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Large-Scale Discriminative Training for
Machine Translation into

Morphologically-Rich Languages

Supervisor of the master thesis: RNDr. Ondřej Bojar, Ph.D.
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Introduction

Machine translation is a subfield of Natural Language Processing which tries to

do human-like translation from one natural language into other natural language.

These languages can differ significantly on many different levels, one being espe-

cially elaborated on in this thesis – translation from morphologically poor into

a morphologically rich language. Different approaches have been tried so far in

solving these problems. Some systems have many linguistic rules directly imple-

mented in them, so they could handle some problems better than other systems.

For example, rule based systems are in some cases better than other approaches

as it would be the case when translating between language pairs that have big

differences in word order. When targeting morphologically rich languages, such as

Serbian and Czech, word order is relatively free therefore producing an acceptable

one is not the hardest problem. So far, statistical machine translation systems

performed better than rule based systems in the case of the languages with rich

morphology like Czech. That is the reason we have chosen SMT approach for

building translator with Czech as target language. We will use the most popular

type of SMT system, phrase based SMT, which refers to translating entire phras-

es from a source language to the phrases of a target language. System built by

using phrase based approach usually consists of two major components:

• a basic part with a generative model and a decoder which generates candi-

date translations with high probability (according to the generative model)

of being correct translations and

• a discriminative model that chooses the correct translation from these can-

didates.

In the following chapters we will first introduce the basic generative component

of this type of SMT systems, and after that we will look at the discriminative

component. Upon the introduction of these basic components of phrase based

SMT system the focus will be on concrete ideas applied in this thesis: differ-

ent objective function and sparse features used to solve problems that exist in

translation into morphologically rich languages. In the end, we will show our

experimental results and give final conclusion.
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1. Generative phrase-based

machine translation

The translation of a source sentence f into a target language can be seen as a

search for the translation e in the space E of all possible sentences in the target

language such that e has the highest probability of being the translation of f .

More formally, we are trying to find [26]:

ebest = argmax
e∈E

P (e|f) (1.1)

This formula can further be simplified to:

ebest = argmax
e∈E

P (e|f) = argmax
e∈E

P (f |e)P (e)

P (f)
= argmax

e∈E
P (f |e)P (e) (1.2)

This formula allows us to replace the probability of the target sentence given

the source sentence with two other probabilities called translation model and

language model. The language model P (e) is a component which models the

probability of sentence e appearing in the target language and indirectly, by

doing that, it also models the fluency of the output. The translation model is

modeling P (f |e), which is the reverse translation component. The translation and

language models are usually trained and then used together during computation

of argmax in, so-called, decoder. The language and translation models do not

have to be trained on the same corpus. Often, the language model is trained on a

monolingual corpus that is much larger than the parallel corpus used for training

the translation model.

1.1 Translation model

The translation model that is used in phrase based SMT decomposes the proba-

bility of translating sentences into the probability of translating phrases:

P (f |e) =
I∏
i=1

Φ(f̄i, ēi)d(ai − bi−1) (1.3)

where:
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• d is the so-called distortion model, which penalizes big reordering in trans-

lating phrases

• ai is the starting position of a foreign phrase f̄i

• bi−1 is the end position of a target phrase ēi−1

• Φ is giving probability of phrase f̄ being translation of phrase ē

These probabilities can be learned directly from training data by using the

expectation maximization algorithm, but usually it is done by first doing word

alignment and then extracting phrases using some heuristics which gives better

results than learning phrase translation probabilities directly [26].

1.2 Language model

There are different types of language models. Some are based on modeling the

probability of the target sentence using syntactic information and some use much

simpler methods. The most common type of language model is the n-gram lan-

guage model that models probability of a sentence by the product of the proba-

bility of its words conditioned by their history:

P (e) =
I∏
i=1

P (ei|e0 . . . ei−1) (1.4)

The computation of these probabilities can be simplified by using the Markov

assumption that the probability of a word given its history can be approximated

by the probability of that word using the most recent history. The probability of

the sentence using the n-gram model where n is the order of the history is given

in the following formula:

P (e) =
I∏
i=1

P (ei|ei−n . . . ei−1) (1.5)

With using higher order n-grams, it becomes likely that some of the proba-

bilities will be zero. Because of that, some smoothing is necessary. The most

widely used smoothing method in today’s state-of-the-art systems is Kneser-Ney

smoothing [25].
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1.3 Decoder

The decoder is used when searching for the best translation using given language

and translation models. Since it is impossible to do a complete search of expo-

nentially large space of possible translations, an approximated form of the search

is needed. Most decoders are implemented as A* search with beam pruning. The

search space can be represented in a graph (the search graph) where each node in

that graph represents a hypothesis and contains all the information about trans-

lated words and their probability. The transition from one node to the next one

is called hypothesis expansion which adds some additional translated words to the

hypothesis and updates its probability. Decoding is done by doing most probable

expansion of all currently observed hypotheses. All hypotheses are put into one

priority queue often called stack. In machine translation and speech recognition

community, A* is modified to use only fixed depth of the stack and it is often

referred to as a stack decoding algorithm. The comparison between the hypothe-

ses that have translated a different numbers of words is not suitable for choosing

the next expansion because the hypothesis with a smaller number of translated

words will be chosen in most cases as the more probable expansion. This is why

stack decoding in machine translation is done with multiple stacks where every

stack contains hypotheses with the same number of translated words.
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2. Discriminative Training in

Machine Translation

As we have seen in a generative approach, we decompose the process of translation

into many smaller steps that we assume are independent. We do this so that we

could solve them independently and then combine their results, thus creating a

good translation. For example, we assume that translations of different phrases

are independent of each other. Even though there is some small dependence

introduced by using language model, it still does not eliminate our assumption

completely. Independence assumptions that exist in generative models do not

exist in discriminative models.

The second reason why discriminative models might be more useful is the

support for a large number of features. In generative models, we are searching

a space of possible translations. With each new feature that we add to these

models, we add a new dimension for search which means that the dependence

of search errors on the number of features is exponential. With discriminative

models, we are not searching the whole space of possible translations. Instead of

that, we usually have a finite set of possible translations and try to discriminate

good translations from bad ones. That being the case, adding a new feature will

not increase the search space (it will be the same as without that feature).

The problem with applying discriminative methods to machine translation

is that we usually do not have a reasonably small finite set of possible trans-

lations. Many researchers have tried different ways to solve this problem. The

most successful usage of discriminative methods in machine translation, so far,

is by combining them with generative methods. First, we use a system trained

in the generative fashion to produce a relatively small finite set of most probable

translations (according to the generative model) and then we use the discrimi-

native model with a larger number of features to make a better decision which

translation is the best from the set of possible translations.

The process is shown in Figure 2.1. The finite set of probable translations

that is given by a generative model is usually in the form of an n-best list of

translations. The discriminative model that is used for choosing the best trans-

lation is usually called “reranker” because it takes a list of possible translations

that are ranked by their probability from the generative model and then reranks

them by probabilities from the discriminative model.

The process of training the discriminative model that is used by reranker is
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Figure 2.1: Usage of reranker [26]

Figure 2.2: Training of reranker [26]
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usually called tuning, because some of the features are used in the generative

model too and we are trying to optimize their weights. Tuning is done by using

an additional parallel corpus called tuning or development corpus. The tuning

process is shown in Figure 2.2. The first step in the process is the translation of

the source side of the corpus using the decoder for generative model. As the result

of decoding, we get an n-best list of translations (judged using generative model)

which is passed on to the learning algorithm together with a reference translation

(the target side of the tuning corpus) and additional features. Learning algorithm

can learn not only weights for discriminative, but also weights for generative

model. With these new weights, generative model can explore different part

of search space where it is more likely to find a good translation. After that,

learning algorithm can be applied again to improve model’s weights and repeat

this process until some convergence is achieved.

In the next section, we explain how to get the list of best candidates for

reranking and how can we learn the parameters for the discriminative model

used by reranker.

2.1 Representing the set of candidates

The whole process of decoding can be seen as a search graph that contains re-

lations between different hypotheses that were expanded during the search. The

search graph is a representation of search history, but what we want is a repre-

sentation of end hypotheses that cover the whole source sentence. One of possible

representations of the set of best hypotheses is a word lattice which is basically

a weighted finite-state machine that is very similar to a search graph of phrase-

based MT system. The main difference is that instead of having the probability

of a hypothesis in the word graph, the search graph gives us the probability of

transitioning from one hypothesis to another.

Another common way to represent best hypotheses is an n-best list. N-best

list can be constructed using a simple algorithm that uses the fact that for each

state in a weighted FSM there is one best path to the start state [26]. Compared

to the best path through the graph, the second best path takes a detour from the

best path. The detour for an internal state of the graph is defined as suboptimal

transition from the start state to the state in the best path for which we take

detour. Detours for each state in the FSM are already discovered during the

search by recombination of hypotheses.

The algorithm is based on having two queues:
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• a queue for the resulting n-best list

• a priority queue of detours where the priority function is the probability of

a detour

The algorithm is as follows:

1. Take the best path, put detours for all its nodes in a priority queue of

detours, and put the best path in the n-best list

2. Take the detour with the highest probability from the detours priority queue

and remove it from the queue

3. The hypothesis containing that detour and continuing to the end with the

rest of the previous best hypothesis is added to the n-best list

4. All detours from the previous detour are added to the priority queue of

detours

5. If the size of the n-best list is not as desired, go to 2.

The larger the set of hypotheses that reranker has the access to, the higher

the probability that it will be able to choose the good translation. The word

lattice is a more compact representation of translation hypotheses than the list of

best translations and that is why it allows access to a larger part of the space of

possible translations. Rerankers that work with word lattices usually give better

results than those that work with n-best lists. The problem with word lattice is

that it is not always easy to create an algorithm that will work with word lattices

compared to the algorithms for n-best lists. Therefore, n-best lists are still used

more often than word lattices.

2.2 Reranker

As mentioned before, a reranker takes the n-best translations and gives the best

one from it judging by some discriminative model. The name reranker is taken

from machine learning field but it is slightly misleading [20]. What the reranker

in machine translation does is not really reranking. The goal of the real reranker

is to put every element in a list to its right place, judging by some criterion, while

the goal of the reranker in machine translation is to put only the best translation

to its right place (1st place) without considering other translations.

10



Figure 2.3: Learning parameters using multiple iterations [26]

So what the reranker does is scoring every hypothesis in the n-best list by

using a certain model and then outputting the translation with the highest score.

The model that is used is almost always the log-linear model which can have from

a few to a few hundred thousands features. What the reranker actually does is

described in the following formula [23]:

reranker(n best list) = argmax
e∈ n best list

exp(
∑n

i=1 λihi(e))∑
e′∈ n best list exp(

∑n
i=1 λihi(e

′))

= argmax
e∈ n best list

n∑
i=1

λihi(e) (2.1)

λi is the parameter or weight that tells us how much feature hi is important.

hi can be any function of translation e. For example, one of the features can

be the number of words in the translation e. Some more sophisticated features

require not only translation e but also the derivation d of that translation. That

is left out from this formula for the sake of clarity, but it will be discussed later

again in the part of training a reranker with a large number of features.

The training of a reranker consists of finding the right set of λ parameters

that maximize some objective function on the processes of translating the tuning

corpus. The objective function that is used should be an automatic evaluation

metric that correlates well with the human judgment. The most popular metric

in machine translation community is BLEU [41] which is often used not only for

evaluation but also for tuning. We leave the detailed explanation of evaluation

metrics for Chapter 3, where we will deal with it in more detail. For now, the

reader should just know that discriminative training algorithms require some

evaluation function, which we will call EVAL, that takes some hypothesis and a

human reference translation and returns the number that represents how close

system’s translation is to the human translation. Often, we will use the function

COST which can be interpreted as 1-EVAL.
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The general process of training a reranker with more iterations can be seen in

Figure 2.3 which highlights the loop of decoding and re-estimation of parameters.

We first translate a source side of a tuning corpus and get an n-best list. After

that, we optimize the parameters of the model by making them such that the

best translation in the n-best list, judging by the EVAL, is on the top of the list.

2.2.1 Optimization of reranker’s parameters

In this chapter we are going to look at a few different algorithms for optimizing

λ parameters of the discriminative model. Learning these parameters by using

analytical methods (by computing derivatives and finding optima) is not possible,

because mapping parameters to objective functions can be complex and expensive

to compute [26]. Algorithms that are used for learning can be roughly separated

in two groups:

1. those that are good at learning small set of parameters usually by applying

some heuristics

2. those that are good at learning large set of parameters usually by maximiz-

ing the margin between good and bad translations

This thesis is concerned mostly with algorithms that deal with a large set of

features, but we will briefly show one of the algorithms for small set of features

that is used in most of the state of the art systems today. That algorithm is a

version of Powell search which is in machine translation community most often

referred to as MERT (Minimum Error Rate Training) [39]. It is also an important

algorithm since many other algorithms that work with a large number of features,

such as PRO, take the inspiration from MERT.

MERT is optimizing weights one by one and while it is optimizing one of

the weights, other weights are fixed. Optimization is done in the form of a grid

search. This optimization does not require computing derivatives, but it can be

unstable with a large number of features [24]. By fixing all weights of all features

except the one that is optimized at the moment, we assume that the best weight

for the optimized feature will not harm other features. When we have a small

number of features this risk is small, but with a large number of features, it is

almost certain that this procedure will not work.

Large-Scale Discriminative Training Algorithms

All algorithms that are used in discriminative training try to minimize some loss

function. We want the best translation according to our models score to also be

12



the one with the lowest cost or, more formally, loss function that we would want

to minimize in the ideal situation is:

loss(x, Y, yref ) = cost(yref , argmax
(y,h)∈Y (x)

score(x, y, h;λ)) (2.2)

where:

• x is the source sentence

• Y is the set of hypotheses for x

• h is a set of features

• λ is a set of learned feature weights

• yref is a reference translation

• y is a hypothesis sampled from Y together with its derivation (features) h

Good properties of MERT are that:

• it optimizes the loss directly without the need of computing the derivative

(which can be hard or impossible)

• it can use corpus level metrics for cost function which is good given the fact

that the most popular metrics in MT community are corpus level (BLEU,

NIST, TER).

On the other hand, MERT also has some problems:

• it is very unstable because of complexity of loss and difficulty of search [20]

• it can work well only with a small set of features [24]

In order to overcome these problems, we will need to use some other algo-

rithm. Machine learning community has developed large number of algorithms

for reranking, but they are not directly applicable to the machine translation

domain. The main reasons for that are the following [20]:

• these algorithms usually assume that a single correct result is available.

This is hard to achieve in MT because:

– The reference translation might not be reachable by our model.
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– Even if the reference translation is reachable, we might be getting the

correct result by a wrong derivation (for example phrase alignment

might be wrong) which can lead to optimizing wrong parameters.

• Latent variables are present in the process of machine translation. These

latent variables make loss function non-convex and for this class of functions

not much research has been done [20].

• Reranking algorithms in machine learning have a similar, though usually

not completely the same, goal as reranking in machine translation - in

machine translation, we try to reorder the translation with the lowest cost

to the top of the list ranked by the model score and we do not care if second

best translation ended at 10000th position in a sorted list, while machine

learning algorithms try to put each translation in the right place [20].

To solve these problems many researchers have used different loss function

which, in most general case, could be defined as :

loss(x, Y ; γ+
− , β

+
−) = − max

y+∈Y (xi)
(γ+score(xi, y

+)− β+cost(yi, y
+))

+ max
y−∈Y (xi)

(γ−score(xi, y
−) + β−cost(yi, y

−)) [17, 20] (2.3)

y+ usually represents a translation toward which we want to optimize our model

y− usually represents a bad translation which we want to get lower model score

in the future

γ+
− and β+

− are parameters that influence the participation of cost and score in

the loss

score function here represents score given by the discriminative model, not the

generative one

Each part of this formula can significantly influence the process of learning:

1. the choice of the γ+
− and β+

− parameters can influence the strategy of opti-

mizing the result. Different algorithms use different values for gamma and

beta

2. the choice of y+ and y− from the space of possible translations Y (xi)

3. the cost function needs to work well on the sentence level, which is not the

case for many metrics, especially those that are popular in MT community

like BLEU
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4. the derivations of both hypotheses y+ and y−. For the sake of clarity, the

derivations were not included in the formula, but they are important

In the next section, we explain some solutions to the problem of choosing y+,

y−,γ+
− and β+

− . After that, we look at the problems in machine translation that

are caused by the presence of derivations. The large part of research of this thesis

is concerned with solving the problem of cost function.

2.2.2 Selecting y+ and y−

Selecting y+

Ideally we would like to use the reference translation yi as y+, but there are few

problems in doing this. The first problem is that yi might not be in the n-best

list because it is ether:

• unreachable by our model or

• reachable but very improbable, given our generative model, to enter the

n-best list

The second problem is that even if the reference translation is reachable by

the given model it might not have the correct derivation (phrase segmentation,

reordering etc.) and getting the correct surface form is just a fortunate coinci-

dence. One more issue is that there are many correct translations possible but

we have just one or a few references.

The solution to the first problem, that is applied in most cases in practice,

is to select some surrogate translation with a low cost that will be used instead

of the reference translation. The loss function that was defined before in the

parameterized form with γ+
− and β+

− is called hinge loss, if the reference translation

is used as y+, but because we are using surrogate translation, this loss is usually

referred to as ramp loss [20].

The other solution to this problem, which gave bad results [31], is to ignore

cases when we cannot get the reference translation. The reasons why it fails are

that we do not use the full amount of data because the reference is in many cases

not reachable and even if it is reachable it might be with bad derivation (the

second problem). This method is called “bold updating”.

In the second problem, it is clear that we need to use the model score function

in the selection of y+. There are two ways that have been used so far for solving

this problem:
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• the more popular one is by choosing the translation that has the highest

sum of negative cost and score. This hypothesis is often called “hope”

because it is highly ranked in the n-best list and has a low cost [23]. This

strategy would correspond to the following set of parameters in the given

formula for the ramp loss:

γ+ = 1 ; β+ = 1

• by taking the hypothesis from the n-best list with the lowest cost [31].

The score function is used here indirectly because the hypothesis with the

lowest model score will not enter the n-best list and, therefore, could not

be selected as a surrogate even if it had a low cost. The parameters for this

strategy in the ramp loss formula are:

γ+ = 0 ; β+ = 1 with the constraint that it can be applied only on an

n-best list and not during the decoding

One more reason for using the score function in selecting the y+ and y−

hypotheses is that we want to operate on translations that are most likely to be

produced by our system. If we have a really good translation (low cost) with

really low probability (low score) it might be a bad idea to optimize toward it

because, even if we move that translation from, for example, 10000th place in the

n-best list to the 2nd place, it still does not bring any improvement. By balancing

the importance of cost and score we can get better surrogate translations than

by using only one of these functions.

Selecting y−

There are three strategies that are used for selecting y−, the bad translation, that

are considered in machine translation research so far:

• The prediction based strategy where we take the hypothesis with the highest

score with parameters [31]

γ− = 1 ; β− = 0

• The highest cost strategy which is similar to the local update strategy for

y− in a way of using only cost function directly but applying it only on an

n-best list which makes usage of score function indirectly [31]

γ− = 0 ; β− = 1 with the constraint that it can be applied only on n-best

list and not during decoding
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γ+ β+ γ− β− selection strategy hypothesis

0 1 - - local update
y+

1 1 - - hope

- - 0 1 highest cost strategy

y−- - 1 0 prediction-based strategy

- - 1 1 fear

Table 2.1: Strategies for selecting y+ and y−

• The fear strategy which is similar to the hope strategy because it uses both

cost and score functions but with a difference that the cost is not taken as

negative value. Fear represents hypothesis that is very likely by the model

but actually being a very bad translation [23]

γ− = 1 ; β− = 1

Strategies for selection y+ and y− combined

In Table 2.1 you can see constants for γ+
− and β+

− for presented selection strategies

for y+ and y−. In [17] all 6 possible combinations of y+ and y− selection strategies

were tested using MIRA online learning algorithm. Their results show that the

only combinations that give good results are:

• local update for y+ and the highest cost for y−

γ+ = 0 ; β+ = 1 ; γ− = 0 ; β− = 1 with the constraint of being applied

only to the n-best list

• hope strategy for y+ and fear for y−

γ+ = 1 ; β+ = 1 ; γ− = 1 ; β− = 1

They conducted two experiments with two different language pairs in which

hope/fear was the best method for Czech-English and local update/highest cost

was the best method for French-English.

Local update and highest cost strategies were used mostly at the start of usage

of discriminative methods in machine translation [1, 31] while most of the recent

work uses hope/fear strategy [20, 23].

There is also a choice of how we can find hypotheses defined by parameters

for hope/fear strategy. While local update and highest cost can be applied only

on the n-best list, hope and fear hypotheses can be searched both in:

• an n-best list as a restricted space of possible translations,
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• a word lattice as a restricted space of possible translations,

• a larger space of possible translations by integrating the cost function into

the decoding process

The approaches with n-best list and word lattice are simpler and more mod-

ular, but searching the larger space of possible translations might give better

results. The integration of cost inside the decoding process can be done as in [23]

by using the cost as an additional feature in the decoder and giving it a weight

that is equal to the sum of weights of all other features that contribute to the real

score result. If we are searching for the hope translation, as a weight we take the

negative of the sum. That would mean that if, for example, the sum of all weights

except the cost is 0.5, the weight for the cost feature should be 0.5 when we search

for fear and -0.5 when we search for the hope hypothesis. Searching for the hope

hypothesis in this way is called cost-augmented decoding and searching for fear

is called cost-diminished decoding [20]. Two additional technical differences are

the following:

• applying hope/fear using decoding is two times slower than with n-best list

or word lattice because we need to do decoding once for hope and once for

fear while with hope/fear using n-best list or word lattice both hope and

fear can be selected from the same n-best list or word lattice

• the cost function should be able to evaluate partial hypotheses while with

n-best list and word lattice selection it is enough for cost to be applicable

only to the complete hypotheses. Knowing how some evaluation functions

are bad at sentence level, finding good metric that would work on even a

lower level of partial hypotheses can be even harder. We are not aware that

anyone has identified this problem before

• the word lattice approach does not require double decoding, it covers a

larger space of possible translations which is similar to the size of cost

guided decoding, and it also does not require cost function that will work on

partial hypothesis level which makes it a good choice for selecting training

hypotheses. Some recent systems have started using this method and they

reported results that are better than the results from the same system with

using n-best lists [8]
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2.2.3 Influence of derivations on discriminative training

The derivation of hypothesis represents all the decisions that are taken in order

to get to that hypothesis. This can include phrase segmentation of the source

sentence, selection of phrase pairs used for translation, reordering of phrases and

other factors that are used. The derivation is a latent variable in the transla-

tion process and because of that it makes the loss function non-convex, which

complicates choice of algorithm that will be used for minimizing loss.

The second problem caused by derivations is that for one surface form we can

have many different derivations, so which one should we use? Ideally we would

marginalize over all possible derivations instead of using only one:

p(y|x) =
∑

d∈∆(y,x)

p(d, y|x) (2.4)

In [2] they do this type of marginalization and report results which suggest

that with using all derivations instead of the best one, significant improvement

in translation can be achieved. In order for this marginalization to work, they

marginalized feature values as well:

Hk(d, y, x) =
∑
r∈d

hk(e, r) (2.5)

Still, the majority of papers on discriminative machine translation, use the

“Viterbi” approximation of the derivation which means that they take the as-

sumption that the difference between the most likely derivation and the other

derivations is huge so the marginalized score can be approximated with just a

single, most likely, “Viterbi” derivation.

2.3 Algorithms for large-scale discriminative

training

In this section, we present a few different algorithms that are used for large-scale

discriminative training of machine translation models. Many of them, but not

all, follow the definition of ramp loss that we have explained before. Except

for the loss function they try to minimize, they also differ in the frequency of

updating the parameters—some of the algorithms process training instances in

online fashion and some in batches. The reason that is given most often for using

online algorithms for large-scale discriminative training is the large number of

features and the large amount of data needed for training this number of features
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[26]. Until recently, most of the algorithms used for the training of discriminative

models were online ones. From online algorithms, we will present Perceptron

[31, 26] and the online version of MIRA [11]. Recently, there have been a few

successful attempts in using batch algorithms for the training of discriminative

models. The main reason for using batch algorithms is that authors of these

systems claim that there is still no good fully online algorithm for training non-

differentiable and non-convex loss functions like ramp loss [20]. From the class

of batch processing algorithms, we will present PRO [24], Rampion [20] and the

batch version of MIRA [8].

2.3.1 Perceptron

Perceptron is one of the first algorithms used in the field of artificial intelligence

and probably the most simple of all the algorithms that are used for discrim-

inative training in machine translation. The first application of perceptron in

discriminative training for machine translation was in [31].

The way perceptron works is by looping trough all instances of tuning data

and checking if the best translation according to the model is the same as the

reference translation. If it is not the same, then parameters of the model are

changed in order to make the output of the systems the same as the reference

translation. This process is repeated several times until convergence is achieved.

Perceptron has a good property that for linearly separable classes it is guaranteed

to converge.

As described above, there are problems in using the reference translation

as the desired output from the model. That is why in [31] they use surrogate

translation that is taken by the method of local updating (γ+ = 0 ; β+ = 1) and

the translation to be compared to the surrogate is the one selected by prediction-

based strategy (γ+ = 1 ; β− = 0). Both of them have to be in the n-best list of

translations. The translation that is compared with the surrogate will be there

anyway because it will have the highest model score while for the surrogate it is

important to be in n-best list to ensure that for the surrogate, we will not take

a hypothesis that is very improbable. [31] has also tried bold updating and the

combination of bold update and local update strategy and they both gave lower

score than local updating alone.

The perceptron algorithm is shown in Algorithm 1.

Implementations for Perceptron exist for most of the popular SMT toolkits.

Moses SMT framework supports Perceptron as well as many other algorithms for

training discriminative models [23]. There is also an implementation of Percep-
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Algorithm 1 Perceptron

Input: set of sentence pairs from tuning corpus (x, y), set of features h

Output: set of feature weights λ

while λ not converged do

for all xi ∈ x do

yoracle ← argmax
y∈Y (xi)

score(xi, y)

yprediction ← argmax
y∈ n best for xi

cost(yi, y)

if yprediction 6= yoracle then

λ← λ+ h(xi, yoracle, doracle)− h(xi, yprediction, dprediction)

end if

end for

end while

return λ

tron for Joshua [30].

2.3.2 MIRA

MIRA is first formulated in [11]. MIRA is a large-margin classifier that is very

similar to Perceptron, especially its online version. The main differences between

online MIRA and Perceptron are in the selection of hypotheses for training, loss

function and in the update rule.

For selecting hypotheses, implementations of MIRA often use hope/fear strat-

egy. Other strategies were also tested in the past and the only strategy that is

comparable to hope/fear is local update/highest cost [17]. Some implementa-

tions select hope and fear hypotheses from n-best lists [8] while others do cost-

augmented and cost-diminished decoding [23].

MIRA update tries to make the margin between model scores of y+ and y−

at least as big as the difference in the cost. Usually, this requires complicated

quadratic programming in order to satisfy the large number of constraints, but

if we decide to satisfy only the single most violated margin constraint, analytic

solution can be simple and there is no need for quadratic programming [11].

MIRA that is trying to satisfy the single most violated constraint is usually

referred to as 1-best MIRA and it is the version of MIRA that is presented in

Algorithm 2.

The batch version of MIRA differs from the online version in that it accu-

mulates all the updates to the feature weights vector and applies the averaged

update at the end of each iteration. In [8] they use n-best lists instead of cost-
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Algorithm 2 1-best online MIRA [17]

Input: set of sentence pairs from tuning corpus (x, y), set of features h,

step size C

Output: set of feature weights λ

while λ not converged do

λi ← 0 for all i

for all xi ∈ x do

yhope ← argmax
y∈Y (xi)

score(xi, y)− cost(yi, y)

yfear ← argmax
y∈Y (xi)

score(xi, y) + cost(yi, y)

margin← score(xi, yfear)− score(xi, yhope)
cost← cost(yi, yfear)− cost(yi, yhope)
if margin+ cost > 0 then

δ ← min
(
C, margin+cost
‖hi(xi,yhope,dhope)−hi(xi,yfear,dfear)‖

)
λ← λ+ δ(h(xi, yhope, dhope)− h(xi, yfear, dfear))

end if

end for

end while

return λ

augmented and cost-diminished decoding because their expectation is that by

replicating MERT architecture of optimizing parameters in the same n-best list

in many iterations gives better results. They also report even better results by

using word lattice in place of n-best lists. The algorithm for batch 1-best MIRA

is given in Algorithm 3.

2.3.3 Rampion

Together with the batch version of MIRA [8], Rampion [20] is one of the most

recently developed algorithms for discriminative training in machine translation.

Because the ramp loss function is non-differentiable and non-convex, standard

gradient based methods are inapplicable. Rampion avoids this problem by using

concave-convex procedure (CCCP) [53]. CCCP is a batch optimization procedure

for functions that can be decomposed to a sum of concave and convex functions.

The function is optimized by being approximated with the sum of the convex

part and the tangent to the concave part using gradient methods. [20] note that

CCCP was used before in different domains with similar non-differentiable and

non-convex loss functions where it gave good results. In their experiments, they
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Algorithm 3 1-best batch MIRA [8]

Input: set of sentence pairs from tuning corpus (x, y), set of features h, step size

C, set of n-best lists ε

Output: set of feature weights λavg

t← 1

λt,i ← 0 for all i

j ← 0

while λavgj − λavgj−1 not small enough do

j ← j + 1

for all xi ∈ x do

yhope ← argmax
y∈Y (xi)

score(xi, y;λavgj )− cost(yi, y)

yfear ← argmax
y∈Y (xi)

score(xi, y;λavgj ) + cost(yi, y)

margin← score(xi, yfear;λ
avg
j )− score(xi, yhope;λavgj )

cost← cost(yi, yfear)− cost(yi, yhope)
δ ← min

(
C, margin+cost
‖hi(xi,yhope,dhope)−hi(xi,yfear,dfear)‖2

)
λt+1 ← λt + δ(h(xi, yhope, dhope)− h(xi, yfear, dfear))

t← t+ 1

end for

λavgj ← 1
j

∑j
t′=1 λt′

end while

return λavgj
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report improvement over MERT and PRO in using both small and large set of

features. The algorithm for batch Rampion is shown in Algorithm 4.

Algorithm 4 Rampion [20]

Input: set of sentence pairs from tuning corpus (x, y), set of features h, initial

feature weights λ0, step size η, regularization coefficient C, number of Rampion

iterations T, number of CCCP T ′ and T ′′ iterations

Output: set of feature weights λ

λ← λ0

for iter ← 1 to T do

{ε}Ni=1 ← Decode({x(i)}Ni=1, λ)

for iter′ ← 1 to T ′ do

for i← 1 to N do

〈yihope, hihope〉 ← argmax
〈y,h〉∈εi

score(xi, y, h;λ)− cost(yi, y)

end for

for iter′′ ← 1 to T ′′ do

for i← 1 to N do

〈yfear, hfear〉 ← argmax
〈y,h〉

score(xi, y, h;λ) + cost(yi, y)

λ← λ− ηC(λ−λ0
N

)

λ← λ+ η(h(xi, y
i
hope, d

i
hope)− h(xi, yfear, dfear))

end for

end for

end for

end for

return λ

2.3.4 PRO

PRO [24] stands for pairwise ranking optimization. It is a batch algorithm which

is basically a reformulation of the problem that is solved by discriminative train-

ing. Instead of optimizing some global loss PRO is trying to minimize the error

in ranking between pairs of hypotheses. It follows architecture similar to MERT,

and changes only optimization step.

The same way as in MERT there is a candidate generation step or the gener-

ation of an n-best list. After that PRO samples pairs of hypotheses from these

n-best lists that will be used in training the reranker. This sampling is more

general than the one in MIRA and Rampion where we select only by criterions
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of hope and fear. The decision of the way how sampling should be done should

be brought together with the choice of classifiers. PRO does not constrain the

choice of the classifier. Any binary classifier can be used, including MIRA. In

the original paper about PRO [24], maximum entropy classifier is used together

with random sampling from n-best lists with the criterion that difference in cost

between hypotheses in a pair should be at least 0.05. The algorithm as defined

there is shown in Algorithm 5. When we sample hypotheses pair 〈y+, y−〉 with

corresponding feature vectors 〈h+, h−〉 where y+ has lower cost than y−, we gen-

erate two training instances for the classifier: the positive one 〈h+ − h−,+〉 and

the negative one 〈h− − h+,−〉. After we sample the desired number of training

instances, we can train it both in a batch or online fashion. This process of

decoding, sampling, generating training instances and training is repeated until

convergence.

2.3.5 SampleRank

SampleRank [22] applied on SMT task is a batch tuning algorithm that tries to

find weights that make ordering of hypotheses in an n-best list the same as their

ordering by eval() function. Simplified version of SampleRank from [22] is shown

in Algorithm 6. The main difference between SampleRank and other large-margin

algorithms for discriminative training is that SampleRank operates on the level

of small batches of translations unlike others which operate on the sentence level.

That gives SampleRank capability to use corpus level metric, such as BLEU,

as an objective function and also leaves space for using document level features

(if batches are sampled as documents). Decoding with SampleRank is done only

once and after that algorithm iterates in sampling two sets y′ and y′′ for the given

x and comparing their ordering by score() and ordering by eval() function. If

that ordering is not the same, weights λ are updated to make ordering correct.

Since score() is defined on the sentence level, here its definition is extended to

the corpus level by summing scores of all individual translations. Update to the

weights can be done in many different ways, but the one used in SMT is mostly

the same as MIRA update [22].
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Algorithm 5 PRO [24]

Input: set of sentence pairs from tuning corpus (x, y), set of features h

Output: set of feature weights λ

λi ← 0 for all i

while λ not converged do

//Generation of candidates

E ← () // set of tuples 〈x, y, h, yref〉
for all xi ∈ x do

ε← Decode(xi, λ)

for all y ∈ ε do

E ← E ∪ 〈xi, y, h, yi〉
end for

end for

//Sampling of candidates

T ← () // set of training instances

for j ← 1 to M do

sample 〈x′, y′, h′, y′ref〉 and 〈x′′, y′′, h′′, y′′ref〉 uniformly from E for x′ = x′′

if |cost(y′ref , y′)− cost(y′ref , y′′)| > threshold then

T ← T ∪ 〈h′ − h′′, sign(cost(y′ref , y
′)− cost(y′ref , y′′))〉

T ← T ∪ 〈h′′ − h′, sign(cost(y′ref , y
′′)− cost(y′ref , y′))〉

end if

end for

//Training

λ← train classifier(λ, T )

end while

return λ
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Algorithm 6 SampleRank [22]

Input: set of sentence pairs from tuning corpus (x, y), set of features h, set of

hypotheses Y

Output: set of feature weights λ

for epoch← 1 to number of epochs do

A← randomly split parallel corpus into batches(x, y)

while A 6= ∅ do

〈x, y〉 ← randomly sample from set and remove(A)

for s← 1 to number of samples do

y′ ← randomly sample from set and remove(Y (x))

y′′ ← randomly sample from set and remove(Y (x))

if eval(y,y′)−eval(y,y′′)
score(x,y′)−score(x,y′′) < 0 then

λ← UpdateWeights(λ, y′, y′′)

end if

end for

end while

end for

return λ

2.4 Technical details about large-scale

discriminative training

Large-scale discriminative training usually needs a lot of CPU time whichever

algorithm we use. Also the tuning data can be relatively big. To speed up

optimization, parallelization can be very useful. This is often achieved by splitting

tuning data into shards of equal size and using them in separate parallel jobs.

After the end of each iteration, all feature weights vectors of the parallel processes

are collected and an average vector is computed. The next iteration continues

the same optimization with the averaged vector as the starting point for each of

the shards [23, 21].

Whenever training is done with a complex model, as in our case with large

number of features, there is the danger of over-fitting. That is why we should

have one additional development set for selecting the weight vector from the

iterations where the best performance was reached [23]. To avoid confusion with

the development corpus used in tuning we call this corpus selection corpus.
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3. Objective function

In machine translation, the expected goal is to make the system produce a trans-

lation that would prove to be highly rated by humans. The problem with human

judgment of MT systems is that it is too slow. Ideally we want an instant answer

to the question whether our system is better or worse compared to some other

system. Other than the comparison of different MT systems, we want to have

an objective function towards which we could optimize our system automatically

by using algorithms that were described in the previous chapter. The problem

with using automatic metrics as an objective function in large-scale discrimina-

tive training is that in large-scale discriminative training we need a comparison of

different translations on the sentence level while common metrics are designed to

compare large portions of text and usually they do not work well on the sentence

level [28].

In this chapter, we are going to look at some metrics that are used most often

by the MT community. After that, we will discuss the problems with using these

metrics for large-scale discriminative training and propose a solution in the form

of a new metric.

3.1 Automatic Evaluation Metrics

Automatic evaluation metrics are usually defined as functions that take two pa-

rameters: one is the system’s translation and the other is the set of reference

translations. As the result of the evaluation function, we get a number that

represents how much the system’s translation matches the reference translation.

The better these automatic scores correlate with human judgment, the better the

metric.

Aside from high correlation with human judgment, another preferred property

of evaluation metrics is the simplicity of implementation. Some metrics like BLEU

are very simple to implement and do not require any additional resources like

word alignment or a POS tagger. There are other metrics, such as METEOR,

that usually have a higher correlation with human judgment than BLEU but pay

the cost of requiring additional data and being slower than BLEU.

Morphologically rich languages have an additional requirement for a good

metric, which is to recognize if the system has chosen the right lemma as a trans-

lation but not the right word form. Also, many morphologically rich languages,

such as Czech, are more flexible in the word order, so the metric that is used
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should not be very harsh to different orderings of words between the reference

and the system’s translation. SemPOS is one of the metrics that was designed

specifically to address these problems for the evaluation of Czech translations.

Finally, the most important requirement for evaluation metrics in their usage

in large-scale discriminative training is their quality on comparison of different

translations on the sentence level or even lower, on the level of partial hypotheses.

Corpus level metrics like BLEU do not behave well on the sentence level, but there

are alternatives that try to adapt these metrics for usage on the sentence level,

such as sBLEU (sometimes called BLEUS), and also completely new metrics that

were designed specifically to work on the sentence level.

3.1.1 Precision/Recall based metrics

Many evaluation metrics that are used in the field of Natural Language Processing

are based on precision and recall. Precision, as used in machine translation, is

defined as the ratio of correct words in the system’s translation [26] (by correct

we mean words present in both the system’s and the reference translation) and

the total number of words in the system’s translation. The recall is defined as

the ratio between correct words in the system’s translation and the total number

of words in the reference translation. Usually, these two measures are combined

into f-measure as described in the formulas below:

precision =
number of correct words

system′s translation length
(3.1)

recall =
number of correct words

reference translation length
(3.2)

f-measure =
(1 + β2) ∗ precision ∗ recall
β2 ∗ precision+ recall

(3.3)

This metric is not used often in machine translation projects but it has some

good aspects. First, it is simple to implement and fast to execute. It is a sentence

level metric, which is good for our purposes, but it ignores word order which will

not lead to learning good parameters during training, especially the weight for

the distortion model because any ordering would give exactly the same score.

Nevertheless, this metric was interesting enough to give rise to some other metrics
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that try to repair the ignorance of word order. One of these metrics is ROUGE-S

which we will describe later.

The simplicity of f-measure makes it also useful for the explanation of what

other metrics try to achieve. By setting β to a value larger than 1, we will give

more importance to recall and by setting β to the smaller value than 1, we will

give more importance to precision. Most often β = 1, which means that precision

and recall will have the same influence on the f-measure. If we want correct words

in the translation and we can tolerate if some unneeded words are present, then

we would prefer a metric with a high recall. If we value more a translation which

has fewer words, but most of them should be correct, we will prefer high precision.

All metrics try to find balance between precision and recall in different ways.

3.1.2 BLEU and its sentence level approximations

BLEU [41] is a precision-based metric, which computes the number of matched

n-grams between the system’s translation and the reference. Any n-gram size can

be used in theory, but the larger the n-grams used, the more the word order is

influencing the score. BLEU also uses a brevity penalty to penalize short transla-

tions, which is necessary because it is a metric that is based on precision, so this

brevity penalty could be considered as some way of recall taking a small part in

the final score. The formula for the BLEU score is given below:

BLEU-n = brevity-penalty exp
n∑
i=1

λi log precisioni (3.4)

brevity-penalty = min

(
1,

system’s translation length

reference translation length

)
(3.5)

In most cases, the maximum size of the n-grams that are used is 4 and all

weights of different orders of n-grams λ are set to 1, which simplifies the formula

to the multiplication of brevity-penalty and geometric mean of n-gram precisions:

BLEU4 = brevity-penalty exp
4∑
i=1

log precisioni

= min

(
1,

system’s translation length

reference translation length

) 4∏
i=1

precisioni (3.6)
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One of the problems with BLEU is that if just one of the n-gram precisions is

0, then the whole score becomes 0, which can happen often if we are evaluating on

the sentence level. For example, if we have any three-word reference translation

and we are measuring the score of any system’s translation with BLEU4, the

precision for four-grams will be 0 because there are no four-grams to be matched

in the reference, so the whole score will be 0 in every possible case including the

case that the translation is perfect. This is why BLEU is often used on the corpus

level. For every n-gram order, the number of matched n-grams in each sentence is

computed on the whole corpus, which is very improbable to be 0. This strategy

gives very good results in correlation with human judgment which has made

BLEU the most popular metric in the MT community. However the problem of

using BLEU on the sentence level is still there, which makes it unsuitable for usage

in large-scale discriminative training algorithms as an objective function. BLEU

is also not decomposable in the sense that a sum or an average of sentence scores

is not equal to the score of the whole corpus. Therefore, optimizing parameters

on the level of the sentence might not lead to the global optimization of BLEU

on the whole corpus.

There are few solutions suggested for approximating corpus level BLEU on

the sentence level. The most popular of them is smoothed BLEU or sBLEU [33].

What sBLEU does is actually a La-Place’s smoothing by adding one additional

count to each n-gram count except for unigrams, which makes BLEU score non-

zero, unless not even one word was matched.

The other solution for approximating BLEU that is used only for discrimina-

tive training and not for comparing different systems is a modification of BLEU

by [9]. What their modification does is smoothing of the BLEU score by using

the average of the previous translations that gets updated after each new evalu-

ated sentence. They first define a vector c(e; r) where e is the hypothesis to be

evaluated and r is the reference translation. That vector contains all information

needed to compute the BLEU score: length of e, length of r, for 1 ≤ n ≤ 4 counts

of n-grams in e and counts of matched n-grams in e. Let us say that for com-

puting BLEU using this vector, we can just call BLEU(c(e; r)). We also define a

pseudo-document O, an exponentially weighted moving average of vectors c and

Of an exponentially moving length of input:

O ← 0.9(O + c(e)) (3.7)

Of ← 0.9(Of + |f |) (3.8)
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Finally BLEU approximation is computed as:

B(e; f, r) = (Of + |f |)BLEU(O + c(e; r)) (3.9)

Of + |f | is needed for controlling the influence of context O on the B score.

3.1.3 NIST

NIST [16] tries to repair the assumption of BLEU, that all n-grams of the same

order are equally important. NIST tries to reward the translations which include

correct rare n-grams of any order while giving less importance to the translation of

n-grams that are seen often. In order to do that, NIST requires information weight

for each n-gram that is used. These weights need to be determined before the

evaluation and this is usually done by computing these weights on the reference

corpus. What is also a good property of NIST, compared to BLEU, is that NIST

is a decomposable metric: the average score of all sentence scores is equal to the

corpus score.

Info(w1 . . . wn) = log2

(
counts of w1 . . . wn−1

counts of w1 . . . wn

)
(3.10)

NIST =
N∑
n=1

{ ∑
all w1...wn that cooccure Info(w1 . . . wn)

number of w1 . . . wn in the system translation

}
∗ exp

{
β log2

[
min

(
Lsys
Lref

, 1

)]}
(3.11)

3.1.4 METEOR

METEOR [15] is a metric that uses lots of additional linguistic information in or-

der to allow some variation in the system output. By using stemming, METEOR

gives some score even to near matching words. It also uses semantic word-nets

in order to accept near synonyms. METEOR is a more recall-oriented measure

compared to BLEU, which is precision-oriented. The reason for that decision is

that having high recall ensures complete meaning of the source sentence captured

in the translation [26]. METEOR usually has much better correlation with hu-

man judgment, but it usually requires additional linguistic resources in order to
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be applied to some language. From the perspective of discriminative training,

METEOR has good sentence level correlation with human judgment but it is too

slow to compute compared to BLEU.

3.1.5 SemPOS

SemPOS (Semantic POS Overlapping) [28] is a metric that was specifically de-

signed to do evaluation of Czech output. It is based on the semantic role overlap-

ping metric from [19]. Instead of using semantic roles that were defined in that

metric and not available in the Czech linguistic resources, SemPOS uses semantic

POS from TectoMT [51] framework. Also, instead of surface word form, t-lemma

from TectoMT [51] is used in order to be more tolerant on the choice between

different variations of word form for lemma in a morphologically-rich language

as Czech. In a way, SemPOS has many similarities with METEOR: it is slow to

compute, has a requirement of rich linguistic resources and has a high correlation

with human judgment on the corpus level. However, it is reported that it has a

very low correlation with human judgment on the sentence level which is similar

to BLEU sentence level performance [28].

3.1.6 ROUGE-S

ROUGE-S [33] is a variation of f-measure described before. Instead of matching

words, ROUGE-S tries to match skip-bigrams which is a better choice because it

introduces word order information in the metric’s score. A skip-bigram is defined

as a bigram that allows skips (other words) between its two words. Let us take

the following example of having a reference translation:

R: A B C

and three system’s translations:

S1: A B C

S2: C B A

S3: A C B

The total number of skip-bigrams in reference translation is 3: A B, A C, B C.

Sentence S1 has all 3 matches of skip-bigrams which will give it a high ROUGE-

S score. Sentence S2 has no matching skip-bigrams, which will give it score 0.
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Sentence S3 even though it has the same words as for example sentence S1, one

word is in a wrong place. It will not have the same score with S1 because of

that, but it will still be rewarded for other two matching skip-bigrams: A C and

A B. Compared to the previous f-measure on the level of words that would give

to all these three sentences the same maximal score, f-measure with skip-bigrams

rewards translations with the right word order. It does not require any additional

linguistic resources and it is designed to work on the sentence level.

As the original f-measure, ROUGE-S does not differentiate between its two

arguments - it does not care which argument is reference and which is system’s

translation. It just computes similarity between two sentences. This is why in

the following formula that describes ROUGE-S we will use X and Y as sentences

between which similarity is computed and m and n as their number of words

respectively.

Pskip2 =
SKIP2(X, Y )

C(m, 2)
(3.12)

Rskip2 =
SKIP2(X, Y )

C(n, 2)
(3.13)

Fskip2 =
(1 + β2)Rskip2Pskip2
Rskip2 + β2Pskip2

(3.14)

where function SKIP2 computes the number of matched skip-bigrams and C

computes the number of skip-bigrams for the given length and is computed as

the number of word combinations:

C(n, k) =

(
n

k

)
=

n!

k!(n− k)!
(3.15)

ROUGE-S also allows one additional parameter that controls the number of

maximal number of skipped words. The value of that parameter is usually added

at the end of the name of the metric so for example if the maximal allowed skip

is 4 words then name of this version of ROUGE-S is ROUGE-S4. If the maximal

number of skipped words is undefined, then that version is called ROUGE-S*.

The smaller the number of allowed skips, the more value we give to the word
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order. In their work [33] have found that for English the best number of allowed

skips is 4.

ROUGE-S, as defined in [33], has a few problems related to its subfunctions

C() and SKIP2(). In [33] C() is defined as total number of skip-bigrams present

in its argument. That is a correct definition of C() if we are using ROUGE-

S* but if we are using any other version of ROUGE-S with constrained size of

skips it will not be correct. If the number of allowed skips is restricted, then the

number of skip bigrams that are present in both the reference and the system’s

translation is not equal to the number of word combinations. Let us take as

an example sentences with four words and the maximal number of allowed skips

1. The number of possible word combinations is 6 but the actual number of

skip-bigrams with skip not bigger than 1 is 5. By computing total number of

combinations we have included skip-bigram with first and fourth word which

should not be included because number of the skipped words is two. The other

problem is that if we compare two completely identical sentences of length 4

using the maximal number of skips to be 1, the score will not be 1 but lower

number because translation will be punished for not matching the skip-bigram

which was forbidden to match. In the other paper about ROUGE-S metric [32],

it was mentioned that C() should be modified to compute the actual number

of skip-bigram that could be matched but no precise formula was given. The

formula we are using for C() is given below:

C(n, s) =


1 when n < 2

n(n−1)
2

when 2 ≤ n ≤ s+ 2 ∨ s = ∗
(n− s− 1)(s+ 1) + s(s+1)

2
when s+ 2 < n

(3.16)

Here, s represents the number of allowed skips and n the length of the sen-

tence for which we are computing the number of skip-bigrams with a constrained

number of maximal skips. This formula might not seem precise because for a

sentence with length 0 or 1 a number of skip bigrams is 0, not 1 as given by the

formula. The reason for using 1 instead of 0 is to avoid error by division with zero

when we compute precision and recall. Because the number of matched bigrams

will be zero any way, the final score will still be zero so this impreciseness does

not influence the score and saves us from processing results for this functions as

special cases when result is zero and when it is not zero. In the case of having

infinite number of allowed skips ( s = * ), this function returns the same result

as the function used before for the number of combinations.

If we try this formula on the previous example, we get the correct prediction
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of 5 skip-bigrams. The bigger the sentence, the larger is the difference between

the correct number of skip-bigrams and the number of combinations. This leads

to two problems with the ROUGE-S metric as defined in [33]:

• translations that are longer than their competitors will get punished because

the length exponentially influences the number of combinations

• even if all competitors are of the same length, the final number that will

result from the score will be too small because they are divided with large

denominator. For example, for n=100 and s=4 denominator in the ROUGE-

S as defined in [33] will be 4950 while with our function it will be 485

Our formula does not have these problems since the size of the sentence does

not exponentially influence the number of skip-bigrams and the final score can

be any number between 0 and 1 independently from its length.

There is also one more problem with the imprecise definition of ROUGE-S

as given in [33]. In their paper they say that the function SKIP2 computes the

number of matched skip-bigrams between its two parameters (two sentences).

One possible interpretation of this is that SKIP2 computes the number of the

skip-bigrams that are in the first sentence that appear in the second sentence. If

we take the simple example with the first sentence being A A A and the second

sentence being A A, by this definition, it would mean that the number of matched

skip-bigrams is 3 and the recall will be 3, which of course does not make sense

since recall is defined in a way not to be bigger than 1. The way we make this

definition more precise is shown in Algorithm 7.

By having defined function SKIP2 precisely there could be no confusion of

what is meant by the matching skip-bigrams and we would not be led to the wrong

result like in the previous example. ROUGE-S works well even with the wrong

definition of SKIP2 because the situations that we have described in the previous

example are rare, but this could present a problem if we use ROUGE-S with

wrong definition of SKIP2 because with the wrong definition the optimization

algorithm will prefer output that is long filled with repetitions of matched skip-

bigrams, which is a very bad result in the end. With our definition that problem

cannot appear because we are recognizing the minimal number of matched skip-

bigrams and the system is punished for long output. When we report results with

using ROUGE-S evaluation metric, we use ROUGE-S with small modifications

on C() and SKIP2() functions as presented here.
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Algorithm 7 SKIP2 function

Input: Sentences X and Y

Output: Number of minimal common skip-bigrams

Xcounts // hash map that contains skip-bigrams of sentence X

// as a key and its count in sentence X as a value

Ycounts // hash map that contains skip-bigrams of sentence Y

// as a key and its count in sentence Y as a value

for all skip-bigram x ∈ X do

Xcounts{x} ← Xcounts{x}+ 1

end for

for all skip-bigram y ∈ Y do

Ycounts{y} ← Ycounts{y}+ 1

end for

matched bigrams← 0

for all x ∈ keys(Xcounts) do

matched bigrams← matched bigrams+ min(Xcounts{x}, Ycounts{x})
end for

return matched bigrams

3.2 Motivation for using ROUGE-S as an objec-

tive function

Ideally we would like to use as an objective function for discriminative training an

automatic evaluation metric that correlates best with human judgment. In the

case when our target language is Czech that metric would be SemPOS since it has

good correlation with human judgment [28]. However, there are some problems

with using SemPOS as an objective function:

1. it is slow to compute

2. it is a corpus level metric

[29] solved the first problem by preprocessing the training data to include seman-

tic POS and t-lemma as factors which would be used later to build a factored

statistical machine translation system. Because the information about a word’s

semantic POS and t-lemma was available as a factor during tuning, there was

no need to do parsing with TectoMT, which is the slowest part of the whole

evaluation process. What we have mentioned as the second problem was not a

big problem for them because they used MERT as an optimization algorithm,
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which can handle metrics that operate on the corpus level. The results that they

obtained by using only SemPOS as an objective function were not as good as

expected because even though SemPOS was good for comparison of different sys-

tems which make different lexical choices, it turned out not to be as good for

comparing different but similar translations in the n-best list. This is a similar

problem like the one that we have described with having the wrong definition for

the SKIP2 function in the ROUGE-S evaluation metric. ROUGE-S was good for

comparing systems even with the wrong SKIP2 function, but when we optimize

using this wrong function the optimization algorithm exploits the weaknesses of

this definition.

As stated above, for the objective function in large-scale discriminative train-

ing we need, for most algorithms that are used for this task, a metric that is good

in comparing similar sentences with reference translation. Because SemPOS has

a bad correlation with human judgment on the sentence level [28] and bad for

discriminating similar translations [29] it cannot be used for large-scale discrim-

inative training. A metric such as BLEU is bad on the sentence level, but also

bad for languages with free word order and rich morphology [28]. As an alter-

native to optimization towards BLEU, the most popular choice is sBLEU which

was first published in [33]. In that paper, the authors present several different

metrics where most of them are new and they all work on the sentence level.

They have compared all these different metrics with their new meta-evaluation

method called Orange (presented in the same paper) which does not require hu-

man judgment scores in order to compare different metrics. In this comparison,

the metric that gave the best results on the English translations is ROUGE-S4.

It was better then metrics like NIST, BLEU and sBLEU.

[28] have examined sentence level correlation of different metrics with human

judgment for translations in Czech and found that the best correlated one is

NIST. Together, results from [33] and [28] led us to the idea that ROUGE-S

might be a good metric for large-scale discriminative training, because if NIST is

the best from all tested metrics on the sentence level in [28] and in [33] ROUGE-

S is even better than NIST and sBLEU, which is the most popular choice for

large-scale discriminative training, then ROUGE-S might be interesting to test

as an objective function. Of course, these comparisons cannot be linked directly

because they were done on different data and different languages, but it is enough

to support the motivation for our experiments.

The second reason for experimenting with ROUGE-S is that it is a simple

metric that does not require remembering the history of the previous evaluations
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Figure 3.1: Comparison of evaluation metrics

like BLEU approximation used in [9]. Their approximation is based on using

the average vector of counts from the previous translations and there is no real

reason to expect that to be the right approximation because the history of pre-

vious translations might be completely different from the one we are evaluating.

Even if we take that these methods of approximation are good, they could also

be applied to ROUGE-S if there is need for that. We do not have a direct com-

parison between their approximation of BLEU and any other metric except in

the influence of that metric on discriminative training where it was preferred by

them as an objective function over sBLEU.

The final and most important reason for using ROUGE-S is that it is ap-

proximating human judgment directly unlike BLEU approximations which are

approximating human judgment indirectly by approximating approximation of

human judgment. In Figure 3.1 you can see how different metrics approximate

human judgment.
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4. Sparse features in Large-Scale

Discriminative Training

The invention of new algorithms for large-scale discriminative training of ma-

chine translation models has opened the opportunity for usage and research of a

large number of features for modeling the translation process. These algorithms,

however, are not in a sufficient condition for using features with rich linguistic

information. Some of the problems are related to the way in which the generative

model that produces candidates works, like for example phrase based statistical

machine translation which does not (in general case) give any rich linguistic in-

formation like parse tree or POS tags. The other problem is that even if we had

a perfect system for handling the large number of rich linguistic features, what

features would we use? There has not been a lot of research on the rich features

for modeling translation output, but help might be found in the area of linguis-

tics. There are also features that are already present in the generative model

but could be used more effectively in discriminative models. These are the most

often used features in large-scale discriminative training, but to our knowledge

they have not been applied to Czech as a target language so far. We will address

all these problems in this chapter and suggest possible solutions.

4.1 Simple Generative features in Large-Scale

Discriminative Model

It is a standard practice in statistical machine translation to train generative

models like the language model and the translation model independently and then

use them as features in a discriminative model. It is possible to make these models

integrated even more in a discriminative model. For example, instead of using

the probability of translation from the translation model we can use individual

parts of the translation model that are used for computing the probability and

make them discriminative. For example, we can use each phrase pair from the

translation model as an independent feature in a discriminative model instead of

their generative combination. In most of the practical applications of large-scale

discriminative models, these features gave the best results.

The main advantages of using features from generative models in discrimina-

tive models for machine translation are:
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• correction of errors introduced by training generative model features like

phrase pair probability from translation model and n-gram probability from

the language model independently on different data set

• correction of overestimated probabilities in generative training

The two most often used features from the generative model in the discrimi-

native model are the discriminative language model (DLM) and the phrase pair

feature (PP). DLMs have been used before in many subfields of natural language

processing and in particular in speech recognition systems [46]. What a discrim-

inative language model does is giving us an estimate how much some n-gram is

a sign of a good translation.

To see the difference between the usage of a discriminative and a generative

language model, let us look at the following example. If we have some n-gram that

is according to the generative model very probable, this means that in the target

language this n-gram appears very often. This information is taken from the

target monolingual corpus on which the generative model was trained. However,

that n-gram might have a very low score according to the discriminative model

because it is a sign of a bad translation. Now this looks like a paradox, but it is

not. One of the possible reasons for that n-gram to be sign of a bad translation is

that it is, a part of the phrase pair that is learned from bad parallel data. In this

case, the discriminative methods act as some corrective factor to the generative

features that have problems because they are trained independently.

Controlling the dependency between different features is not the only rea-

son for using discriminative methods. One other example where discriminative

methods can correct the judgment of the generative model is the case when some

n-gram probability is overestimated. Overestimated n-gram probability will cause

translations with high model score and low evaluation score during tuning, which

will make its weight in the discriminative model very small or even negative, so

it would not cause a low evaluation score during testing.

The other feature that is used often is the phrase pair feature. It gives an

estimate of how much some phrase pair, that was used in the generative trans-

lation, is informative or a sign of a good translation. That phrase pair might be

very probable in a generative model, but this might be an error caused by inde-

pendent training of features or overestimation. Using phrase pairs as discrimina-

tive features can reduce issues that are caused by overestimation of phrase pair

probability in the generative translation model and independent training of the

generative translation model from other features.

41



4.2 Generalization of Simple features in Large-

Scale Discriminative Model

Features like DLM and PP are used often on the level of word forms, but that

does not have to be the case. We can make DLM or PP more robust to the

data sparsity problem, that is often present in morphologically rich languages, by

using some more abstract representation of a word than its surface form. Some

of those more abstract representations can be:

• lemma

• stem [52]

• POS tag [52]

• cluster ID from clustering like in [38]

• affix (usually suffix for languages like Czech) [52]

Each of these features can decrease different types of errors that appear in

machine translation with morphologically rich languages:

• lexical choice - lemma and stem are a good choice for solving this problem.

They bring similar type of information into the model, so the usage of both

of them at the same time might not bring advantage over using only one

• word order - POS tag and cluster ID are good for creating a robust language

model. In [37] authors have created two language models for German to be

used in generative translation: one based on the POS tags, and the other

on the cluster IDs where 50 clusters were built using [38]. The language

model built on clusters gave better end translation results than the language

model built on POS tags. This can be explained by clusters being more fit

to the actual data which we plan to translate, rather than POS tags which

are not based on data, but on some linguistic theories.

• word form choice - POS tag and affix feature can influence the choice of the

right word form

All these features require some additional processing of all hypotheses in an

n-best list. POS taggers and other similar classifiers that are used for gathering

information needed for these features are usually trained on data of reasonable

quality. Hypotheses in an n-best list might be of very bad quality and therefore
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their words can be misclassified because classifiers were trained on data of different

quality.

Some researchers have built special classifiers for handling translation output.

In [47] they have created a parser for processing translation output by using

not only features based on the target language but also features from the source

side and alignment between words of source and target sentences. The parser

was also trained on translation results which made it robust for handling that

kind of text. This parser was created with the reason to do post-processing

of translation output, which means that the number of times it is applied is

equal to the number of translated sentences which is usually not a big number,

so the speed of parsing was not a big limitation for its usage. However, if we

want to use this type of parser in discriminative training, it would be applied

number of tuning sentences ∗ number of iterations ∗ nbest size times, which

is a large number considering how slow the parsing of one sentence can be. This

makes the usage of parsers and similar classifiers a bad option for discriminative

training.

A similar problem was encountered in [29], where the authors have tried to

use SemPOS as an evaluation metric for optimization. SemPOS requires some

deeper linguistic information on the target side so the first option to try out

was to parse each hypothesis in an n-best list. They have reported that tuning

with parsing each hypothesis in an n-best list is extremely slow. Because of

that, they have applied a different technique of getting the information they need

(lemma and semantic POS). They did all necessary linguistic preprocessing on

the training data and set this information (lemma and semantic POS) as a factor

in the training data. By training a factored model with linguistic descriptions

as additional information in the form of factors they were able to access these

descriptions during tuning without processing each entry in the n-best list. This

was done in order to use a specific evaluation metric, but the same approach can

be applied in finding abstract representations of words that we need for large-

scale discriminative training. It should be noted that this method does not come

without any cost. Doing factored training with additional factors influences the

process of decoding by increasing the search space, so sometimes it can lead to

n-best lists with translations of bad quality and then additional features will not

help noticeably.

We suggest a simpler approach that can give approximate results, but it is

much faster in processing hypotheses in an n-best list than some complex clas-

sifiers and it does not require a specific way of training and decoding like the
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factored training approach.

As a replacement for lemma and stem, we can use their approximation by tak-

ing the first few characters from a word as an approximation. This is a technique

that is applied often in the alignment step of building an SMT system [3]. This

approximation can be applied only to the languages that have morphology based

mostly on suffixes. With the same requirement we can approximate suffixes by

taking what is left from the word form when we take away a stem.

As a replacement for POS tagging, we can apply several different approaches.

One of them is assigning the most frequent POS tag of the given word form or

if that word form was not seen before then assigning proper noun tag. This

technique ignores context, but even without considering context it gets around

90% accuracy with languages like English [7]. The second replacement for POS

tags is to use cluster IDs instead. Clusters can approximate POS tagging if

a reasonable number of clusters (depending on the target language) was used.

In languages with a very large number of POS tags, doing clustering with the

same number of clusters might be hard, so instead of doing that, we can use

a smaller number of clusters together with the approximation of suffixes as an

approximation of POS tags.

4.3 Rich linguistic features

There are two problems with using linguistically motivated features in large-

scale discriminative training with phrase based statistical machine translation

systems. We will call one problem technical and the other one linguistic. The

technical problem consists of creating a system capable of having all the necessary

linguistic information in order for rich features to work. The linguistic problem

is in deciding which features to use. We offer possible solutions to these problems

which are later tested in the conducted experiments.

4.3.1 Technical problem of incorporating rich features

What we usually mean by linguistic information is information like POS tags

and parse trees. The solutions to the problem of getting POS tags and similar

information were addressed in the previous chapter. Here, we will take a look at

the problem of getting a parse tree of a target sentence. As we have mentioned

before, it has been shown that parsing machine translation output requires a

special parser in order to get better results [47] and it can take a long time

to tune with parsing each sentence in an n-best list [29]. What we can easily
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get is linguistic information on the source side. Since the source side is not

changing, we can do all the necessary linguistic preprocessing and then use it for

tuning. The hard problem is getting the same type of information on the target

side. This problem does not appear in systems that are based on hierarchical

translation [18] or dependency treelet translation [43] because the parse tree of

the target side is part of a translation hypothesis. This is not the case with

phrase based systems and this is why not much research has been done on using

rich features with phrase based systems. It was claimed that there is a high

correspondence between dependency structures of sentences in parallel corpora.

In [45] authors find that 70% of untyped English dependencies correctly map to

the corresponding Chinese sentence. The process of mapping dependency trees

relies on a few simple heuristics which give relatively good results. Since mapping

can be done much faster than parsing we think that it can be a source of syntactic

information for the features on the target side. The method that was used in [45]

allows any type of alignments, but it creates new empty words on the target side.

Instead of that method we used similar, but improved, mapping heuristics that

constrain possible alignments, but do not create empty words on the target side.

That method was presented in [43]. We also present one more option for finding

syntactic information that is a small simplification of the first solution.

Alignments

In mapping source side dependency information to the target side, we need align-

ments between the words of the source and target sentences. An alignment that

is necessary for mapping should be one-to-many or one-to-one in order for the

heuristic rules that we use to be applicable. There is one special case of many-

to-one alignments that can be allowed: if nodes in the source side of some many-

to-one alignment cover a complete branch of the source tree then that alignment

is allowed too. Since we already have phrase-to-phrase alignments during the

tuning, we can get better quality of word-to-word alignments if the alignment is

done on the level of phrase pairs instead of alignment on the whole sentence pair.

Mapping dependency trees from the source to the target side

Ideas from one of the alternatives to phrase based statistical machine translation

can give solutions to the problem of mapping dependency trees. In dependency

treelet translation [43], a system is trained on a parallel corpus where both sides

have dependency trees. The only requirement is that a parser for the source side

exists. Target side trees are derived from alignments between words and source
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parse tree. In dependency treelet translation, this process is used for extracting

linguistically motivated phrases, but in our case we can use the same approach

with the different goal of mapping a source parse tree to a target sentence in an

n-best list.

Heuristics for mapping starts from the root of the source tree and then map

other source tree nodes in the breath-first order. The heuristics for mapping are

as follows:

• for one-to-many alignment - map the rightmost node to the word in the

source sentence and make dependency of all other words to the rightmost

word

• for one-to-one alignment - map source and target word

• for special case of many-to-one alignment - map word on the target side to

the highest node of the source side

• for unaligned words on the target side - make dependency between nodes

of this type and the closest node on the left or right side from it, that is

lower in the parse tree

With these mappings, source tree dependencies can be directly mapped to the

target side.

Simplified solution

Previous solution with mapping dependency trees from source to target sentence

is tricky to implement and it introduces some assumptions that are not necessarily

true. Instead of relying on these assumptions, we can introduce some features

that use dependency information, but without mapping the source sentence tree.

For example, if we want to implement a sparse feature that is similar to the

discriminative language model, instead of using consecutive words, we will use

the word and its parent word. One way is to map the source tree to the target

and then use that mapped tree to implement this feature. The other way is

to use any word on the target side and the parent of the aligned word on the

source side. More formally, if we have a mapping e → f , the new feature will

be (e, parent(f)) while in the previous case it would be (e, parent(e)) where

parent() is a function that returns the parent node of its argument from the

source tree or tree mapped to the target depending on the argument. Of course,

features (e, parent(f)) and (e, parent(e)) are not the same, but the first one can

be considered as an approximation of the second one in the usage of dependency
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information. Feature (e, parent(e)) also depends on the translation of parent(f)

while (e, parent(f)) does not.

4.3.2 Linguistic problem of finding rich features

We find that the way in which Optimality theory [42] describes the process of

producing the surface form of a sentence is very similar to the process of discrimi-

native training. The grammatical component of optimality theory consists of two

subcomponents [50]:

• GEN function which generates candidates for the final surface form

• EVAL function which evaluates all the candidates that GEN has generated

The evaluation is done using some constraints that are ordered by priority. It

is expected that these constraints are universal for all languages and that priority

is language specific. The sentence that breaks the smallest number of high priority

constraints gets selected as the final surface form.

This process looks very similar to the process of discriminative training in

machine translation. The GEN function in optimality theory can be seen as

parallel to the generation of n-best lists by the decoder and the EVAL function

as a parallel to the reranker. This leads us to the idea that the constraints found

by researchers in optimality theory can be used as an inspiration for features in

discriminative training for machine translation.

Still, not all constraints can be applied as features in discriminative training

directly. One of the reasons is that in most cases, they are dealing with some

very specific phenomenon that is not of big importance in the target language

or in the translation process. The other reason is that they use only target side

information and they can be enhanced by using information from both source

and target sides.

To our best knowledge, this similarity between the translation process and

optimality theory was not mentioned before in machine translation literature

and it was mentioned in only two papers by the same author [34, 35] in human

translation literature. Since constraints that are mentioned in Optimality theory

literature are mostly language specific, we have decided to leave this features for

the future research and to concentrate on the general features applicable to all

languages. The concrete features that are used are described in the following

chapter.
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5. Experiments, results and

discussion

This thesis tries to address the problems that are present in large-scale discrimi-

native training when the target language is morphologically rich. The problems

that we have identified are the following:

1. a large number of word forms that are present in the test data are not seen

in the training data [29]

2. even if a word form is seen in the training data, choosing the right word

form can be hard [29]

3. BLEU as an evaluation metric does not give good results in evaluating

morphologically rich languages [28] and we expect its sentence level ap-

proximation, that is often needed in large-scale discriminative training, to

give even worse results

We will concentrate on the problem of choosing the right word form and the

problem of evaluation metric. We will not deal with the problem of missing word

forms in the training data since this problem can, in most cases, be solved only

by getting more data. Experiments are based on our ideas that are presented in

previous chapters.

5.1 Data, software and baseline systems

Before we present our experiments, we will first describe the data and software

that was used for building models that are later optimized using different algo-

rithms. The experiments are conducted on two language pairs: English-Czech

and English-Serbian.

For the English-Czech translation model, we have used the news section of

the CzEng 1.0 parallel corpus [5]. For training the language model, we used the

Czech side of CzEng 1.0 news section. As tuning, testing and selection corpora we

used WMT10, WMT11 and WMT12 respectively. These corpora were labelled

with additional information such as POS tags and lemma using the Treex toolkit

[51]. The corpora used for building English-Czech systems and basic statistics

about them are presented in Table 5.1. There are two unoptimized English-Czech

models that we use:
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corpus lines
word tokens word types lemma types

English Czech English Czech English Czech

CzEng 1.0 news 197053 4784761 4220203 59214 167436 58048 64699

WMT10 2489 64262 53423 9348 15757 7567 9332

WMT11 3003 77144 66146 10852 17928 8671 10331

WMT12 3003 75102 65682 10173 17990 8174 10155

Table 5.1: Statistics of the corpora used for English-Czech

corpus lines
word tokens word types

English Serbian English Serbian

SETIMES2 training 197149 4779937 4573150 67308 126444

SETIMES2 tuning 2000 47514 45596 7316 11229

SETIMES2 selection 2000 47910 45949 7227 11120

SETIMES2 testing 2000 47973 45952 7373 11301

Table 5.2: Statistics of the corpora used for English-Serbian

CzechStdModel trained on the source side that is tokenized using standard

tokenization for English by Moses toolkit

CzechDepModel trained on the source side that is tokenized using Stanford

tokenizer [13]

The reason for having two unoptimized models (which are naturally later op-

timized) is that one of them, CzechStdModel, gives better results since it uses

tokenization that is suitable for machine translation while the other, CzechDep-

Model, uses tokenization which gives better results in dependency parsing which

we will do later.

For training English-Serbian model we used SETIMES2 parallel corpus which

is distributed together with collection of other OPUS corpora [49]. The corpus is

split into 4 corpora used for training, tuning, selection and testing. The statistics

of the used corpora for training English-Serbian systems is presented in Table 5.2.

As with English-Czech, here we also create two unoptimized systems:

SerbianStdModel trained on the source side that is tokenized using standard

tokenization for English by Moses toolkit

SerbianDepModel trained on the source side that is tokenized using Stanford

tokenizer [13]
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For experiments, we mostly relied on the Moses PB-SMT toolkit [27]. More

precisely, we used the version committed with ID 07a5c67ebce0649cbfa2149b25a-

2d3042c612654 to the branch miramerge of the Moses git repository located at

https://github.com/moses-smt/mosesdecoder. Words in the English-Czech

and English-Serbian training corpus were aligned on lemmas and word forms

respectively using GIZA++ [40]. The language model is built using SRILM

toolkit [48]. For some experiments, we needed clustering of words which we

performed using mkcls [38]. For testing the rich features we used the typed

dependency output from Stanford parser [36]. For controlling the experiments,

the eman experiment management system was used [4].

Each of the unoptimized systems was optimized using different algorithms

and settings. Depending on the tested features, as a baseline we use one of the

following optimizations:

1. MERT with corpus level BLEU score as its objective function

2. Online MIRA with sentence level approximation of the BLEU score [33] as

its objective function

3. Batch MIRA with sentence level approximation of the BLEU score [33] as

its objective function

As noted in [10], most of the optimization algorithms for discriminative models

in machine translation have some randomness and because of that it is required

to repeat some experiments several times in order to get statistically significant

results. In the case of MERT, it is suggested to run MERT at least three times

and then compute the average score and standard deviation. For the MIRA

algorithm, this approach does not work because, unlike in MERT, randomness in

MIRA does not come from random starting points (usually for most features the

initial weight is 0) but from the ordering of training instances. That is why in

addition to the repetition of tuning several times, we also shuffle the tuning data

after each iteration of tuning.

5.2 Experiments for solving the problem of se-

lecting the right word form

From Table 5.1, we can see that the Czech language data is not much sparser

than English when lemmas are considered, but the difference in the number of

word forms is huge. To see how big problem this presents if word form or lemma
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types tokens

word forms 80.5% 93%

lemmas 80.1% 94.4%

Table 5.3: Coverage of the Czech development corpus by the training corpus

is not seen in the training data, we have measured coverage of the Czech side

of our development corpus (WMT10) from the training data which can be seen

in Table 5.3. The ratio of unseen types of words (both their forms and lemmas)

is huge, but these unseen words appear rarely. This problem is even bigger if

we look at the coverage on the level of n-grams where the ratio of unseen word

forms will grow exponentially with n. Even if all word forms and lemmas from

the development corpus were seen in the training data, for many of these words,

the number of appearances in the training data might be really small, so we

cannot estimate the parameters of our model properly. If we do not estimate the

parameters correctly, then even if the system has the correct word form as an

option for translation, it will not choose it because the parameters of the model

were not well estimated. In order to solve this problem, we need to add features

to our model with which it can predict the word form better depending on the

word order or the grammatical description of words. To test the possible solutions

we divide conducted experiments into:

1. those that use simple features (in some cases with some linguistic abstrac-

tion)

2. those that use syntactic information such as dependency trees that are

mapped to the target side using method described in the previous chapter

The first group of features was tested on the unoptimized models CzechSt-

dModel and SerbianStdModel, while the second one is tested on the CzechDep-

Model and SerbianDepModel.

5.2.1 Experiments with simple features

First, we explore sparse features that deal with the basic structure of the sentence

on the level of n-grams and do not consider any deeper linguistic information

except the surface form of a word. These features are basically features from

the generative model trained discriminatively. We used discriminative language

models on unigrams (DLM1) and bigrams (DLM2) and phrase-pair (PP) features.

We have tried training a trigram DLM feature, but this feature is too sparse to be
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Number of Average Standard

features BLEU score deviation

MERT core 8 12.37 0.02

MIRA core 8 12.44 0.06

DLM1 9409 12.34 0.08

DLM2 42901 12.41 0.04

PP 17641 12.40 0.06

Table 5.4: Scores for English-Czech translation using simple sparse features on

word forms

trained in reasonable time. For tuning, we have used the online version of MIRA

because the batch version required too much disk space as it requires storing

n-best lists from all iterations with all sparse features and their values in each

hypothesis. The results of using the mentioned features with online MIRA on

CzechStdModel are shown in Table 5.4.

Even though the tuning corpus was small compared to the size of the corpora

that are usually used to learn such a big number of parameters, MIRA was stable

and learned reasonable parameters in each case. In some cases where there was a

larger number of parameters, the results are even better, which leads us to think

that data size was not a big problem in this case. Other researchers in large-scale

discriminative training also achieved reasonably good results with tuning data

of similar size as used for MERT, but we did not find any explanation why it

works well. We think that the reason the small corpus gives good results might

be Zipf’s law. Features that are very important will appear in the tuning corpus

no matter how big it is while rare, unimportant features will not appear and if

they appear, algorithms with good regularization will prevent them form having

a big influence anyway.

DLM2 and PP have the best results from all sparse features tested on Czech-

StdModel that use only word forms. The reason for this might be the context

that is taken into account in DLM2 and PP features. Together with context,

these features take word order information too. DLM1 does not depend on the

context or word order at all so it does not help in differentiating hypotheses that

have the same words but in different ordering. PP influences the word order

because phrases can be of size from 1 up to 7 words. We have computed the

average target phrase size on the system’s translation of the WMT11 corpus: it

is 1.36 words. The average context that is taken by the PP feature is small, but

it usually takes larger context when it is important i.e. justified by the data from
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which the phrases are extracted. Also, the real choice of word forms is not made

on the level of words, but on the level of phrases because we are using a phrase

based system. The property of the PP feature of using large n-grams when it is

necessary and using small n-grams in other cases, which leads to lesser sparsity

compared to DLM2, is interesting and is worth future exploration. Since DLM2

gives the best score from features that use only word forms, we decided to use it

as a base on which we will test the effect of adding more linguistic information.

We have created DLM2 features that do not use word form that can be very

rare in the tuning data, but instead use some other more abstract linguistic

information that appears more often in the tuning data and is common to words

that sometimes do not have the same word form. The first type of these features

are those that take only some part of the word form and do not require any

additional information in order to work. We have tested a prefix feature which

takes the first 4 characters of a word and a suffix feature which takes the last

3 characters. The prefix feature in languages whose morphology relies more on

suffixes, such as Czech, plays the role of a stem feature. A good property of these

types of features is that they are not computationally expensive and can work

even on languages that do not have such rich language resources as Czech does.

Words that are shorter than the defined maximum size of an affix are modeled

differently. We mark these words as a whole word. For example, if we have defined

that we want suffixes of maximum size 2 then we would model word “thesis” as

“isX” where “X” represents border of a word, while word “is” would be modeled

as “XisX”. The reason for this difference in modeling is that frequent words tend

to be shorter [12] and we expect that if we allow special treatment of short words

we would get their weight more correctly estimated than if we would model it

together with suffixes.

We have shown in Chapter 4 that using linguistic information, such as POS

tags or lemma, can be hard in discriminative training of phrase-based systems.

We have suggested two solutions that are less computationally expensive than

the full application of the POS tagger:

1. factored training with POS tags (or lemmas) as an additional factor

2. the application of a unigram tagger that will assign the most frequent tag

of a word without considering the context in which it appears

We tried the first solution, but it turned out that large-scale discriminative

training of factored models can be quite slow and requires significant amounts of

memory even with small size of tuning data. Even though it is less computation-
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ally expensive than the application of POS tagger it is still too slow. Because of

that, the only solution left is the application of unigram POS tagger.

For building a unigram POS tagger for Czech, we used the Czech side of the

news section of the CzEng 1.0 parallel corpus [5] in which each word is labelled

with its POS tag and lemma. In this kind of a tagger there is no need for

remembering any probabilities. We require only mapping from each word form to

its most frequent POS tag or lemma. We evaluated the tagger on the development

corpus and got relatively good results that are shown in the Table 5.5. Except

standard unigram tagger we tried also two additional heuristics for handling words

for which the tagger has no mapping. In the case of the lemma tagger that is

mapping word form to itself and in the case of the POS tagger it is tagging that

word as a noun. The heuristics for mapping unseen word forms to the noun

tag has been applied before for tagging English [7], but it is not very useful

in morphologically rich languages like Czech because the noun tag has a large

number of variations so it would be hard to pick the right one. Here, we tested

this heuristics only to see if it would have a similar effect on Czech if we are

satisfied with tagging a word as a noun without any additional information (case,

number etc.). All results of unigram tagging are relatively good, considering how

simple this method is and how fast it is to compute. Also, these results are

realistic in the sense that we can expect similar performance even if the input

sentences have some ordering of words that is not represented in the training

data. This is not the case with the more complex taggers such as HMM taggers,

which are trained to perform well on normal human input but not necessarily on

the sentences generated by an MT system.

We also used cluster IDs as a more abstract description of words that have

similar properties (assuming that words with similar properties appear in similar

contexts). We built 80 clusters by running mkcls for 10 iterations on our training

corpus.

What is common for cluster ID, POS tag and lemma features is that they all

perform a mapping from the word form to some other description. This is why

we have implemented all these features with the same code in the Moses decoder

that takes only the file with mappings as a parameter without caring whether it

maps to lemma, POS tag, cluster ID or something else because that is irrelevant

for the feature in the technical sense. It might seem that the suffix and prefix

features could also be implemented as mapping features, but that is not the case.

The difference is in the way how unseen words are handled. Prefix and suffix

features handle unseen words in the same way as they do words that are seen in

54



tagger for tagger precision

POS
unigram tagger 76.33%

unigram tagger + unknown words as proper nouns 86.05%

Lemma
unigram tagger 90.79%

unigram tagger + unknown words as themselves 93.46%

Table 5.5: Precision of unigram tagger

Type of Number of Average Standard

used bigrams features BLEU score deviation

Word form (baseline) 42901 12.41 0.04

Suffix 3 29214 12.37 0.06

Prefix 4 (stem) 27818 12.34 0.08

Cluster IDs 4386 12.43 0.01

POS tags 11150 12.37 0.10

Lemmas 26231 12.39 0.09

Table 5.6: Linguistically more abstract DLM2 features scores

the corpus, while mapping features emit the token “UNKNOWN” when word is

not recognized. We did not apply any of the mentioned heuristics for handling

unseen words because we expect that it is better to handle uncertainty of the

correct tag with these special tokens than risking to guess the wrong tag and

then learning the same weight for correctly and not correctly tagged words.

The results of applying these features on CzechStdModel are shown in Ta-

ble 5.6. Cluster ID is the least sparse feature which still gives the best results

from all used sparse features. One reason for this might be that because we have

smaller number of features their weights could be estimated more correctly. The

other reason might be that, compared to the POS tags, cluster IDs fit better to

the data because members of the cluster are estimated from training data and

not by manual labeling. Extracted clusters also contain some semantic informa-

tion. For example, one of the clusters consisted only of surnames. Cluster ID is

the only feature of those that are tested that gives better BLEU scores with low

variance than the feature based on word forms.

Prefix (or stem) feature plays similar role as lemma feature – it tries to model

lexical choice for translation. In our experiments lemma feature gave better

results than prefix feature, but it cannot be applied to languages which do not

have resources with words labeled with lemmas.

To some extent POS feature and suffix feature have the common function of
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Type of Number of Average Standard

used bigrams features BLEU score deviation

MERT core 8 35.87 0.02

MIRA core 8 35.82 0.01

DLM1 11020 35.82 0.02

DLM2 38451 35.77 0.03

PP 24352 35.79 0.01

Suffix 3 26756 35.77 0.02

Prefix 4 (stem) 29972 35.74 0.02

Cluster IDs 4355 35.77 0.02

Table 5.7: Scores for English-Serbian translation using simple sparse features

modeling correct form of a word given the lexical choice. In our experiments they

perform equally well with just a little more variance in the results of POS feature.

We have also applied all mentioned features to SerbianStdModel except the

POS and lemma DLM2 feature since we did not have labelled Serbian data to

train a unigram tagger for these features. The results on SerbianStdModel are

presented in Table 5.7. The performance of sparse features on English-Serbian

translation look opposite from their performance on English-Czech translation.

In English-Czech the more context features capture the better the results, while

in English-Serbian the feature that does not take any context into consideration

DLM1 gives the best results. We think that reason for this might be different

quality in the corpora used for training, tuning, selecting and testing English-

Czech and English-Serbian systems. In English-Czech we are using WMT corpora

which is of relatively good quality compared to the SETIMES2 corpora which is

crawled from the web. For sparse features in English-Serbian system it is more

important to penalize wrong words or phrase-pairs than to estimate correctly the

correct word form given the context.

The usage of sparse features in our experiments gave us results that are rela-

tively good, but not significantly better compared to the results of the baseline

systems which is common in the current state of research in large-scale discrim-

inative training [23, 20, 24]. Except improving the optimization algorithm, im-

provement with existing features might be achieved by using the tuning data of

size bigger than the one usually used for MERT tuning so models with large num-

ber of features could estimate their parameters more reliably. The other option is

combination of different features that give poor results individually but together

might give good results because they solve different problems in translation. One
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more possibility is creation of new features that would use more of the linguistic

information such as parse trees. We will explore the latter possibility in this

chapter. Before we do that let us first analyze the performance of the learning

algorithm on the tuning and held-out data.

5.2.2 Analysis of learning sparse features weights

The systems that we analyze in more details are:

1. MERT with core features

2. Online MIRA with core features

3. Online MIRA with DLM2 sparse features

All systems use tuned SerbianStdModel with corresponding algorithms. The

reasons for selecting these systems for comparison are possibility of:

• comparing algorithms by comparing systems with the same set of features

but different algorithm (system 1. and system 2.) and

• comparing systems with a different set of features but with the same learn-

ing algorithm (systems 2. and 3.)

The analysis is done on n-best lists with 100 hypotheses by comparing their:

• System’s BLEU score

• Oracle BLEU score

• Average smoothed sentence level BLEU of the whole n-best list

System BLEU score for a given n-best list is computed by selecting for each

input sentence the hypothesis with the highest system’s model score. From these

selected sentences we create a corpus which is evaluated with BLEU metric on

the given reference corpus.

Oracle BLEU score is the approximate maximum BLEU score that could be

achieved by the right selection of hypotheses. Since BLEU score is a corpus level

metric that is not decomposable to it’s sentence level version, it is necessary to

either do some approximate search of exponential space of possible combinations

of hypotheses or to apply some sentence level metric and then select the ones with

the highest sentence level evaluation score. In our analysis we opted for the second

approach of using the sentence level metric. The example of hypotheses selection
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Figure 5.1: Extraction of Oracle and System corpora from n-best lists

is shown in Figure 5.1. The lines that are colored blue represent hypotheses

that are best in their n-best lists judging by sentence level evaluation metric and

lines that are in red are best judging by model score. When “system corpus”

and “oracle corpus” are extracted from n-best lists we evaluate them with corpus

level BLEU score on the reference corpus.

For computing the quality of an n-best list it is not possible to apply corpus

level evaluation metric such as BLEU. Therefore, we applied the same sentence

level evaluation metric on each hypothesis and then computed the average sen-

tence level evaluation score over all n-best list entries.

For sentence level evaluation we use sentence level smoothed BLEU score

computed by multeval toolkit [10]. Multeval computes smoothed sentence level

BLEU score in the similar way as sBLEU. Instead of adding 1 to to all n-gram

counts it adds 1
2k

only to n-grams counts where count is 0. k represents the

position of an n-gram order in unmatched n-gram orders (for first unmatched

order of n-grams k will be 1, for second 2 and so on). For example, if only 3-grams

and 4-grams are not matched then their count will be 1
21

and 1
22

respectively.

The n-best lists that are analyzed are produced by running the decoder with

the weights that are result of some tuning iteration. These n-best lists are not

necessarily the same n-best lists that are used in tuning. For example, in tuning

with MERT the n-best lists that is generated by decoder in the current iteration

are combined with n-best lists from previous iterations.

58



First, we will look at the quality of hypotheses from which reranker needs to

pick the best one and after that we will analyze the quality of discrimination in

this constrained set of hypotheses.

Space of hypotheses for discrimination

We measure the quality of used n-best lists in two ways:

1. by Oracle BLEU score

2. by average smoothed sentence level BLEU score

The first method shows us how well the reranker can perform in the ideal case

of having perfect weights for discriminating good hypotheses from the bad ones.

In case that the reranker fails to predict the best hypothesis it can still give good

results if other hypotheses in the n-best list are of a good quality.

To make the results more reliable we used n-best lists from all MIRA and

MERT runs. The oracles (hypotheses which have the highest smoothed sentence

level BLEU score) are found in each of these n-best lists independently and in-

dependently we compute their corpus level BLEU score. These independently

computed BLEU scores are averaged and reported in the thesis. This average

value should not be confused with the average sentence level smoothed BLEU

score for the complete n-best list.

The quality of an n-best list depends on the decoder which uses learned weights

for its search. Since all systems that we have tested use the same decoder with

different weights, if n-best lists are bad that is still the result of a bad learning

algorithm and not the result of a bad decoder.

The measured quality of n-best lists for the tested systems in each iteration

of tuning is presented in Figure 5.2 From these results we can see that MERT

is relatively unstable in learning its weights and does not give n-best lists of a

better quality than systems tuned with MIRA. This instability in the quality of

n-best lists in MERT is usually solved by combining n-best list from the decoder

with n-best lists from previous iterations [26]. As expected, the more complex

model with sparse features fits better to the tuning corpus than simpler model

with core weights.

The quality of n-best lists on the held-out data is presented in Figure 5.3.

Here we can see that advantage DLM2 has over MIRA core on the tuning data in

improving quality of n-best list is not present on the held-out data. The results

also show that one iteration of MIRA (both DLM2 and core) is enough for getting
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Figure 5.2: Average smoothed sentence level BLEU score of n-best lists on tuning

corpus

n-best list of a good quality. MERT is unstable in this case too and does not give

good n-best lists.

As we have mentioned earlier, we are not only interested in the average quality

of the n-best list but also in its best candidates – oracles. The comparison of the

ideal system’s BLEU scores for the given n-best lists and its actual BLEU scores

is given in Figure 5.4.

These data show that even though the average quality of the n-best lists

is somewhat better with MIRA learning algorithm, the difference in quality of

oracles between all tested systems is really small. The system with DLM2 features

has the highest BLEU score on the tuning data which is expected since it has

more complex model that can fit more easily to the data. MERT and MIRA with

core features have the same model, but optimize it in a different way which might

be the reason for the difference in their BLEU scores. While MERT is trying to

minimize directly corpus level BLEU score, MIRA is indirectly minimizing it by

minimizing the ramp-loss that uses sentence level BLEU approximation. During

tuning, MERT checks different weight settings to see which one maximizes the

score we are measuring. MIRA cannot do that for several reasons:

• it is an online algorithm (the MIRA version used in our experiments, not

the batch one)

• it can only use sentence level metrics so it cannot be sure whether it im-

proves corpus level BLEU score globally or not
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Figure 5.3: Average smoothed sentence level BLEU score of n-best lists on held-

out corpus

Figure 5.4: Oracle and system BLEU score
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• it does not try to increase BLEU score of the translated tuning data but to

increase margin between good and bad hypotheses

Having these properties, MERT should outperform MIRA on the tuning corpus

with the same model of core weights. It is not easy to say which of these properties

influence the training the most. In order to see directly whether the evaluation

metric is a problem, we would need to implement both metrics in the same

algorithm so we could isolate all other influences to the final result. In our case

that is not possible because:

• in MIRA, it is not possible to use corpus level BLEU so that we could test

if the sentence level BLEU approximation is the problem

• in MERT, we can use sentence level BLEU for approximation, but there is

no reason for doing that since we can optimize directly to our goal – corpus

level BLEU

Discriminatory power of different models and algorithms

For investigating discriminative power of different models and algorithms we take

two different views on the n-best lists:

1. distribution of oracles in the n-best list ordered by model score

2. distribution of oracles in the top 10 hypotheses by model score

For the first method we use average percentage of oracles distributed in seg-

ments of 10 (1-10, 11-20, 21-30, ...). The results for the first method are shown

in Figure 5.5.

Here we can see that all systems have more than 30% of oracles in the top

10 hypotheses in their n-best lists. MERT and MIRA with core features have

similar distribution while DLM2 has better discrimination in both tuning and

held-out corpora. In Figure 5.6 distribution of oracles in the top 10 of n-best

lists is presented (numbers are not percentages like in the last case, but the

exact number of oracles for translation of 2000 sentences that ended up in top 10

hypotheses judging by model score).

These results confirm that DLM2 has the best discrimination on both tuning

and held-out data. If we compare MIRA with core weights and MERT on the

held-out data we see similar results that are probably caused by the limit of

the model with small number of weight in doing precise discrimination. But,

if we compare them in terms of their performance on the tuning data we can
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Figure 5.5: Distribution of oracles in n-best list presented by segments of 10

hypotheses (1-10, 11-20, ...)

Figure 5.6: Number of oracles in top 10 entries in n-best list
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see something interesting. MIRA is discriminating better than MERT on the

tuning data. The reason for this is the loss function that these algorithms try to

minimize:

• MIRA is using ramp-loss which has a goal of discriminating “good” trans-

lations from “bad” ones

• MERT is not working on discrimination of hypotheses directly but on im-

proving global BLEU score

Here we can clearly see advantages and disadvantages of these approaches over

each other:

• MERT directly optimizes BLEU metric and indirectly improves discrimina-

tion. That is why it had much better BLEU score on the tuning data than

MIRA, but lower discrimination

• MIRA directly optimizes discrimination of hypotheses and indirectly im-

proves BLEU score. That is why it has lower BLEU score on the tuning

data, but high discrimination

Both of these approaches approach the maximum that can be reached with

the small number of weights, just in a different way, and that is why they have

similar BLEU score on the held-out corpus. To our best knowledge, there was no

attempt to combine MERT and MIRA tuning, but similar combination is present

in the Moses decoder as combination of PRO which improves discrimination and

MERT which improves global BLEU score.

In Table 5.8 distribution of oracles in the top10 hypotheses over iterations on

the tuning data with DLM2 model is presented. What seems surprising in this

distribution is that discrimination is lower in each new iteration. The reason for

this might be that system has problems with picking the best hypothesis (oracle)

because quality of top10 hypotheses is increased in each iteration and even if

it makes mistake since quality of alternatives is high, overall error is not high.

Decrease of discriminative power over each iteration appears also in MIRA core

and MERT tuning.

5.2.3 Experiments with rich features

The experiments that use rich features are conducted with CzechDepModel and

SebianDepModel. First we will present the concrete integration of the algorithm

that was presented in general in the previous chapter. After that, we will describe

the rich features that were used and show the results.
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PPPPPPPPPPPP
Position

Iteration
0 1 2 3 4 5

1 491 398 341 333 345 339

2 48 47 54 63 60 60

3 44 56 53 51 48 56

4 30 30 35 37 38 35

5 38 43 28 35 32 38

6 29 21 32 28 32 41

7 26 35 28 30 27 33

8 37 26 26 26 24 15

9 31 33 38 29 42 34

10 25 23 27 25 19 19

Table 5.8: Distribution of oracles in top 10 hypotheses in n-best lists for each

iteration of MIRA tuning with DLM2 features

Integration of the mapping algorithm in the tuning process

Since we want the mapping of source to the target trees to be done in a short time

it is preferred to precompute as much as possible of the necessary information

before tuning. One example of that is computation of word alignments that is

necessary for mapping trees. Instead of computing word alignments during tuning

between complete source and target sentence we can use two pieces of information

that are available to us from Moses decoder:

• alignment between source and target phrases as a result of decoding

• alignment between words inside the phrase pair which were computed dur-

ing phrase extraction from the training corpus

Combining these two sources we can easily compute word alignment on the level

of complete source and target sentence. The small problem in doing that is

constraint for many-to-one alignments that is put by the mapping algorithm

presented in the previous chapter. Many-to-one alignments are allowed only if

the source side of the many-to-one alignments covers one whole branch of the

source parse tree. Since word alignments in phrase pairs are computed during

phrase extraction, at that moment we do not know the possible parse tree in

which that phrase pair might be used. For example, in the training and phrase

extraction we can find good many-to-one alignment as in Figure 5.7, but during

tuning using many-to-one alignment of the extracted phrase pair might be bad
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Figure 5.7: Example of a good many-to-one alignment for tree mapping

Figure 5.8: Example of a bad many-to-one alignment for tree mapping

if source tree is different as in Figure 5.8. That is why we have decided not to

use many-to-one alignments and have in some cases lower quality of the mapped

tree, but in return got fast mapping algorithm. This does not mean that phrases

are extracted with only one-to-many alignment. For extracting phrases we have

used grow diagonal final heuristic, but as a word alignment information in the

phrase table we have put only one-to-one and one-to-many word alignments.

With these modifications we can now present the precise algorithm for map-

ping dependency trees from source to the target side. The algorithm is shown in

Algorithm 8. The main data structures are:

alignments one-to-one and one-to-many alignments between words in source and

target sentence,

f deps source parse tree that is represented as an array: index in an array is a

child and value at that position in f deps is the parent. The element on

position 0 is the imaginary root node,

e deps target parse tree with the same properties as f deps,

f types types of dependencies in the source tree, for example subject, object,

predicate etc.,

e types mapped f types to the target sentence,

f to process list of source words ordered by their height in the source tree (this

can also be precomputed before tuning),
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direct mapping mapping from source node in a dependency tree to it’s main

mapping node in the target tree,

e depth depth of each word in the target sentence in the mapped tree.

In lines 1-3 algorithm initialize processing order of source nodes, the imaginary

root node of the target tree and direct mapping of the source imaginary root node

to the target imaginary root node. In lines 4-20 algorithm finds the dependencies

of the aligned target words. In the for loop we first check if the source node is

aligned. If it is not aligned it inherits its mapping from its parent node and we

move to the next word in the f to process. If the source word is aligned we take

its rightmost aligned target word as a main mapping and then make all other

words aligned to the source tree depend on the main mapping. In the for loop

in lines 21-32 we are processing unaligned target words. Since they were not

aligned, their dependencies were not computed in the previous for loop. In that

for loop we take the nearest left and right elements that have dependencies. As

a parent of the unaligned word we take the one which is deeper in the tree. For

determining the depth of a target word in the mapped tree we use array f depth

which is updated every time new dependency is added.

Tested features

Now that we have source tree mapped to the target side we are able to test

more syntacticly motivated features. These features might use words from source

or target sentence with its word form or more abstract factors such as lemma

and POS tag. Here by factors we mean other representation of a word and not

additional factor used in decoder during search as in factored training. Factors

that are available for some feature depend mostly on the language for which it is

used. In Table 5.9 you can see factors that are available in our system depending

on a used language.

The features that are implemented can more generally be classified as:

ChildParent combines factor of child with some other factor of its parent. For

example child’s POS tag and its parent’s lemma

ChildChild combines two different factors on one node in the target dependency

tree, for example dependency type of a node (nsubj) and POS tag (noun in

nominative)

CrossingDependencies outputs the number of crossing and number of non-

crossing dependencies. Getting a dependency tree with crossing depen-
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Algorithm 8 Tree mapping algorithm

Input: alignments, source dependency tree f deps, types of dependencies in the

source tree f types

Output: e deps, e types

1: f to process← sort by increasing depth(f deps) //root excluded

2: e depth[0]← 0 //depth of the root node is 0

3: direct mapping[0]← 0 // the source root is mapped to the target root

4: for all fchild ∈ f to process do

5: fparent ← f deps[fchild]

6: if fchild is not aligned then

7: direct mapping[fchild]← direct mapping[fparent]

8: continue

9: end if

10: emain child ← the rightmost e aligned to fchild

11: direct mapping[fchild]← emain child

12: e deps[emain child]← direct mapping[fparent]

13: e types[emain child]← f types[fchild]

14: e depth[emain child]← e depth[e deps[emain child]] + 1

15: for all echild aligned to fchild except emain child do

16: e deps[echild]← emain child

17: e types[echild]← “unknown”

18: e depth[echild]← e depth[emain child] + 1

19: end for

20: end for

21: for all echild that are not aligned do

22: eleft ← the nearest left word to echild with a dependency

23: eright ← the nearest right word to echild with a dependency

24: if e depth[eleft] > e depth[eright] then

25: eparent ← eleft

26: else

27: eparent ← eright

28: end if

29: e deps[echild]← eparent

30: e types[echild]← “unknown”

31: e depth[echild]← e depth[eparent] + 1

32: end for

33: return e deps and e types
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PPPPPPPPPPPP
Factor

Language
English Czech Serbian

Word form X X X

POS tag X X ×
Lemma × X ×

Cluster ID × X X

Dependency type X X X

Table 5.9: Available factors

dencies is not a problem in our case since our method for mapping parse

trees can have these results, while parser that would parse the sentence will

probably forbid the crossing dependencies

DependencyDistance outputs the distance in a sentence between a child and

its parent or more formally position(child)− position(parent)

SrcPhraseCompleteBranch source phrase forms a complete branch of a source

dependency tree

TgtPhraseCompleteBranch target phrase forms a complete branch of a the

target dependency tree

SrcParent similar to ChildParent with difference that instead of using child’s

parent in the target tree, we use the parent of the source word aligned to

it (simplified method for mapping presented in the previous chapter)

More concretely, we tested the following features on English-Czech language

pair with model CzechDepModel:

ChildParent wf wf combines word form of a child and its parent. Can be seen

as some discriminative language model that is more suited to the language

with relatively free word order such as Czech since it will not insist on

bigrams on the surface level of sentence, but on bigrams on the level of

dependencies

ChildParent pos pos combines POS tags of a child and its parent. It could

model, for example, that it is likely for an adjective to be child of a noun

ChildParent pos lemma combines POS tag of a child and lemma of its parent.

It can be useful for cases when noun’s case is determined by the verb that

governs it
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ChildParent cluster cluster combines cluster IDs of a child and its parent.

It serves for the same purpose as ChildParent pos pos except that cluster

IDs are used as a replacement for POS tags

ChildParent cluster lemma is used for the same purpose as ChildParent pos

lemma

ChildChild type wf combines type of a dependency that the node has on its

parent and its word form

ChildChild type pos combines type of a dependency that the node has on its

parent and its word form. It can be useful for modeling the case of node

having a subject dependency from its parent and being in the nominative

case

ChildChild type lemma models the case of having some lemma under some

dependency type

ChildChild type cluster serves for the same reasons as ChildChild type pos

CrossingDependencies can model crossing dependencies that are common in

Czech - it appears in 23% of sentences in Prague Dependency Treebank [44]

DependencyDistance used in some dependency parsers as a feature for deter-

mining how good some dependency tree is

SrcPhraseCompleteBranch similar to the constituent feature used in hierar-

chical machine translation systems [14]

TgtPhraseCompleteBranch same as SrcPhraseCompleteBranch but on the

target side

SrcParent wf wf serves for the same cases as ChildParent wf wf but tries to

avoid errors in mapping complete trees

The features used in English-Serbian experiments are the same as in English-

Czech except the features that use POS and lemma factors which are not available

on the Serbian side in translation.

Results

The results for experiments with CzechDepModel are presented in Table 5.10

and for experiments with SerbianDepModel in Table 5.11. In both language
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Feature First Second Number of Average Standard

factor factor features BLEU score deviation

core MERT - - 8 10.76 0.04

core MIRA - - 8 10.71 0.18

ChildParent wf wf 80323 10.71 0.05

ChildParent pos pos 10650 10.73 0.02

ChildParent pos lemma 37763 10.74 0.04

ChildParent cluster cluster 4146 10.72 0.10

ChildParent cluster lemma 24208 10.73 0.05

ChildChild type wf 16680 10.72 0.03

ChildChild type pos 3788 10.66 0.17

ChildChild type lemma 12547 10.76 0.07

ChildChild type cluster 2021 10.68 0.04

CrossingDependencies - - 11 10.60 0.15

DependencyDistance - - 146 10.68 0.05

SrcPhraseCompleteBranch - - 11 10.75 0.03

TgtPhraseCompleteBranch - - 11 10.70 0.07

SrcParent wf wf 49412 10.63 0.12

Table 5.10: Dependency features results for English-Czech

Feature First Second Number of Average Standard

factor factor features BLEU score deviation

MERT - - 8 35.10 0.21

core MIRA - - 8 35.10 0.22

ChildParent wf wf 44127 35.08 0.06

ChildParent cluster cluster 4651 35.04 0.08

ChildChild type cluster 1587 35.14 0.11

ChildChild type wf 17344 35.15 0.15

DependencyDistance - - 149 35.10 0.70

CrossingDependencies - - 11 35.03 0.16

SrcPhraseCompleteBranch - - 11 35.12 0.13

TgtPhraseCompleteBranch - - 11 35.06 0.10

SrcParent wf wf 34901 35.11 0.09

Table 5.11: Dependency features results for English-Serbian
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Figure 5.9: Mapping of the dependency tree using the correct alignment

pairs there was no significant improvement over the baseline. To see the reason

for these we can take a look at the weights for the best performing feature for

English-Serbian language pair — ChildChild type wf. Some weights are presented

in Table 5.12. The weight for the feature pobj:godine looks correct since godine is

a genitive form of a word godina (year) and objects usually take the genitive case.

However, feature root:iz does not seem to have a good weight because it is not very

likely that the word iz which means from could be the root of a dependency tree.

The incorrectly estimated weight of that feature has a big influence compared to

the weights of core features and that might be the source of errors. We think that

incorrect weights are not the fault of a learning algorithm, but of the method for

mapping dependency tree which relies largely on correct word-to-word alignment.

To see how crucial the alignment is to the mapped tree quality you can look at

Figure 5.9 and Figure 5.10 where there is presented mapping of a dependency

tree from a source English sentence to the target Serbian sentence using different

alignments. On the Figure 5.9 alignments are correct and tree is correctly mapped

to the target side, while on Figure 5.10 the main verb (loves) was not aligned and

that caused wrong mapping for large part of the tree. In order to try to tackle

this problem we added additional binary feature ROOT NOT ALIGNED which

determines the importance of root not being aligned. As it can be seen from

the Table 5.12, that weight was correctly estimated as negative but it did not

get large importance in the model compared to the other features. Even though

ChildChild type wf features gave good results and majority of weights seem to be

good, we think that dependency that this method has on the correct alignment

prevents these features from giving better results.
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feature weight

WordPenalty -1.91203

root:kaže -0.260787

... ...

ROOT NOT ALIGNED -0.0916183

... ...

pobj:godine 0.202658

root:iz 0.203838

punct:– 0.223798

... ...

PhraseModel 4 0.299437

root:je 0.331066

PhraseModel 2 0.528343

PhraseModel 3 0.927281

PhraseModel 1 1.00356

Distortion 1.07595

LM 1.33521

Table 5.12: Weights for ChildChild type wf of English-Serbian language pair

Figure 5.10: Mapping of the dependency tree using an incorrect alignment
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5.3 Experiments for solving the problem of eval-

uation in tuning

As a large amount of research has confirmed before, the BLEU metric [41] has

a bad correlation with human judgment on morphologically rich languages, es-

pecially on the sentence level [28]. We have computed the correlation of BLEU,

sBLEU and ROUGE-S with human judgment by using the same method as the

one used in [28] with WMT10 data labeled with their rankings given by human

judgment [6]. For computing correlation, we used the Pearson correlation co-

efficient on ranks shown in Equation 5.1 in which n represents the number of

evaluated systems and xi and yi are the positions of the ith system by human and

the metric’s score respectively. Results are shown in Table 5.13.

ρ =
n(
∑
xiyi)− (

∑
xi)(

∑
yi)√

n(
∑
x2
i )− (

∑
xi)2

√
n(
∑
y2
i )− (

∑
yi)2

(5.1)

We can see that ROUGE-S has good correlation if we allow any skip larger

than 0. By not allowing skips, we are making ROUGE-S very strict on word

order, which is not very useful for evaluating languages with relatively free word

order. As it was expected, BLEU of higher order shows bad performance on the

sentence level. What is surprising here is that BLEU-1 and sBLEU-1 (essentially

the same as BLEU-1) have good scores and they do not take word order into

consideration at all. This would make us suspect that word order is not very

important, but this is a mistake for several reasons:

1. Sentences that are used for these evaluations are outputs from state-of-the-

art systems so they all have relatively good word order. In a language

like Czech which has relatively free word order, some variations in word

order that different systems produce can be tolerated so human evaluators

concentrate more on the lexical choice than on word order.

2. Word order might not matter much when we are comparing outputs from

state-of-the-art systems, but we will not have translations of that high qual-

ity in the n-best list during tuning. BLEU-1 and sBLEU-1 will not be able

to differentiate between different hypotheses with the same set of words but

in different ordering

3. If we use these kind of metric which does not take word order into account

even if we have good hypotheses in the n-best lists system will not be able

to learn weights for distortion because learning algorithm will not know
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Metric Average correlation standard deviation

BLEU 1 0.33 0.50

BLEU 2 0.31 0.49

BLEU 3 0.28 0.45

BLEU 4 0.23 0.40

sBLEU 1 0.33 0.50

sBLEU 2 0.33 0.50

sBLEU 3 0.31 0.50

sBLEU 4 0.31 0.51

ROUGE-S0 0.30 0.50

ROUGE-S1 0.32 0.49

ROUGE-S2 0.33 0.49

ROUGE-S3 0.33 0.49

ROUGE-S4 0.32 0.4

ROUGE-S5 0.33 0.49

ROUGE-S6 0.32 0.49

ROUGE-S7 0.33 0.49

ROUGE-S8 0.33 0.49

Table 5.13: Correlation with human judgment

whether its current weight is good or bad because distortion weight does

not influence the objective function’s result at all.

We have also computed correlation of the same metrics with corpus level

BLEU. We did that on the data produced as a translation of the WMT11 cor-

pus from several differently configured systems (same in everything except in the

weight vector). The corpus level value of the evaluated metrics is computed by

taking the average of the sentence level scores for each sentence. The results

are shown in Table 5.14. Here, it is obvious that metrics that ignore word order

approximate corpus level BLEU badly. ROUGE-S, clearly has the best correla-

tion with BLEU compared to all other tested metrics. For experimenting with

objective functions, we picked ROUGE-S2 because it correlates well with both

human judgment and corpus level BLEU. Additionally as already defined base-

lines, we used a system optimized with the sentence level BLEU approximation

[9]. We tested these objective functions on non-sparse standard features of the

PB-SMT system with the batch version of MIRA. The reason for not using the

online version of MIRA is that its implementation in Moses [27] chooses hope and
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Metric Average correlation standard deviation

BLEU 1 0.09 0.58

BLEU 2 0.78 0.22

BLEU 3 0.76 0.26

BLEU 4 0.56 0.34

sBLEU 1 0.09 0.58

sBLEU 2 0.78 0.23

sBLEU 3 0.75 0.25

sBLEU 4 0.62 0.26

ROUGE-S0 0.80 0.23

ROUGE-S1 0.80 0.25

ROUGE-S2 0.80 0.25

ROUGE-S3 0.78 0.25

ROUGE-S4 0.77 0.25

ROUGE-S5 0.75 0.28

ROUGE-S6 0.75 0.27

ROUGE-S7 0.74 0.28

ROUGE-S8 0.73 0.29

Table 5.14: Correlation with corpus level BLEU
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Algorithm
Objective Objective Regularization Average Standard

function scaled with coefficient BLEU score deviation

MERT corpus BLEU

1

– 12.37 0.02

Online MIRA
approx. BLEU 0.01

12.44 0.06

Batch MIRA

12.43 0.05

ROUGE-S2

0.0001 12.36 0.01

0.001 12.36 0.03

0.01

12.36 0.02

0.1 12.36 0.02

0.01 12.24 0.03

Table 5.15: Scores of English-Czech systems tuned using different objective func-

tions

fear hypotheses using cost-augmented decoding with the objective function as an

additional feature. With cost-augmented decoding, the evaluation of partial hy-

potheses is necessary and ROUGE-S has shown to be bad in these cases because

it cannot use a large span of skip bigrams in all hypotheses. The batch version of

MIRA searches for hope and fear hypotheses from the n-best list where hypothe-

ses are complete so ROUGE-S can function without a problem. The results of

tuning the CzechStdModel are shown in Table 5.15.

We can see that changing the regularization constant (a larger value means

less regularization) does not affects ROUGE-S2 optimization. Even though the

results of tuning with ROUGE-S2 are relatively good, they are still not better

than the results of tuning with the BLEU sentence level approximation. This

looks strange because we have seen that ROUGE-S2 approximates the corpus

level BLEU score well. We think that the reason for these results is the range

of values that ROUGE-S2 takes. When we computed correlation with human

judgment or with BLEU, we measured the capabilities of different metrics to

differentiate good translations from bad. The result of discrimination of good

translations from bad will not change if we scale the result of these metrics with

any real number – correlation will stay the same. To see if this affects our results,

we have scaled the result of the objective function when we tuned with ROUGE-

S2. As you can see from the Table 5.15 if we scale the objective function to a

lower value by multiplying it with 0.01, the results will be worse even though the

discriminative performance of the objective function stays the same. We believe

that the reason for this is the influence that the value of objective function has

on:

77



1. choice of hope and fear hypotheses

2. size of the update to the model parameters

The hope hypothesis is chosen by taking argmax
h∈n-best list

score(h) + eval(h). If we

put the scaling factor M to that formula, we can see that it can influence the

choice of hope hypothesis by giving more or less influence to eval() compared to

score(). The same stands for the choice of fear hypothesis. Other algorithms for

large-scale discriminative training that do not use ramp loss such as PRO will

not have this problem.

argmax
h∈n-best list

score(h) +M ∗ eval(h) (5.2)

If influence of evaluation function on choice of hope and fear is really small,

whether it is scaled or not, then the problem of search for hope and fear hypothe-

ses would reduce in both cases to argmax
h∈n-best list

score(h) which means that hope and

fear hypotheses would be the same and no update to the weights would be made.

That might be the reason of relatively bad performance of ROUGE-S 2 as an

objective function.

Size of the update of parameters in the model depends on the defined loss

which is in our case ramp loss defined as:

loss(hhope, hfear) = −(score(hhope)+eval(hhope))+(score(hfear)−eval(hfear))
(5.3)

or more simplified:

loss(hhope, hfear) = (score(hfear)− score(hhope))− (eval(hfear) + eval(hhope))

(5.4)

and when we introduce scaling constant M :

loss(hhope, hfear) =

(score(hfear)− score(hhope))− (M ∗ eval(hfear) +M ∗ eval(hhope)) =

(score(hfear)− score(hhope))−M ∗ (eval(hfear) + eval(hhope)) (5.5)

From the last formula, we can see that even if the constant would not influence

the choice of hope and fear hypotheses, it would still influence the size of the

update. In algorithms like PRO, which are just binary classifiers where update

does not depend on the objective function directly but only on its discriminative

properties, these problem would not appear.
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Experiments with using different sentence level metrics did not show improve-

ment in the final BLEU score. Knowing that ROUGE-S2 has good correlation

with human judgment, it would be interesting to see how translations of the

system tuned with BLEU approximation and a system tuned with ROUGE-S2

would be judged by human evaluators. Our attempt of improving evaluation of

hypotheses in large-scale discriminative training has the advantage over attempts

like SampleRank of being simpler (no changes required from tuning algorithms)

and it is general in the sense that it can be used in any SMT tuning algorithm.

The problems that are identified with tuning using ROUGE-S2 as a sentence level

metric are related to the loss function that is used and might not appear if this

metric is tested on some other algorithm that does not use ramp loss.
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Conclusion

In this thesis, we have presented a theoretical basis for large-scale discriminative

training, explained how it can be used to solve problems that exist in translation

into morphologically rich languages and in the end gave the experimental results

of applying large-scale discriminative training on the task of translating from

English into Czech and Serbian. Some of the ideas that were presented are

novel and applicable not only to the task of translation into morphologically rich

languages, but also to the more general framework of large-scale discriminative

training.

5.4 Summary

In the first two chapters, we presented the theoretical base for applying large-

scale discriminative training on the task of machine translation. After that, in

chapters 3 and 4 we addressed problems that are present in PB-SMT systems

and large-scale discriminative training algorithms in the context of translation

into morphologically rich languages.

Problems that we identified with PB-SMT systems in the context of discrim-

inative training are:

1. lack of efficient access to basic linguistic information such as POS tags and

lemmas

2. lack of efficient access to more complex linguistic structures such as depen-

dency trees

We suggested several solutions for both of these problems. For the problem

of finding POS tags efficiently we proposed two solutions:

1. usage of factored training with POS tags as an additional factor

2. usage of unigram tagger

For the problem of efficiently finding the dependency parse tree of the target

hypothesis, we suggested a mapping of the source parse tree to the target side.

This algorithm had been used before for extracting linguistically motivated phrase

pairs [43], but it had never been applied in the context of large-scale discriminative

training. Using this method we were not only able to get parse trees efficiently
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on the target language, but also to use parse trees for a language like Serbian for

which there are no syntacticlly anotated corpora available.

Another problem that we see with large-scale discriminative training algo-

rithms is mostly related to the objective functions that are used by these algo-

rithms. Almost all of the well known algorithms for this application require a

sentence level metric. This presents a problem because:

1. the metrics which correlate well with human judgment are mostly corpus

level metrics.

2. knowing that BLEU metric does not correlate well with human judgment

in case of morphologically rich languages [28], we expect that its sentence

level approximations perform even worse.

3. to our best knowledge, no other metric but BLEU and its sentence lev-

el approximations was tested in the context of large-scale discriminative

training.

For solving these problems, we suggested usage of sentence level metrics that

correlate well with the human judgment. The one we used for our experiments

is ROUGE-S2. To our best knowledge, the only algorithm capable of learning

weights for large number of features while using a corpus level metric is Sam-

pleRank [22]. The disadvantage of SampleRank compared to our approach is

that it constrains the user to one specific algorithm for tuning. Our approach is

general and could be applied to any discriminative algorithm by just replacing

the objective function.

Before these ideas had been applied, we empirically tested problems that we

are trying to solve and chances that our solutions might have:

1. in the case of selecting the right word form, we have tested performance of

our unigram tagger,

2. in the case of the objective functions, we computed the correlation of

the considered objective functions with human judgment and corpus level

BLEU.

In both cases we saw encouraging results:

1. the unigram tagger gave reasonably good results considering how simple

and fast it is,

2. the metric that we used, ROUGE-S2, showed as the one which correlates

best with both human judgment and corpus level BLEU score.
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Finally, we applied the suggested ideas and tested the results. No significant

improvement over the baseline was achieved, but the insights that the results of

these experiments give might still be useful in the future. The tested simple sparse

features had different performance on different language pairs. In some cases the

context was important for choosing the word form (DLM2 and PP features) and

in some cases it was important to discard useless words (DLM1 feature). The

more complex syntacticly motivated sparse features gave similar results to the

baseline. In many cases the mapping was correct and the learned weights seemed

correct, but few wrong mappings were too influential to the final result.

In the experiments for testing different objective functions, we did not achieve

a better BLEU score as a result. The approximated BLEU as an objective func-

tion gave even better feature weights in the end. We showed that the reason

for this unsuccessful attempt may be in the type of loss function that is used by

MIRA [17] and might not be present in other large-scale discriminative training

algorithms which use different loss functions such as PRO [24].

5.5 Future work

As for future work, we plan to further improve approaches that were used in this

thesis. More tuning data might help in overcoming overfitting to the wrongly

mapped trees. Some combination of the tested features that gave poor results

might give good results if they are combined together solving the different prob-

lems in translation. New and more sophisticated features inspired by the optimal-

ity theory, that are language specific, could be tested. We plan to test different

sentence level metrics and also test them with other algorithms that use different

loss functions like the one used in PRO.
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