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Autor: Jǐŕı Sedlář
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1. Introduction

Imaging technologies are an indispensable tool for examination of samples in bi-
ology, physics and medicine. Their rapid development has allowed observation of
previously unobservable image data. In current practice, however, most of the
acquired image data are evaluated visually, with use of image methods only for
preprocessing and visualization. Development of automatic methods for evalua-
tion of such image data would not only decrease demands on evaluators’ time but
also increase precision and consistency of results, and thus increase effectiveness
of the evaluation process.

New imaging technologies have allowed acquisition of previously unobservable
details and processes. Progress of research in physics, optics and computer science
has led to significant increase in feasible spatial and temporal resolution as well
as to development of a number of new imaging technologies. Microscopy, for
example, has allowed observation of samples in very high resolution. High-speed
imaging, in another example, has allowed observation of very fast processes. The
fact that such image data cannot be observed directly makes their interpretation
more difficult; the evaluation process usually requires prior information about
known properties of the observed sample or process.

Evaluation of biomedical image data is usually quite complex. The visual
evaluation process is often time-consuming and tedious, and thus prone to er-
ror. Moreover, it is subjective and inconsistent, since the results may differ for
different evaluators and even for different evaluations by the same evaluator. Vis-
ual evaluation also limits the precision of results. Automation of the evaluation
process could increase its efficiency, accuracy and consistency.

Demand for automatic image processing methods has been increasing with
development of new imaging technologies. Imaging technologies have rapidly
developed recently, while their decreasing costs have increased their availability.
With progressively improving parameters of imaging technologies, namely higher
resolution and faster acquisition time, the production of image data has been
growing exponentially; for example, the amount of medical image data alone is
estimated to constitute one third of the overall amount of all data [49]. Visual
evaluation is not sufficient for such amounts of image data, so development of
new automatic evaluation methods is of great interest.

Accuracy of automatic evaluation methods is limited by variability of observed
data and precision of acquisition techniques. Real data, particularly in biology
and medicine, are quite variable. Evaluation of such data should thus use prior
knowledge about their parameters to a limited extent; the evaluation methods
should be able to deal with images of samples with unusual parameters. Corre-
spondence between real and acquired image data is limited by properties of the
imaging device. Precision of digital image data is limited by diffraction, which
restricts acquisition of high frequencies; this complicates mainly observation of
very small objects and very fast processes. Moreover, accuracy of acquired data
is distorted by noise. Type and level of noise in image data depends mostly on
parameters of the imaging device and on acquisition conditions. High levels of
noise can lead to imprecisions or errors in evaluation. Due to these limitations,
methods for evaluation of real image data cannot be errorless.
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In biomedical practice, image processing methods [5, 22] are often used as a
preprocessing step for visual evaluation or in combination with subsequent vis-
ual verification. High complexity and variability of image data, particularly in
medicine and biology, makes full automation of the evaluation process difficult.
Accuracy of evaluation results is often critical, especially if errors in evaluation
would lead to serious consequences, e.g. for the health of the examined patient.
Results of automatic evaluation are thus usually visually verified by experts. Ex-
perts can also adaptively modify parameters of the automatic method and cor-
rect the results if necessary. This approach combines efficiency of the automatic
method with knowledge and experience of experts. It can also significantly reduce
demand on experts’ time and effort and possibly increase accuracy of evaluation
results.

1.1 Objectives

The objective of this research was to develop methods for automatic processing
of specific biological, medical and physical image data that have been thus far
evaluated mostly visually.

The Thesis focuses on three image processing projects recently researched at
the Department of Image Processing of the Institute of Information Theory and
Automation of the Academy of Sciences of the Czech Republic, and describes
the developed methods. The first project aims to reconstruct light microscopy
images of growing settled filamentous specimens in intervals between consecutive
observations, the second project measures salient elliptical particles in atomic
force microscopy images, and the third project computes parameters of vocal
fold vibrations in videokymographic images. In all three cases, the data—due to
their small size or high temporal frequency—cannot be observed without special
imaging technologies. Motivation and objectives of the respective projects are
introduced in Subsections 1.1.1, 1.1.2, and 1.1.3.

1.1.1 Reconstruction of the growth of filamentous speci-
men over time

The first project addresses the problem of missing information about the growth
of microorganisms in intervals between consecutive observation sessions. This is a
common issue in phytopathology, where examined microorganism have to be cul-
tivated separately in optimal conditions and their growth is thus documented usu-
ally in sparsely repeated observation sessions. However, the documented growth
pattern is often incomplete because the intervals between consecutive sessions are
relatively long. The objective of this project was to develop a method that would
reconstruct light microscopy images of settled filamentous specimens, namely Al-
ternaria sp. and Fusarium oxysporum (see Section 2.4), corresponding to intervals
between consecutive observation sessions.

Sparsity in documentation of growing microorganisms in phytopathology is
caused by special requirements on cultivation conditions and by complexity of
the documentation process. Most phytopathogenic microorganisms need special
environmental conditions, particularly temperature and humidity, for cultivation.
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(a) first observation (b) second observation

(c) reconstructed image

Figure 1.1: (a, b) Light microscopy images of a Fusarium oxysporum f.sp. pisi
specimen acquired at two consecutive observation sessions. (c) A reconstructed
image corresponding to 3/5 of the interval between the two sessions.

However, the temperature range of current life-imaging systems with controlled
environment parameters is mostly inconvenient for phytopathogenic fungi. The
microorganisms are thus cultivated separately, in special conditions, and repeat-
edly fetched for microscopical documentation. The documentation process is
complex and quite demanding. In each observation session, the examiner has
to fetch the analyzed specimens from the cultivation environment, place them
sequentially under the microscope, position them appropriately, focus the objec-
tive, photograph them1, return them to their cultivation environment, save the
acquired images and describe them properly, including the time and parameters
of acquisition and the label of each specimen. The process is time-consuming and
laborious, so the intervals between consecutive sessions are often relatively long.
As a result, the documented growth pattern may be incomplete.

Reconstructed images showing the gradual growth of phytopathogenic micro-
organisms between consecutive sessions could be used for computation of their
growth parameters as well as for smooth visualization of their development. Phy-
topathogenic fungi cause severe plant diseases, which can significantly decrease
production of many economically important crops, so detailed understanding of
the growth pattern could increase effectiveness of plant disease control.

The reconstruction problem has not been satisfactorily addressed. The current
approach in biology is development of life-imaging systems that allow continuous
observation of phytopathogenic fungi in convenient environment conditions. The
systems are, however, quite expensive. Moreover, this approach requires cultiva-

1 If the specimen is thicker that the depth of field, it is photographed in several focal lengths,
which can be later digitally fused into one all-focus image.
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tion, observation and documentation of new specimens instead of using available
sparsely documented data. The current software approach is based on description
of the specimen by a geometrical model and visualization of its simulated growth
by rendering techniques. It constructs the model according to prior information
about morphology and growth pattern of the specimen and adapts its parame-
ters according to specific data. The growth of settled biological specimens such as
fungal pathogens [40] has been successfully modeled by L-system grammars [35]
The synthesized images, however, appear artificial.

The objective of this research project was to reconstruct the missing images
without significant artifacts from microscopy images acquired at observation ses-
sions, i.e. without additional observations. The method should use information
about known parameters of observed specimens. The project focused on light
microscopy images of settled filamentous specimens, e.g. filamentous fungi and
oomycetes; they grow by elongation of their filaments while the shape of already
developed parts does not change. The method should be able to reconstruct im-
ages corresponding to arbitrary times within intervals between observation ses-
sions and thus gradually visualize the growth. The reconstructed images should
not contain artificial deformations that would lead to false conclusions about
properties of the biological specimen.

The developed method geometrically transforms images acquired at two con-
secutive observation sessions. It computes a growth model that estimates the
trajectory of salient control points during the interval. The method, however,
reconstructs the missing images directly from the acquired images, and thus out-
performs the rendering-based methods. The method computes the morphological
skeleton of the shape of the segmented specimen in the images from consecutive
observation sessions. Then it selects a number of corresponding control points on
the skeletons. The method then tracks the movement of the control points along
the morphological skeleton during the interval between the sessions; it utilizes
the prior knowledge that the specimen grows by elongation of its filaments. For a
arbitrary time within the interval, the method geometrically transforms the tem-
porally closer image by mapping the positions of its control points to positions
corresponding to the time. The result is a sequence of reconstructed light mi-
croscopy images showing the gradual growth of the specimen during the interval
between the two sessions. Chapter 2 describes the method in detail.

1.1.2 Measurement of elliptical particles in atomic force
microscopy images

The second project addresses the problem of detection and measurement of
nanoparticles in atomic force microscopy (AFM) images. This is a common task
in physics since the distribution of particle sizes indicates various properties of the
analyzed material. Manual measurement of particles in AFM images is, however,
time-consuming and inconsistent. The objective of this project was to develop
an automatic method that would detect salient ellipsoidal particles in atomic
force microscopy images, namely of phenylpyridyldiketopyrrolopyrrole (PPDP)
samples, and measure their average length and width.

Surface topography in AFM images is distorted by several factors. Atomic
force microscopy estimates topography of solid-body surfaces by measuring in-
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(a) AFM image (b) automatic measurement

Figure 1.2: (a) Atomic force microscopy (AFM) image of a phenylpyridyldike-
topyrrolopyrrole (PPDP) sample. (b) Automatically detected shapes of particles.

teractive forces between the surface and a scanning tip. The observed image is a
convolution between the surface and the tip; this means that objects smaller than
the tip appear significantly distorted. The shape of the tip is usually unknown
and may even change during measurements. Moreover, atomic force microscopy
is highly sensitive to noise, so the acquired images contain noise artifacts. These
distortions complicate analysis of AFM images.

The average length and width of PPDP particles in AFM images characterize
physical properties of the sample. PPDP is a perspective organic semiconducting
material used for hydrogen sensors. Deposited layers od PPDP contain similarly
sized, mostly spatially separated ellipsoidal particles. PPDP particles are rela-
tively large in comparison to the scanning tip, so their surface can be observed by
AFM with relatively little deformation. Lateral size distribution of particles in a
sample determines its properties. Using the prior knowledge about ellipticity and
little size variation of PPDP particles, the properties of PPDP samples can be
effectively estimated just from the average length and width of particles in AFM
images.

Manual measurement of PPDP particles in AFM images is inconvenient for
practical use. AFM images of PPDP samples typically contain hundreds to thou-
sands of particles. The physicist thus usually measures just a small subset of
particles and computes the average lateral length and width from them. This,
however, decreases accuracy of measured results; moreover, the manual measure-
ment process remains time-consuming and tedious. Manual measurements are
also imprecise and inconsistent: the measured average length and width depend
on which particles and how accurately were measured. The results of manual
measurement in an AFM image may thus differ not only for different evaluators
but also for different measurements by the same physicist. Automation of the
measurement process would increase its speed, accuracy and consistency.

Existing methods for automatic processing of AFM images are inconvenient
for measurement of PPDP particles. Most methods for segmentation of particles
in AFM images are quite sensitive to noise. Although the noise artifacts can be
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suppressed [60], the segmented particles are often distorted [51] as the methods
do not use prior information about their real shape. Methods using prior infor-
mation about topography of scanned samples are usually designed for samples
with densely packed particles [11] and thus cannot be used for segmentation of
PPDP particles.

The objective of this project was to automatically detect salient ellipsoidal
particles in AFM images and measure their lateral length and width. The method
should use prior information about known properties of the scanned material to
compensate for limitations of the imaging technique; the project focused specif-
ically on AFM images of PPDP samples. The method should be robust to dis-
tortions typical of AFM images. It should measure only salient particles because
neither partially occluded particles nor particles significantly distorted by noise
artifacts can be measured with high accuracy. Results of the method, namely the
average measured lateral length and width, should be statistically comparable
with results of manual measurements.

The developed method detects salient ellipsoidal particles by watershed seg-
mentation and approximates their shapes by ellipses. To increase accuracy of
results, it does not measure partially occluded or otherwise distorted particles.
The method first both smooths topography and suppresses high-frequency noise
in the AFM image by convolution with a Gaussian mask. Then it roughly seg-
ments particles by watershed transform and removes particles intersecting water-
shed lines because such particles are probably partially occluded. The method
approximates the shapes of particles in watershed regions by ellipses; it computes
parameters of the approximating ellipses by image moments. Then it approx-
imates topography of each separated particle by the upper half of an ellipsoid
above the approximating ellipse, and removes non-ellipsoidal particles, which usu-
ally correspond to particles distorted by noise artifacts, vertically tilted particles
and partially occluded particles not separated by the watershed transform. The
method estimates the lengths and widths of ellipsoidal particles by the major
and minor axes, respectively, of corresponding approximating ellipses. Finally, it
respectively averages the estimated lateral lengths and widths of particles in the
analyzed AFM image. Chapter 3 describes the method in detail. The automatic
method was tested on AFM images of PPDP samples (see Figure 1.2); its results
were comparable with results of manual measurements.

1.1.3 Measurement of vocal fold vibration parameters in
videokymographic images

The third project addresses the problem of evaluation of vocal fold vibration
parameters in videokymographic images (videokymograms). Videokymography
(VKG) is a high-speed imaging technique for observation of fast movements.
Accurately evaluated parameters of vibratory patterns in videokymograms can
be used in laryngology and phoniatrics for diagnosis of voice disorders. In current
practice, clinicians evaluate videokymograms of vocal fold vibrations visually; the
visual evaluation process is, however, time-consuming, and its results are often
inconsistent. The objective of this project was to develop automatic methods
that would detect important vocal fold vibration features in videokymograms
and compute corresponding vibration parameters.
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(a) videokymogram (b) vibration features

Figure 1.3: (a) Videokymogram of vocal fold vibrations. (b) Automatically de-
tected vibration features.

Videokymography is a novel imaging technique used for examination of vocal
fold vibrations [58]. Videokymographic camera is a specially adapted video cam-
era that scans frames in only one row but with frequency c. 8000 Hz. This allows
observation of very fast processes, including vibrations of vocal folds. The ac-
quired videokymogram is a spatiotemporal image composed of consecutive scans
of the row. A videokymogram of vibrating vocal folds shows gradual movements
of vocal folds along the scanned row. It contains a number of well-defined features
that determine various parameters of vocal fold vibrations. The parameters are
examined in laryngology and phoniatrics for purposes of voice disorder diagnos-
tics.

Evaluation of videokymograms is quite complex. The VKG evaluation sheet
[59] defines parameters describing various properties of the vibratory pattern.
In current practice, clinicians estimate the value or category of each parameter
visually from the videokymogram. The evaluation process is, however, time-
consuming and tedious, since the sheet contains a number of parameters. The fact
that videokymograms are artificially composed, spatiotemporal images further
complicates their evaluation. For most parameters, the evaluator just selects
one of predefined categories instead of computing the exact value, which limits
the accuracy of results. Results of visual evaluations are often inconsistent since
they may differ even for the same evaluator over time [15]. Development of
automatic evaluation methods would increase precision and consistency of results
and decrease demand on evaluators’ time. Results of automatic evaluation could
be straightforwardly verified by clinicians and compared with results of visual
evaluations.

Automation of the evaluation process has not been satisfactorily solved. Low
contrast and high level of noise, as well as irregularities in periodicity of vocal fold
vibrations complicate automatic processing of videokymograms. In 2003 Qiu et
al. [36] introduced an algorithm for detection of glottal contour, i.e. the boundary
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of rima glottidis, by Otsu’s bi-thresholding [34] and active contour fitting, and an
algorithm for quantification of corresponding vibration parameters by measure-
ment of periodical structures in the signal. In 2006 Manfredi et al. [29] developed
an algorithm for approximation of glottal contour by active contours. In 2008
Jiang et al. [23] proposed a curve-fitting algorithm for detection of the trajecto-
ries of upper and lower vocal fold lips, which determine the glottal contour. In
2010 Zhang et al. [67] introduced a method for segmentation of rima glottidis by
Lagrange interpolation, differentiation, and Canny’s edge detection. In the same
year Hauzar [17] developed methods for hierarchical extraction of rima glottidis
features from videokymograms. In 2011 Zita [68] proposed a method for detec-
tion of mucosal waves in videokymograms of healthy vocal folds, which uses the
extracted rima glottidis features. The algorithms are, however, sensitive to irreg-
ularities and other pathologies of the vibratory pattern, as well as to noise and
low contrast in videokymographic images. Moreover, the problem of automatic
computation of vibration parameters in the VKG evaluation sheet from features
in videokymograms has been addressed only in 2012 [44].

The objective of this project was to automatically detect important vocal fold
vibration features in videokymograms and evaluate corresponding parameters in
the VKG evaluation sheet. The methods should focus on vibration parameters
defined by the shape of rima glottidis and also on trajectories of mucosal waves.
The methods should be applicable to videokymograms of not only physiologic
vibratory patterns but also patterns corresponding to various types and degrees
of voice disorders. Results of the automatic evaluation should be comparable
with results of visual evaluations.

The developed methods detect specular reflections, the shape of rima glottidis
and directions of mucosal waves, as well as vibration features (see Figure 1.3),
and evaluate corresponding vibration parameters in the VKG evaluation sheet.
One method detects specular reflections on vocal folds by thresholding and re-
gion growing, and removes them by diffusion from outer boundaries. Another
method segments the shape of rima glottidis by thresholding based on graph
cuts in combination with binary morphology and column operations. Another
method detects the shape of mucosal waves by Fourier transform. Combination
of these methods with existing detection methods can increase accuracy of re-
sults, especially for vibratory patterns corresponding to various voice disorders.
The last method computes glottal vibration parameters in the evaluation sheet
from glottal features extracted from the computed rima glottidis shape using the
algorithm developed by Hauzar [17]. Chapter 4 describes the developed methods
in detail. Performance of the automatic methods was tested on a representative
set of videokymograms covering a wide range of vibratory patterns. The results
were comparable with results of visual evaluations.
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1.2 Contribution

This section summarizes main contributions of the Thesis. The developed meth-
ods successfully solved objectives of the researched projects. Their performance
was tested on real data; the results were comparable with ground truth or results
of visual evaluations. Moreover, the results can be straightforwardly verified by
experts or combined with results of visual evaluation. Although the methods
were designed for specific type of data, they can be applied generally to any data
with similar properties.

The method developed in the first project (see Subsection 1.1.1) enables ex-
amination of gradual growth of settled filamentous specimens from light mi-
croscopy images acquired at sparse observation sessions. It thus avoids the
need for expensive continuously monitoring systems convenient for cultivation
of phytopathogenic fungi. The main contribution was development of a new
growth-tracking method that simulates elongation of filaments by elongation of
the morphological skeleton. Straightforward extension of points on the skeleton
to object boundary defines control points for geometrical transformation of the
temporally closer image to an image representing an arbitrary time within the
interval between observations.

The method created in the second project (see Subsection 1.1.2) enables au-
tomatic detection and measurement of ellipsoidal particles in atomic force mi-
croscopy (AFM) images. The method can be used instead of—or in combination
with—manual measurements: it increases not only efficiency of the measurement
process but also consistency and precision of results. The main contribution was
development of an algorithm that approximates the shape of particles by ellipses
and thus makes the segmentation robust to high-frequency noise. The method
also allows reconstruction of the topography of ellipsoidal particles in AFM im-
ages without the scanning tip convolution.

The methods developed in the third project (see Subsection 1.1.3) enable au-
tomatic detection of important vocal fold vibration features in videokymographic
(VKG) images and measurement of corresponding vibration parameters. The
methods can be used—in combination with verification and visual evaluation of
other parameters—for medical examination of vocal folds and diagnosis of voice
disorders. The automatic methods increase efficiency, precision and consistency
of the evaluation process. The main contributions include development of a new
methods for detection and removal of specular reflections, segmentation of the
shape of rima glottidis, detection of mucosal waves by Fourier transform, and
automatic evaluation of both numerical values and evaluation sheet categories of
vocal fold vibration parameters. The evaluation method enables comparison of
automatic and visual evaluations by categories in the VKG evaluation sheet.

The rest of the Thesis is organized as follows: Chapters 2, 3, and 4 describe
the respective projects and detail the developed methods; Chapter 5 summarizes
results and contributions of the Thesis, and outlines possible future perspectives.
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2. Reconstruction of the growth
of settled filamentous specimens
in light microscopy images

Abstract:
This chapter presents a new method for reconstruction of light microscopy

images of settled filamentous specimens, such as fungi and oomycetes, within
intervals between observations. In phytopathology, growing microorganisms are
usually observed repeatedly in a defined time sequence, leaving intervals between
consecutive observation sessions undocumented. The objective of this project was
to develop a method that would reconstruct images of the microorganisms during
the intervals. The proposed method is based on warping of the available images
by thin-plate splines; it estimates parameters of the geometric transformation by
tracking of the growth of filaments in length along their morphological skeletons.
The developed method was tested on real data; the comparison showed little
difference between the reconstructed images and ground truth.

Keywords: filamentous fungi, growth tracking, image warping, morphologi-
cal skeleton, thin-plate splines

2.1 Introduction

Phytopathogenic fungi cause severe diseases of economically important crop plants.
Detailed understanding of their growth pattern could lead to increased effective-
ness of the disease control. Their development is usually documented in tempo-
rally sparse observation sessions. The objective of this project was to develop
a method for reconstruction of light microscopy images of settled filamentous
specimens corresponding to the undocumented intervals.

In phytopathology, the growth of microorganisms is usually examined in obser-
vation sessions (see Figure 2.1), leaving the intervals between consecutive sessions
undocumented (see Figure 2.2). Equipment for continuous monitoring of spec-
imens by light microscopy over long periods of time is not only expensive, but
also inconvenient for use in phytopathology: although life-imaging microscopy
systems with controlled environment parameters have been introduced, they are
adapted mostly for human and animal cells research, with temperature range1

RT-55 ◦C inconvenient for phytopathogenic fungi. Such specimens are thus culti-
vated separately in optimal conditions and observed repeatedly in a defined time
sequence.

The time sequence of acquired images lacks information about gradual changes
in the shape of the examined specimen. In practice, the intervals between con-
secutive sessions are usually relatively long with respect to the speed of growth of
the specimens; this is often deliberate because the manual documentation process
is laborious and time-consuming. The missing parts of the growth pattern may
be important for the purpose of the study, however.

1 RT denotes room temperature.
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Figure 2.1: Fused light microscopy images of an Alternaria sp. specimen acquired
at consecutive observation sessions.

Figure 2.2: Light microscopy images of an Alternaria sp. specimen acquired at two
consecutive observation sessions showing the growth of a hypha from a conidium.
Gradual elongation of the hypha during the interval between sessions was not
documented.

The problem of incomplete growth pattern can be solved by two approaches.
The pattern could be completed by adding new observations so as to shorten
the length of intervals. However, as the growth of each microorganism is unique,
this would require new experiments with appropriately short intervals. The prob-
lem can be solved by reconstructing images corresponding to the intervals from
the available images. The reconstruction process consists of two steps: growth
modeling and visualization.

The first reconstruction step constructs a geometric model of the growth of
a specimen. The growth of settled biological specimens such as plants [48] and
fungal pathogens [40] has been successfully modeled by L-system grammars [35];
L-systems are, however, convenient for synthesis of artificial specimens rather
than for reconstruction of real images. The method proposed in this chapter
computes a growth model that estimates the trajectory of salient control points
over the interval directly from the acquired images.

Tracking of control points has to preserve the growth pattern of the specimen
over the whole interval. Most methods that track control points directly on object
boundaries, such as active contours [65], do not preserve the anisotropic growth
pattern of microorganisms. They significantly distort positions of control points
on curved boundaries, so the estimated trajectories are inaccurate. The resulting
warped images thus contain unnatural deformations of curved filaments; these
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errors can lead to false estimates of the growth pattern. The proposed method
tracks control points along the morphological skeleton (see Subsection 2.2.1) of
the specimen, instead.

The second reconstruction step visualizes the computed growth model for
arbitrary times within the interval. There are principally two visualization tech-
niques: image rendering and image warping. Whereas images synthesized by
standard rendering methods appear artificial, warped images preserve the natu-
ral appearance of real images. The visualization step in the presented method is
based on image warping.

Image warping can geometrically transform an image from either of the two
consecutive sessions to correspond to an arbitrary time within the interval be-
tween them. The gradual growth of the specimen over the whole interval can be
visualized by a sequence of warped images representing successive time frames
within the interval. Image warping is used in image processing for rectification
of geometric distortions [69].

The gradual growth could be smoothly visualized by image morphing [64].
Morphing first warps images from two consecutive observation sessions so that
they correspond to a particular time within the interval between them. Then it
composes the warped images into a single blended image, in ratio corresponding
to the relative time within the interval. Image morphing is used in computer
graphics for generating artificial motion sequences [13] or smooth transitions be-
tween objects [1], as well as for mapping image textures onto 3D objects [18].

This project focuses on the growth of settled specimens with filamentous
growth patterns, such as fungi and oomycetes (see Figures 2.4 and 2.11). Whereas
their filaments elongate over time, their growth in width is negligible, and the
shape of the already developed parts remains mostly unchanged. Moreover, the
filaments develop practically independently of each other. The proposed method
is based on these assumptions.

The rest of this chapter is organized as follows: Section 2.2 contains definitions
of the morphological skeleton and thin-plate splines; Section 2.3 describes steps
of the proposed method; Section 2.4 presents results of the proposed method;
Section 2.5 compares the results with ground truth, discusses properties and
limitations of the method and outlines its possible modifications; and Section 2.6
summarizes this chapter.

2.2 Applied image processing tools

This section describes details of two standard image processing tools employed
by the proposed method. Subsection 2.2.1 describes computation of the morpho-
logical skeleton by parallel thinning; Guo and Hall [14, Section 3] describe the
skeletization algorithm in further detail. The method uses morphological skele-
ton for tracking of the growth of filaments in length (see Section 2.3). Subsection
2.2.2 describes image warping by thin-plate splines; Rohr [38] details theory and
application of thin-plate splines in image processing. The method uses thin-plate
splines for geometrical transformation of images from consecutive observation
sessions to reconstruct images corresponding to the interval between them (see
Section 2.3).

14



2.2.1 Morphological skeleton

Morphological skeleton (see Figure 2.6), or centerline, is a line representation
of the shape of a segmented object (see Figure 2.5). The exact shape of the
morphological skeleton depends on its definition2. A common intuitive definition
is based on the principle of prairie fire: if the object starts burning at boundaries
and the fire spreads with uniform speed within the object, the skeleton is defined
by points where fires from different directions meet. The morphological skeleton
thus corresponds to the medial axis of the object.

The morphological skeleton efficiently represents the shape of the object in
three aspects. Firstly, it reduces dimension of the object. Secondly, it is topo-
logically equivalent to the object. Thirdly, it is invariant to similarity geometric
transformation, i.e. a geometrically transformed skeleton of an object equals the
skeleton of the geometrically transformed object

T (S(f)) = S(T (f)),

where f : R2 → {0, 1} is a binary image, T : R2 → R2 is a similarity transforma-
tion, and S is a skeletization transformation.

Points of an object and its morphological skeleton are categorized according
to their properties. An object consists of simple and non-simple points; removal
of a non-simple point changes the topology of the object, whereas removal of a
simple point preserves the topology. A morphological skeleton consists of line
points and end points; line points and end points are skeleton points with at least
two neighbors and just one neighbor, respectively.

The morphological skeleton can be computed by several skeletization meth-
ods3. Skeletization by morphological thinning [26] is currently considered the
most effective method. Thinning can be defined as sequential or parallel; parallel
thinning algorithms are preferred because they allow fast, parallel implementa-
tion. Parallel thinning iteratively erodes object boundaries while preserving the
object topology. In each direction it deletes a point on the current boundary if
and only if the point is a simple point and not an end point.

Most skeletization algorithms are sensitive to irregularities on the boundary of
the segmented object. The resulting skeleton may thus contain short spurs corre-
sponding to coarseness on boundary. Such spurs can be suppressed by three main
approaches. The first approach smooths object boundaries before skeletization.
The second approach prunes the spurs using knowledge about their length and
number of iterations. The third approach suppresses such spurs already during
iterations of the skeletization algorithm; this is considered the best approach.

Parallel thinning algorithm developed by Guo and Hall [14, Section 3] sup-
presses possible spurs already during the iteration process. The algorithm divides
image pixels into two disjoint subsets in a checkerboard pattern. In each iteration
it erodes the current boundary in two subiterations. In the first subiteration it
eliminates pixels from the first subset if and only if they satisfy conditions (2.1),

2 The morphological skeleton is typically defined by prairie fire, inscribed circles or two
closest points on boundary.

3 Most skeletization algorithms are based on thinning, distance map or Voronoi diagram.
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(2.2) and (2.3)
4∑
i=1

bi = 1, (2.1)

where

bi =

{
1, x2i−1 = 0 & (x2i = 1 ∨ x2i+1 = 1),

0, otherwise

and xi (i = 1, . . . , 8) denote values of the 8 neighbors of the pixel from the right
neighbor in counter-clockwise direction,

2 ≤ min

{
4∑

k=1

x2k−1 ∨ x2k,
4∑

k=1

x2k ∨ x2k+1

}
≤ 3, (2.2)

and
(x2 ∨ x3 ∨ x8) & x1 = 0. (2.3)

In the second subiteration it eliminates pixels from the second subset if and only
if they satisfy conditions (2.1), (2.2) and (2.4)

(x6 ∨ x7 ∨ x4) & x5 = 0. (2.4)

The skeletization algorithm terminates when an iteration does not eliminate any
pixel. The algorithm is relatively robust to coarseness on object boundaries.

The morphological skeleton consists of branches. The branches are divided
by line points called branch points The position of branch points can be located
by standard morphological operations [16, 25]. Removal of branch points divides
the skeleton into separate branches; if the skeleton contained spurs caused by
coarseness of object boundaries, they would be falsely identified as branches.

2.2.2 Thin-plate splines

Thin-plate splines [38] define a locally varying geometric transformation that
smoothly warps an image by mapping control points from their original posi-
tions {pi}ni=1 to new positions {qi}ni=1. The transformations are restricted to
the space of functions on R2 for which all second order partial derivatives are
square integrable4. Interpolating thin-plate splines define a continuous geometric
transformation

u : R2 → R2

that interpolates control points

qi = u(pi), i = 1, . . . , n,

so that their transformed original positions u(pi) exactly match the corresponding
new positions qi, and that minimizes the quadratic variation “bending energy”
functional

min
u∈W 2,2(R2)

J(u) = J(u1) + J(u2),

4 u ∈W 2,2(R2), i.e.
∫∫
R2

(
∂2u
∂x2

)2
+
(

∂2u
∂x∂y

)2
+
(

∂2u
∂y2

)2
dxdy <∞
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where

J(uj) =

∫∫
R2

(
∂2uj
∂x2

)2

+ 2

(
∂2uj
∂x∂y

)2

+

(
∂2uj
∂y2

)2

dxdy, j = 1, 2.

Its solution consists of an affine and an elastic part and can be expressed as

uj(x) = A

(
1
x

)
+

n∑
i=1

wiφ(x,pi), j = 1, 2, (2.5)

where x is a 1× 2 vector of coordinates in the warped image, A is a 2× 3 matrix
of affine transform coefficients, n is the number of control points, φ(x,pi) are
basis functions

φ(x,pi) = φ(ri) =

{
r2
i ln ri, ri 6= 0,

0, ri = 0,

where ri = ‖x − pi‖ is the Euclidean distance between points x and pi, and wi
are weights of the basis functions. The value of a basis function φ(x,pi) depends
solely on the Euclidean distance ri of its argument x from its center pi. The
thin-plate splines are thus radially symmetric; they belong to the more general
class of radial basis functions. The minimum number of control points is three.
In case of three control points, however, the transformation is defined only by the
affine part; the elastic part is active only in case of at least four control points.
The solution is unique under the condition that the points do not lie on a single
line. Coefficients A and wi of the solution can be computed by placing control
points qi into (2.5) and solving the resulting set of linear equations.

2.3 Method

The objective of the method described in this section is to reconstruct light
microscopy images of a growing specimen within an interval between consecutive
observations. The method (see Figure 2.3) reconstructs the missing images from
the available ones by appropriate geometric transformations. In order to establish
parameters of the transformations, the method selects a number of salient control
points in the images acquired at the beginning and the end of the examined
interval and estimates their movement during the interval. The images are then
geometrically transformed so that the selected control points are mapped to their
estimated positions in the interval. The result is a sequence of images showing
the growth of the specimen during the undocumented interval.

The method works with light microscopy images from consecutive observa-
tion sessions (see Figures 2.4 and 2.11) and corresponding binary images of the
shape of the specimen (see Figures 2.5 and 2.12). The shape can be usually
computed from the microscopy images by standard segmentation algorithms; the
segmentation is highly dependent on the processed data, however.

First, the method computes morphological skeletons (see Figures 2.6 and 2.13)
of the segmented binary images. The skeletonizing algorithm should be robust
to boundary coarseness so that the skeleton does not contain short spurs and
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Figure 2.3: Steps of the developed method for reconstruction of light microscopy
images of growing specimens corresponding to times within the interval between
two consecutive observation sessions.
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(a) early image (b) later image

Figure 2.4: Preprocessed light microscopy images of a Fusarium oxysporum
f.sp. pisi specimen acquired at two consecutive observation sessions, showing
the development of two hyphae from a conidium and their growth in length;
the preprocessing steps included flat-field correction, displacement rectification,
multi-focal fusion, and debris suppression.

(a) early image (b) later image

Figure 2.5: Binary images of the shape of the specimen from Figure 2.4 segmented
by thresholding of local brightness variance.

distorted line endings. Branches of the skeleton correspond to filaments of the
specimen.

Second, the method divides the skeletons into branches. Branches are parts of
the skeleton between branch points that correspond to points of hypha branching
or to points between a conidium and a hypha.

The method makes three assumptions on the skeletons from two consecutive
observation sessions. Firstly, the number of branches in both skeletons should be
the same. This means that no new filaments evolved during the interval between
the observations; short branches in the second skeleton with no counterparts in
the first skeleton can be neglected. Secondly, since the already grown parts do
not move or bend, a part of the second skeleton should roughly overlap with
the whole first skeleton. Thirdly, each branch elongates uniformly over time.
For settled specimens with filamentous growth patterns, these assumptions are
usually satisfied.

Third, the method selects control points on the morphological skeletons (skele-
ton CPs) and estimates their trajectories over the interval between observations
(see Figures 2.7 and 2.14). The morphological skeleton is less sensitive to curving
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(a) early image (b) later image

Figure 2.6: Morphological skeletons computed from the segmented images in
Figure 2.5 by parallel thinning and separated into branches by morphological
operations.

deformations than the boundary. The skeleton CPs are selected equidistantly
along the branches of the second skeleton (see Figures 2.7f and 2.14f). Each
branch is then gradually shrunk from its loose end along its shape to the length
of the corresponding branch in the first skeleton (see Figures 2.7a and 2.14a); the
skeleton CPs are moved correspondingly, keeping the Euclidean distance between
them uniform. This process estimates trajectories of skeleton CPs from the end of
the interval to its beginning. It simulates, in reverse, the growth of the specimen
in length during the interval; the reverse direction of tracking solves the problem
of inaccurate segmentation. In practice, the two skeletons usually do not overlap
precisely; the proposed method, however, does not take the exact shape of the
first skeleton into account.

Fourth, the method computes control points on the boundary of the specimen
(see Figures 2.8 and 2.15). A geometric transformation defined just by skeleton
CPs cannot preserve the shape of the specimen outside the skeleton. The method
thus replaces each skeleton CP by two control points on the boundary of the spec-
imen (boundary CPs), in the direction perpendicular to the local direction of the
skeleton; each skeleton CP thus approximately bisects the line segment between
two corresponding boundary CPs. The length of the line segment corresponds
to the local thickness of the filament; it is interpolated over the interval as a
weighted average of the lengths of the segment at the two consecutive sessions.
A geometric transformation defined by boundary CPs can preserve the shape of
the whole specimen.

Fifth, the method warps the temporally closer image to represent an arbitrary
time within the interval (see Figures 2.9 and 2.16). The aim of the geometric
transformation is to map the boundary CPs from the available image to their
positions at the selected time. Due to the spatially local character of the growth
process, the transformation should be sensitive to local changes. Elastic types
of geometric transformations, such as thin-plate splines (see Subsection 2.2.2),
can be used for this purpose. The transformation is defined by the positions
of boundary CPs in the selected time within the interval and in the temporally
closer image. The warped image is an estimate of the light microscopy image that
would be acquired were the specimen observed at the selected time (see Figures
2.10 and 2.17).
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(a) 0/5 (b) 1/5

(c) 2/5 (d) 3/5

(e) 4/5 (f) 5/5

Figure 2.7: Tracking of skeleton control points within the interval between acqui-
sitions of images in Figure 2.4; their positions were computed by shrinking of the
filaments of the morphological skeleton from (f) the latter observation session,
see Figure 2.6b, to the length of the corresponding filaments from (a) the early
session, see Figure 2.6a.
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(a) 0/5 (b) 1/5

(c) 2/5 (d) 3/5

(e) 4/5 (f) 5/5

Figure 2.8: Boundary control points computed for the purpose of image warping
from the skeleton control points in Figure 2.7.
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2.4 Results

Performance of the proposed method was tested on a set of light microscopy
images of the early development of Fusarium oxysporum f.sp. pisi and Alternaria
sp.5 Fusarium [66] and Alternaria [6] spp. (Hyphomycetes, Deuteromycotina) are
phytopathogenic fungi with a worldwide distribution. They cause severe diseases
in a wide range of economically important crop plants. Both species spread
by asexual spores—conidia. In proper environmental conditions, particularly
temperature and humidity, a conidium germinates by hyphae to form a mycelium.
The growth rate of a mycelial colony in optimal conditions is approximately 5-
10 millimeters per day. Detailed understanding of the growth parameters could
contribute to the increasing effectiveness of the disease control.

Image degradations introduced in the acquisition process were eliminated by
several preprocessing steps; a detailed description of these steps is given in [41].
First, flat-field correction was applied to the images. Flat-field is a degrada-
tion caused by a non-uniformity in illumination of light microscopy samples; it
appears as a gradual decrease in brightness from the center of an image to its
borders. Since a microscopy image without a sample was not available, the shape
of flat-field was roughly estimated from the background in available images, and
the computed deficiency in brightness was added to the degraded images. Sec-
ond, images from different focal planes were fused. As the observed specimens
were thicker than the attainable depth of field—and thus always partly out of
focus—each of them was photographed at several focal planes. These images
were composed by means of a multi-focal fusion method [62] into one all-focused
image. Third, a geometrical alignment was applied to displaced images from
consecutive sessions. Since microscope slides with the specimens were positioned
manually, a temporal image registration [69] was necessary to compensate for the
resulting shift and rotation between images from different observation sessions.
The displacements were rectified by a similarity transformation; its parameters
were computed from a small set of manually placed control points. Fourth, debris
was detected and removed from the images. Debris particles were segmented by
thresholding of the local variance of brightness and their shapes adjusted by stan-
dard morphological operations [46]; detected particles were removed by diffusion
from their boundary [52]. The result of the preprocessing process were mutually
aligned images with uniform illumination and the whole specimen in focus (see
Figures 2.4 and 2.11).

Shapes of the specimens were segmented from image background in the pre-
processed images by thresholding of local variance in brightness. The observed
specimens were semi-transparent and thus differed from image background in lo-
cal changes of brightness rather than in brightness itself. Small irregularities in
the shape were rectified by morphological closing [46]. The result were binary
images of the segmented shapes of the specimens (see Figures 2.5 and 2.12).

The reconstruction of missing images was performed by the method described
in Section 2.3 (see Figures 2.3, 2.6, 2.7, 2.8, 2.9a, 2.13, 2.14, 2.15, and 2.16a).

5 The specimens were incubated on Czapek-Dox agar at 4 and 20 ◦C and their growth
documented in intervals of approximately 6 and 2 hours, respectively. The images were acquired
by a CCD digital camera attached to a conventional light microscope with a 100× and 20×
magnification, respectively.
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(a) reconstructed image (b) reference image

Figure 2.9: (a) Image from Figure 2.4b warped by thin-plate splines that mapped
boundary control points from Figure 2.8f to the corresponding boundary control
points from Figure 2.8d. (b) A preprocessed light microscopy image acquired for
the purpose of comparison at the corresponding stage of growth.

It used preprocessed images from two consecutive observation sessions and the
corresponding binary images to generate images representing the growth of the
observed specimen during the interval. The morphological skeletons were ac-
quired from the segmented images by means of the parallel thinning algorithm
developed by Guo and Hall [14, Section 3] (see Subsection 2.2.1). The distance
between the skeleton CPs was approximately a half of the average width of the
filament. In order to preserve the shape of non-growing round objects, such as
conidia, additional control points were automatically selected on their bound-
ary and added to the set of boundary CPs (see Figure 2.15). The preprocessed
images were geometrically transformed by means of thin-plate splines (see Sub-
section 2.2.2). Because of different acquisitions conditions, e.g. use of different
focal planes in different observation sessions, and inaccuracies in registration and
segmentation, a blended image would include double-exposure effects. Hence just
the temporally closer image (see Figures 2.4b and 2.11b) was transformed (see
Figures 2.9a and 2.16a).

The reconstructed images were compared with reference light microscopy im-
ages acquired for the purposes of comparison at corresponding times (see Figures
2.9b and 2.16b).

The reconstructed and reference images were visually compared in checker-
board (see Figures 2.17a and 2.10a) and difference images (see Figures 2.17b and
2.10b). Checkerboard image

f cboard(x, y) =


f rec(x, y), max(x mod 2s, y mod 2s) < s

∨min(x mod 2s, y mod 2s) ≥ s,

f ref(x, y), otherwise,

is an image composed of tiles of s× s pixels alternately taken from reconstructed
image f rec and reference image f ref. Difference image

fdiff(x, y) = |f rec(x, y)− f ref(x, y)|

is an image of the absolute pixel-wise difference of brightness values between
reconstructed image f rec and reference image f ref.
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(a) checkerboard image (b) difference in brightness

Figure 2.10: Comparisons of the warped image in Figure 2.9a with the reference
image in Figure 2.9b: (a) a checkerboard image composed of square tiles alter-
nately taken from the compared images, (b) an image of pixel-wise difference in
brightness.

The reconstructed and reference images were numerically compared by differ-
ences between positions of corresponding boundary CPs. Boundary CPs in the
reconstructed image were acquired by the proposed method from the light mi-
croscopy images acquired at the consecutive observation sessions. Boundary CPs
in the reference image were acquired by the same method from the reference im-
age itself, using the same number of boundary CPs as in the reconstructed image.
The error of match between corresponding boundary CPs in the reconstructed
and reference images was expressed by their Euclidean distance

‖xrec
i ,xref

i ‖ =

√
(xrec

i − x
ref
i )2 + (yrec

i − y
ref
i )2, i = 1, . . . , n,

where xi = (xi, yi) are coordinates and n the number of boundary CPs in the
images, and the overall error of match was expressed by mean value

1

n

n∑
i=1

‖xrec
i ,xref

i ‖.

(see Table 2.1). Note, however, that the error depends on the accuracy of seg-
mentation and on computation of the morphological skeleton in discrete domain.

number of boundary CPs average difference median difference
63 0.9± 0.83 0.74

Table 2.1: Euclidean distance (in pixels) between corresponding boundary control
points (boundary CPs) in the reconstructed image (see Figure 2.16a) and the
corresponding reference image (see Figure 2.16b).
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(a) early image (b) later image

Figure 2.11: Light microscopy images from Figure 2.2 after preprocessing, namely
displacement rectification and debris suppression.

(a) early image (b) later image

Figure 2.12: Binary images of the shape of the specimen from Figure 2.11 seg-
mented by thresholding of local brightness variance.

(a) early image (b) later image

Figure 2.13: A branch corresponding to the elongating hypha in morphological
skeletons computed from the segmented images in Figure 2.12.
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(a) 0/5 (b) 1/5

(c) 2/5 (d) 3/5

(e) 4/5 (f) 5/5

Figure 2.14: Tracking of skeleton control points within the interval between ac-
quisitions of images in Figure 2.11; their positions were computed by shrinking
of the filament of the morphological skeleton from the latter observation session
(f), see Figure 2.13b, to the length of the filament from the early session (a), see
Figure 2.13a.
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(a) 0/5 (b) 1/5

(c) 2/5 (d) 3/5

(e) 4/5 (f) 5/5

Figure 2.15: Boundary control points computed for the purpose of image warping
from the skeleton control points in Figure 2.14 and control points automatically
selected on the boundary of the conidium.
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(a) reconstructed image (b) reference image

Figure 2.16: (a) Image from Figure 2.11b warped by thin-plate splines that
mapped boundary control points from Figure 2.15f to the corresponding bound-
ary control points from Figure 2.15d. (b) A preprocessed light microscopy image
acquired for the purpose of comparison at the corresponding stage of growth.

(a) checkerboard image (b) difference in brightness

Figure 2.17: Comparisons of the warped image in Figure 2.16a with the reference
image in Figure 2.16b: (a) a checkerboard image composed of square tiles alter-
nately taken from the compared images, (b) an image of pixel-wise difference in
brightness.
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2.5 Discussion

Effectiveness of the developed method was illustrated by comparison of the recon-
structed images with corresponding light microscopy images. The checkerboard
and difference images showed that the synthetically computed images closely
matched the corresponding references image without significant deformations (see
Figures 2.10 and 2.17). The numerical comparison of errors in match of corre-
sponding boundary CPs in the reconstructed and reference images also indicated
good geometrical match.

The method allows to generate a sequence of images showing the gradual
growth of the specimen over the whole interval. The warped images should be
morphed only if the geometric transformation is estimated with high accuracy,
however. If the features are not aligned precisely, the combination of two im-
ages might contain disturbing double-exposure effects; in such a case, just the
temporally closer image is warped.

The accuracy of warping is affected by two main factors. Firstly, higher accu-
racy can be achieved by short distances between CPs. The more CPs are used, the
more accurate the mapping function is; on the other hand, if the spaces between
CPs are too short, the warped image may include local distortions. Secondly,
the appearance of warped images is affected by the type of the geometric trans-
formation. Although radial basis functions (see Subsection 2.2.2) are formally
of a global nature, i.e. for every pixel in the warped image all basis functions
φi (i = 1, . . . , n) are taken into account, they can successfully model also local
deformations. The result depends on the type of the radial basis functions φ.
Thin-plate splines proved effective for the warping.

Although the method was designed for images of settled filamentous specimens
uniformly elongating over time, it could be modified to deal with more compli-
cated growth patterns. Small growth in width can be simulates by interpolating
the local width of filaments. The apparition of new branches could be partly
modeled as well. If a new branch is very short in one of the acquired images,
it is neglected for reconstruction of the interval before the acquisition but taken
into account in the interval after the acquisition. If not, the time when the new
branch started to develop must be somehow estimated; its growth in the interval
before its apparition is reconstructed by warping of just the later image so that
from the beginning of the interval to the estimated time, the length of the new
branch equals half the width of the filament.

If the speed of growth is not uniform, additional information is necessary to
estimate the changes in the speed during the examined interval for each filament
separately. This can be estimated from images from more than two observation
sessions. As only the length of branches is utilized from the first skeleton, the
method could be used, to some extent, to generate images of the specimen in
times before the acquisition of the first image; the resulting images could appear
distorted, however.

In some cases, however, the results of the proposed method may include sig-
nificant deformations. The method can be used for realistic modeling only if the
growth consists of stretching and curving of filaments and the already developed
parts do not change in shape. If not only elongation but also significant move-
ment is a part of the growth process, a more complex method should be applied.
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The problem of occlusion, such as overlapping of filaments, has not been solved
either. The ability of the proposed method to preserve textures is also limited.
If a significant texture is present, it may appear deformed in the warped image.

2.6 Conclusion

This chapter has introduced a new method for reconstruction of light microscopy
images showing the growth of settled filamentous specimens in intervals between
observations. It was developed for the purpose of completing time studies of
settled and relatively slow-growing specimens with filamentous growth patterns,
such as fungi and oomycetes. In principle, it can be used for any objects with such
characteristics. The method is based on growth tracking along the morphological
skeleton and image warping by thin-plate splines. It generates realistic images
corresponding to arbitrary times within the undocumented intervals. The method
is suitable for biomedical data as it does not introduce significant unnatural de-
formations. Its performance was successfully tested on light microscopy images
of Fusarium oxysporum and Alternaria sp. germination and mycelium growth.
The natural appearance of the artificially generated images and their high corre-
lation with ground truth proved suitability of the method for the purposes of the
study. The method was presented at the Analysis of Biomedical Signals and Im-
ages BIOSIGNAL 2006 conference in Brno, Czech Republic [42], and published
in 2008 in EURASIP Journal on Advances in Signal Processing [43].
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3. Measurement of particles in
atomic force microscopy images

Abstract: The objective of this project was to measure the average size of parti-
cles in atomic force microscopy (AFM) images of phenylpyridyldiketopyrrolopyr-
role (PPDP), an organic semiconducting material. Atomic force microscopy is an
imaging technique convenient for measurement of solid body surfaces with very
high resolution; pixel values in the acquired images represent the measured to-
pography. PPDP samples consist of similarly sized elliptical particles; the size of
particles in an image can be thus characterized by the average length and width
computed from a relatively small subset of particles. This chapter describes a new
method for automatic detection and measurement of PPDP particles in AFM im-
ages. The method is based on detection of salient particles and approximation
of their shapes by ellipses; it estimates the length and width of each detected
particle by the major and minor axes, respectively, of the corresponding approx-
imating ellipse. The method is robust to distortions in AFM images. Results
of the automatic method were compared with results of manual measurements.
The comparisons indicated that the proposed automatic method could be used
in place of time-consuming manual measurements.

Keywords: atomic force microscopy, ellipsoidal approximation, image mo-
ments, particle measurement, watershed segmentation

3.1 Introduction

Phenylpyridyldiketopyrrolopyrrole (PPDP) is a perspective organic semiconduct-
ing material for hydrogen sensors [32, 39]. Deposited layers of PPDP consist of
similarly sized, mostly spatially separated ellipsoidal particles. Topography of
PPDP particles can be observed by atomic force microscopy (see Figure 3.1).
Properties of PPDP samples are mainly characterized by the size of particles.
Currently used manual measurement is, however, laborious and time-consuming.
The objective of this project was to develop a method for automatic detection
and measurement of salient particles in atomic force microscopy images of PPDP
samples.

Atomic force microscope (AFM) [4] is an imaging device that allows measure-
ment of topography of solid body surfaces with very high resolution. It gradually
moves an elastic cantilever with a sharp tip close above the surface. The surface
applies interactive force to the tip, which deflects the cantilever. The height of the
surface is estimated from the measured deflection [31]. Atomic force microscopy
allows measurement of topography without damage to the scanned surface.

Atomic force microscopy images represent just an approximation of the surface
topography. The observed image is, in fact, a convolution between the contacting
tip and the surface of the sample [60]. As a result, only details larger than
the diameter of the tip are observed. The exact shape of the tip is, however,
unknown; it can even change during measurement, particularly due to breaking
or adhesion of parts of the sample or dust particles. Furthermore, the acquired
images may contain noise artifacts [31] (see Figure 3.2). Analysis of AFM images
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(a) AFM image 5 (b) AFM image 14

(c) AFM image 5 (detail) (d) AFM image 14 (detail)

Figure 3.1: Atomic force microscopy (AFM) images of phenylpyridyldiketopy-
rrolopyrrole (PPDP) samples (a, b); pixel values linearly correspond to measured
height (c, d).

should account for such distortions and use prior information about the scanned
samples to compensate for them.

The objective of this project was to automatically measure the size of PPDP
particles in each AFM image. PPDP samples contain similarly sized ellipsoidal
particles, so the size of each particle can be characterized by its length and width,
and the size of particles in an image can be characterized by their average size.
Physicists thus measure just the average length and width of particles in a rep-
resentative subset.

Currently used manual measurement of PPDP particles in AFM images is
difficult. Because the images typically contain hundreds to thousands of parti-
cles, manual measurements are time-consuming and laborious. Physicist there-
fore manually measure only a relatively small subset of particles; this, however,
increases inconsistency of results. Development of an automatic measurement
method is thus of great interest.

Existing methods for automatic segmentation of particles in AFM images are
not appropriate specifically for PPDP samples. In 1997 Villarrubia [60] devel-
oped methods for surface reconstruction in AFM images; the generally designed
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(a) AFM image 0 (b) AFM image 16

Figure 3.2: Atomic force microscopy images with typical noise artifacts.

methods, however, do not use prior information about known shape of scanned
particles. Existing automatic methods for processing of AFM images [11,51] are
either sensitive to noise or designed for samples with densely packed particles;
they are thus inconvenient for robust segmentation of spatially separated parti-
cles.

This chapter presents a new method for automatic measurement of ellipsoidal
particles in AFM images. The developed method is based on rough segmentation
of particles by watershed transform and approximation of their shapes by ellipses
using image moments. It estimates the length and width of salient particles by the
major and minor axes, respectively, of the approximating ellipses. The analyzed
images contain hundreds of salient particles, so the method excludes partially
occluded or otherwise distorted particles from measurements. The method utilizes
prior information about elliptical shape of particles, increases its robustness to
noise distortions.

The rest of this chapter is organized as follows: Section 3.2 describes watershed
transform by immersion and image moments; Section 3.3 describes in detail the
proposed method; Section 3.4 presents results of the developed method and com-
pares them with results of manual measurements; Section 3.5 discusses properties
and limitations of the developed method, and outlines its possible modifications
and applications; and Section 3.6 summarizes this chapter.

3.2 Applied image processing tools

This section describes two image processing methods used by the proposed method.
Subsection 3.2.1 describes watershed transform by immersion [61]; the devel-
oped method uses watershed transform for rough segmentation of particles in
AFM images (see Subsection 3.3.2). Subsection 3.2.2 describes basics of image
moments [12]; the developed method uses image moments for approximation of
PPDP particles in watershed regions by ellipses (see Subsection 3.3.3).
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3.2.1 Watershed transform

Image segmentation isolates objects in images from background. It partitions
the image into disjoint regions so that they are homogeneous with respect to
some property, e.g. brightness or texture. Watershed transform is a region-based
segmentation method with several possible definitions. The developed method
uses the watershed transform by immersion.

The principle of watershed transform by immersion can be explained on a
geographic analogy. Let brightness function represent a topographic relief (see
Figures 3.1c and 3.1d) with holes in local minima. The watershed transform
gradually immerses the relief into a lake. As the water gradually fills up regions
(basins) in the image from the local minima, the watershed transform constructs
dams at points where water from different basins would meet. The result is a
relief partitioned into basins separated by the dams. In the segmented image,
the basins are called watershed regions and the dams are called watershed lines
or watersheds.

Watershed transform by immersion can be formally defined recursively. Let
dA(a, b) denote the geodesic distance between points a and b within set A, i.e. the
infimum of path lengths between a and b within A. Geodesic distance of point a
from subset B ⊆ A within set A is defined as

dA(a,B) = min
b∈B

dA(a, b).

Let f : D → {0, . . . , l} denote a digital grayscale image with domain D ⊆ R2,
and Xh denote union of basins at brightness level h ∈ {0, . . . , l}. The watershed
lines are defined as

W (f) = D \Xl.

Xh is defined recursively as
X0 = {x ∈ D | f(x) = 0},
Xh+1 = Mh+1∪

nh⋃
i=1

{
x ∈ Th+1 | dTh+1

(x, X i
h) < dTh+1

(x, Xj
h) ∀ j ∈ {1, . . . , nh} \ {i}

}
for h ∈ {0, . . . , l−1}; Mh denotes the union of local minima at level h, Th denotes
threshold set

Th = {x ∈ D | f(x) ≤ h},

and Xh denotes the union of basins computed at level h

Xh =

nh⋃
i=1

X i
h,

where X i
h denotes the ith watershed basin and nh the number of basins at level

h.
The algorithm is described in detail in [61]. Properties of the algorithm and

its formal definitions are discussed in [37].
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3.2.2 Image moments

Image moments [12] are projections of a grayscale image function f : R2 → R,
i.e. a finite piece-wise continuous real function of two variables {x, y} ∈ R2 and
with compact support, to polynomial basis {xp, yq}∞p,q=0. They have many appli-
cations in image processing, particularly in object representation and recognition.

Geometric moment

mpq =

∫∫
D

f(x, y)xpyqdxdy, p, q ∈ N0

is a projection of image function f with compact support D ⊆ R2 onto polynomial
basis (xp, yq); the order of the moment is (p+ q). Zero-order moment m00 equals
the volume of f and xt = m10/m00 and yt = m01/m00 are coordinates of its
centroid; translation of the image by vector (−xt,−yt), centers the image in zero.

Central geometric moment

µpq =

∫∫
D

f(x, y)(x− xt)p(y − yt)qdxdy

of order (p+ q) equals the geometric moment mpq for a centered image; it is thus
invariant to translation of image f . Central moments µ20 and µ02 represent the
variance of f in x and y axes, respectively, and central moment µ11 represents
the co-variance between them.

A normalized position of image f is acquired by rotation of the centered image
around zero by angle

α =

{
1
2

arctan
(

2µ11
µ20−µ02

)
, µ11 6= 0 ∨ µ20 6= µ02,

0, otherwise

(if µ11 = 0 or µ20 = µ02, the image is already in a normalized position). The
ambiguity of a normalized position can be removed by flipping the rotated image
horizontally or vertically to satisfy conditions µ20 > µ02 and µ30 ≥ 0, for example.
Second order moments of an image in a normalized position satisfy conditions
µ′11 = 0 and µ′20 ≥ µ′02. Their values can be expressed as

µ′20 =
1

2

(
µ20 + µ02 +

√
(µ20 − µ02)2 + 4µ2

11

)
,

µ′02 =
1

2

(
µ20 + µ02 −

√
(µ20 − µ02)2 + 4µ2

11

)
.

A reference ellipse of image f in a normalized position is an ellipse

x2

a2
ref

+
y2

b2
ref

≤ 1, aref ≥ bref > 0,

with the same image moments µpq as image moments of f up to order two,
i.e. (p+ q) ≤ 2; aref and bref denote the major and minor semiaxes, respectively.
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Figure 3.3: Steps of the developed method for automatic measurement of ellip-
soidal particles in AFM images.
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3.3 Method

The objective of the method described in this section is to compute the average
length and width of salient particles in an AFM image of a PPDP sample. AFM
image is a grayscale image with pixel values linearly corresponding to the mea-
sured topography of the scanned surface (see Figure 3.1); let f denote the image
function and D its support.

The method is based on two assumptions. Firstly, the image contains par-
ticles of similar sizes. This means that their average length and width can be
estimated from a subset of particles. Secondly, the particles are ellipsoidal. This
means that their shapes can be approximated by ellipses and their lengths and
widths estimated by the corresponding major and minor axes, respectively. The
assumptions follow from known physical properties of PPDP samples.

The rest of this section details the proposed method. The method consists
of the following steps (see Figure 3.3): first, it reduces high-frequency noise in
the AFM image (see Subsection 3.3.1); then it segments the denoised image
by watershed transform and removes regions containing noise artifacts or partly
occluded particles (see Subsection 3.3.2); in each remaining region it approximates
the shape of the corresponding particle by an ellipse and estimates its length
and width by the major and minor axes, respectively (see Subsection 3.3.3); the
method approximates topography within the approximating ellipse by the upper
half of an ellipsoid and includes in measurement only particles which closely match
the approximating ellipsoid (see Subsection 3.3.4); finally, it averages the lengths
and widths, respectively, of the measured particles (see Subsection 3.3.5).

3.3.1 Denoising

The method first reduces high-frequency noise in the AFM image (see Figure
3.4). It convolves the grayscale image with a radially symmetric Gaussian kernel

h(x, y) = h(r) = 1√
2πσ

e−
r2

2σ2 ,

where σ is the standard deviation of the Gaussian and r = (x2 +y2)
1
2 the distance

from center of the mask. The convolution not only suppresses high-frequency
AFM noise (see Section 3.1) but also smooths the image function to avoid over-
segmentation in the next step (see Subsection 3.3.2). The convolution reduces
high-frequency information in the image in general but the proposed method is
robust to this loss.

3.3.2 Segmentation

The method then segments the denoised image into regions corresponding to
separate particles (see Figure 3.5) and selects regions containing salient particles
appropriate for measurement.

The method segments the denoised image by the watershed transform by
immersion (see Subsection 3.2.1). Watershed transform performed on the original
AFM image would lead to oversegmentation, with watershed lines dividing many
particles into multiple regions. Although the segmentation may not separate all
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(a) AFM image 5 (b) AFM image 14

(c) AFM image 5 (detail) (d) AFM image 14 (detail)

Figure 3.4: Convolution of AFM images with a Gaussian kernel; the convolution
(a, b) both suppresses high-frequency noise and smooths the measured topogra-
phy (c, d).

overlapping particles—the method solves this problem later (see Subsections 3.3.4
and 3.3.5)—a vast majority of watershed regions contain exactly one particle.

The method then detects watershed regions containing particles inappropri-
ate for measurements and excludes them from further processing. This includes
regions containing AFM noise artifacts or partly occluded particles. For this pur-
pose, the method estimates central parts (cores) of particles. It first separately
normalizes brightness in each region Di (i = 1, . . . , n) of denoised image f to

fnorm(x, y) = f(x, y) + (max
D

f −max
Di

f), {x, y} ∈ Di,

where D =
n⋃
i=1

Di is the domain of f and n is the number of watershed regions

(see Figure 3.6). Then it segments normalized image fnorm by thresholding (see
Figure 3.7) with convenient global threshold t0; this approach is equivalent to local
thresholding by region-specific thresholds. Cores on watershed lines or image
borders (see Figure 3.7) correspond to AFM noise artifacts or particles partly
occluded by other particles or image borders, respectively. The method excludes
regions corresponding to such cores from further processing (see Figure 3.8).
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(a) AFM image 5 (b) AFM image 14

Figure 3.5: Segmentation of denoised AFM images by watershed transform by
immersion. The watershed regions roughly separate individual particles.

(a) AFM image 5 (b) AFM image 14

Figure 3.6: Normalization of brightness within watershed regions is a preprocess-
ing step for global thresholding (see Figure 3.7).

3.3.3 Approximation by ellipses

The method approximates the shape of particles in remaining watershed regions
by ellipses (see Figure 3.9). It approximates the shape of each particle by ellipse

x2

a2
+
y2

b2
≤ 1, a ≥ b > 0.

in coordinates of a normalized position of the corresponding region (see Subsection
3.2.2). The method estimates the major and minor semiaxes of the approximating
ellipse by

a = 2
√
µ′20, b = 2

√
µ′02,

respectively; µ′20 and µ′02 are image moments of brightness function f of the
denoised image within region D in a normalized position. The concept of ap-
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(a) AFM image 5 (b) AFM image 14

Figure 3.7: Cores of particles computed by thresholding of normalized water-
shed regions (see Figure 3.6) with global threshold t0 = 0.97. Cores intersecting
watershed lines or image borders (red) indicate partly occluded particles.

(a) AFM image 5 (b) AFM image 14

Figure 3.8: Removal of watershed regions with cores on watershed lines or image
borders (see Figure 3.7).

proximating ellipses is similar to the concept of reference ellipses. Major axis 2a
and minor axis 2b of the approximating ellipse estimates the length and width,
respectively, of the particle.

To compensate for segmentation errors, the method recomputes parameters of
the approximating ellipses. The computed shape of the approximating ellipse may
be distorted by parts of the region lying outside the real shape of the particle. The
method recomputes parameters of the approximating ellipse on the intersection of
the region and the ellipse itself. This can be repeated to further increase precision
of the estimated shape.
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(a) AFM image 5 (b) AFM image 14

Figure 3.9: Approximation of particles in remaining watershed regions by ellipses.

(a) AFM image 5 (b) AFM image 14

(c) AFM image 5 (detail) (d) AFM image 14 (detail)

Figure 3.10: Approximation of particles topography within detected ellipses (see
Figure 3.9) by ellipsoids.
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(a) AFM image 5 (b) AFM image 14

Figure 3.11: Weights z2 for computation of approximation error ε (see Eq. (3.3.1)).

(a) AFM image 5 (b) AFM image 14

Figure 3.12: Approximation error ε (see Eq. (3.3.1)) between the measured to-
pography (see Figure 3.9) and the approximating ellipsoids (see Figure 3.10).

3.3.4 Approximation by ellipsoids

In order to detect ellipsoidal particles, the method approximates the surface of
particles by ellipsoids (see Figure 3.10) and computes the approximation error.
The method constructs the upper half of ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1, a, b, c > 0 & z ≥ 0

above each approximating ellipse. Semiaxes a and b lie in the plane corresponding
to zero brightness and equal the major and minor semiaxes, respectively, of the
approximating ellipse. The method estimates the length of semiaxis c perpendic-
ular to the image plane as

c = f(xt, yt),
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(a) AFM image 5 (b) AFM image 14

(c) AFM image 5 (detail) (d) AFM image 14 (detail)

Figure 3.13: Ellipsoids approximating particles topography with approximation
error ε ≤ 0.015 (see Eq. (3.3.1))

where (xt, yt) is the centroid of the approximating ellipse. The height of the
approximating ellipsoid

z(x, y) =

{
c (1− (x

2

a2
+ y2

b2
))

1
2 , x2

a2
+ y2

b2
≤ 1,

0, otherwise

above the zero-brightness plane approximates the brightness function of the de-
noised image within the approximating ellipse (see Figure 3.10).

In order to measure dissimilarity between the surface of the particle and the
approximating ellipsoid, the method computes the approximation error. It defines
the error as

ε =
1∫∫

D

(z(x, y))2dxdy

∫∫
D

(z(x, y))2(f(x, y)− z(x, y))2dxdy, (3.3.1)

where f is the brightness function of the denoised image and D is the shape of
the watershed region. Weights (z(x, y))2 suppress the influence of outer parts of
the approximation ellipse, which are often distorted by the convolution of the
cantilever tip with neighboring particles (see Figure 3.11). The approximation
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(a) AFM image 5 (b) AFM image 14

Figure 3.14: Approximating ellipses corresponding to ellipsoids with high (red)
and low (green) approximation errors.

error (see Figure 3.12) is a measure of the difference between the surface of the
particle and its approximating ellipsoid: the lower the approximation error, the
closer the surface of the particle matches the approximating ellipsoid. The error
is high for regions that contain overlapping or tilted particles or disrupting AFM
noise artifacts.

3.3.5 Measurement

The method then measures the mean length and width of salient particles in the
AFM image. It measures only particles with approximation error

ε ≤ ε0

(see Figure 3.14), where ε0 is a convenient approximation error threshold. The
value of ε0 can be set adaptively. The method estimates the length and width of
each measured particle (see Figures 3.20a, 3.20b, 3.22a, 3.22b) by the length of
major axis 2a and minor axis 2b, respectively, of the corresponding approximating
ellipse (see Figures 3.15). From these values, it computes the average length and
width.
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(a) AFM image 5 (b) AFM image 14

Figure 3.15: Automatically detected shapes of particles convenient for measure-
ments.

3.4 Results

Performance of the proposed method was tested on a set of 11 AFM images
of PPDP samples (see Section 3.1). The samples1 were scanned by the Ntegra
Prima apparatus (NT-MDT, Russian Federation) [33]; in order to avoid damage
of the soft organic material, the semi-contact (tapping) mode [31] was used. The
acquired images and the corresponding color scale of 256 height levels (see Figure
3.16) were saved in a 24bit RGB color format. Dimensions of most images were
719× 719 pixels2.

As a preprocessing step, the color images were transformed to grayscale (see
Figure 3.1) with brightness values linearly corresponding to the measured height
of the scanned surface. The acquired images were colored by the AFM imaging
software by a color scale of 256 levels; color scales are used by physicists for easier
visual evaluation of AFM images. AFM images contain information only about
the height of surface, however. For purposes of automatic evaluation, the color
images were transformed to a grayscale by mapping the color scale to a gray scale;
pixel values were stored in [0, 1] interval.

Automatic measurement of particles was performed in the grayscale AFM
images by the method described in Section 3.3 (see Figure 3.3). In each image,
the method detected salient particles, and estimated their average lengths and
widths in pixels. It suppressed high-frequency noise by convolution with a Gauss-
ian kernel with standard deviation σ ranging from 1 to 3 pixels, depending on the
specific image. The segmentation was computed by the watershed by immersion
algorithm described in [61] (see Subsection 3.2.1). Global threshold t0 for com-

1 The PPDP compound was prepared by reaction of pyrrolinone ester with corresponding
nitrile [63]. Thin films of PPDP were prepared by a vacuum evaporation method. The depo-
sition of the active PPDP layer was carried out in a vacuum coating facility with an ultimate
pressure of 1× 10−4 Pa pumped by a diffusion oil pump. Thin films of thickness 100 nm were
deposited on selected substrates [39].

2 Dimensions of eight images were 719 × 719 pixels; dimensions of the other images were
909× 604, 723× 719 and 715× 719 pixels.
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(a) AFM image 5 (b) AFM image 14

Figure 3.16: Atomic force microscopy (AFM) images of phenylpyridyldiketopy-
rrolopyrrole (PPDP) samples with color scale (right) of the measured height.

putation of cores in watershed regions was set to t0 = 0.97. Cores on watershed
lines and image borders were detected by standard morphological operations,
namely binary dilation with a 3× 3 structural element. The approximation error
threshold was set to ε0 = 0.015.

For purposes of comparison, four of the testing AFM images were measured
manually by a physicist. Based on his knowledge and experience, he selected a
number of representative particles in each image and approximated their shapes
by ellipses (see Figures 3.19b and 3.21b); the major and minor axes corresponded
to the lengths and widths of the particles. In each image he selected and mea-
sured only a small subset of particles that he considered sufficient for estimation
of the average length and width of all particles in the image with little error. He
measured two of these images again with a time delay, this time in two phases: in
the first phase, he again selected a small subset of salient particles for measure-
ment (see Figures 3.19c and 3.21c); in the second phase, he added other salient
particles that he also considered convenient for measurement (see Figures 3.19d
and 3.21d).

Results of the automatic and manual measurements were compared by the
mean values, standard deviations (see Table 3.1), and distributions of lengths
and widths (see histograms in Figures 3.20, 3.22) of measured particles in each
image.

The results were further compared by two statistics. For the purpose of com-
parison, two detected elliptical shapes were attributed to the same particle if their
centers lied within each other’s shape. The first statistic measured the consistency
in detection, i.e. the ratio of the number of particles selected by both automatic
and manual measurements to the number of manually selected particles (see Ta-
ble 3.2). This described the relative number of particles selected by the expert as
appropriate for measurement that were selected also by the automatic method.
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(a) AFM image 5 (b) AFM image 14

Figure 3.17: Comparison of manually measured particles (magenta: first measure-
ment session; violet: second measurement session, with additionally measured
particles).

(a) AFM image 5 (b) AFM image 14

Figure 3.18: Comparison of automatically (green) and manually (magenta: first
measurement session; violet: second measurement session, with additionally mea-
sured particles) measured particles.

The second statistic measured the Dice similarity coefficient (DSC) [8, 10]

DSC =
n∑
i=1

2|Ai ∩Mi|
|Ai|+ |Mi|

, (3.4.1)

where n denotes the number of particles measured by both methods, A denotes
the automatically computed shape of particle i, M the manually measured shape
of the same particle, and | · | denotes the number of pixels (see Table 3.2). DSC
ranges from zero to one, corresponding to no and full overlap, respectively. The
DSC measure describes the difference between automatically and manually esti-
mated shapes of particles that were measured both automatically and manually.
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(a) automatic (b) manual 1

(c) manual 2 (d) manual 2+

Figure 3.19: Particles measured in AFM image 5: automatic measurement (a),
first manual measurement (b), second manual measurement (c), second manual
measurement with additionally measured particles (d).
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(h) width: manual 2+

Figure 3.20: Histograms of lengths (left) and widths (right) of automatically
measured particles in AFM image 5: automatic measurement (a, b), first manual
measurement (c, d), second manual measurement (e, f), second manual measure-
ment with additionally measured particles (g, h).
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(a) automatic (b) manual 1

(c) manual 2 (d) manual 2+

Figure 3.21: Particles measured in AFM image 14: automatic measurement (a),
first manual measurement (b), second manual measurement (c), second manual
measurement with additionally measured particles (d).
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Figure 3.22: Histograms of lengths (left) and widths (right) of automatically mea-
sured particles in AFM image 14: automatic measurement (a, b), first manual
measurement (c, d), second manual measurement (e, f), second manual measure-
ment with additionally measured particles (g, h).
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AFM measurement number of average average
image method measured particles length width

0 automatic all 340 36± 10 23± 5
0 automatic filtered 287 36± 10 22± 5
1 automatic all 252 45± 13 27± 6
1 automatic filtered 218 44± 13 27± 6
2 automatic all 685 24± 6 17± 3
2 automatic filtered 674 24± 6 17± 3
3 automatic all 369 35± 8 24± 5
3 automatic filtered 368 35± 8 24± 5
4 automatic all 168 50± 13 30± 7
4 automatic filtered 144 50± 13 31± 7
5 automatic all 105 68± 17 45± 9
5 automatic filtered 101 68± 17 45± 9
5 manual 1 29 74± 18 45± 10
5 manual 2 45 74± 14 44± 9
5 manual 2+ 78 68± 15 40± 9
6 automatic all 172 51± 14 30± 7
6 automatic filtered 146 50± 13 30± 7
6 manual 1 31 56± 13 27± 7
12 automatic all 111 67± 17 42± 11
12 automatic filtered 107 67± 17 42± 11
12 manual 1 14 80± 13 48± 8
14 automatic all 116 66± 19 40± 9
14 automatic filtered 108 65± 18 40± 9
14 manual 1 35 60± 10 33± 7
14 manual 2 43 57± 10 30± 6
14 manual 2+ 83 57± 11 30± 6
16 automatic all 171 48± 14 32± 8
16 automatic filtered 164 48± 14 32± 8
17 automatic all 142 54± 17 34± 8
17 automatic filtered 100 54± 17 35± 7

Table 3.1: Results of automatic and manual measurements of the average length
and width of phenylpyridyldiketopyrrolopyrrole (PPDP) particles in 11 atomic
force microscopy images (AFM). Method “automatic filtered” denotes automatic
measurement of particles with approximation error ε ≤ 0.015 (see Eq. (3.3.1)),
while method “automatic all” denotes automatic measurement of all detected
particles irrespective of the approximation error; methods “manual1” and “man-
ual2” denote the first and second manual measurement sessions, respectively, and
method “manual2+” denotes second session with additionally measured particles.
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AFM image measurement A measurement B |A&B|/|B| DSC
5 automatic filtered manual 1 90% 0.83
5 automatic filtered manual 2 89% 0.82
5 automatic filtered manual 2+ 79% 0.81
5 automatic all manual 1 97% 0.83
5 automatic all manual 2 93% 0.82
5 automatic all manual 2+ 83% 0.82
5 manual 2 manual 1 93% 0.84
5 manual 2+ manual 1 100% 0.84
6 automatic filtered manual 1 58% 0.76
6 automatic all manual 1 71% 0.73
12 automatic filtered manual 1 100% 0.84
12 automatic all manual 1 100% 0.84
14 automatic filtered manual 1 66% 0.76
14 automatic filtered manual 2 72% 0.71
14 automatic filtered manual 2+ 73% 0.72
14 automatic all manual 1 80% 0.75
14 automatic all manual 2 81% 0.72
14 automatic all manual 2+ 80% 0.72
14 manual 2 manual 1 63% 0.83
14 manual 2+ manual 1 89% 0.80

Table 3.2: Comparison of automatic and manual measurements. Method “auto-
matic filtered” denotes automatic measurement of particles with approximation
error ε ≤ 0.015 (see Eq. (3.3.1)), while method “automatic all” denotes auto-
matic measurement of all detected particles irrespective of the approximation
error; methods “manual1” and “manual2” denote the first and second manual
measurement sessions, respectively, and method “manual2+” denotes second ses-
sion with additionally measured particles. Column |A&B|/|B| contains the ratio
of the number of particles selected by both measurements to the number of parti-
cles selected by measurement B (see Table 3.2). Column DSC contains the Dice
similarity coefficient (see Eq. (3.4.1)).
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3.5 Discussion

In order to evaluate performance of the automatic measurement method, its re-
sults were compared with the results of manual measurements. The results could
not be compared with ground truth because real lengths and widths of parti-
cles cannot be measured by AFM due to limitations of the scanning technique,
namely convolution of the scanned surface with the contacting tip (see Section
3.1). Automatically and manually measured values are both just estimates of
the real lengths and widths of particles. Therefore only consistency between the
automatic and manual measurements could be evaluated. Note, however, that
even a perfect match would not imply accuracy because the results are not be
compared with ground truth.

For each image, the average lengths and widths of particles from automatic
and manual measurements were within the standard deviations (see Table 3.1).
Similarities in distributions of lengths and widths of measured particles (see Fig-
ures 3.20, 3.22) also indicate that both automatic and manual methods measured
particles with similar sizes. The two comparative statistics (see Table 3.2) show
that while the automatic methods did not measure some particles selected for
manual measurements, the overlap was satisfactory, and comparable to overlap
for the two manual measurements. These results indicate that the automatic
method could be used in place of manual measurements.

Differences in the computed statistics (see Table 3.2) between the automatic
and manual measurements were caused by three main factors. The measurement
methods differed in:

• The criteria for selection of particles appropriate for measurement. Whereas
the automatic method selected and measured salient particles, i.e. particles
with approximation errors ε ≤ ε0, the physicist, using his knowledge and ex-
perience, selected and measured even particles that were partially occluded
or slightly distorted by AFM noise; the automatic method excluded such
particles from measurements because it could not estimate their real shape
with sufficient accuracy.

• The spatial distribution and the number of selected particles. Whereas the
automatic method analyzed particles homogeneously / irrespective of their
position in the image, the physicist tended to select particles in clusters
(compare Figure 3.15b with Figures 3.21b and 3.21c) in order to facilitate
the laborious and time-consuming manual measurement process. As a re-
sult, he did not select some particles convenient for measurement.

• The computed lengths and widths of particles that were measured both
automatically and manually (see Table 3.2). The automatic measurements
were affected by sensitivity of the watershed segmentation to noise and by
inaccuracies of the fitted model. The manual measurements were affected by
errors in visual estimation of particle shapes caused mainly by tediousness
of the process. Note, however, that even manual measurements of the same
particles in the same images performed by the same physicist resulted in
different measured values (see Figure 3.17).

Accuracy and sensitivity of the automatic method with respect to detection
and measurement of particles depend on three main factors:
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• Standard deviation σ of the Gaussian low-pass filter affects the rate of false
detections of AFM noise artifacts or multiple particles as one particle. On
one hand, if σ is too small, the convolution may not suppress high-frequency
AFM noise sufficiently and the method may evaluate remaining AFM noise
artifacts as particles and include them in measurements. On the other hand,
if σ is too large, the convolution may blend neighboring particles, and the
method may thus incorrectly identify them as a single particle and include
it in measurements. The value of σ that minimizes the number of falsely
detected particles depends on the resolution of the input AFM image.

• The watershed transform algorithm and core threshold t0 may affect the
number of falsely detected or falsely removed particles. The watershed al-
gorithm affects not only the shape of regions but also the number of regions
incorrectly splitting single particles or containing AFM noise artifacts or
multiple particles. Watershed transform by immersion proved convenient
for the analyzed AFM images. The value of threshold t0 influences the
number of removed regions. If t0 is too high, the method identifies more
noise artifacts and partly occluded particles as particles convenient for mea-
surement. If t0 is too low, the method removes even regions with salient
particles convenient for measurements.

• Approximation error threshold ε0 affects the number of measured particles.
If ε0 is too high, the method measures even falsely detected particles; if ε0
is too low, it does not measure even the most salient particle.

The method could be potentially modified to achieve higher accuracy and
better results. Possible modifications include:

• Regions containing cores that only narrowly border watershed lines or image
borders may correspond to particles that are not significantly occluded but
just lie near AFM noise artifacts or other particles. Such particles could be
measured with little error.

• Particles incorrectly divided into separate regions could be merged again
and included in measurements. Such regions could be detected by inspecting
the continuity of cores across watershed lines.

• The shape of particles could be estimated by a different shape model. Var-
ious shape models could be used to detect and measure different types of
particles. The scanned surface could be modeled by a mixture of functions
corresponding to separated particles. Figure 3.23 shows approximation of
particles by Gaussians; ellipsoids used in the proposed method better model
the compact support of particles, though.

• The dimensions of approximating ellipses can be modified by coefficients for
the major and minor axis to closely correspond to the manually detected
ellipses. In this project, however, there was not enough data from manual
detections for such supervised learning.

Note, however, that accuracy of the method is strongly limited by the acquisition
technique, namely by convolution of the measured surface with an unknown shape
of the contacting tip.
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(a) AFM image 5 (b) AFM image 14

Figure 3.23: Approximation of topography by Gaussians proved less convenient
for PPDP particles than approximation by ellipsoids (see Figures 3.10c, 3.10d).

Although the method was primarily developed for measurements in physics, it
can be also applied to similarly shaped data in biology and medicine. The method
could be used, for example, for measurement of elliptical cells [7] or ellipsoidal
microorganisms.

3.6 Conclusion

This project has introduced a new method for detection and measurement of
particles in atomic force microscopy (AFM) images. It was developed for pur-
poses of automatic measurement of the average length and width of particles
in AFM images of phenylpyridyldiketopyrrolopyrrole (PPDP), a semiconducting
material. The method assumes that each AFM image contains similarly sized
elliptical particles. It is based on segmentation by a watershed transform and
approximation of the shape of particles by ellipses computed by image moments;
the length and width of each measured particle are estimated by the major and
minor axes, respectively, of the corresponding approximating ellipse. Its perfor-
mance was successfully tested on eleven AFM images of PPDP samples. Results
of the automatic method were compared with results of manual measurements
performed by a physicist. The comparison showed consistency between the mea-
surements: differences between automatically and manually computed average
lengths and widths were within corresponding standard deviations. The results
indicated that the automatic method could be used in practice in place of labori-
ous, time-consuming manual measurements. The main advantage of the proposed
method is its robustness to high-frequency noise in AFM images. Possible future
improvements include further research on the approximation of particle shapes
and on the corresponding approximation error. The method was published in
2011 in Proceedings of the ICASSP 2011: IEEE International Conference on
Acoustics, Speech, and Signal Processing [45].
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58



4. Evaluation of vocal fold
vibration parameters in
videokymographic images

Abstract:
Videokymography is a novel video recording technique used in laryngology and

phoniatrics for examination of vocal fold vibrations. Videokymographic cameras
repeatedly scan a single line with frame rate c. 8000 Hz; they can thus capture
fast vibrations of vocal folds along the line of interest. The resulting video-
kymographic images (videokymograms) consist of successively acquired frames
of the scanned line. Visual evaluation of videokymograms is difficult and time-
consuming, so development of methods for computer-aided diagnostics is of great
interest. The objective of this project was to propose methods for automatic
detection of diagnostically important vibration features in videokymograms and
computation of corresponding vibration parameters. Performance of the devel-
oped methods was tested on a set of videokymograms with a wide range of vibra-
tory patterns; results of the automatic evaluation were comparable with results
of visual measurements by clinicians.

Keywords: diagnostics, graph cuts, image analysis, videokymography, vocal
fold vibrations

4.1 Introduction

Videokymography is a novel high-speed imaging technique convenient for obser-
vation of vocal fold vibrations. Laryngology and phoniatrics examine videokymo-
graphic images (videokymograms) for diagnostically important vibration param-
eters. Currently used visual evaluation of videokymograms is, however, difficult,
and its results are inconsistent. The objective of this project was to develop
automatic methods for detection of important features in videokymograms and
computation of corresponding vibration parameters.

Vibrations of vocal folds are critically important for voice production. Vocal
folds are a pair of elastic muscles in the glottal part of larynx (see Figure 4.3a);
the right and left vocal folds are mutually symmetric according to the glottal
axis. Their vibrations produce phonation. Vibrating folds gradually close and
open the space between them (rima glottidis) with frequency c. 80-1000 Hz [57].
Parameters of vocal fold vibrations determine the quality of phonation. Laryn-
gology and phoniatrics examine these parameters for diagnosis and treatment of
voice disorders.

Observation of vocal fold vibrations demands special imaging techniques.
Standard video cameras with frame rates 25-30 Hz cannot capture the high-speed
vibrations of vocal folds (see Figure 4.1D). In current practice, clinicians exam-
ine vocal fold vibrations by strobolaryngoscopy, high-speed videolaryngoscopy or
videokymography; all three techniques observe vocal folds from above via a mirror
or video camera on a laryngoscope.
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Figure 4.1: Differences in acquisition of vocal fold vibrations by (D) standard
video, (A, C) stroboscopy and videostroboscopy, and (B) high-speed imaging.
(Reprinted from [53] with permission.)

Strobolaryngoscopy illuminates vocal folds by very short light pulses (see Fig-
ure 4.1A). The stroboscopic pulses sample vocal fold vibrations with fre-
quencies that allow observation of subsampled vibrations by a standard
video camera (see Figure 4.1C), or directly via a mirror on the laryngo-
scope. The method is accessible and commonly used in clinical practice.
It is, however, inappropriate for examination of irregularly vibrating vo-
cal folds since irregularities in vibrations create distortions in the observed,
temporally subsampled signal.

High-speed videolaryngoscopy captures gradual movements of vibrating folds
by a high-speed video camera with frame rate c. 10000 Hz [9] (see Figure
4.1B). The technique thus allows observation of gradual movements of vocal
folds irrespective of their regularity. However, high price and abundance of
output data limit use of these systems in clinical practice. Recently de-
veloped image processing methods [9, 27, 28] reduce the amount of data by
transformation of the high-speed video recordings into 2D images (phonovi-
brograms) that visualize important vibration features.

Videokymography captures gradual movements of vibrating vocal folds along
a line perpendicular to glottal axis by a videokymographic camera that
records a single row with frame rate c. 8000 Hz (see Figure 4.2). In compar-
ison to standard video cameras, videokymographic cameras increase tem-
poral resolution by decreasing spatial resolution. The resulting videokymo-
grams are real time spatiotemporal images composed of consecutive scans
of the recorded row (see Figure 4.3b); the number of unique rows1 in a
videokymogram equals the length of the recorded interval times the frame
rate of the videokymographic camera. Videokymography was developed

1 Modern videokymographic cameras store each acquired frame of the recorded line twice in
the videokymogram, i.e. in two consecutive rows.
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(a) (b)

Figure 4.2: (a) Examination of vocal fold vibrations by videokymography.
(Reprinted from [57] with permission.) (b) The videokymographic equipment:
(1) laryngoscope, (2) an objective with a C-mount, (3) VKG camera head, (4)
VKG camera unit, (5) endoscopic high-intensity continuous light source, (6) light
cable, (7) digital video recorder, and (8) video monitor. (Photo courtesy of Cymo,
B.V., Groningen, The Netherlands. Reprinted from [55] with permission.)

in 1994 [58]. In contrast to high-speed videolaryngoscopy, it significantly
reduces the amount of output data as well as the price of the recording
equipment. Modern videokymographic cameras allow simultaneous obser-
vation in standard and videokymographic modes (see Figure 4.3), so the
examining clinician can adaptively position the camera to record the line of
interest. Although videokymograms efficiently capture information about a
number of important parameters of vocal fold vibrations along the recorded
line, medical interpretation requires additional knowledge about the posi-
tion of the line and the type of phonation. Clinical practice thus often
combines videokymography with strobolaryngoscopy. In contrast to stro-
boscopic techniques, videokymography correctly captures even temporally
irregular vibratory patterns; moreover, it allows analysis of vibrations in a
still image.

Videokymograms contain a number of features that define diagnostically im-
portant vibration parameters. For example, features describing the shape of rima
glottidis, e.g. the opening and closing points and lateral and medial peaks (see
Figure 4.8), define most of the clinically examined vibration parameters, including
cycle-to-cycle variability, relative duration of glottal closure, left-right asymme-
tries, and relation between opening and closing phases. In another example,
features describing trajectories of mucosal waves, i.e. vibratory waves on the sur-
face of vocal folds, define the type and extent of mucosal waves. Laryngology and
phoniatrics evaluate vibration parameters to examine properties of vocal folds
and characteristics of their vibrations; accurate evaluation is critically important
for correct diagnosis of voice disorders and their effective treatment.

In 2007 Švec et al. [59] developed a protocol (VKG evaluation sheet) for
systematic evaluation of vocal fold vibrations in videokymograms. The evaluation
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(a) standard video (b) videokymogram

Figure 4.3: Two modes of videokymographic cameras: (a) standard and (b)
videokymographic. The videokymogram is composed of successively acquired
frames of the scanned line.

sheet defines vibration parameters [56] by categories described by pictograms (see
Figure 4.4) and thus provides a convenient tool for visual evaluations. It also
enables comparative studies between different evaluations [15].

The current aim is development of methods for computer-aided evaluation of
vibration parameters in videokymograms. In current practice, clinicians evalu-
ate videokymograms visually. The visual evaluation process is, however, time-
consuming and inconsistent. Its results depend on the evaluators’ knowledge and
experience, and may even differ between evaluation sessions [15]. Automation of
the evaluation process would, in particular, increase the precision and consistency
of results. In combination with visual verification, automatic evaluation could be
effectively used in clinical practice.

The problem of automatic evaluation of vibration parameters in videokymo-
grams has not been satisfactorily solved yet. Low contrast and high level of
noise, as well as irregularities in periodicity of vocal fold vibrations complicate
automatic processing of videokymograms. In 2003 Qiu et al. [36] introduced an
algorithm for detection of glottal contour, i.e. the boundary of rima glottidis, by
Otsu’s bi-thresholding [34] and active contour fitting, and also for quantification
of corresponding vibration parameters by measurement of periodical structures
in the signal. The algorithm is, however, applicable only to regular vibratory
patterns. In 2006 Manfredi et al. [29] developed an algorithm for approximation
of glottal contour by active contours. The algorithm is, however, sensitive to
low contrast between rima glottidis and vocal folds in videokymograms. In 2008
Jiang et al. [23] proposed a curve-fitting algorithm for detection of trajectories of
the upper and lower vocal fold lips, which determine the glottal contour. Again,
the algorithm is applicable only to regular vibratory patterns. In 2010 Zhang et
al. [67] introduced a method for segmentation of rima glottidis by Lagrange inter-
polation, differentiation, and Canny’s edge detection. The method was, however,
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Figure 4.4: Protocol for evaluation of videokymographic images: parameter Du-
ration of closure (see Table 4.4 and Figure 4.17). (Reprinted from [59] with
permission.)

designed for high-contrast videokymograms of extracted canine vocal folds.
Since 2010 the problem has been researched also at our department2. In 2010

Hauzar [17] developed an algorithm for hierarchical detection of glottal features
in videokymograms. The algorithm is, however, sensitive to local contrast be-
tween rima glottidis and vocal folds, and may detect some features incorrectly
in low-contrast videokymograms with pathologic vibratory patterns. In 2011
Zita [68] developed a correlation-based algorithm for tracking of mucosal waves
in videokymograms. The algorithm was, however, designed specifically for video-
kymograms with physiologic vibratory patterns.

The objective of this project was to develop methods for automatic detection
of important vibration features in videokymograms and evaluation of correspond-
ing vibration parameters in the VKG evaluation sheet. The methods should be
robust to pathologic vibratory patterns and low contrast in videokymograms.
Results of the automatic evaluation should be comparable with results of visual
evaluations.

In 2012 we developed new methods for detection of reflections, rima glottidis,
mucosal waves, and glottal features, and introduced a method for automatic
evaluation of corresponding vibration parameters [44]. One method computes
the shape of rima glottidis by thresholding based on graph cuts, and from the
segmented shape extracts corresponding vibration features using the hierarchical
algorithm developed by Hauzar [17]. Another method detects directions of mu-
cosal waves by Fourier transform; the method can be used in combination with
the tracking algorithm proposed by Zita [68] to determine trajectories of mu-
cosal waves with higher accuracy. The developed methods are relatively robust
to low contrast and pathologic vibratory patterns. The automatic evaluation
method computes from the detected features numerical values of 11 vibration
parameters and corresponding categories in the VKG evaluation sheet. Section

2 Department of Image Processing, Institute of Information Theory and Automation, Acad-
emy of Sciences of the Czech Republic, Prague.
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4.3 describes the developed methods in detail. Their performance was tested on
videokymograms with a wide range of vibratory patterns. Results of the auto-
matic evaluation were comparable with results of visual evaluations.

The rest of this chapter is organized as follows: Section 4.2 describes the image
thresholding algorithm based on graph cuts that was used for segmentation of
rima glottidis; Section 4.3 describes in detail the developed methods; Section
4.4 presents and compares results of the automatic evaluation with results of
visual evaluations; Section 4.5 discusses results and properties of the developed
methods, and outlines possible future enhancements; and Section 4.6 summarizes
this chapter.

4.2 Applied image processing tools

The proposed method for automatic segmentation of rima glottidis (see Subsec-
tion 4.3.2) uses an algorithm for computation of optimal threshold by normalized
graph cuts. Subsection 4.2.1 describes the algorithm in detail.

4.2.1 Thresholding by normalized graph cuts

This subsection describes a thresholding algorithm developed by Tao and Jin in
2008 [50]. It computes the optimal value of threshold by minimization of the
normalized graph cut measure proposed by Shi and Malik in 2000 [47].

Graph cuts are an effective tool for optimal bipartitioning of data according to
selected criteria. Let G = (V,E,w) denote a weighted complete undirected graph,
where V is the set of vertices, E ⊆ V × V is the set of edges, and w : E → R+

0

is a weight function describing similarity between vertices. Let G be partitioned
into two disjoint complementary sets A and B = V \ A. Graph cut

cut(A,B) =
∑
u∈A
v∈B

w(u, v)

is a measure that describes the similarity between vertices from different compo-
nents of the cut. Bipartitioning that minimizes the cut

argmin
A⊆V

cut(A,B), B = V \ A

maximizes dissimilarity between the components. However, minimization of the
graph cut measure often leads to isolation of a small component. Normalized
graph cut measure

Ncut(A,B) =
cut(A,B)

asso(A, V )
+

cut(A,B)

asso(B, V )
,

where

asso(A, V ) =
∑
u∈A
v∈V

w(u, v) =
∑
u∈A
v∈B

w(u, v) +
∑
u∈A
v∈A

w(u, v) = cut(A,B) + asso(A,A),

solves this problem.
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Normalized graph cut minimization can be used for computation of threshold
value optimal for image segmentation according to selected criteria. Let

f : {1, . . . ,m} × {1, . . . , n} → {0, . . . , l}, m, n, l ∈ N+

denote a digital gray-scale image. The algorithm constructs complete weighted
undirected graph G = (V,E,w), where vertices

V = {(i, j) | i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}}

correspond to pixels in the image, and weights

w(u, v) =

e−
|f(u)−f(v)|2

cf
+
‖u−v‖22
cd , ‖u− v‖2 ≤ r,

0, otherwise,
(4.2.1)

where ‖ · ‖2 denotes `2 norm, describe both the gray-level similarity and spatial
proximity of pixels. Parameters cf > 0 and cd > 0 are gray-level and spa-
tial scaling factors, respectively, and r ≥ 0 is the radius of pixel neighborhood.
Let L = {0, . . . , l} denote the set of gray levels in f , and Vk = {(i, j) | i ∈
{1, . . . ,m}, j ∈ {1, . . . , n}, f(i, j) = k} the set of pixels with gray level k ∈ L.

Each gray level t ∈ L defines bipartitioning of pixels into sets At =
t⋃

k=0

Vk and

Bt = V \ At =
l⋃

k=t+1

Vk, and also the corresponding normalized graph cut

Ncut(At, Bt) =
cut(At, Bt)

asso(At, At) + cut(At, Bt)
+

cut(At, Bt)

asso(Bt, Bt) + cut(At, Bt)
,

where

cut(At, Bt) =
t∑
i=0

l∑
j=t+1

cut(Vi, Vj) =
∑
f(u)≤t
f(v)>t
u,v∈V

w(u, v),

asso(At, At) =
t∑
i=0

t∑
j=i

cut(Vi, Vj),

asso(Bt, Bt) =
l∑

i=t+1

l∑
j=i

cut(Vi, Vj).

Minimization of the normalized graph cut measure

tNcut = argmin
t∈L

Ncut(At, Bt)

defines threshold tNcut that maximizes dissimilarity between complementary ob-
jects At and Bt according to both spatial and gray-level relations of their pixels.
The algorithm thus allows segmentation by optimal thresholding without initia-
tion.
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4.3 Methods

This section describes the developed methods for automatic evaluation of video-
kymograms. The methods described in Subsection 4.3.1 segment and remove
specular reflections; the methods in Subsection 4.3.2 segment the shape of rima
glottidis and detect corresponding features; the methods in Subsection 4.3.3 de-
tect the direction of mucosal waves and track their trajectories; the methods in
Subsection 4.3.4 evaluate vibration parameters from the detected features; and
the methods in Subsection 4.3.5 statistically compare results automatic and visual
evaluations.

Let f : D → R denote the image function of a videokymogram, where D =
{1, . . . , xmax}×{1, . . . , ymax} denotes its domain, and xmax and ymax the number
of columns and rows of the videokymogram, respectively.

4.3.1 Reflections

This subsection describes developed methods for segmentation of specular reflec-
tions and reconstruction of corresponding areas in videokymograms. The seg-
mentation method is based on thresholding and region growing, and the recon-
struction method is based on inpainting by diffusion.

In laryngoscopy, specular reflections occur on moist surfaces. Liquids on sur-
faces of vocal folds and surrounding tissues specularly reflect the laryngoscopic
illumination. Moist surfaces perpendicular to the axis plane between the illu-
mination source and the camera sensor thus create specular reflections in the
recorded data.

In videokymography, specular reflections appear as very bright areas, notably
brighter than the rest of the videokymogram (see Figure 4.5a). The videokymo-
grams thus lack information about real appearance of the corresponding tissues.
Specular reflections both facilitate and complicate evaluation of videokymograms.

On one hand, specular reflections can be used for detection of vocal fold
properties. For example, specular reflections indicate presence of moisture, which
is important for correct function of vocal folds. In another example, specular
reflections on mucosal waves indicate their trajectory. Specular reflections can be
effectively segmented by thresholding because they are generally brighter than
the rest of the videokymogram.

On the other hand, specular reflections may also complicate evaluation of
vocal fold properties. Specular reflections change the appearance of corresponding
tissues in videokymograms, and also create artificial edges and plateaus. Such
artifacts may impair results of detection algorithms and thus, for example, lead
to detection of false features. In such cases, specular reflections should be first
removed from the videokymogram. They can be effectively removed, e.g. by
interpolation of image function from their neighborhood.

Segmentation of specular reflections

The proposed method for segmentation of specular reflections in videokymo-
grams consists of three steps. It first normalizes brightness in the videokymogram,
then segments the shape of specular reflections by thresholding, and finally refines
the segmented shape by region growing.
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The brightness normalization step linearly stretches the range of the video-
kymographic image function f to [0, 1] interval

fn(x, y) =

f(x, y)− min
(x,y)∈D

f(x, y)

max
(x,y)∈D

f(x, y)− min
(x,y)∈D

f(x, y)
. (4.3.1)

This normalization allows use of the same segmentation threshold in all video-
kymograms.

The thresholding step computes regions corresponding to strong specular re-
flections by thresholding with convenient high threshold t1 ∈ [0, 1]

gt1(x, y) =

{
1, fn(x, y) ≥ t1,

0, fn(x, y) < t1
(4.3.2)

(see Figure 4.5b).
The refinement step adjusts distortions in boundaries of the segmented re-

flections. The method detects regions brighter than convenient low threshold
t2 ∈ [0, t1]

gt2(x, y) =

{
1, fn(x, y) ≥ t2,

0, fn(x, y) < t2
(4.3.3)

(see Figure 4.5c) and selects regions in gt2 that intersect regions in gt1 . The result
is a binary image gr of segmented specular reflections (see Figure 4.5d).

Removal of specular reflections

The proposed method for removal of specular reflections in videokymograms
consists of two steps. It first computes outer boundaries of regions with specular
reflections and then reconstructs image function within the regions by diffusion
from the outer boundaries.

The first step computes the outer boundaries of specular reflections by binary
morphology [46]. It enlarges regions in binary image gr, i.e. regions with specular
reflections computed by the segmentation method described above, by

gd = gr ⊕

 0 1 0
1 1 1
0 1 0

 ,

where ⊕ denotes binary dilation with a structuring element, and then subtracts
the original regions from the enlarged regions

gb = gd − gr.

The result is a binary image of the outer boundaries of specular reflections.
The second step reconstructs image function fn within regions with specular

reflections gr by inpainting from their outer boundaries gb. The inpainting can
be performed by a number of methods [2,3]. The aim of the reconstruction is to
suppress sharp edges created by specular reflections. Diffusion [52], for example, is
simple but effective for this purpose; it reconstructs the image function smoothly
and does not introduce significant edges. The result is a videokymogram with
specular reflections removed by interpolation from their neighborhood (see Figure
4.5f).
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(a) (b) (c)

(d) (e) (f)

Figure 4.5: Detection and removal of specular reflections: (a) videokymogram
with specular reflections, (b) thresholding with high threshold t1 (see Eq. (4.3.2)),
(c) thresholding with low threshold t2 (see Eq. (4.3.3)), (d) growing of regions in
(b) within regions from (c), (e) segmented specular reflections (red), (f) removal
of the reflections by diffusion from outside boundaries.

4.3.2 Rima glottidis

This subsection describes developed methods for segmentation of rima glottidis
and detection of corresponding vibration features in videokymograms. The seg-
mentation method is based on thresholding by graph cuts (see Subsection 4.2.1)
and morphological operations; the feature detection method is based on the hi-
erarchical algorithm developed by Hauzar [17].

Rima glottidis (or glottal area) is the space between vocal folds. The boundary
between vocal folds and rima glottidis is called glottal contour. Lateral move-
ments of vibrating vocal folds change the shape of rima glottidis in periods cor-
responding to vibration cycles. The shape gradually widens and narrows during
the opening and closing phases, respectively, and completely disappears during
closure (see Figure 4.8).
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In videokymograms, rima glottidis appears as a dark area between vocal folds.
Closures, if present, divide its shape into separate regions corresponding to open
phases of vibration cycles. Rima glottidis is mostly darker than the rest of the
videokymogram (see Figure 4.6a). It may, however, contain bright areas created
by reflections on underlying tissues. Moreover, some areas of vocal folds or sur-
rounding tissues may, due to insufficient illumination, also appear dark. For these
reasons, rima glottidis cannot be generally segmented only by thresholding.

Segmentation of rima glottidis

The proposed segmentation method consists of three main steps. The first
step roughly estimates maximal lateral extent of rima glottidis and crops the
videokymogram accordingly; the second step segments the shape of rima glot-
tidis by thresholding; and the third step removes incorrectly segmented regions
corresponding to dark areas of vocal folds and surrounding tissues and also refines
the shape of regions corresponding to rima glottidis.

In order to estimate the extent of rima glottidis, the method first computes the
centerline of vibrations (see Figure 4.6b) by the algorithm developed by Hauzar
[17]. The centerline is a vertical line approximately bisecting the shape of rima
glottidis in the videokymogram. The algorithm first computes sums of pixel
values in columns of the videokymogram, and orders the columns accordingly
from minimum. It estimates the centerline xc by the column with the lowest sum
that has vibrations in its neighborhood.

The method then normalizes brightness of the videokymogram f to [0, 1] (see
Eq. (4.3.1)) and suppresses noise by median filtering (see Figure 4.6c). Then it
computes minima of columns

cmin(x) = min
y
f(x, y),

and thresholds the vector

ctr(x) =

{
1, cmin(x) ≥ tr,

0, otherwise
(4.3.4)

by threshold tr corresponding to an estimate of maximal brightness of rima glot-
tidis in videokymograms. The thresholding divides the vector into regions (see
Figure 4.6d). The method then selects the region that contains the centerline xc
and denotes its boundaries as x1 and x2, i.e. xc ∈ {x1, . . . , x2} and

ctr(x) =

{
1, x ∈ {x1, . . . , x2},
0, x = x1 − 1 ∨ x = x2 + 1.

The interval encloses the maximal lateral extent of rima glottidis in the video-
kymogram. The method now crops the videokymogram to columns in interval
{x1, . . . , x2} (see Figure 4.6e).

In the second step, the method segments the cropped videokymogram fc by
thresholding based on normalized graph cuts (see Subsection 4.2.1). For this
purpose, it discretizes the range of the videokymogram to {0, . . . , 255}

fd(x, y) = [255fc(x, y)] ,
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4.6: Segmentation of the shape of rima glottidis: (a) videokymogram, (b)
centerline (blue) computed by the algorithm developed by Hauzar [17], (c) median
filtering, (d) thresholding by column minima with threshold tr (see Eq. (4.3.4)),
(e) region corresponding to the centerline, (f) semi-thresholding of bright areas
with threshold ts (see Eq. (4.3.5)), (g) thresholding with threshold tGC computed
by graph cuts (see Eq. (4.3.6)), (h) segmented boundary of rima glottidis (yellow).
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(a) (b) (c) (d) (e) (f)

Figure 4.7: Refinement of the segmented shape of rima glottidis by morpholog-
ical operations (cropped): (a) videokymogram with low contrast and pathologic
vibratory pattern, (b) thresholding by graph cuts, (c) removal of small objects,
(d) filling of holes, (e) removal of outer objects, (f) refined shape of rima glottidis
(yellow).

where [·] denotes rounding. The method then removes bright values by semi-
thresholding

fts(x, y) =

{
ts, fd(x, y) ≥ ts,

fd(x, y), otherwise
(4.3.5)

to reduce influence of very bright areas on the value of computed threshold (see
Figure 4.6f). Then it constructs graph G for fts according to the graph cut
based thresholding algorithm described in Subsection 4.2.1, and minimizes the
normalized graph cut measure

tGC = argmin
t∈{0,...,ts}

Ncut(At, Bt), At ∪Bt = Dc, (4.3.6)

where Dc = {x1, . . . , x2} × {1, . . . , ymax} is the domain of fts . The method then
thresholds the digital image by the computed optimal threshold

fGC(x, y) =

{
1, fts(x, y) ≤ tGC ,

0, otherwise

to regions defined by components AtGC and BtGC , corresponding to the area rima
of rima glottidis and its surroundings, respectively.

The resulting binary image fGC may contain—apart from regions correspond-
ing to rima glottidis—also incorrectly detected regions corresponding to dark ar-
eas of vocal folds and surrounding tissues, or holes in the regions of rima glottidis,
corresponding to bright areas of reflections from tissues under rima glottidis. The
refinement method gradually detects such regions and holes and removes them
by standard morphological operations [46]. It namely removes small regions and
regions outside the centerline, and detects the holes by labeling and fills them in
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Figure 4.8: Vibration features in videokymograms.

(see Figure 4.7). Finally, the method positions the refined binary image within
the domain of the original videokymogram f . The result is a binary image frg
of the shape of rima glottidis (see Figure 4.6g). For visualization purposes, the
method smooths the detected shape by morphological closing (see Figure 4.6h).

Detection of glottal features

This part describes a method for detection of vibration features defined by
the shape of rima glottidis (glottal features). The method detects basic glottal
features from the segmented shape of rima glottidis and from them derives other
glottal features.

The shape of rima glottidis defines a number of vibration features in video-
kymograms. Clinically important glottal features include opening and closing
points, lateral and medial peaks, vibration cycles and their opening, closing,
open and closed phases, and glottal and vocal fold amplitudes (see Figure 4.8).
The opening and closing points, and the lateral and medial peaks (basic glottal
features) determine the other aforementioned features (derived glottal features).

Hauzar [17] developed an algorithm for extraction of basic glottal features di-
rectly from videokymograms. The algorithm computes the shape of rima glottidis
locally for each feature by thresholding and region growing; the segmentation step
of the algorithm is, however, sensitive to low contrast between rima glottidis and
vocal folds. The algorithm may thus compute some features incorrectly, namely
in poorly illuminated videokymograms of pathologic vibratory patterns.

feature notation
opening points Oi

closing points Ci
lateral peaks ARi , A

L
i

medial peaks MR
i ,M

L
i

Table 4.1: Basic glottal features in videokymograms (see Figure 4.8); upper in-
dices R and L denote the right and left vocal folds, respectively, and lower index
i denotes the number of the vibration cycle in the videokymogram.
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(a) (b)

Figure 4.9: Detection of basic glottal features in a videokymogram with irreg-
ular vibratory pattern and low contrast by the algorithm developed by Hauzar:
(a) directly from the videokymogram [17], (b) from the shape of rima glottidis
segmented by the proposed method.

feature notation and definition

generalized opening points Õj
i = {Oi,M

j
i }

generalized closing points C̃j
i = {Ci,M j

i }
opening phase duration toji = Aji (y)− Õj

i (y)

closing phase duration tcji = C̃j
i (y)− Aji (y)

open phase duration T oji = toji + tcji = C̃j
i (y)− Õj

i (y)

closed phase duration T cji = Õj
i+1(y)− C̃j

i (y)

vibration cycle duration T ji = T oji + T cji = toji + tcji + T cji = Õj
i+1(y)− Õj

i (y)

vocal fold amplitudes aji = max(|Aji (x)− Õj
i (x)|, |Aji (x)− C̃j

i (x)|)
glottal amplitudes ai = ALi (x)− ARi (x)

Table 4.2: Derived glottal features in videokymograms (see Figure 4.8); upper
index j ∈ {R,L} denotes the right and left vocal folds, respectively, and lower
index i denotes the number of the vibration cycle in the videokymogram.

The proposed feature detection method combines this algorithm with the
method for global segmentation of rima glottidis by graph cuts. It first computes
the shape of rima glottidis by the graph-cut-based segmentation method described
above. The feature detection method then applies the algorithm developed by
Hauzar to the inversion of the binary image of segmented rima glottidis3. The
algorithm computes temporal (top-down, y) and lateral (left-right, x) coordinates
of opening and closing points and lateral peaks, and only temporal coordinates of
medial peaks. The proposed method then computes lateral coordinates of medial
peaks from the intersection of their temporal coordinates with the segmented
shape of rima glottidis.

The method computes derived glottal features from the detected basic glottal
features. It first denotes the basic glottal features according to Table 4.1; upper

3 That is, rima glottidis black, vocal folds and surrounding tissues white.
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videokymograms

glottal features

Figure 4.10: The shape of rima glottidis and basic glottal features (magenta:
lateral peaks, light blue: opening and closing points, dark blue: medial peaks)
detected by the proposed method in videokymograms with irregular vibratory
patterns.

index R or L denotes correspondence of a feature to the right or left vocal fold,
respectively, and lower index i ∈ {1, . . . , n} denotes the number of the corre-
sponding vibration cycle, where n is the number of cycles in the videokymogram.
The method then computes the derived glottal features according to definitions in
Table 4.2. It denotes the union of opening points and medial peaks as generalized
opening points, and the union of closing points and medial peaks as generalized
closing points. The generalized opening and closing points enclose open phases,
while the generalized opening points separate vibration cycles4.

The detected glottal features determine a number of vocal fold vibration pa-
rameters evaluated in the VKG evaluation sheet. Subsection 4.3.4 defines these
parameters and sets correspondences between their numerical values and cate-
gories in the evaluation sheet.

4 Depending on definition, vibration cycles can be separated either by generalized opening
points or by lateral peaks or by generalized closing points.
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4.3.3 Mucosal waves

This subsection describes the developed method for detection of mucosal wave
directions in videokymograms. It detects the direction od each mucosal wave by
Fourier transform. The method uses positions of lateral peaks computed by the
method described in Subsection 4.3.2. The method can be used in combination
with tracking methods, e.g. the correlation based algorithm proposed by Zita [68],
as a consistency check of the computed trajectory direction.

Mucosal waves are vibratory waves on the upper surface of vocal folds. Tran-
sition of vocal fold movement from lateral to medial between the opening and
closing phases raises a wave on the upper surface. The wave propagates laterally
across the surface until it disappears or reaches the lateral border of the vocal
fold. Presence of mucosal waves and their extent indicate how pliable a vocal
fold is. The top or slope of mucosal waves are sometimes highlighted by specular
reflections. Good illumination is critical for observation of mucosal waves.

In videokymograms, mucosal waves appear as diagonal paths on vocal folds
from lateral peaks in the direction of the opening movement. The wave may grad-
ually slow down, in which case the trajectory bends slightly downward. Specular
reflections, if present, may either highlight the top of the wave and thus the
mucosal wave path itself, or create a close parallel trajectory corresponding to
a slope of the wave. Mucosal wave paths are not generally brighter or darker
that the rest of the vocal fold; they rather appear as edges in direction of their
propagation. Inappropriate illumination often complicates detection of mucosal
waves in videokymograms.

Detection of mucosal wave direction

The proposed method detects mucosal wave direction by Fourier transform.
The method first removes duplicate rows. Modern videokymographic cameras
store each frame of the scanned line twice in the videokymogram, i.e. in successive
odd and even rows

f2(x, 2y − 1) = f2(x, 2y), y ∈ {1, . . . , ymax
2
},

where f2 denotes the recorded videokymogram and ymax the number of its rows.
Duplicate rows would, however, double the frequency pattern in Fourier spectrum
(see Figure 4.11c), and thus complicate detection of maximal directional energy.
The method thus removes the duplicate rows. In videokymograms compressed
by JPEG lossy compression, the successive odd and even row may slightly differ
due to quantization. To compensate for the quantization noise, the method does
not simply select either odd or even rows but rather averages them

f(x, y) =
f2(x, 2y − 1) + f2(x, 2y)

2
, y ∈ {1, . . . , ymax

2
}.

The result is a videokymogram without duplicities and with half the original
number of rows (see Figure 4.11d).

The method detects the direction of individual waves in windows. For each
lateral peak, except the first and the last one, it creates a rectangular window D
vertically from the previous to the successive lateral peak and horizontally from
the lateral peak in lateral direction to a convenient distance (see Figures 4.11d,
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(a) (b) (c) (d) (e) (f)

Figure 4.11: Impact of duplicate rows in videokymograms on pattern in Fourier
spectrum: (a) videokymogram with duplicate rows, (b) window for detection of
mucosal wave direction, (c) double pattern in Fourier spectrum, (d) videokymo-
gram with removed duplicate rows, (e) window for detection of mucosal wave
direction, (f) pattern in Fourier spectrum.

4.11e, and 4.12a), so that the width of the window is sufficient for directional
analysis of frequency spectrum in discrete domain. For simplicity, the following
description considers videokymographic image function f an absolutely integrable
real function f : R2 → R of two variables {x, y} ∈ R2 with compact support D
corresponding to the window; conversion to discrete domain is straightforward.

The method computes Fourier spectrum of function f

F (u, v) =

∫∫
D

f(x, y)e−2πi(ux+vy)dxdy,

and extracts its amplitude

|F (u, v)| =
∫∫
D

f(x, y) cos(2π(ux+ vy))dxdy.

Amplitude spectrum |F (u, v)| usually contains horizontal stripes (see Figure 4.12b)
caused by discontinuities between the left and right borders of the window. In
order to suppress the stripes, the method removes the central value

F (0, 0) =

∫∫
D

f(x, y)dxdy,

which is typically significantly larger than other values, from the amplitude spec-
trum

|F0(u, v)| =

{
0, u = v = 0,

|F (u, v)|, otherwise
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Figure 4.12: Detection of mucosal wave direction by Fourier transform in video-
kymograms with removed duplicities: (a) window, (b) amplitude of Fourier spec-
trum (logarithmic scale), (c) amplitude spectrum with removed center, (d) spec-
trum with normalized rows, (e) spectrum stretched to square shape, (f) direc-
tional energy of the spectrum, (g) restriction to angles of possible mucosal wave
directions, (h) direction with maximal energy (green) indicates mucosal waves in
perpendicular direction (compare with (a)).
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(see Figure 4.12c) and divides the spectrum by the integral of horizontal direction5

|F1(u, v)| = |F0(u, v)|∫
D

|F0(u, v)|du

(see Figure 4.12d).
The method measures directional energy in spectrum |F1(u, v)|. It stretches

the computed spectrum to square shape (see Figure 4.12e) so that its distribution
of angles corresponds to distribution of angles in image domain. The method then
computes directional energy of the spectrum

E(ψ) =

∫∫
Sψ

|F1(u, v)|2dudv, ψ ∈ (−π
2
, π

2
)

(see Figure 4.12f). To increase robustness to noise, it measures the energy in
bands

Sψ = {(u, v) | |u cosψ − v sinψ| ≤ r}, ψ ∈ (−π
2
, π

2
), r ≥ 0 (4.3.7)

of convenient width 2r centered in and rotated around zero. It computes the
angle with maximal directional energy as

ψjmax = argmax
ψ∈Ψj

(E(ψ)), j ∈ {R,L}

(see Figure 4.12h), where

Ψj =

{
(−π

2
,−ε), j = R,

(ε, π
2
), j = L

(4.3.8)

are intervals of possible mucosal wave directions for the right and left vocal folds,
respectively (see Figure 4.12g). The method excludes angles from interval near
zero

[−ε, ε], ε ≥ 0

because the corresponding bands are often disrupted by frequency peaks caused
by discontinuities on vertical borders of window D in its periodic composition;
these angles correspond to vertical directions in image domain. The disconti-
nuities on borders could be suppressed by smooth fading of the image function
near vertical borders to zero, e.g. by multiplication with a Gaussian. In discrete
case, however, such fading would further reduce amount of information in Fourier
spectrum. Because the pixel-wise extent of mucosal waves is narrow and because
the direction of mucosal waves is not vertical, the method just excludes angles
within an interval near zero from search of the angle with maximal directional
energy.

Because Fourier transform projects edges from image domain to peaks in
perpendicular direction in Fourier domain, the angle with maximal directional
energy in Fourier domain corresponds to perpendicular angle

φjmax = ψjmax − π
2
, j ∈ {R,L}

5 This corresponds to division by row sums in discrete domain.
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(a) (b)

Figure 4.13: Detection of mucosal waves: (a) directions detected by Fourier trans-
form, (b) trajectories detected by the correlation-based algorithm developed by
Zita [68].

in the videokymogram. Angle φjmax thus estimates the direction of mucosal waves
in the videokymogram within window D. Finally, the method adjusts the de-
tected angle to correspond to the size of the original videokymogram with dupli-
cate rows

φj2max = arctan(2 tan(φjmax)), j ∈ {R,L}.

Tracking of mucosal waves

The tracking algorithm proposed by Zita [68] detects the path of mucosal
waves by cross-correlation. The algorithm estimates the direction of a mucosal
wave as the direction between the corresponding generalized opening point and
lateral peak (see Subsection 4.3.2). It then creates a correlation window (see
Figure 4.13b) above the wave and tracks its path from the lateral peak in the
estimated direction. It estimates the extent of the wave by thresholding of cor-
relation values.

The directions between a generalized opening point and the corresponding
medial peak may, however, differ from the direction of the mucosal wave (see
Figure 4.14). The direction computed by the Fourier-based method does not
depend on the position of generalized opening points and can thus be used as a
consistency check.

The combined algorithm estimates direction of the mucosal wave

αj = φj2max

by Fourier transform, and also by the direction of glottal opening βj, where

βL = arctan

(
ÕL(x)− AL(x)

AL(y)− ÕL(y)

)
,

βR = βL − π
2
,
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(a) glottal features (b) mucosal waves

Figure 4.14: Directions between generalized opening points and lateral peaks may
differ from directions of mucosal waves: (a) generalized opening points (light blue:
opening points, dark blue: medial peaks) and lateral peaks (magenta) detected
by the proposed graph-cut-based method using the feature extraction algorithm
developed by Hauzar [17] (see Subsection 4.3.2); (b) directions of mucosal waves
(green) detected by the proposed Fourier-based method.

are computed from the corresponding generalized opening point Õj and lateral
peak Aj; j ∈ {R,L}, where R and L denote the right and left vocal folds.
Significant difference between the estimated mucosal wave direction αj and the
glottal opening direction βj

|αj − βj| > δ, δ > 0,

where δ is a convenient maximal allowed difference, indicates inconsistency. The
inconsistency can be caused by high curvature of the glottal contour during the
opening phase or by a weak or distorted mucosal wave pattern. In such a case, the
trajectory computed by tracking in either direction should be visually verified.

4.3.4 Parameters of vocal fold vibrations

This subsection quantifies vibration parameters determined by the computed glot-
tal features (see Subsection 4.3.2), and sets correspondence between their numer-
ical values and categories in the VKG evaluation sheet [59]. It numbers the pa-
rameters in accordance with notation in [15] and quantifies them in accordance
with [54]; the intervals for classification into categories in [54] were estimated
manually from the corresponding pictograms in the evaluation sheet.

For computation of vibration parameters, the evaluation method has to per-
form a consistency check of the detected features. The employed methods may
not detect all features, especially in videokymograms with poor illumination or
pathologic vibratory pattern. The evaluation method detects inconsistencies by
inspection of the detected features. It first hierarchically divides the features
into vibration cycles of the right and left vocal folds, and then compares the
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(a) (b)

Figure 4.15: (8)-(9) Number of cycles: (a) right vocal fold, (b) left vocal fold.
Correspondence between pictograms and categories in the VKG evaluation sheet.
(Reprinted from [15,59] with permission.)

position and length of corresponding cycles. The method accounts for possible
inconsistencies in computation of the parameters.

Number of cycles

(8) NumberOfCyclesR = ymax

T
R

(9) NumberOfCyclesL = ymax

T
L

The Number of cycles parameter (see Figure 4.15) is defined by the duration of
the recorded videokymogram ymax and of the average length of vibration cycle

T
j

=
1

nj

nj∑
i=1

T ji , j = R,L,

where nR = |ÕR| − 1 and nL = |ÕL| − 1 are the number of full cycles of the right
and left vocal fold, respectively, in the videokymogram.

Cycle-to-cycle variability

(10) VariabilityR = median
i=1,...,n−1

API(i, R)

(11) VariabilityL = median
i=1,...,n−1

API(i, L)

The Cycle-to-cycle variability parameter (see Figure 4.16 and Table 4.3) is defined
by the Amplitude Periodicity Index (API) [36]

API(i, j) =
min{aji , a

j
i+1}

max{aji , a
j
i+1}

, i = 1, . . . , n− 1, j = R,L.

Duration of closure

(13) ClosureDuration = median
i=1,...,n

CQ(i)

The Duration of closure parameter (see Figure 4.17 and Table 4.4) is defined by
the Closed Quotient (CQ)

CQ(i) =
T ci
Ti
, i = 1, . . . , n.
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(a) (b) (c) (d)

Figure 4.16: (10)-(11) Cycle-to-cycle variability: (a) negligible, (b) small, (c)
medium, (d) large. Correspondence between pictograms and categories in the
VKG evaluation sheet. (Reprinted from [15,59] with permission.)

category description VariabilityR, VariabilityL
1 negligible (0.85, 1]
2 small (0.61, 0.85]
3 medium (0.5, 0.61]
4 large [0, 0.5]

Table 4.3: (10)-(11) Cycle-to-cycle variability: correspondence between numerical
values and categories of the parameter in the VKG evaluation sheet.

(a) (b) (c) (d) (e)

Figure 4.17: (13) Duration of closure: (a) no closure, (b) 1-20%, (c) 20-40%, (d)
40-60%, (e) >60%. Correspondence between pictograms and categories in the
VKG evaluation sheet. (Reprinted from [15,59] with permission.)

category description ClosureDuration
1 no closure [0, 0.01]
2 1-20% (0.01, 0.2]
3 20-40% (0.2, 0.4]
4 40-60% (0.4, 0.6]
5 >60% (0.6, 1]

Table 4.4: (13) Duration of closure: correspondence between numerical values
and categories of the parameter in the VKG evaluation sheet.
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(a) (b) (c) (d) (e) (f) (g)

Figure 4.18: (14) Amplitude differences: (a) R much larger, (b) R larger, (c) R
slightly larger, (d) R ∼ L, (e) L slightly larger, (f) L larger, (g) L much larger.
Correspondence between pictograms and categories in the VKG evaluation sheet.
(Reprinted from [15,59] with permission.)

category description AmplitudeDifferences
1 R much larger [−1,−0.6)
2 R larger [−0.6,−0.31)
3 R slightly larger [−0.31,−0.1)
4 R ∼ L [−0.1, 0.1]
5 L slightly larger (0.1, 0.31]
6 L larger (0.31, 0.6]
7 L much larger (0.6, 1]

Table 4.5: (14) Amplitude differences: correspondence between numerical values
and categories of the parameter in the VKG evaluation sheet.

Amplitude differences

(14) AmplitudeDifferences = median
i=1,...,n

ASI(i)

The Amplitude differences parameter (see Figure 4.18 and Table 4.5) is defined
by the Amplitude Symmetry Index (ASI) [36]

ASI(i) =
aLi − aRi
aLi + aRi

, i = 1, . . . , n.

Frequency differences

(15) FrequencyDifferences = NumberOfCyclesL
NumberOfCyclesR

The Frequency differences parameter (see Figure 4.19 and Table 4.6) can be
defined by the number of cycles (see parameters (8)-(9)).

Phase differences

(16) PhaseDifferences = median
i=1,...,n

PSI(i)

The Phase differences parameter (see Figure 4.20 and Table 4.7) is defined by the
Phase Symmetry Index (PSI) [36]

PSI(i) =
ALi (y)− ARi (y)

Ti
, i = 1, . . . , n.
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(a) (b) (c)

Figure 4.19: (15) Frequency differences: (a) R faster than L, (b) L and R equal,
(c) L faster than R. Correspondence between pictograms and categories in the
VKG evaluation sheet. (Reprinted from [15,59] with permission.)

category description FrequencyDifferences
1 R faster than L (0, 0.91)
2 L and R equal [0.91, 1.1)
3 L faster than R [1.1,∞)

Table 4.6: (15) Frequency differences: correspondence between numerical values
and categories of the parameter in the VKG evaluation sheet; the evaluation sheet
numbers the “R faster than L” category by 2, and the “L and R equal” category
by 1.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4.20: (16) Phase differences: (a) R ahead of L: large, (b) medium, (c)
small, (d) negligible, (e) L ahead of R: small, (f) medium, (g) large, (h) lambada.
Correspondence between pictograms and categories in the VKG evaluation sheet.
(Reprinted from [15,59] with permission.)

category description PhaseDifferences
1 R ahead of L: large (0.3, 1]
2 R ahead of L: medium (0.15, 0.3]
3 R ahead of L: small (0.05, 0.15]
4 negligible [−0.05, 0.05]
5 L ahead of R: small [−0.15,−0.05)
6 L ahead of R: medium [−0.3,−0.15)
7 L ahead of R: large [−1,−0.3)
14 lambada yet to be quantified

Table 4.7: (16) Phase differences: correspondence between numerical values and
categories of the parameter in the VKG evaluation sheet; the evaluation sheet
numbers the “lambada” category by 8.
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(a) (b) (c) (d)

Figure 4.21: (17) Axis shift: (a) R → L, (b) negligible, (c) L → R, (d) complex.
Correspondence between pictograms and categories in the VKG evaluation sheet.
(Reprinted from [15,59] with permission.)

category description AxisShift
1 R → L (0.1,∞)
2 negligible [−0.1, 0.1]
3 L → R (−∞,−0.1)
6 complex yet to be quantified

Table 4.8: (17) Axis shift: correspondence between numerical values and cate-
gories of the parameter in the VKG evaluation sheet; the evaluation sheet num-
bers the “R→ L” category by 2, the “negligible” category by 1, and the “complex”
category by 4.

Axis shift

(17) AxisShift = median
i=1,...,n−1

AS(i)

The Axis shift parameter (see Figure 4.21 and Table 4.8) is defined by the Axis
Shift (AS) [30]

AS(i) =
Oi+1(x)− Ci(x)

ai
, i = 1, . . . , n.

Opening versus closing duration

(18) SkewingR = median
i=1,...,n

SI(i, R)

(19) SkewingL = median
i=1,...,n

SI(i, L)

The Opening versus closing duration parameter (see Figure 4.18 and Table 4.9)
is defined by the Speed Index (SI) [20]

SI(i, j) =
toji − t

cj
i

T oi
=
toji − t

cj
i

toi + tci
=

SQ(i, j)− 1

SQ(i, j) + 1
, i = 1, . . . , n, j = R,L,

which can be defined by the Speed Quotient (SQ) [20]

SQ(i, j) =
toji
tcji
, i = 1, . . . , n, j = R,L.
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(a) (b) (c) (d) (e)

Figure 4.22: (18)-(19) Opening versus closing duration: (a) much shorter, (b)
shorter, slightly shorter, (c) equal, (d) slightly longer, longer, (e) much longer.
Correspondence between pictograms and categories in the VKG evaluation sheet.
(Reprinted from [15,59] with permission.)

category description SkewingR, SkewingL
1 much shorter [−1,−0.75)
2 shorter [−0.75,−0.35)
3 slightly shorter [−0.35,−0.05)
4 equal [−0.05, 0.05]
5 slightly longer (0.05, 0.35]
6 longer (0.35, 0.75]
7 much longer (0.75, 1]

Table 4.9: (18)-(19) Opening versus closing duration: correspondence between
numerical values and categories of the parameter in the VKG evaluation sheet.

(a) (b) (c)

Figure 4.23: (1)-(2) Presence of vibrations: right vocal fold (a) vibrating, (b)
vibrating partly, (c) not vibrating. Correspondence between pictograms and cat-
egories in the VKG evaluation sheet. (Reprinted from [15,59] with permission.)

category description
1 vibrating
2 vibrating partly
3 not vibrating

Table 4.10: Presence of vibrations: categories in the VKG evaluation sheet.
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The VKG evaluation sheet evaluates parameters (8)-(9) by integers, and pa-
rameters (10)-(11), (13), (14), (15), (16), (17), and (18)-(19) by disjoint categories
numbered by positive integers.

The VKG evaluation sheet defines special categories and causalities. All pa-
rameters include category “NA” (not applicable), numbered6 −∞. The NA cat-
egory indicates that the parameter is not applicable or that its evaluation is
problematic or just that it was not evaluated. Whereas neighboring non-NA cat-
egories correspond to similar values of vibration parameters, the NA category
is qualitatively different. The evaluation sheet also defines causalities between
categories of several parameters (see Table 4.11); the order of parameters in the
evaluation sheet follows the causalities.

condition implication
(1) = 3 ∨ (2) = 3 ⇒ (14), (15), (16), (17) = −∞

(1) = 3 ⇒ (8), (10), (18) = −∞
(2) = 3 ⇒ (9), (11), (19) = −∞
(13) = 1 ⇒ (17) = −∞

(15) = 1 ∨ (15) = 3 ⇒ (16), (17) = −∞

Table 4.11: Causality of parameter categories in the VKG evaluation sheet.

Most parameters depend on categories of the Presence of vibrations (1)-(2)
parameter, which indicates whether the right and left vocal folds vibrate (see
Figure 4.23 and Table 4.10). The parameter has yet to be quantified, however.
The automatic evaluation computes non-NA values of the depending parameters.
It can then apply the implications from Table 4.11 based on a visual evaluation
of the Presence of vibrations parameter, or the consensus result of multiple visual
evaluations of the parameter (see Subsection 4.3.5).

To separate qualitatively different categories and order categories according
to their similarity, this chapter renumbered the categories in the evaluation sheet:

• the “NA” category from 0 to −∞,

• the “R faster than L” and “L and R equal” categories of the Frequency
differences (15) parameter from 2 to 1 and 1 to 2, respectively,

• the “lambada” category of the Phase differences (16) parameter from 8 to
14,

• and the “negligible”, “R → L” and “complex” categories of the Axis shift
(17) parameter from 1 to 2, 2 to 1, and 4 to 6, respectively.

4.3.5 Comparison of automatic and visual evaluations

This subsection describes a method for comparison of the performance of auto-
matic and visual evaluations. It compares results of one automatic evaluation
with results of one or multiple visual evaluations.

6 The evaluation sheet numbers the NA category by 0.
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The method introduces the following notation. Let P denote the set of
both automatically and visually evaluated parameters, n the number of evalu-
ated videokymograms, and m the number of visual evaluations. Let EA(p, i)
(p ∈ P ; i = 1, . . . , n) denote the result of automatic evaluation of parameter p in
videokymogram i, and EV (p, i, j) (p ∈ P ; i = 1, . . . , n; j = 1, . . . ,m) the result of
jth visual evaluation of parameter p in videokymogram i. Let V +(p, i) denote set
of indices of visual evaluations of parameter p in videokymogram i with non-NA
results

V +(p, i) = {j | j ∈ {1, . . . ,m} & EV (p, i, j) > 0}, p ∈ P, i = 1, . . . , n.

The method defines the consensus result of m visual evaluations of parameter
p in videokymogram i as

EV (p, i) =

 mode
j∈V +(p,i)

EV (p, i, j), |V +(p, i)| > m
2
,

−∞, otherwise,
p ∈ P, i = 1, . . . , n.

That is, the consensus result is NA if and only if the result of at least half of
corresponding visual evaluations was NA; otherwise, the definition estimates it
by the most frequent non-NA result.

For each parameter p ∈ P and videokymogram i ∈ {1, . . . , n}, the proposed
method compares the consensus result of visual evaluations EV (p, i) with the
result of automatic evaluation EA(p, i) (automatic–visual match) as well as with
the results of visual evaluations EV (p, i, j) (j = 1, . . . , n) (visual–visual match).
It considers two evaluations of parameter p ∈ P in a videokymogram matching
if their respective results v1, v2 fall into the same category or into neighboring
non-NA categories

match(v1, v2, dp) =

{
1, v1 = v2 = −∞∨ |v1 − v2| ≤ dp,

0, otherwise,

where dp ≥ 0 denotes tolerated distance between similar categories of parameter
p.

The comparison method defines the automatic–visual match for parameter
p ∈ P with tolerance dp as

matchAV(p, dp) =
1

n

n∑
i=1

match(EA(p, i), EV (p, i), dp),

and the visual–visual match for parameter p as

matchVV(p, dp) =
1

n

n∑
i=1

1

m

m∑
j=1

match(EV (p, i, j), EV (p, i), dp).

The automatic–visual and visual–visual matches indicate the success rate of the
automatic and visual evaluations, respectively, of parameter p ∈ P in all n video-
kymograms with respect to the consensus results of visual evaluations and tol-
erance dp. For each parameter, the automatic–visual and visual–visual matches
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relate performance of the automatic evaluation to performance of the visual eval-
uations. Error rate

errorAV(p, dp) = 100%−matchAV(p, dp)

indicates how often a verifier would have to correct the automatically computed
categories of parameter p to achieve a 100% match with the consensus category
of visual evaluations with tolerance dp.

4.4 Results

The developed methods were tested on two sets of videokymographic images.
The first set consisted of 50 videokymograms7 with a representative range of
both physiologic and pathologic vibratory patterns. The second set consisted of 6
videokymograms8 with physiologic vibratory patterns. The images were acquired
by a videokymographic camera9 with scanning frequency 7200 rows per second;
the camera stored each frame of the scanned line twice in the videokymograms.

The 50 images from the first set were visually evaluated according to the VKG
evaluation sheet in 18 evaluations [15]. They were analyzed by 10 evaluators
with different level of experience. Eight of them analyzed the images twice, in a
randomized order and with a time delay so as to minimize dependence between
the first and the second evaluations.

The proposed methods (see Section 4.3) automatically evaluated all 56 video-
kymograms. As a preprocessing step, the methods first eliminated duplicate
rows10; the detected features were then recomputed to match the original size
of the videokymograms. The method described in Subsection 4.3.1 detected and
removed specular reflections from the videokymograms; the high and low thresh-
olds were set to t1 = 0.85 and t2 = 0.75, respectively (see Eqs. 4.3.2 and 4.3.3).
The method described in Subsection 4.3.2 segmented the shape of rima glot-
tidis and computed basic and derived glottal features (see Tables 4.1 and 4.2);
the maximal brightness of rima glottidis in normalized videokymograms was ex-
perimentally estimated by tr = 0.25 (see Eq. (4.3.4)), and the semi-threshold
suppressing the impact of very bright areas was set to ts = 1

3
255 = 85 (see

Eq. (4.3.5)); parameters of the graph cut algorithm were set to cf = 625, cd = 4,
r = 2 (see Eq. (4.2.1)). The method described in Subsection 4.3.3 then estimated
directions of mucosal waves; the width of bands for computation of directional
energy was set to 2r = 0.05wD, where wD denotes the width of the amplitude
spectrum stretched to square (see Eq. (4.3.7)), and the interval of angles near zero
to [−ε, ε] = [− π

30
, π

30
] (see Eq. (4.3.8)). The method described in Subsection 4.3.4

computed from the detected glottal features numerical values and VKG evalua-
tion sheet categories of corresponding vibration parameters.

7 Dimensions of the videokymograms ranged from 211×544 to 360×544 pixels, corresponding
to intervals of 40 ms.

8 Dimensions of the videokymograms were 352× 574 pixels, also corresponding to intervals
of 40 ms.

9 The videokymographic camera stored the images in a 24bit JPEG lossy compression for-
mat. For further processing, the images were converted to an 8bit grayscale PNG lossless
compression format.

10 Although the elimination step is important only for detection of mucosal wave directions
by Fourier transform, it reduces the amount of processed data.
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(a) videokymogram (b) vibration features

Figure 4.24: (a) Videokymogram of vocal fold vibrations. (b) Vibration features
detected automatically by the proposed method with use of the feature detection
algorithm developed by Hauzar [17] and the mucosal wave tracking algorithm
developed by Zita [68].

parameter automatic–visual match visual–visual match
(8) NumberOfCyclesR 98% 95%
(9) NumberOfCyclesL 98% 96%

(10) VariabilityR 92% 93%
(11) VariabilityL 88% 93%

(13) ClosureDuration 98% 93%
(14) AmplitudeDifferences 100% 88%
(15) FrequencyDifferences 100% 95%

(16) PhaseDifferences 88% 85%
(17) AxisShift 88% 79%
(18) SkewingR 86% 87%
(19) SkewingL 90% 85%

Table 4.12: Comparison of results of automatic and visual evaluations on a set of
50 videokymograms by the automatic–visual and visual–visual match with tol-
erance between closely neighboring classes (dp = 1, see Subsection 4.3.5). The
similarity in comparative statistics for each parameter indicate that the perfor-
mance of the automatic evaluation is comparable with visual evaluations.

For the 50 videokymograms from the first set—and for each automatically
evaluated parameter separately—the comparison method described in Subsec-
tion 4.3.5 also computed consensus categories of the 18 visual evaluations, the
automatic–visual and visual–visual matches (see Table 4.12), and contingency ta-
bles between the automatic and visual evaluations (see Table 4.13); the tolerance
of the match was set to dp = 1 for all parameters.
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A \ V −∞ 1 2 3 4 5
∑

rate (dp = 1) rate (dp = 0)
−∞ 0 0 0 0 0 0 0 – –

1 18 217 34 1 0 0 270 93% 80%
2 6 11 90 1 0 0 108 94% 83%
3 14 6 142 76 14 0 252 92% 30%
4 7 1 30 78 90 28 234 84% 38%
5 8 0 0 0 3 25 36 78% 69%

Table 4.13: Contingency table comparing results of the automatic evaluation
(left) with results of 18 visual evaluations (top) of the Closure duration (13)
parameter in 50 videokymograms. The tables shows the rates of match with
tolerance between closely neighboring categories (dp = 1), and, for illustration,
also the absolute match (dp = 0).

4.5 Discussion

In order to evaluate performance of the developed methods, results of the au-
tomatic evaluation were compared with results of visual evaluations (see Sub-
section 4.3.5). Visual evaluations are, however, just approximations of ground
truth, since even experienced clinicians may differ in evaluation of videokymo-
grams, i.e. even a perfect match between multiple evaluations does not necessarily
imply accuracy. The project thus computed just the consistency between auto-
matic and visual evaluations. To evaluate performance of the visualizations, it
compared their results with the consensus results of visual evaluations, which rep-
resent the best available approximation of ground truth. The comparison method
tolerated classification into closely neighboring categories because the VKG eval-
uation sheet divides continuously distributed parameters into disjoint categories
and also defines the categories ambiguously by labels and pictograms.

Similarities in results of the automatic and visual evaluations indicate that
the developed methods could be used for computer-aided evaluation in clinical
practice. The automatic–visual and visual–visual statistics were comparable for
all automatically evaluated parameters (see Table 4.12). These result indicate
similar performance of automatic and visual evaluations. The error rates of the
automatic evaluation imply that a verifier would have to correct only a small per-
centage of automatically computed parameter values to match the corresponding
consensus categories with the defined tolerance between directly neighboring cat-
egories. Because the automatic–visual and visual–visual comparative statistics
do not account for differences in probability of categories, the project compared
results of the automatic evaluation with results of all visual evaluations by con-
tingency tables (see Table 4.13). The match rates indicate good performance of
the developed automatic evaluation with respect to visual evaluations.

Differences in results of the automatic and visual evaluations were caused by
two main factors. Firstly, the feature detection methods were not errorless. They
did not detect some features correctly, namely in videokymograms with poor il-
lumination or pathologic vibratory patterns. This was caused by errors either
in detection of the rima glottidis shape or in the extraction of glottal features.
The employed feature detection algorithm developed by Hauzar [17] suppresses
false positives, i.e., it does not include features detected with low confidence in
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its results. Although the evaluation method performed consistency check on the
computed features, the errors in detection decreased accuracy of the computed
parameter values, namely for irregular vibratory patterns. Secondly, the exact
correspondence between numerical values and categories of parameters in the
VKG evaluation sheet was unknown to the evaluators. They selected the cate-
gories according to corresponding descriptions and pictograms. The ambiguity in
categorization implies necessity for tolerance between similar categories. It also
projected into differences between results of individual visual evaluations.

Accuracy and precision of the automatic evaluation depend on three main fac-
tors. Firstly, high variance of vibratory patterns and various artifacts in video-
kymograms limit the success rate of the automatic methods. High variance—
typical of medical data—limits applicability of automatic methods because they
cannot account for all possible variances of vibratory patterns. Secondly, the
values of parameters of the automatic methods affect their sensitivity to vari-
ous factors, e.g. illumination and type of vibratory pattern. Different parameter
values could lead to different results of the automatic evaluation; the thresholds
for segmentation of specular reflections, for example, directly affect the size of
segmented regions (see Subsection 4.3.1). The parameters of the developed meth-
ods were set experimentally. Thirdly, correspondences between numerical values
and categories of parameters in the evaluation sheet were estimated manually
from the pictograms [54]. In contrast to visual evaluation, however, the auto-
matic methods evaluate numerical values of parameters, not just categories. This
means that the automatic methods allow evaluation with higher precision.

The proposed methods could be modified in two main ways to increase accu-
racy of the automatic evaluation. Firstly, the parameters of the methods could be
computed by supervised learning. This would require a large representative train-
ing set, however, to account for high variability of medical data. The learning
could increase accuracy and applicability of the methods in practice. Secondly,
the proposed methods could be combined with other existing methods for eval-
uation of vibration parameters to increase robustness of the evaluation to high
variability of videokymographic data.

The developed methods will be integrated into a software application for
computer-aided evaluation of vocal fold vibrations in clinical practice. The meth-
ods for growth reconstruction (see Chapter 2) and particle measurement (see
Chapter 3) developed in the previous two projects were designed for academic re-
search purposes; they were therefore implemented in Matlab with use of the Image
Processing Toolbox [21] to allow their further development with easy modifica-
tion and testing. The methods for evaluation of videokymograms are, however,
aimed for use in clinical practice. Performance of the methods described in this
chapter was successfully tested in Matlab. After development and proper testing
of methods for evaluation of other vibration parameters, e.g. vibrations of ventric-
ular folds, developed by colleagues at our department, all these methods will be
implemented in a standalone application. The application will automatically de-
tect and display vibration features in the analyzed videokymogram and compute
the corresponding parameter categories in the evaluation sheet. The clinician
will thus be able to verify the computed parameters by quick visual inspection
of the detected features. The software application could speed up the evaluation
process and increase accuracy of its results.
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4.6 Conclusion

This chapter has introduced new methods for detection of vocal fold vibration fea-
tures in videokymograms and for automatic evaluation of corresponding parame-
ters in the videokymographic evaluation sheet [59]. The methods were developed
for purposes of computer-aided evaluation of vibratory patterns in videokymo-
grams in laryngology and phoniatrics. The developed methods detect specular
reflections, the shape of rima glottidis and directions of mucosal waves. The
methods combine various image processing algorithms, e.g. optimal threshold-
ing by normalized graph cuts, and incorporate or modify existing algorithms
for processing of videokymograms, namely the algorithm for extraction of glot-
tal features developed by Hauzar [17] and the algorithm for tracking of mucosal
waves developed by Zita [68]. The methods also detect vibration features de-
fined by the shape of rima glottidis. The proposed evaluation method computes
from the detected features numerical values of 11 vibration parameters as well as
corresponding categories in the evaluation sheet. Performance of the automatic
evaluation was tested on a set of 50 videokymograms with a wide range of vibra-
tory patterns. The comparison showed high consistency in results between the
automatic evaluation and 18 visual evaluations; such consistency indicates that
the developed methods could be used, in combination with visual verification,
for computer-aided evaluation of videokymograms in clinical practice. The au-
tomatic methods could speed up the evaluation process and increase accuracy of
its results. We plan to develop a software tool that would allow computer-aided
evaluation of videokymograms according to the VKG evaluation sheet in clinical
practice. The tool will include the methods described in this chapter as well
as other methods currently developed in our department. The main contribu-
tion of this chapter was development of new methods for automatic evaluation
of a relatively high number of vibration parameters. The chapter also provides
a consistent survey on quantification of the automatically evaluated parameters
and their correspondence with categories in the evaluation sheet. The proposed
methods were presented at the BioImage Informatics 2012 conference in Dresden,
Germany [44].
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mouc, Czech Republic. The algorithm for computation of optimal threshold by
graph cuts was implemented and kindly provided by Adam Novozámský; the
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5. Conclusion

The Thesis has introduced new methods for automatic processing of image data
in biology, physics and medicine. It focused on three specific image process-
ing problems: reconstruction of light microscopy images showing the growth of
microorganisms during intervals between observations, measurement of particles
in atomic force microscopy images, and evaluation of vocal fold vibration pa-
rameters in videokymographic images. The developed methods could facilitate
documentation, analysis and evaluation of the image data in practice. Their
performance was tested on real data; the automatically computed results were
comparable with ground truth or results of visual evaluations.

The growth reconstruction method addresses the problem of temporally sparse
documentation of growing microorganisms. Phytopathogenic specimens which
cannot be monitored continuously are typically observed in sessions with rela-
tively long intervals. The developed method reconstructs light microscopy images
of settled filamentous microorganisms corresponding to intervals between obser-
vation sessions. The method thus allows visualization of gradual development
of the specimens during the intervals. In contrast to most model-based growth
simulation methods, the proposed method reconstructs the missing images di-
rectly from the observed ones, which contributes to authentic appearance of the
reconstructed images.

The particle measurement method addresses the problem of measurement of
spatially separated ellipsoidal particles in atomic force microscopy (AFM) images.
In contrast to other AFM image processing methods, the proposed method uses
prior knowledge about ellipticity of the measured particles, which reduces sensi-
tivity of the method to noise and increases accuracy of its results. The method
also reconstructs the topography of particles distorted by convolution of the sur-
face with the AFM scanning tip. The developed method could be used instead
of time-consuming manual measurements.

The proposed videokymographic evaluation methods address the problem of
measurement of vocal fold vibration parameters in videokymograms. In compar-
ison to existing methods for detection of vibration features, the developed meth-
ods are relatively robust to low contrast and pathologies in the vibratory pattern.
The methods evaluate a number of diagnostically important vibration parame-
ters not only by numerical values but also by categories in the videokymographic
evaluation sheet, which allows direct comparison of the automatically computed
parameters with results of visual evaluations. The developed methods could be
used, in combination with visual verification, for computer-aided evaluation in
clinical practice; the methods will be integrated, along with other methods cur-
rently developed in out department, in a software tool for automatic evaluation
of videokymograms according to the evaluation sheet.

Application of the proposed methods is not limited to these three problems,
however. The methods could be used generally for any data with similar proper-
ties. For instance, the method developed for measurement of ellipsoidal particles
in AFM images could be used also for measurement of elliptical cells or micro-
organisms in biology and medicine.

Development of the presented methods helped me gain experience in biomed-
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ical image processing and analysis. I will continue my research in a post doc
position at Flinders University in Adelaide, South Australia, with focus on seg-
mentation in medical images. I am looking forward to using knowledge acquired
during my work on the Thesis, as well as some of the developed methods, for
solution of new problems.
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cartilaginous vocal fold adduction in singing. J Acoust Soc Am, 129(4):2253–
2262, 2011.

[20] M. Hirano. Clinical examination of voice. Springer-Verlag, Wien, Austria,
1981.

[21] Image Processing Toolbox. http://www.mathworks.com/products/image/,
MATLAB.

[22] J. Jan. Medical Image Processing, Reconstruction and Restoration - Concepts
and Methods. CRC Press, Taylor and Francis Group, Boca Raton, FL, USA,
signal processing and comm. edition, 2006.

[23] J. Jiang, Y. Zhang, M. Kelly, E. Bieging, and M. Hoffman. An automatic
method to quantify mucosal waves via videokymography. Laryngoscope,
2008.

[24] T. A. Van Kalkeren, H. K. Schutte, Q. Qiu, J. G. Švec, and H. F. Mahieu.
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[52] D. Tschumperlé and R. Deriche. Vector-valued image regularization with
PDEs: a common framework for different applications. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 27(4):506–517, 2005.
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[66] M. Zemánková and A. Lebeda. Fusarium species, their taxonomy, variability
and significance in plant pathology. Plant Protection Science, 37:25–42, 2001.

[67] Y. Zhang, E. Bieging, H. Tsui, and J. J. Jiang. Efficient and effective ex-
traction of vocal fold vibratory patterns from high-speed digital imaging. J
Voice, 24(1), 2010.
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List of Abbreviations

AFM . . . atomic force microscopy (see Section 3.1)

CPs . . . control points (see Section 2.3)

PPDP . . . phenylpyridyldiketopyrrolopyrrole (see Section 3.1)

RT . . . room temperature (see Section 2.1)

VKG . . . videokymography (see Section 4.1)
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