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Abstrakt: Představ́ıme uspořádaná Ramseyova č́ısla, která jsou obdobou Ram-
seyových č́ısel pro grafy s lineárně uspořádanými vrcholy. Studujeme r̊ust
uspořádaných Ramseyových č́ısel uspořádaných graf̊u vzhledem k počtu vrchol̊u.
Nalezneme uspořádaná párováńı se superpolynomiálńımi uspořádanými Ram-
seyovými č́ısly. Ukážeme, že uspořádaná Ramseyova č́ısla uspořádaných graf̊u s
omezenou degenerovanost́ı a intervalovým chromatickým č́ıslem jsou nanejvýš poly-
nomiálńı. Dokážeme, že uspořádaná Ramseyova č́ısla jsou nanejvýš polynomiálńı
pro uspořádané grafy s omezenými délkami hran. Nalezneme 3-regulárńı grafy se su-
perlineárńımi uspořádanými Ramseyovými č́ısly nad všemi uspořádáńımi. Posledńı
dva výsledky řeš́ı problémy od autor̊u Conlon, Fox, Lee a Sudakov. Odvod́ıme
přesnou formuli pro uspořádaná Ramseyova č́ısla monotónńıch cykl̊u a použijeme
ji k źıskáńı přesné formule pro geometrická Ramseyova č́ısla cykl̊u, která byla
představena Károlyim a spol. Vyvrát́ıme domněnku Peterse a Szekerese o ześıleńı
slavné Erdősovy–Szekeresovy domněnky nad uspořádanými hypergrafy. Dokážeme
přesnou formuli pro minimálńı počet pr̊useč́ık̊u v jednoduchých x-monotónńıch
nakresleńıch úplných graf̊u a ukážeme kombinatorickou charakterizaci těchto
nakresleńı pomoćı obarveńı uspořádaných úplných 3-uniformńıch hypergraf̊u.
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refute a conjecture of Peters and Szekeres about a strengthening of the famous
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Introduction

Overview and motivation

Ramsey theory refers to a large body of results whose underlying philosophy can
be captured by the statement “Every structure of a given kind contains a large
well-organized substructure”. This part of discrete mathematics has developed
spectacularly in the last few decades, emerging into a field whose results are
important in many areas, including combinatorics, geometry, logics, and number
theory.

Probably the first result in Ramsey theory is Hilbert’s cube lemma [Hil92]
proved by Hilbert in 1892. For positive integers d, a, n1, . . . , nd, we call the set
{a+∑d

i=1 αini : α1, . . . , αd ∈ {0, 1}} an affine d-cube generated by a, n1, . . . , nd.
Hilbert’s cube lemma says that for given positive integers d and c there is a positive
integer H(c, d) such that every partitioning of [H(c, d)] into c parts contains an
affine d-cube in one of the parts. Here we use [n] to denote the set {1, . . . , n} for
some positive integer n. We use this abbreviation throughout the thesis. Although
Hilbert’s cube lemma seems to be the first example of a Ramsey-type result, it
did not draw much attention.

About 25 years later, Schur [Sch16] showed that for every positive integer c
there is a positive integer S(c) such that every partition of [S(c)] into c parts
contains three integers x, y, z in one of the parts such that x+ y = z. This result
is now known as Schur’s theorem and Schur used it to reprove a result of Dickson
on a modular version of Fermat’s conjecture. In 1927, Van der Waerden [Wae27]
proved a conjecture that was independently posed by Schur and Baudet. His
result, known as Van der Waerden’s theorem, says that for positive integers c and
m there is a positive integer W(c,m) such that every partitioning of [W(c,m)]
into c parts contains an m-term arithmetic progression in one of the parts.

Hilbert’s cube lemma, Schur’s theorem, and Van der Waerden’s theorem can
be viewed as the earliest roots of Ramsey theory. Although these three results
were proved before the 1930s and thus hold precedence in the matter, it is a
partition theorem for finite sets proved by Ramsey [Ram30], which is considered
to be the most classical result in the field and from which Ramsey theory derives
its name. This result, called Ramsey’s theorem, says that for any positive integers
c, k, and n there is a positive integer R(c, k, n) such that for every partitioning
of the collection of all k-element subsets of [R(c, k, n)] into c parts there is an
n-element subset S of [R(c, k, n)] with all k-element subsets of S in the same part.

Ramsey proved his theorem in 1928 while trying to give a decision procedure
for propositional logic. Nowadays, Ramsey’s theorem is usually stated in the
language of graph theory. A particular case of Ramsey’s theorem says that for
every positive integer n and every graph G on n vertices there is an integer N
such that for every graph H on N vertices either G is a subgraph of H or G is a
subgraph of the complement of H. We denote the smallest such N by R(G) and
we call it the Ramsey number of G.

The study of Ramsey numbers of graphs is a classical and influential topic,
which played a key role in the development of many fields of combinatorics such
as the probabilistic method or the theory of quasirandomness. Exact formulas
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for Ramsey numbers are known for some classes of graphs, for example for
stars [BR73], paths [GG67], and cycles [CS71, BE73, Ros73, FS74]. However,
determining Ramsey numbers is notoriously difficult in general. For example,
despite much effort expended in the last 70 years, the best lower bound for
R(Kn) is Ω(n2

n/2) by Erdős [Erd47] and Spencer [Spe75] while the currently best
upper bound is due to Conlon [Con09] and gives R(Kn) ≤ n−c logn/ log logn22n for a
positive constant c.

In this thesis we study Ramsey-type results with a connection to discrete
geometry, a field that studies combinatorial properties of geometric objects such
as finite point sets, lines, hyperplanes, circles, or polytopes. The foundations of
discrete geometry were laid by Paul Erdős, who popularized this field by posing
numerous interesting and natural problems. Many problems in discrete geometry
are interesting for their own sake, but some have also led to applications in
computational geometry, robotics, and computer graphics as well as in other
branches of mathematics, such as number theory.

The connection between Ramsey theory and discrete geometry is almost as old
as Ramsey theory itself, since one of the earliest and most popular applications of
Ramsey’s theorem is the Erdős–Szekeres theorem, a foundational result in discrete
geometry. It says that for every integer k ≥ 2 there is a least number ES(k) such
that every set of ES(k) + 1 points in the plane in general position (no three points
lie on a common line) contains k points in convex position. The statement is a
generalization of Esther Klein’s problem, which was named the Happy Ending
Problem by Paul Erdős, as it eventually led to the marriage of George Szekeres
and Esther Klein.

The Erdős–Szekeres theorem was proved by Erdős and Szekeres [ES35] in 1935
in their classic paper where they actually rediscovered Ramsey’s theorem and
found an alternative proof with a better estimate on R(Kn) than the one obtained
by Ramsey [Ram30]. Moreover, they also included a proof of another famous
result, the Erdős–Szekeres lemma on monotone subsequences, which says that, for
every positive integer k, every sequence of (k − 1)2 + 1 distinct numbers contains
either an increasing sequence of k terms or a decreasing sequence of k terms. With
the paper of Erdős and Szekeres, the popularization of Ramsey’s theorem among
non-logicians began.

There are several great books on Ramsey theory. We refer the interested reader
to the excellent book by Graham, Rothschild, and Spencer [GRS90], as well as
to the monograph by Nešetřil and Rödl [NR90]. A reference on both classical
results and some of the more recent breakthroughs in the subject is the recent
book by Prömel [Prö13]. The history of Ramsey theory, recent developments, and
some promising future directions are explored in the book by Soifer [Soi11]. We
also recommend a recent survey by Conlon, Fox, and Sudakov [CFS15] about the
current state-of-art in graph Ramsey theory.

A broad and detailed overview of classical and modern topics in discrete
geometry is provided in excellent books by Pach and Agarwal [AJ95] and Ma-
toušek [Mat02]. A collection of hundreds of open problems in discrete geometry
can be found in the book by Brass, Moser, and Pach [BMJ05].
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Summary of the main results

In this thesis we study several Ramsey-type problems, most of which were moti-
vated by problems from discrete geometry. In particular, we focus on Ramsey-type
results for ordered structures such as ordered graphs and hypergraphs. The thesis
is based on the following papers.

(1) M. Balko, J. Cibulka, K. Král, and J. Kynčl. Ramsey numbers of or-
dered graphs. Submitted, 2015, preprint available at http://arxiv.org/
abs/1310.7208, 2015. Extended abstract in Electronic Notes in Discrete
Mathematics 49:419–424, 2015.

(2) M. Balko, V. Jeĺınek, and P. Valtr. On ordered Ramsey numbers of bounded-
degree graphs. In preparation, 2016.

(3) M. Balko and P. Valtr. A SAT attack on the Erdős–Szekeres conjecture.
Submitted, 2016. Extended abstract in Electronic Notes in Discrete Mathe-
matics 49:425–431, 2015.

(4) M. Balko, R. Fulek, and J. Kynčl. Crossing numbers and combinatorial
characterization of monotone drawings of Kn. Discrete and Computational
Geometry 53(1):107–143, 2015.

(5) M. Balko and J. Kynčl. Bounding the pseudolinear crossing number of Kn

via simulated annealing. Extended abstract in the (informal) Proceedings of
the XVI Spanish Meeting on Computational Geometry, pages 37–40, 2015.

We now briefly overview the topics studied in each chapter and we describe the
main results. Chapter 1 contains some results from (1). Chapter 2 is based on (2)
and also contains some results from (1). Chapter 3 is based on an extended version
of (3) and partially on (1). In Chapter 4 we include results from (4) and (5).

Chapter 1: Ordered Ramsey numbers. In the first chapter of this thesis,
we introduce Ramsey numbers for ordered graphs. That is, graphs with the vertex
set ordered by some linear order. A first systematic study of Ramsey numbers for
general ordered graphs has been conducted only recently by Balko, Cibulka, Král,
and Kynčl in (1) and independently by Conlon, Fox, Lee, and Sudakov [CFLS14].

An ordered graph G is an ordered subgraph of an ordered graph H if the
underlying graph of G is isomorphic to a subgraph of the underlying graph of H
via isomorphism that preserves the ordering of vertices. The ordered Ramsey
number of G, denoted by R(G), is the minimum integerN such that every 2-coloring
of edges of the ordered complete graph on N vertices contains a monochromatic
copy of G as an ordered subgraph.

There has been much progress in the study of ordered Ramsey numbers of so-
called monotone paths [CP02, EM13, FPSS12, MSW15, MS14], in particular with
a connection to the Erdős–Szekeres theorem and its generalizations. However, there
has been surprisingly little work on more general ordered graphs and hypergraphs.

We study ordered Ramsey numbers for general ordered graphs. In Chapter 1
we start by introducing the necessary notation and initial observations.
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Our study then continues by focusing on specific classes of ordered graphs. We
show several estimates on ordered Ramsey numbers of ordered stars and paths and
we prove the exact formula for ordered Ramsey numbers of so-called monotone
cycles (Theorem 1.11).

Chapter 2: Growth rate of ordered Ramsey numbers. In this chapter
we investigate how different orderings affect the growth rate of ordered Ramsey
numbers.

We observe that ordered Ramsey numbers differ substantially from the usual
Ramsey numbers by constructing arbitrarily large ordered matchings Mn on n
vertices whose ordered Ramsey numbers are at least nlogn/(5 log logn) (Theorem 2.1).
That is, R(Mn) is superpolynomial in n. This is in sharp contrast with the
well-known fact that n-vertex graphs of bounded maximum degree have Ramsey
numbers linear in n [CVSTJ83].

The interval chromatic number of an ordered graph G is the least number of
intervals the vertex set of G can be partitioned into such that every interval from
the partition induces an independent set in G.

We improve a lower bound of Conlon, Fox, Lee, and Sudakov [CFLS14] on
ordered Ramsey numbers of ordered matchings with interval chromatic number 2
(Theorem 2.3).

We then provide two polynomial upper bounds on two classes of sparse ordered
graphs. First, we show that R(G) is at most polynomial in n for every ordered
graph G on n vertices with bounded degeneracy and interval chromatic number
(Corollary 2.8). Then we prove a polynomial upper bound on R(G) for ordered
graphs G that satisfy a certain recursive decomposition (Theorem 2.11). The
latter result implies a polynomial upper bound on ordered Ramsey numbers of
ordered graphs with bounded bandwidth (Corollary 2.12), which solves an open
problem of Conlon, Fox, Lee, and Sudakov [CFLS14, Problem 6.9]. The bandwidth
of an ordered graph G = (G,≺) with vertices u1 ≺ · · · ≺ un is the minimum of
|i− j| over all edges {ui, uj} of G.

We show that there are 3-regular graphs that have superlinear ordered Ramsey
numbers, regardless of the ordering (Theorem 2.19), solving another problem
of Conlon, Fox, Lee, and Sudakov [CFLS14, Problem 6.7]. On the other hand,
we prove that every graph G on n vertices with maximum degree 2 admits an
ordering G of G such that R(G) is linear in n (Theorem 2.25).

Chapter 2 is then concluded with a collection of open problems about ordered
Ramsey numbers.

While presenting some of the results from this chapter at the conference
Summit 240 in Budapest (2014), we learned about a recent work by Conlon, Fox,
Lee, and Sudakov [CFLS14] who independently investigated Ramsey numbers of
ordered graphs. There are some overlaps with our results.

Among many other results, Conlon et al. [CFLS14] proved that as n goes to
infinity, almost every ordering M of a matching on n vertices satisfies R(M) ≥
nlogn/(20 log logn). This gives a similar bound as Theorem 2.1, where we construct
one particular ordered matching on n vertices. Conlon et al. [CFLS14] also showed
that every n-vertex ordered graph G with degeneracy k and interval chromatic
number p satisfies R(G) ≤ n32k log p; see Theorem 2.9. This gives a better estimate
than Corollary 2.8.
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Recently, the study of ordered Ramsey numbers and ordered graphs has
become a rather active topic [ARU16, CGK+15, CS15, CS16, MSW15, MR16]
that is also included in a survey of Conlon, Fox, and Sudakov [CFS15] about
recent developments in graph Ramsey theory.

Chapter 3: Applications. The third chapter of the thesis is devoted to some
Ramsey-type problems, in which ordered graphs and hypergraphs naturally appear.
This chapter also contains several applications of results from Chapters 1 and 2.

As the first application, we observe that the Erdős–Szekeres lemma on mono-
tone subsequences is a special case of a Ramsey-type result for ordered paths. So,
in a certain sense, the origins of ordered Ramsey numbers can be traced back to
one of the first results in Ramsey theory.

Similarly, the Erdős–Szekeres theorem can be stated and proved in the frame-
work of ordered hypergraphs. We include a new proof of this theorem by
Moshkovitz and Shapira [MS14] that is based on ordered Ramsey numbers of
monotone hyperpaths.

In their seminal 1935 paper, Erdős and Szekeres [ES35] conjectured that the
maximum size ES(k) of a set of points in the plane in general position with
no k points in convex position satisfies ES(k) = 2k−2. This problem, known as
the Erdős–Szekeres conjecture, is still open. In 2006, Peters and Szekeres [PS06]
conjectured that a certain strengthening of the Erdős–Szekeres conjecture to
ordered hypergraphs holds. We refute the conjecture of Peters and Szekeres by
providing a counterexample that was found by employing an exhaustive computer
search (Theorem 3.3).

At the end of Chapter 3, we show some applications in the theory of geometric
Ramsey numbers, which were introduced by Károlyi et al. [KPT97, KPTV98]. We
derive the exact formula for geometric Ramsey numbers of cycles (Theorem 3.13),
strengthening a bound by Károlyi et al. [KPTV98]. We also show that convex
geometric Ramsey numbers of outerplanar graphs are at most quasipolynomial
in the number of vertices (Corollary 3.16), improving a bound by Cibulka et
al. [CGK+15].

Chapter 4: Crossing numbers of Kn. A typical Ramsey-type result says
that once a structure is large enough, there is always a copy of a certain well-
organized substructure. It is a natural question to ask how many such copies are
guaranteed in every sufficiently large structure.

Determining the crossing numbers of complete graphs may be viewed as a
particular instance of such question. For a graph G, let cr(G) be the minimum
number of crossings in every drawing of G where no three edges cross at the same
point. It is a well-known fact that every drawing of K5 contains at least one
crossing. That is, cr(K5) ≥ 1 (in fact, cr(K5) = 1). Determining the formula for
cr(Kn) for general n turned out to be very difficult. According to famous Hill’s
conjecture [Guy60, HH63] from the 1950s, we have cr(Kn) = Z(n), where

Z(n) :=
1

4

⌊
n

2

⌋⌊
n− 1

2

⌋⌊
n− 2

2

⌋⌊
n− 3

2

⌋
.

It is known that cr(Kn) ≤ Z(n) [BK64, Guy60, HH63, Har02], but, despite several
attempts over the last fifty years, Hill’s conjecture still remains open.

6



We say that a drawing of a graph G is simple if no two adjacent edges cross
and no two edges have more than one common crossing. This is a natural class
of drawings to consider, as it is a well-known fact that every drawing with the
minimum number of crossings is simple. A drawing of G is x-monotone if every
edge of G is represented by a curve that intersects every vertical line in at most
one point.

In Chapter 4, we restrict the setting of Hill’s conjecture to simple x-monotone
drawings. We show that Hill’s conjecture holds under this restriction by proving
that there are at least Z(n) crossings in every simple x-monotone drawing of Kn

(Theorem 4.1).
The proof of this result is based on a generalization of a technique used by

Ábrego et al. [AAFM+13] for so-called 2-page book drawings. Recently, there has
been further progress on this topic and Hill’s conjecture is known to hold for a
wider class of drawings of Kn. In Chapter 4, we briefly survey this development.

Then we provide a combinatorial characterization of simple x-monotone dra-
wings of Kn that is based on colorings of edges of the ordered complete 3-uniform
hypergraph on n vertices by two colors. We show that there is a correspondence
between simple x-monotone drawings and a class of such colorings with forbidden
subconfigurations on at most five vertices (Theorem 4.8). This puts the previous
result into a perspective of Ramsey-type results on ordered hypergraphs. In
particular, determining the minimum number of crossings in simple x-monotone
drawings of Kn can be regarded as a variant of a Ramsey multiplicity problem for
ordered hypergraphs.

A drawing D of a graph is pseudolinear if the edges of D can be extended to
doubly-infinite curves that form an arrangement of pseudolines. The pseudolinear
crossing number of Kn is the minimum number of crossings in a pseudolinear
drawing of Kn. Felsner and Weil [FW01] proved a characterization of pseudolinear
drawings of Kn that is similar to Theorem 4.8. We apply this characterization in
a simulated annealing algorithm to prove that the pseudolinear crossing number
of Kn is at most 0.380448

(
n
4

)
+ O(n3), shrinking the current gap between the

lower and upper bound on the pseudolinear crossing number of Kn roughly by
five percent (Theorem 4.10).

We enclose this chapter with some open problems, one of which strengthens
the original Hill’s conjecture.
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1. Ordered Ramsey numbers

1.1 Preliminaries

We study the analogue of Ramsey’s theorem for graphs with ordered vertex sets.
The concept of ordered graphs appeared earlier in the literature [Kla04a, Kla04b,
MSW15, PT06], but we are not aware of any Ramsey-type results for such graphs
except for the case of monotone paths and hyperpaths [CP02, EM13, FPSS12,
MSW15, MS14].

The main goal of Chapters 1 and 2 is to understand the effects of different
vertex orderings on the ordered Ramsey number of a given graph, and to compare
the ordered and unordered Ramsey numbers.

In the rest of the thesis, we omit the ceiling and floor signs whenever they are
not crucial. Unless indicated otherwise, all logarithms in this thesis are base 2.

Hypergraphs. We consider only finite graphs and hypergraphs with no multiple
edges and no loops (that is, one-element edges).

A coloring of a hypergraph H = (V,E) is a mapping f : E → C where C is a
finite set of colors. A coloring with c colors is called a c-coloring. In a 2-coloring of
a graph G with colors red and blue, we call a vertex u of G a red neighbor (a blue
neighbor) of a vertex v of G if the edge {u, v} is colored red (blue, respectively).

The complete k-uniform hypergraph on n vertices, denoted by Kk
n, is a hyper-

graph whose edges are all k-element subsets of the n vertices. A general Ramsey’s
theorem states that for given positive integers c, k, and n, there is an integer
N such that every c-coloring of Kk

N contains a monochromatic copy of Kk
n. The

minimum such N is called the Ramsey number and we denote it by Rk(K
k
n; c). For

graphs we write R(Kn; c) instead of R2(K
2
n; c). Classical results of Erdős [Erd47]

and Erdős and Szekeres [ES35] give the exponential bounds

2n/2 ≤ R(Kn; 2) ≤ 22n. (1.1)

Despite many improvements during the last sixty years (see [Con09] for example),
the constant factors in the exponents have remained the same.

Since every k-uniform hypergraph on n vertices is contained in Kk
n, we can

consider the following generalization of Ramsey numbers. Let c be a positive
integer and let H1, . . . , Hc be k-uniform hypergraphs. Ramsey’s theorem then
implies that there exists a smallest number Rk(H1, . . . , Hc) such that every c-
coloring of a complete k-uniform hypergraph with at least Rk(H1, . . . , Hc) vertices
contains a monochromatic copy of Hi in color i for some i ∈ [c]. The case when all
the hypergraphs H1, . . . , Hc are isomorphic to H is called the diagonal case and
we just write Rk(H; c) instead of Rk(H1, . . . , Hc). We also abbreviate Rk(H; 2) as
Rk(H), and R2(H; 2) as R(H).

Ordered hypergraphs. An ordered hypergraph H is a pair (H,≺) where H is
a hypergraph and ≺ is a total ordering of its vertex set. The ordering ≺ is called
a vertex ordering of H. Many notions related to hypergraphs, such as vertex
degrees or a coloring, can be defined analogously for ordered hypergraphs.

8



(a) (b)

Figure 1.1: Examples of 2-uniform (part (a)) and 3-uniform (part (b)) monotone
hyperpaths.

For an ordered hypergraph H = (H,≺) and its vertices x, y, we say that x is a
left neighbor of y and that y is a right neighbor of x if x and y belong to a common
edge and x ≺ y. We say that two ordered hypergraphs (H1,≺1) and (H2,≺2)
are isomorphic if H1 and H2 are isomorphic via a one-to-one correspondence
g : V (H1) → V (H2) that also preserves the orderings; that is, for every x, y ∈
V (H1), x ≺1 y ⇔ g(x) ≺2 g(y). An ordered (hyper)graph H = (H,≺1) is an
ordered sub(hyper)graph of G = (G,≺2), written H ⊆ G, if H is a sub(hyper)graph
of G and ≺1 is a suborder of ≺2. Up to isomorphism, there is only one ordered
complete k-uniform hypergraph on n vertices, which we denote as Kk

n, or Kn if
k = 2.

We now introduce Ramsey numbers of ordered hypergraphs, called ordered
Ramsey numbers. For given ordered k-uniform hypergraphs H1, . . . ,Hc, we denote
by Rk(H1, . . . ,Hc) the smallest number N such that every c-coloring of Kk

N

contains, for some i ∈ [c], a monochromatic copy of Hi in color i as an ordered
subhypergraph. If all ordered hypergraphs Hi are isomorphic to H, we write the
ordered Ramsey number as Rk(H; c). In the case of graphs (that is, if k = 2) we
write R(H1, . . . ,Hc) or R(H; c), respectively. We abbreviate Rk(H; 2) as Rk(H),
and R(H; 2) as R(H). If a coloring f of an ordered hypergraph contains no
monochromatic copy of H, we say that f avoids H.

Since Kk
n is uniquely determined up to isomorphism, we have Rk(Kk

r1
, . . . ,Kk

rc)
= Rk(K

k
r1
, . . . , Kk

rc) for arbitrary positive integers k, c, r1, . . . , rc. Since every
ordered k-uniform hypergraph on r vertices is an ordered subhypergraph of Kk

r ,
we have Rk(H1, . . . ,Hc) ≤ Rk(Kk

r1
, . . . ,Kk

rc) where ri is the number of vertices
of Hi. We have thus proved the following fact.

Observation 1.1. For arbitrary positive integers c and k, let H1 = (H1,≺1), . . . ,
Hc = (Hc,≺c) be an arbitrary collection of ordered k-uniform hypergraphs. Then
we have

Rk(H1, . . . , Hc) ≤ Rk(H1, . . . ,Hc) ≤ Rk

(
Kk

|V (H1)|, . . . , K
k
|V (Hc)|

)
.

To study the asymptotic growth of ordered Ramsey numbers, we introduce
ordering schemes for some classes of hypergraphs. An ordering scheme is a
particular rule for ordering the vertices of the hypergraphs consistently in the
whole class. For example, a k-uniform monotone hyperpath (P k

n ,▹mon) is an
ordered k-uniform hypergraph with vertices v1 ▹mon · · · ▹mon vn and n − k + 1
edges, each consisting of k consecutive vertices; see Figure 1.1 for an illustration.
Throughout the thesis we use the symbol ▹ instead of ≺ to emphasize the fact
that the vertex ordering follows some ordering scheme.

For an ordered graph (G,≺), we say that a vertex v of G is to the left (right)
of a subset U of vertices of G if v precedes (is preceded by, respectively) every
vertex of U in ≺. More generally, for two subsets U and W of vertices of G, we
say that U is to the left of W and W is to the right of U if every vertex of U

9



precedes every vertex of W in ≺. For an ordered graph (G,≺), we say that a
subset I of vertices of G is an interval if for every pair of vertices u and v of I
such that u ≺ v, every vertex w of G satisfying u ≺ w ≺ v is contained in I.

1.2 Ordered stars

A star on n vertices is the complete bipartite graph K1,n−1. Ramsey numbers of
unordered stars are known exactly [BR73] and they are given by

R(K1,n−1; c) =

{
c(n− 2) + 1 if c ≡ n− 1 ≡ 0 (mod 2),

c(n− 2) + 2 otherwise.

The position of the central vertex of an ordered star determines the ordering
of the star uniquely up to isomorphism. We use Sr,s to denote the ordered star
with r − 1 vertices to the left and s− 1 vertices to the right of the central vertex;
see Figure 1.2.

For c, r1, . . . , rc ≥ 2, computing R(S1,r1 , . . . ,S1,rc) is straightforward. In the
diagonal case, the ordered Ramsey numbers R(S1,n; c) are equal to the Ramsey
numbers R(K1,n−1; c) for every n and c, if n is even or c is odd.

Sr,s

︸ ︷︷ ︸ ︸ ︷︷ ︸
r − 1 s− 1

Figure 1.2: The ordered star Sr,s.

Observation 1.2. For all integers c, r1, . . . , rc ≥ 2, we have

R(S1,r1 , . . . ,S1,rc) = 2 +
c∑

i=1

(ri − 2).

Proof. Let KN be an ordered complete graph with N ≥ 2 +
∑c

i=1(ri − 2) vertices
and edges colored with c colors. By the pigeonhole principle, for some i ∈ [c], the
leftmost vertex in KN has at least ri − 1 incident edges of color i. These edges
form a copy of S1,ri .

The following c-coloring of the edges of KN with N := 1 +
∑c

i=1(ri − 2) has
no star S1,ri in color i. Partition all the vertices of KN except for the leftmost
vertex into c subsets V1, . . . , Vc such that |Vi| = ri − 2. Then color each edge with
its right vertex in Vi by color i.

It is obvious that R(S1,r1 ,Sr2,1) = R(Sr1,1,S1,r2) = R(S1,r2 ,Sr1,1) for all integers
r1, r2 ≥ 2 and that R(S1,2,Sr,1) = r for every integer r ≥ 2. Choudum and
Ponnusamy [CP02] determined the ordered Ramsey numbers of all pairs of ordered
stars by the following recursive formulas.

Theorem 1.3 ([CP02]). For all integers r2 ≥ r1 > 2, we have

R(S1,r1 ,Sr2,1) =

⌊
−1 +

√
1 + 8(r1 − 2)(r2 − 2)

2

⌋
+ r1 + r2 − 2.

10



Moreover, for all integers r1, r2, s1, s2 ≥ 2, we have

R(S1,r1 ,Sr2,s2) = R(S1,r1 ,Sr2,1) + r1 + s2 − 3

and
R(Sr1,s1 ,Sr2,s2) = R(Sr1,1,Sr2,s2) + R(S1,s1 ,Sr2,s2)− 1.

We show that ordered Ramsey numbers of all ordered stars are linear with
respect to the number of vertices and at most exponential with respect to the
number of colors.

Theorem 1.4. For all integers c ≥ 2, n1, . . . , nc ≥ 3, and for every collection of
ordered stars S1, . . . ,Sc where ni is the number of vertices of Si, we have

R(S1, . . . ,Sc) ≤ 2c + 2c+1 ·
c∑

i=1

(ni − 3) < 2c+1 ·
c∑

i=1

ni.

In the proof we use Turán’s theorem, which we now state for convenience.

Theorem 1.5 ([Tur41]). Let r be a positive integer and let G be a graph on n
vertices that contains no copy of Kr+1. Then the number of edges in G is at most(
1− 1

r

)
· n2

2
.

Proof of Theorem 1.4. For every i ∈ [c], let ri and si be positive integers such
that Si = Sri,si . Let N be a positive integer. Assume that the edges of KN

are colored by colors from [c] so that for every i ∈ [c], there is no Sri,si in
color i. Thus, in the ordered subgraph Gi of KN formed by the edges of color i,
every vertex has at most ri − 2 left neighbors or at most si − 2 right neighbors.
Let Hi be the ordered subgraph of Gi obtained by deleting every edge incident
from the left to a vertex with at most ri − 2 left neighbors, and every edge
incident from the right to a vertex with at most si − 2 right neighbors. Clearly,
|E(Gi) \E(Hi)| ≤ N · (ri+ si− 4) = N · (ni− 3). It follows that the ordered graph
H :=

⋃c
i=1 Hi has at least

(
N
2

)
−N ·∑c

i=1(ni−3) = N ·(N/2− 1/2−∑c
i=1(ni − 3))

edges.
By the construction, each of the ordered graphs Hi is bipartite. Hence, the

ordered graph H is 2c-partite (in other words, 2c-colorable). Therefore, by Turán’s
theorem (Theorem 1.5), |E(H)| ≤ (1−1/2c) ·N2/2 = N ·(N/2−N/2c+1). Putting
the two estimates together, we obtain that N/2c+1 ≤ 1/2 +

∑c
i=1(ni − 3), from

which the theorem follows.

Additionally, we give a lower bound for ordered Ramsey numbers of ordered
stars that have at least one edge incident to the central vertex from each side.
For “symmetric” stars Sri,ri with ri ≥ 2, the lower bound is within a constant
multiplicative factor from the upper bound in Theorem 1.4.

Proposition 1.6. For all integers c ≥ 2 and r1, . . . , rc, s1, . . . , sc ≥ 2, we have

R(Sr1,s1 , . . . ,Src,sc) > 2c−1 ·max

(
max
i∈[c]

{ri + si − 2}, 2 + 2 ·
c∑

i=1

(min(ri, si)− 2)

)
.
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Proof. Let a := maxi∈[c]{ri + si − 2}, b := 1 +
∑c

i=1(min(ri, si) − 2), and N1 :=
max(a, 2b). Without loss of generality, we assume that a = r1+s1−2. We start the
construction with coloring the edges of KN1 . If N1 = a, we color every edge of KN1

by color 1. Now suppose that N1 = 2b. For every i ∈ [c], let ti := min(ri, si)− 2,
and let bi be the partial sum

∑i
j=1 tj. In particular, bc = b− 1. Let b0 := 0 and

let v1, v2, . . . , vN1 be the vertices of KN1 from left to right. For every k, l ∈ [b],
k < l, color the edge {vk, vl} by color i if bi−1 < l − k ≤ bi. In this coloring
of the subgraph Kb = KN1 [v1, . . . , vb], every vertex has at most ti left neighbors
and at most ti right neighbors joined by an edge of color i. Color the subgraph
KN1 [vb+1, . . . , v2b] analogously as Kb, and finally, color every edge {vi, vj} with
i ≤ b < j by color 1.

For i ∈ {2, 3, . . . , c}, let Ni := 2i−1 ·N1. We color the graphs KNi
by induction

on i. Once KNi
is colored, we split the vertices v1, . . . , vNi+1

of KNi+1
into two

intervals of length Ni, and color the subgraph induced by each of the two intervals
using the coloring of KNi

. Then we color every edge between the two intervals by
color i.

It remains to verify that there is no monochromatic copy of Sri,si in the
resulting coloring of KNc . In the case N1 = a, every vertex has at most r1 + s1 − 3
neighbors joined by an edge of color 1 and for every other i ∈ [c], it either has
no left or no right neighbors in color i. In the case N1 = 2b, for every i ∈ [c],
every vertex has at most ri − 2 left neighbors or at most si − 2 right neighbors in
color i.

1.3 Ordered paths

Gerencsér and Gyárfás [GG67] determined the exact values for the Ramsey
numbers R(Pr, Ps) of two paths Pr and Ps.

Theorem 1.7 ([GG67]). For 2 ≤ r ≤ s, we have R(Pr, Ps) = s+
⌊
r
2

⌋
− 1.

Perhaps the most natural ordering of a path is the monotone path. We recall
that the monotone path (Pn,▹mon) is an ordered graph with vertices v1 ▹mon

· · ·▹mon vn and n− 1 edges, each consisting of a pair of consecutive vertices.
The following result of Choudum and Ponnusamy [CP02] gives the exact

formula for the ordered Ramsey numbers of monotone paths and it is closely
related to the famous Erdős–Szekeres lemma on monotone subsequences; see
Section 3.1. Milans, Stolee, and West [MSW15] gave the following proof in the
language of ordered Ramsey theory. Their proof is based on a simple and elegant
proof of the Erdős–Szekeres lemma by Seidenberg [Sei59].

Proposition 1.8 ([CP02, MSW15]). For all positive integers c, r1, . . . , rc, we have

R((Pr1 ,▹mon), . . . , (Prc ,▹mon)) = 1 +
c∏

i=1

(ri − 1).

Proof. Let N :=
∏c

i=1(ri − 1). For the lower bound, we let the vertices of KN be
c-tuples (t1, . . . , tc) with ti ∈ [ri − 1] for every i ∈ [c] and we order the vertices
of KN lexicographically. We color an edge {(t1, . . . , tc), (s1, . . . , sc)} of KN by
min{i ∈ [c] : ti ̸= si}. That is, by the first coordinate where the two vertices differ.

12



Figure 1.3: The alternating path (P7,▹alt).

For every i ∈ [c], there is no monotone path on ri vertices with edges of color i in
this coloring of KN , as every edge of a monotone path of color i increases the ith
coordinate, which is always smaller than ri.

For the upper bound, we show that every coloring of KN+1 = (KN+1,≺)
contains a monotone path on at least ri vertices with edges of color i for some
i ∈ [c]. For a vertex v of KN+1 and i ∈ [c], let vi be the number of vertices of the
longest monotone path that has all edges of color i and that ends in v.

If i is the color of an edge {u, v} with u ≺ v, then we extend the longest
monotone path of color i that ends in u by {u, v} and obtain ui < vi. Thus there
are no two vertices u ≺ v of KN+1 such that (u1, . . . , uc) = (v1, . . . , vc). By the
pigeonhole principle, there is a vertex v of KN+1 and i ∈ [c] such that the ith
coordinate of (v1, . . . , vc) is at least ri. This gives a monotone path of color i on
at least ri vertices in KN+1.

In particular, Proposition 1.8 shows that R((Pn,▹mon)) is quadratic in n. In
contrast, we show a family of ordered paths whose ordered Ramsey numbers are
linear in the number of vertices.

Let v1, . . . , vn be the vertices of Pn in the order as they appear along the path.
The alternating path (Pn,▹alt) is an ordered path where v1 ▹alt v3 ▹alt v5 ▹alt

· · · ▹alt vn ▹alt vn−1 ▹alt vn−3 ▹alt · · · ▹alt v2 for n odd and v1 ▹alt v3 ▹alt v5 ▹alt

· · ·▹alt vn−1 ▹alt vn ▹alt vn−2 ▹alt · · ·▹alt v2 for n even; see Figure 1.3.

Proposition 1.9. For every positive integer n, we have

5⌊n/2⌋ − 4 ≤ R((Pn,▹alt)) ≤ 5n.

Moreover, the following Turán-type result is true. If ε > 0 is a real constant,
then every ordered graph on N ≥ n/ε vertices with at least εN2 edges contains
(Pn,▹alt) as an ordered subgraph.

Proof. For the lower bound on R((Pn,▹alt)), we assume that n ≥ 4 and we
let r := ⌊n/2⌋ − 1 and N := 5r. We use an upper triangular {0, 1}-matrix
A = (ai,j)

N
i,j=1 to represent a red-blue coloring c of KN that avoids (Pn,▹alt). The

construction of A is sketched in part (a) of Figure 1.4. For 1 ≤ i < j ≤ N , the
edge {i, j} of KN is blue in c if Ai,j = 0 and red in c if Ai,j = 1. For integers k and
l with 1 ≤ k ≤ l ≤ 5, we use Bk,l to denote the r× r blocks that partition A. The
block Bk,l contains entries ai,j with (k−1)r+1 ≤ i ≤ kr and (l−1)r+1 ≤ j ≤ lr.
There are two types of blocks. Red blocks, containing only 1-entries, and blue
blocks, containing only 0-entries. The blocks B1,5, B2,2, B2,3, B3,3, B3,4, B4,4 are red
and all the other blocks are blue.

Suppose for contradiction that c contains a monochromatic copy P of (Pn,▹alt).
Then there are entries ai1,j1 = · · · = ain−1,jn−1 in A such that, for t = 1, . . . , n− 2,
we have it < it+1 and jt = jt+1 if t is odd and it = it+1 and jt > jt+1 if t is even.
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(a) (b) (c) (d)

Figure 1.4: (a)–(d) Various constructions for the lower bound on R((Pn,▹alt)).
The red entries represent 1, the blue entries represent 0.

Every block Bk,l has at most r rows and at most r columns of A, but P spans at
least r + 1 rows and r + 1 columns. Therefore there are three blocks B1, B2, B3 of
the same color that satisfy one of the following two conditions. Either the block
B1 is above B2 and B3 is to the left of B2 or the block B1 is to the right of B2

and B3 is below B2. However, the matrix A contains no such triples of blocks, a
contradiction.

Some alternative constructions of A are illustrated in parts (b), (c), and (d) of
Figure 1.4.

Now, we prove the Turán-type statement from the second part of the propo-
sition. The upper bound on R((Pn,▹alt)) then follows, as, for N := 5n ≥ 5 and
ε := 1/5, there are at least 1

2

(
N
2

)
≥ N2/5 = εN2 edges of the same color in every

2-coloring of KN .
For a given ε > 0, let H = (H,≺) be an ordered graph on N ≥ n/ε vertices

with at least εN2 edges. Without loss of generality, we assume that the vertex set
of H is [N ]. We also assume n ≥ 3, otherwise the statement is trivial.

For a vertex v of H, the leftmost neighbor of v in H is the minimum from
{u ∈ V (H) : u ≺ v, {u, v} ∈ E(H)}, if it exists. The rightmost neighbor of v in H
is the maximum from {u ∈ V (H) : v ≺ u, {u, v} ∈ E(H)}, if it exists.

We consider the following process of removing edges of H that proceeds in
steps 1, . . . , n− 2. In every odd step of the process, we remove edges {u, v} for
every vertex v of H such that u is the leftmost neighbor of v (if it exists). In
every even step, we remove edges {u, v} for every vertex v of H such that u is the
rightmost neighbor of v (if it exists). Clearly, we remove at most N edges of H in
every step. In total, we remove at most (n− 2)N edges of H once the process is
finished.

From the choice of N , we have εN2 ≥ nN > (n − 2)N and thus there is at
least one edge {vn−1, vn} of H that we did not remove. Without loss of generality
we assume that vn ≺ vn−1 for n odd and vn−1 ≺ vn for n even.

We now follow the process of removing the edges of H backwards and we
construct the alternating path (Pn,▹alt) on vertices v1, . . . , vn. For i = n −
2, . . . , 1, we let vi be the vertex that was removed in the ith step of the removing
process as a neighbor of vi+1. If there is no such vertex vi, then we would
remove the edge {vi+1, vi+2} in the ith step of the removing process, which is
impossible. Consequently, the construction of (Pn,▹alt) stops at v1 and we obtain
an alternating path on n vertices as an ordered subgraph of H.

We do not know the precise multiplicative factor in R((Pn,▹alt)). A stronger
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upper bound was obtained by Balko et al. [BCKK13] who showed

R((Pn,▹alt)) ≤ 2n− 3 +
√
2n2 − 8n+ 11

by applying a result from extremal theory of {0, 1}-matrices. Our computer

experiments [BCKK] indicate that R(Pn,▹alt) could be of the form ⌊(n−2)1+
√
5

2
⌋+

n; see Table 1.1. In our experiments we used the Glucose SAT solver [AS13].

n 2 3 4 5 6 7 8 9 10 11 12 13

R((Pn,▹alt)) 2 4 7 9 12 15 17 ≥ 20 ≥ 22 ≥ 25 ≥ 28 ≥ 30

Table 1.1: Estimates of the ordered Ramsey numbers R((Pn,▹alt)) for n ≤ 13.

For general ordered paths, Cibulka et al. [CGK+15] showed that for every
ordered path Pr and the ordered complete graph Ks we have

R(Pr,Ks) ≤ 2⌈log s⌉(⌈log r⌉+1).

That is, for every ordered path Pn we have R(Pn) ≤ nO(logn). This bound also
follows from a result of Conlon et al. [CFLS14] (Theorem 2.9).

The best known lower bound on R(Pn) comes from Theorem 2.1, which
implies that there are arbitrarily long ordered paths Pn on n vertices such that
R(Pn) ≥ nlogn/(5 log logn).

1.4 Ordered cycles

It is a folklore result in Ramsey theory that R(C3) = R(C4) = 6 [CH72]. The
first results on Ramsey numbers of cycles were obtained by Chartrand and
Chuster [CS71] and by Bondy and Erdős [BE73]. These were later extended by
Rosta [Ros73] and by Faudree and Schelp [FS74]. Together, these results give
exact formulas for Ramsey numbers of cycles in the two-color case. For all integers
r, s ≥ 3, we have

R(Cr, Cs) =

⎧
⎪⎨
⎪⎩

2r − 1 if (r, s) ̸= (3, 3), r ≥ s ≥ 3, and s is odd,
2r+s
2

− 1 if (r, s) ̸= (4, 4), r ≥ s ≥ 4, and r, s are even,

max{2r+s
2
, 2s} − 1 if r > s ≥ 4, s is even and r is odd.

The smallest cycle whose ordered Ramsey numbers are nontrivial to determine
is C4. There are three pairwise nonisomorphic orderings of C4; see Figure 1.5.

(C4,≺A) (C4,≺B) (C4,≺C)

Figure 1.5: Three possible orderings of C4.

We determine the ordered Ramsey number of each of the three orderings of C4

from Figure 1.5.
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(a) (b)

Figure 1.6: Colorings of K9 and K10 with no monochromatic copy of (C4,≺B) and
(C4,≺C), respectively.

Proposition 1.10. We have

1) R((C4,≺A)) = 14,

2) R((C4,≺B)) = 10,

3) R((C4,≺C)) = 11.

Proof. The colorings showing the lower bounds can be found in Figures 1.6 and 1.8.
These colorings were found using a computer experiment and all supplementary
data can be also found on a separate webpage [BCKK]. We now show the upper
bounds.

1) This result follows from Theorem 1.11, which is proved later in this section.

2) Consider (K10,≺) with vertices v1 ≺ v2 ≺ · · · ≺ v10 and edges colored red
and blue. We put each of the vertices {v4, v5, . . . , v10} into one of the follo-
wing six classes. Class (i, c), where i ∈ {1, 2, 3} and c ∈ {red, blue}, contains
vertices connected by an edge of color c to both vertices in {v1, v2, v3} \ {vi}.
Note that each of the seven vertices {v4, v5, . . . , v10} is in one or three of
these classes. Consequently, one of the six classes contains at least two
vertices. Thus there are two vertices that share two left neighbors of the
same color, which implies a monochromatic copy of (C4,≺B).

3) Exhaustive computer search showed that R((C4,≺C)) = 11 [BCKK]. Here
we prove a weaker upper bound R((C4,≺C)) ≤ 13.

Consider (K13,≺) with vertices v1 ≺ · · · ≺ v13, edges colored red and blue,
and no monochromatic (C4,≺C). Without loss of generality, v1 has six
red neighbors among {v2, v3, . . . , v12}. If v1 and v13 had two common red
neighbors then they would form a red copy of (C4,≺C). Thus there is a
set R ⊆ {v2, v3, . . . , v12} of at least five vertices such that each of them is
adjacent to v1 by a red edge and to v13 by a blue edge. By Theorem 1.3
we have R(S1,3,S3,1) = 5. Therefore the complete graph formed by the five
vertices of R contains either a vertex with at least two red edges incident
from the left or a vertex with at least two blue edges incident from the right.
In both cases we obtain a monochromatic copy of (C4,≺C).
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Figure 1.7: The monotone cycle (C6,▹mon).

For the rest of the section, we consider a particular family of ordered cycles. A
monotone cycle (Cn,▹mon) on n vertices consists of a monotone path with vertices
v1 ▹mon · · ·▹mon vn and the edge {v1, vn}; see Figure 1.7.

We now show an exact formula for ordered Ramsey numbers of monotone
cycles.

Theorem 1.11. For all integers r ≥ 2 and s ≥ 2, we have

R((Cr,▹mon), (Cs,▹mon)) = 2rs− 3r − 3s+ 6.

In the proof of Theorem 1.11, we use the following simple lemma, which is
implicitly proved in [KPT97]. We include its proof for completeness.

Lemma 1.12 ([KPT97]). For positive integers r and s, we have

R((Pr,▹mon),Ks) = R((Pr,▹mon), (Ps,▹mon)) = (r − 1)(s− 1) + 1.

Proof. The lower bound (r−1)(s−1)+1 ≤ R((Pr,▹mon), (Ps,▹mon)) follows from
Proposition 1.8. For the upper bound R((Pr,▹mon),Ks) ≤ (r − 1)(s− 1) + 1, we
apply induction on r. Let G be an ordered complete graph with (r− 1)(s− 1) + 1
vertices and with edges colored red and blue. The statement is true for r = 2, since
either G is a blue copy of Ks or G has a red edge. Let r ≥ 3. By the induction
hypothesis, G has either a blue copy ofKs or at least (r−1)(s−1)+1−(r−2)(s−1) =
s distinct vertices that are the rightmost vertices of a red copy of (Pr−1,▹mon).
Either every edge between these vertices is blue, which gives a blue copy of Ks, or a
red edge extends one of the red paths (Pr−1,▹mon) to a red copy of (Pr,▹mon).

Proof of Theorem 1.11. The upper bound was proved by Károlyi et al. [KPTV98,
Theorem 2.1]. We include the proof here for completeness.

Let G be an ordered complete graph with N := 2rs − 3r − 3s + 6 vertices
and with edges colored red and blue. The leftmost vertex, v1, has either at least
(r − 2)(s− 1) + 1 red neighbors or at least (r − 1)(s− 2) + 1 blue neighbors. In
the first case, by Lemma 1.12, G has a red copy of (Pr−1,▹mon) that forms a red
copy of (Cr,▹mon) together with v1, or a blue copy of (Cs,▹mon). The second
case is symmetric.

Now we prove the lower bound. Let N := 2rs− 3r − 3s+ 5. We construct a
coloring of KN = (KN ,≺) that avoids a red copy of (Cr,▹mon) and a blue copy
of (Cs,▹mon). See Figure 1.8 for an example of such coloring for r = s = 4. We
partition the vertices of KN into disjoint intervals I1, . . . , I2r−3, from left to right.
For r odd, the (r − 1)/2 leftmost and (r − 1)/2 rightmost intervals are of size
s− 1 and the remaining r− 2 intervals are of size s− 2. For r even, the (r− 2)/2
leftmost and (r− 2)/2 rightmost intervals are of size s− 2 and the remaining r− 1
intervals are of size s− 1. In both cases we have N vertices in total.
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Figure 1.8: A coloring of K13 with no monochromatic monotone cycle of length 4.

We call the intervals of size s− 1 long and the intervals of size s− 2 short. We
label the vertices of Ii as v

i
1, v

i
2, . . . , v

i
|Ii| from left to right. We call the index j the

index of the vertex vij.
The coloring of the edges of KN is defined as follows. For every i ∈ [2r − 3],

we color all the edges among the vertices of Ii blue. We define four types of edges
with vertices in different intervals. The type of an edge is determined by the
pair of intervals containing its vertices. The color of an edge is determined by its
type and by the relative value of the indices of its vertices. We say that an edge
e = {vik, vjl } between intervals Ii and Ij with i < j is of type

• T< if j − i ≤ r − 2 and |Ii| ≤ |Ij|. In this case we color e blue if k < l and
red otherwise.

• T≥ if j − i > r − 2 and |Ii| < |Ij|. In this case we color e blue if k ≥ l and
red otherwise.

• T> if j − i > r − 2 and |Ii| ≥ |Ij|. In this case we color e blue if k > l and
red otherwise.

• T≤ if j − i ≤ r − 2 and |Ii| > |Ij|. In this case we color e blue if k ≤ l and
red otherwise.

The definition of the types and the distribution of the types inKN are illustrated
in Figures 1.9 and 1.10, respectively.

The distribution of long and short intervals implies the following claim.

Claim 1.13. Every monochromatic monotone path P in the constructed coloring
of KN contains at most one edge {u, v}, u ≺ v, with u in a long interval and v in
a short interval, and at most one edge {u′, v′}, u′ ≺ v′, with u′ in a short interval
and v′ in a long interval.

First we show that our coloring of KN contains no red copy of (Cr,▹mon).
Suppose for contradiction that there is such a copy C. Let P be the monotone path
on r vertices contained in C. Let u be the leftmost vertex of P and v the rightmost
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Ii Ij Ii Ij Ii Ij Ii Ij

T<: T≥: T≤:T>:

Figure 1.9: The types of pairs (Ii, Ij) for s = 5 and colorings of corresponding
edges.

T>

T≤ T<

s − 1 s − 1

I1 I2 I3

T>

T≥ T>

T< T< T≤

T< T< T< T≤

s − 1 s − 1 s − 1s − 2 s − 2

I1 I2 I3 I4 I5

s − 2

(a) (b)

Figure 1.10: Distribution of types of pairs (Ii, Ij) in KN for (a) r = 3 and (b)
r = 4.

vertex of P . The edge {u, v} is thus the longest edge of C. Note that C contains at
most one vertex from each interval Ii, as every interval contains only blue edges.
The path P contains no edge of type T> or T≥, since otherwise P would skip
vertices from at least r − 2 intervals, leaving at most 2r − 3 − (r − 2) = r − 1
intervals. Hence the vertex indices in P are nonincreasing from left to right, as P
uses red edges of types T< and T≤ only.

Since the edge {u, v} skips at least r − 2 intervals, it is of type T> or T≥,
and thus the index of v is at least as large as the index of u. In combination
with the previous observation, this implies that the indices of u and v are equal.
Consequently, {u, v} is of type T>, and every edge of P is of type T<. Since there
are at most r − 1 long intervals and at most r − 1 short intervals, the path P
contains at least one vertex from a long interval and at least one vertex from a
short interval. Since every edge of P is of type T<, this implies that u is in a
short interval and v is in a long interval. This is a contradiction since {u, v} is of
type T>.

Now we show that our coloring of KN contains no blue copy of (Cs,▹mon).
Suppose for contradiction that there is such a copy C. Let P be the monotone
path on s vertices contained in C. Let u be the leftmost vertex of P and v the
rightmost vertex of P. This time, C can contain edges between vertices from
the same interval. However, u and v belong to different intervals, as no interval
contains s vertices. We distinguish a few cases.

1) First, assume that P contains only edges with both vertices in the same
interval, edges of type T<, and edges of type T≤. Then the vertex indices
along P are nondecreasing from left to right. By Claim 1.13, at most one
edge of P is of type T≤. Thus there is at most one edge of P between
vertices with the same vertex index. Since every vertex has index at most
s − 1, we see that P has exactly one edge of type T≤ and that the index
of v is s− 1. In particular, v is in a long interval. This implies that from
left to right, P visits a long, a short, and a long interval, in this order. The

19



distribution of short and long intervals implies that r is odd, u is in a long
interval Ii, v is in a long interval Ij , and j − i > r − 2. This further implies
that {u, v} is of type T>, but this contradicts the fact that the index of u is
1 and the index of v is s− 1.

2) In the remaining case, P has an edge f between intervals Ii and Ij with
j − i > r − 2. There is exactly one such edge since the total number of
intervals is 2r − 3. Every other edge of P is of type T<, or of type T≤, or
has both vertices in the same interval. Since e = {u, v} is longer than f , it
is of type T> or T≥. Therefore the index of u is larger than or equal to the
index of v. Let x be the left vertex of f and y the right vertex of f . Let P1

be the subpath of P with endpoints u and x, and let P2 be the subpath of
P with endpoints y and v.

(a) Suppose that P has no edge of type T≤. Then the indices of vertices in
both paths P1 and P2 are strictly increasing from left to right. Since
P1 and P2 have s− 2 edges in total, it follows that the index of u is
equal to the index of v, the index of y is 1 and the index of x is s− 1.
In particular, x is in a long interval and e is of type T≥. This implies
that u is in a short interval and v is in a long interval, but this is in
contradiction with the distribution of long and short intervals.

(b) Suppose that P has an edge g of type T≤. By Claim 1.13, there is
exactly one such edge. Since g goes from a long interval to a short
interval, the edge e cannot go from a short interval to a long interval,
by the distribution of long and short intervals. Thus e is of type T>.
Consequently, the index of u is larger than the index of v. The indices
of vertices in both paths P1 and P2 are strictly increasing from left to
right, with the exception of the edge g, whose vertices can have equal
indices. It follows that the index of x is s− 1. Consequently, x is in
a long interval and so f is of type T>. This is a contradiction, since
P cannot have an edge of type T> together with an edge of type T≤,
by the distribution of long and short intervals. This finishes the proof
that our coloring of KN contains no blue copy of (Cs,▹mon), and the
proof of Theorem 1.11.

Note that we have proved a slightly stronger statement: in our coloring of KN ,
there is no red monotone cycle of length at least r and no blue monotone cycle of
length at least s.

As a consequence of Theorem 1.11, we obtain tight bounds for geometric and
convex geometric Ramsey numbers of cycles introduced by Károlyi et al. [KPT97,
KPTV98]; see Section 3.4.
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2. Growth rate of ordered
Ramsey numbers

We are interested in the effects of vertex orderings on the ordered Ramsey numbers
of various classes of graphs. We have already seen that the Ramsey number of
a graph and the ordered Ramsey number of its ordering can be asymptotically
different: for example, R((Pn,▹mon)) is quadratic in n (Proposition 1.8) while
R(Pn) is linear (Theorem 1.7).

The gap is much wider for hypergraphs. Let th denote the tower function
of height h defined by t1(x) = x and th(x) = 2th−1(x) for h ≥ 2. It is known
that for all positive integers ∆ and k, there exists a constant C(∆, k) such that
if H is a k-uniform hypergraph with n vertices and maximum degree ∆, then
Rk(H) ≤ C(∆, k) ·n [CFS09]. On the other hand, Moshkovitz and Shapira [MS14]
showed that for every k ≥ 3 we have Rk((P

k
n ,▹mon)) = tk−1(2n− o(n)).

Using a standard probabilistic argument, one can show that there is a constant
c > 0 such that the Ramsey number R(G) of every graph G with n vertices and
n1+ε edges is at least 2cn

ε
. On the other hand, it is well-known that if G is an

n-vertex graph of bounded maximum degree, then R(G) is linear in n [CVSTJ83].
In a sharp contrast to the latter fact, we construct ordered matchings whose

ordered Ramsey numbers grow superpolynomially (Theorem 2.1). Here, an ordered
matching is an ordered graph whose underlying graph is 1-regular. We also improve
a lower bound by Conlon et al. [CFLS14] for ordered Ramsey numbers of ordered
matchings with interval chromatic number 2 (Theorem 2.3). That is, for ordered
matchings whose vertex set can be partitioned into two intervals that induce
independent sets.

We give polynomial upper bounds on ordered Ramsey numbers for two classes
of sparse ordered graphs. Namely, for ordered graphs with bounded degeneracy
and interval chromatic number (Corollary 2.8) and for ordered graphs of bounded
bandwidth (Corollary 2.12). The latter result solves an open problem of Conlon,
Fox, Lee, and Sudakov [CFLS14, Problem 6.9].

We show that there are 3-regular graphs that have superlinear ordered Ramsey
numbers, regardless of the ordering (Theorem 2.19), solving a problem of Conlon,
Fox, Lee, and Sudakov [CFLS14, Problem 6.7]. On the other hand, we prove that
every graph G on n vertices with maximum degree 2 admits an ordering G of G
such that R(G) is linear in n (Theorem 2.25).

We conclude the chapter by mentioning some open problems about ordered
Ramsey numbers.

2.1 Lower bounds

The following result shows that ordered Ramsey numbers can grow superpolynomi-
ally even if the underlying graph is a matching. As we will see later in Section 2.2,
this bound is almost tight for ordered graphs of bounded degeneracy.

We say that pairwise disjoint intervals I1, . . . , Im that partition the vertex set
of an ordered graph (G,≺) are consecutive, if u ≺ v for all u ∈ Ii, v ∈ Ii+1, and
i ∈ [m− 1].
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Theorem 2.1. There are arbitrarily large ordered matchings M on n vertices
such that

R(M) ≥ n
logn

5 log logn .

Proof. Let r ≥ 3 and let Rr := R(Kr)− 1. We construct a sequence of ordered
matchings Mr,k, k ≥ 1, with nr,k vertices and a sequence of 2-colorings cr,k
of ordered complete graphs KNr,k

such that cr,k avoids Mr,k. Then we choose
k(r) so that nr,k(r) is roughly exponential in r. This will imply that Nr,k(r) is
superpolynomial in nr,k(r) when r grows to infinity.

First we show an inductive construction of the colorings cr,k. LetNr,1 := Rr and
let cr,1 be a 2-coloring of KNr,1 avoiding Kr. Let k ≥ 1 and suppose that a coloring
cr,k of KNr,k

has been constructed. Let Nr,k+1 := Rr ·Nr,k. Partition the vertex
set of KNr,k+1

into Rr disjoint consecutive intervals I1, I2, . . . , IRr , each of size Nr,k.
Color the complete subgraph induced by each Ii by cr,k. The remaining edges
of KNr,k+1

form a complete Rr-partite ordered graph Fr,k+1, which can be colored
to avoid Kr in the following way. Suppose that v1, v2, . . . , vRr are the vertices
of KNr,1 . Then for every i, j, 1 ≤ i < j ≤ Rr, and for every edge e of Fr,k+1 with
one vertex in Ii and the other vertex in Ij, let cr,k+1(e) := cr,1({vi, vj}). Clearly,
Nr,k = (Rr)

k for every k ≥ 1.
The matchings Mr,k are also constructed inductively. We start with construct-

ing Mr,1, which serves as a basic building block. Roughly speaking, we expand
the vertices of Kr to form a matching and take Rr shifted copies of this matching;
see Figure 2.1. More precisely, consider the integers 1, 2, . . . , r2Rr as vertices, and
let li := (i − 1)rRr, for 1 ≤ i ≤ r. For every pair i, j, where 1 ≤ i < j ≤ r, we
add the Rr edges {li + j, lj + i}, {li + j + r, lj + i+ r}, {li + j +2r, lj + i+2r}, . . . ,
{li + j + (Rr − 1)r, lj + i+ (Rr − 1)r}. Note that the vertices li + i+mr, where
1 ≤ i ≤ r and 0 ≤ m < Rr, are isolated. After removing these vertices we obtain
an ordered matching Mr,1 with tr := r(r − 1)Rr vertices.

M3,1

Figure 2.1: The matching M3,1.

Let nr,1 := tr. Now let k ≥ 1 and suppose that Mr,k has been constructed. Let
J1, L1, J2, L2, . . . , Lr−1, Jr be consecutive intervals of vertices of size |Li| = nr,k

and |Ji| = (r − 1)Rr. The matching Mr,k+1 is obtained by placing a copy of
Mr,k on each of the r − 1 intervals Li and a copy of Mr,1 on the union of the r
intervals Ji; see Figure 2.2. We have nr,k+1 = (r − 1)nr,k + tr.

Now we show that for every k, the coloring cr,k of KNr,k
avoids Mr,k. Trivially,

cr,1 avoidsMr,1 since nr,1 = tr > Rr = Nr,1. Let k ≥ 1 and suppose that cr,k avoids
Mr,k. Let I1, . . . , IRr be the intervals of vertices of KNr,k+1

from the construction
of cr,k+1 and let J1, L1, . . . , Lr−1, Jr be the intervals of vertices of Mr,k+1 from the
construction of Mr,k+1. Let the edges of KNr,k+1

be colored by cr,k+1. Consider a
copy of Mr,k+1 in KNr,k+1

. If two intervals Jj and Jj+1 intersect some interval Ii,
then Lj ⊂ Ii. Since Lj induces Mr,k in Mr,k+1 and Ii induces KNr,k

colored with
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J1 L1 J2 J3L2

M3,1

M3,k+1

M3,k M3,k

Figure 2.2: The construction of M3,k+1.

cr,k in KNr,k+1
, the copy of Mr,k+1 is not monochromatic by induction. Thus we

may assume that every interval Ii is intersected by at most one interval Jj.
Partition each interval Jj into Rr intervals J

1
j , J

2
j , . . . , J

Rr
j of length r − 1, in

this order. At most Rr − 1 of the rRr intervals J
l
j contain vertices from at least

two intervals Ii, 1 ≤ i ≤ Rr. Thus there is an l such that for every j, 1 ≤ j ≤ r,
the whole interval J l

j is contained in some interval Ii(j). Moreover, all the intervals
Ii(j) are pairwise distinct by our assumption. By the construction of Mr,k+1, there
is exactly one edge ej,j′ in Mr,k+1 between every pair of intervals J l

j, J
l
j′ . By

the coloring of Fr,k+1, we have cr,k+1(ej,j′) = cr,1({vi(j), vi(j′)}). Since the edges
{vi(j), vi(j′)} form a complete subgraph with r vertices in KNr,1 and cr,1 avoids Kr,
the copy of Mr,k+1 in KNr,k+1

is not monochromatic. Thus cr,k+1 avoids Mr,k+1.
Solving the recurrence for nr,k, we get

nr,k = (1 + (r − 1) + · · ·+ (r − 1)k−1) · tr < (r − 1)k · tr < rk+2 ·Rr.

Now we assume that r is sufficiently large and we choose k(r) as follows. Let
c := (logRr)/r. By (1.1), we have c ∈ [1/2, 2). Let k(r) := ⌊(cr/ log r) − 2⌋ =
(cr/ log r)−2−ε, where ε ∈ [0, 1). Let n := nr,k(r), N := Nr,k(r) and M := Mr,k(r).
We have

n = nr,k(r) < rk(r)+2 ·Rr ≤ 2cr+logRr = 22cr and

N = Nr,k(r) = (Rr)
k(r) = 2crk(r) > 2(c

2r2/ log r)−3cr.

Using these bounds together with the trivial bound 2cr = Rr < n, we get

logN − log2 n

5 log log n
>
c2r2

log r
− 3cr − 4c2r2

5(log r + log c)

= c2r2
(

1

log r
− 3

cr
− 4

5(log r + log c)

)

> 0

where the last inequality is satisfied for r > 540. The theorem follows.

We remark that our colorings cr,k of KNr,k
are not constructive, since we use

the probabilistic lower bound from Ramsey’s theorem.
Since any ordered path on n vertices contains an ordered matching on at least

n − 1 vertices, it follows from Theorem 2.1 and Proposition 1.9 that there are
arbitrarily large n-vertex graphs G and two orderings G and G ′ of G such that
R(G) is linear in n while R(G ′) is superpolynomial in n.
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We note that, independently, Conlon et al. [CFLS14] proved that as n goes to
infinity, almost every ordering Mn of a matching on n vertices satisfies R(Mn) ≥
n

logn
20 log logn .
For an ordered graph G, the interval chromatic number of G is the minimum

number of intervals the vertex set of G can be partitioned into such that there is
no edge between vertices of the same interval.

For positive integers n1 and n2, we use Kn1,n2 to denote the ordering of Kn1,n2

in which the two parts form consecutive intervals of sizes n1 and n2, taken from
left to right.

The following simple observation shows that once the interval chromatic
number of an n-vertex ordered matching is 2, then the corresponding ordered
Ramsey number is only quadratic in n.

Observation 2.2. For every positive integer n, every ordered matching M on
2n vertices with interval chromatic number 2 satisfies

R(M) ≤ 2n2.

Proof. Let the edges of K2n2 be colored red and blue. First, we partition the
vertex set of K2n2 into two consecutive intervals A and B, each of length n2. We
assume that the vertex set of M is [2n]. Since the interval chromatic number of
M is 2, the intervals [n] and J := [2n] \ [n] induce independent sets in M. Now,
we show that there is a monochromatic copy of M in the coloring of K2n2 .

For every i ∈ [n], we let vi ∈ J be the neighbor of i in M and we consider
partitions A1, . . . , An and Bn+1, . . . , B2n of A and B, respectively, into consecutive
intervals of size n. Now, if there is a red edge of K2n2 between Ai and Bvi for
every i ∈ [n], then there is a red copy of M in the coloring of K2n2 . Otherwise
there is a pair (Aj, Bvj) for some j ∈ [n] such that all edges of K2n2 between Aj

and Bvj are blue. That is, there is a blue copy of Kn,n in the coloring of K2n2 and,
since M ⊆ Kn,n, we have a blue copy of M in the coloring of K2n2 as well.

Observation 2.2 gives asymptotically the best known upper bound on R(M2n).
Note that we have, in fact, showed R(M,Kn,n) ≤ 2n2. Conlon et al. [CFLS14]
provided an almost matching lower bound by showing that there is a constant
C > 0 such that for all n there is an ordered matching M2n of interval chromatic
number two with 2n vertices satisfying

R(M2n) ≥
Cn2

log2 n log log n
.

Conlon et al. [CFLS14] proved this result using the well-known Van der Cor-
put sequence. Some applications of this sequence appear in the discrepancy
theory [Mat99].

For a positive integer n, the random n-permutation is a permutation of the set
[n] chosen independently uniformly at random from the set of all n! permutations
of the set [n].

For a positive integer n and the random n-permutation π, the random ordered
n-matching M(π) is the ordered matching with the vertex set [2n] and with edges
{i, n+ π(i)} for every i ∈ [n]. Note that the interval chromatic number of every
random ordered n-matching is 2.
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The random ordered n-matching satisfies an event A asymptotically almost
surely if the probability that A holds tends to 1 as n goes to infinity.

We improve the lower bound of Conlon et al. [CFLS14] by eliminating the
(log log n)-factor in the denominator. Moreover, we show that the new bound is
satisfied by almost every ordered matching with interval chromatic number 2.

Theorem 2.3. There is a constant C > 0 such that the random ordered n-
matching M(π) asymptotically almost surely satisfies

R(M(π)) ≥ C

(
n

log n

)2

.

If A and B are subsets of the vertex set of a graph G, then we use eG(A,B)
to denote the number of edges that have one vertex in A and one vertex in B. In
particular, eG(A,A) is the number of edges of the subgraph G[A] of G induced
by A. A similar notion, eG(A,B), is used for an ordered graph G and two subsets
A and B of its vertices.

Lemma 2.4. Let d, n, r, S be positive integers and let X1, . . . , Xd ⊆ [n] and
Y1, . . . , Yd ⊆ [2n] \ [n] be two collections of pairwise disjoint sets such that |X1| ≥
· · · ≥ |Xd|, |Y1| ≥ · · · ≥ |Yd|, and |Xd||Yd| ≥ S. Let T be a set of r pairs (Xi, Yj)
with 1 ≤ i, j ≤ d. Then the probability that we have eM(π)(Xi, Yj) = 0 for every
(Xi, Yj) ∈ T is less than

e−
S
n⌊(3d−

√
9d2−8r)/4⌋2

.

Proof. We may assume without loss of generality that |X1| = · · · = |Xd| and
|Y1| = · · · = |Yd|, since removing elements from the sets Xi and Yj does not
decrease the probability. Let x := |X1| = · · · = |Xd| and y := |Y1| = · · · = |Yd|.
From symmetry, we may assume x ≤ y.

We estimate the probability P that the random n-permutation π maps no
element e from [n] to π(e) such that (e, n + π(e)) ∈ (Xi, Yj) for (Xi, Yj) ∈ T .
Assume that the elements of [n] are in some total order e1, . . . , en in which the
values π(e1), . . . , π(en) ∈ [n] are assigned. The probability P is then at most∏n

k=1 min{n−|Fek
|

n−k+1
, 1}, where Fek ⊆ [2n] \ [n] is a set of elements f such that

ek ∈ Xi, f ∈ Yj for (Xi, Yj) ∈ T .
There is a set Z of z := ⌊(3d −

√
9d2 − 8r)/4⌋ indices from [d] such that

for every i ∈ Z there are at least 2z sets Yj with (Xi, Yj) ∈ T . Otherwise
z < ⌊(3d−

√
9d2 − 8r)/4⌋ and there are fewer than zd+ (d− z)2z ≤ r pairs in T .

Let i1, . . . , iz be the elements of Z.
For every k = 1, . . . , z, let Nk be the set of indices j from [d] such that

(Xik , Yj) ∈ T . Since ∪j∈Nk
Yj = Fe for every e ∈ Xik , the probability P is at most

z∏

k=1

(
n−∑j∈Nk

|Yj|
n−∑k

l=1 |Xil |

)|Xik
|

=
z∏

k=1

(
n− |Nk|y
n− kx

)x

.

The denominators are positive, as x ≤ n/d and z < d.
Since x ≤ y and |Nk| ≥ 2z for every k ∈ [z], the last term is at most

(
n− 2zy

n− zy

)zx

≤
(
n− zy

n

)zx

=
(
1− zy

n

)zx
< e−xyz2/n.
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Since xy ≥ S, the probability P is less than

e−Sz2/n = e−
S
n⌊(3d−

√
9d2−8r)/4⌋2

.

In the rest of the section, we set d := 3 log n, S := 2 · 104n, and r := log2 n/4.

Lemma 2.5. The random ordered n-matching M(π) satisfies the following
statement asymptotically almost surely: for all collections I1, . . . , Id ⊆ [n] and
J1, . . . , Jd ⊆ [2n] \ [n] of pairwise disjoint intervals satisfying |I1| ≥ · · · ≥ |Id|,
|J1| ≥ · · · ≥ |Jd|, and |Id||Jd| ≥ S, the number of pairs (Ii, Jj) with 1 ≤ i, j ≤ d
and eM(π)(Ii, Jj) > 0 is larger than d2 − r.

Proof. Let M(π) be the random ordered n-matching. Let X be a random variable
expressing the number of collections I1, . . . , Id and J1, . . . , Jd of intervals from
the statement of the lemma with r pairs (Ii, Jj), 1 ≤ i, j ≤ d, that satisfy
eM(π)(Ii, Jj) = 0. We show that the expected value of X tends to zero as n goes
to infinity. The rest then easily follows from Markov’s inequality.

The number of collections I1, . . . , Id ⊆ [n] and J1, . . . , Jd ⊆ [2n]\ [n] of pairwise
disjoint intervals is at most

(
n+ 2d

2d

)2

≤
(
e(n+ 2d)

2d

)4d

< 24d logn.

The number of choices of r elements from a set of d2 elements is
(
d2

r

)
≤
(
ed2

r

)r

< 27r,

where the last inequality follows from the expression of d and r.
We fix collections I1, . . . , Id and J1, . . . , Jd and r pairs (Ii, Jj) with 1 ≤ i, j ≤ d.

By Lemma 2.4, the probability that M(π) has no edge between Ii and Jj, where

(Ii, Jj) is among r chosen pairs, is less than e−
S
n⌊(3d−

√
9d2−8r)/4⌋2

.
Altogether, the expected value of X is bounded from above by

24d logn · 27r · e−S
n⌊(3d−

√
9d2−8r)/4⌋2

< 212 log
2 n+ 7

4
log2 n− 60

4
log2 n = 2−

5
4
log2 n.

Thus the expected value of X tends to zero as n goes to infinity, which concludes
the proof.

In the rest of the section, we set M := n log logn
8 logn

, s := n
8 logn

, and t := n
20 logn

.

Lemma 2.6. The random ordered n-matching M(π) satisfies the following state-
ment asymptotically almost surely: for every k with 1 ≤ k ≤ t and for all partitions
I1, . . . , Ik of [n] and Jk, . . . , Jt of [2n] \ [n] into consecutive intervals of sizes at
most s such that |Ii1| ≥ · · · ≥ |Iik |, |Jj1| ≥ · · · ≥ |Jjt−k+1

|, and |Iid+1
||Jjd+1

| < S,
there are more than M pairs (Iil , Jjl′ ) with l, l

′ > d and eM(π)(Iil , Jjl′ ) > 0.

We note that some of the intervals from I1, . . . , Ik, Jk, . . . , Jt might be empty.
Note that it follows from the choice of s that the number of intervals I1, . . . , Ik is
at least 8 log n and, similarly, the number of intervals Jk, . . . , Jt is at least 8 log n.
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Proof. We assume that n is sufficiently large. The number of partitions I1, . . . , Ik,
Jk, . . . , Jt from the statement is at most

(
2n+ t

t

)
≤
(
e(2n+ t)

t

)t

< (120 log n)n/(20 logn) < 2n log logn/(19 logn).

For such fixed partition I1, . . . , Ik, Jk, . . . , Jt of [2n], the number of choices of
M pairs (Iil , Jjl′ ) with l, l

′ > d is at most

(
t2

M

)
≤
(
et2

M

)M

< 2n log logn/8.

Since every interval of the partition has size at most s, there are at most 2ds
edges with one endpoint in Ii1 ∪ · · · ∪ Iid ∪ Jj1 ∪ · · · ∪ Jjd . Thus the number of
edges of M(π) between intervals Iil and Jjl′ with l, l

′ > d is at least n/4, as we
have n− 2ds = n− 3n/4 = n/4.

Let P be the probability that for a fixed partition I1, . . . , Ik, Jk, . . . , Jt and
for a fixed set T of M pairs (Iil , Jjl′ ) with l, l′ > d the random n-matching
M(π) satisfies eM(π)(Iil , Jjl′ ) = 0 for every pair (Iil , Jjl′ ) with l, l

′ > d that is not
contained in T . We show that the probability P is less than

max
α∈[1/4,1]

(
MS
αn

)

(αn)!
.

We fix an ordered matching M that is formed by edges incident to a vertex in
Ii1 ∪ · · ·∪ Iid ∪Jj1 ∪ · · ·∪Jjd . Let nM be the number of edges in M and let PM be
the probability that M is in M(π). Then there are n− nM ≥ n/4 edges of M(π)
that are not in M. These edges are contained in pairs from T with probability
less than

(
MS

n−nM

)
/((n− nM)!), as |Ii||Jj| < S for every pair (Ii, Jj) ∈ T . Taking

the maximum of
(
MS
αn

)
/(αn)! over α ∈ [1/4, 1], we have

P <
∑

M

PM

(
MS

n−nM

)

(n− nM)!
≤ max

α∈[1/4,1]

(
MS
αn

)

(αn)!

∑

M

PM = max
α∈[1/4,1]

(
MS
αn

)

(αn)!
,

where the summation goes over all ordered matchings M that are formed by edges
incident to a vertex in Ii1 ∪ · · · ∪ Iid ∪ Jj1 ∪ · · · ∪ Jjd .

Using the standard estimates (a/e)a ≤ a! and
(
a
b

)
≤
(
ea
b

)b
for positive integers

a and b, we bound
(
MS
αn

)
/(αn)! from above by

(
eMS/(αn)

αn/e

)αn

=

(
e2MS

(αn)2

)αn

=

(
2 · 104e2 log log n

8α2 log n

)αn

< (log n)−4αn/7 ≤ 2−n log logn/7

for a sufficiently large n.
Let X be the random variable expressing the number of partitions I1, . . . , Ik,

Jk, . . . , Jt of [2n] from the statement of the lemma such that the number of pairs
(Iil , Jjl′ ) satisfying l, l

′ > d and eM(π)(Iil , Jjl′ ) > 0 is at most M . It follows from
our observations that, for a sufficiently large n, the expected value of X is at most

2n log logn/(19 logn) · 2n log logn/8 · 2−n log logn/7.

Thus we see that the expected value of X tends to zero as n goes to infinity. The
rest of the statement then follows from Markov’s inequality.
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We now prove Theorem 2.3. The main idea of the proof is similar to the one
used by Conlon et al. [CFLS14] in the proof of their lower bound for ordered
Ramsey numbers of ordered matchings with interval chromatic number 2.

Proof of Theorem 2.3. Let M be a 2n-vertex ordered matching of interval chro-
matic number 2 that satisfies the statements from Lemma 2.5 and Lemma 2.6.
We know that the random n-matching satisfies both statements asymptotically
almost surely.

Let R be the ordered complete graph with loops on the vertex set [t]. Let c
be the coloring of R that assigns either a red or a blue color to each edge of R
independently at random with probability 1/2. Let A1, . . . , At be the partition of
the vertex set of Kst into t consecutive intervals of size s. We define a coloring c′

of Kst as follows. The color c′(e) of an edge e of Kst is c({i, j}) if one endvertex
of e is in Ai and the other one is in Aj.

We show that the probability that there is a red copy of M in c′ is less than
1/2. Let M0 be a red copy of M in c′ and let I and J be the parts of M0 in this
order.

For i = 1, . . . , t, we set Ii := Ai∩I. Let k ≤ t be the maximum i such that Ii is
nonempty. For j = k, . . . , t, we set Jj := Aj ∩J . This gives us partitions I1, . . . , Ik
and Jk, . . . , Jt of I and J , respectively, into consecutive intervals, each of size at
most s. We consider the orderings Ii1 , . . . , Iik and Jj1 , . . . , Jjt−k+1

of I1, . . . , Ik and
Jk, . . . , Jt, respectively, such that |Ii1 | ≥ · · · ≥ |Iik | and |Jj1| ≥ · · · ≥ |Jjt−k+1

|.
First, we assume that |Iid ||Jjd| ≥ S. Since M satisfies the statement from

Lemma 2.5, there are at least d2 − r pairs (Ii, Jj) with i ∈ {i1, . . . , id}, j ∈
{j1, . . . , jd}, and eM0(Ii, Jj) > 0. From the choice of c′, the red copy M0 thus
corresponds to a red ordered subgraph of R in c with 2d or 2d− 1 vertices and
with at least d2 − r edges, one of which might be a loop. By the union bound, the
probability that there is such an ordered graph in R is at most

((
t

2d

)
+

(
t

2d− 1

))(
d2

r

)
2−d2+r ≤ 2

(
et

2d

)2d(
ed2

r

)r

2−d2+r

< 26 log
2 n · 22 log2 n · 2−9 log2 n+log2 n/4

= 2−
3
4
log2 n.

For a sufficiently large n, this expression is less than 1/4.
Now, we assume that |Iid ||Jjd| < S. The matching M satisfies the statement

from Lemma 2.6 and thus there are more than M pairs (Iil , Jjl′ ) with l, l
′ > d and

eM(π)(Iil , Jjl′ ) > 0. From the choice of c′, the red copy M0 corresponds to a red
ordered subgraph of R in c with at least M edges that are determined by the
partition I1, . . . , Ik, Jk, . . . , Jt of [2n]. By the union bound, the probability that
there is such ordered graph in c is at most

(
2n+ t

t

)
2−M ≤

(
e(2n+ t)

t

)t

2−M < 2
n log logn
19 logn · 2−

n log logn
8 logn = 2−

11n log logn
152 logn .

If n is sufficiently large, then this term is less than 1/4.
In total, the probability that there is a red copy of M in c′ is less than

1/4+1/4 = 1/2. From symmetry, a blue copy of M appears in c′ with probability
less than 1/2. Altogether, the probability that there is no monochromatic copy

of M in c′ is positive. In other words, we have R(M) ≥ st = 1
160

(
n

logn

)2
.
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2.2 Bounded degeneracy and interval chromatic

number

For a positive integer k, a graph G is k-degenerate if there is an ordering v1, . . . , vn
of its vertices such that every vertex vi has at most k neighbors vj in G with
j < i. The degeneracy of G is the smallest k such that G is k-degenerate. The
degeneracy of an ordered graph G = (G,≺) is the degeneracy of the underlying
graph G.

We give a polynomial upper bound for ordered Ramsey numbers of ordered
graphs with bounded degeneracy and bounded interval chromatic number. We
also include a result of Conlon et al. [CFLS14], which shows that R(G) is at most
quasipolynomial in n for every n-vertex ordered graph G of bounded degeneracy.

Lemma 2.7. Let k, t, n be positive integers and let G be an ordered k-degenerate
graph on n vertices. Then R(G,Kt,t) ≤ n2tk+1.

Proof. Assume that G = (G,≺). Let N := n2tk+1 and assume that the edges
of KN are colored red and blue. We partition the vertices of KN into n disjoint
consecutive intervals of length ntk+1. The ith such interval is denoted by I(v)
where v is the ith vertex of G in the ordering ≺.

We try to construct a blue copy h(G) of G in KN in n steps. In each step of
the construction we find an image h(w) ∈ I(w) of a new vertex w of G or a red
copy of Kt,t.

For every vertex v of G that has no image h(v) yet, we keep a set U(v) ⊆ I(v)
of possible candidates for h(v). At the beginning we set U(v) := I(v) for every
v ∈ V (G). Throughout the proof, we will keep the property that the size of U(v)
is a multiple of t.

Let l be an ordering of the vertices of G such that every vertex v of G has at
most k left neighbors in l. This ordering exists as G is k-degenerate. Note that
the ordering l might differ from the ordering ≺.

Let w be the first vertex of G in the ordering l that has no image h(w) yet.
Suppose that u1, . . . , us ∈ V (G) are the right neighbors of w in l. We show how
to find the image h(w) or a red copy of Kt,t in KN .

Let i ∈ [s]. We claim that in U(w) every vertex except for at most t − 1
vertices has at least |U(ui)|/t blue neighbors in U(ui) or there is a red copy of Kt,t

with edges between U(w) and U(ui).
Suppose first that there is a subset W ⊆ U(w) of size t such that each vertex

of W has fewer than |U(ui)|/t blue neighbors in U(ui). In such a case we delete
from U(ui) every vertex that is a blue neighbor of some vertex of W . Afterwards,
there are still at least

|U(ui)| − |W | ·
( |U(ui)|

t
− 1

)
= |U(ui)| − t ·

( |U(ui)|
t

− 1

)
= t

vertices left in U(ui) and every such vertex has only red neighbors in W . Thus
we have a red copy of Kt,t in KN .

By our claim, there is a red copy of Kt,t in KN or a set Z(w) ⊆ U(w) of size
at least |U(w)| − s(t− 1) > |U(w)| − nt such that for every i ∈ [s], every vertex
of Z(w) has at least |U(ui)|/t blue neighbors in U(ui). We may assume that the
latter case occurs, as otherwise we are done.

29



We choose an arbitrary vertex h(w) of Z(w) to be the image of w in the
constructed blue copy h(G) of G. For this we need to know that Z(w) is nonempty;
we show this at the end of the proof. For every i ∈ [s], we update the set U(ui)
to be a set of |U(ui)|/t blue neighbors of h(w) in U(ui).

After these updates, we choose the first vertex in l that does not have an
image yet and proceed with the next step. If every vertex of G has an image, then
we have found a blue copy of G.

It remains to show that the set Z(w) is nonempty in each step. Since w has
at most k left neighbors in l, we have updated U(w) at most k times. The size
of U(w) is initially ntk+1 and it is divided by t in every update. Thus, in the end,
|U(w)| ≥ nt. Consequently, |Z(w)| > |U(w)| − nt ≥ 0.

For positive integers n and p ≥ 2, let Kp(n) be the ordered complete p-partite
graph with parts of size n forming consecutive intervals.

Corollary 2.8. Let k, n, and p ≥ 2 be positive integers and let G be an ordered
k-degenerate graph on n vertices. Then

R(G,Kp(n)) ≤ n(1+2/k)(k+1)⌈log p⌉−2/k.

In particular, every ordered k-degenerate graph G with n vertices and interval
chromatic number p satisfies

R(G) ≤ n(1+2/k)(k+1)⌈log p⌉−2/k.

Proof. First, we define a function fk,n(q) : N → N as

fk,n(q) := n(1+2/k)(k+1)q−2/k.

This function satisfies the recurrence fk,n(1) = nk+3 and fk,n(q) = n2 · (fk,n(q −
1))k+1 for every integer q ≥ 2.

We assume without loss of generality that p = 2q for some positive integer q.
We proceed by induction on q. The case q = 1 follows immediately from Lemma 2.7
applied with t := n.

Now let q ≥ 2. Let KN be an ordered complete graph with N := fk,n(q)
vertices and edges colored red and blue. We show that there is always a blue copy
of G or a red copy of Kp(n) in KN .

According to Lemma 2.7, there is a blue copy of G or a red copy of Kt,t for
t := fk,n(q − 1). In the first case we are done, thus we assume that the latter case
occurs. Let A be the left part of size t and B the right part of size t in the red
copy of Kt,t.

Since the induced ordered subgraph KN [A] has fk,n(q − 1) vertices, there is a
blue copy of G or a red copy of Kp/2(n) in KN [A] by the inductive assumption.
An analogous statement holds for the ordered subgraph KN [B].

Thus, if there is no blue copy of G in KN [A] and in KN [B], then the two red
copies of Kp/2(n) together with the red edges between KN [A] and KN [B] form a
red copy of Kp(n) in KN .

Although Corollary 2.8 gives a polynomial bound, the exponent is rather large
with respect to p. Independently, Conlon et al. [CFLS14] proved a stronger bound.
We include their result here, as it has some interesting corollaries. For example, it
gives a quasipolynomial upper bound on ordered Ramsey numbers of k-degenerate
ordered graphs.
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Theorem 2.9 ([CFLS14, Theorem 3.1]). Let G be an ordered k-degenerate graph
on n vertices with maximum degree ∆. Let m and p be positive integers, q :=
⌈log p⌉, and D := 8p2m. Then we have

R(G,Kp(m)) ≤ 2q
2k+q∆qnqDkq+1.

In particular, every ordered k-degenerate graph G with n vertices and interval
chromatic number p ≥ 2 satisfies

R(G) ≤ n32k log p.

Since the interval chromatic number of every ordered graph on n vertices
is at most n, Theorem 2.9 immediately gives a quasipolynomial upper bound
on ordered Ramsey number of ordered graphs with bounded degeneracy. For k
bounded, this upper bound almost matches the lower bound from Theorem 2.1.

Corollary 2.10 ([CFLS14, Theorem 3.1]). Every ordered k-degenerate graph G
on n vertices satisfies

R(G) ≤ n32k logn.

2.3 Bounded bandwidth

For given positive integers k and q ≥ 2, we say that an ordered graph G = (G,≺)
is (k, q)-decomposable if G has at most k vertices or if it admits the following
recursive decomposition: there is a nonempty interval I ⊆ V (G) with at most k
vertices such that the interval IL of vertices of G that are to the left of I and the
interval IR of vertices of G that are to the right of I satisfy

1) |IL|, |IR| ≤ q−1
q

· |V (G)|,

2) there is no edge between IL and IR, and

3) the induced ordered subgraphs (G[IL],≺�IL) and (G[IR],≺�IR) are (k, q)-
decomposable.

Theorem 2.11. Let k and q ≥ 2 be fixed positive integers. There is a constant
C ′

k such that every (k, q)-decomposable ordered graph G on n vertices satisfies

R(G) ≤ C ′
k · n128k(q−1).

The constant C ′
k depends on k and the proof of Theorem 2.11 gives a bound

C ′
k ≤ 2O(k log k).
We say that the length of an edge {u, v} in an ordered graph G = (G,≺) is

|i− j| if u is the ith vertex and v is the jth vertex of G in the ordering ≺. The
bandwidth of G is the length of the longest edge in G. Since every ordered graph
with bandwidth k is (k, 2)-decomposable, Theorem 2.11 implies the following.

Corollary 2.12. For every fixed positive integer k, there is a constant C ′
k such

that every n-vertex ordered graph G of bandwidth k satisfies

R(G) ≤ C ′
k · n128k.
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This result gives a positive answer to a problem of Conlon et al. [CFLS14,
Problem 6.9] who asked whether for any natural number k there exists a constant
ck such that R(H) ≤ nck for any ordered graph H on n vertices with bandwidth
at most k. By Corollary 2.12, one may take ck = O(k). It is plausible that the
correct value of ck is significantly smaller than this bound.

In the rest of the section, we prove Theorem 2.11. We prove the following
general form of the theorem, which allows us to use double induction.

Theorem 2.13. For fixed positive integers k, q ≥ 2 and (k, q)-decomposable
ordered graphs G and H with r and s vertices, respectively, we have

R(G,H) ≤ Ck · 264k(⌈logq/(q−1) r⌉+⌈logq/(q−1) s⌉)

where Ck is a sufficiently large constant with respect to k.

We start with the following auxiliary result.

Lemma 2.14. For a positive integer N , let the edges of KN be colored red and
blue. Then there is a set U with at least ⌊N/(16 · 105)⌋ vertices of KN satisfying
at least one of the following conditions:

(a) every vertex of U has at least N/11 blue neighbors to the left and N/11 blue
neighbors to the right of U ,

(b) every vertex of U has at least N/11 red neighbors to the left and N/11 red
neighbors to the right of U .

Proof. We assume that N ≥ 16 · 105, otherwise the statement is trivial. We define
the following two conditions for a vertex v of KN :

(i) v has at least 20
217
N blue left and at least 20

217
N blue right neighbors,

(ii) v has at least 20
217
N red left and at least 20

217
N red right neighbors.

First, we show that there is a set W with at least N/2000 vertices such that either
every vertex of W satisfies (i) or every vertex of W satisfies (ii). Let B be the
set of vertices of KN that satisfy the condition (i) and let R be the set of vertices
of KN that satisfy (ii). Suppose that |B| < N/2000 and |R| < N/2000, otherwise
we are done.

Let K′ be the ordered complete graph obtained from KN by removing the
vertices of B ∪R. From the assumptions K′ has more than (1− 2

2000
)N = 999

1000
N

vertices and contains no monochromatic ordered star St,t for t :=
⌈

20
217
N
⌉
+ 1.

Therefore K′ has fewer than R(St,t,St,t) vertices.
Using Theorem 1.3 and the fact that R(St,1,St,t) = R(S1,t,St,t), we have

R(St,t,St,t) = R(St,1,St,t) + R(S1,t,St,t)− 1 = 2(R(S1,t,St,1) + 2t− 3)− 1

= 2

(⌊
−1 +

√
1 + 8(t− 2)2

2

⌋
+ 2t− 2 + 2t− 3

)
− 1 < (8 + 2

√
2)t.

Altogether we have |V (K′)| < (8 + 2
√
2)(
⌈

20
217
N
⌉
+ 1) < 999

1000
N < |V (K′)|, a

contradiction. Thus there is a set W such that all its vertices satisfy one of the
two conditions, say, (i).
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Now, we find the set U as a subset of W . To do so, we partition the vertex
set of KN into 16·105

2000
= 800 intervals I1, . . . , I800 such that each contains at least

⌊N/(16 · 105)⌋ vertices of W . This is possible as |W | ≥ N/2000. Clearly, there is
an interval Ii with at most N/800 vertices of KN . We set U := Ii ∩W .

Since every vertex of U has at least 20
217
N blue left neighbors, it also has at

least 20
217
N −N/800 > N/11 blue neighbors to the left of Ii and thus to the left

of U . Analogously, every vertex of U has at least N/11 blue neighbors to the right
of U . Therefore, U satisfies condition (a) of the lemma.

We use the following two classical results further in the proof. The Kővári–Sós–
Turán theorem [KST54] gives an upper bound on the maximum number of edges
in a bipartite graph that contains no copy of a given complete bipartite graph.

Theorem 2.15 ([Bol04, HC58, KST54]). Let Z(m,n; s, t) be the maximum num-
ber of edges in a bipartite graph G = (A ∪ B,E) with |A| = m and |B| = n
that does not contain Ks,t as a subgraph with s vertices in A and t vertices in B.
Assuming 2 ≤ s ≤ m and 2 ≤ t ≤ n, we have

Z(m,n; s, t) < (s− 1)1/t(n− t+ 1)m1−1/t + (t− 1)m < s1/tnm1−1/t + tm.

Erdős and Szekeres proved the following upper bound on off-diagonal Ramsey
numbers of complete graphs.

Theorem 2.16 ([ES35]). For every r, s ≥ 2, we have R(Kr, Ks) ≤
(
r+s−2
r−1

)
.

By Observation 1.1, we have the same upper bound for the ordered Ramsey
numbers R(Kr,Ks).

Proof of Theorem 2.13. Let G and H be (k, q)-decomposable ordered graphs with
r and s vertices, respectively. Let N = Nk,q(r, s) := Ck ·264k(⌈logq/(q−1) r⌉+⌈logq/(q−1) s⌉)

where Ck is a constant sufficiently large with respect to k. Assume that the edges
of KN are colored red and blue. We show that there is a blue copy of G or
a red copy of H in KN . We proceed by double induction on ⌈logq/(q−1) r⌉ and
⌈logq/(q−1) s⌉.

We assume that either ⌈logq/(q−1) r⌉ = 0 or ⌈logq/(q−1) s⌉ = 0 for the induction
basis. In these cases we have r = 1 or s = 1, respectively, and the statement is
trivial.

Now assume that the theorem is true for every pair G ′,H′ of (k, q)-decomposable
ordered graphs with r′ and s′ vertices, respectively, such that ⌈logq/(q−1) r

′⌉ <
⌈logq/(q−1) r⌉ or ⌈logq/(q−1) s

′⌉ < ⌈logq/(q−1) s⌉.
Let U be the subset of vertices of KN from Lemma 2.14. Without loss of

generality, we assume that U satisfies part (a) of the lemma. That is, U has
at least ⌊N/(16 · 105)⌋ vertices such that each of them has at least N/11 blue
neighbors to the left and N/11 blue neighbors to the right of U .

By Theorem 2.16, there is a blue copy of K61k or a red copy of Ks in KN [U ]
if |U | ≥

(
61k+s−2
61k−1

)
. This condition is satisfied if Ck ≥ 16 · 105 · (61k)61k, since(

61k+s−2
61k−1

)
≤ 261k·log(61k+s) ≤ (61k)61k · 261k·log s ≤ (61k)61k · 261k(logq/(q−1) s). If KN [U ]

contains a red copy of Ks, we are done. Thus, assume that KN [U ] contains a blue
copy of K61k, and let U1 ⊂ U be its vertex set.

Now we apply Theorem 2.15 to obtain a set U2 ⊂ U1 of size 6k whose vertices
have at least N/264k common blue neighbors to the left of U . Then we apply
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Theorem 2.15 again to obtain a set V ⊂ U2 of size k whose vertices have at least
N/264k common blue neighbors to the right of U .

Let JL be the interval of vertices of KN that are to the left of U and JR the
interval of vertices of KN that are to the right of U . By the construction of U , we
have |JL|, |JR| ≥ N/11, and thus |JL|, |JR| ≤ 10N/11. Without loss of generality,
we assume that |JR| ≤ N/2.

The number of blue edges between JL and U1 is at least (N/11) · |U1| ≥
|JL| · |U1|/10. By Theorem 2.15, we have

Z(|JL|, |U1|; |JL|/260k, 6k) < (|JL|/260k)1/(6k) · 61k · |JL|1−1/(6k) + 6k · |JL|

= |JL| · (61k/210 + 6k) ≤ |JL| · 61k
10

=
|JL| · |U1|

10
.

Thus, there is a blue complete bipartite graph between at least |JL|/260k vertices
in JL and 6k vertices in U1. These 6k vertices form the set U2.

The number of blue edges between U2 and JR is at least (N/11) · |U2| ≥
|U2| · |JR| · 2/11. By Theorem 2.15, we have

Z(|JR|, |U2|; |JR|/27k, k) < (|JR|/27k)1/k · 6k · |JR|1−1/k + k · |JR|

= |JR| · (6k/27 + k) ≤ |JR| · 6k · 2
11

=
2|JR| · |U2|

11
.

Thus, there is a blue complete bipartite graph between at least |JR|/27k vertices
in JR and k vertices in U2. These k vertices form the set V . Since |JL|, |JR| ≥ N/11,
the vertices of V have at least N/(260k · 11) > N/264k common blue neighbors to
the left of V and at least N/(27k · 11) > N/264k common blue neighbors to the
right of V .

Since G is (k, q)-decomposable, we can partition the vertices of G into three
intervals IL, I, and IR where 0 < |I| ≤ k and |IL|, |IR| ≤ r(q − 1)/q such that
I is to the right of IL and to the left of IR, the intervals IL and IR induce
(k, q)-decomposable ordered graphs GL and GR, respectively, and there is no edge
between GL and GR.

From our choice of N , we have

N/264k = Ck · 264k(⌈logq/(q−1) r⌉+⌈logq/(q−1) s⌉−1)

= Ck · 264k(⌈logq/(q−1) r(q−1)/q⌉+⌈logq/(q−1) s⌉) ≥ Nk,q(⌊r(q − 1)/q⌋, s)

and so R(GL,H),R(GR,H) ≤ N/264k. Therefore, using the inductive assumption,
we can find either a blue copy of GL or a red copy of H in the common blue left
neighborhood of V . Similarly, we can find a blue copy of GR or a red copy of H in
the common blue right neighborhood of V . Suppose that we do not obtain a red
copy of H in any of these two cases. Then we find a blue copy of G by choosing |I|
vertices of V as a copy of I and connect them to the blue copies of GL and GR.

2.4 Fixed graph and variable number of colors

Here we discuss the asymptotics of ordered Ramsey numbers R(G; c) of a fixed
ordered graph G as a function of the number of colors c. That is, for the rest of
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Figure 2.3: Minimal nonseparable ordered graphs with interval chromatic number
at least 3.

the section we assume that G is a fixed ordered graph and that c can be arbitrarily
large.

The unordered Ramsey numbers are at most polynomial for bipartite graphs
and at least exponential otherwise; this follows from the Kővári–Sós–Turán
theorem (Theorem 2.15) and from the existence of a decomposition of Kn into
⌈log n⌉ bipartite subgraphs, respectively. For ordered Ramsey numbers we observe
a similar dichotomy, but the characterization is more subtle.

An ordered graph G is separable if the vertex set of G can be partitioned into
two nonempty intervals I1, I2 such that there is no edge between I1 and I2. An
ordered graph is nonseparable if it is not separable.

We find that R(G; c) is exponential in c if G contains a nonseparable ordered
graph with interval chromatic number 3, and polynomial otherwise. Moreover,
there is only a finite number of minimal nonseparable ordered graphs with in-
terval chromatic number at least 3. Therefore, the class of ordered graphs with
polynomial ordered Ramsey numbers can be characterized by a finite number
of forbidden ordered subgraphs. We use n · Kn,n to denote the ordered graph
consisting of n disjoint consecutive copies of Kn,n.

Theorem 2.17. Every ordered graph G on n vertices satisfies one of the following
conditions.

(i) We have G ⊆ n · Kn,n and R(G; c) ≤ (2cn)n+1.

(ii) One of the ordered graphs from Figure 2.3 is an ordered subgraph of G and
R(G; c) > 2c.

Proof. For part (i), let G be a given n-vertex ordered graph contained in n · Kn,n.
For N := (2cn)n+1, let the edges of KN be colored with c colors. We find a
monochromatic copy of G.

For t := cn, we partition the vertex set of KN into 2t intervals A1, B1, . . . , At, Bt

in this order, such that each interval has size K := (2cn)n. For every i = 1, . . . , t,
it follows from the pigeonhole principle that there is a color ci that colors at least
K2/c edges of KN [Ai ∪Bi].

By the Kővári–Sós–Turán theorem (Theorem 2.15), we have Z(K,K;n, n) <
2nK2−1/n = K2/c. Consequently, for every i = 1, . . . , t, there is a copy of Kn,n of
color ci in KN [Ai ∪Bi]. By the pigeonhole principle, we have a monochromatic
copy of n · Kn,n. Since G ⊆ n · Kn,n, we have a monochromatic copy of G as well.

To prove part (ii), we first show that if G is not contained in n · Kn,n, then G
contains one of the ordered graphs from Figure 2.3.

The ordered graph G contains a nonseparable ordered graph H with interval
chromatic number t ≥ 3, since G is not an ordered subgraph of n · Kn,n. Let
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I1, . . . , It be a partitioning of the vertex set of H into t consecutive intervals such
that there is no edge of H with both vertices in the same interval. Then H has
an edge e between intervals I1 and I2 and an edge f between intervals I2 and I3.
If e and f share a vertex, they form a monotone path on three vertices, which is
the first ordered graph in Figure 2.3.

Assume that no vertex of I2 has a neighbor in both I1 and I3∪· · ·∪It. Then we
partition I2 into sets A1, A2, and A3 such that every vertex of A1 has a neighbor
in I1, no vertex in A2 has a neighbor in I1 ∪ I3, and every vertex of A3 has a
neighbor in I3. If A3 is to the left of A1, then we can move some vertices of I2
into I1 and some into I3 to obtain a partitioning of the vertex set of H into t− 1
intervals such that there is no edge with both vertices in the same interval. This
is impossible, as the interval chromatic number of H is t. Thus we can assume
that the vertex in e∩ I2 is to the left of the vertex in f ∩ I2 and that every vertex
between e ∩ I2 and f ∩ I2 lies in A2.

Since H is nonseparable, there is an edge g of H with one vertex to the left of
e ∩ I2 and the other one to the right of f ∩ I2. The left vertex of g either lies to
the left of e ∩ I1, or is in e ∩ I1, or lies between e ∩ I1 and e ∩ I2. Similarly, the
right vertex of g is either to the right of f ∩ I3, or is in f ∩ I3 or lies between f ∩ I3
and f ∩ I2. This gives us nine pairwise nonisomorphic ordered graphs formed by
the edges g, e, and f . Each of these ordered graphs is in Figure 2.3.

To finish the proof, note that every color in the coloring of K2c from the
proof of Proposition 1.6 with r1 = · · · = rc = 2 = s1 = · · · = sc induces an
ordered subgraph of 2c · K2c,2c . In particular, there is no monochromatic copy
of G. Therefore we have R(G; c) > 2c.

2.5 Minimum ordered Ramsey numbers

By Theorem 2.1, there are arbitrarily large ordered matchings M on n vertices

such that R(M) ≥ nΩ( logn
log logn

). In fact, Conlon et al. [CFLS14] showed that ordered
Ramsey numbers of almost every ordered matching on n vertices satisfy this lower
bound. In contrast, it is not difficult to find an ordered matching M on 2n
vertices with R(M) only linear in n. One such example is provided by the ordered
matching M2n on [2n] with edges {i, 2n+1− i} for i = 1, . . . , n, which is sketched
in part (a) of Figure 2.4. Another example of an ordered matching M′

2n with
R(M′

2n) linear in n is sketched in part (b) of Figure 2.4. It follows easily from
the pigeonhole principle that R(M2n),R(M′

2n) ≤ 4n− 2.

(b)(a)

. . .

M′
2n

. . . . . .

M2n

Figure 2.4: Two orderings of 1-regular graphs with the ordered Ramsey number
linear in the number of vertices.

In particular, we see that every n-vertex graph with maximum degree 1 admits
an ordering with the ordered Ramsey number linear in n. It is a natural question
whether for every fixed positive integer ∆ and every graph G on n vertices with
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maximum degree ∆ there is an ordering G of G such that R(G) is linear in n.
Conlon et al. [CFLS14] consider this to be unlikely and pose the following problem.

Problem 2.18 ([CFLS14, Problem 6.7]). Do random 3-regular graphs have su-
perlinear ordered Ramsey numbers for all orderings?

In this section, we study this problem from a more general perspective. For a
graph G, we let min-R(G) be the minimum of R(G) over all orderings G of G. We
call the parameter min-R(G) the minimum ordered Ramsey number of G. Note
that we have R(G) ≤ min-R(G) ≤ R(G) for every graph G and every ordering G
of G. Problem 2.18 then asks whether random 3-regular graphs have superlinear
minimum ordered Ramsey numbers.

2.5.1 Lower bounds for bounded-degree graphs

Here, we give an affirmative answer to Problem 2.18. In fact, we solve the problem
in a slightly more general setting, by extending the concept of d-regular graphs to
non-integral values of d. For a real number ρ > 0 and a positive integer n with
⌈ρn⌉ even, we say that a graph G on n vertices is ρ-regular, if every vertex of G
has degree ⌊ρ⌋ or ⌈ρ⌉ and the total number of edges of G is ⌈ρn⌉/2.

Note that when ρ is an integer, the above definition coincides exactly with the
standard notion of regular graphs. We let G(ρ, n) denote the random ρ-regular
graph on n vertices drawn uniformly and independently from the set of all ρ-regular
graphs on the vertex set [n].

The graph G(ρ, n) satisfies an event A asymptotically almost surely if the
probability that A holds tends to 1 as n goes to infinity.

We may now state our main result in this subsection.

Theorem 2.19. For every fixed real number ρ > 2, asymptotically almost surely

min-R(G(ρ, n)) ≥ n3/2−1/ρ

4 log n log log n
.

In particular, almost every 3-regular graph G on n vertices satisfies min-R(G) ≥
n7/6

4 logn log logn
.

The main ingredient of the proof of Theorem 2.19 is the following technical
result.

Theorem 2.20. Let {εn}n≥1, {ζn}n≥1, and {ρn}n≥1 be sequences of real numbers
satisfying these constraints:

• 0 < εn and 0 < ζn = o(1) for every n large enough,

• there is a constant C such that 1 ≤ ρn ≤ C for all n,

• limn→∞
(
(1
2
− εn)ρn − ζn − 1

)
n log n = ∞.

Then asymptotically almost surely the graphs G(ρn, n) satisfy

min-R(G(ρn, n)) ≥
ζnn

1+εn

2 log (1/ζn)
.
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Proof of Theorem 2.19. For every n ≥ 2, let ρn := ρ, εn := 1/2− 1/ρ− 1/ log n,
and ζn := 1/ log n. Since ρ > 2, we have 0 < εn, for n large enough, and the
remaining assumptions of Theorem 2.20 are satisfied as well. Theorem 2.19 then
follows directly from Theorem 2.20.

The next corollary of Theorem 2.20 shows that there are actually “almost
2-regular” graphs that have superlinear ordered Ramsey numbers for all orderings.

Corollary 2.21. Asymptotically almost surely, graphs Gn := G(2 + 9 log logn
logn

, n)
satisfy

min-R(Gn) ≥
n log n

2 log log n
.

Proof. It suffices to set ρn := 2+ 9 log logn
logn

, εn := 2 log logn
logn

, and ζn := 1
logn

and apply
Theorem 2.20. The assumptions of Theorem 2.20 are satisfied, since

(
1

2
− εn

)
ρn − ζn − 1 =

9 log log n

2 log n
− 4 log log n

log n
− 18

(
log log n

log n

)2

− 1

log n

=
log log n

2 log n
−O

(
1

log n

)
.

The corollary follows.

We now prove Theorem 2.20.

Lemma 2.22. Let M,n, s, t be positive integers with M ≤
(
t
2

)
+ t and let ρ > 0

and δ > 0 be real numbers such that ⌈ρn⌉ is even and

tn ·
(
t2

M

)
·
(
s2M

⌈ρn⌉/2

)
< δD (2.1)

where D is the number of ρ-regular graphs on [n]. Then, with probability at least
1− δ, the graph G(ρ, n) satisfies the following statement: for every partition of
V (G(ρ, n)) into sets X1, . . . , Xt, each of size at most s, there are more than M
pairs (Xi, Xj) with 1 ≤ i ≤ j ≤ t and eG(ρ,n)(Xi, Xj) > 0.

Proof. Let X1, . . . , Xt be a partition of the set [n] such that Xi contains at most
s elements for every 1 ≤ i ≤ t. Let S be a set of M pairs (Xi, Xj) for some
1 ≤ i ≤ j ≤ t. We let h denote the number of graphs H on [n] with ⌈ρn⌉/2 edges
such that eH(Xi, Xj) = 0 for every pair (Xi, Xj) with 1 ≤ i ≤ j ≤ t that is not
contained in S. Since the size of every Xi is at most s, we have

h ≤
(
s2M

⌈ρn⌉/2

)

for every set S. Since every ρ-regular graph on n vertices contains ⌈ρn⌉/2 edges,
the probability that there are no edges of G(ρ, n) between Xi and Xj for every
(Xi, Xj) /∈ S is at most h/D.

The number of partitions X1, . . . , Xt of [n] is at most tn. The number of choices

for the set S is at most
(
t2

M

)
. Altogether, the expected number of partitions of [n]
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into sets X1, . . . , Xt of size at most s with at mostM pairs (Xi, Xj), 1 ≤ i ≤ j ≤ t,
that satisfy eG(ρ,n)(Xi, Xj) > 0 is at most

tn

D
·
(
t2

M

)
·
(
s2M

⌈ρn⌉/2

)
.

By our assumption this term is bounded from above by δ. By Markov’s inequality,
the probability that G(ρ, n) satisfies the statement from the lemma is at least
1− δ.

Bender and Canfield [BC78] and independently Wormald [Wor78] showed that
the number D of d-regular graphs on n vertices satisfies

D = (1 + o(1))
(dn)!

2
dn
2

(
dn
2

)
!(d!)n

exp

(
1− d2

4

)

for a fixed integer d and a sufficiently large n such that dn is even. Bender and
Canfield [BC78] also proved an asymptotic formula for the number of labeled
graphs with a given degree sequence. In the case of ρ-regular graphs, their result
gives the following estimate.

Corollary 2.23 ([BC78, Theorems 1 and 2]). For a real number ρ ≥ 2 with ⌈ρn⌉
even, the number of ρ-regular graphs with the vertex set [n], for n sufficiently large,
is at least

⌈ρn⌉!
2⌈ρn⌉/2

(
⌈ρn⌉
2

)
!(d!)n(d+ 1)⌈γn⌉ed2

,

where d := ⌊ρ⌋ and γ := ρ− d ∈ [0, 1).

Proof of Theorem 2.20. Let εn, ζn, and ρn be sequences satisfying the assumptions
of the theorem. Note that these assumptions imply εn < 1/2 for a sufficiently
large n. We may also assume ζn = ω(1/nϵn), as otherwise the statement is trivial.
We set m := ⌈ρnn⌉. That is, m is the sum of degrees of every ρn-regular graph on
n vertices.

We set M := ζnn, s := nεn , t := ζnn
2 log (1/ζn)

, and δ := 2(ρn(εn−1/2)+1+ζn)n logn.
Note that by our assumptions on εn, ζn, and ρn, the value of δ tends to zero as n
goes to infinity. We show that the parameters δ,M, n, s, t satisfy (2.1).

By Corollary 2.23, the number D of ρn-regular graphs on n vertices is asymp-
totically at least

m!

2
m
2

(
m
2

)
!(dn!)n(dn + 1)⌈γnn⌉ed2n

,

where dn := ⌊ρn⌋ and γn := ρn − dn.
Recalling that the sequence dn is bounded, and using the estimate (k/e)k ≤

k! ≤ kk for a positive integer k, we obtain that D is at least
(
m
e

)m

2m/2
(
m
2

)m/2
ddnnn (dn + 1)⌈γnn⌉ed2n

>
mm/2

2O(n)
.

By the choice of M, s, t and by D > mm/2

2O(n) , the left side of (2.1) divided by D
is at most

2O(n)

mm/2

(
ζnn

2 log (1/ζn)

)n

·
(( ζnn

2 log (1/ζn)

)2

ζnn

)
·
(
ζnn

2εn+1

m/2

)
.

39



Applying the estimates ζn = o(1) and
(
a
b

)
≤
(
ea
b

)b
, we bound this term from above

by

1

mm/2
· nn ·

(
eζnn

4 log2 (1/ζn)

)ζnn

·
(
2eζnn

2εn+1

m

)m/2

.

Using elementary calculations, we see that for n large enough, this is less than

n−m/2+n+ζnn+(2εn+1)m/2−m/2 ≤ 2(−ρn+1+ζn+(εn+1/2)ρn)n logn

= 2(ρn(εn−1/2)+1+ζn)n logn

= δ.

The inequality follows from m = ⌈ρnn⌉ and εn < 1/2. We also have M ≤
(
t
2

)
+ t

due to ζn = ω(1/nϵn) and ϵn < 1/2. That is, the assumptions of Lemma 2.22 are
satisfied. Since δ tends to zero as n goes to infinity, the statement of the lemma
holds asymptotically almost surely for this choice of δ, M , s, t.

Let R be the ordered complete graph with loops and with the vertex set [t].
Let c be a coloring of R that assigns either a red or a blue color to every edge
of R independently at random with probability 1/2. Let I1, . . . , It be a partition
of the vertex set of Kst into consecutive intervals, each of size s. We define the
coloring c′ of Kst such that the color c′(e) of an edge e of Kst is c({i, j}) if one
vertex of e lies in Ii and the other one in Ij. Note that, since R contains loops,
every edge of Kst receives some color via c′.

By Lemma 2.22, asymptotically almost surely, there are more than M pairs
(Xi, Xj) with 1 ≤ i ≤ j ≤ t and eG(ρn,n)(Xi, Xj) > 0 in every partition of
V (G(ρn, n)) into sets X1, . . . , Xt of size at most s. We show that if G(ρn, n)
satisfies this condition, then we have R(G) ≥ st for every ordering G of G(ρn, n).

Let G be an arbitrary ordering of G(ρn, n). We show that the probability that
there is a red copy of G in c′ is less than 1/2. Suppose there is a red copy G0 of G
in c′. For i = 1, . . . , t, let Ji := V (G0) ∩ Ii. Then J1, . . . , Jt induces a partition of
the vertices of G into t (possibly empty) intervals of size at most s. The number
of such partitions of G is at most
(
n+ t− 1

t− 1

)
≤
(
e(n+ t− 1)

t− 1

)t−1

≤
(
3n

t

)t

=

(
6 log (1/ζn)

ζn

)t

< 22t log (1/ζn),

where the last inequality follows from ζn = o(1), as then 6 log (1/ζn) < 1/ζn.
By Lemma 2.22, there are more than M pairs (Ji, Jj) with 1 ≤ i ≤ j ≤ t and

eG0(Ji, Jj) > 0. From the choice of c′, the red copy G0 corresponds to an ordered
subgraph H of R with more than M edges that are all red in c. Such ordered
graph H appears in R with probability at most 2−M−1.

The edges of H are determined by the partition J1, . . . , Jt of G. Thus, by the
union bound, the probability that there is a red copy of G in c′ is less than

22t log (1/ζn) · 2−M−1 = 2ζnn−ζnn−1 = 1/2.

From symmetry, the probability that there is a blue copy of G in c′ is less than
1/2. Thus the probability that c′ contains no monochromatic copy of G is positive.
It follows that there is a coloring of Kst with no monochromatic copy of G and we
have R(G) ≥ st.

Since G is an arbitrary ordering of G(ρn, n), we obtain that asymptotically
almost surely the graph G(ρn, n) satisfies min-R(G(ρn, n)) ≥ st.
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For the upper bounds in the case of larger maximum degree, a simple corollary
of Theorem 2.9, states that every graph on n vertices with constant maximum
degree admits an ordering G with R(G) polynomial in n.

Corollary 2.24. For a positive integer ∆, every graph G with n vertices and with
maximum degree ∆ satisfies min-R(G) ≤ O(n(∆+1)⌈log(∆+1)⌉+1).

Proof. Since the maximum degree of G equals ∆, there is a coloring of V (G) by
∆ + 1 colors. Consider an ordering G of G that is obtained by placing the ∆ + 1
color classes as ∆ + 1 disjoint intervals. The interval chromatic number of G is
then ∆ + 1 and the corollary follows from Theorem 2.9.

Note that the gap between the upper bounds from Corollary 2.24 and the
lower bounds from Theorem 2.19 is rather large. It would be interesting to close
it at least for ∆ = 3.

2.5.2 Upper bounds for 2-regular graphs

In contrast to the lower bounds from Subsection 2.5.1, we show that the trivial
linear lower bound is asymptotically the best possible for graphs of maximum
degree two.

Theorem 2.25. There is an absolute constant C such that every graph G on n
vertices with maximum degree 2 satisfies min-R(G) ≤ Cn.

In fact, the following stronger Turán-type statement is true when G is bipartite.

Theorem 2.26. For every real ε > 0, there is a constant C(ε) such that, for every
integer n, every bipartite graph G on n vertices with maximum degree 2 admits an
ordering G of G that is contained in every ordered graph with N := C(ε)n vertices
and with at least εN2 edges.

The rest of the subsection is devoted to the proofs of Theorems 2.25 and 2.26.
Since every graph of maximum degree two is a union of vertex disjoint paths and
cycles, it suffices to prove these results for 2-regular graphs. We make no serious
effort to optimize the constants.

Every 2-regular graph G is a union of pairwise vertex disjoint cycles. Thus a
natural approach for proving Theorem 2.25 is to find an ordering of every cycle
Ck with the ordered Ramsey number linear in k and then place these ordered
cycles such that their vertex sets partition the vertex set of G into consecutive
intervals in the ordering of G. However, this attempt fails in general, as shown by
the following example.

Let G be such ordering of a 2-regular graph that consists of the cycle Cn/3 and
2n/9 copies of C3. Let N := (n/3 − 1)4n/9 and let c be the following coloring
of KN . Partition the vertex set of KN into consecutive intervals I1, . . . , I4n/9 of
size n/3− 1 and color all edges between vertices from the same interval Ii blue.
Then color all remaining edges red. The coloring c contains no blue copy of G,
as the longest cycle Cn/3 has more vertices than any interval Ii. There is also no
red copy of G in c, as no two vertices of any red ordered 3-cycle are in the same
interval Ii. Altogether, we have R(G) ≥ Ω(n2).
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Our approach in the proofs of Theorems 2.25 and 2.26 is based on the alter-
nating paths (Pn,▹alt) that are introduced in Section 1.3. See Figure 1.3 for an
example of the alternating path on seven vertices. We recall that, by Proposi-
tion 1.9, for every real ε > 0 every ordered graph on N ≥ n/ε vertices with at
least εN2 edges contains (Pn,▹alt) as an ordered subgraph.

Let M2n be the ordered matching from part (a) of Figure 2.4.

Corollary 2.27. Let ε > 0 be a real constant. Then, for every integer n, every
ordered graph on N ≥ 2n/ε vertices with at least εN2 edges contains M2n as an
ordered subgraph.

Proof. This result follows easily from Proposition 1.9, as M2n is an ordered
subgraph of (P2n,▹alt).

For positive integers k and n, we use Pk
n to denote the ordered graph that is

obtained from the alternating path on n vertices by replacing every edge with a
copy of Kk,k. Formally, let (Pn,▹alt) be the alternating path with the vertex set
[n] and let B1, . . . , Bn be a collection of consecutive intervals, each of size k. Then
∪k

i=1Bi is the vertex set of Pk
n and a pair {u, v} with u ∈ Bi and v ∈ Bj is an

edge of Pk
n if and only if {i, j} is an edge of (Pn,▹alt); see Figure 2.5. We call the

ordered graph Pk
n the k-blow-up of (Pn,▹alt) and we call the intervals B1, . . . , Bn

the blocks of Pk
n. Note that Pk

n has kn vertices and that P1
n = (Pn,▹alt).

P2
5

B1 B2 B3 B4 B5

Figure 2.5: The 2-blow-up P2
5 of (P5,▹alt).

If H is an ordered graph with the vertex set partitioned into consecutive
intervals I1, . . . , Im, then we say that Pk

n is an ordered subgraph of H respecting the
partitioning I1, . . . , Im if Pk

n ⊆ H, every block of Pk
n is contained in some interval

Ii, and no two blocks of Pk
n are contained in the same interval Ii.

The following result is a variant of Proposition 1.9 for k-blow-ups of (Pn,▹alt).

Lemma 2.28. Let ε > 0 be a real constant and let k and d ≥ k(2/ε)k be positive
integers. Then, for every integer n, every ordered graph H with N ≥ 2d2k+1ε−1n
vertices partitioned into consecutive intervals I1, . . . , IN/d, each of size d, and with
at least εN2 edges contains Pk

n as an ordered subgraph respecting the partitioning
I1, . . . , IN/d.

Proof. For integers k and m ≥ k, the Kővári–Sós–Turán Theorem [KST54]
(Theorem 2.15) says that every bipartite graph with color classes of size m, which
contains no Kk,k as a subgraph, has fewer than k1/km2−1/k + km ≤ 2k1/km2−1/k

edges. Since the ordering Km,m of Km,m is uniquely determined up to isomorphism,
we see that the Kővári–Sós–Turán theorem is true in the ordered setting. That is,
every ordered graph, which is contained in Km,m and which contains no Kk,k as
an ordered subgraph, has fewer than 2k1/km2−1/k edges.
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Let H be an ordered graph on N ≥ 2d2k+1ε−1n vertices partitioned into
consecutive intervals I1, . . . , IN/d, each of size d, and with at least εN2 edges.

There are at least εN2

2d2
pairs {i, j} ∈

(
[N/d]
2

)
with eH(Ii, Ij) ≥ 2k1/kd2−1/k.

Otherwise there are fewer than

N

d

(
d

2

)
+ (1− ε)

(
N/d

2

)
· 2k1/kd2−1/k +

εN2

2d2
· d2

≤ N2

2d2
· 2k1/kd2−1/k +

εN2

2d2
· d2 = εN2

(
1

ε

(
k

d

)1/k

+
1

2

)
≤ εN2

edges in H, which contradicts our assumptions. The last inequality follows from
d ≥ k(2/ε)k. By the Kővári–Sós–Turán Theorem (Theorem 2.15), there are at
least εN2

2d2
pairs {Ii, Ij} that induce a copy of Kk,k in H.

Let R be an ordered graph with the vertex set [N/d] such that {i, j} is an
edge of R if and only if there is a copy of Kk,k in H with one part in Ii and the
other one in Ij. For every edge {i, j} of R, we fix one such copy K of Kk,k and
say that K represents the edge {i, j}. The type of the left color class of K is the
image of the left color class of K via the bijective mapping Ii → [d] that preserves
the ordering of Ii. Similarly, the type of the right color class of K is the image of
the right color class via the bijective mapping Ij → [d] that preserves the ordering
of Ij.

We know that R contains at least εN2

2d2
edges. Let T be a set of all pairs (A,B)

of k-tuples A,B ∈
(
[d]
k

)
. Note that the size of T is

(
d
k

)2 ≤ d2k. We assign a pair
(A,B) to every edge {i, j} of R if the type of the left and the right color class of
the copy of Kk,k that represents {i, j} is A and B, respectively. By the pigeonhole

principle there are at least εN2

2d2k+2 edges of R with the same pair (A0, B0).
Let R′ be the ordered subgraph of R consisting of edges that were assigned the

pair (A0, B0). By our observations, R′ contains N/d vertices and at least ε
2d2k

(N
d
)2

edges. Since N/d ≥ 2d2kε−1n, Proposition 1.9 implies that (Pn,▹alt) is an ordered
subgraph of R′. This alternating path corresponds to a monochromatic copy
of (Pn,▹alt) in R. It follows from the construction of R that Pk

n is an ordered
subgraph of H respecting the partitioning I1, . . . , IN/d.

We now introduce orderings of cycles that we use in the proofs of Theorems 2.25
and 2.26. The final ordering of a given 2-regular graph will be obtained by
constructing a union of these ordered cycles. For a positive integer n, let (Pn,▹alt)
be the alternating path on vertices u1 ▹alt · · ·▹alt un.

For n ≥ 3, the even alternating cycle C2n−2 = (C2n−2,≺) is obtained from
(Pn,▹alt) as follows. First, for every i ∈ [n] \ {1, ⌈n+1

2
⌉}, we replace each vertex

ui with two consecutive vertices vi ≺ wi. For i ∈ {1, ⌈n+1
2
⌉}, we set vi := ui and

wi := ui. Then, for every edge {ui, uj} of (Pn,▹alt), we place edges {vi, wj} and
{wi, vj} into C2n−2. The blocks of C2n−2 are the sets {vi, wi} for i = 1, . . . , n. The
edge that contains the (n − 1)th and the nth vertex of C2n−2 is the inner edge
of C2n−2; see part (a) of Figure 2.6.

For n ≥ 1, the odd alternating cycle C2n+1 = (C2n+1,≺) is constructed similarly.
For every i ∈ [n]\{⌈n+1

2
⌉}, we replace each vertex ui with two consecutive vertices

vi ≺ wi. For i = ⌈n+1
2
⌉, we set vi := ui and wi := ui. Then we place edges {vi, wj}

and {wi, vj} for every edge {ui, uj} of (Pn,▹alt). Additionally, we insert two new
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vertices v0 ≺ w0 to the left of v1 and add edges {v0, w0}, {v0, w1}, and {w0, v1}
into C2n+1. The blocks of C2n+1 are the sets {vi, wi} for i = 1, . . . , n. The edge that
contains the (n+ 2)th and the (n+ 3)th vertex of C2n+1 is the inner edge of C2n+1

and the edge {v0, w0} is the outer edge of C2n+1; see part (b) of Figure 2.6.

C8 C9

(a) (b)

Figure 2.6: (a) The alternating cycle C8. (b) The alternating cycle C9.

Using Lemma 2.28, we can now easily prove Theorem 2.26. We note that no
such Turán-type result holds when the given graph is not bipartite. For example,
the ordered graph KN/2,N/2 contains N2/4 edges, while no ordered odd cycle is an
ordered subgraph of KN/2,N/2.

Proof of Theorem 2.26. It is sufficient to prove the statement for 2-regular graphs,
as every bipartite graph on n vertices with maximum degree 2 is a subgraph of a
bipartite 2-regular graph on at most 4n vertices.

Let G be a given bipartite 2-regular graph partitioned into even cycles
Cn1 , . . . , Cnm with n1, . . . , nm ≥ 4 and n1 + · · · + nm = n. First, we order each
cycle Cni

as the alternating cycle Cni
. The ordering G of G is then constructed

by placing the vertex set of Cni
between the vertices of the inner edge of Cni−1

for
every i = 2, . . . ,m; see Figure 2.7.

Let H be a given ordered graph with N ≥ 216ε−11n vertices and with at least
εN2 edges. We show that G is an ordered subgraph of H.

We apply Lemma 2.28 for k := 2, d := 2(2/ε)2, and H that is partitioned
into consecutive intervals I1, . . . , IN/d, each of size d. Since N ≥ 2d2k+1ε−1n, this
gives us a copy of P2

n in H. To finish the proof, we observe that G is an ordered
subgraph of P2

n. It suffices to greedily map the vertices of G into blocks of P2
n

such that every block of Cni
is contained in a block of P2

n. Again, see Figure 2.7
for an illustration. Note that we might not use all blocks of P2

n in the process.

P2
6 G

Figure 2.7: The ordering G of a 2-regular graph consisting of C6 and C4 is an
ordered subgraph of P2

6 .

For the rest of the subsection, we deal with the case when G is not bipartite.
To do so, we first introduce an auxiliary ordered graph.

For integers k and n, let B1, . . . , Bn be consecutive intervals, each of size k.
Consider the ordered matching M2n = (M2n,≺) from part (a) of Figure 2.4 and
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let u1 ≺ · · · ≺ un and v1 ≺ · · · ≺ vn be the vertices of the left and the right color
class of M2n, respectively. We place M2n to the left of B1. For every i ∈ [n], we
then add the edges {ui, w} and {vn+1−i, w} for every vertex w ∈ Bi and use T k

n to
denote the resulting ordered graph on (k + 2)n vertices; see part (a) of Figure 2.8.

The intervals B1, . . . , Bn are the blocks of T k
n . Let H be an ordered graph with

the vertex set partitioned into consecutive intervals I1, . . . , Im. We say that T k
n is

an ordered subgraph of H respecting the partitioning I1, . . . , Im if T k
n ⊆ H, every

block of T k
n is contained in some interval Ii and no two blocks of T k

n are contained
in the same interval Ii.

B1 B2 B3

T 2
3 F2

3

(a) (b)

v1 v2 v3u1 u2 u3 B1 B2 B3

Figure 2.8: (a) The ordered graph T 2
3 . (b) The ordered graph F2

3 .

Lemma 2.29. Let ε > 0 be a real constant and let k and d ≥ 8ε−2k be positive
integers. Then, for every integer n, every ordered graph H with N ≥ 214ε−8dn
vertices partitioned into consecutive intervals I1, . . . , IN/d, each of size d, and
with at least εN3 copies of K3 contains T k

n as an ordered subgraph respecting the
partitioning I1, . . . , IN/d.

Proof. We assume that the set [N ] is the vertex set of H. A copy of K3 is called a
triangle. Let u < v < w ∈ [N ] be the vertices of a triangle K in H. The vertex u
is the leftmost vertex of K and w is the rightmost vertex of K. We call the edges
{u, v} and {v, w} the left leg and the right leg of K, respectively. We recall that
the length of an edge {u, v} of H equals |u− v|.

First, there is a set T of at least εN3/2 triangles from H with the right leg of
length at least εN/2. Otherwise the total number of copies of K3 in H is less than

εN3

2
+
εN2

2
·N = εN3,

as there are at most εN2/2 edges of length smaller than εN/2 in H and for each
such edge there are at most N choices for the leftmost vertex of a triangle in H.

For i = 2, . . . , N − 1, let Ti be the set of triangles from T with the rightmost
vertex in {i+ 1, . . . , N} and with the remaining two vertices in {1, . . . , i}. Then
we have

ε2N4

4
≤ εN

2
|T | ≤ |{(i,K) : K ∈ Ti, i = 2, . . . , N − 1)}| =

N−1∑

i=2

|Ti|,

where the second inequality follows from the fact that every K ∈ T is contained
in at least εN/2 sets Ti. It follows that there is a set Tj of size at least ε2N3/4.

We let A := {1, . . . , j} and B := {j + 1, . . . , N}. Every left leg of a triangle
from Tj is an edge of H[A]. There is a set S of at least ε2N2/8 edges of H[A] such
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each edge from S is the left leg of at least ε2N/4 triangles from Tj . Otherwise the
total number of triangles in Tj is less than

ε2N2

8
·N +

N2

2
· ε

2N

4
=
ε2N3

4
.

Let R be the ordered graph with the vertex set A and with the edge set S.
We know that R contains |A| vertices and at least ε2N2/8 ≥ ε2|A|2/8 edges.
Corollary 2.27 implies that R contains a copy M of M2N ′ for an integer N ′ :=
ε2|A|/16. Since

(|A|
2

)
≥ ε2N2/8, we obtain |A| ≥ εN/2 and N ′ ≥ ε3N/25.

We use u1 < · · · < uN ′ and v1 < · · · < vN ′ to denote the vertices of the left and
the right color class of M, respectively. Let B′ be the set {d · i : i ∈ [N/d], Ii∩B ≠
∅}. The set B′ contains at most ⌈|B|/d⌉ ≤ N/d elements and is disjoint with A.

Let R′ be the ordered graph with the vertex set {v1, . . . , vN ′}∪B′ and place an
edge {vi, d · l} in R′ if there are at least k triangles with the vertex set {ui, vi, w}
for some w ∈ Il ∩B in H.

Since every edge {ui, vi} of M is the left leg of at least ε2N/4 triangles from Tj ,
every vertex vi of R′ has degree at least

(
ε2N

4
− k|B′|

)
1

d
≥
(
ε2N

4
− kN

d

)
1

d
≥ ε2N

8d

in R′. The last inequality follows from d ≥ 8ε−2k.
The number |V (R′)| of vertices of R′ trivially satisfies ε3N/25 ≤ N ′ ≤

|V (R′)| ≤ N . Thus R′ contains at least

ε3N

25
· ε

2N

8d
=
ε5N2

28d
≥ ε5

28d
|V (R′)|2

edges. By Corollary 2.27, there is a copy M′ of M2n in R′, since |V (R′)| ≥
ε3N/25 ≥ 2n/(ε5/28d). It follows from the constructions of R and R′ that
there is a copy of T k

n in H as an ordered subgraph respecting the partitioning
I1, . . . , IN/d.

Let k and n be positive integers. By combining the ordered graphs Pk
n and

T k
n , we obtain an ordered graph that is used later to embed orderings of 2-regular

graphs.
Let B1, . . . , Bn be the blocks of T k

n and let Pk
n be the k-blow-up of (Pn,▹alt)

with blocks B1, . . . , Bn. The ordered graph Fk
n is the union of T k

n and Pk
n; see

part (b) of Figure 2.8. The intervals B1, . . . , Bn are the blocks of Fk
n . Observe

that we have Fk
n ⊆ Fk′

n′ for every k ≤ k′ and n ≤ n′.

Lemma 2.30. For every ε > 0, there is a constant δ = δ(ε) > 0 such that every
ordered graph with n vertices and with at least (1/4 + ε)n2 edges contains at least
δn3 copies of K3.

Proof. The Triangle Removal Lemma [RS78] states that for every ε′ > 0 there
is a δ′ = δ′(ε′) > 0 such that every graph on n vertices with at most δ′n3 copies
of K3 can be made K3-free by removing at most ε′n2 edges.

For a given ε > 0, let δ > 0 be the parameter δ′(ε). Let H be the underlying
graph in the given ordered graph on n vertices with at least (1/4 + ε)n2 edges.
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Suppose for contradiction that H contains fewer than δn3 copies of K3. By the
Triangle Removal Lemma, we delete fewer than εn2 edges of H and obtain a
K3-free graph with more than (1/4 + ε)n2 − εn2 = n2/4 edges. However, this
contradicts Turán’s theorem (Theorem 1.5).

Thus H contains at least δn3 copies of K3. Since all orderings of complete
graphs are isomorphic, the statement follows.

Having all auxiliary results, we can now prove Theorem 2.25.

Proof of Theorem 2.25. Again, it is sufficient to prove the statement for 2-regular
graphs, as every graph on n vertices with maximum degree 2 is a subgraph of a
2-regular graph on at most 3n vertices.

Let G be a given 2-regular graph consisting of cycles Cn1 , . . . , Cnm with
n1, . . . , nm ≥ 3 and n1 + · · · + nm = n. First, we order each cycle Cni

as
the alternating cycle Cni

. For every i = 1, . . . ,m, let vi1, . . . , v
i
ni

be the vertices
of Cni

in this order.
For i = 2, . . . ,m, the ordering G of G is then constructed iteratively as follows.

For ni even, we place the vertex set of Cni
between the vertices of the inner edge

of Cni−1
(if ni−1 = 3, then we place the vertex set of Cni

to the right of Cni−1
). For

ni odd, we place the outer edge of Cni
between the vertices of the outer edge of

a previous odd cycle Cnj
. If Cni

is the first odd cycle in the process, then we let
vi1 and vi2 be the first two vertices in the ordering. Then we place the vertices
vi3, . . . , v

i
ni

between the vertices of the inner edge of Cni−1
(if ni−1 = 3, then we

place vi3, . . . , v
i
ni

to the right of Cni−1
); see Figure 2.9, for an illustration.

G

Figure 2.9: The iterative construction of the ordering G of a 2-regular graph G
with parameters m = 3, n1 = 3, n2 = 4, and n3 = 5.

The ordering G of G is an ordered subgraph of F2
n. For i = 1, . . . ,m, it suffices

to greedily map vi1, . . . , v
i
ni

for ni even and vi3, . . . , v
i
ni

for ni odd into blocks of F2
n

such that every block of Cni
is contained in a block of F2

n. Then, for every odd ni,
we map vi1 and vi2 to an edge {j, n+ 1− j} of F2

n such that j and n+ 1− j are
adjacent to vertices of the block of F2

n that contains the first block of Cni
. Note

that we might not even use all the blocks of F2
n in the process; see Figure 2.10.

F2
3 G

Figure 2.10: The ordered graph F2
3 contains the ordering G of a 2-regular graph

consisting of C3 and C4.
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Let δ ∈ (0, 1) be the parameter δ(1/8) from Lemma 2.30. Let N := 2163δ−10n
and let c be a red-blue coloring of KN . We show that c contains a monochromatic
copy of F2

n. The rest then follows, as G is an ordered subgraph of F2
n.

Since R(K3) = 6, every six-tuple of vertices of KN induces a coloring of K6

that contains a monochromatic copy of K3. Every such copy is contained in
(
N−3
3

)

six-tuples of vertices of KN . This gives us at least
(
N
6

)
/
(
N−3
3

)
= N(N−1)(N−2)

120

monochromatic copies of K3 in c. Without loss of generality, we assume that at
least half of them are red. Therefore we have at least N(N−1)(N−2)

240
> N3/28 red

copies of K3 in c.
We let N1 := 254δ−8n, ε1 := 1/28, k1 := 212δ−2, and d1 := 231δ−2 and apply

Lemma 2.29 with parameters ε1, k1, and d1 for the ordered subgraph of KN

that is formed by red edges in c. Since there are at least ε1N
3 red copies of K3

in c, d1 ≥ 8ε−2
1 k1, and N ≥ 214ε−8

1 d1N1, this gives a red copy of T k1
N1

in c. Let

B1, . . . , BN1 be the blocks of this red copy of T k1
N1

and let H be the induced ordered
subgraph KN [B1 ∪ · · · ∪BN1 ] of KN with the red-blue coloring induced by c. Note
that the sets B1, . . . , BN1 are consecutive intervals of size k1 that partition the
vertex set of H. In particular, H has k1N1 vertices.

Now we distinguish two cases. First, we assume that at least
(
k1N1

2

)
−3k21N

2
1/8 >

k21N
2
1/2

4 edges of H are red in c. Then we apply Lemma 2.28 with ε2 := 1/24,
k2 := 2, and d2 := k1 for the red ordered subgraph of H that is partitioned
into B1, . . . , BN1 . Since d2 = k1 = 212δ−2 > k2(2/ε2)

k2 , k1N1 = 266δ−10n >
2d2k2+1

2 ε−1
2 n, and H has at least ε2(k1N1)

2 edges, we obtain a red copy of P2
n as

an ordered subgraph of H respecting the partitioning B1, . . . , BN1 . Together with
the red copy of T k1

N1
in c, this gives a red copy of F2

n in H.
Otherwise there are more than 3k21N

2
1/8 blue edges of H in c. By Lemma 2.30,

the ordered graph H contains at least δk31N
3
1 blue copies of K3. We apply

Lemma 2.29 with ε3 := δ, k3 := 29, d3 := k1, and N3 := 240n for the blue ordered
subgraph of H that is partitioned into B1, . . . , BN1 . Since d3 = k1 ≥ 8ε−2

3 k3 and
k1N1 = 266δ−10 ≥ 214ε−8

3 d3N3, this gives us a blue copy of T k3
N3

as an ordered
subgraph of H respecting the partitioning B1, . . . , BN1 . Let B

′
1, . . . , B

′
N3

be the

blocks of this copy of T k3
d3

and let H′ be the ordered graph with the vertex set
B′

1 ∪ · · · ∪ B′
N3

formed by edges of the more frequent color in the coloring c of
H[B′

1 ∪ · · · ∪ B′
N3
]. Again, observe that B′

1, . . . , B
′
N3

are consecutive intervals of
size k3 that partition the vertex set of H′.

The ordered graph H′ has k3N3 vertices and at least
(
k3N3

2

)
/2 > k23N

2
3/8

edges. As the last step, we apply Lemma 2.28 with ε4 := 1/8, k4 := 2, d4 := k3
for H′ partitioned into B′

1, . . . , B
′
N3
. Since d4 = k3 = 29 = k4(2/ε4)

k4 and

k3N3 = 249n ≥ 2d2k4+1
4 ε−1

4 n, we obtain a monochromatic copy of P2
n as an ordered

subgraph of H′ respecting the partitioning B′
1, . . . , B

′
N3
. Together with either the

red copy T k1
N1

of or with the blue copy of T k3
N3
, we obtain a monochromatic copy

of F2
n in c.

2.6 Open problems

There are many interesting open problems that arose in the study of ordered
Ramsey numbers. Here, we would like to draw attention to some of them.

Corollary 2.8 and Theorem 2.9 imply that ordered Ramsey numbers of ordered
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graphs that have bounded degeneracy and bounded interval chromatic number
are polynomial in the number of vertices. However, we have no nontrivial lower
bounds.

Problem 2.31. Is there an absolute constant c > 0 such that for every fixed ∆
there is a sequence {Gn}n≥1 of ordered ∆-regular graphs Gn with n vertices and
interval chromatic number 2 such that R(Gn) ≥ nc∆?

Similarly, it would be interesting to find some nontrivial lower bounds on
ordered Ramsey numbers of ordered graphs of bounded bandwidth. For positive
integers p and n, let P(p)

n be the ordered graph on n vertices v1, . . . , vn, in this
order, such that {vi, vj} is an edge if and only if 0 < |i − j| ≤ p. In particular,

P(1)
n = (Pn,▹mon). Note that every ordered graph with n vertices and with

bandwidth at most p is an ordered subgraph of P(p)
n .

Problem 2.32. For an integer p ≥ 2, what is the growth rate of R(P(p)
n ) with

respect to n?

By Proposition 1.9, the ordered Ramsey numbers of alternating paths are
linear with respect to the number of vertices. Is it true that these orderings
minimize ordered Ramsey numbers of ordered paths?

Problem 2.33. For some positive integer n, is there an ordering Pn of the path
Pn on n vertices such that R(Pn) < R((Pn,▹alt))?

By Theorem 2.1, there are ordered matchings M on n vertices with R(M) ≥
nΩ( logn

log logn
). This bound is asymptotically almost tight, since, by Theorem 2.9,

every ordered matching M on n vertices satisfies R(M) ≤ nO(logn). It would be
interesting to close the gap between these bounds.

Problem 2.34 ([CFLS14, Problem 6.2]). Close the gap between the lower and
upper bounds for ordered Ramsey numbers of ordered matchings.

Similarly, if we restrict ourselves to ordered matchings with interval chromatic
number 2, then there is still a gap between the upper bound from Observation 2.2
and the lower bound from Theorem 2.3.

Problem 2.35 ([CFLS14, Problem 6.3]). Close the gap between the lower and
upper bounds for ordered Ramsey numbers of ordered matchings with interval
chromatic number 2.

Concerning the non-diagonal case, Conlon et al. [CFLS14] showed that there
are ordered matchings M on n vertices that satisfy R(M,K3) ≥ Ω((n/ log n)4/3).
On the other hand, we have R(M,K3) ≤ R(Kn, K3) ≤ O(n2/ log n) for every
ordered n-vertex matching M, where the last inequality was proved by Ajtai,
Komlós, and Szemerédi [AKS80]. It is not clear which bound is closer to the
truth.

Problem 2.36 ([CFLS14, Problem 6.1]). Does there exist an ε > 0 such that
every ordered matching M on n vertices satisfies R(M,K3) ≤ O(n2−ε)?
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We mostly considered the case of two colors and, in general, not much is
known about ordered Ramsey numbers for more than two colors. Conlon et
al. [CFLS14] proved that for q ≥ 2 every ordered matching M on n vertices
satisfies R(M; q) ≤ n(2 logn)q−1

. They also believe that two following stronger
upper bound holds.

Problem 2.37 ([CFLS14, Problem 6.8]). Show that for every integer q ≥ 3 there
is a constant c = c(q) such that every ordered matching M on n vertices satisfies
R(M) ≤ nc logn.
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3. Applications

In this chapter we show some (and by no means all) examples, in which Ramsey-
type problems on ordered hypergraphs appear. The examples consist of both
classical and new results. We use some results from Chapters 1 and 2.

In Section 3.1, we show a connection between ordered Ramsey numbers of
monotone paths and the well-known Erdős–Szekeres lemma on monotone subse-
quences. We then present a new proof of the famous Erdős–Szekeres theorem by
Moshkovitz and Shapira [MS14]. This elegant proof is based on ordered Ramsey
numbers of monotone hyperpaths. In Section 3.3 we refute a conjecture of Peters
and Szekeres [PS06] about a possible strengthening of the Erdős–Szekeres conjec-
ture to ordered hypergraphs. Finally, in Section 3.4 we show some applications
of ordered Ramsey numbers in the theory of geometric Ramsey numbers that
were introduced by Károlyi et al. [KPT97, KPTV98]. In particular, we provide
the exact formula for geometric Ramsey numbers of cycles and show that convex
geometric Ramsey numbers of outerplanar graphs are at most quasipolynomial in
the number of vertices.

3.1 The Erdős–Szekeres Lemma

The Erdős–Szekeres lemma is a well-known fact proved by Erdős and Sze-
keres [ES35]. It states that, for every positive integer k, every sequence of
at least (k − 1)2 + 1 distinct integers contains a decreasing or an increasing subse-
quence of length k. It is easy to see that the bound (k − 1)2 + 1 is sharp. The
Erdős–Szekeres lemma has many proofs [Ste95] and we show that it is a special
case of a Ramsey-type result for ordered graphs.

Given a sequence S = (s1, . . . , sN ) of distinct integers, we construct an ordered
graph KN = (KN ,≺) with the vertex set S and the ordering of the vertices
given by their positions in S. That is, for si, sj ∈ S, we have si ≺ sj if i < j.
Then we color an edge {si, sj} with i < j red if si < sj and blue otherwise.
Afterwards, red monotone paths in KN correspond to increasing subsequences
of S and blue monotone paths in KN to decreasing subsequences of S. Note that
for every N ≥ 3 there are red-blue colorings of KN that cannot be obtained in
this way. The Erdős–Szekeres lemma now follows from Proposition 1.8, which
shows R((Pk,▹mon)) = (k − 1)2 + 1.

3.2 The Erdős–Szekeres Theorem

The Erdős–Szekeres theorem [ES35] is, without an exaggeration, one of the most
important results in Ramsey theory. It is also one of the earliest results that
contributed to the development of Ramsey theory [GN02]. It says that for every
integer k ≥ 2 there is a least number ES(k) such that every set of ES(k)+1 points
in the plane in general position (no three points lie on a common line and all
x-coordinates are distinct) contains k points in convex position.

Points p1, . . . , pk ∈ R2 with increasing x-coordinates form a k-cap if the slopes
of the lines p1p2, . . . , pk−1pk are decreasing. The points p1, . . . , pk form a k-cup
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if the slopes are increasing. For integers a, u ≥ 2, let N(a, u) be the maximum
size of a set of points in the plane in general position with no a-cap and no u-cup.
Note that vertices of every k-cap and k-cup are in convex position and thus we
have ES(k) ≤ N(k, k).

Erdős and Szekeres [ES35] proved the bound ES(k) ≤
(
2k−4
k−2

)
by showing

N(a, u) =

(
a+ u− 4

a− 2

)
=

(
a+ u− 4

u− 2

)
(3.1)

for all integers a, u ≥ 2.
Peters and Szekeres [PS06] and Fox et al. [FPSS12] considered a generalization

of the Erdős–Szekeres theorem in terms of ordered hypergraphs. Fox et al. [FPSS12]
suggested the following framework using monotone hyperpaths. We use the term k-
path as an abbreviation for “3-uniform monotone hyperpath on k vertices” and, for
integers a, u ≥ 2, we use N̂(a, u) to denote the number R((P 3

a ,▹mon), (P
3
u ,▹mon))−

1. That is, N̂(a, u) is the maximum N such that there is a red-blue coloring of
the ordered complete 3-uniform hypergraph K3

N with no red a-path and no blue
u-path. We assume that a 2-path consists of two isolated vertices.

We now observe that N(a, u) ≤ N̂(a, u) for all integers a, u ≥ 2. Let P be a
point set in the plane in general position. We color every triple T of points from P ,
ordered by x-coordinates, red if T is oriented clockwise and blue if T is oriented
counter-clockwise. Every coloring of K3

N obtained in this way from some point set
of size N is called realizable. The inequality follows, as, for every k ≥ 3, k-caps
and k-cups in P are in one-to-one correspondence with red and blue, respectively,
k-paths in the realizable coloring obtained from P .

Moshkovitz and Shapira [MS14] discovered a connection between ordered
Ramsey numbers of monotone hyperpaths and high-dimensional integer partitions
and introduced the following new proof of (3.1).

Theorem 3.1 ([FPSS12, MS14]). For all integers a, u ≥ 2, we have

N̂(a, u) =

(
a+ u− 4

a− 2

)
.

Proof. We assume a, u ≥ 3, as the cases with a = 2 or u = 2 are trivial. First,
we prove the upper bound. For two elements x = (x1, x2) and y = (y1, y2) from
[a− 2]× [u− 2], we let x ≼ y if x1 ≤ y1 and x2 ≤ y2. We say that a subset D of
[a− 2]× [u− 2] is a down-set if y ∈ D implies x ∈ D for every x ∈ [a− 2]× [u− 2]
such that x ≼ y.

Claim 3.2. The number of down-sets in [a− 2]× [u− 2] is
(
a+u−4
a−2

)
.

To prove the claim, we bijectively map every down-set D ⊆ [a− 2]× [u− 2]
to an integer sequence (n1, . . . , na−2) that satisfies u− 2 ≥ n1 ≥ · · · ≥ na−2 ≥ 0.
For every i with 1 ≤ i ≤ a − 2, we let ni := max{y : (i, y) ∈ D}, where the
maximum over an empty set is 0. Since D is a down-set in [a−2]× [u−2], we have
u− 2 ≥ n1 ≥ · · · ≥ na−2 ≥ 0. It is easy to verify that this mapping is a bijection.
There is a one-to-one correspondence between the sequences (n1, . . . , na−2) and
lattice paths in Z2 that start in (0, u− 2), end in (a − 2, 0), and that go either
down or to the right in each step. Since the steps in which the path moves down
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determine the path, the number of such lattice paths is exactly
(
a+u−4
a−2

)
. This

finishes the proof of the claim.
Assume there is a red-blue coloring of K3

N = (K3
N , <) with no red a-path and no

blue u-path. We show N ≤
(
a+u−4
a−2

)
. For two vertices u < v of K3

N , let C(u, v) be
a pair (t1−1, t2−1) where t1 is the number of vertices of the longest red monotone
hyperpath that ends in u, v and t2 is the number of vertices of the longest blue
monotone hyperpath that ends in u, v. Note that C(u, v) ∈ [a− 2]× [u− 2]. For
a vertex v of K3

N , let D(v) := {x ∈ [a− 2]× [u− 2] : x ≼ C(u, v) for some u < v}.
By definition, D(v) is a down-set in [a− 2]× [u− 2].

Suppose for contradiction that there are vertices u < v of K3
N such that

D(u) = D(v). By definition, C(u, v) ∈ D(v) and, since D(u) = D(v), we have
C(u, v) ∈ D(u). From the definition of D(u), there is a vertex t < u of K3

N

such that C(u, v) ≼ C(t, u). However, if {t, u, v} is red, then we can extend the
longest red monotone hyperpath that ends in t, u to a longer one that ends in
u, v. Similarly if {t, u, v} is blue. In both cases we have C(u, v) ̸≼ C(t, u), a
contradiction.

Since all the sets D(v) are distinct, Claim 3.2 together with the pigeonhole
principle imply N ≤

(
a+u−4
a−2

)
.

Now, we show the lower bound. Let N :=
(
a+u−4
a−2

)
and assume that the vertex

set of K3
N is the set of integer sequences (n1, . . . , na−2) that satisfy u− 2 ≥ n1 ≥

· · · ≥ na−2 ≥ 0 and that are ordered in the lexicographic ordering l. For two
such sequences AlB, let δ(A,B) be the minimum position where they differ. For
i ∈ [a− 2] and a vertex A of K3

N , we use Ai to denote the ith element of A. For
vertices AlB l C, we color the edge {A,B,C} of K3

N red if δ(A,B) < δ(B,C)
and blue otherwise.

We now prove by induction on k ≥ 2 that if B l C are the last two vertices
of a k-path P in K3

N , then δ(B,C) > k − 2 if P is red and Cδ(B,C) > k − 2 if P
is blue. This will imply that there is no red a-path and no blue u-path in the
coloring of K3

N .
If two vertices Al B form a 2-path, then δ(A,B) > 0 and Bδ(A,B) > 0. For

k > 2, let AlBlC be the last three vertices of P . From the inductive hypothesis,
we have δ(A,B) ≥ k − 2 if P is red and Bδ(A,B) ≥ k − 2 if P is blue. If P is red,
then k − 2 ≤ δ(A,B) < δ(B,C). If P is blue, then we have δ(A,B) ≥ δ(B,C).
Since the vertices are non-increasing sequences that are ordered lexicographically,
we obtain k − 2 ≤ Bδ(A,B) ≤ Bδ(B,C) < Cδ(B,C).

The proof of Theorem 3.1 can be strengthened for more than two colors using
high-dimensional integer partitions [MS14]. This gives a generalization of Propo-
sition 1.8 to 3-uniform monotone hyperpaths. Moshkovitz and Shapira [MS14]
further generalized Theorem 3.1 to monotone hyperpaths of uniformity higher
than three. In particular, they showed R((P k

n ,▹mon)) = tk−1((2 − o(1))n) for
every k ≥ 3 and every sufficiently large n. We recall that (P k

n ,▹mon) denotes the
k-uniform monotone hyperpath on n vertices and th denotes the tower function of
height h defined by t1(x) = x and th(x) = 2th−1(x) for h ≥ 2.

We note that the coloring, which is constructed in the proof of the lower bound
in Theorem 3.1, is realizable. In fact, it is the coloring obtained by coloring triples
of points according their orientation in the point set constructed by Erdős and
Szekeres [ES35] in their proof of the lower bound in (3.1).
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3.3 A conjecture of Peters and Szekeres

In their seminal paper, Erdős and Szekeres proved the upper bound ES(k) ≤
(
2k−4
k−2

)

by showing (3.1). They also posed the Erdős–Szekeres conjecture, stating that
ES(k) = 2k−2 for every k ≥ 2. In spite of considerable efforts, this famous
conjecture is still open.

In the 1960s, Erdős and Szekeres [ES61] supported their conjecture with the
lower bound ES(k) ≥ 2k−2. In 1998, Chung and Graham [CG98] improved the
upper bound ES(k) ≤

(
2k−4
k−2

)
by 1 for k ≥ 4, obtaining the first improvement

after sixty years. Shortly after, Kleitman and Pachter [KP98] showed ES(k) ≤(
2k−4
k−2

)
− 2k + 6 for k ≥ 4. A better estimate ES(k) ≤

(
2k−5
k−2

)
+ 1 for k ≥ 5 was

found by Tóth and Valtr [TV98] few months later. In 2005, Tóth and Valtr [TV05]
further improved this bound by 1, obtaining ES(k) ≤

(
2k−5
k−2

)
= 1

2

(
2k−4
k−2

)
for k ≥ 5,

which was the best known upper bound for ten years. Recently, Mojarrad and
Vlachos [MV15] improved the upper bound to

(
2k−5
k−2

)
−
(
2k−8
k−3

)
+ 1 for k ≥ 6.

This gives lim supk→∞ ES(k)/
(
2k−5
k−2

)
≤ 7

8
, which was also independently proved by

Norin and Yuditsky [NY16]. All the upper bounds on ES(k) mentioned so far
are of asymptotic order Θ(4k/

√
k). Very recently, Suk [Suk16] obtained a major

asymptotic improvement by showing that ES(k) ≤ 2k+o(k).
The Erdős–Szekeres conjecture is known to hold for k ≤ 6 and is open for

k > 6. The case k = 6 was proved by Peters and Szekeres [PS06] who carried out
a clever computer-aided proof.

By Theorem 3.1, we have N̂(a, u) = N(a, u) for all a, u ≥ 2. That is, the
formula for the maximum size of a set with no a-cap and no u-cup remains the
same even when we consider much more general setting for ordered hypergraphs.
Peters and Szekeres [PS06] conjectured that a similar phenomenon occurs for the
Erdős–Szekeres conjecture. We state this formally.

If P is a point set in the plane in general position, then every k-tuple of points
from P in convex position is a union of an a-cap and a u-cup with common
endpoints where a and u are some integers satisfying a+ u− 2 = k. Using this
fact, Peters and Szekeres [PS06] generalized the notion of convex position to the
hypergraph setting as follows. For k ≥ 2, an ordered 3-uniform hypergraph H on
k vertices is called a (convex) k-gon or a polygon if H is a union of a red monotone
hyperpath and a blue monotone hyperpath that are vertex disjoint except for the
two common end-vertices. In this definition, we allow hyperpaths in H with two
vertices and no edges.

Note that in a k-gon, the leftmost vertex and the rightmost vertex lie in both
hyperpaths and each of the k− 2 other vertices lies either in the red hyperpath or
in the blue hyperpath. Therefore there are exactly 2k−2 pairwise non-isomorphic
k-gons for every k ≥ 2.

Let ÊS(k) be the maximum number N such that there is a red-blue coloring
of K3

N with no k-gon.
If P is a set of points in the plane in general position, then k-tuples of points

from P in convex position are in one-to-one correspondence with k-gons in the
realizable coloring of K3

|P | obtained from P . Thus we have 2k−2 ≤ ES(k) ≤ ÊS(k)
for every k ≥ 2. On the other hand, every monochromatic k-path is a k-gon, thus
ÊS(k) ≤ N̂(k, k) and, by Theorem 3.1, ÊS(k) ≤

(
2k−4
k−2

)
.

For 2 ≤ k ≤ 5, Peters and Szekeres [PS06] showed ÊS(k) = 2k−2. For k = 5
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this was shown by their computer-aided proof. Peters and Szekeres conjectured
that this equality is satisfied for every k ≥ 2. We call this conjecture the Peters–
Szekeres conjecture and, as a main result of this section, we refute it by showing
the following result.

Theorem 3.3. We have ÊS(7) > 32, ÊS(8) > 64, and ÊS(9) > 128.

Although we have found counterexamples to the Peters–Szekeres conjecture for
values k = 7, 8, 9, we have no construction that would provide counterexamples to
this conjecture for arbitrarily large values of k. For the remaining cases, our guess
is that ÊS(6) = 16 and ÊS(k) > 2k−2 for every k ≥ 10.

To prove Theorem 3.3, we first discuss an equivalent version of the Peters–
Szekeres conjecture that we use later in a search for a counterexample. Our
approach is based on the following equivalent version of the Erdős–Szekeres
conjecture introduced by Erdős, Tuza, and Valtr [ETV96].

For integers a, u, k ≥ 2, let N(a, u; k) be the maximum number N such that
there is a set of N points in the plane in general position with no a-cap, no u-cup,
and no k points in convex position. We are mostly interested in the value of
N(a, u; k) in cases when max{a, u} ≤ k ≤ a + u − 2. Therefore it is useful to
define a set of integer triples

D := {(a, u, k) : a, u ≥ 2 and max{a, u} ≤ k ≤ a+ u− 2}.

For three integers (a, u, k) ∈ D, we set

S(a, u; k) :=
u∑

i=k−a+2

N(i, k + 2− i) =
u∑

i=k−a+2

(
k − 2

i− 2

)
.

Conjecture 3.4 ([ETV96]). For all triples (a, u, k) ∈ D,

N(a, u; k) = S(a, u; k).

Erdős, Tuza, and Valtr [ETV96] showed that Conjecture 3.4 is equivalent with
the Erdős–Szekeres conjecture and obtained the following inequality.

Proposition 3.5 ([ETV96]). For all triples (a, u, k) ∈ D,

N(a, u; k) ≥ S(a, u; k).

Depending on the values of a, u, k, the best known upper bound on N(a, u; k)
is either the trivial estimate N(a, u; k) ≤ N(a, u) =

(
a+u−4
a−2

)
, or it is obtained by

combining the trivial estimate N(a, u; k) ≤ ES(k) with the best known upper
bound on ES(k) [MV15, Suk16].

For k ≥ a + u − 3, every k-gon contains an a-cap or a u-cup which implies
N(a, u; k) = N(a, u) in this case. It follows that Conjecture 3.4 holds for k ∈
{a+ u− 2, a+ u− 3}, as for k = a+ u− 2 we get

N(a, u; k) = N(a, u) =

(
a+ u− 4

u− 2

)
= S(a, u; k)

and for k = a+ u− 3 we get

N(a, u; k) = N(a, u) =

(
a+ u− 4

u− 2

)
=

(
a+ u− 5

u− 3

)
+

(
a+ u− 5

u− 2

)
= S(a, u; k).
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The gap between known bounds for N(a, u; k) appears first for k = a+ u− 4.
By a more careful analysis of this first nontrivial case, we improve the best known
upper bound by 1 for the case a = 4.

Proposition 3.6. For every integer k ≥ 3, we have

(
k

2

)
− k + 2 ≤ N(4, k; k) ≤

(
k

2

)
− 1.

Proof. The lower bound follows from Proposition 3.5, as S(4, k; k) =
(
k
2

)
− k + 2.

For the upper bound, let P be a set of points in general position with no
4-cap and no k points in convex position. Then, in particular, P does not contain
a k-cup. Let U be a set of points of P that are the rightmost point of some
(k − 1)-cup in P . Then the set P \ U contains no 4-cap, no (k − 1)-cup, and no k
points in convex position. Thus the size of P \ U satisfies

|P \ U | ≤ N(4, k − 1; k) =

(
k − 1

2

)
.

We show that U contains no 3-cap and no (k − 1)-cup. This will conclude the
proof, as then we have |U | ≤ k − 2 and

|P | = |U |+ |P \ U | ≤ k − 2 +

(
k − 1

2

)
=

(
k

2

)
− 1.

If there is a 3-cap in U , then, by the choice of U , its leftmost point is also the
rightmost point of a (k − 1)-cup in P . Then either the 3-cap or the (k − 1)-cup
can be extended to a 4-cap or a k-cup, respectively. However, neither is possible
from the choice of P .

Suppose for contradiction that there is a (k − 1)-cup C in U and let p1 be its
leftmost point. From the choice of U , the point p1 is also the rightmost point of
some (k − 1)-cup C ′ in P . Let p2 be the second leftmost point of C and let qk−2

be the second rightmost point of C ′.
Then either every point from C \ {p1, p2} lies above the line qk−2p2 or every

point from C ′ \ {qk−2, p1} lies above the line qk−2p2. Otherwise there are points
p ∈ C \ {p1, p2} and q ∈ C ′ \ {qk−2, p1} below qk−2p2 and we have a 4-cap in P
formed by q, qk−2, p2, p; see Figure 3.1.

C ′

C

p1

qk−2
p2

q

p

Figure 3.1: Points p ∈ C \ {p1, p2} and q ∈ C ′ \ {qk−2, p1} below qk−2p2 force a
4-cap.

If the first case occurs, i. e., if every point from C \ {p1, p2} lies above the
line qk−2p2, then we consider the triple of points qk−2, p1, pk−1, where pk−1 is the
rightmost point of C. If the triple is a 3-cup then C ′ ∪ {pk−1} is a k-cup; see
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C ′

C

p1

qk−2

p2

pk−1

(b)(a)

C ′

C

p1

qk−2

p2

pk−1

Figure 3.2: (a) The point pk−1 above qk−2p1 forces a k-cup. (b) The point pk−1

below qk−2p1 forces k points in convex position.

part (a) of Figure 3.2. Otherwise C ∪{qk−2} is a set of k points in convex position;
see part (b) of Figure 3.2.

The other case, where every point from C ′\{qk−2, p1} lies above the line qk−2p2,
is symmetric. Thus we obtain a contradiction and, consequently, we see that U
contains no (k − 1)-cup.

Now, we introduce a version of Conjecture 3.4 for the hypergraph setting. For
integers a, u, k ≥ 2 and N , an (a, u; k)-coloring of K3

N is a red-blue coloring of K3
N

with no red a-path, no blue u-path, and no k-gon. Let N̂(a, u; k) be the maximum
number N such that there is an (a, u; k)-coloring of K3

N .

Conjecture 3.7. For all triples (a, u, k) ∈ D,

N̂(a, u; k) = S(a, u; k).

We note that the argument from Proposition 3.6 applies in the hypergraph
setting and gives N̂(4, k; k) ≤

(
k
2

)
− 1 for every k ≥ 3.

A generalization of the approach of Erdős, Tuza, and Valtr [ETV96] gives the
following statement.

Proposition 3.8. Conjecture 3.7 is equivalent with the Peters–Szekeres conjecture.

Before proving this statement, we first introduce the following auxiliary result.

Lemma 3.9. Let α, ψ, α′, ψ′, κ ≥ 2 be integers with α + ψ′ ≤ κ + 1. If we set
α′′ := max{α + 1, α′} and ψ′′ := max{ψ, ψ′ + 1}, then

N̂(α′′, ψ′′;κ) ≥ N̂(α, ψ;κ) + N̂(α′, ψ′;κ).

Proof. Set N1 := N̂(α, ψ;κ) and N2 := N̂(α′, ψ′;κ). For I1 := {1, . . . , N1} and
I2 := {N1 + 1, . . . , N1 +N2}, we define a red-blue coloring c of K3

N1+N2
with the

vertex set [N1 +N2] as follows. We color the complete hypergraph induced by I1
with an (α, ψ;κ)-coloring. We color the complete hypergraph induced by I2 with
an (α′, ψ′;κ)-coloring. Finally, every edge {x, y, z} of K3

N1+N2
with x < y < z,

x ∈ I1, and z ∈ I2 is colored red if y ∈ I1 and blue if y ∈ I2.
We claim that c is an (α′′, ψ′′;κ)-coloring. Let R be a red monotone hyperpath

in c and let B be a blue monotone hyperpath in c. By the construction, if all
vertices of R lie in I2 then R has at most α′− 1 vertices. Otherwise R has at most
one vertex in I2, since every edge with exactly two vertices in I2 is blue. Then R
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has at most (α− 1) + 1 = α vertices. Similarly, B has at most ψ− 1 vertices if all
vertices of B lie in I1, and it has at most ψ′ vertices otherwise.

It remains to prove that there is no κ-gon in c. Clearly, there is no κ-gon
with all vertices in I1 and no κ-gon with all vertices in I2. We show that every
polygon intersecting both I1 and I2 has fewer than κ vertices. Let Z be a polygon
with the leftmost vertex u lying in I1 and with the rightmost vertex v lying in I2.
The polygon Z is a union of a red monotone hyperpath R and a blue monotone
hyperpath B, both connecting u with v. By the discussion above, R has at most α
vertices and B has at most ψ′ vertices. It follows that Z has at most α+ψ′−2 < κ
vertices.

With Lemma 3.9 in hand, we can prove Proposition 3.8 quite easily.

Proof of Proposition 3.8. If Conjecture 3.7 is true, then, in particular, we have
N̂(k, k; k) = S(k, k; k) and thus

ÊS(k) = N̂(k, k; k) = S(k, k; k) =
k∑

i=2

(
k − 2

i− 2

)
= 2k−2,

and the Peters–Szekeres conjecture is also true.
On the other hand, we show that if Conjecture 3.7 is false, then the Peters–

Szekeres conjecture is false as well. Suppose Conjecture 3.7 is false. That is,

N̂(a, u; k) > S(a, u; k)

for some integers (a, u, k) ∈ D.
For technical reasons, we set

N̂(k, 1; k) = S(k, 1; k) = N̂(1, k; k) = S(1, k; k) := 0,

for any integer k ≥ 2.
We first show that N̂(a, k; k) ≥ N̂(k − u+ 1, k; k) + N̂(a, u; k). If u = k then

the inequality follows from N̂(1, k; k) = 0. Otherwise an application of Lemma 3.9
with (α, ψ, κ) = (k − u + 1, k, k) and (α′, ψ′, κ) = (a, u, k) gives the inequality,
since we have a = max{k − u+ 2, a} and k = max{k, u+ 1} due to (a, u, k) ∈ D
and u ̸= k.

We further show that N̂(k, k; k) ≥ N̂(a, k; k)+ N̂(k, k− a+1; k). If a = k then

the inequality follows from N̂(k, 1; k) = 0. Otherwise an application of Lemma 3.9
with (α, ψ, κ) = (a, k, k) and (α′, ψ′, κ) = (k, k − a + 1, k) gives the inequality,
since we have k = max{a+ 1, k} and k = max{k, k − a+ 2} due to (a, u, k) ∈ D
and a ̸= k.

Since ÊS(k) = N̂(k, k; k), the two inequalities proved above imply

ÊS(k) ≥ N̂(k − u+ 1, k; k) + N̂(a, u; k) + N̂(k, k − a+ 1; k).

Since (k−u+1, k, k) ∈ D for u ̸= k, we have N̂(k−u+1, k; k) ≥ S(k−u+1, k; k)

by Proposition 3.5. Analogously, we obtain N̂(k, k − a+ 1; k) ≥ S(k, k − a+ 1; k).

From N̂(a, u; k) > S(a, u; k), we thus get a strict inequality

ÊS(k) > S(k − u+ 1, k; k) + S(a, u; k) + S(k, k − a+ 1; k)
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=
k∑

i=u+1

(
k − 2

i− 2

)
+

u∑

i=k−a+2

(
k − 2

i− 2

)
+

k−a+1∑

i=2

(
k − 2

i− 2

)
=

k∑

i=2

(
k − 2

i− 2

)
= 2k−2,

which shows that the Peters–Szekeres conjecture is false.

The main profit gained by considering N̂(a, u; k) is that Conjecture 3.7 is,
in a certain sense, finer than the Peters–Szekeres conjecture. This allows us to
employ an exhaustive computer search for larger values of k in order to find an
(a, u; k)-coloring of K3

N for some suitable integers a, u, k, such that N > S(a, u; k).
This will disprove Conjecture 3.7 and, by Proposition 3.8, the Peters–Szekeres
conjecture.

The exhaustive search for extremal colorings is performed by SAT solvers. We
use a SAT encoding of the following problem: for given integers a, u, k,N ≥ 3, is
there an (a, u; k)-coloring of K3

N? The SAT encoding of this problem is described
in Appendix A.

In our experiments we use the Glucose SAT solver [AS13], the winner of the
certified UNSAT category of the SAT 2013 competition [BBHJ13]. All experiments
were conducted on a computer equipped with Intel Xeon E5-1620 CPU running
at 3.60GHz and 63GB of RAM.

Proof of Theorem 3.3. Using the SAT solver, we found a (4, 7; 7)-coloring c of K3
17

which is recorded on the webpage [BV]. This refutes Conjecture 3.7 for a = 4 and

u = k = 7, as it shows that N̂(4, 7; 7) ≥ S(4, 7; 7) + 1 = 17. It follows from the
proof of Proposition 3.8 that the coloring c can be extended to a coloring of K3

33

with no 7-gon, therefore we refute the Peters–Szekeres conjecture as well. Our
experiments showed that every coloring of K3

18 contains either a red 4-path or a

7-gon, i. e., N̂(4, 7; 7) = 17.
By running additional tests, we obtained further counterexamples to Con-

jecture 3.7. We found colorings that give N̂(5, 6; 7) ≥ 26, N̂(5, 7; 7) ≥ 27,

N̂(6, 6; 7) ≥ 31, N̂(6, 7; 7) ≥ 32, and even N̂(7, 7; 7) ≥ 33. We also obtained

colorings that provide bounds N̂(4, 8; 8) ≥ 23 and N̂(4, 9; 9) ≥ 30. By the proof
of Proposition 3.8, these colorings can be extended to counterexamples to the
Peters–Szekeres conjecture for k = 8 and k = 9.

We remark that all the above seven inequalities are of the form N̂(a, u; k) ≥
S(a, u; k) + 1 but we conjecture that the difference N̂(a, u; k)− S(a, u; k) may be
arbitrarily large.

For larger values of a, u, and k than those mentioned in the above proof of
Theorem 3.3, the input formulas become too large for the SAT solver.

Our experiments verify Conjecture 3.7 for k = 6 and for all possible values of
a and u, except for the case a = u = k. In this case the solver did not terminate
on 17 vertices even after 266 hours of computation.

We also ran tests to explore the validity of Conjecture 3.4. Our approach is
based on a restriction of the setting of Conjecture 3.7 to pseudolinear colorings
of K3

N . A red-blue coloring c′ of K3
N is pseudolinear if every 4-tuple of vertices

of K3
N induces a realizable coloring of K3

4 in c′. Clearly, every realizable coloring
is pseudolinear.

Peters and Szekeres [PS06] call pseudolinear colorings ‘signatures that satisfy
geometric constraints’. However, we feel that the term ‘pseudolinear coloring’
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is more fitting, as such colorings of K3
N are in one-to-one correspondence with

pseudolinear x-monotone drawings of KN ; see Theorem 4.9. In particular, there
are pseudolinear colorings of K3

N for N ≥ 9 that are not realizable [Knu92, Figure 1,
page 26].

Considering only pseudolinear colorings in our experiments, we verified Con-
jecture 3.4 in the cases a = 4, u = k = 7 and a = 4, u = k = 8. That is,
we have N(4, 7; 7) = 16 and N(4, 8; 8) = 22. For pseudolinear colorings, all our
results matched the values from Conjecture 3.4. All colorings obtained by our
experiments can be found on a separate webpage [BV]. A complete list of known

values of N̂(a, u; 6), N̂(a, u; 7), and N(a, u; 7) can be found in Tables 3.1, 3.2, and
3.3, respectively.

N̂(a, u; 6) 2 3 4 5 6
2 1
3 4 5
4 6 10 11
5 4 10 14 15
6 1 5 11 15 [16,70]

Table 3.1: The known values and estimates of N̂(a, u; 6). The entry [16, 70] in

the position of N̂(6, 6; 6) means that the best known lower and upper bounds on

N̂(6, 6; 6) are 16 and 70, respectively.

N̂(a, u; 7) 2 3 4 5 6 7
2 1
3 5 6
4 10 15 17
5 10 20 [26,35] [27,56]
6 5 15 [26,35] [31,70] [32,126]
7 1 6 17 [27,56] [32,126] [33,210]

Table 3.2: The known values and estimates of N̂(a, u; 7). The bold values are
larger (by 1) than the values from Conjecture 3.7.

N(a, u; 7) 2 3 4 5 6 7
2 1
3 5 6
4 10 15 16
5 10 20 [25,35] [26,56]
6 5 15 [25,35] [30,70] [31,112]
7 1 6 16 [26,56] [31,112] [32,112]

Table 3.3: The known values of N(a, u; 7).

We define a ≥k-gon as any l-gon with l ≥ k. For every positive integer N , if
c is a realizable (or more generally pseudolinear) coloring of K3

N with no k-gon,
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then c contains no ≥k-gon. The following proposition shows that this is no longer
true for general colorings of K3

N .

Proposition 3.10. There is a coloring of K3
6 with a 6-gon and with no 5-gon.

Proof. We denote the vertices of K3
6 by 1, 2, . . . , 6, whereas 1 < 2 < · · · < 6. First,

consider the coloring of K3
6 such that an edge is colored red if it contains an even

number of vertices from {1, 2, 3}, and it is colored blue otherwise. Observe that
there is no monochromatic 4-path. To obtain a desired coloring we switch the
colors of the two edges 145 and 236. The obtained coloring contains a unique red
4-path 1456 and a unique blue 4-path 1236. Their union is a 6-gon.

It remains to verify that there is no 5-gon. Since there is no monochromatic
5-path, a 5-gon would be the union of a monochromatic 4-path in one color and a
3-path (edge) in the other color. However, none of the monochromatic 4-paths
1456 and 1236 can be completed to a 5-gon of this type, as the edges 126 and 136
are red and the edges 146 and 156 are blue.

Somewhat abusing the notation, we use ÊS(≥k) to denote the maximum N

such that there is a red-blue coloring of K3
N with no ≥k-gon. Similarly, N̂(a, u;≥k)

denotes the maximum N such that there is a red-blue coloring of K3
N with no red

a-path, no blue u-path, and no ≥k-gon. Obviously, ES(k) ≤ ÊS(≥k) ≤ ÊS(k).
Theorem 3.3 can be strengthened as follows.

Theorem 3.11. We have ÊS(≥7) > 32, ÊS(≥8) > 64, and ÊS(≥9) > 128.

Proof. Let k ∈ {7, 8, 9}. Consider a (4, k; k)-coloring c of K3
S(4,k;k)+1 obtained in

the proof of Theorem 3.3. We first prove that c contains no ≥k-gon. By the choice
of c, it contains no k-gon. Suppose there is an l-gon G with l > k in c. Since
there is no red 4-path, the red monotone hyperpath of G has at most 3 vertices
and therefore the blue monotone hyperpath has at least k vertices. Its subpath
on k vertices is a k-gon, which is impossible. Thus, c contains no ≥k-gon.

Now, observe that a slight modification of the proof of Lemma 3.9 gives the
following modification of the lemma. Under the same assumptions as in Lemma 3.9,
the following inequality holds:

N̂(α′′, ψ′′;≥κ) ≥ N̂(α, ψ;≥κ) + N̂(α′, ψ′;≥κ).
Applying this modification of Lemma 3.9 with (α, ψ, κ) = (4, k, k) and (α′, ψ′, κ)
= (k, k − 3, k), we get

N̂(k, k;≥k) ≥ N̂(4, k;≥k) + N̂(k, k − 3;≥k).
Since

N̂(4, k;≥k) ≥ 1 + S(4, k; k) = 1 +
k∑

i=k−2

(
k − 2

i− 2

)

and

N̂(k, k − 3;≥k) ≥ S(k, k − 3; k) =
k−3∑

i=2

(
k − 2

i− 2

)
,

we get

ÊS(≥k) = N̂(k, k;≥k) ≥ 1 +
k∑

i=k−2

(
k − 2

i− 2

)
+

k−3∑

i=2

(
k − 2

i− 2

)
= 1 + 2k−2.
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The following strengthening of the Erdős–Szekeres conjecture, introduced by
Peters and Szekeres [PS06], remains open: for every k ≥ 2, is it true that every
pseudolinear coloring of K3

N with N = 2k−2 + 1 contains a k-gon? Similarly,
Goodman and Pollack [GP81] conjectured that for every k ≥ 2 the number ES(k)
equals the maximum N for which there is a pseudolinear coloring of K3

N with no
k-gon. Note that the conjecture of Goodman and Pollack might be true even if
the previous strengthening is not.

None of the counterxamples for Conjecture 3.7 is pseudolinear. If there was a
pseudolinear coloring c that refutes Conjecture 3.7, then we could use the proof of
Proposition 3.8 and extend c to a counterexample to the strengthening above. If
c was realizable, then it would give a counterexample even to the Erdős–Szekeres
conjecture.

Another possible direction for further research is to improve the bounds for
ÊS(k) and, possibly, to recognize some structure behind the colorings that we
found. For a sufficiently large k, this could lead to a general construction of
colorings of K3

N with no k-gon for N > 2k−2 + 1.

3.4 Geometric Ramsey numbers

In discrete geometry, geometric Ramsey numbers [CGK+15, KPT97, KPTV98]
are natural analogues of ordered Ramsey numbers. For a finite set of points
P ⊂ R2 in general position, we denote as KP the complete geometric graph on P ,
which is a complete graph drawn in the plane so that its vertices are represented
by the points in P and the edges are drawn as straight-line segments between the
pairs of points in P . The graph KP is convex if P is in convex position.

The geometric Ramsey number of a graph G, denoted by Rg(G), is the smallest
N such that every complete geometric graph KP on N vertices with edges colored
by two colors contains a noncrossing monochromatic drawing of G. If we consider
only convex complete geometric graphs KP in the definition, then we get so-called
convex geometric Ramsey number Rc(G). Note that these numbers are finite
only if G is outerplanar and that Rc(G) ≤ Rg(G) for every outerplanar graph G.
It follows from a result of Gritzmann et al. [GMPP91] (see also Lemma 2.1
in [CGK+15]) that if G is an outerplanar graph on n vertices and P is a set of n
points in the plane in general position, then KP contains a noncrossing copy of G.

For the cycles Cn with n ≥ 3, Károlyi et al. [KPTV98] showed the upper
bound Rg(Cn) ≤ 2n2 − 6n+ 6 and also observed that Rc(Cn) ≥ (n− 1)2 + 1. We
first show that convex geometric Ramsey numbers of cycles equal ordered Ramsey
numbers of monotone cycles.

Observation 3.12. For every n ≥ 3, we have Rc(Cn) = R((Cn,▹mon)).

Proof. Consider a set of n points in convex position. Order the points v1 ≺ · · · ≺ vn
in the clockwise order starting at an arbitrary vertex. The observation follows
from the fact that a cycle with the vertex set {v1, . . . , vn} is noncrossing if and
only if it is the monotone cycle with respect to ≺.

By combining this simple observation together with Theorem 1.11, we obtain
the exact formula for geometric and convex geometric Ramsey numbers of cycles.
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Theorem 3.13. For every integer n ≥ 3, we have Rc(Cn) = Rg(Cn) = 2n2 −
6n+ 6.

Proof. We recall that Rc(G) ≤ Rg(G) for every outerplanar graph G. The upper
bound Rg(Cn) ≤ 2n2 − 6n+ 6 was proved by Károlyi et al. [KPTV98]. The lower
bound 2n2−6n+6 ≤ Rc(Cn) follows from Observation 3.12 and Theorem 1.11.

We also mention a problem with an application in the theory of geometric
Ramsey numbers.

A crossing in an ordered graph (G,≺) is a pair of edges {vi, vk}, {vj, vl} such
that vi ≺ vj ≺ vk ≺ vl. An ordered graph is noncrossing if it contains no crossing.

Let Rnc(n) be the largest ordered Ramsey number of a noncrossing ordered
graph on n vertices. Since noncrossing ordered graphs are outerplanar, they are
2-degenerate, and thus, by Theorem 2.9, we have Rnc(n) ≤ nO(logn).

Problem 3.14. What is the growth rate of Rnc(n)? In particular, is it polynomial
in n?

It is an open problem whether there is a general polynomial upper bound
for geometric Ramsey numbers of outerplanar graphs [CGK+15]. The following
theorem shows that Problem 3.14 is equivalent to the question of determining the
asymptotics of the maximum convex geometric Ramsey number of an outerplanar
graph on n vertices.

Theorem 3.15. Let Rc(n) be the maximum convex geometric Ramsey number of
an outerplanar graph on n vertices. For every n ≥ 2, we have

Rc(n) ≤ Rnc(n) ≤ Rc(4n− 4).

Proof. Let G be an outerplanar graph drawn in the plane so that its vertices
are the vertices of a convex n-gon, and the edges are drawn as straight-line
segments with no crossings. Let v1 ≺ v2 ≺ · · · ≺ vn be a clockwise ordering of the
vertices of G along the n-gon with v1 chosen arbitrarily. In this way, we obtain
a noncrossing ordered graph G. If we find a monochromatic copy of G in every
2-coloring of KN for some N , we can find a monochromatic noncrossing copy of
the graph G in every 2-coloring of the complete convex geometric graph on N
vertices. This proves of the first inequality.

Now we prove the second inequality. The case n = 2 is trivial, so we assume
that n ≥ 3. Since adding edges to an ordered graph never decreases its ordered
Ramsey number, we know that Rnc(n) is attained by a noncrossing ordered graph
G with vertices v1 ≺ · · · ≺ vn that contains the Hamiltonian cycle v1, v2, . . . , vn, v1.
We form an outerplanar graph H as follows. We take four unordered copies
G(1), . . . , G(4) of G. For every i ∈ [4], let v

(i)
1 , . . . , v

(i)
n be the set of vertices of G(i).

We identify v
(1)
n with v

(2)
n , v

(2)
1 with v

(3)
1 , v

(3)
n with v

(4)
n , and v

(4)
1 with v

(1)
1 ; see

Figure 3.3. The resulting graph H is Hamiltonian and thus there is only one
planar straight-line drawing of H on a given set of 4n−4 points in convex position,
up to rotation and mirroring.

Let K be a complete geometric graph whose vertices u1, u2, . . . , uN form, in
this order, the vertices of a convex polygon. In every noncrossing copy of H
in K, at least three of the graphs G(i), where i ∈ [4], satisfy the property that

the images of the vertices v
(i)
1 , . . . , v

(i)
n form a monotone sequence in the ordering
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v
(1)
n = v

(2)
n

G(1)

v
(2)
1 = v

(3)
1

v
(3)
n = v

(4)
n

v
(1)
1 = v

(4)
1

G(2)

G(3)G(4)

Figure 3.3: Construction of the graph H in the proof of Theorem 3.15.

u1 ≺ u2 ≺ · · · ≺ uN . Consequently, in at least one G(i), the vertices form an
increasing sequence. If N ≥ Rc(4n− 4), every 2-coloring of the complete convex
geometric graph on N vertices contains a monochromatic noncrossing copy of H.
Therefore, every 2-coloring of KN contains a monochromatic copy of the ordered
graph G.

Combining this theorem with results from Chapter 2 we can derive a quasipoly-
nomial upper bound on Rc(n), improving the previous exponential bound (see,
e.g., [CGK+15]).

Corollary 3.16. We have Rc(n) ≤ nO(logn).

Proof. By the first inequality in Theorem 3.15 and Theorem 2.9 by Conlon et
al. [CFLS14], the upper bound Rnc(n) ≤ nO(logn) gives Rc(n) ≤ nO(logn).
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4. Crossing numbers of Kn

4.1 Graph drawings and crossing numbers

Let G be a graph with no loops or multiple edges. In a drawing D of a graph G
in the plane, the vertices are represented by distinct points and each edge is
represented by a simple continuous arc connecting the images of its endpoints.
As usual, we identify the vertices and their images, as well as the edges and the
arcs representing them. We require that the edges pass through no vertices other
than their endpoints. We also assume for simplicity that any two edges have only
finitely many points in common, no two edges touch at an interior point and no
three edges meet at a common interior point.

A crossing in D is a common interior point of two edges where they properly
cross. The crossing number cr(D) of a drawing D is the number of crossings in D.
The crossing number cr(G) of a graph G is the minimum of cr(D), taken over all
drawings D of G. A drawing D is called simple if no two adjacent edges cross and
no two edges have more than one common crossing. It is well-known and easy to
see that every drawing of G which minimizes the crossing number is simple.

According to the famous conjecture of Hill [Guy60, HH63] (also known as
Guy’s conjecture), the crossing number of the complete graph Kn on n vertices
satisfies cr(Kn) = Z(n), where

Z(n) :=
1

4

⌊
n

2

⌋⌊
n− 1

2

⌋⌊
n− 2

2

⌋⌊
n− 3

2

⌋
.

Despite several attempts over the years, Hill’s conjecture remains open. It
has been verified for n ≤ 10 by Guy [Guy72] and recently for n ≤ 12 by Pan and
Richter [PR07]. Moreover for each n, there are drawings of Kn with exactly Z(n)
crossings [BK64, Guy60, HH63, Har02]. Current best asymptotic lower bound,
cr(Kn) ≥ 0.8594Z(n), follows from the lower bound on the crossing number
of the complete bipartite graph [dKPS07] by an elementary double-counting
argument [RT97].

Note that the given definition of a drawing of a graph is quite general. By
considering more restricted classes of drawings, one may derive many variants of
the crossing number. See a recent survey by Schaefer [Sch14] for an encyclopedic
treatment of all known variants of the crossing numbers. We mainly consider
three particular classes of drawings and the corresponding variants of the crossing
number in this chapter.

A curve α in the plane is x-monotone if every vertical line intersects α in at
most one point. A drawing of a graph G in which every edge is represented by
an x-monotone curve and no two vertices share the same x-coordinate is called
x-monotone (or monotone, for short). The monotone crossing number mon-cr(G)
of a graph G is the minimum of cr(D), taken over all monotone drawings D of G.

A rectilinear drawing ofG is a drawing ofG in which the vertices are represented
by points in general position (no three points lie on a common line and all x-
coordinates of vertices are distinct) and each edge is represented by a straight-line
segment. The rectilinear crossing number cr(G) of a graph G is the smallest
number of crossings in a rectilinear drawing of G.
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A drawing D of a graph G is pseudolinear if the edges of D can be extended
to unbounded simple curves that cross each other exactly once, thus forming an
arrangement of pseudolines. The pseudolinear crossing number c̃r(G) of G is the
minimum number of crossings in a pseudolinear drawing of G.

Vertices of a pseudolinear drawing D of the complete graph Kn together with
the

(
n
2

)
pseudolines extending the edges are said to form a pseudoarrangement of

points. Note that the pseudoarrangement of points extending D is usually not
unique as there is a certain freedom in choosing where the pseudolines extending
disjoint noncrossing edges of D cross.

It is well-known that every arrangement of pseudolines can be made x-monotone
by a suitable isotopy of the plane (this follows, for example, by the duality
transform established by Goodman [Goo80, GP84]). Therefore, every pseudolinear
drawing of a graph G is isotopic to an x-monotone pseudolinear drawing of G.
Every rectilinear drawing of G is x-monotone and pseudolinear, but there are
pseudolinear drawings of Kn that cannot be “stretched” to rectilinear drawings.
Altogether, we have cr(G) ≤ mon-cr(G) ≤ c̃r(G) ≤ cr(G) for every graph G.

The monotone crossing number has been introduced by Valtr [Val05] and
recently further studied by Pach and Tóth [PT12], who showed that mon-cr(G) <
2cr(G)2 holds for every graph G. On the other hand, they showed that the
monotone crossing number and the crossing number are not always the same:
there are graphs G with arbitrarily large crossing numbers such that mon-cr(G) ≥
7
6
cr(G)− 6.
The pseudolinear crossing number of Kn is known to be asymptotically larger

than Z(n): this follows from the lower bound c̃r(Kn) ≥ (277/729)
(
n
4

)
−O(n3) by

Ábrego et al. [ACFM+12, AFMLS08] and from the simple upper bound Z(n) ≤
3
8

(
n
4

)
+ O(n3). It is not known whether cr(Kn) = c̃r(Kn) for all values of n, but

there are graphs for which the rectilinear crossing number is strictly larger than
the pseudolinear one [HVLnS14]. More detailed discussion on the bounds for
c̃r(Kn) and cr(Kn) can be found in Section 4.4.

Generalizing the notion of a simple drawing, we call a drawing of a graph G
semisimple if adjacent edges do not cross but independent edges may cross more
than once. The monotone semisimple odd crossing number of G (called monotone
odd + by Schaefer [Sch14]), denoted by mon-ocr+(G), is the smallest number
of pairs of edges that cross an odd number of times in a monotone semisimple
drawing of G. Note that we have mon-ocr+(G) ≤ mon-cr(G) for every graph G.
We also remark that for this notion of the crossing number, optimal drawings do
not have to be simple.

In Section 4.2, we prove Hill’s conjecture for monotone crossing number and
for monotone semisimple odd crossing number. We also very briefly survey further
progress on this conjecture that has been made in the last three years. Then we
show a combinatorial characterization of simple and semisimple monotone drawings
of Kn in Section 4.3. In Section 4.4, a similar combinatorial characterization
of pseudolinear drawings of Kn is used to obtain current best asymptotic lower
bound on c̃r(Kn). We finish this chapter by mentioning some open problems, one
of which is a strengthening of Hill’s conjecture; see Section 4.5.
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v1 v2 v3 v4 v5 v6 v7 v8

Figure 4.1: An example of a 2-page book drawing of K8 with Z(8) = 18 crossings
obtained by Blažek and Koman [BK64].

4.2 Hill’s conjecture and monotone drawings

The drawings of complete graphs with Z(n) crossings obtained by Blažek and
Koman [BK64] (see also [Har02]) are 2-page book drawings. In such drawings
the vertices are placed on a line l and each edge is fully contained in one of
the half-planes determined by l. An example of such drawing can be found in
Figure 4.1. Since 2-page book drawings may be considered as a strict subset of
x-monotone drawings, we have mon-cr(Kn) ≤ Z(n) for every positive integer n.

Here, we prove Hill’s conjecture for monotone semisimple drawings by providing
a lower bound on mon-ocr+(Kn) that matches the upper bound obtained from
the drawings of Kn by Blažek and Koman [BK64].

Theorem 4.1. For every positive integer n, we have

mon-ocr+(Kn) = mon-cr(Kn) = Z(n).

4.2.1 Proof of Theorem 4.1

Let P denote a set of n points in the plane in general position and let k be an
integer satisfying 0 ≤ k ≤ n− 2. The line segment joining a pair of points p and
q in P is a k-edge (≤k-edge) if there are exactly (at most, respectively) k points
of P in one of the open half-planes defined by the line pq.

Ábrego and Fernández-Merchant [AFM05] and Lovász et al. [LVWW04] dis-
covered a relation between the numbers of k-edges (or ≤k-edges) in P and
the number of convex 4-tuples of points in P , which is equal to the number
of crossings of the complete geometric graph with vertex set P . This relation
transforms every lower bound on the number of ≤k-edges to a lower bound
on the number of crossings. Using this method, many incremental improve-
ments on the rectilinear and pseudolinear crossing number of Kn have been
achieved [ABFM+08, ACFM+12, AFM05, AGOR07, BS06, LVWW04].

Ábrego et al. [AAFM+13] showed that every 2-page book drawing D of Kn

satisfies cr(D) ≥ Z(n). To prove this, Ábrego et al. [AAFM+13] generalized the
notion of k-edges to arbitrary simple drawings of complete graphs. They also
introduced the notion of ≤≤k-edges, which capture the essential properties of
2-page book drawings better than ≤k-edges. We show that the approach using
≤≤k-edges can be generalized to arbitrary semisimple x-monotone drawings.
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For a semisimple drawing D of Kn and distinct vertices u and v of Kn, let γ be
the oriented arc representing the edge {u, v}. If w is a vertex of Kn different from
u and v, then we say that w is on the left (right) side of γ if the topological triangle
uvw with vertices u, v, and w traced in this order is oriented counter-clockwise
(clockwise, respectively). This generalizes the definition introduced by Ábrego et
al. [AAFM+13] for simple drawings.

A k-edge in D is an edge uv of D that has exactly k vertices on the same side
(left or right). Since every k-edge has n− 2− k vertices on the other side, every
k-edge is also an (n − 2 − k)-edge and so every edge of D is a k-edge for some
integer k where 0 ≤ k ≤ ⌊n/2⌋ − 1.

Analogously to the case of point sets, an i-edge in D with i ≤ k is called a
≤k-edge. Let Ei(D) be the number of i-edges in D and E≤k(D) the number of

≤k-edges in D. Clearly, E≤k(D) =
∑k

i=0Ei(D). Similarly, the number E≤≤k(D)
of ≤≤k-edges of D is defined by the following identity for every 0 ≤ k ≤ ⌊n/2⌋−1.

E≤≤k(D) :=
k∑

j=0

E≤j(D) =
k∑

i=0

(k + 1− i)Ei(D). (4.1)

For convenience, we define E≤≤−1(D) := 0 and E≤≤−2(D) := 0.
Considering the only three different simple drawings of K4 up to a homeo-

morphism of the plane, Ábrego et al. [AAFM+13] showed that the number of
crossings in a simple drawing D of Kn can be expressed in terms of the number
of k-edges in the following way.

Lemma 4.2 ([AAFM+13]). Every simple drawing D of Kn satisfies

cr(D) = 3

(
n

4

)
−

⌊n/2⌋−1∑

k=0

k(n− 2− k)Ek(D), (4.2)

which can be equivalently rewritten as

cr(D) = 2

⌊n/2⌋−2∑

k=0

E≤≤k(D)− 1

2

(
n

2

)⌊
n− 2

2

⌋
− 1

2
(1 + (−1)n)E≤≤⌊n/2⌋−2(D).

Proof. We claim that every simple drawing of K4 is plane-homeomorphic to one
of the drawings in Figure 4.2. In the proof of this claim, we use A, B, and C to
denote these three homeomorphism classes.

First, we show that there is at most one crossing in every simple drawing of K4.
Assume that two edges ac and bd of a simple drawing D′ of K4 cross at a point x.
Since D′ is simple, no edge crosses the closed curve abx. In particular, the edges
ab and cd do not cross. Similarly, bc and ad share no crossing. Every other pair
of edges consists of two adjacent edges that do not cross, as D′ is simple.

Assuming that only edges ac and bd can cross in D′, the edges ab, bc, cd, and
ad form a hamiltonian cycle C of non-crossed edges. Once C is drawn, the edges
ac and bd can be drawn either both in the interior of C, both in the exterior of C
or one in the interior and the other in the exterior of C. These three possibilities
correspond to drawings B, C, and A in Figure 4.2, respectively.

The drawing A is not plane-homeomorphic to B nor C, as it has no crossing.
The drawings B and C are not plane-homeomorphic, since such homeomorphism of
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A B C

Figure 4.2: The three homeomorphism classes of simple drawings of K4. The
green edges are 1-edges.

the plane would map a compact set (closure of the interior of C) to a non-compact
set (closure of the exterior of C), which is impossible.

Let D be a simple drawing of Kn. A separation in D is an unordered triple
{ab, c, d}, where ab is an edge of D, c, d are vertices of D distinct from a, b, and the
orientations of the two triangles abc and abd are opposite. Observe that {ab, c, d}
is a separation in D if and only if ab is a 1-edge in the complete subgraph of D
induced by the vertices a, b, c, d. The total number of separations in D relates to
both the crossing number and the numbers of k-edges in the following way.

(i) Every k-edge in D belongs to exactly k(n− k − 2) separations.

(ii) Every 4-tuple of vertices inducing a crossing contributes two separations,
and every 4-tuple of vertices inducing a planar drawing of K4 contributes
three separations. In particular, for every drawing D′ that is induced by 4
vertices of D we have the equality cr(D′) + E1(D

′) = 3.

Fact (i) is a direct consequence of the definitions. Fact (ii) is easily seen by
inspecting the three homeomorphism classes of simple drawings of K4 in the plane.

Let nA, nB, and nC denote the number of 4-tuples of vertices of D that induce
a drawing of K4 contained in the homeomorphism class A, B, and C, respectively.
Clearly, nA + nB + nC =

(
n
4

)
.

We use double-counting on the number s of separations in D. On one hand,
we have s = 3nA + 2nB + 2nC by Fact (ii). On the other hand, Fact (i) implies

s =
∑⌊n/2⌋−1

k=0 k(n−2−k)Ek(D). Putting these equations together and subtracting
nA + nB + nC =

(
n
4

)
three times, we obtain

nB + nC = 3

(
n

4

)
−

⌊n/2⌋−1∑

k=0

k(n− 2− k)Ek(D).

The first part of Lemma 4.2 now follows from the equality cr(D) = nB + nC .
To finish the proof, it remains to rewrite the expression of cr(D) into the

form that is in the second part of the lemma. To do so, we first observe that
Ek(D) = E≤k(D) − E≤k−1(D) and E≤k(D) = E≤≤k(D) − E≤≤k−1(D) for every
1 ≤ k ≤ ⌊n/2⌋ − 1. Consequently, we have Ek(D) = E≤≤k(D) − 2E≤≤k−1(D) +
E≤≤k−2(D) for k ≥ 2. Note that the last equation is true even for k ∈ {0, 1},
since E≤≤−1(D) = 0 and E≤≤−2(D) = 0.

Using these equalities, the sum in the expression of cr(D) can be rewritten as
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follows.

⌊n/2⌋−1∑

k=0

k(n− 2− k)Ek(D)

=

⌊n/2⌋−1∑

k=0

k(n− 2− k) (E≤≤k(D)− 2E≤≤k−1(D) + E≤≤k−2(D))

=

⌊n/2⌋−3∑

k=0

(k(n− 2− k)− 2(k + 1)(n− 3− k) + (k + 2)(n− 4− k))E≤≤k(D))

+ (⌊n/2⌋ − 1)(n− 1− ⌊n/2⌋)E≤≤⌊n/2⌋−1(D) + (−2(⌊n/2⌋ − 1)(n− 1− ⌊n/2⌋)
+ (⌊n/2⌋ − 2)(n− ⌊n/2⌋))E≤≤⌊n/2⌋−2(D)

= −2

⌊n/2⌋−3∑

k=0

E≤≤k(D) + (⌊n/2⌋ − 1)(n− 1− ⌊n/2⌋)E≤≤⌊n/2⌋−1(D)

+ (−2(⌊n/2⌋ − 1)(n− 1− ⌊n/2⌋) + (⌊n/2⌋ − 2)(n− ⌊n/2⌋))E≤≤⌊n/2⌋−2(D).

Since E≤≤⌊n/2⌋−1(D) = E≤≤⌊n/2⌋−2(D) +E≤⌊n/2⌋−1(D) = E≤≤⌊n/2⌋−2(D) +
(
n
2

)
,

we have

cr(D) = 3

(
n

4

)
−

⌊n/2⌋−1∑

k=0

k(n− 2− k)Ek(D) = 3

(
n

4

)
+ 2

⌊n/2⌋−3∑

k=0

E≤≤k(D)

+ (n+ 1− 2⌊n/2⌋)E≤≤⌊n/2⌋−2(D)− (⌊n/2⌋ − 1)(n− 1− ⌊n/2⌋)
(
n

2

)

= 2

⌊n/2⌋−3∑

k=0

E≤≤k(D)− 1

2

(
n

2

)⌊
n− 2

2

⌋
+

{
E≤≤⌊n/2⌋−2(D) if n is even,
2E≤≤⌊n/2⌋−2(D) if n is odd.

Lemma 4.2 generalizes the relation found by Ábrego and Fernández-Mer-
chant [AFM05]. We further generalize it to semisimple drawings D of Kn where
cr(D) is replaced by ocr(D), which counts the number of pairs of edges that cross
an odd number of times in D.

Lemma 4.3. Every semisimple drawing D of Kn satisfies

ocr(D) = 2

⌊n/2⌋−2∑

k=0

E≤≤k(D)− 1

2

(
n

2

)⌊
n− 2

2

⌋
− 1

2
(1 + (−1)n)E≤≤⌊n/2⌋−2(D).

We recall that a face of a drawing D in the plane is a connected component of
the complement of all the edges and vertices of D in R2. The outer face of D is
the unbounded face of D.

Proof. To generalize Lemma 4.2 to semisimple drawings, we observe that semisim-
ple drawings of K4 can be classified analogously as the simple drawings of K4. In
particular, the following claim implies that the equality ocr(D) + E1(D) = 3 is
still satisfied for every semisimple drawing D of K4.
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Figure 4.3: Illustrations to the proof of Lemma 4.3.

Claim. A semisimple drawing D of K4 has at most one pair of edges crossing an
odd number of times. Moreover, D has three separations if ocr(D) = 0 and two
separations if ocr(D) = 1.

In the rest of the proof we prove the claim. Let D be a semisimple drawing
of K4. Suppose that ocr(D) = 0. Let abc be a triangle in D and let d be the
fourth vertex of D; see part (a) of Figure 4.3. If the edge ad crosses bc, then either
d and b share no face in the drawing of the subgraph with edges ab, ac, ad, bc, or d
and c share no face in the drawing of the subgraph with edges ab, ac, ad, bc. This
means that one of the edges bd or cd either crosses an adjacent edge or crosses
another edge an odd number of times. Therefore, the edge da has no crossing
with the triangle abc. Analogous argument for the edges db and dc shows that D
has no crossings at all. In particular, D has three separations; see Figure 4.2, left.

Now suppose that ocr(D) ≥ 1 and let ac and bd be two edges that cross an
odd number of times. Since all the other edges are adjacent to both ac and bd,
the vertices a, b, c, d share a common face F in the drawing of the subgraph with
edges ac, bd. Moreover, the cyclic order of the vertices along the boundary of F is
a, b, c, d, either clockwise or counter-clockwise; see part (b) of Figure 4.3.

We show that at most one more pair of edges can cross, either ab and cd, or
ad and bc, but only an even number of times. For example, in the drawing of
the subgraph with edges ac, bd, ab, the vertices c and d belong to the same face,
and the edge cd is allowed to cross only the edge ab, each time switching faces.
If ab and cd cross, then a and d share a unique face Fa,d in the drawing of the
graph K with edges ac, bd, ab, cd, and c and b share a unique face Fb,c different
from Fa,d. Since the edges ad and bc are adjacent to all edges of K, the edge
ad lies completely in Fa,d, the edge bc lies completely in Fb,c and thus ad and bc
cannot cross. A symmetric argument shows that if ab and cd are disjoint, then ad
and bc are either disjoint or cross an even number of times. In any case, we have
ocr(D) ≤ 1.

It remains to show that every semisimple drawing D of K4 with ocr(D) = 1
has exactly two 1-edges. More precisely, we show that the two 1-edges always
form a perfect matching.

Let e be an edge in D incident with the outer face. An edge flip is an operation
where the portion of e incident with the outer face is redrawn along the other
side of the drawing; see Figure 4.4. For drawings on the sphere, the edge flip is
just a homeomorphism of the sphere. For every bounded face F of D, there is a
sequence of edge flips that makes F the outer face.

If D is a semisimple drawing of K4, then every edge flip of an edge e changes
the orientation of the two triangles adjacent to e. Consequently, exactly the four
edges adjacent to e, forming a 4-cycle, change from 1-edges to 0-edges or vice
versa. Also observe that the edge flip of e can be performed only if e is a 0-edge.
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a b

cd

a b

cd

Figure 4.4: An edge flip of ab.

It follows that 1-edges form a perfect matching in D if and only if they form a
perfect matching in the drawing obtained by the edge flip.

Let D be a semisimple drawing of K4 with ocr(D) = 1. Let ac and bd be
the two edges that cross an odd number of times. By performing edge flips, we
may assume that all the vertices are adjacent to the outer face of the drawing of
the subgraph H with edges ac and bd. Each edge e of the remaining four edges
can be drawn in two essentially different ways with respect to H, which differ
just by an edge flip of e in H + e; see Figure 4.4. In total, there are 16 possible
combinations. We cannot, however, assume any particular combination, since not
all edge flips are always available. Observe that the orientations of all triangles are
determined by the four binary choices for the edges ab, bc, cd, ad. Also, changing
the choice for one edge e has the same effect on the orientations of the triangles
as the edge flip of e. For one particular choice, for example the one yielding the
middle drawing in Figure 4.2, the 1-edges form a perfect matching. Changing
the choice for a subset of edges yields either a perfect matching of 1-edges or a
complete graph of 1-edges. However, the latter option is excluded by the fact that
in every semisimple drawing the edges incident with the outer face are 0-edges.
This finishes the proof of the claim and the lemma.

Considering ≤k-edges, Ábrego and Fernández-Merchant [AFM05] and Lovász
et al. [LVWW04] proved that for rectilinear drawings of Kn, the inequality E≤k ≥
3
(
k+2
2

)
together with (4.2) gives cr(G) ≥ Z(n). However, there are simple x-

monotone (even 2-page book) drawings of Kn where E≤k < 3
(
k+2
2

)
for k =

1 [AAFM+13]. Ábrego et al. [AAFM+13] showed that the inequality E≤≤k ≥
3
(
k+3
3

)
, which is implied by inequalities E≤j ≥ 3

(
j+2
2

)
for j ≤ k, is satisfied by

all 2-page book drawings. We show that the same inequality is satisfied by all
x-monotone semisimple drawings of Kn.

Let {v1, v2, . . . , vn} be the vertex set of Kn. Note that we can assume that all
vertices in an x-monotone drawing lie on the x-axis. We also assume that the
x-coordinates of the vertices satisfy x(v1) < x(v2) < · · · < x(vn).

The following observation describes the structure of k-edges incident to vertices
on the outer face in semisimple drawings of Kn; see part (a) of Figure 4.5.

Observation 4.4. Let D be a semisimple drawing of Kn, not necessarily x-mono-
tone. Let v be a vertex incident to the outer face of D and let γi be the ith edge
incident to v in the counter-clockwise order so that γ1 and γn−1 are incident
to the outer face in a small neighborhood of v. Let vki be the other endpoint
of γi. Then for every i, j, 1 ≤ i < j ≤ n − 1, the triangle vkivvkj is oriented
clockwise. Consequently, for every k with 1 ≤ k ≤ ⌊n/2⌋, the edges γk and γn−k

are (k − 1)-edges.
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Figure 4.5: (a) k-edges incident with a vertex on the outer face. (b) After removing
vn, at least k + 2− i right edges at vi are invariant ≤k-edges.

For a semisimple x-monotone drawing D of Kn, we use Observation 4.4 for
the vertex vn and the drawing D and then for each i, for the vertex vi and the
drawing of the subgraph induced by vi, vi+1, . . . , vn.

The following definitions were introduced by Ábrego et al. [AAFM+13] for
2-page book drawings. Let D be a semisimple x-monotone drawing of Kn and let
D′ be the drawing obtained from D by deleting the vertex vn together with its
adjacent edges. A k-edge in D is a (D,D′)-invariant k-edge if it is also a k-edge
in D′. It is easy to see that every ≤k-edge in D′ is also a ≤(k + 1)-edge in D. If
0 ≤ j ≤ k ≤ ⌊n/2⌋−1, then a (D,D′)-invariant j-edge is called a (D,D′)-invariant
≤k-edge. Let E≤k(D,D

′) denote the number of (D,D′)-invariant ≤k-edges.
For i < j, the edge vivj is called a right edge at vi. The right edges at vi have

a natural vertical order, which coincides with the order of their crossings with an
arbitrary vertical line separating vi and vi+1. The set of j topmost (bottommost)
right edges at vi is the set of j right edges at vi that are above (below, respectively)
all other right edges at vi in their vertical order.

Lemma 4.5. Let D be a semisimple x-monotone drawing of Kn and let k be
a fixed integer such that 0 ≤ k ≤ (n − 3)/2. For every i ∈ {1, 2, . . . , k + 1},
the k + 2− i bottommost and the k + 2− i topmost right edges at vi are ≤k-
edges in D. Moreover, at least k + 2− i of these ≤k-edges are (D,D′)-invariant
≤k-edges.
Proof. See part (b) of Figure 4.5. The first part of the lemma follows directly
from Observation 4.4. If the edge vivn is one of the k + 2− i topmost right
edges at vi, then the k + 2− i bottommost right edges at vi are (D,D′)-invariant
≤k-edges. Otherwise the k + 2− i topmost right edges at vi are (D,D′)-invariant
≤k-edges.
Corollary 4.6. We have

E≤k(D,D
′) ≥

k+1∑

i=1

(k + 2− i) =

(
k + 2

2

)
.

The following theorem gives a lower bound on the number of ≤≤k-edges in a
semisimple x-monotone drawing of Kn.

Theorem 4.7. Let n ≥ 3 and let D be a semisimple x-monotone drawing of Kn.
Then for every k satisfying 0 ≤ k < n/2− 1, we have

E≤≤k(D) ≥ 3

(
k + 3

3

)
.
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Proof. The proof proceeds by induction on n and k starting at n = 3 and k = −1.
The case n = 3 is trivially true, and the case k = −1 is taken care of by setting
E≤≤−1(D) := 0 for every drawing D. Let n ≥ 4 and let D be a semisimple x-
monotone drawing of Kn. For the induction step we remove the point vn together
with its adjacent edges to obtain a drawing D′ of Kn−1, which is also semisimple
and x-monotone.

Using Observation 4.4 we see that, for 0 ≤ i ≤ k < n/2−1, there are two i-edges
adjacent to vn in D and together they contribute with 2

∑k
i=0(k + 1− i) = 2

(
k+2
2

)

to E≤≤k(D) by (4.1).
Let γ be an i-edge in D′. If i ≤ k, then γ contributes with (k − i) to the sum

E≤≤k−1(D
′) =

k−1∑

i=0

(k − i)Ei(D
′).

We already observed that γ is either an i-edge or an (i + 1)-edge in D. If γ is
also an i-edge in D (that is, γ is a (D,D′)-invariant i-edge), then it contributes
with (k + 1− i) to E≤≤k(D). This is a gain of +1 towards E≤≤k−1(D

′). If γ is an
(i+ 1)-edge in D, then it contributes only with (k − i) to E≤≤k(D). Therefore we
have

E≤≤k(D) = 2

(
k + 2

2

)
+ E≤≤k−1(D

′) + E≤k(D,D
′).

By the induction hypothesis we know that E≤≤k−1(D
′) ≥ 3

(
k+2
3

)
and thus we

obtain

E≤≤k(D) ≥ 3

(
k + 3

3

)
−
(
k + 2

2

)
+ E≤k(D,D

′).

The theorem follows by plugging the lower bound from Corollary 4.6.

We now show how to derive Theorem 4.1. Let us recall that it remains to show
the lower bound mon-ocr+(Kn) ≥ Z(n), as the upper bound mon-cr(Kn) ≤ Z(n)
follows from drawings obtained by Blažek and Koman [BK64].

Let D be a semisimple x-monotone drawing of Kn for n ≥ 3. By Lemma 4.3
and Theorem 4.7, we have

ocr(D) ≥ 2

⌊n/2⌋−2∑

k=0

3

(
k + 3

3

)
− 1

2

(
n

2

)⌊
n− 2

2

⌋
− 3

2
(1 + (−1)n)

(⌊n/2⌋+ 1

3

)

= 6

(⌊n/2⌋+ 2

4

)
− 1

2

(
n

2

)⌊
n− 2

2

⌋
− 3

2
(1 + (−1)n)

(⌊n/2⌋+ 1

3

)

The last expression can be rewritten as (n− 1)2(n− 3)2/64 if n is odd and as
n(n− 2)2(n− 4)/64 if n is even. In other words, we obtain ocr(D) ≥ Z(n). This
finishes the proof of Theorem 4.1.

4.2.2 Further progress on Hill’s conjecture

Although Hill’s conjecture remains open, some progress has been made in the
last three years. Here, we very briefly survey this recent development and we
introduce the current state of knowledge on this famous problem.
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Pedro Ramos [Ram13] introduced the term shellable drawings of Kn for which
the crossing number is always at least Z(n). Ábrego et al. [AAFM+14a] later
observed that a still more general condition, s-shellability for some s ≥ ⌊n/2⌋, is
sufficient, since the depth of the recursion in the proof of Theorem 4.1 is only n/2.
For integers n and s ≥ ⌊n/2⌋, a drawing of the complete graph with vertex set V
of size n is called s-shellable if there is a subset {v1, v2, . . . , vs} of vertices from V
such that for every pair i, j with 1 ≤ i < j ≤ s, the vertices vi and vj are on
the outer face of the drawing induced by V \ {v1, v2, . . . , vi−1, vj+1, vj+2, . . . , vs}.
This is slightly more restrictive compared to the original definition [AAFM+14a],
where v1 and vs are not required to be incident with the outer face. The notions
of a shellable drawing of Kn and an n-shellable drawing of Kn coincide.

The class of s-shellable drawings includes, for example, all drawings with
a crossing-free cycle of length s, with at least one edge of the cycle incident
with the outer face [AAFM+14a]. In particular, the class of s-shellable drawings
of Kn includes x-bounded drawings of Kn, which also form a subclass of shellable
drawings and generalize x-monotone drawings. A drawing of a graph is x-bounded
if no two vertices share the same x-coordinate and every interior point of every
edge uv lies in the interior of the strip bounded by two vertical lines passing
through the vertices u and v.

It is not a priori clear that shellable drawings are essentially different from
monotone or x-bounded drawings, since the conditions for shellability and x-
boundedness are very similar at first sight. Balko, Fulek, and Kynčl [BFK15]
showed that simple shellable drawings are indeed more general than simple
monotone drawings.

In 2014, essentially only two classes of drawings of Kn with Z(n) crossings were
known: Hill’s so-called cylindrical drawings [HH63] and 2-page book drawings
by Blažek and Koman [BK64]. Ábrego et al. [AAFM+14a] showed that Hill’s
drawings of Kn are ⌊n/2⌋-shellable and that 2-page book drawings of Kn are
n-shellable. Thus it was natural to ask whether all drawings of sufficiently large
cardinality n with Z(n) crossings are s-shellable for some s ≥ ⌊n/2⌋. Ábrego et
al. [AAFM+14b] answered this question in the negative and constructed drawings
Dm,m,1 of K2m+1 for every m ≥ 5 such that cr(Dm,m,1) = Z(2m + 1) and every
edge is crossed by at least one other edge in Dm,m,1. In particular, the drawing
Dm,m,1 is not s-shellable for any s ≥ ⌊n/2⌋, as every face of Dm,m,1 contains at
most one vertex on its boundary.

Very recently, Ábrego et al. [AAFM+15] introduced a more general variant of
shellability. For s ∈ N0, a drawing D of Kn is s-bishellable if there is a face F of
D and subsets a0, . . . , as and bs, . . . , b0 of vertices of D, each consisting of distinct
vertices of Kn, such that the following conditions are satisfied:

(1) for every i ∈ {0, . . . , s}, the vertex ai is incident with the face of D −
{a0, . . . , ai−1} that contains F ,

(2) for every i ∈ {0, . . . , s}, the vertex bi is incident with the face of D −
{b0, . . . , bi−1} that contains F ,

(3) for every i ∈ {0, . . . , s}, the intersection {a0, . . . , ai}∩{bs−i, . . . , b0} is empty.

If a drawing D is s-shellable with a witnessing subset v1, . . . , vs, then D is
(s− 2)-bishellable with subsets a0, . . . , as−2 and bs−2, . . . , b0, where ai := vi+1 and
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vi vj vk

vi vj vk

σ(i, j, k) = +σ(i, j, k) = −

Figure 4.6: The negative and the positive signature σ(i, j, k).

bi := vs−i. Also, if D is s-bishellable, then D is also (s− 1)-bishellable. We say
that a drawing is bishellable if it is (⌊n/2⌋ − 2)-bishellable.

Ábrego et al. [AAFM+15] proved a version of Theorem 4.1 for currently most
general class of drawings by showing that if D is a simple bishellable drawing
of Kn, then cr(D) ≥ Z(n). They also provided a drawing of K11 with Z(11)
crossings that is bishellable, but not s-shellable for any s ≥ 5. However, the
drawings Dm,m,1 are not bishellable. In fact, it seems likely that the portion of
bishellable drawings of Kn with Z(n) crossings vanishes as n grows [AAFM+15].

Theorem 4.1 can be strengthened also for other notions of the crossing number.
We call a drawing of a graph weakly semisimple if every pair of adjacent edges
cross an even number of times; independent edges may cross arbitrarily. The
monotone weakly semisimple odd crossing number of a graph G, denoted by
mon-ocr±(G), is the smallest number of pairs of edges that cross an odd number
of times in a monotone weakly semisimple drawing of G. Note that we have
mon-ocr±(G) ≤ mon-ocr+(G) for every graph G.

Balko, Fulek, and Kynčl [BFK15] proved a stronger version of Theorem 4.1 by
showing mon-ocr±(Kn) ≥ Z(n) for every positive integer n. They also extended
Theorem 4.1 by showing that every semisimple shellable drawing D of Kn satisfies
ocr(D) ≥ Z(n).

4.3 Monotone drawings of Kn

In this section we develop a combinatorial characterization of simple and semisimple
x-monotone drawings based on the signature functions introduced by Peters and
Szekeres [PS06] as generalizations of order types of planar point sets. Let Tn be
the set of ordered triples (i, j, k) with i < j < k, from the set [n] and let Σn be the
set of signature functions σ : Tn → {−,+}. The set Tn may be also regarded as
the set

(
[n]
3

)
of all unordered triples, since we write all the triples in the increasing

order of their elements.
Let D be an x-monotone drawing of the complete graph Kn = (V,E) with

vertices v1, v2, . . . , vn such that their x-coordinates satisfy x(v1) < · · · < x(vn). We
assign a signature function σ ∈ Σn to the drawing D according to the following rule.
For every edge e = {vi, vk} ∈ E and every integer j ∈ (i, k), let σ(i, j, k) = − if
the point vj lies above the arc representing the edge e and σ(i, j, k) = + otherwise;
see Figure 4.6. Note that if the drawing D is also semisimple, then a triangle
vivjvk, with j ∈ (i, k), is oriented clockwise (counter-clockwise) if and only if
σ(i, j, k) = − (σ(i, j, k) = +, respectively).

It is easy to see that, for every signature function σ ∈ Σn, there exists an
x-monotone drawing that induces σ. However, some signature functions are
induced only by drawings that are not semisimple. We show a characterization of
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a b c d

−

+ +

Figure 4.7: A 4-tuple (a, b, c, d) of the form +−+ξ forces two adjacent edges to
cross.

simple and semisimple x-monotone drawings by small forbidden configurations in
the signature functions.

For integers a, b, c, d ∈ [n] with a < b < c < d, signs ξ1, ξ2, ξ3, ξ4 ∈ {−,+} and
a signature function σ ∈ Σn, we say that the 4-tuple (a, b, c, d) is of the form
ξ1ξ2ξ3ξ4 in σ if

σ(a, b, c) = ξ1, σ(a, b, d) = ξ2, σ(a, c, d) = ξ3, and σ(b, c, d) = ξ4.

For a sign ξ ∈ {−,+} we use ξ to denote the opposite sign, that is, if ξ = +
then ξ = − and conversely, if ξ = − then ξ = +.

Theorem 4.8. A signature function σ ∈ Σn can be realized by a semisimple
x-monotone drawing if and only if every 4-tuple of indices from [n] is of one of
the forms

++++,−−−−,++−−,−−++,−++−,+−−+,

−−−+,+++−,+−−−,−+++

in σ. The signature function σ can be realized by a simple x-monotone drawing if,
in addition, there is no 5-tuple (a, b, c, d, e) with 1 ≤ a < b < c < d < e ≤ n such
that

σ(a, b, e) = σ(a, d, e) = σ(b, c, d) = σ(a, c, e).

Proof. Let σ be a signature function with a forbidden 4-tuple, that is, an ordered 4-
tuple (a, b, c, d) whose form in σ is not listed in the statement of the theorem. Such
a 4-tuple (a, b, c, d) is one of the forms ξ1ξ1ξ1ξ2 or ξ2ξ1ξ1ξ1 where ξ1, ξ2 ∈ {−,+}.
If (a, b, c, d) is of the form +−+ξ where ξ ∈ {−,+} is an arbitrary sign, then the
edges vavc and vavd are forced to cross between the vertical lines going through vb
and vc; see Figure 4.7. However this is not allowed in a semisimple drawing and
we have a contradiction. The other cases are symmetric.

On the other hand, let σ be a signature function such that every 4-tuple is of
one of the ten allowed forms in σ. We will construct a semisimple x-monotone
drawing D of Kn that induces σ. We use the points vi := (i, 0), i ∈ [n], as vertices
and connect consecutive pairs of vertices by straight-line segments.

For m ∈ [n], let Lm be the vertical line containing vm. In every x-monotone
drawing, the line Lm intersects every edge vivj with 1 ≤ i < m ≤ j ≤ n
exactly once. To draw the edges of Kn, it suffices to specify the positions of their
intersections with the lines Lm and to draw the edges as polygonal lines with bends
at these intersections. Instead of the absolute position of these intersections on Lm,
we only need to determine their vertical total ordering, which we represent by a
total ordering ≺m of the corresponding edges. The edges whose right endpoint is
vm will be ordered by ≺m according to their vertical order in the left neighborhood
of vm. The edges with left endpoint vm are not considered in ≺m.
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The idea of the construction is to interpret the signature function as the set
of above/below relations for vertices and edges and take a set of orderings ≺m

that obey these relations and minimize the total number of crossings. In the rest
of the proof we show a detailed, explicit construction of the orderings ≺m which
induce an x-monotone semisimple drawing.

For i ∈ [n], we define an ordering li of the edges with a common left endpoint
vi (that is, the right edges at vi) in the following way. If e = vivj and f = vivk,
i < j, k, are two such edges, then we set eli f if either j < k and σ(i, j, k) = +,
or k < j and σ(i, k, j) = −. Clearly, the relation li is irreflexive, antisymmetric,
and for every pair of right edges e, f at vi either eli f or f li e. To show that li

is a total ordering, it remains to prove that it is transitive. Suppose for contrary
that there are three edges e = vivj , f = vivk, and g = vivl with i < j < k < l such
that eli f , f li g and gli e. Then σ(i, j, k) = +, σ(i, k, l) = + and σ(i, j, l) = −,
so the 4-tuple i, j, k, l is of the form +−+ξ in σ, which is forbidden. Similarly,
if f li e, e li g and g li f , then the 4-tuple i, j, k, l is of the form −+−ξ in σ,
which is forbidden as well. The remaining four cases can be treated similarly, we
always obtain one of the previous two forbidden forms in σ.

We proceed by induction on m. In the case m = 1 the ordering ≺1 is empty.
For m = 2 the ordering ≺2 compares only edges with the common endpoint v1, so
we can set ≺2 := l1. Since all the edges are drawn by line segments starting in a
common endpoint, no crossings appear between L1 and L2.

Let m > 2. For the inductive step we consider the following sets S1, . . . , S6 of
edges which intersect Lm−1 and Lm (see Figure 4.8):

S1 := {vivj | σ(i,m− 1, j) = −, σ(i,m, j) = −},
S2 := {vm−1vj | σ(m− 1,m, j) = −},
S3 := {vivj | σ(i,m− 1, j) = +, σ(i,m, j) = − or j = m},
S4 := {vivj | σ(i,m− 1, j) = −, σ(i,m, j) = + or j = m},
S5 := {vm−1vj | σ(m− 1,m, j) = +},
S6 := {vivj | σ(i,m− 1, j) = +, σ(i,m, j) = +}.

The edges within sets S2 and S5 are ordered according to lm−1 and the edges in
each of the remaining sets Sk according to ≺m−1. For e ∈ Sk and f ∈ Sl where
k < l, we set e ≺m f . Observe that ≺m is a total ordering.

We show that the drawing D determined by the orders ≺m is semisimple.
Suppose for contradiction that two adjacent edges e = vivj and f = vivk, with
i < j, k and eli f , cross. Their leftmost crossing occurs between lines Lm−1 and
Lm, where i < m− 1 and m ≤ j, k. There are three cases:

(i) e ∈ S6 and f ∈ S3,

(ii) e ∈ S4 and f ∈ S1, or

(iii) e ∈ S4 and f ∈ S3.

We analyze the cases (i) and (iii) together, case (i) and case (ii) are symmetric.
If j < k then σ(i,m, k) = − and by the definition of the relation li, we have
σ(i, j, k) = +. This further implies thatm < j and σ(i,m, j) = +. Thus (i,m, j, k)
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Figure 4.8: Placing edges and minimizing the number of crossings.
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Figure 4.9: A forbidden 5-tuple (a, b, c, d, e) forces at least two crossings.

forms a forbidden 4-tuple. If k < j, then σ(i,m, j) = +, σ(i, k, j) = −, which
implies that m < k and σ(i,m, k) = −, and so we obtain a forbidden 4-tuple
(i,m, k, j).

Now suppose that two adjacent edges e = vivk and f = vjvk, with i, j < k,
cross. Their leftmost crossing occurs between lines Lm−1 and Lm, where i, j ≤ m−1
and m < k. We may assume that f ≺m e and e ≺m−1 f . There are five cases:

(i) e ∈ S6 and f ∈ S3,

(ii) e ∈ S4 and f ∈ S1,

(iii) e ∈ S4 and f ∈ S3,

(iv) e ∈ S4 and f ∈ S2, or

(v) e ∈ S5 and f ∈ S3.

Case (i) and case (ii) are symmetric, as well as case (iv) and case (v). Therefore
it is sufficient to consider cases (i), (iii), and (v). In all these three cases σ(j,m, k) =
− and σ(i,m, k) = +. If j < i, then σ(j, i, k) = + since e ≺m−1 f and the edges e
and f do not cross to the left of Lm−1. Hence (j, i,m, k) forms a forbidden 4-tuple
in σ. If i < j, then analogously σ(i, j, k) = − and (i, j,m, k) forms a forbidden
4-tuple in σ. This finishes the proof that D is semisimple.

It remains to show the second part of the theorem. If D is a drawing with a
signature function σ with a forbidden 5-tuple (a, b, c, d, e), then D is not simple
as the edges vave and vbvd are forced to cross at least twice; see Figure 4.9.

Given a signature function σ with no forbidden 4-tuples and 5-tuples we apply
the same construction as before to obtain a semisimple x-monotone drawing D.
We show that D is, in addition, simple. Since D is semisimple, no two crossing
edges have an endpoint in common. By the construction of D, every crossing c of
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Figure 4.10: Edges vivj and vkvl crossing twice imply a forbidden 5-tuple or
4-tuple; case l < j.
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Figure 4.11: Edges vivj and vkvl crossing twice imply a forbidden 5-tuple or
4-tuple; case j < l.

two edges e and f occurs between lines Lm and Lm+1 for some m ∈ [n− 1] and we
say that vm+1 is the right neighbor of c. The right neighbor is either an endpoint
of e or f or it separates the crossings of Lm+1 with e and f . Suppose that there
are edges e = vivj and f = vkvl with i < k < j, l that cross at least twice. We
show that then there is always a forbidden 4-tuple or a forbidden 5-tuple in σ.

Let vm be the right neighbor of the leftmost crossing and vm′ the right neighbor
of the second leftmost crossing of e and f . Observe that i, k < m < m′ ≤ j, l.

First assume that l < j. Refer to Figure 4.10. If σ(i, k, j) = σ(i, l, j) = ξ
for some ξ ∈ {−,+}, then ξ = σ(k,m, l) = σ(i,m, j) and so (i, k,m, l, j) forms a
forbidden 5-tuple. If σ(i, k, j) = σ(i, l, j) = ξ for some ξ ∈ {−,+}, then e and f
cross at least three times and so m′ < l, j. We have ξ = σ(k,m, l) = σ(i,m, j) =
σ(k,m′, l) = σ(i,m′, j). If σ(k,m,m′) = ξ, then (k,m,m′, l) forms a forbidden
4-tuple. If σ(k,m,m′) = ξ, then (i, k,m,m′, j) forms a forbidden 5-tuple.

Conversely let j < l. Refer to Figure 4.11. Assume that σ(i, k, j) = σ(k, j, l) =
ξ for some ξ ∈ {−,+}. Then ξ = σ(k,m, l) = σ(i,m, j). If σ(k,m, j) = ξ,
we get a forbidden 4-tuple (i, k,m, j), otherwise σ(k,m, j) = ξ and we get a
forbidden 4-tuple (k,m, j, l). Finally, assume that σ(i, k, j) = σ(k, j, l) = ξ for
some ξ ∈ {−,+}. The proof in this case is identical to the proof of the case l < j
and σ(i, k, j) = σ(i, l, j) = ξ in the previous paragraph.
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4.4 Pseudolinear crossing number of Kn

All x-monotone pseudolinear drawings of Kn can be characterized in a combi-
natorial way by forbidden 4-tuples in the corresponding signature function, by
further restricting the conditions on the signatures in Theorem 4.8. In fact, the
conditions in Theorem 4.8 are precisely the geometric constraints that Peters and
Szekeres [PS06] used to restrict the set of signature functions in their investigation
of the Erdős–Szekeres conjecture.

Theorem 4.9 ([FW01, BFK15]). A signature function σ ∈ Σn can be realized by
a pseudolinear x-monotone drawing if and only if every ordered 4-tuple of indices
from [n] is of one of the forms

++++,+++−,++−−,+−−−,
−−−−,−−−+,−−++,−+++

in σ.

Theorem 4.9 is a dual analogue of a result by Felsner and Weil [FW01]. A
direct, self-contained proof of Theorem 4.9 was later found by Balko, Fulek, and
Kynčl [BFK15].

We recall that c̃r(G) and cr(G) denote the pseudolinear and the rectilinear
crossing number of a graph G, respectively. We also recall that c̃r(G) ≤ cr(G) for
every graph G, as every rectilinear drawing is pseudolinear.

Both the rectilinear and the pseudolinear crossing number of Kn have at-
tracted a lot of attention; see the survey by Ábrego, Fernández-Merchant, and
Salazar [AFMS13]. For the pseudolinear crossing number of Kn, the best known
lower bound c̃r(Kn) > 0.379972

(
n
4

)
−O(n3) is due to Ábrego et al. [ACFM+12].

Ábrego and Fernández-Merchant [AFM07] proved cr(Kn) < 0.380559
(
n
4

)
+

O(n3) using an iterative procedure that generates arbitrarily large rectilinear
drawings with few crossings from a given base drawing. In his Rectilinear Crossing
Number Project, Aichholzer [Aic] published a list of best known rectilinear drawings
of Kn for n ≤ 100 (this list has been updated recently). Ábrego et al. [ACFM+10]
used one of these drawings to improve the upper bound to cr(Kn) < 0.380544

(
n
4

)
+

O(n3) and also produced new drawings yielding the upper bound cr(Kn) <
0.380488

(
n
4

)
+O(n3). Fabila-Monroy and López [FML14] recently improved this

bound to cr(Kn) < 0.380473
(
n
4

)
+ O(n3) using a simple heuristic, moving the

vertices of an initial rectilinear drawing one by one by a vector chosen randomly
from a product of exponential distributions. The bound of Fabila-Monroy and
López [FML14] has been the best known upper bound on c̃r(Kn).

Here, we improve the upper bound on c̃r(Kn). We note that this is the first
time the leading constant in the best upper bound on c̃r(Kn) is strictly smaller
than in the best upper bound on cr(Kn).

Theorem 4.10. For every positive integer n, we have

c̃r(Kn) < 0.380448

(
n

4

)
+O(n3).

To prove Theorem 4.10, we follow Fabila-Monroy’s and Lopez’s [FML14]
approach and adapt it to pseudolinear drawings. We perform small random
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changes in an initial pseudolinear drawing D of Kn for small n while keeping
track of cr(D). To search the space of configurations efficiently, we use simulated
annealing [Č85, KGJV83], a probabilistic metaheuristic motivated by the ther-
modynamics of annealing in metallurgy. In most of the cases (where n ≥ 42),
we obtain a pseudolinear drawing of Kn with fewer crossings than the current
best known upper bounds. The improvement on the leading constant in c̃r(Kn) is
derived using a pseudolinear version of the construction by Ábrego and Fernández-
Merchant [AFM07].

According to our knowledge, all previous upper bounds on c̃r(Kn) follow from
upper bounds on cr(Kn). It is possible that some of our configurations are not
stretchable; this would hint at the possibility that c̃r(Kn) < cr(Kn) for large
values of n. This it true for general graphs, see [HVLnS14] for a construction
of graphs for which the rectilinear crossing number is strictly larger than the
pseudolinear one.

Some improvements on the leading constant of c̃r(Kn) are illustrated in Fi-
gure 4.12. The results of our experiments can be found on a separate webpage [BK].

42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99
0.38045

0.38050

0.38055

0.38060

0.38065

0.38070

n

cr(Kn): Ábrego et al. [ACFM+10]
cr(Kn): Fabila-Monroy and López [FML14]
cr(Kn): Aichholzer [Aic]
c̃r(Kn): our bounds

Figure 4.12: Improvements on the leading constant in cr(Kn) and c̃r(Kn).

We apply Theorem 4.9 and represent pseudolinear drawings ofKn by signatures,
as they permit a straightforward implementation and allow fast prototyping. It is
a simple observation that in every pseudolinear drawing D of Kn the number of
crossings cr(D) equals the number of 4-tuples of one of the forms ++++, −−−−,
++−−, −−++ in the n-signature realized by D.

4.4.1 Crossing minimization via simulated annealing

Simulated annealing is a probabilistic metaheuristic for minimizing a given objec-
tive function over vast configuration spaces, first described by Kirkpatrick, Gelatt,
and Vecchi [KGJV83] and independently by Černý [Č85]. Here we describe our
implementation of this method.

An n-signature σ is realizable if there is a pseudolinear drawing D of Kn

that realizes σ in the sense described in Section 4.3. A switch of a sign σ(i, j, k),
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(i, j, k) ∈ Tn, is the change of σ(i, j, k) to σ(i, j, k).
The input of the algorithm consists of a realizable n-signature σ0, a parameter

T0 ∈ R, called the temperature, and an upper bound tmax ∈ N on the total number
of steps.

In every step t ∈ {0, . . . , tmax − 1}, we find all triples from the set Tn of triples
(i, j, k) with 1 ≤ i < j < k ≤ n, whose signs can be switched in σt so that the
resulting n-signature is still realizable. Such triples are called switchable in σt. Let
(i, j, k) be a switchable triple in σt chosen uniformly and independently at random
from the set of all switchable triples in σt. We use σ′ to denote the realizable
n-signature obtained from σt by the switch of σt(i, j, k). Let Dt and D

′ be the
pseudolinear drawings of Kn that realize σt and σ

′, respectively.
We set σt+1 := σ′ if c̃r(D′) < c̃r(Dt). In the case c̃r(D′) ≥ c̃r(Dt), we set

σt+1 := σ′ with the acceptance probability p(c̃r(Dt), c̃r(D
′), Tt) and set σt+1 := σt

otherwise. At the end of step t, we update the temperature by setting Tt+1 :=
h(Tt, t) where h is so-called cooling function. In one of our implementations of
the algorithm, we set p(a, b, T ) := e(a−b)/T and h(T, t) := T/ log(t+ 1000).

The algorithm terminates after tmax steps and outputs the realizable n-signa-
ture σtmax .

Note that we allow switches that increase the number of crossings. By being
able to move to a worse drawing, it is possible to jump out of local minima and,
possibly, find a better drawing.

It follows from Theorem 4.9 that in every realizable n-signature σ, a triple
(i, j, k) ∈ Tn is switchable in σ if and only if σ contains no 4-tuple {a, i, j, k} ∈

(
[n]
4

)

of one of the following forms:

(i) •◦◦◦ or ••◦◦ for a < i,

(ii) ◦◦◦◦ or •◦◦◦ for i < a < j,

(iii) ◦◦◦◦ or ◦◦◦• for j < a < k,

(iv) ◦◦◦• or ◦◦•• for k < a.

Here ◦ ∈ {−,+} denotes the sign σ(i, j, k) and • ∈ {−,+} is σ(i, j, k).
After the switch of σt(i, j, k) in step t, only triples contained in a 4-tuple

F ∈
(
[n]
4

)
with i, j, k ∈ F can become or stop being switchable in σt. It can be

shown that exactly one triple in F becomes and exactly one stops being switchable
in σt. Therefore we can update the list of switchable triples in σt in time O(n).

We can update the number of crossings in time O(n), as it is sufficient to check
only 4-tuples from

(
[n]
4

)
that contain i, j, and k. Thus the time complexity of a

single step of our algorithm is O(n).
We obtained new pseudolinear drawings of Kn for small values of n, improving

the previously best pseudolinear drawings in many instances; see Table 4.1. In
particular, we found a pseudolinear drawing of K216 with 33 260 204 crossings.
The proof of Theorem 4.10 is based on this drawing. Signatures of all the new
drawings can be found in [BK].

Compared to the method of Fabila-Monroy and López [FML14], our approach
is, in a certain sense, finer. Fabila-Monroy and López perturb a single vertex
of a rectilinear drawing D of Kn in every step. However, this may lead to a
rather large change in the number of crossings (quadratic in the worst case), as
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n cr(Kn) bounds c̃r(Kn) bounds

42 40 590 [Aic] 40 588
44 49 370 [Aic] 49 366
46 59 463 [Aic] 59 459
48 71 010 [Aic] 71 007
50 84 223 [Aic] 84 219
52 99 161 [Aic] 99 158
54 115 975 [Aic] 115 953
56 134 917 [Aic] 134 901
57 145 164 [Aic] 145 158
58 156 042 [Aic] 156 040
59 167 506 [Aic] 167 490
60 179 523 [Aic] 179 514
63 219 659 [Aic] 219 637
64 234 447 [Aic] 234 441
65 249 962 [Aic] 249 938
66 266 151 [Aic] 266 142
67 283 238 [Aic] 283 230
68 301 057 [Aic] 301 043
69 319 691 [Aic] 319 679
70 339 252 [Aic] 339 241
71 359 645 [Aic] 359 635
72 380 925 [Aic] 380 900

n cr(Kn) bounds c̃r(Kn) bounds

73 403 180 [Aic] 403 166
74 426 398 [Aic] 426 391
76 475 773 [Aic] 475 758
77 502 011 [Aic] 501 997
78 529 278 [Aic] 529 242
79 557 741 [Aic] 557 723
80 587 280 [Aic] 587 251
81 617 930 [Aic] 617 908
83 682 976 [Aic] 682 958
84 717 276 [Aic] 717 222
85 752 971 [Aic] 752 963
86 789 911 [Aic] 789 892
87 828 125 [Aic] 828 107
88 867 887 [Aic] 867 862
89 908 940 [Aic] 908 914
90 951 379 [Aic] 951 323
91 995 478 [Aic] 995 430
92 1 040 946 [Aic] 1 040 897
93 1 087 899 [Aic] 1 087 843
94 1 136 586 [Aic] 1 136 565
96 1 238 646 [ACFM+10] 1 238 490
99 1 404 552 [ACFM+10] 1 404 386

Table 4.1: Best upper bounds on cr(Kn) and on c̃r(Kn) for n < 100. We list the
values of n for which the bounds on c̃r(Kn) are better than the bounds on cr(Kn).

such perturbation can switch more signs in the n-signature realized by D. In our
approach we perform only a single switch per step. Moreover, we use simulated
annealing to avoid being trapped in local minima.

4.4.2 Blowing up pseudolinear drawings

The general approach for bounding cr(Kn) is to blow up a given base drawing
of Kn0 , for some n0 ∈ N, with few crossings so that the blown-up drawing also
contains few crossings. Currently, the best constructions of this type are due to
Ábrego et al. [AFM07, ACFM+10] and give the following lower bound (there are
two constructions, one for each parity of n0).

Theorem 4.11 ([AFM07, ACFM+10]). Let D be a rectilinear drawing of Kn0

that contains a halving matching. Then there is a rectilinear drawing of K2n0 that
contains a halving matching and has 16 cr(D) + (n0/2)(2n

2
0 − 7n0 + 5) crossings.

Here, a halving line in a rectilinear drawing D of Kn is a line that intersects
two vertices u and v of D such that the edge uv is a ⌊(n− 2)/2⌋-edge. A halving
matching in D is an injection from the vertices of D to the set of halving lines
of D such that every vertex v of D is mapped to a halving line incident with v.

Ábrego et al. [AFM07, ACFM+10] showed that an iterative application of
Theorem 4.11 with the base drawing D of Kn0 implies that cr(Kn) is at most

24 cr(D) + 3n3
0 − 7n2

0 +
30
7
n0

n4
0

(
n

4

)
+O(n3) (4.3)
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for every sufficiently large n.
To prove Theorem 4.10, we now translate this method into the pseudolinear

setting. First, we generalize the notion of a halving matching. Let i, j be elements
of [n] with i < j and let σ be an n-signature realized by a pseudolinear drawing
D of Kn. We say that an element a from [n] \ {i, j} is on the left side of the edge
ij in σ if one of the following cases occurs: σ(a, i, j) = + for a < i, σ(i, a, j) = −
for i < a < j, or σ(i, j, a) = + for j < a. The pair {i, j} is a halving pair in σ if
there are exactly ⌊(n− 2)/2⌋ or ⌈(n− 2)/2⌉ elements of [n] \ {i, j} on the left side
of ij. That is, if the edge ij is a ⌊(n− 2)/2⌋-edge in D.

The drawing D contains a halving matching if there is a mapping f : [n] → [n]
such that for every element i from [n] the pair {i, f(i)} is a halving pair in σ and
there are no distinct i, j ∈ [n] with f(i) = j and f(j) = i.

Proposition 4.12. Let D be a pseudolinear drawing of Kn0 that contains a
halving matching. Then there is a pseudolinear drawing D′ of K2n0 that contains
a halving matching and satisfies

cr(D′) = 16 cr(D) + 2n0

(⌈n0

2

⌉2
+
⌊n0

2

⌋2)
− 7n2

0

2
+

5n0

2
.

Proof. Let D be a pseudolinear drawing of Kn0 with vertices v1, . . . , vn0 ordered by
their x-coordinates. We assume without loss of generality that D is x-monotone.
Let f : [n0] → [n0] be the halving matching in the n0-signature realized by D. To
construct D′, we first replace each vertex vi of D with two vertices w2i−1 and
w2i that are placed on the pseudoline vivf(i) within a small neighborhood of vi.
Assuming that pseudolines of D are oriented from left to right, we place w2i after
w2i−1 on vivf(i).

Pseudolines in D are replaced with bundles of pseudolines. Each pseudoline
vivf(i) is replaced with the bundle from part (a) of Figure 4.13. Every other
pseudoline has the form vivj for i ̸= f(j) and j ̸= f(i) and is replaced with the
bundle from part (b) of Figure 4.13. This method can be also described in the
terms of 2n0-signatures, which we used in our implementation of the construction.

vi vf(i)

(a)

(b)

vi vj

Figure 4.13: Replacing pseudolines of D with bundles.

If we draw the new pseudolines very close to the original pseudolines, then
it can be shown that the drawing D′ is indeed pseudolinear. Observe that D′

contains a halving matching f ′ : [2n0] → [2n0] defined as f ′(2i − 1) := 2i and
f ′(2i) := 2f(i) for every i ∈ [n0]. To finish the proof, it remains to count the
number of crossings in D′. This is done similarly as in [AFM07].

We consider several types of 4-tuples of vertices of D′. Four-tuples {wi, wj, wk,
wl} with 1 ≤ ⌈i/2⌉ < ⌈j/2⌉ < ⌈k/2⌉ < ⌈l/2⌉ ≤ n0 add 16cr(D) crossings to cr(D′).
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This is because no two points of such 4-tuple are in the same neighborhood and,
by the construction, this 4-tuple forms a crossing if and only if the 4-tuple
{v⌈i/2⌉, v⌈j/2⌉, v⌈k/2⌉, v⌈l/2⌉} forms a crossing in D.

Four-tuples {wi, wj, wk, wl} that satisfy ⌈i/2⌉ = ⌈j/2⌉ and ⌈k/2⌉ = ⌈l/2⌉ add(
n0

2

)
− n0 crossings to cr(D′), since every such 4-tuple with ⌈k/2⌉ ≠ f(⌈i/2⌉) adds

exactly the crossing in the bundle for the pseudoline v⌈i/2⌉v⌈k/2⌉ and every such
4-tuple with ⌈k/2⌉ = f(⌈i/2⌉) adds no crossing; see Figure 4.13.

In the remaining case wi and wj are in the same neighborhood while wk and
wl are in distinct neighborhoods. That is, ⌈i/2⌉ = ⌈j/2⌉ and ⌈k/2⌉ ≠ ⌈l/2⌉. The
points wk and wl lie on the same side of the halving pseudoline wiwj , if they form
a crossing. Otherwise the pseudoline wkwl would have to cross the neighborhood
that contains wi and wj. We divide this case into two subcases.

First, assume that ⌈k/2⌉, ⌈l/2⌉ ̸= f(⌈i/2⌉). To add a crossing to cr(D′), we
can choose the points wk and wl in 4

(⌈n0/2⌉−1
2

)
+ 4
(⌊n0/2⌋−1

2

)
ways. Together with

the choice of ⌈i/2⌉, we see that this subcase adds 4n0

((⌈n0/2⌉−1
2

)
+
(⌊n0/2⌋−1

2

))

crossings to cr(D′).
In the second subcase we have ⌈i/2⌉ = ⌈j/2⌉, ⌈k/2⌉ = f(⌈i/2⌉), and ⌈k/2⌉ ≠

⌈l/2⌉. We have 2(⌊n0/2⌋ − 1) choices for wl for one choice of wk from the
neighborhood of vk and 2(⌈n0/2⌉ − 1) choices for wl for the other choice of wk.
Taking into account the choice of ⌈i/2⌉, this adds 2n0(⌈n0/2⌉ + ⌊n0/2⌋ − 2) =
2n2

0 − 4n0 crossings to cr(D′).
In total, the number of crossings in D′ is 16cr(D) + n0

2
(2n2

0 − 7n0 + 5) for n0

even and 16cr(D) + n0

2
(2n2

0 − 7n0 + 7) for n0 odd.

For n0 even, Proposition 4.12 produces drawings with the same number of
crossings as we have in Theorem 4.11. In Figure 4.12 we illustrate the bound on
the leading constant in c̃r(Kn) obtained by iteratively applying Proposition 4.12
to the new drawings of Kn for n < 100.

Proof of Theorem 4.10. Let n0 be a positive even integer and let D be a pseudo-
linear drawing of Kn0 with a halving matching. Iterative application of Proposi-
tion 4.12 with the base drawing D bounds c̃r(Kn) from above by (4.3). Therefore
it suffices to choose the base drawing D so that the leading constant in (4.3) is
minimized.

We letD be the pseudolinear drawing ofK216 with 33 260 204 crossings found by
our experiments. Since D contains a halving matching [BK], we can set n0 := 216
and cr(D) := 33 260 204 in (4.3) and obtain c̃r(Kn) ≤ 120 772 213

317 447 424

(
n
4

)
+ O(n3) <

0.380448
(
n
4

)
+O(n3).

4.5 Open problems

It would be interesting to see if techniques similar to those used in the proof
of Theorem 4.1 can be used to prove Hill’s conjecture for general drawings of
complete graphs. We note that the same approach does not generalize to all
drawings. For example, a particular planar realization of the so-called cylindrical
drawing [Guy60, HH63] of K10, with Z(10) crossings, does not satisfy the lower
bound on ≤≤1-edges from Theorem 4.7; see part (b) of Figure 4.14. Part (a) of
Figure 4.14 shows an even smaller example, but this drawing of K6 is not crossing
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0-edge

2-edge

3-edge

4-edge

(a) (b)

Figure 4.14: (a) A general simple drawing of K6. (b) A cylindrical drawing of K10

(right) where E0 = 5 and E1 = 0, hence E≤≤1 = 10 < 12 = 3
(
1+3
3

)
.

optimal. Analogous cylindrical drawings of K4k+6, for k ≥ 2, violate the lower
bound on ≤≤k-edges from Theorem 4.7.

Extrapolating the definitions of≤k-edges and≤≤k-edges, we define the number
of ≤≤≤k-edges, E≤≤≤k(D), by the following identity.

E≤≤≤k(D) :=
k∑

j=0

E≤≤j(D) =
k∑

i=0

(
k + 2− i

2

)
Ei(D).

In our context, using ≤≤≤k-edges seems to be even more natural than using
≤≤k-edges, since the formula from Lemma 4.2 can be rewritten in the following
compact form:

cr(D) = 2E≤≤≤⌊n/2⌋−2(D)− 1

8
n(n− 1)(n− 3) for n odd, and

cr(D) = E≤≤≤⌊n/2⌋−3(D) + E≤≤≤⌊n/2⌋−2(D)− 1

8
n(n− 1)(n− 2) for n even.

We conjecture that the following lower bound on ≤≤≤k-edges is satisfied by
all simple drawings of complete graphs.

Conjecture 4.13. Let n ≥ 3 and let D be a simple drawing of Kn. Then for
every k satisfying 0 ≤ k < n/2− 1, we have

E≤≤≤k(D) ≥ 3

(
k + 4

4

)
.

Conjecture 4.13 is stronger than Hill’s conjecture. Theorem 4.7 implies Con-
jecture 4.13 for all simple x-monotone drawings. All our examples of simple
drawings of complete graphs, including the cylindrical drawings, also satisfy Con-
jecture 4.13. We note that Conjecture 4.13 is trivially satisfied for k = 0, since
every simple drawing of a complete graph with at least three vertices has at least
three 0-edges—those incident with the outer face.

We have no counterexample even to the following conjecture, which further
generalizes Conjecture 4.13 to arbitrary graphs.
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Conjecture 4.14. Let k ≥ 0 and let D be a simple drawing of a graph with at
least

(
2k+3
2

)
edges. Then

E≤≤≤k(D) ≥ 3

(
k + 4

4

)
.

Note that in a drawing of a general graph with n vertices, a k-edge contained
in t triangles is also a (t− k)-edge, but not necessarily an (n− 2− k)-edge. Thus,
for example, in every drawing of a triangle-free graph, every edge is a 0-edge.
This suggests that it might be easier to prove Conjecture 4.14 for non-complete
graphs. Also, Conjecture 4.14 or some still stronger variant might be susceptible
to a proof by induction on the number of edges.

Further, it would be interesting to generalize Theorem 4.1 to arbitrary mono-
tone drawings, where adjacent edges are also allowed to cross oddly. For such
drawings, two notions of the crossing number are of interest. The monotone
odd crossing number, mon-ocr(G), counting the minimum number of pairs of
edges crossing an odd number of times, and the monotone independent odd cross-
ing number, mon-ocr−(Kn), counting the number of pairs of nonadjacent edges
crossing an odd number of times. By definition, for every graph G we have
mon-ocr−(G) ≤ mon-ocr(G) ≤ mon-ocr±(G).
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Sloane. Discrete Mathematics, 32(1):27–35, 1980.

[GP81] J. E. Goodman and R. Pollack. A combinatorial perspective on some
problems in geometry. In Proceedings of the Twelfth Southeastern
Conference on Combinatorics, Graph Theory and Computing, Vol.
I, volume 32 of Congressus Numerantium, pages 383–394, 1981.

[GP84] J. E. Goodman and R. Pollack. Semispaces of configurations, cell
complexes of arrangements. Journal of Combinatorial Theory,
Series A, 37(3):257–293, 1984.

[GRS90] R. L. Graham, B. L. Rothschild, and J. H. Spencer. Ramsey theory.
Wiley-Interscience series in discrete mathematics. John Wiley &
Sons, Inc., New York, 1990.

[Guy60] R. K. Guy. A combinatorial problem. Nabla (Bulletin of the
Malayan Mathematical Society), 7:68–72, 1960.

[Guy72] R. K. Guy. Crossing numbers of graphs. In Graph Theory and
Applications, volume 303 of Lecture Notes in Mathematics, pages
111–124, Berlin, 1972. Springer.

[Har02] H. Harborth. Special numbers of crossings for complete graphs.
Discrete Mathematics, 244(1–3):95–102, 2002.

[HC58] C. Hyltén-Cavallius. On a combinatorial problem. Colloquium
Mathematicum, 6:59–65, 1958.

[HH63] F. Harary and A. Hill. On the number of crossings in a complete
graph. Proceedings of the Edinburgh Mathematical Society. Series
II, 13:333–338, 1963.
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95

http://arxiv.org/abs/1509.03332


[Spe75] J. H. Spencer. Ramsey’s theorem—a new lower bound. Journal of
Combinatorial Theory, Series A, 18(1):108–115, 1975.

[Ste95] J. M. Steele. Variations on the monotone subsequence theme
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A. SAT encoding for Theorem 3.3

Here, we describe in detail our SAT encoding of the following decision problem:
given integers a, u, k,N ≥ 3, is there a red-blue coloring of K3

N with no red a-path,
no blue u-path, and no k-gon? See Sections 3.2 and 3.3 for definitions.

For every triple {i, j, k} of integers with 1 ≤ i < j < k ≤ N , we define a
boolean variable xi,j,k. The variable xi,j,k represents the edge {i, j, k} of K3

N . The
red color of {i, j, k} is represented with the logical value TRUE of xi,j,k and the
blue color with the value FALSE.

We define a formula Φ−(a,N) that detects an occurrence of a red a-path in a
coloring of K3

N . For every A = {v1, . . . , va} ∈
(
[N ]
a

)
with v1 < · · · < va, let C

−
A be

a clause defined as C−
A :=

⋁a−2
i=1 ¬xvi,vi+1,vi+2

. The formula Φ−(a,N) is defined as

Φ−(a,N) :=
⋀

A∈([N ]
a )

C−
A .

To detect blue u-paths, we first define clauses C+
U :=

⋁u−2
i=1 xwi,wi+1,wi+2

for

every U = {w1, . . . , wu} ∈
(
[N ]
u

)
with w1 < · · · < wu. Then we set

Φ+(u,N) :=
⋀

U∈([N ]
u )

C+
U .

It remains to detect an occurrence of a k-gon in a coloring of K3
N . We define

a collection of 2k−2 clauses for every k-tuple K ∈
(
[N ]
k

)
such that each clause

corresponds to a particular k-gon with the vertex set K. Let K∗ be the (k − 2)-
tuple obtained from K by deleting the minimum element m and the maximum
element M . Let G = {v1, . . . , v|G|} be a (possibly empty) subset of K∗ with
v1 < · · · < v|G| and let w1 < · · · < wk−|G|−2 be the elements of K∗ \G. We define
a clause CK

G as

CK
G :=

⎛
⎝

|G|−1⋁

i=0

¬xvi,vi+1,vi+2

⎞
⎠ ∨

⎛
⎝

k−|G|−3⋁

j=0

xwj ,wj+1,wj+2

⎞
⎠

where we set v0 := m, v|G|+1 :=M , w0 := m, and wk−|G|−1 :=M .
The final formula Φ(a, u, k,N) is then defined as

Φ(a, u, k,N) :=

⎛
⎜⎝

⋀

K∈([N ]
k )

⋀

G⊆K∗
CK

G

⎞
⎟⎠ ∧ Φ−(a,N) ∧ Φ+(u,N).

Clearly, Φ(a, u, k,N) is satisfiable if and only if there exists a red-blue coloring
of K3

N with no red a-path, no blue u-path, and no k-gon.
A restriction to pseudolinear colorings of K3

N is ensured as follows in our SAT
encoding. For every 4-tuple T = {i, j, k, l} ∈

(
[N ]
4

)
with i < j < k < l, let CT be a

clause defined as

CT :=(xi,j,k ∨ ¬xi,j,l ∨ xi,k,l) ∧ (¬xi,j,k ∨ xi,j,l ∨ ¬xi,k,l) ∧
(xi,j,l ∨ ¬xi,k,l ∨ xj,k,l) ∧ (¬xi,j,l ∨ xi,k,l ∨ ¬xj,k,l) ∧
(xi,j,k ∨ ¬xi,j,l ∨ ¬xi,k,l ∨ xj,k,l) ∧ (¬xi,j,k ∨ xi,j,l ∨ xi,k,l ∨ ¬xj,k,l).
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The formula CT is satisfiable if and only if the copy of K3
4 that is induced by T

is colored by one of the eight colorings of K3
4 from Theorem 4.9. By this theorem,

a coloring of K3
N is pseudolinear if and only if every clause CT with T ∈

(
[N ]
4

)
is

satisfied.
Altogether, there is a pseudolinear coloring of K3

N with no red a-path, no blue
u-path, and with no k-gon if and only if the formula

Φ(a, u, k,N) ∧

⎛
⎜⎝

⋀

T∈([N ]
4 )

CT

⎞
⎟⎠

is satisfiable.
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