol.

After adjustment for changes in BMI the association between linoleic acid and insulin

sensitivity was no longer signifi cant. Nevertheless, the participants in CG who also

reduced weight in response to the dietary intervention did not exhibit the increase in

the content of linoleic acid. Therefore, the effect of increased content of linoleic ac id

on insulin sensitivity cannot be explained by weight loss alone. It may be directly

linked to specific effects of vegetarian diet and the loss of association after the

adjustment for changes in BMI could be explained by a small number of study

subjects. But it is also possible that the increase in the content of linoleic acid may be

directly related to changes in BMI (since BMI decreased more in VG compared to

CG). Also, there is potential for other factors to confound this association

(dyslipidemia, oxidative stress, inflammation, endothelial dysfunction etc.).
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In CG, changes in insulin sensitivity and visceral fat were associated with changes in

docosapentaenoic acid (22:5 n3). An increase in the content of the docosapentaenoic

acid in muscle lipids af ter very low calorie diet was described previously (192). C22:5

n3 was the only long-chain polyunsaturated n3 structural fatty acid that correlated

with insulin sensitivity in patients with coronary artery disease (193). It cannot be

ruled out, therefore, that C22:5 n3 may play a role in insulin action in the present

setting. However, caution is needed in drawing clear-cut conclusions because C22:5

n3 is found in small amounts in serum phospholipids.

There was no significant change in either saturated , monounsaturated, n3- or n6-

polyunsaturated fatty acids as a whole in response to dietary intervention. In this

regard, there was no significant difference between the groups.

Another factor we studied was the addit ion of physical exercise. The decrease in the

content of arachidonic acid in VG after the addition of exercise is remarkable. Since

arachidonic acid is the precursor of the proinflammatory prostaglandins, leukotriens,

thromboxane A2, and prostacyclin , its decrease may have beneficial effects o n

inflammation, thrombogenesis and vasoconstriction.

The increase in saturated fatty acids in both groups during the exercise training,

namely myristic (14:00) and palmitic acid (16:00), is in accordance with some

experimental studies showing increase in the content of saturated fatty acids in the

membrane phospholipids in response to physical exercise which has been explained

by the increase of the membrane stability and reduced lipoperoxidation (194).

The limitations of our study are that 16% of the patients did not complete the study.

We also measured all fatty acids only as proportions of total fatty acids.

In conclusion, we showed that vegetarian diet increased the content of linoleic acid in

serum phospholipids and its changes were associated wi th changes in insulin

sensitivity and visceral fat. The results support the hypothesis that the insulin -

sensitizing effect of vegetarian diet may be mediated by changes in fatty acid pattern

in serum phospholipids in subjects with T2D. This is in accordanc e with previous
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consensus that the changes in fatty acid composition may play a role in the

modulation of insulin action in peripheral tissues.

Vegetarian vs. conventional diabetic diet – a 1-year-follow-up (Appendix 5)

In spite of the diminution of benefit 6 months after the end of the intervention, the

positive effects of a vegetarian diet compared to a conventional hypocaloric diet were

still persisting 1 year after the end of the intervention with regards to body weight and

waist circumference, although the patients did not continue in their originally

assigned diets and they consumed a comparable diet for 1 year after the end of the

intervention (although it is possible that some vegetarian participants may have

maintained some of the healthful dieta ry habits they adopted during the intervention).

Blood lipids did not change significantly in either group while the hypolipidemic

agents were discontinued in almost one third of the patients originally assigned to a

vegetarian diet. HbA1c increased compar ably in both groups while oral hypoglycemic

agents were increased and insulin therapy was started almost twice as much in

patients originally assigned to a conventional diabetic diet.

Our results indicate a partial persistence of the positive effects of a vegetarian diet

compared to a conventional hypocaloric diet 1 year after the end of the intervention.

This effect cannot be explained by differences in either diet or physical activity. A

possible mechanism of this observation could be the so -called metabolic memory

(195,196) although we did not measure oxidative stress markers or advanced

glycation end products during the post -trial monitoring to support this hypothesis. Our

study showed that even a short -term lifestyle intervention elicits marked positive

effects in a longer term in patients with type 2 diabetes. One year after the end of a 6-

months-intervention, the beneficial effects of a vegetarian diet compared to a

conventional diet were partially maintained.

5.5. Summary of main outcomes

Vegetarian Diet Improves Insulin Resistance and Oxidative Stress Markers More

Than Conventional Diabetic Diet in Subjects with Type 2 Diabetes (Appendix 1)
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43% of EG and 5% of CG participants reduced diabetes medication. Body weight

decreased by 6.2±5.8 kg in EG and by 3.2±4.5 kg in CG (interaction group x time

p=0.001). Insulin sensitivity increased more in EG (by 30% vs. 20% in CG,

interaction group x time p=0.04). Visceral and subcutaneous fat decreased more in

EG (interaction group x time p=0.007 and p=0.02, respectively). Plasma adiponectin

increased in EG (p=0.02); leptin decreased in EG (p=0.02 ). Vitamin C, superoxide

dismutase and reduced glutathione increased in EG (p=0.002, p<0.001 and p=0.02,

respectively). Difference between groups enlarged after exercise. Changes in insulin

sensitivity and enzymatic oxidative stress markers correlated with changes in visceral

fat.

Improvement in β-cell function after Diet-induced Weight Loss is Associated with

Decrease in Pancreatic Polypeptide in Subjects with Type 2 Diabetes (Appendix 2)

Both insulin secretion at the reference level and glucose sensitivity increased in weeks

0-12 (by 33±54% and by 26±53%, respectively, p<0.001) and remained unchanged in

weeks 12-24. Plasma concentrations of pancreatic polypeptide (PP) decreased in

weeks 0-12 (p<0.05) and did not change significantly in weeks 12 -24. Changes in

parameters of β-cell function correlated negatively with plasma concentrations of PP.

Vegetarian diet improves quality of life and mood more than conventional diet in

patients with type 2 diabetes (Appendix 3)

Both diets elicited a positive effect on the quality of life , mood and eating behaviour,

however the positive effects of a vegetarian diet were greater.

Beneficial effect of a vegetarian diet on the fatty acid profile in membrane

phospholipids in subjects with type 2 diabetes (Appendix 4)

Linoleic acid (18:2n6) increased in EG (p=0.04) while it decreased in CG (p=0.04) in

response to dietary interventions. In EG, changes in 18:2n6 correlated positively with

changes in MCR (r=+0.22; p=0.04) and negatively with cha nges in visceral fat (r=-

0.43; p=0.01).
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Vegetarian vs. conventional diabetic diet – a 1-year-follow-up (Appendix 5)

Neither weight nor waist circumference changed significantly in either group. HbA1c

increased (p≤0.05) similarly in both groups.

5.6. Conclusions

Insulin sensitivity increased more with vegetarian diet. Vegetarian diet led to a greater

reduction in visceral fat and greater improvement in plasma concentrations of

adipokines and oxidative stress mark ers. Differences between groups enlarged after

addition of exercise. After diet -induced weight loss, β-cell function improved in T2D

subjects and remained unchanged after the addition of exercise. We demonstrate for

the first time that these changes are as sociated with a decrease in PP secretion. Both

diets elicited a positive effect on the quality of life , mood and eating behaviour,

however the positive effects of a vegetarian diet were greater. We demonstrated that

the insulin-sensitizing effect of vegeta rian diet might be related to the increased

proportion of 18:2n6 in serum phospholipids. 1 year after the end of the intervention,

the positive effects of a vegetarian diet compared to a conventional diet were partially

maintained.
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Abbreviations:

BMI… body mass index

CG… control group

CI… confidence interval

EG… experimental group

GIP… glucose-dependent insulinotropic polypeptide

GLP-1… glucagon-like peptide-1

group x time… interaction between group and time (ANOVA)

HbA1c… glycated hemoglobin

MCR… metabolic clearance rate of glucose

OWLQoL… Weight-Loss Quality-of-Life Questionnaire

PP… pancreatic polypeptide

P/S ratio… ratio of polyunsaturated to saturated fatty acids

PYY…peptide tyrosine–tyrosine

T2D… type 2 diabetes

WRSM… Weight-Related Symptoms Questionnaire
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