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Abstrakt: Zabýváme se studiem orbitálńıho vývoje tenkých hvězdných disk̊u
kolem supermasivńıch černých děr. Uvažujeme př́ıtomnost r̊uzných poruchových
zdroj̊u gravitačńıho potenciálu. Metodou př́ımého numerického N -částicového
modelováńı se nejprve zaměřujeme na situaci, kdy je disk zanořen do rozsáhlé,
sféricky symetrické hvězdokupy. Naše výsledky naznačuj́ı, že v gravitačńım poli
disku docháźı uvnitř hvězdokupy k formováńı makroskopické nesférické struk-
tury, jej́ıž potenciál následně zpětně ovlivňuje vývoj disku. Za předpokladu, že
je hvězdokupa nahrazena sféricky symetrickým analytickým potenciálem, dále
započ́ıtáváme p̊usobeńı dodatečného osově symetrického potenciálu. Pomoćı
jednoduchého semi-analytického modelu ukazujeme, že tento potenciál zp̊usobuje
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nejhustš́ıch část́ı. Źıskané výsledky jsou aplikovány na disk mladých hvězd, který
se pozoruje v centrálńım parseku naš́ı Galaxie.
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Supervisor: RNDr. Ladislav Šubr, Ph.D., Astronomical Institute of Charles Uni-
versity

Abstract: We investigate the orbital evolution of an initially thin stellar disc
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ter. We find that the gravitational influence of the disc triggers formation of
macroscopic non-spherical substructure in the cluster which, subsequently, sig-
nificantly affects the evolution of the disc itself. In another approximation, when
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Preface

Over the past decades, both theoretical and observational efforts have led to a
common view that most galactic nuclei host a massive central body, presumably
a supermassive black hole (herafter SMBH). It has been further accepted that
galactic nuclei contain extremely dense star clusters that belong to the very old
and only slowly evolving stellar population from the more distant parts of galax-
ies. In the first approximation, these star clusters may be considered roughly
spherically symmetric. Their dynamical evolution in the potential of the central
SMBH has been studied by various authors in the past, starting with the se-
ries of papers of Peebles (1972a,b), Bahcall & Wolf (1976) and Bahcall & Wolf
(1977).

One specific target of such investigations has always been, due to its prox-
imity, the centre of our own Galaxy. Surprisingly, the observations of this re-
gion that have been carried out during the last twenty years have established
that, in addition to the old spherical cluster, the closest vicinity of the central
SMBH is also occupied by very young stars (Allen et al. 1990; Genzel et al.
2003; Ghez et al. 2003, 2005; Paumard et al. 2006; Bartko et al. 2009, 2010).
Moreover, it has also turned out that the spatial configuration of a substantial
subset of these young stars is rather unexpected, in particular, many of them ap-
pear to belong to a coherently rotating disc-like structure identified for the first
time by Levin & Beloborodov (2003). The dynamical evolution of such a stel-
lar disc has been analysed by Alexander et al. (2007) and Cuadra et al. (2008)
by means of numerical modelling. These works, however, are based on several
simplifications. Among others, the most limiting one seems to be the approxi-
mation of an isolated stellar system, i.e., a system that is not influenced by any
other sources of gravity except for its own and the central SMBH. Other works in-
clude the perturbative influence of a possible second stellar disc (Nayakshin et al.
2006; Löckmann et al. 2008; Löckmann & Baumgardt 2009a; Löckmann et al.
2009b) or the old spherical star cluster (Kocsis & Tremaine 2011).

A stellar disc similar to the one detected in the Galactic Centre has also been
reported in the central parts of our neighbouring galaxy M31 (Bender et al.
2005; Lauer et al. 2012). Hence, it appears that such structures might represent
generic component of galactic nuclei. In this Thesis, we thus attempt to broaden
the previous analyses and further investigate the evolution of the initially thin
stellar discs around the SMBH. By means of numerical N -body modelling, we in-
clude the perturbative influence of an extended spherically symmetric star cluster
(Chapter 2). We discuss the case when the cluster is emulated by a predefined
analytic potential in contrary to the case when it is treated in the full N -body
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2 PREFACE

way, as a large number of gravitating stars. In the later one, our results reveal
a significant impact of the cluster gravity upon the evolution of the embedded
disc. Furthermore, we consider the perturbative gravitational influence of a dis-
tant axisymmetric source which approximates massive gaseous torus, another
widely expected component of the active galactic nuclei. We develop a simple
semi-analytic model for this setting (Chapter 3) and apply this model to the
young stellar system in the Galactic Centre, confronting the results with direct
numerical N -body calculations (Chapter 4).



Chapter 1

Prerequisities

Before concerning our own research, let us dedicate the first Chapter of the The-
sis to a brief overview of dynamics of (self-)gravitating stellar systems. We start
from the hierarchical three-body problem, leading then to description of relax-
ational processes in N -body systems. We restrain ourselves to purely Newtonian
treatment of gravity. Validity of this approach can be easily justified by compar-
ing strength of the most prominent first post-Newtonian relativistic correction,
i.e., the pericentre advance, to the analogous process induced by another consid-
ered sources of gravity (extended spherically symmetric star cluster or external
axisymmetric perturbation to the gravitational field). We further consider the
stars to be point-like sources of the gravitational potential and omit any other
physically relevant interactions or phenomena, such as the stellar evolution or the
hydrodynamical interactions with the gaseous structures in the system.

The total gravitational potential, Φtot (r, t), in a N -body stellar system (in-
cluding possible predefined potentials) can be split into two qualitatively different
parts: (i) the mean, i.e., time-averaged, potential Φmean (r) and (ii) the varying
time-dependent component Φvar (r, t) ≡ Φtot (r, t) − Φmean (r). The particular
form of these two components significantly affects the dynamical evolution of the
system. In the following Sections, we briefly describe the dynamics in some of
the basic configurations in which Φvar(r, t) ≡ 0 in order to set up the basis for
the research presented in the subsequent Chapters.

1.1 Keplerian elements

Let us first consider a star of mass m that is orbiting a supermassive black
hole (herafter SMBH) of mass, M• ≫ m. In such a case, the SMBH may be
assumed fixed in the centre of the system, generating the Keplerian potential φ• =
−GM•/r, where r denotes the distance of the star from the SMBH and G stands
for the gravitational constant. The orbit of the star is a Keplerian ellipse which
can be described by means of five constants, the so-called Keplerian elements:
semi-major axis a, eccentricity e, inclination i, longitude of the ascending node Ω,
and argument of pericentre ω. The semi-major axis a and eccentricity e describe
the geometrical shape of the ellipse. The three angles i, Ω and ω determine the
orientation of the ellipse in space (see Fig. 1.1). In particular, inclination i and
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i

Ω

ω

Figure 1.1: The Keplerian angles: inclination i, longitude of the ascending node Ω and
argument of pericentre ω. The filled grey ellipse denotes the reference plane.

longitude of the ascending node Ω define the orientation of the orbital plane,
i.e., the plane in which the ellipse lies. Argument of pericentre ω describes the
orientation of the ellipse in this plane. The position of the star on the elliptic orbit
is given by a non-constant element, the mean anomaly, ℓ. The orbital period, Torb,
of the star reads

Torb = 2π

√

a3

GM•

. (1.1)

For future purposes, we find it useful to introduce the so-called eccentricity
vector, e, which is a vector that points to the pericentre of the orbit and whose
magnitude equals the orbital eccentricity, |e| = e,

e ≡ v × L

GmM•

− r

|r| , (1.2)

where r, v and L ≡ r×mv denote the position, velocity and angular momentum
of the star, respectively. Furthermore, we define the directional angles of the
eccentricity vector, Ωe and ie,

cos Ωe ≡ − eY

eXY
, (1.3)

cos ie ≡ eZ

|e| , (1.4)

where eX , eY , eZ are components of the eccentricity vector in a Cartesian reference
frame and eXY ≡

√

e2
X + e2

Y = |e| sin ie represents its projection into the reference
XY -plane.
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1.2 Averaging technique

Before we turn to description of some aspects of the dynamics in the perturbed
Keplerian potential, it is useful to shortly describe a perturbation method that is
commonly used in the celestial mechanics to simplify this problem, namely, the
so-called averaging technique (Morbidelli 2002; Bertotti et al. 2003).

For this purpose, we recall the star of mass m in the Keplerian potential of
the SMBH of mass M• from the previous Section and write its Hamiltonian, H•,
in terms of the classical position and velocity as

H• =
mv2

2
− G

mM•

r
, (1.5)

where r ≡ |r| and v ≡ |v|. This Hamiltonian can be rewritten by means of
the action-angle Delaunay variables which are defined by the Keplerian elements
through relations

L = m
√

GM•a , l = ℓ ,

G = L
√

1 − e2 , g = ω , (1.6)

H = G cos i , h = Ω ,

as

HD
• (L) = −G2M2

•m3

2L 2
. (1.7)

Since this Hamiltonian depends only on L , all the Delaunay variables except for
l are integrals of motion and, therefore, the Hamiltonian equations are solved
trivially: dl /dt = const.

Given the Keplerian potential of the SMBH is perturbed, however, the corre-
sponding Hamiltonian may depend upon more Delaunay variables and the solu-
tion of the Hamiltonian equations may be much more complicated. Nevertheless,
if the perturbation takes the form of an explicitly time-independent function
HD

ǫ (L ,G ,H , l , g ,h ) and the Hamiltonian of the system can be written as

HD(L ,G ,H , l , g ,h ) = HD
• (L) + ǫHD

ǫ (L ,G ,H , l , g ,h ) , (1.8)

where ǫ is a small parameter, it is possible to find a transformation close to
identity to a new set of variables in which the Hamiltonian is given by

HD′(L ′,G ′,H ′, l ′, g ′,h ′) = HD′
• (L ′) + ǫH

D′

1 (L ′,G ′,H ′,−, g ′,h ′) +

+ ǫ2HD′
2 (L ′,G ′,H ′, l ′, g ′,h ′) .(1.9)

In this formula, function H
D′

1 (L ′,G ′,H ′,−, g ′,h ′), which represents the aver-
aged value of the perturbing component of the Hamiltonian (1.8) over the mean

anomaly of the star ℓ, does not depend on the Delaunay variable l ′ anymore.
Hence, if we neglect the term of order ǫ2, the Hamiltonian (1.9) does not depend

on l ′ and, therefore, L ′ and thus also HD′
• (L ′) are integrals of motion to the

order of ǫ. In other words, the transformed semi-major axis a′ of the orbit of the
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star as well as the corresponding transformed Keplerian energy in the potential

of the SMBH are conserved to the order of ǫ. Similarly to the function H
D′

1 , the
transformed Keplerian elements (thus also the transformed Keplerian energy and
other quantities) represent the averaged values of the osculating Keplerian ele-
ments over the mean anomaly of the star ℓ. The difference between the mean and
osculating elements, however, is usually neglected as the corresponding transfor-
mation is close to an identity. We adopt this convention and do not distinguish
between the two sets of orbital elements further on.

Since the Hamiltonian (1.9) is assumed to be explicitly time-independent, it

is an integral of motion. As a result, also the function H
D′

1 (L ′,G ′,H ′,−, g ′,h ′)
is conserved to the order of ǫ. Hence, in this order of approximation, the star is
effectively replaced by an elliptical wire whose long-term evolution is determined
by the orbit-averaged potential in the investigated system (see also Section 1.6).

1.3 Kozai-Lidov mechanism

Among others, the averaging technique has been applied to many variants of the
three-body problem. In particular, Kozai (1962) has investigated the restricted
hierarchical circular case. In his setting (Sun — Jupiter — asteroid), the masses
m1, m2, m3 of all bodies are well separated, m1 ≫ m2 ≫ m3. Furthermore, the
orbit of the perturbing body of mass m2 around the dominating body of mass m1

is assumed to be circular with radius R2. Finally, the generally elliptical orbit of
the body with the negligible mass m3 lies within the orbit of the perturber, i.e.,
its semi-major axis, a3, fulfills a3 < R2. In this case, the averaging occurs over the
mean anomalies of both the test and the perturbing body. Note that, for the long-
term evolution of the orbit of the test body, the position of the perturbing body
on its orbit is thus irrelevant, in other words, the perturbing body is equivalent
to a circular, infinitesimally thin ring of constant linear density. Let us mention
that analogical problem has also been studied independently by Lidov (1962) for
the case of the artificial satellites of the Earth whose motions are perturbed by
the gravity of the Moon. Hence, as a tribute to both pioneering researchers in
this field, we refer to this type of configuration as the Kozai-Lidov problem.

For the purpose of our study, we consider the dominating body to be the
SMBH of mass M•, the test body to be a star of mass m and the perturbing
body to be a ring of mass Mr and radius Rr which can approximate gaseous torus
or a secondary SMBH. In this notation, the quadrupole expansion of the mean
perturbing potential energy reads (Kozai 1962):

Rr = −GmMr

16Rr

(

a

Rr

)2
[

(

2 + 3e2
) (

3 cos2 i − 1
)

+ 15e2 sin2 i cos 2ω
]

, (1.10)

where a, e, i and ω stand for the semi-major axis, eccentricity, inclination and
argument of pericentre of the orbit of the star, respectively. As long as the ratio
a/Rr is small enough, the higher terms in the expansion may be neglected.

As we can see, Rr does not depend on the nodal longitude, Ω, of the stellar
orbit (Delaunay variable h ), which simply reflects the axial symmetry of the orbit-
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Figure 1.2: Isolines of the conserved averaged potential of the ring, Rr = C, from equation
(1.10) for two different values of the Kozai integral of motion: c = cos(35◦) in the left panel
and c = cos(70◦) in the right panel which correspond to 35◦ and 70◦ inclination circular orbit,
respectively. The semi-major axis of the orbit is set to a = 0.06 Rr and the mass of the ring to
Mr = 0.3 M•. The origin e = 0 is a stationary point of the problem and in the first case also
stable, while in the second case it becomes unstable. The thick isoline in the right panel is the
separatrix between two different regimes of eccentricity and pericentre evolution.

averaged problem. Consequently, the z-component of the angular momentum of
the star (Delaunay variable H ) is conserved, yielding a constant of motion

c ≡
√

1 − e2 cos i (1.11)

which is sometimes referred to as the Kozai integral.
The Kozai integral (1.11) enables us to eliminate the inclination in the av-

eraged potential (1.10), leaving it to depend on the orbital eccentricity e and
argument of pericentre ω, only. Hence, as the potential is also a conserved quan-
tity in the orbit-averaged problem, the isolines Rr = C provide useful insights
into the fundamental features of the dynamical evolution of both e and ω. This
approach has been used by Kozai to discover two modes of topology of these
isolines. When c >

√

3/5, the Rr = C isolines are simple ovals about the origin
which is the only fixed point of the problem (see the left panel of Fig. 1.2). In
this mode, eccentricity of the orbit is not varying much and the argument of
pericentre rotates in interval 〈0, 2π〉. For c ≤

√

3/5, the topology of the isolines
becomes more complicated (see the right panel of Fig. 1.2). In particular, it con-
tains two qualitatively different regions that are separated by a separatrix curve
emerging from the origin, and also two new fixed points at non-zero eccentricity
and argument of pericentre ω = π/2 and 3π/2. In the region in which the new
two fixed points are found, the orbital argument of pericentre only oscillates in a
rather narrow interval around the values that correspond to the new fixed points.
For this reason, we shall refer to this region as the librational region, hereafter. In
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Figure 1.3: Sample solution of equations (1.12). Eccentricity e (solid line) and inclination i
(dashed line) are shown in the left panel. The right panel displays the evolution of the nodal
longitude Ω (solid line) and argument of pericentre (dashed line). Initial values e0 = 0.1,
i0 = 70◦, Ω0 = 2π and ω0 = 3π/2 correspond to the upper librational lobe in the Kozai-Lidov
diagrams (see the right panel of Fig. 1.2). Time is given in orbital periods. Mass of the ring is
set to Mr = 0.3 M• and the semi-major axis of the orbit to a = 0.06 Rr.

the second region, which shall be further denoted as the rotational region (outer
rotational region; see the end of this Section), the argument of pericentre rotates
in the whole interval 〈0, 2π〉.

The latter mode of the topology of the Rr = C isolines (right panel of Fig. 1.2)
occurs whenever the initial inclination of the orbit is larger than ≈ 39.2◦, which is
sometimes called the Kozai limit. For such initial conditions, the orbit oscillates
(in both the librational and the rotational region), between two extreme states
due to conservation of c — either the orbit is highly inclined with low eccentricity
or its eccentricity is high but the orbit lies nearly in the plane of the ring. These
oscillations are commonly called the Kozai oscillations and the entire phenomenon
is sometimes referred to as the Kozai-Lidov cycles (Kozai 1962; Lidov 1962).

In the quadrupole approximation, the Hamiltonian equations with the aver-
aged potential energy (1.10) yield the following equations for the evolution of the
Keplerian elements of the stellar orbit (Kiseleva et al. 1998; Kinoshita & Nakai
1999):

TKL

√
1 − e2

de

dt
=

15

8
e
(

1 − e2
)

sin 2ω sin2 i ,

TKL

√
1 − e2

di

dt
= −15

8
e2 sin 2ω sin i cos i ,

TKL

√
1 − e2

dω

dt
=

3

4
{2 − 2e2 + 5 sin2 ω

[

e2 − sin2 i
]

} ,

TKL

√
1 − e2

dΩ

dt
= −3

4
cos i

[

1 + 4e2 − 5e2 cos2 ω
]

, (1.12)

where

TKL ≡ M•

Mr

R3
r

a
√

GM•a
=

1

2π

M•

Mr

(

Rr

a

)3

Torb , (1.13)
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Figure 1.4: Isolines of the conserved averaged potential in the case of a disc-like perturber.
The value of the Kozai integral of motion decreases from left to right: c = 0.9, 0.7 and 0.2. In
the right panel, we see the inner rotational region in which the initially circular orbit is stable.
Mass of the disc is set to Md = 0.01 M• and the semi-major axis of the orbit to a = 0.49 Rd.
The disc has constant surface density and its characteristic radius Rd is identified with its outer
radius. The figure is redrawn from Šubr & Karas (2005).

is the characteristic time-scale of the Kozai-Lidov cycles. A sample solution of
these equations is shown in Fig. 1.3.

The Kozai-Lidov mechanism also occurs if the source of the axisymmetric
perturbation is not an infinitesimally thin ring but a razor-thin disc. Since the
conclusions for this configuration are similar to those discussed above for the
ring-like perturber, let us only briefly mention a qualitative difference in the
topology of the isolines for the averaged disc-like potential. As has been shown by
Vokrouhlický & Karas (1998) and numerically tested in Šubr & Karas (2005),
in such a case, the isolines contain, for low enough values of c (which is also an
integral of motion in the case of the disc-like perturber), a third region — the inner
rotational region (see Fig. 1.4). In this region, the Kozai oscillations of eccentricity
and inclination are suppressed and the argument of pericentre rotates in the whole
interval 〈0, 2π〉 on the Kozai-Lidov time-scale (1.13) in which the mass, Mr, and
radius, Rr, of the ring are replaced by the mass, Md, and characteristic radius, Rd,
of the disc. The characteristic features of the two original regions (the librational
and the outer rotational) remain qualitatively the same as in the case of the ring
perturbation.

Finally, let us mention that the Kozai-Lidov dynamics has also been studied
for other variants of the three-body problem. Ziglin (1975) has investigated a
setting complementary to the classical Kozai-Lidov problem, assuming that the
orbit of the test body lies outside the circular orbit of the perturber. The non-
restricted version of the circular three-body problem has been fully described by
Lidov & Ziglin (1976, some aspects of the problem have already been discussed
earlier; see the references in the paper). Most recently, Katz et al. (2011) have
focused on the case when the orbit of the perturber is eccentric.
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1.4 Suppressed Kozai-Lidov mechanism

In the previous Section, we have investigated the Kozai-Lidov mechanism as
it occurs in the case when the dominating Keplerian potential of the SMBH
is perturbed only by an axisymmetric ring (disc). Here, we focus on the case
when, beside the axisymmetric perturbation, an additional spherically symmetric
potential is included, e.g., due to an extended star cluster.

We start with an assumption about the potential energy of a star of mass m
in the spherical cluster. Considering a general power-law radial density profile of
the cluster, ρ (r) ∝ r−α with α 6= 2, we have the potential energy

Rc = −GmMc

βRr

(

r

Rr

)β

, (1.14)

where β = 2 − α 6= 0 and the mass of the cluster within the radius of the ring
Rr is denoted Mc. According to the averaging technique, we shall integrate the
potential energy (1.14) over one revolution about the centre with respect to the
mean anomaly ℓ,

Rc ≡
1

2π

π
∫

−π

dℓ Rc , (1.15)

which yields

Rc = − 1

2π

GmMc

βRr

(

a

Rr

)β
π

∫

−π

dℓ
(r

a

)β

, (1.16)

where r(ℓ) is given implicitly by relations r = a (1 − e cos u) and u − e sin u = ℓ.
After some algebra, we obtain

Rc = −GmMc

βRr

(

a

Rr

)β

J (e, β) , (1.17)

where

J (e, β) ≡ 1

π

π
∫

0

du (1 − e cos u)1+β = 1 +
∑

n≥1

ane2n, (1.18)

with the coefficients obtained by recurrence

an+1

an

=

[

1 − 3 + β

2(n + 1)

] [

1 − 2 + β

2(n + 1)

]

(1.19)

and an initial value a1 = β (1 + β) /4. For the purpose of our study, we fur-
ther set β = 1/4 which corresponds to the equilibrium model worked out by
Bahcall & Wolf (1976, 1977, see Section 1.6).

Having discussed our assumptions about the spherical cluster, we now con-
sider the combined effect of the ring and the cluster potentials on the long-term
evolution of the stellar orbit. The total, orbit-averaged potential

R = Rc + Rr (1.20)
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Figure 1.5: Isolines of the conserved potential function R = C from equation (1.20) for
two different values of the mass ratio µ = Mc/Mr: 0.1 and 0.01 in the left and right panel,
respectively. The Kozai integral value is c = cos(70◦), corresponding to 70◦ inclination circular
orbit. Mass of the ring is set to Mr = 0.3 M• and the semi-major axis of the orbit to a = 0.06 Rr.
In the left panel, we see that sufficiently massive spherical cluster suppresses the Kozai-Lidov
oscillations of eccentricity and inclination. The thick isoline in the right panel is a separatrix
between two different regimes of eccentricity and pericentre evolution.

still obeys axial symmetry, being independent on the nodal longitude. The pic-
ture, however, may be modified with respect to the case of solely ring-like pertur-
bation. Considering the spherical cluster whose potential is approximated with
(1.17), we find that the two types of topologies of the R = C isolines persist (see
Fig. 1.5) but the onset of the Kozai-Lidov oscillations of eccentricity and inclina-
tion of the orbit now depends on two parameters, namely c and µ ≡ Mc/Mr. A
nonzero mass of the cluster stabilizes small eccentricity evolution and the critical
angle is pushed to larger values. For large enough µ, the stability of the circu-
lar orbit is guaranteed for arbitrary value of c and hence orbits of an arbitrary
inclination with respect to the plane of the ring. This is because the effects of
the cluster potential make the argument of pericentre circulate fast enough (sig-
nificantly faster than the Kozai timescale), thus preventing secular changes of
the eccentricity. An initially near-circular orbit maintains a very small value of
e showing only small-amplitude oscillations. Fig. 1.6 shows critical inclination
values, for which the circular orbit becomes necessarily unstable as a function
of µ and a/Rr parameters (note the later factorizes out from the analysis when
µ = 0). Importantly, there is a correlation between µ and a/Rr below which
circular orbits of an arbitrary inclination are stable; for instance, data in Fig. 1.6
indicate that for µ = 0.1 any circular orbit with a . 0.12 Rr is stable.

Recalling the equations (1.12) for the evolution of the orbital elements, the
impact of the spherical potential can be described by an additional term on the
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Figure 1.6: Individual lines show a critical inclination (ordinate) at which the high-amplitude
Kozai-Lidov oscillations onset for the given value of mass ratio µ = Mc/Mr (abscissa) for
different values of orbital semi-major axis a ranging from 0.03 Rr (left) to 0.3 Rr (right) with
the step of 0.03 Rr. When µ = 0, the critical angle is ≈ 39.2◦ (‘the Kozai limit’) independently
from a.

right-hand side of the equation for argument of pericentre (Ivanov et al. 2005)

(

dω

dt

)

c

= −K
Mc (a)

M•

√
1 − e2

Torb

, (1.21)

where Mc(a) is the mass of the cluster enclosed with radius a and K is a di-
mensionless constant of order unity. The characteristic time-scale, Tc(a), of the
pericentre rotation for the orbit with semi-major axis a then reads (Ivanov et al.
2005; Merritt et al. 2011)

Tc (a) = k
M•

Mc (a)
Torb (a) , (1.22)

where k is a dimensionless constant of order unity.

1.5 Two-body relaxation

So far, we have been focusing on the dynamical effects of various mean potentials
that can be present in general N -body stellar systems. We have seen that the
motions of the individual stars in such potentials are deterministic and charac-
terised by a set of integrals of motion. Namely, since the mean potential does
not depend, by definition, on time, the total energy of each individual star in the
system is conserved. Furthermore, depending on the spatial symmetries of the
mean potential, also the angular momentum of the individual stars (or at least
some of its components) might be conserved. However, as soon as the fluctuating
component of the total potential in the system is present, the exact conservation
of these integrals is being continuously disturbed. In particular, due to the either
occasional or systematic stronger interaction of some of the stars in the system,
both energy and angular momentum are exchanged among the individual orbits
throughout the whole system, which leads to a slow evolution of its large-scale



1.5. TWO-BODY RELAXATION 13

structure. This complex process, which eventually forces the stellar system to
‘forget’ its initial state, is commonly referred to as relaxation and the charac-
teristic time-scale on which this ‘loss of memory’ occurs is called the relaxation
time. In the following, we shall review some of the basic features of relaxation
which are important for our further research.

One of the most fundamental forms of relaxation is called two-body relaxation.
In this case, the responsible part of the fluctuating component of the total po-
tential corresponds to the short-term close two-body encounters that occur from
time to time among the individual stars in the stellar system. Here, the term
‘encounter’ does not denote the physical contact between the stars (to that we
would refer as ‘collision’), it merely describes the situation in which the mutual
interaction of the stars temporarily dominates, due to their spatial proximity,
over the effect of the mean potential of the system. As a result, during every
such an encounter, the orbits of the interacting stars are slightly modified as the
stars exchange a small amount of both energy and angular momentum. A large
number of these encounters thus lead to a global energy and angular momentum
transfer throughout the whole system.

The rate of this transfer, i.e., the rate at which the stellar system relaxes from
its initial state, can be estimated by means of evaluating the encounters for some
of its typical stars. As the star travels through the system, the configuration of the
surrounding stars fluctuates on time-scale Tf which depends on the stellar density
and velocity dispersion in the system. During this interval, the star receives a
typical impulse δv that changes its velocity v. Since the impulses in successive
intervals of length Tf are uncorrelated, the total impulse ∆v after time t evolves
in a random-walk fashion:

(∆v)2 ∼ (δv)2(t/Tf) . (1.23)

Hence, we can now define the characteristic time-scale, Ttb, for two-body relax-
ation more quantitatively as the time that it takes to change the square of the
original velocity of the star by order itself, (∆v)2 ∼ v2 ∼ (δv)2(Ttb/Tf). Inserting
this relation back into (1.23), we thus obtain (∆v)2 ∼ v2(t/Ttb).

As the total energy, E, of the star is, according to the virial theorem, pro-
portional to the square of its velocity, E ∼ v2, the fluctuating component of the
potential changes the energy at rate

∆E

E
∼

(

t

Ttb

)1/2

. (1.24)

Similarly, the magnitude of the angular momentum of the star, L ≡ |L| ∼ Rv,
diffuses at rate

∆L

Lcirc

∼
(

t

Ttb

)1/2

, (1.25)

where Lcirc denotes the maximum possible angular momentum of the star at the
given energy level, i.e., in the case when its orbit is circular.

According to Binney & Tremaine (2008, eq. 7.106), the characteristic time-
scale, Ttb, for a population of identical stars of mass m whose velocity distribution
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is Maxwellian with dispersion σ reads

Ttb ∼ σ3

G2mρ ln Λ
, (1.26)

where ρ is the spatial density of the stars, ln Λ represents the Coulomb logarithm
and G denotes the gravitational constant. If the individual stars have different
masses, the factor m should be replaced by the effective mass, meff , which is
defined as the ratio of the mean-square mass to the mean mass of the stars in the
investigated system, meff ≡

∫

m2dN(m) /
∫

mdN(m).
Under the assumption of virial equilibrium, the general expression (1.26) can

be further simplified in order to obtain an order-of-magnitude estimate provided
the population consists of N stars that are enclosed within a spherical volume of
radius R. For such a stellar system, the velocity dispersion can be estimated as
σ2 ∼ v2 ∼ GNm/R. Hence, estimating the stellar density in the system by its
typical value, ρ ∼ Nm/R3, we find

Ttb ∼ N

ln Λ
Tcross , (1.27)

where the Coulomb logarithm approximately fulfills ln Λ ∼ lnN and Tcross is the
crossing time, which is defined as the time it typically takes for a star to pass
once through the whole system,

Tcross ≡
R

v
∼

(

R3

GNm

)1/2

. (1.28)

Using the simple estimate (1.27), we can immediately identify the astrophysical
systems whose dynamical state must have already been affected by the two-body
relaxation as their two-body relaxation time is shorter than or comparable to their
age. Among these, we can name globular star clusters which contain ∼ 104−6

stars, yielding Ttb ∼ 103−4 Tcross, and are ∼ 104 Tcross old. On the other hand, for
the dynamical evolution of the systems whose two-body relaxation time is much
larger than their age, the short-term close two-body encounters are not important.
Here, galaxies would serve as an example since they consists of ∼ 1011 stars, their
relaxation time reaches Ttb ∼ 109 Tcross and their age is of order ∼ 102 Tcross.

1.6 Central mass dominated relaxation

In the following, we focus on specific features of relaxation in systems whose
gravitational potential is dominated by the central SMBH. For this purpose, we
consider a spherically symmetric cluster of N stars of mass m on orbits around
the SMBH of mass M• ≫ Nm. The potential of the SMBH is assumed to be
Keplerian and, therefore, the mean potential within the cluster is near-Keplerian.
If the fluctuating component of the potential were not present, the individual
orbits would be Kepler ellipses, undergoing a negative pericentre shift due to the
mean potential of the stars on a time-scale (1.22) which is much longer than the
orbital period of the stars, Tc ≫ Torb.
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An order-of-magnitude estimate of the two-body relaxation time in such a
star cluster can be obtained as follows (cf. the relaxation time (1.27)). Since the
stellar motions in the cluster are dominated by the Keplerian potential of the
SMBH, the Jeans equations dictate σ2 ∼ v2 ∼ GM•/R, where R is the typical
radius of the orbits in the cluster. Inserting this velocity dispersion to the general
formula (1.26) and estimating the stellar density in the cluster by its typical value,
ρ ∼ Nm/R3, yields (see also Rauch & Tremaine 1996, eq. 51)

Ttb ∼ M2
•

m2N ln N
Torb , (1.29)

where we have applied the approximate relation lnΛ ∼ ln N . Given the stars
in the cluster are not equal-mass, the factor m in the relaxation time should be
replaced by the effective mass meff .

As an illustration, let us calculate the relaxation time for a star cluster with
parameters that are expected to be quite common for clusters in galactic nuclei,
including the one of our own Galaxy: M• ∼ 106 M⊙, N ∼ 105, m ∼ 1 M⊙,
R ∼ 1 pc. In such a case, the typical orbital period of the stars is of order
∼ 104 yr and the relaxation time reaches ∼ 109 yr. Since the estimated age of the
nuclear star clusters is of the same order of magnitude, we see that these clusters
are likely to be affected by the two-body relaxation.

The evolution of spherically symmetric star clusters harbouring the central
SMBH due to two-body relaxation has been studied by various authors (Peebles
1972a,b; Bahcall & Wolf 1976, 1977). For the purpose of this Thesis, let us only
briefly mention that it leads to a steady-state distribution of the stars which
is described by the energy distribution function f (E) ∝ E1/4 (Bahcall & Wolf
1976) if the cluster accommodates several assumptions, such as equal masses of
the stars. In terms of the stellar density, ρ (r), this distribution corresponds to

ρ (r) ∝ r−7/4 (1.30)

which is usually called the Bahcall-Wolf radial density profile.
The stellar motions in the near-Keplerian mean potential of the central mass

dominated star cluster are regular. Consequently, the individual stars in the clus-
ter can interact coherently on a time-scale that is much longer than their orbital
period, which leads to a much more efficient exchange of the angular momentum
among the stellar orbits. As a result, the cluster undergoes an enhanced relax-
ation of angular momentum which is usually referred to as resonant relaxation
(Rauch & Tremaine 1996).

In order to understand the basic principles behind this dynamical process, let
us first imagine averaging of the stellar trajectories in the cluster over an interval
that is ≫ Torb but ≪ Tc given by (1.22). On this time-scale, the individual
stars in the cluster are represented by fixed eccentric wires. The mass of each
wire equals the mass of the original star, its shape corresponds to the shape of
the original stellar orbit and the linear density of the wire varies in accord with
the non-uniform motion of the star on this orbit. The long-term interactions of
the stars in the cluster can then be described in terms of the torques exerted
among these wires. The gravitational potential generated by the wires is roughly
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stationary, similarly to the case of the previously discussed Kozai-Lidov problem
(see Sections 1.2 and 1.3). Hence, the torques among the wires do not lead
to any exchange of energy, ∆E = 0. The angular momentum distribution in
the system, however, is affected significantly. This process is usually called the
scalar resonant relaxation and it changes both the magnitude and direction of
the angular momenta of the wires.

Due to the pericentre shift in the mean potential of the cluster, the configu-
ration of the wires fluctuates on time-scale Tc (see equation (1.22)) and, conse-
quently, so do the mutual torques among them. During an interval of length Tc,
the torques change (roughly coherently) the magnitude of the angular momentum
of a typical wire by some amount δL. On time-scales t ≫ Tc, the total angular
momentum change, ∆L, of the wire follows a random walk with increments δL
and, therefore, (∆L)2 ∼ (δL)2(t/Tc). In analogy with the two-body relaxation
time, we can define the scalar resonant relaxation time, Tsr, as the time that
it takes to change the square of the original angular momentum by order L2

circ:
(∆L)2 ∼ L2

circ ∼ (δL)2(Tsr/Tc). Hence, we obtain (cf. equation (1.25))

∆L

Lcirc

∼
(

t

Tsr

)1/2

, t ≫ Tc . (1.31)

As has been first derived by Rauch & Tremaine (1996) and later discussed
by Hopman & Alexander (2006) and Eilon et al. (2009), the scalar resonant
relaxation time is given by

Tsr ∼
M•

m
Torb . (1.32)

In the case of non-equal-mass stars, the factor m is replaced by the effective mass
meff . Let us emphasize here that the scalar resonant relaxation time is shorter
than the two-body relaxation time (1.29) by a factor (mN ln N) /M• which is ≪ 1
in the case of near-Keplerian potential (M• ≫ Nm). This is a direct consequence
of the fact that the stars can coherently interact on a much longer time-scale (in
comparison to their short-term two-body encounters) and, therefore, exchange
their angular momentum much more efficiently. In this context, let us also note
that Rauch & Tremaine (1996) have pointed out that the Bahcall-Wolf radial
density profile (1.30) may not correctly describe the structure of the innermost
parts of the relaxed spherically symmetric star cluster around the central SMBH
as this profile has been derived considering two-body relaxation only.

Another form of resonant relaxation occurs in general spherical potentials or
even in axisymmetric potentials that are nearly spherical. This process, which
is known as vector resonant relaxation, affects only the direction of the angular
momentum (or its z-component which is the integral of motion in the case of ax-
isymmetric potentials), leaving its magnitude untouched. Similarly to the case of
the scalar resonant relaxation, the diffusion of the angular momentum due to the
vector resonant relaxation is also caused by the torques that arise from the aver-
aged mass distribution in the cluster. In this case, however, the averaging is done
over a longer time-scale Tc ≪ t ≪ Tprec, where Tprec denotes the characteristic
time-scale of precession of the angular momentum of the orbits in the cluster that
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is caused by the fluctuating component of the spherical potential (or by the ax-
isymmetric potential). The individual stars are, on this time-scale, smeared into
axisymmetric annuli whose inner and outer radius correspond to the pericentre
and apocentre of the original orbits, respectively. Again, the potential generated
by the annuli is roughly stationary and, therefore, the torques do not affect their
energy, ∆E = 0. Contrary to the case of the scalar resonant relaxation, however,
the torques are perpendicular to the normals of the annuli and, as such, do not
lead to any change of the magnitude of angular momentum, ∆L = 0.

The configuration of the annuli fluctuates on time-scale Tprec. In spherical
potentials, the total change of the vector angular momentum, |∆L|, of a typical
annulus after time t ≫ Tprec is, therefore, described by a random walk with a step-
size Tprec and increments, |δL|, accumulated in each step: |∆L|2 ∼ |δL|2(t/Tprec).
However, as has been shown by Rauch & Tremaine (1996), already |δL|/Lcirc ∼
1. Hence, the characteristic time-scale, Tvr,sf , of the vector resonant relaxation in
spherical potentials reads

Tvr,sf ∼ Tprec ∼
N1/2

µ
Torb , (1.33)

where µ ≡ Nm/(M• + Nm). If the potential is near-Keplerian, we see that Tvr,sf

is shorter than the scalar resonant relaxation time (1.32) by a factor of N−1/2.
In the case of axisymmetric potentials, the period Tprec is given by the pre-

cession rate in these potentials. On time-scales t ≫ Tprec, the total change of
the z-component of the angular momentum, ∆Lz , of a typical annulus evolves in
a random walk fashion with increments, δLz, accumulated over Tprec: |∆Lz|2 ∼
|δLz|2(t/Tprec). Hence, if we define the vector resonant relaxation time, Tvr,axi, as
the time when the change reaches |∆Lz|2 ∼ L2

circ ∼ |δLz|2(Tvr,axi/Tprec), we find

|∆Lz|
Lcirc

∼
(

t

Tvr,axi

)1/2

, t ≫ Tprec . (1.34)

In this case, Tvr,axi fulfills (Rauch & Tremaine 1996)

Tvr,axi ∼
N

µ2

T 2
orb

Tprec

(1.35)

which is shorter by a factor (Torb/Tprec) lnN than the characteristic time-scale of
the two-body relaxation (1.29) if the potential is near-Keplerian.

1.7 Relaxation of thin stellar discs

The third power of the velocity dispersion in the two-body relaxation time (1.26)
indicates that the rate of this process strongly depends on the relative velocities
of the stars in the system under consideration. Consequently, we may expect the
two-body relaxation to be much more efficient in systems in which the stars are
moving coherently, i.e., with small relative velocities, such as thin stellar discs in
the dominating potential of the central SMBH.
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If the disc is formed by N stars of mass m that are coherently orbiting the
central SMBH of mass M• ≫ Nm, the velocity dispersion, σ, can be written
as σ ∼ ermsvK (e.g., Lissauer 1993), where vK ∼ (GM•/R)1/2 is the Keplerian
velocity, R stands for the typical radius of the orbits in the disc and erms denotes
their root-mean-square eccentricity. The stellar density, ρ, in the disc can be
estimated by ρ ∼ Nm/hR2 in which h is the scale height of the disc that can be
expressed as h ∼ σR/vK. Inserting these quantities into the two-body relaxation
time (1.26) leads to (for details, see Stewart & Ida 2000; Alexander et al. 2007)

Ttb,disc ∼
M2

• e4
rms

m2N ln Λ
Torb . (1.36)

In this formula, Λ can be calculated as (Stewart & Ida 2000)

Λ ∼ M•e
3
rms

m
. (1.37)

Formula (1.37) holds if Λ ≫ 1 (which is the usual case in stellar dynamics) and
if the root-mean-square values of orbital eccentricity, erms, and inclination, irms,
in the disc follow relation

erms ≈ 2irms (1.38)

which has been shown to be a natural consequence of two-body relaxation of thin
stellar discs (e.g., Ida et al. 1993).

Hence, we see that the two-body relaxation time (1.36) may indeed be very
short if the orbits in the disc are near-circular. This is in agreement with the
physical intuition since, due to low relative velocities of the stars in such a disc,
the stars can interact on a longer time-scale and, therefore, exchange a larger
amount of both energy and angular momentum.

The magnitude of the angular momentum of a star from the disc is given by

L = Lcirc

√
1 − e2 , (1.39)

where
Lcirc = m

√

GM•a . (1.40)

Differentiation of L thus yields

∆L = −Lcirc

e√
1 − e2

∆e + m
√

GM• (1 − e2)
1

2a1/2
∆a , (1.41)

which can be, for sufficiently small eccentricities, rewritten as

∆L ≈ −Lcirce∆e + m
√

GM•

1

2a1/2
∆a . (1.42)

Since the total energy, E, of the star is given by

E = −GmM•

2a
, (1.43)

we have

∆L ≈ −Lcirc

[

∆ (e2)

2
+

∆E

2E

]

. (1.44)
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Figure 1.7: Two-body relaxation of the stellar disc around the SMBH: evolution of the
root-mean-square eccentricity erms (left panel) and inclination irms (right panel) of the orbits
in the disc. Time is given in multiples of the orbital period that corresponds to the initial inner
radius of the orbits in the disc, Rin. We see that the evolution of both mean elements roughly
agrees with the theoretical t1/4 dependence (thin dotted lines; see equations 1.45 and 1.46).
The displayed results describe one realization of the model (see Table 2.1 for model parameters,
model B0).

If we subsitute relations (1.24) and (1.25) and average over the stars in the disc,
we find that the two-body relaxation of thin stellar discs leads to an increase of
the root-mean-square eccentricity of the orbits by amount

∆erms ∼
(

t

Ttb,disc

)1/4

. (1.45)

Furthermore, due to relation (1.38), the root-mean-square inclination evolves in
the same fashion

∆irms ∼
(

t

Ttb,disc

)1/4

. (1.46)

Relations (1.45) and (1.46) may be straightforwardly tested by means of nu-
merical N -body modelling. For this purpose, we use the publicly available N -
body integration code NBODY6 (Aarseth 2003) and follow the orbital evolution
of an initially thin stellar disc in the dominating Keplerian potential of the central
SMBH. The Keplerian potential has been implemented into the original version
of the code as an additional external potential. The stellar orbits in the disc are
assumed to be initially circular with radii R ∈ 〈Rin, 10Rin〉 (for the remaining
parameters of the model, see Table 2.1, model B0).

Evolution of the root-mean-square eccentricity, erms, and inclination, irms, of
the orbits in the disc is shown in the left and right panel of Fig. 1.7, respectively.
As we can see, both elements evolve in a rough accord with the theoretically
predicted dependence ∼ t1/4 (thin dotted lines; equations (1.45) and (1.46); see
also Stewart & Ida 2000; Alexander et al. 2007; Cuadra et al. 2008). Fig. 1.8
demonstrates the evolution of the orbital semi-major axes in the disc in terms of
their initial (grey rectangle) and final distribution (boxes; t ≈ 104 Torb(Rin)). We
observe that the evolved distribution differs significantly from the initial state.
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Figure 1.8: Two-body relaxation of the stellar disc around the SMBH: comparison of the
initial (grey rectangle) and final distribution (boxes; t ≈ 104 Torb(Rin)) of the orbital semi-
major axes in the disc. We see that both distributions differ significantly. The displayed results
describe one realization of the model (see Table 2.1 for the model parameters, model B0).

The orbital evolution of thin stellar discs may also be affected by resonant
relaxation. However, as discussed in Kocsis & Tremaine (2011) in the context of
the young stellar system in the Galactic Centre, the vector resonant relaxation
of thin stellar discs is much less efficient than their two-body relaxation, unless
they are embedded in an extended spherical star cluster. The determination of
the scalar resonant relaxation rate for thin stellar discs that are not exposed to
any perturbative sources of gravity is not straightforward and we refer the reader
to the work of Tremaine (1998).



Chapter 2

Thin disc embedded in extended

spherically symmetric cluster

In Section 1.7, we have investigated the orbital evolution of thin isolated stel-
lar discs around the SMBH. There is statistically significant evidence that such
structures, indeed, are present in galactic nuclei (Levin & Beloborodov 2003;
Bender et al. 2005; Paumard et al. 2006; Bartko et al. 2009, 2010; Lauer et al.
2012). In this case, however, it is reasonable to expect the stellar disc to be em-
bedded in an extended spherically symmetric relaxed star cluster that is centred
on the SMBH. Hence, in this Chapter, we focus on how the orbital evolution of
the stellar discs is affected if we include the spherical perturbation.

2.1 The cluster modelled by analytic potential

In the first step, we emulate the gravity of the extended spherical star cluster
by an analytic spherically symmetric potential, i.e., we neglect the fluctuating
component of the total potential generated by the cluster. In order to test whether
such a perturbation has an impact upon the relaxation of the disc, we consider the
same stellar disc as in Section 1.7 and include the potential that corresponds to
the spherically symmetric mass distribution described by the Bahcall-Wolf radial
density profile (1.30) (see model B1 in Table 2.1 for the particular values of the
model parameters). As this profile is expected to describe the structure of relaxed
spherical star clusters that contain a massive central body (see Section 1.6), it
represents a natural choice for modelling the mean potential of the cluster in our
calculations. The strength of the potential is characterised by the mass, Mc(Rout),
of the cluster enclosed within the outer radius of the disc, Rout = 10 Rin, and we
set Mc(Rout) = 0.01 M•.

Fig. 2.1 shows the evolution of the root-mean-square eccentricity, erms, and
inclination, irms, of the orbits in the disc (solid lines). If we compare the re-
sults with those acquired for the isolated stellar disc (dashed lines; redrawn from
Fig. 1.7; model B0), we cannot identify any significant difference, except for the
initially larger values of erms due to the effectively larger mass enclosed within
the orbits. Similar results can be obtained even for larger characteristic masses
Mc(Rout), as long as the potential of the cluster may be considered a perturbation

21
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Figure 2.1: Evolution of the root-mean-square eccentricity erms (left panel) and inclination
irms (right panel) of the orbits in the stellar disc around the SMBH in a predefined analytic
spherically symmetric potential (solid lines; model B1) in comparison to the previously discussed
case of the isolated stellar disc (dashed lines; redrawn from Fig. 1.7; model B0). Time is given
in multiples of the orbital period that corresponds to the initial inner radius of the orbits in the
disc, Rin. The thin dotted lines denote the theoretical t1/4 dependence derived for the isolated
stellar discs (see equations 1.45 and 1.46). The displayed results correspond to one realisation
of the models. In the case of model B1, the parameters are the same as in Fig. 1.7, except for
Mc(Rout) = 0.01 M• (see also Table 2.1).

to the dominating potential of the SMBH (Mc(Rout) . 0.1 M•). In conclusion,
we find that the gravitational perturbation in the form of an analytic spherically
symmetric potential does not affect relaxation of the angular momentum in the
disc.

Furthermore, comparison of the evolved distributions of the orbital semi-major
axes displayed in Fig. 2.2 reveals that, within both models, the distributions are
of the same shape. Hence, it appears that neither the energy transfer in the disc
is affected if the analytic spherical cluster is included. The case when the cluster
is modelled by a large number of gravitating, mutually interacting particles is
described in the following Section.

2.2 Coupling of the disc and the cluster

In order to investigate the orbital evolution of the thin stellar disc under the
gravitational influence of the spherical cluster which is treated in the full N -body
way, we introduce the following configuration:

• the SMBH of mass M• is considered to be a fixed source of static Keplerian
potential, φ• (r) = −GM•/r,

• the stellar disc is modelled as a group of Nd interacting stars of mass md;
the semi-major axes of the stellar orbits in the disc are initially distributed
according to dN/da ∝ aαd , a ∈ 〈ad,min, ad,max〉; the disc is considered to be
initially thin with half-opening angle ∆,
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Figure 2.2: Evolution of the distribution of the orbital semi-major axes in the stellar disc
around the SMBH in a predefined analytic spherically symmetric potential (solid boxes; model
B1) in comparison to the previously discussed case of the isolated stellar disc (dashed boxes;
redrawn from Fig. 1.8; model B0). The initial distribution (grey rectangle) is the same in both
cases. The evolved distributions describe the state at t ≈ 104 Torb(Rin). The displayed results
correspond to one realisation of the models. In the case of model B1, the parameters are the
same as in Fig. 1.8, except for Mc(Rout) = 0.01 M• (see also Table 2.1).

• the spherical star cluster is treated as Nc interacting stars of mass mc;
initial distribution of the semi-major axes of the orbits in the cluster obeys
dN/da ∝ aαc , a ∈ 〈ac,min, ac,max〉.

Temporal evolution of this stellar system is followed numerically, by means of the
N -body integration code NBODY6 (Aarseth 2003). The Keplerian potential of
the SMBH has been incorporated into the publicly available version of the code
as an additional external potential. The original code has also been optimised for
integrations of the massive central body dominated stellar systems in cooperation
with its author, Sverre J. Aarseth. The xy-plane of our Cartesian reference frame
is defined by the plane of symmetry of the disc. The stellar motions in the disc
are considered to be initially prograde, i.e., the reference z-axis is pointing to the
same hemisphere as the initial mean angular momentum of the disc.

We start with a particular setup (hereafter ‘canonical’ configuration; see also
Table 2.1) that is primarily motivated by the stellar system observed in the Galac-
tic Centre and discuss the acquired results later on (see Section 2.4). For sim-
plicity, the stellar orbits in both the cluster and the disc are constructed to be
initially geometrically circular. Although this setup is not very realistic for the or-
bits in the cluster, it can still provide useful insights into the evolution of general
non-circular stellar systems.

The parameters of the disc are the same as in the previous Section. In partic-
ular, the individual stars are assumed to have one of the following three masses:
md1 = 2.5×10−6 M•, md2 = 7.5×10−6 M•, md3 = 2.5×10−5 M•. The correspond-
ing abundances are Nd1 = 600, Nd2 = 300 and Nd3 = 100, yielding the total mass
of the disc Nd1md1 +Nd2md2 +Nd3md3 = 6.25×10−3 M•. The initial distribution
of the orbital elements is independent of the stellar mass. The power-law index for
the initial distribution of the radii, R, of the orbits in the disc is set to αd = −1.
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B0 B1 canon. H M A D
N -body disc yes yes yes yes yes yes yes
N -body cluster – – yes yes yes yes yes
predef. cluster – yes – – yes – –
predef. ring – – – – – – –
Nd1 600 600 600 600 600 600 600
md1 [10−6 M•] 2.5 2.5 2.5 2.5 2.5 2.5 2.5
Nd2 300 300 300 300 300 300 300
md2 [10−6 M•] 7.5 7.5 7.5 7.5 7.5 7.5 7.5
Nd3 100 100 100 100 100 100 100
md3 [10−6 M•] 25 25 25 25 25 25 25
ad,min–ad,max [Rin] 1–10 1–10 1–10 1–10 1–10 1–10 1–10
αd -1 -1 -1 -1 -1 -1 -1
ed gc gc gc gc gc gc gc
∆ [◦] 2.5 2.5 2.5 2.5 2.5 2.5 2.5
Nc [103] – – 12.5 100 6.25 50 6.25
mc [10−6 M•] – – 1.903 2.378 3.806 0.476 3.806
ac,min–ac,max [Rin] – – 0.5–20 0.5–20 0.5–20 0.5–20 0.5–20
αc – – 1/4 1/4 1/4 1/4 1/4
ec – – gc gc gc gc gc
Mc(Rout) [10−2 M•] – 1 – – 1 – –
βc – -7/4 – – -7/4 – –
Mr [10−1 M•] – – – – – – –
Rr [Rin] – – – – – – –
ir – – – – – – –
num. integrator N N N N N N N

(the remaining models on the next page)

Table 2.1: Parameters of the numerical models described in Chapters 1 and 2. The first five
rows give the model designation and included components in order: the N -body disc, the N -
body cluster, the predefined analytic cluster and the predefined analytic ring. The subsequent
rows describe the initial properties of the N -body disc: numbers (Nd1, Nd2, Nd3) and masses
(md1, md2, md3) of the particles in the disc, interval (ad,min, ad,max) and power-law index (αd)
of the initial distribution of the orbital semi-major axes in the disc, initial eccentricities of the
orbits in the disc (ed) and initial half-opening angle of the disc (∆). The analogical quantities
indexed by ‘c’ describe the initial properties of the N -body cluster. The characteristic mass of
the predefined analytic cluster within the initial outer radius of the disc Rout and the power-
law index of the corresponding radial density profile, ρ ∼ rβc , are denoted Mc(Rout) and βc,
respectively. The predefined analytic ring is described by its mass Mr, radius Rr and inclination
ir with respect to the plane of the disc. The row ‘num. integrator’ indicates which N -body
integration code has been used for the particular model: NBODY6 (N; Aarseth 2003) and
Mbody (M; Šubr 2006). The abbreviation ‘gc’ indicates that the orbits are constructed to be
geometrically circular; ‘tp’ stands for ‘test particles’ with extremely low mass 2.5×10−12 M•. In
the case of models K0a and K0b, the length unit is chosen to be the inner radius of the cluster
since these models do not include any disc whose inner radius, Rin, represents the length unit
in the remaining models (the affected values are marked by an asterisk).
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(Table 2.1 continued)

K0a K0b K1a K1b
N -body disc – – yes yes
N -body cluster yes yes – –
predef. cluster – – – –
predef. ring yes yes yes yes
Nd1 – – 300 300
md1 [10−6 M•] – – tp 4
Nd2 – – – –
md2 [10−6 M•] – – – –
Nd3 – – – –
md3 [10−6 M•] – – – –
ad,min–ad,max [Rin] – – 1–1.8 1–1.8
αd – – -1 -1
ed – – 0–0.1 0–0.1
∆ [◦] – – 2.5 2.5
Nc [103] 0.6 0.6 – –
mc [10−6 M•] tp 25 – –
ac,min–ac,max [Rin] 1–3⋆ 1–3⋆ – –
αc 1/4 1/4 – –
ec 0–0.1 0–0.1 – –
Mc(Rout) [10−2 M•] – – – –
βc – – – –
Mr [10−1 M•] 1 1 0.5 0.5
Rr [Rin] 12⋆ 12⋆ 6 6
ir – – π/2 π/2
num. integrator M M M M

This value corresponds to the surface density profile, Σ(R) ∝ R−2, that has been
recently reported to describe the stellar disc observed in the innermost parsec of
our Galaxy (Paumard et al. 2006, see Chapter 4 for details). The initial interval
for the radii of the orbits spreads over one order of magnitude, R ∈ 〈Rin, 10Rin〉,
where Rin denotes the initial inner radius of the disc. The disc is considered to
have the initial half-opening angle ∆ = 2.5◦. The initial distributions of the or-
bital nodal longitudes, Ω, and arguments of pericentre, ω, are uniform, in accord
with the assumption that the disc is initially axially symmetric.

The cluster consists, in the canonical configuration, of Nc = 1.25× 104 equal-
mass stars with mc ≈ 1.9 × 10−6 M•. The total mass of the cluster thus is
Ncmc ≈ 0.02 M•. The initial distribution of the radii of the orbits in the cluster,
R ∈ 〈0.5 Rin, 20 Rin〉, obeys the power-law with index αc = 1/4 which corresponds
to the Bahcall-Wolf radial density profile (1.30). Hence, the mass of the cluster
enclosed within the initial outer radius of the disc, Rout, equals the characteristic
mass Mc(Rout) = 0.01 M• considered in the previous Section. Since we assume
the cluster to be initially spherically symmetric, the distributions of cos i, Ω and
ω of the orbits in the cluster are initially uniform.



26 CHAPTER 2. DISC EMBEDDED IN SPHERICAL CLUSTER

 0

 20

 40

 60

 80

 100

 120

 0.1  1  10  100

a  [Rin]

N

Figure 2.3: Evolution of the orbital semi-major axes in the disc embedded in the spher-
ical cluster in terms of their initial distribution (grey rectangle) and its evolved state at
t ≈ 104 Torb(Rin) for three different treatments of the cluster gravity: no cluster included
(dashed boxes; see also Section 1.7 and Table 2.1, model B0), predefined potential (dotted
boxes; see also Section 2.1 and Table 2.1, model B1) and the cluster treated as a large num-
ber of gravitating stars (solid boxes; canonical configuration, see Table 2.1). We see that the
evolved states are roughly the same in all three cases. The displayed results for the canonical
configuration are averaged over 9 realisations. In the remaining two cases, the distributions
describe one realisation.

2.2.1 Accelerated exchange of angular momentum

Our calculations show (see also Haas & Šubr 2012a) that the full N -body treat-
ment of the cluster gravity does not affect the evolution of the distribution of the
orbital semi-major axes in the disc in any noticeable way. Fig. 2.3 demonstrates
this finding. It shows the comparison of the initial distribution (grey rectangle)
and its state at t ≈ 104 Torb(Rin) in three different cases. The previously discussed
results for the models with no cluster included and the cluster represented by an
analytical potential are depicted by the dashed and dotted boxes, respectively (see
Sections 1.7 and 2.1 for details). The newly introduced canonical model with the
full N -body treatment of the cluster gravity is denoted by the solid boxes. As we
can see, the evolved distributions are similar in all three cases, which indicates
that the energy transfer in the disc is dominated by its high stellar density rather
than by the gravitational interaction with the embedding cluster.

On the other hand, we find that the full N -body treatment of the cluster
gravity has a significant impact upon the exchange of angular momentum. Fig. 2.4
shows the evolution of the root-mean-square eccentricity, erms, (left panel) and
inclination, irms, (right panel) of the stellar orbits in the disc. We see that,
although the initial phase is nearly identical in all three cases, at some moment,
evolution of both elements is accelerated if the cluster is treated as a group of
gravitating stars (solid lines). Our results, discussed in detail bellow, show that
this acceleration is due to averaging over an increasing number of orbits whose
eccentricity and inclination start to oscillate to very high values. We further
suggest that these oscillations are caused by the Kozai-Lidov dynamics in the
combined potential of the disc and a system of flattened structures that, according
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Figure 2.4: Evolution of the root-mean-square eccentricity erms (left panel) and inclination
irms (right panel) of the stellar orbits in the disc embedded in the spherical cluster for the same
three treatments of the cluster gravity as in Fig. 2.3. Time is given in multiples of the orbital
period that corresponds to the initial inner radius of the orbits in the disc, Rin. We see that in
the case of the cluster modelled in the full N -body way (solid lines; canonical configuration), the
evolution of both elements is accelerated. The displayed results for the canonical configuration
are averaged over 9 realisations. In the remaining two cases, the curves describe one realisation
(model parameters are summarised in Table 2.1).

to our computations, form in the cluster.

2.2.2 Bar instability in the cluster

As we have already mentioned above, the initially spherically symmetric cluster
develops macroscopic non-spherical structures. It turns out that this is due to the
gravity of the embedded thin disc. In this Section, we describe the formation of
these structures whose gravitational potential, subsequently, influences the orbits
of the stars from the disc.

In the initial phase of the evolution of the cluster (i.e., before the non-spherical
structures are formed), the individual stellar orbits in the cluster can be, in
principle, affected by the following processes:

• the Kozai-Lidov mechanism in the axisymmetric potential of the disc,

• negative pericentre shift due to the spherical mean potential of the cluster,

• two-body and resonant relaxation of the cluster.

In order to determine which of these processes are effective enough to have an
impact on the initial phase of the cluster evolution in the canonical configuration,
we evaluate their characteristic time-scales for this particular setting. For this
purpose, we first focus on the inner parts of the cluster where, according to our
results, the formation of the macroscopic non-spherical perturbation begins. The
evolution of the outer parts of the cluster is described in Section 2.2.6.

The characteristic Kozai-Lidov time-scale (1.13) in the case of a disc-like
perturber reads TKL ∼ (M•/Md)(Rd/R)3 Torb, where Md and Rd are the mass
and characteristic radius of the disc, respectively, R is the radius of the orbit
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Figure 2.5: Evolution of the orbital eccentricity e (dashed line), inclination i (solid line), nodal
longitude Ω (dotted line) and argument of pericentre ω (dot-dashed line) of a typical stellar orbit
from the innermost parts of the cluster in the canonical configuration (parameters summarised
in Table 2.1). We see that, in the initial phase of the evolution, the Kozai-Lidov oscillations
are damped by the mean spherical potential of the cluster (t . 2 × 103 Torb(Rin)). When the
bar in the cluster is formed, the orbit undergoes its Kozai-Lidov cycles (2×103 Torb(Rin) . t .

3.5 × 103 Torb(Rin)). Subsequently, it is captured by the bar in the disc, thus showing typical
oscillations of eccentricity and inclination (t & 3.5 × 103 Torb(Rin)).

and Torb ∼
√

R3/GM•. For the canonical radial density profile of the disc,
we estimate Rd ∼ Rin. Since R ∼ Rin in the inner parts of the cluster, the
ratio Rd/R is of order unity. In the canonical configuration, the mass of the
disc, Md = Nd1md1 + Nd2md2 + Nd3md3, is of order ∼ 10−3 M• and, there-
fore, TKL ∼ 103 Torb. The time-scale for the pericentre shift (1.22) can be writ-
ten as Tc ∼ (M•/Nc(R)mc) Torb, where Nc(R) is the number of the stars in
the cluster enclosed within radius R. For R ∼ Rin, we have Nc(Rin) ∼ 102.
Hence, considering the mass of the stars in the cluster mc ∼ 10−6 M•, we ob-
tain Tc ∼ 104 Torb. The characteristic time-scale for the vector resonant relax-
ation in the cluster (1.33) can be, in the canonical configuration, expressed as
Tvr,sf ∼ (M•/Nc(R)1/2 mc) Torb. For R ∼ Rin, we have Nc(Rin)

1/2 ∼ 10 and
Tvr,sf ∼ 105 Torb. The characteristic time-scales of the scalar resonant relaxation
and the two-body relaxation of the cluster are even longer (see Section 1.6).

The initial phase of the orbital evolution of the cluster covers a period of
time of order ∼ 103 Torb(Rin), as can be inferred, e.g., from Fig. 2.6 which we
describe bellow. Hence, neither two-body nor resonant relaxation of the cluster
can significantly affect the individual stellar orbits from its inner parts during
this phase of the evolution. On the other hand, the Kozai-Lidov mechanism in
the axisymmetric potential of the disc is efficient enough to have an impact on
these orbits. Furthermore, since Tc ∼ 104 Torb(Rin), we cannot safely exclude the
effect of the pericentre shift in the mean potential of the cluster. In fact, our
calculations show that for most of the orbits in the cluster with the initial radius
> Rin, the Kozai-Lidov oscillations are damped by the mean spherical potential
of the cluster during the initial phase of their evolution. This is demonstrated
in Fig. 2.5 which displays the evolution of the orbital elements for a typical
star from the innermost parts of the cluster (initial radius of the orbit ≈ Rin).
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Figure 2.6: Directions of the eccentricity vectors of the individual stars from the cluster with
the osculating semi-major axes a < 1.5 Rin in terms of angles Ωe (abscissa) and ie (ordinate)
in sinusoidal projection. The plots describe the state at four different times: t = 0 (top-left
panel), t ≈ 0.6 × 103 Torb(Rin) (top-right panel), t ≈ 1.2 × 103 Torb(Rin) (bottom-left panel),
and t ≈ 1.8 × 103 Torb(Rin) (bottom-right panel). The initial state corresponds to the initial
spherical symmetry of the cluster. Subsequently, we observe formation of the bar (the compact
group in the plots). The two horizontal features in the in the top-right and bottom-left panel
are temporary (see Section 2.3.1). Model parameters are set to their canonical values (see
Table 2.1).

As we can see, both eccentricity e (dashed line) and inclination i (solid line)
remain roughly constant until t ≈ 2 × 103 Torb(Rin). The nodal longitude Ω
(dotted line) and argument of pericentre ω (dot-dashed line) of the orbit show
a secular rotation. In the case of the nodal longitude, the rotation is, for this
particular star, rather slow due to the high inclination of the stellar orbit since
dΩ/dt ∝ cos i → 0 for i → π/2 (see equations (1.12)). In conclusion, we find
that, in the initial phase of the evolution of the cluster, the stellar orbits from
its inner parts undergo combined precession of their nodal and apsidal lines only,
keeping their eccentricity and inclination close to their initial values.

Our results further show that the orbits from the inner parts of the cluster
tend to change their orientations in a way such that their eccentricity vectors are
pointing in similar directions, parallel to the plane of the disc. Fig. 2.6 illustrates
this finding by means of sinusoidal projection of eccentricity vectors of the stars
from the cluster whose osculating semi-major axis, a, fulfills a < 1.5 Rin. In
the initial state (top-left panel), the orbits are distributed uniformly over the
whole plot, which is in accord with the assumed initial spherical symmetry of
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the cluster. In the other panels, however, we observe that most of the orbits
tend to form a rather compact group which is located on the equatorial line
(ie = 90◦) of the plots. Hereafter, we refer to this type of orbital structure, as
the bar-like structure, or shortly, the bar. We point out that, despite the similar
orientations of the eccentricity vectors of the individual orbits in the bar, the
initial spherical symmetry of the mass distribution in the cluster is disturbed
only slightly. Nevertheless, our results indicate that the small deviation from the
initial symmetry is sufficient for the bar to have a significant impact upon the
evolution of the disc. Let us also note that the two horizontal features visible
in the top-right and bottom-left panels of Fig. 2.6 are only temporary and we
explain their origin in Section 2.3.1.

Although the process of formation of the bar is not fully clear yet, we sug-
gest that it can be understood in the following way. As mentioned above, the
orbits from the cluster undergo combined nodal and apsidal precession. Since the
rate of this precession depends on the orbital elements, individual orbits precess
at different rates, which leads to a change of their relative orientations. Con-
sequently, also the strength of the long-term mutual interaction of the stars on
these orbits is changed. We suggest that, once two (or more) orbits achieve a
specific orientation in which their mutual interaction is strong enough, they tend
to dynamically couple together and precess further synchronously. Furthermore,
once the orbits become dynamically coupled, the probability of capture of an-
other orbit increases as the potential well of multiple coupled orbits is deeper
than those of the individual orbits. As a result, coupling of the individual orbits
turns into bar instability and the initially spherically symmetric cluster gradually
forms a single bar that includes most of the stars from the affected region.

According to our calculations, the bar slowly rotates around the symmetry
axis of the disc on a time-scale of the order of magnitude ∼ 10 TKL(Rin). Although
the rate of rotation of the individual orbits strongly fluctuates around the mean
rotation of the bar as a whole, these fluctuations are not strong enough to disrupt
the ongoing formation of the bar. The direction in which the bar rotates depends
on the mean inclination, 〈i〉, of the orbits in the bar. In particular, we find that
the rotation is opposite for 〈i〉 < π/2 and 〈i〉 > π/2. Furthermore, our results
show that the eccentricities and inclinations of the orbits near the outer edge of
the bar are similar to the initial conditions for the cluster, i.e., these orbits are
rather low-eccentric and the distribution of their cos i is roughly uniform, yielding
the mean inclination of ≈ π/2 (see the crosses in the right panel of Fig. 2.7). On
the other hand, the orbits with smaller semi-major axes (circles in the right panel
of Fig. 2.7) have higher eccentricities. We suggest that this can be explained by
the following argument.

As we have already mentioned, the spherically symmetric mean potential of
the cluster suppresses, until the bar is formed, the Kozai-Lidov mechanism in the
potential of the disc. Hence, the individual orbits from the cluster retain their
eccentricity and inclination close to their initial values. Upon the formation of
the bar, however, the spherical symmetry of the mean potential is disturbed and,
therefore, its damping effect is weaker. Consequently, the Kozai-Lidov mechanism
in the potential of the disc starts to affect the orbits in the bar which thus undergo
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Figure 2.7: Eccentricity e and inclination i of the orbits from the innermost parts of the
cluster: orbits with the osculating semi-major axis a < Rin and Rin < a < 1.5 Rin are denoted
by circles and crosses, respectively. The initial state is shown in the left panel. The right panel
describes the state at t ≈ 1.2 × 103 Torb(Rin). We see that the orbits with larger osculating
semi-major axes (crosses) are still low-eccentric even when a significant bar is formed (cf. the
bottom-left panel of Fig. 2.6). On the other hand, the orbits with smaller semi-major axes are
already oscillating (circles). Model parameters are set to their canonical values (see Table 2.1).

the high-amplitude Kozai-Lidov oscillations of eccentricity and inclination. As
the Kozai-Lidov time-scale (1.13) depends strongly upon the semi-major axis and,
furthermore, since the bar instability gradually propagates from the centre of the
cluster outwards (see Section 2.2.6 for details), the orbits in the central parts of
the bar are already oscillating while the elements of the orbits near its outer edge
are still unaffected.

The onset of the Kozai-Lidov mechanism in the potential of the disc after
the formation of the bar is also visible in Fig. 2.5. In particular, we see that all
of the displayed orbital elements evolve, in the interval 2 × 103 Torb(Rin) . t .

3.5×103 Torb(Rin), in a way that corresponds to the lower librational lobe (around
ω = 3π/2) in the Kozai-Lidov diagrams (see Section 1.3, Figs. 1.2 and 1.3).

In the context of these findings, we argue that the bar represents, shortly after
its formation, a flattened stellar overdensity which is roughly perpendicular to the
plane of the disc. Moreover, due to the fact that the frequencies of the nodal and
apsidal precessions in the Kozai-Lidov mechanism are similar, the orbits from
the bar that subsequently undergo their Kozai-Lidov cycles roughly preserve the
orientation of their apsidal lines (the small deviations are ‘absorbed’ by the other
orbits due to their mutual interaction). Consequently, the coherent rotation of
the bar is not disturbed and, therefore, the Kozai-Lidov oscillations of eccentricity
and inclination of the orbits in the bar do not disturb its overall shape. The orbits
are either highly inclined and low-eccentric or they are found in the plane of the
disc but have very high eccentricities. As a result, the slowly rotating bar remains
flattened and its potential causes, in return, the Kozai-Lidov mechanism in the
disc.
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2.2.3 Orbital evolution of the disc

Now, that we have briefly outlined the orbital evolution of the cluster, we have
sufficient information to explain the accelerated increase of the root-mean-square
eccentricity and inclination of the stellar orbits from the disc observed in Fig. 2.4.
During the initial phase of the evolution (denoted as ‘I’), the mean potential
of the cluster is spherically symmetric and, as such, has no impact upon the
evolution of the orbital eccentricities and inclinations in the disc. Furthermore,
the evolution of eccentricity and inclination is not affected by the relaxation in the
fluctuating potential of the cluster as this process operates on time-scales that are
by two orders of magnitude longer than the initial phase of the evolution itself.
Hence, during this phase, the disc evolves solely due to its two-body relaxation
whose characteristic time-scale (1.36) is very short since the orbits in the disc are
initially nearly circular. The evolution of the root-mean-square eccentricity and
inclination of the orbits from the disc is thus similar to the evolution found in the
cases with the cluster emulated by the predefined analytic potential and with no
cluster present at all.

When the bar in the cluster is formed, however, its potential starts to induce
the Kozai-Lidov oscillations with combined nodal and apsidal precession of the
orbits in the disc with respect to the plane of the bar. Since this plane is roughly
perpendicular to the plane of the disc with respect to which we evaluate the orbital
elements, the nodal precession with respect to the plane of the bar transforms to
extreme oscillations of inclination over the whole interval 〈0, π〉 with respect to
the plane of the disc (see Section 2.3.3 for details). Averaging of eccentricity and
inclination over an increasing number of such oscillating orbits then leads to the
accelerated increase of their root-mean-square values observed in Fig. 2.4 (phases
‘II’ and ‘III’). The rate of this increase is determined by the radial density profile
of the disc.

The existence of two different phases of the accelerated evolution of the root-
mean-square eccentricity and inclination of the orbits in the disc can be under-
stood from Fig. 2.8 which shows the evolution of eccentricity e and inclination
i of two orbits from the innermost parts of the disc. We see that, for both
orbits, the oscillations of inclination do not immediately cover the whole inter-
val 〈0; π〉 but only a small fraction of it (hereafter ‘basic’ mode). Furthermore,
the full amplitude of the oscillations of inclination (herafter ‘extreme’ mode) is
reached at different times for each of the two orbits (t ≈ 5 × 103 Torb(Rin) and
t ≈ 3 × 103 Torb(Rin) in the top and bottom panel, respectively). Eccentricity
of the orbits oscillates to very high values already in the basic mode. However,
in the extreme mode, the orbits spend notably longer periods of time in their
high-eccentricity states. This behaviour is typical for most of the orbits from the
affected parts of the disc. We thus suggest that the first phase of the accelerated
evolution of the root-mean-square eccentricity and inclination observed in Fig. 2.4
(phase ‘II’) corresponds to the averaging over the oscillations in the basic mode.
When most of the orbits in the affected parts of the disc are already oscillating
in the basic mode, the root-mean-square eccentricity and inclination saturate,
further showing slower increase due to averaging over an increasing number of
orbits that start to oscillate in the extreme mode (phase III).
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Figure 2.8: Evolution of the orbital eccentricity e (solid lines) and inclination i (dashed lines)
of two typical stars from the innermost parts of the disc within the canonical configuration
(see Table 2.1). We observe that both elements undergo extreme oscillations. The maximum
value of eccentricity, e → 1, is reached when the orbits are roughly perpendicular to the parent
disc: i ≈ π/2. We further see that both orbits start their oscillations at approximately the
same time: t ≈ 2 × 103 Torb(Rin). It also turns out that, for each of the orbits, the oscillations
of inclination reach the extreme amplitude 〈0; π〉 at different times, which we attribute to the
N -body complexity of the canonical configuration.

2.2.4 Bar instability in the disc

Similarly to the case of the cluster in the axisymmetric potential of the disc, our
calculations reveal that also the disc under the effect of the flattened potential
of the bar in the cluster evolves its own bar. This finding is demonstrated in
Fig. 2.9 which shows the distribution of directions of the eccentricity vectors of
the innermost orbits in the disc in terms of angles Ωe and ie at t = 0 (left panel)
and t ≈ 6 × 103 Torb(Rin) (right panel). We observe that, in accord with the
assumed initial axial symmetry of the disc, the distribution in the left panel is
uniform with respect to Ωe (abscissa). Furthermore, since the disc is assumed to
be initially thin, the individual vectors are confined to a narrow belt along the
equatorial line of the plot. In the right panel, however, we can see that nearly
all of the displayed orbits belong to a single compact group and, therefore, they
form a significant bar. Despite the similar orientation of the apsidal lines of the
orbits in the bar, the initial overall axial symmetry of the mass distribution in
the disc does not appear to be disturbed dramatically by the bar formation (see
the panels in the left column of Fig. 2.11), similarly to the case of the bar in the
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Figure 2.9: Directions of the eccentricity vectors of the orbits from the disc with the osculating
semi-major axis a < 1.5 Rin in terms of angles Ωe (abscissa) and ie (ordinate) in sinusoidal
projection. The initial state is displayed in the left panel while the right panel describes the
directions at t ≈ 6× 103 Torb(Rin). We see that, in the evolved state, nearly all of the displayed
orbits belong to a single compact group, thus forming a significant bar. Model parameters are
set to their canonical values (see Table 2.1).

cluster.
Our results further show that this bar is, unlike the bar in the cluster, formed

by rather eccentric and mostly low-inclined orbits (see Fig. 2.10). On the other
hand, similarly to the bar in the cluster, the bar in the disc also rotates around
the initial symmetry axis of the disc. Furthermore, we find that the individual
orbits from the bar in the disc rotate much more synchronously in comparison
with the orbits from the bar in the cluster. In other words, the rotation of the bar
in the disc much more resembles the rotation of a solid body (see Fig. 2.11). We
attribute this finding to the fact that the stellar density in the initially thin disc is
higher than in the spherical cluster. Consequently, the bar in the disc represents
a deeper potential well that bounds the individual orbits more strongly than in
the case of the bar in the cluster. This appears to be crucial for the mutual
interaction of these two bars.

2.2.5 Interaction of the bars in the cluster and the disc

We have learned that both the cluster and the disc form, during their orbital
evolution, significant bars which slowly rotate around the symmetry axis of the
disc. It further turns out that the rate of this rotation is different for the two bars,
which leads to a continuous change of their relative orientation and, eventually, to
a state in which the typical eccentricity vectors in the two bars point in roughly
the same direction.

Furthermore, we have also seen that the bars cause the Kozai-Lidov oscilla-
tions of eccentricity and inclination of the individual orbits. Since these oscil-
lations occur on a time-scale that is shorter than the time-scale of the rotation
of the bars (thus even shorter in comparison with the time-scale of the change
of the relative orientation of the bars), the individual orbits certainly undergo a
full Kozai-Lidov cycle during the period of time in which the orientations of the
bars are similar. As we have mentioned above, the bar in the disc appears to be
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Figure 2.10: Eccentricity e and inclination i of the innermost orbits in the evolved disc
(t ≈ 6×103 Torb(Rin); only orbits with the osculating semi-major axis a < 1.5 Rin are displayed).
We see that the orbits are mostly low-inclined and highly eccentric. The initial state is denoted
by the empty circle. Model parameters are set to their canonical values (see Table 2.1).

self-bound more strongly in comparison with the bar in the cluster. Hence, once
the orbits from the bar in the cluster incline, during their Kozai-Lidov cycles, to
the plane of the disc, they become dynamically coupled with the bar in the disc,
precessing further synchronously with this bar.

Due to this mechanism, the innermost bar in the cluster is entirely absorbed
by the bar in the disc as soon as they reach similar orientations. Consequently,
the innermost parts of the investigated stellar system further contain only one
coherently rotating bar that includes nearly all of the stars from this region.
Moreover, eccentricity and inclination of some of the orbits from the cluster even
start to oscillate in a way typical for the orbits from the disc (cf. Figs. 2.5,
t & 3.5 × 103 Torb(Rin), and 2.8, t & 5 × 103 Torb(Rin)). Such orbits from the
cluster thus effectively become part of the disc. As we can see in the right column
of Fig. 2.11, however, this effect does not lead to any significant flattening of the
cluster in the direction perpendicular to the plane of the disc.

Let us also mention that the plots in the right column of Fig. 2.11 reveal an-
other feature of the cluster evolution. In particular, although the initial spherical
symmetry of the core of the cluster is disturbed only slightly during the evolution,
in the evolved state, the core is not centred precisely on the SMBH anymore.

2.2.6 Propagation of the bar instability to farther regions

So far, we have been investigating the evolution of the inner parts of the stellar
system. However, our calculations show that the bar instability in the cluster
propagates also to its outer parts. This effect is demonstrated in Fig. 2.12 which
shows the eccentricity vector angle Ωe of the stars in the cluster, depending on
their instantaneous distance from the central SMBH at four different stages of
the orbital evolution of the cluster. As we can see in the top-left panel, the
initial distribution is in accord with the assumed initial spherical symmetry of
the cluster. On the other hand, the remaining three panels show overdensities
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Figure 2.11: The positions of the stars in the disc (left and middle column) and the cluster
(right column) in projection onto the xy-plane (left column) and the xz-plane (middle and right
column; zoomed on the central parts of the disc and the cluster) at three different times: t = 0
(top panels), t ≈ 2.8 × 103 Torb(Rin) (middle panels; corresponds to the time when the bars in
the cluster and the disc reach similar orientation) and t ≈ 10.9×103 Torb(Rin) (bottom panels).
Model parameters are set to their canonical values (see Table 2.1).

which propagate outwards in the plot and indicate presence of bars even in the
outer parts of the cluster.

Furthermore, similarly to the innermost region of the cluster, the flattened
potential of the disc leads to the Kozai-Lidov oscillations of eccentricity and
inclination of the individual orbits in the more distant regions of the cluster
as soon as the spherical symmetry of the mean potential is disturbed by the
formation of the bars. As the potential of the disc in these regions is weaker,
however, the corresponding time-scale of the oscillations is longer and, therefore,
the eccentricity of the orbits in the outermost bars is still quite low (see Fig. 2.13).

Finally, let us mention that, unlike the cluster, the disc forms only one domi-
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Figure 2.12: Values of the eccentricity vector angle Ωe and the instantaneous distance r from
the SMBH of the stars in the cluster at four different stages of the cluster evolution: t = 0
(top-left panel), t ≈ 1.2 × 103 Torb(Rin) (top-right panel), t ≈ 2.4 × 103 Torb(Rin) (bottom-left
panel) and t ≈ 12×103 Torb(Rin) (bottom-right panel). We see that the bar instability gradually
propagates to the outer parts of the cluster. Model parameters are set to their canonical values
(see Table 2.1).

nating bar that includes nearly all of its stars, as can be inferred from Fig 2.14.

2.3 Basic processes

In the previous Section, we have described the complex evolution of the stellar
system that consists of an initially thin disc which is embedded in an extended
spherical cluster, both centred on the SMBH, by means of the full N -body mod-
elling. In the following, we investigate the individual basic processes included in
this evolution separately, by means of simplified models.

2.3.1 Kozai-Lidov dynamics in the cluster

We first analyse the orbital evolution of an initially spherically symmetric cluster
of test particles whose motions around the dominating central SMBH are per-
turbed by a predefined distant infinitesimally thin ring (hereafter K0a-model; see
Table 2.1). In other words, we study the statistical effects of the Kozai-Lidov
dynamics of the individual stars from the cluster in the potential of the ring. For
this purpose, we follow the orbital evolution of the cluster numerically, by means
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Figure 2.13: Values of eccentricity e and the instantaneous distance r from the SMBH of
the stars in the cluster. The left panel shows the initial state when the orbits are geometrically
circular (the Keplerian eccentricity of the orbits in the outer parts of the cluster is thus larger
than zero). The right panel describes the state at t ≈ 12 × 103 Torb(Rin) (cf. the bottom-right
panel of Fig. 2.12). We see that, in the inner parts of the cluster, the orbital eccentricities are
increased due to the Kozai-Lidov oscillations in the potential of the disc. Model parameters are
set to their canonical values (see Table 2.1).

of the N -body integration code Mbody (Šubr 2006) which is more suitable for
this particular setting. The use of an independent numerical integrator also en-
ables us to test our results for systematic flaws that might have been introduced
by specific numerical methods implemented in the NBODY6 code used in the
case of the canonical configuration. The effect of test particles is reached by de-
creasing the mass of the individual stars from the cluster to an extremely low
value, mc ∼ 10−12 M•.

Depending on the initial conditions of the individual orbits from the cluster,
the corresponding Kozai-Lidov diagrams may be of two qualitatively different
topologies (see Fig. 1.2): (i) solely rotational diagrams, or (ii) diagrams with
the librational and the outer rotational region. In the later case, the diagrams
contain the separatrix contour which resembles a straight radial line near the
point of its intersection at e = 0. Along the isocontours in the vicinity of these
parts of the separatrix, the orbital argument of pericentre thus remains roughly
constant (in both the librational and the outer rotational region). As the cluster
is assumed to be initially spherically symmetric, the distribution of cos i of the
stellar orbits is uniform. Furthermore, within the K0a-model, we consider the
orbits to be initially near-circular and, therefore, also the initial distribution of
the Kozai integral of motion (1.11) in the cluster is uniform. Since the value of
the Kozai integral that corresponds to the Kozai limit is c1 =

√

3/5 ≈ 0.8, we
see that the Kozai-Lidov diagrams for most of the orbits in the cluster contain
both the librational and outer rotational region. As a result, the Kozai-Lidov
cycles for the majority of the orbits in the cluster include the phase with nearly
constant argument of pericentre. This indicates that, during the evolution of the
cluster of test particles, an overabundance of orbits with a specific value of ω
might appear.

Given the diagrams with both the librational and the outer rotational regions,
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Figure 2.14: Values of the eccentricity vector angle Ωe and the instantaneous distance r from
the SMBH of all the stars in the disc at t = 0 (left panel) and t ≈ 12 × 103 Torb(Rin) (right
panel). We observe that nearly all of the stars in the disc are concentrated in one large bar.
Model parameters are set to their canonical values (see Table 2.1).

the Kozai-Lidov equations (1.12) imply that a stellar orbit with initial argument
of pericentre ω0 ≈ 0 or π has (dω/dt)0 > 0. We thus understand that the
evolutionary tracks of all the orbits in the outer rotational region follow the
isocontours of the diagram in the counter-clockwise direction. Similarly, as we can
deduce for initial ω0 ≈ π/2 or 3π/2, the same direction is followed for all the orbits
that belong to either of the librational lobes. Since the initially near-circular
orbits form a compact group in the centre of the diagram, the overabundant
values of ω should, in the first phase of the evolution, correspond to the straight
part of the separatrix in the first and the third quadrant, i.e., ωconst ≈ 1 and ≈ 4,
respectively (see the middle panels of Fig. 2.15). Subsequently, as the orbits in
the cluster shift in the diagram due to their evolution, the surroundings of the
other two branches of the separatrix in the second and the fourth quadrant of the
diagram become populated as well and, therefore, another two overabundances
at ωconst ≈ 2 and ≈ 5 appear (bottom panels of Fig. 2.15).

Fig. 2.16 demonstrates the non-uniform distribution of the orbital arguments
of pericentre in the cluster in terms of the eccentricity vector angles Ωe (ab-
scissa) and ie (ordinate). In particular, the right panel displays the state that
corresponds to the bottom panels of Fig. 2.15, i.e., the state in which all four
overabundances are already evolved. For geometrical reasons, the orbits with
ω ≈ 1 and ≈ 2 have the same value of ie ≈ 60◦, forming the lower horizontal belt
in the right panel of Fig. 2.16. The orbits with ω ≈ 4 and ≈ 5 then form the
upper belt.

Given the same initial conditions for the cluster, the results would be some-
what different if the distant thin ring were replaced by a disc-like perturbation.
As we have mentioned in Section 1.3, in such a case, the Kozai-Lidov diagrams
may, for low enough values of the Kozai integral (1.11), contain the inner rota-
tional region around the origin e = 0. Hence, the initially near-circular orbits
that have such values of c cannot reach the critical location in the diagram as they
are confined to the inner rotational region. Such orbits thus do not contribute to
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Figure 2.15: Formation of the overabundances of specific values of the orbital argument of
pericentre ω in the cluster of test particles under the perturbative gravitational influence of the
distant thin ring (K0a-model; see Table 2.1). The left panels demonstrate the evolution of the
distribution of argument of pericentre ω and longitude of the ascending node Ω of all the orbits
in the cluster. The right panels show the position of the orbits in the Kozai-Lidov diagrams.
In the initial state (top panels), the distribution of both ω and Ω is uniform and all the orbits
are found near the origin, e = 0, of the diagram. In the evolved state displayed in the middle
panels (t ≈ 2.4× 103 Torb(Rin)), we see the overabundances of ω ≈ 1 and ≈ 4 which correspond
to the branches of the separatrix contour in the first and the third quadrant of the diagram,
respectively. At a later stage of the evolution (t ≈ 5.6 × 103 Torb(Rin); bottom panels), also
the overabundances of ω ≈ 2 and ≈ 5 are visible. The distribution of the nodal longitude Ω is
uniform in all states, which is in accord with the axial symmetry of the problem.

formation of the overabundances. Consequently, the significance of these features
is lower as they are generated by a lower number of orbits with moderate values
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Figure 2.16: Directions of the eccentricity vectors of all the orbits in the cluster of test
particles in terms of angles Ωe (abscissa) and ie (ordinate) in sinusoidal projection. The initial
distribution (left panel) is in accord with the assumed initial spherical symmetry of the cluster.
In the evolved state (t ≈ 5.6 × 103 Torb(Rin); right panel), we see two horizontal belts (cf. the
bottom panels of Fig. 2.15 and the right panel of Fig. 2.6). The model parameters are set to
values that correspond to the K0a-model (see Table 2.1).

of c.
Overabundances similar to those described above have also been observed for

the cluster in the canonical configuration (see the right panel of Fig. 2.6). In
the context of this Section, we thus argue that they result from the Kozai-Lidov
dynamics of the stars from the cluster in the potential of the disc, forming just
after the damping effect of the spherical mean potential of the cluster is sufficiently
disturbed by the ongoing formation of the cluster bar. On the other hand, the
formation of the bar gradually decreases the significance of the overabundances
and, eventually, the overabundances are entirely absorbed by the bar.

2.3.2 Formation of the bar in the cluster

Within the K0a-model, we have investigated the orbital evolution of the initially
spherically symmetric star cluster under the assumption that the masses of its
individual stars are negligibly small. Here, we consider the stars to have a non-
negligible mass, mc ∼ 10−5 M•. In doing so, we include their mutual gravitational
interaction (hereafter the K0b-model; see Table 2.1).

The results of our calculations within the K0b-model are demonstrated in
Fig. 2.17 which displays the initial (left panel) and evolved (right panel) distri-
bution of the eccentricity vector angles Ωe (abscissa) and ie (ordinate) of the
orbits in the cluster. We see that, while the initial distribution corresponds to
the initial spherical symmetry of the cluster, in the evolved state, the orbits form
a significant bar. It thus appears that the bar instability is a generic process
which occurs in star clusters that are exposed to an axisymmetric perturbation,
even if the perturbative potential is predefined (see also Section 2.3.4).

Our calculations further show that the orbital properties of this bar are similar
to those of the bar observed in the canonical configuration. In particular, the
bar slowly rotates around the symmetry axis of the disc and, at the time of
its formation, it consists of mostly low-eccentric orbits whose inclinations are
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Figure 2.17: Directions of the eccentricity vectors of all the orbits in the self-gravitating
cluster in terms of angles Ωe (abscissa) and ie (ordinate) in sinusoidal projection. The initial
distribution (left panel) is in accord with the assumed initial spherical symmetry of the cluster.
In the evolved state (t ≈ 2.4 × 103 Torb(Rin); right panel), nearly all of the orbits belong to a
single bar. Model parameters correspond to the K0b-model (see Table 2.1).

distributed similarly to the initial state of the cluster, showing the mean value of
≈ π/2 (see Fig. 2.18). Like in the case of the canonical configuration, we attribute
this to the damping effect of the mean potential of the cluster (Ncmc = 0.15 Mr)
which suppresses the Kozai-Lidov mechanism in the potential of the ring, as long
as its spherical symmetry is not disturbed by the formation of the bar.

2.3.3 Kozai-Lidov dynamics in the disc

Within the canonical configuration, the bars in the evolved cluster form a rather
complex system (see Section 2.2.6). In order to describe their impact on the
embedded disc, we attempt to simplify the problem by neglecting the gravity of
all but the innermost bar. This approximation is well justified by the following
argument. The bars in the cluster affect the disc on the Kozai-Lidov time-scale
TKL ∝ R3

bar/Mbar, where Mbar and Rbar denote the mass and the characteristic
radius of the bar, respectively. Since the initial radial density profile of the
cluster is, in the canonical configuration, given by (1.30), the mass of the bar

can be estimated as Mbar ∝ R
1/4

bar . Consequently, we find that the Kozai-Lidov

time-scale grows steeply as TKL ∝ R
11/4

bar . Due to the assumed surface density
profile of the disc, Σ (R) ∝ R−2, majority of the stars in the disc are located in
its inner parts, i.e., in the immediate vicinity of the innermost bar in the cluster.
Hence, it appears that the innermost bar represents the dominating perturbation
of the stellar motions in the disc since the Kozai-Lidov time-scale for this bar is
much shorter than those of the bars at larger radii.

Furthermore, as the rotation of the bars around the symmetry axis of the disc
is slow (see Section 2.2.2), we neglect this feature and approximate the bar by
a static predefined potential, in particular, by the potential of an infinitesimally
thin ring that is centred on the SMBH and perpendicular to the plane of the disc.
For simplicity, we also exclude the residual spherically symmetric component of
the potential of the cluster. Moreover, we consider the stars in the disc to be test
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Figure 2.18: Eccentricity e and inclination i of all the orbits in the cluster in its initial state
(left panel) and shortly after the formation of a significant bar (t ≈ 2.4 × 103 Torb(Rin); right
panel; see also Fig. 2.17). We observe that the orbits in the bar are still rather low-eccentric
with inclinations close to their initial values. Model parameters correspond to the K0b-model
(see Table 2.1).

particles, thus neglecting their mutual gravitational interaction.
In summary, we focus on the model with the following three components

(hereafter K1a-model, see Table 2.1):

• the central SMBH represented by the Keplerian potential,

• the stellar disc formed by test particles,

• the innermost bar in the cluster modelled by the predefined potential of an
infinitesimally thin ring which is perpendicular to the plane of the disc.

The orbital evolution of the disc within the K1a-model is followed numerically,
by means of the Mbody code. The xy-plane of our Cartesian reference frame
is defined as the plane of symmetry of the disc. The direction of the z-axis is
determined by the initial mean angular momentum of the orbits in the disc, i.e.,
the stellar motions in the disc are considered to be initially prograde.

As we have learned in Section 1.3, the potential of the ring causes the Kozai-
Lidov oscillations of eccentricity and inclination with the combined nodal and
apsidal precession of the orbits in the disc. Provided the reference plane is identi-
fied with the plane of the ring, the orbital elements (e′, i′, Ω′, ω′) follow equations
(1.12). An example of such an evolution is displayed in Fig. 1.3. However, since
we evaluate the orbital elements in the reference plane which is identified with the
plane of the disc and, therefore, perpendicular to the ring, the evolution of the
elements that describe the spatial orientation of the orbits (i, Ω, ω) is different.
On the other hand, evolution of e remains untouched as this element does not
depend upon the coordinate system.

The left panel of Fig. 2.19 shows the evolution of eccentricity e (solid line) and
inclination i (dashed line) of a stellar orbit from the disc within the K1a-model.
For the sake of clarity, the chosen orbit is initially almost exactly perpendicular
to the plane of the ring: i′0 → π/2. In such a case, the evolution of i′ and Ω′
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Figure 2.19: Evolution of eccentricity e (solid lines) and inclination i (dashed lines) of
individual stellar orbits from the disc within the K1a-model (left panel) and the canonical
configuration (right panel; cut from the evolution displayed in the bottom panel of Fig. 2.8).
We see that both orbits undergo extreme oscillations during which the maximum eccentricity,
e → 1, is reached for i ≈ π/2. Model parameters are summarised in Table 2.1.

leads to rectangular-shaped oscillations of inclination i over the interval 〈0; π〉.
For orbits that are initially less inclined with respect to the ring, the oscillations
of i show periodic variations of their amplitude. Unlike inclination, we see that
eccentricity e of the orbit evolves in the same way as we observed in Fig. 1.3. Let
us also mention that the maximum of eccentricity, e → 1, is reached whenever
the orbit becomes perpendicular to the parent disc, i = π/2, in contrary to what
we can see in Fig. 1.3.

Evolution of the root-mean-square eccentricity, erms, and inclination, irms, of
all the orbits in the disc within the K1a-model is displayed in the top panels of
Fig. 2.20. We observe that the evolution of both elements consists of three qual-
itatively different stages: (i) the initial steady phase, (ii) the rapid increase, and
(iii) the saturated phase of damped oscillations. It turns out that this behaviour
is a straightforward consequence of the averaging over a number of individual
orbits that undergo the above described oscillations. In particular, within the
K1a-model, the disc is considered to be initially thin and near-circular. Hence,
both eccentricities and inclinations of the individual orbits are initially low. As
demonstrated in the left panel of Fig. 2.19, the orbits start their evolution in
the phase when both de/dt ≈ 0 and di/dt ≈ 0. Consequently, also the root-
mean-square values of the two elements are, in the initial stage of their evolution,
roughly constant. In the case of eccentricity, however, this phase is very short (the
rapid increase starts at about t ≈ 102 Torb(Rin); top-left panel of Fig. 2.20) as the
minima of its oscillations are sharp. On the other hand, the initial steady phase
of the evolution of the root-mean-square inclination is, due to the rectangular-
shaped oscillations, notably longer (until t ≈ 4× 102 Torb(Rin); top-right panel of
Fig. 2.20).

Subsequently, as the eccentricity and inclination of the individual orbits in the
disc start to oscillate, the root-mean-square values of both elements increase. The
rate of this increase and the overall shape of the corresponding curve is strongly
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Figure 2.20: Evolution of the root-mean-square eccentricity erms (left panels) and inclination
irms (right panels) of the orbits in the disc within the K1a-model (top panels; results averaged
over 10 realisations) and the canonical configuration (bottom panels; redrawn from Fig. 2.4;
results averaged over 9 realisations). We see that the evolution of both root-mean-square
elements within the simple K1a-model includes the accelerated phase, in accord with the results
obtained for the canonical configuration. Due to high numerical demands of the problem, we
have not been able to reach, in the canonical configuration, the saturated phase of the evolution.
Model parameters are summarised in Table 2.1.

influenced by the assumed radial density profile of the disc which determines the
distribution of the orbital semi-major axes and, consequently, also the periods
(∼ TKL ∝ a3/2) of the oscillations. In the case of our K1a-model, majority of
the orbits are located near the inner edge of the disc, thus having similar semi-
major axes. Hence, eccentricity and inclination oscillate with similar frequency
for most of the orbits in the disc, which leads to the observed rapid increase of
the root-mean-square values of both elements.

Finally, when most of the orbits are oscillating, the root-mean-square values
of both elements saturate, further showing only low-amplitude, gradually damped
oscillations. The particular shape and amplitude of these oscillations are deter-
mined by the radial density profile of the disc. Hence, within the K1a-model, the
similar semi-major axes of the orbits in the disc lead to the first smooth bump
on the corresponding curves. Later on, as the phases of the oscillations of the
individual orbits in the disc disperse, the oscillations of the root-mean-square
elements slowly diminish, leaving them roughly constant.

In the context of these findings, we suggest that the accelerated evolution of
the root-mean-square eccentricity and inclination of the orbits in the disc ob-
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served in the canonical configuration (redrawn in the bottom panels of Fig. 2.20)
is, indeed, caused by averaging over an increasing number of oscillating orbits
in the flattened potential of the innermost bar in the cluster. This conclusion
is supported by comparison of the evolution of the typical orbits from the cen-
tral parts of the disc in the canonical configuration and the K1a-model which
is shown in Fig. 2.19. We see that both orbits undergo similar oscillations of
their eccentricity and inclination. In particular, the oscillations have nearly the
same amplitude and fulfill the condition that e → 1 for i ≈ π/2. On the other
hand, when the orbit from the canonical disc reaches the retrograde inclination
i ≈ π, its eccentricity does not decrease to zero, unlike the orbit from the K1a-
model. Similarly, the curves that describe the evolution of the root-mean-square
elements in the two configurations are also somewhat different (see Fig. 2.20). We
attribute these differences to the approximations introduced in the K1a-model.
Most notably, the innermost bar in the cluster in the canonical configuration is
not geometrically thin and it is developed gradually, in contrast to the prede-
fined thin ring considered in the K1a-model. Furthermore, while the stars in the
canonical configuration are gravitating, in the K1a-model, they are treated as
test particles.

2.3.4 Formation of the bar in the disc

The top panels of Fig. 2.21 display the comparison of the initial (left panel)
and evolved distribution (right panel) of the eccentricity vector angles Ωe and
ie of the orbits in the disc within the K1a-model. As we can see, the initial
distribution is in agreement with the assumption that the disc is initially thin and
axially symmetric. In the evolved state, however, we observe that the individual
eccentricity vectors are concentrated in four roughly equally populated compact
groups which are uniformly distributed along the equatorial line of the plot with
the step of ∆Ωe ≈ π/2. Furthermore, we find that these groups are not rotating
in any direction. On the other hand, they show a continuous exchange of the
individual orbits that freely migrate among them (see the outliers in the top-
right panel of Fig. 2.21).

The picture changes if the disc is considered to be self-gravitating, i.e., if the
mutual gravitational interaction of the individual stars in the disc is included
(hereafter K1b-model, see Table 2.1). In particular, as we observe in the bottom-
left panel of Fig. 2.21, the four groups are replaced by a single bar that includes
most of the orbits from the disc. Our calculations further show that this bar
slowly rotates around the initial symmetry axis of the disc and consists of mostly
eccentric and low-inclined orbits (see the left panel of Fig. 2.22).

A similar bar developed in the disc within the canonical configuration (see the
bottom-right panel of Fig. 2.21 and the right panel of Fig. 2.22). Hence, based
on the results presented in this Section, we suggest that the bar instability in the
disc in the canonical configuration is, indeed, due to the flattened potential of the
innermost bar in the cluster. Let us note that the bar in the disc appears to be
formed, in both configurations, with a roughly perpendicular orientation (∆Ωe ≈
π/2) to the plane of symmetry of the perturbing potential: the infinitesimally
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Figure 2.21: Directions of the eccentricity vectors of the orbits in the disc in terms of angles Ωe

(abscissa) and ie (ordinate): the initial state (top-left panel; all orbits in the disc are displayed)
and the evolved state within the K1a-model (t ≈ 3 × 103 Torb(Rin); top-right panel; all orbits
displayed), the evolved state within the K1b-model (t ≈ 10 × 103 Torb(Rin); bottom-left panel;
all orbits displayed) and the evolved state in the canonical configuration (t ≈ 6× 103 Torb(Rin);
bottom-right panel, redrawn from Fig. 2.9; only orbits with the osculating semi-major axes
a < 1.5 Rin are shown). We see that the self-gravitating disc in the predefined potential of thin
ring (K1b-model) forms a significant bar, similarly to the disc in the canonical configuration.
Model parameters are summarised in Table 2.1.

thin ring in the case of the K1b-model and the innermost bar in the cluster in
the canonical configuration.

2.4 Discussion of model parameters

In the canonical configuration, we have treated the spherical cluster as a group
of Nc = 1.25× 104 gravitating particles. In order to investigate the impact of the
number of particles in the cluster upon the acquired results, we have performed
two additional sets of calculations with Nc = 5 × 104 and 6.25 × 103 (see also
Table 2.1, models A and D, respectively). The total mass of the cluster in these
models is equal to the canonical one, i.e., the masses of the individual particles
are smaller (larger). Evolution of the root-mean-square eccentricity, erms, and
inclination, irms, in comparison to the canonical configuration is shown in the top
panels of Fig. 2.23. We see that the corresponding curves are nearly identical
in all three cases. This indicates that, while the treatment of the cluster gravity
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Figure 2.22: Eccentricity e and inclination i of all the orbits in the evolved disc within
the K1b-model (left panel) and of the innermost orbits (with the osculating semi-major axes
a < 1.5 Rin) from the disc in the canonical configuration (right panel; redrawn from Fig. 2.10).
We see that the orbits are mostly low-inclined and highly eccentric in both cases. Model
parameters are summarised in Table 2.1.

affects the evolution of the disc significantly (analytic potential vs. particles), the
concrete number of particles in the cluster is of no importance.

On the other hand, when the total mass of the cluster is assumed to be ten
times larger than the canonical one (see Table 2.1, model H), our calculations
show that the accelerated evolution of both root-mean-square elements onsets by
a factor of 3–4 sooner and also the rate of the growth is noticeably higher (bottom
panels of Fig. 2.23, dashed lines). We attribute these results to higher masses of
the bars that form in the cluster which, therefore, cause a faster evolution of the
orbits in the disc.

The solid lines in the bottom panels of Fig. 2.23 describe the case when we
have included, beside the same spherical cluster of particles as within model D,
an additional predefined spherically symmetric potential (see Table 2.1, model
M). Its radial profile and strength parameter have been considered to correspond
to the matter distribution in the cluster within model D. We observe that none of
the root-mean-square elements undergoes the accelerated phase of its evolution,
which is likely to be due to the damping effect of the predefined spherical potential
that suppresses the Kozai-Lidov mechanism in the potential of the bars in the
cluster. On the other hand, our results indicate that the bar formation neither
in the cluster nor in the disc is affected significantly by the additional potential,
except for the fact that both bars appear to be formed with the same initial
orientation (see Fig. 2.24).



2.4. DISCUSSION OF MODEL PARAMETERS 49

 0.01

 0.1

 1

 0.01  0.1  1  10

e r
m

s

 0.01

 0.1

 1

 10

 0.01  0.1  1  10

i rm
s

 0.01

 0.1

 1

 0.01  0.1  1  10

t  [103 Torb(Rin)]

e r
m

s

 0.01

 0.1

 1

 10

 0.01  0.1  1  10

t  [103 Torb(Rin)]
i rm

s

Figure 2.23: Evolution of the root-mean-square eccentricity erms (left panels) and inclination
irms (right panels) of the orbits in the disc in various configurations in comparison to the results
acquired in the canonical configuration (depicted by the dotted lines; redrawn from Fig. 2.4;
results averaged over 9 realisations). The top panels demonstrate the effect of the number of
particles, Nc, in the cluster whose total mass is kept unchanged: Nc = 5 × 104 (dashed lines;
model A; results are averaged over 5 realisations) and 6.25 × 103 (solid lines; model D; results
are averaged over 7 realisations). The bottom panels show the results obtained in two cases:
with the total mass of particles in the cluster, Ncmc, ten times larger than the canonical one
(dashed lines; model H; results averaged over 9 realisations) and with an additional predefined
spherically symmetric potential (solid lines; model M; results averaged over 11 realisations).
Model parameters are summarised in Table 2.1.
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Figure 2.24: Distribution of the directions of the eccentricity vectors of the orbits in the
cluster (left panel) and the disc (right panel) at t ≈ 3.2 × 103 Torb(Rin) within the M-model
(only orbits with the osculating semi-major axes a < 2 Rin are displayed). We see that both
the cluster and the disc evolve significant bars. Model parameters are summarised in Table 2.1.
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Chapter 3

Dynamical coupling of

near-Keplerian orbits

So far, we have been investigating the dynamical evolution of a thin stellar disc
which is embedded in an extended spherically symmetric star cluster, both centred
on the SMBH. We have seen that the mutual interaction of these objects leads to
formation of bar-like structures in the cluster which, subsequently, significantly
affect the dynamics of the stars in the disc. The investigated configuration has
been primarily motivated by the observations of the Galactic Centre which show
presence of both of the included objects in this region: (i) stellar disc formed
by massive early-type stars, and (ii) extended spherical cluster of late-type stars.
However, another observations of this region reveal an additional source of gravity
— an axisymmetric massive molecular torus. Since similar torus is also a part
of the currently widely accepted model of active galactic nuclei, the inclusion of
an axisymmetric component into our previously considered model represents a
natural next step in our work that shall be made in this Chapter, following the
paper of Haas et al. (2011b). In particular, we intend to investigate the orbital
evolution of a system of N mutually interacting stars on initially circular orbits
around the dominating central mass under the perturbative influence of a distant
axisymmetric source and an extended spherical potential. For simplicity, we focus
on the case when the secular evolution of orbital eccentricities is suppressed by the
spherical perturbation, which we model by a predefined analytic potential, and
derive semi-analytic formulae for the evolution of normal vectors of the individual
orbits.

To set the stage, we first develop a secular theory of orbital evolution for two
(later in the Chapter generalized to multiple) stars orbiting a massive centre, the
SMBH, taking into account their mutual gravitational interaction and perturba-
tions from the spherical stellar cluster and the axisymmetric source that is taken
equivalent to an infinitesimally thin ring. It should be, however, pointed out that
generalization to a more realistic structure, such as thin or thick disc, is straight-
forward in our setting but we believe at this stage it would just involve algebraic
complexity without bringing any new quality to the model. In the same way,
the stellar cluster is reduced to an equilibrium spherical model without involving
generalizations beyond that level. For instance, an axisymmetric component of

51
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the stellar cluster may be effectively accounted for by the ring effects in the first
approximation.

We are going to use standard tools of classical celestial mechanics, based
on the first-order secular solution using the perturbation methods (for general
discussion, see, e.g., Morbidelli 2002; Bertotti et al. 2003). In particular, the
stellar orbits are described using a conventional set of the Keplerian elements
which are assumed to change according to the Lagrange equations. Since we are
interrested in a long-term dynamical evolution of the stellar orbits, we replace,
in the context of Section 1.2, the perturbing potential (or potential energy) with
its average value over one revolution of the stars about the centre, which is the
proper sense of addressing our approach as secular. As an implication of our
approach, the orbital semi-major axes of the stellar orbits are constant and infor-
mation about the position of the stars on their orbits is irrelevant. The secular
system thus consists of description how the remaining four orbital elements, ec-
centricity, inclination, longitude of node and argument of pericentre, evolve in
time. This is still a very complicated problem in principle, and we shall adopt
simplifying assumption that will allow us to treat the eccentricities and pericen-
tres separately and leave us finally with the problem of dynamical evolution of
inclinations and nodes (Section 3.1). Let us note that this is where our approach
diverges from typical applications in planetary systems, in which this separation
is often impossible.

For this purpose, we consider the stellar orbits to be circular during the whole
evolution of the system. Together with the assumption of well separated orbits
with constant semi-major axes, this prevents the close encounters of the stars.
In this case only and under the assumption that there are no orbital mean mo-
tion resonances between the stars, the mutual interaction of the stars may be
reasonably considered a perturbation to the dominating potential of the SMBH.
According to Section 1.3, however, the assumption of circular orbits is not obvi-
ously fulfilled. In particular, initially circular orbits may be, in the axisymmetric
potential, driven over the Kozai-Lidov time-scale (1.13) to a very high eccentricity
state due to the Kozai-Lidov oscillations. Again, this would disallow us to treat
the mutual interaction of the stars as a perturbation to the dominating central
potential. However, as we have learned in Section 1.4, this effect can be disabled
by means of fast rotation of the orbital pericentres due to gravity of the extended
spherically symmetric star cluster. In other words, having enough mass in the
cluster may produce a strong enough perturbation to maintain small eccentricity
of an initially near-circular orbit.

3.1 Evolution of two circular orbits

Having stated our assumptions about semi-major axes, eccentricity and pericentre
of the stellar orbits, we may now turn to description of the evolution of the two
remaining orbital elements — inclination and nodal longitude. We start with a
model of two interacting stars and later generalize it to the case of an arbitrary
number of stars. Let us mention that the orbit-averaged potential energy (1.17)
of the spherical cluster depends on the semi-major axis and eccentricity only, and
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thus does not influence evolution of inclination and node. For that reason it drops
from our analysis in this Section.

The interaction potential energy Ri(r, r′) for two point sources of masses m
and m′ at relative positions r and r′ with respect to the centre reads

Ri(r, r′) = −Gmm′

r

∑

l≥2

αlPl (cos S) , (3.1)

where Pl(x) are Legendre polynomials, cosS ≡ r · r′/rr′ and α ≡ r′/r. Note
that equation (3.1) provides the interaction energy as it appears in the equation
of relative motion of stars with respect to the centre. Hence, the perturbation
series start with a quadrupole term (l = 2). Furthermore, let us also mention
that equation (3.1) has been used by Kozai (1962) to describe the interaction of
the asteroid and Jupiter, in his setting, leading to the averaged potential (1.10).

The series in the right-hand side of equation (3.1) converge for r′ < r. Since
we are going to apply (3.1) to the simplified case of two circular orbits, we may
replace distances r and r′ with the corresponding values of semi-major axis a and
a′, such that α = a′/a now (note that the orbit whose parameters are denoted
with a prime is thus assumed interior). The averaging of the interaction energy
over the uniform orbital motion of the stars about the centre, implying periodic
variation of S, is readily performed by using the addition theorem for spherical
harmonics. This allows us to decouple unit direction vectors in the argument of
the Legendre polynomial Pl and easily obtain the required average of Ri over the
orbital periods of the two stars. After a simple algebra we obtain

Ri = −Gmm′

a
Ψ (α, n · n′) , (3.2)

where n = [sin i sin Ω,− sin i cos Ω, cos i]T and n′ = [sin i′ sin Ω′,− sin i′ cos Ω′, cos i′]T

are unit vectors normal to the mean orbital planes of the two stars, and

Ψ (ζ, x) =
∑

l≥2

[Pl (0)]2 ζ lPl (x) . (3.3)

As expected, the potential energy is only a function of: (i) the orbital semi-major
axes through dependence on a and α, and (ii) the relative configuration of the
two orbits in space given by the scalar product n ·n′. Note also that the series in
(3.3) contain only even multipoles l (Pl(0) = 0 for l odd) and that they converge
when ζ < 1. However, a special care is needed when ζ is very close to unity, thus
the two stellar orbits are close to each other, when hundreds to thousands terms
are needed to achieve sufficient accuracy. Still, we found it is very easy to set up
an efficient computer algorithm, using recurrent relations between the Legendre
polynomials, which is able to evaluate (3.3) and its derivatives. In practice,
we select a required accuracy and the code truncates the series by estimating the
remained terms. In fact, since our approach neglects small eccentricity oscillations
of the orbits we are anyway not allowed to set ζ = α = a′/a arbitrarily close to
unity. Theoretically, we should require

α < 1 −
(

m + m′

3M•

)1/3

, (3.4)
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by not letting the stars approach closer than the Hill radius of their mutual
interaction. In the numerical examples we present below, this sets an upper limit
α < 0.98.

The formulation given above immediately provides potential energy of the
star-ring interaction. In this case the stellar orbits are always interior to the ring
with symmetry axis suitably chosen as the unity vector ez in the direction of
the z-axis of our reference system. Unlike in Section 1.3, we restrict now to the
case of circular orbit of the star but at the low computer-time expense we may
include all multipole terms till specified accuracy is achieved. As a result the
orbit-averaged interaction energy with the exterior stellar orbit is given by

Rr = −GmMr

Rr

Ψ (a/Rr, cos i) , (3.5)

and similarly for the interior stellar orbit:

R′

r = −Gm′Mr

Rr

Ψ (a′/Rr, cos i′) . (3.6)

The total orbit-averaged potential energy perturbing motion of the two stars is
then given by superposition of the three terms:

R = Ri + Rr + R′

r . (3.7)

Recalling that semi-major axis values are constant, eccentricity set to zero and
thus argument of pericentre undefined, we are left to study dynamics of inclination
I and I ′ and longitude of node Ω and Ω′ values. Lagrange equations provide (see,
e.g., Bertotti et al. 2003)

d cos i

dt
= − 1

mna2

∂R
∂Ω

,
dΩ

dt
=

1

mna2

∂R
∂ cos i

, (3.8)

d cos i′

dt
= − 1

m′n′a′2

∂R
∂Ω′

,
dΩ′

dt
=

1

m′n′a′2

∂R
∂ cos i′

, (3.9)

where n and n′ denote mean motion frequencies of the two stars. Note the
particularly simple, quasi-Hamiltonian form of equations (3.8) and (3.9). They
can also be rewritten in a more compact way using the normal vectors n and n′

to the respective orbit, namely

dn

dt
= n × ∂

∂n

( R
mna2

)

, (3.10)

dn′

dt
= n′ × ∂

∂n′

( R
m′n′a′2

)

. (3.11)

Inserting here R from (3.7), we finally obtain

dn

dt
= ωI (n × n′) + ωr (n × ez) , (3.12)

dn′

dt
= ω′

I (n
′ × n) + ω′

r (n′ × ez) , (3.13)
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where

ωI = −n

(

m′

M•

)

Ψx (α, n · n′) , (3.14)

ω′
I = −n′α

(

m

M•

)

Ψx (α, n · n′) , (3.15)

ωr = −n

(

Mr

M•

)

Ψx (a/Rr, nz) , (3.16)

ω′
r = −n′

(

Mr

M•

)

Ψx (a′/Rr, n
′
z) . (3.17)

Note the frequencies in (3.14) to (3.17) depend on both n and n′ through their
presence in the argument of

Ψx(ζ, x) ≡ d

dx
Ψ(ζ, x) , (3.18)

which breaks the apparent simplicity of the system of equations (3.12) and (3.13).
The coupled set of equations (3.12) and (3.13) acquires simple solutions in

two limiting cases. First, when m = m′ = 0 (i.e. mutual interaction of stars is
neglected) the two equations decouple and describe simple precession of n and
n′ about ez axis of the inertial frame with frequencies −ωr cos i and −ω′

r cos i′.
The sign minus of these frequencies recalls that the orbits precess in a retrograde
sense when inclinations are less than 90◦ and vice versa. Both inclinations i and
i′ are constant. In the second limit, when Mr = 0 (i.e. the ring is removed) the
equations (3.12) and (3.13) obey a general integral of total angular momentum
conservation

m n + m′α1/2 n′ = K . (3.19)

Both vectors n and n′ then precess about K with the same frequency

ωp =
ωI

m′α1/2

m + m′α1/2 (n · n′)
√

m2 + m′2α + 2mm′α1/2 (n · n′)
, (3.20)

keeping the same mutual configuration. In particular, initially coplanar orbits
(i.e. n and n′ parallel) would not evolve, which is in agreement with intuition.

Unfortunately, we were not able to find analytical solution to the (3.12) and
(3.13) system except for these two situations described above. Obviously, it can
be always solved using numerical methods as we shall discuss in Section 3.1.2.

3.1.1 Integrals of motion

In general, equations (3.12) and (3.13) have only two first integrals. Our assump-
tions about the circumnuclear torus mass distribution still provide a symmetry
vector ez. Thus, while the total angular momentum K is no more conserved now,
its projection onto ez is still an integral of motion

m cos i + m′α1/2 cos i′ = C1 = Kz . (3.21)
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Figure 3.1: Isolines of the R = C2 integral in the i or i′ vs. ∆Ω space. For sake of example we
use orbits of two equal-mass stars (m′ = m) with semi-major axes a′ = 0.04 Rr and a = 0.05 Rr.
The mass of the ring is set to Mr = 0.3 M•. The individual lines correspond to different values
of stellar mass: m = 5 × 10−7 M• (curves 1), m = 2 × 10−6 M• (curves 2), m = 5 × 10−6 M•

(curves 3), and m = 9 × 10−6 M• (curves 4). Both orbits have been given 70◦ inclination at
∆Ω = 0◦ (i.e. initially coplanar and inclined orbits). Solid lines show inclination i′ of the inner
orbit, ‘the mirror-imaged’ dashed lines describe inclination i of the outer orbit.

Because m, m′ and α are constant, equation (3.21) provides a direct constraint
of how the two inclinations i and i′ evolve. In particular, one can be expressed
as a function of the other.

The quasi-Hamiltonian form of equations (3.8) and (3.9) readily results in a
second integral of motion

R (cos i, cos i′, n · n′) = C2 . (3.22)

The list of arguments in R, as explicitly provided above, reminds that it actually
depends on: (i) the inclination values i and i′, and (ii) the difference ∆Ω =
Ω − Ω′ of the nodal longitudes of the two interacting orbits. Using (3.21), the
conservation of R thus provides a constraint between the evolution of i and
∆Ω (say). While not giving a solution of the problem, the constraint due to
combination of first integrals (3.21) and (3.22) can still provide useful insights.

Fig. 3.1 illustrates how the first integrals help understanding several features
of the orbital evolution for two interacting stars at distances a′ = 0.04 Rr and
a = 0.05 Rr. For sake of simplicity we also assume their mass is equal, hence
m′ = m, and the ring has been given mass Mr = 0.3 M•. Data in this figure
show constrained evolution of orbital inclinations i′ (solid lines) and i (dashed
lines) as a function of nodal difference ∆Ω. The two orbits were assumed to
be initially coplanar (∆Ω = 0◦) with an inclination of i′ = i = 70◦. A set of
curves correspond to different values of stellar masses, from small (1) to larger
values (4), which basically means increasing strength of their mutual gravitational
interaction.

First, conservation of the ez-projected orbital angular momentum, as given
by equation (3.21), requires that increase in i′ is compensated by decrease of i.
This results in a near-mirror-imaged evolution of the two inclinations. Using the
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first equation of (3.8), one finds

di

dt
=

n

sin i

m′

M•

sin (Ω − Ω′)Ψx (α, n · n′) , (3.23)

which straightforwardly implies that the outer stellar orbit is initially torqued
to decrease its inclination while the inner orbit increases its inclination. This
is because initially n · n′ ≈ 1, and Ψx(α, 1) is positive, and at the same time,
precession of the nodes is dominated by interaction with the ring which makes
the outward orbit node to drift faster (and hence Ω − Ω′ is negative).

Second, Fig. 3.1 indicates there is important change in topology of the isolines
R = C2 as the stellar masses overpass some critical value (about 8.5×10−6 M• in
our example). For low-mass stars their mutual gravitational interaction is weak
letting the effects of the ring dominate (curve 1). The orbits regularly precess
with different frequency, given their different distance from the centre, and thus
∆Ω acquires all values between −180◦ and 180◦. The mutual stellar interaction
produces only small inclination oscillation. As the stellar masses increase (curves
2 and 3) the inclination perturbation becomes larger. For super-critical values of
m (curve 4) the isolines of constant R become only small loops about the origin.
This means that ∆Ω is bound to oscillate in a small interval near origin and in-
clination perturbation becomes strongly damped. Put in words, the gravitational
coupling between the stars became strong enough to tightly couple the two orbits
together. Note that they still collectively precess in space due to the influence of
the ring.

3.1.2 Numerical solutions

In order to solve equations (3.12) and (3.13) numerically, we adopt a simple
adaptive step-size 4.5th-order Runge-Kutta algorithm. Let us mention that our
implementation of this algorithm conserves the value of both integrals of motion
C1 and C2 with relative accuracy better than 10−6.

Two sample solutions are shown in Fig. 3.2. The upper panels represent
evolution of two orbits with coupled precession which corresponds to the curve 4
in Fig. 3.1, while in the bottom panels we consider the case of lower-mass stars,
whose orbits precess independently. This later mode corresponds to the curve 3
in Fig. 3.1. Beside the solution of the equations for mean orbital elements, we also
show results of a full-fledged numerical integration of the particular configuration
in the space of classical positions and momenta (r, r′; p, p′). Both solutions are
nearly identical, which confirms validity of the presented secular perturbation
theory.

For sake of further discussion we find it useful to comment in a little more
detail on the case of two, nearly independently precessing orbits (bottom panels
on Fig. 3.2). In this case, the precession frequencies of the outer and inner star
orbits are given by ωr and ω′

r in equations (3.16) and (3.17). When truncated to
the quadrupole (l = 2) level, sufficient for the small value of a/Rr, one has for
the outer star orbit

dΩ

dt
≃ −3

4

cos i

TKL

, (3.24)
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Figure 3.2: Evolution of the system of two stars in the compound potential of the central
SMBH, spherical cluster and axisymmetric ring. Solid lines represent solution of two-body
equations (3.12) and (3.13), while the dashed lines show result of the direct numerical integration
of the equations of motion. In each panel, upper and lower lines correspond to the inner and
outer star, respectively. Common parameters for both examples are the same as in Fig. 3.1; in
the upper panels, we set m = m′ = 9×10−6 M•, while in the lower ones m = m′ = 5×10−6 M•.

where TKL is given by (1.13). A similar formula holds for the inner star orbit
denoted with primed variables. As seen in Fig. 3.1, and understood from the
analysis of integrals of motion in Section 3.1.1, period of the evolution of the
system of the two orbits is given implicitely by the difference of their precession
rate: Ω(Tchar) − Ω′(Tchar) = 2π. The secular rate of nodal precession in (3.24) is
not constant because the mutual gravitational interaction of the stars makes their
orbital inclinations oscillate. However, in the zero approximation we may replace
them with their initial values, i = i′ = i0 which gives an order of magnitude
estimate

Tchar ≃
8π

3 cos i0

[

1

TKL

− 1

T ′
KL

]−1

. (3.25)

For the solution shown in the lower panels of Fig. 3.2, formula (3.25) gives Tchar ≈
460 Myr, in a reasonable agreement with the observed period of ≈ 140 Myr. When
the orbital evolution is known (being integrated numerically), more accurate es-
timate can be obtained considering mean values of the inclinations

Tchar ≃
8π

3

[

cos i

TKL

− cos i
′

T ′
KL

]−1

. (3.26)

For the case of the solution of the lower panel of Fig. 3.2, with i ≈ 60◦ and
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i
′ ≈ 80◦, formula (3.26) gives Tchar ≈ 120 Myr.

3.2 Generalization for multiple orbits

The previous formulation straightforwardly generalizes to the case of N stars
orbiting the centre on circular orbits with semi-major axes ak (k = 1, . . . , N).
This is because the potential energies of all pairwise interactions build the total

Ri = −1

2

∑

k 6=l

Gmkml

akl

Ψ (αkl, nk · nl) , (3.27)

where mk is the mass of the k-th star, akl = min(ak, al), αkl = min(ak, al)/max(ak, al)
and nk is the normal vector to the orbital plane of the k-th star. Similarly, in-
teraction with the ring is simply given by

Rr = −
∑

k

GmkMr

ak
Ψ (ak/Rr, nk · ez) . (3.28)

The total potential energy of perturbing interactions is

R = Ri + Rr , (3.29)

and the equations of orbital evolution now read

dnk

dt
= nk ×

∂

∂nk

( R
mknka2

k

)

, (3.30)

for k = 1, . . . , N (nk is the frequency of the unperturbed mean motion of the k-th
star about the centre). Their first integrals then can be written as

∑

k

mknka
2
k (nk · ez) = C1 = Kz (3.31)

and
R = C2 . (3.32)

Due to mutual interaction of multiple stars, solutions of equations (3.30) repre-
sent, in general, an intricate orbital evolution, whose course is hardly predictable
as it strongly depends upon the initial setup. Our numerical experiments show,
however, that it is still possible to identify several qualitative features which re-
main widely valid. For instance, a group of orbits with small separations may
orbitaly couple together and effectively act as a single orbit in interaction with
the rest of the stellar system.

This is demonstrated in Fig. 3.3 which shows two sample solutions of equa-
tions (3.30) for a system of two such groups. For sake of clarity, each group
consists only of two orbits. Individual semi-major axes are, for both solutions,
set to a1 = 0.0373 Rr, a2 = 0.0408 Rr, a3 = 0.0478 Rr, a4 = 0.0511 Rr in order to
mimic the two-orbits models from Fig. 3.2. For the same reason, all the individual
masses are considered equal, m1 = m2 = m3 = m4, and set to 2.5 × 10−6 M• in
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Figure 3.3: Evolution of the system of four stars in the compound potential of the central
SMBH, spherical cluster and axisymmetric ring. The stellar orbits form two couples. In both of
them, the orbits have similar semi-major axes in order to mimic the system shown in Fig. 3.2.
In each panel, upper and lower lines correspond to the inner and outer couple, respectively.
The individual semi-major axes are for both examples set to a1 = 0.0373 Rr, a2 = 0.0408 Rr,
a3 = 0.0478 Rr, a4 = 0.0511 Rr. The other common parameters for both examples are the same
as in Fig. 3.1; in the upper panels, we set m1 = m2 = m3 = m4 = 4.5 × 10−6 M•, while in the
lower ones m1 = m2 = m3 = m4 = 2.5 × 10−6 M•.

the lower panels, while for the upper panels we assume 4.5× 10−6 M•. The other
parameters remain identical to the case of the two-orbits models. As we can see
(cf. Figs 3.3 and 3.2), the dynamical impact of each coupled pair of orbits upon
the rest of the stellar system is equivalent to the effect of the corresponding single
orbit if both the total mass and semi-major axis of the pair are appropriate. The
individual orbits within each pair then naturally oscillate about the single-orbit
solution according to their mutual interaction. This conclusion remains valid even
in more complicated systems as we shall show in the next Chapter.



Chapter 4

Sagittarius A*

Over the past two decades, nearly 200 early-type stars have been revealed in the
innermost parsec of our Galaxy (see Genzel et al. 2010 for the most recent review;
Allen et al. 1990; Genzel et al. 2003; Ghez et al. 2003, 2005; Paumard et al.
2006; Bartko et al. 2009, 2010). Observations suggest that these stars are orbit-
ing a highly concentrated mass, which is associated with the compact radio source
Sgr A*. It is widely accepted that this source is powered by a SMBH. Its mass
and distance from the Sun are estimated to be approximately 4 × 106 M⊙ and
8 kpc, respectively (Ghez et al. 2003; Eisenhauer et al. 2005; Gillessen et al.
2009a,b; Yelda et al. 2011).

According to the most recent observations of Bartko et al. (2009, 2010), the
majority (136) of the early-type stars observed in the Sgr A* region are located
at projected distance 0.03 pc . r . 0.5 pc from the SMBH. Roughly one half
of these stars appear to form a coherently rotating disc-like structure, the so-
called clockwise system (CWS; discovered by Levin & Beloborodov 2003). The
remaining stars are randomly scattered off the CWS plane. Nevertheless, some
authors report the existence of a second coherent structure at a large angle with
respect to the CWS – the counterclockwise system (CCWS; first mentioned by
Genzel et al. 2003). Even with both structures considered, however, a significant
number of the early-type stars are still not belonging to either of them.

Observations have further established that all the early-type stars between
0.03 pc and 0.5 pc from the SMBH are either Wolf-Rayett stars or O- or early
B-stars (WR/OB stars) (Bartko et al. 2009, 2010). Evolutionary phases of in-
dividual stars indicate that all of them have been formed 6± 2 Myr ago within a
short period of time, probably not exceeding 2 Myr (Paumard et al. 2006). The
presence of such stars so close to the SMBH is rather suprising. In particular,
the tidal field of the SMBH is strong enough to prevent standard star formation
mechanisms. Hence, various hypotheses have been suggested to explain the origin
and configuration of the WR/OB stars observed in the Sgr A* region.

In situ fragmentation of a self-gravitating gaseous disc is probably the cur-
rently most widely accepted formation scenario for the stars that belong to the
CWS (Levin & Beloborodov 2003; Paumard et al. 2006). This process was the-
oretically predicted to form stars in active galactic nuclei around SMBHs of
masses 106–1010 M⊙ (Collin & Zahn 1999). However, as it naturally forms stars

61
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in a single disc-like structure, it fails to explain the origin of the stars observed
outside the CWS. Many authors have, therefore, been seeking a mechanism that
could have scattered these outliers from the parent disc plane.

It has been shown by Cuadra et al. (2008) that two-body relaxation of the
parent disc does not yield the observed large inclinations of the outliers with
respect to the disc plane. According to Kocsis & Tremaine (2011), some of them
may have been brought to their positions by vector resonant relaxation between
the disc and the cluster of late-type stars which also appears to be present in
the Sgr A* region (Genzel et al. 2003; Schödel et al. 2007; Do et al. 2009).
However, it is still unclear whether this process can explain the origin of the
stars with line-of-sight angular momenta opposite to that of the stars within the
CWS. In order to overcome this issue, Löckmann et al. (2008) have considered
mutual interaction of two self-gravitating discs at large angles relative to each
other. Although this mechanism indeed yields the observed configuration of the
WR/OB stars, it needs rather special initial conditions. In particular, the two
discs must have been formed at specific angles with respect to each other in order
to stand for the CWS and CCWS. Moreover, as all the WR/OB stars seem to
be coeval (Paumard et al. 2006), the two discs must have formed their stars at
roughly the same time. Since this is not very likely, the need of such special initial
conditions represents the major drawback of this scenario. Similar scenarios, such
as the interaction of two gaseous streams (Hobbs & Nayakshin 2009), suffer from
the same problem.

Šubr et al. (2009) and Šubr (2011) have suggested that all the WR/OB stars
in the Sgr A* region may have been born in a single gaseous disc. They argue that
the stars observed outside the CWS represent the outer parts of the parent disc,
that have been partially disrupted by the gravity of the circumnuclear disc (CND).
The CND is a clumpy molecular torus, that is located between 1.6 pc and 2.0 pc
from Sgr A* (Christopher et al. 2005). The upper estimate of the total mass
of this structure, which is almost perpendicular to the CWS (Paumard et al.
2006), reaches the order of 106 M⊙. Šubr et al. (2009) claim that the gravity of
the CND would cause differential precession of the individual orbits in the parent
stellar disc. Such a process would force the stars from the outer parts of the disc
to leave the disc plane while the inner parts of the disc would remain untouched.
This core would be identified as the CWS today.

In this Chapter, which follows the paper of Haas et al. (2011a), we further in-
vestigate the hypothesis of Šubr et al. (2009) (see also Šubr 2011; Haas & Šubr
2012b; Šubr & Haas 2012). In particular, we include the self-gravity of the par-
ent stellar disc, and follow its orbital evolution in a predefined external potential
by means of numerical N -body computations. In addition to the SMBH and the
CND, the external potential includes the gravity of the cluster of late-type stars.
Even though its density profile is still unclear, its potential may be considered, in
the first approximation, to be spherically symmetric, and centred on the SMBH.

4.1 Introduction of the numerical model

Šubr et al. (2009) have considered the disc to be surrounded by the cluster of
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late-type stars, and the stars in the disc to be test particles. They claim that the
evolution of individual stellar orbits in the disc is dominated by the Kozai-Lidov
mechanism which we have discussed in Section 1.3. Within a simplified model
where the CND is equivalent to an infinitesimally thin ring, the authors find that
the Kozai oscillations become negligible when the mass, Mc, of the cluster within
the radius RCND of the CND fulfills the approximate condition Mc & 0.1 MCND,
where MCND stands for the mass of the CND. In that case, the first time derivative
of Ω becomes constant and can be written as (cf. equation (3.24))

dΩ

dt
= −3

4

cos i

TKL

1 + 3
2
e2

√
1 − e2

, (4.1)

where TKL is the Kozai-Lidov time-scale (1.13) and inclination, i, of the orbit is
the angle between the symmetry axis of the CND and the angular momentum of
the star. According to this formula, the rate of precession strongly depends upon
the semi-major axis of the orbit. Hence, the outer parts of the disc are more
affected by the precession than the inner parts and, therefore, the disc becomes
warped or, eventually, completely disrupted.

With the gravity of the stars in the disc included, the orbital evolution of the
disc may be affected by the dynamical coupling of the individual stellar orbits
described in Chapter 3. Let us, therefore, further investigate the differential pre-
cession of the orbits within a self-gravitating disc. For this purpose, we introduce
the model of the Galactic Centre in the following way:

• the SMBH of mass M• = 4×106 M⊙ is considered to be a source of Keplerian
potential,

• the CND is modelled as a single massive particle of mass MCND orbiting
the SMBH on a circular orbit of radius RCND = 1.8 pc (see Section 4.3.2
for the discussion of this approximation),

• the cluster of late-type stars is represented by a smooth power-law density
profile, ρ (r) ∝ r−β, and mass Mc within the radius RCND,

• the early-type stars in the disc are treated as N gravitating particles, m ∈
[mmin, mmax], distributed according to a power-law mass function dN ∝
m−αdm.

The stellar orbits in the disc are constructed to be initially geometrically circular.
However, due to the additional spherically symmetric component of the gravita-
tional potential (cluster of late-type stars), the osculating eccentricities do not
truthfully describe real curvature of the orbits in space. For example, the initial
osculating eccentricity of the outermost orbits in the disc is ≈ 0.1 for Mc = 0.1
and β = 7/4. Initial radii of the orbits are, in accord with the observations
(Paumard et al. 2006; Bartko et al. 2009, 2010), generated randomly between
0.04 pc and 0.4 pc. Their distribution obeys dN ∝ a−1da. The disc is initially
thin with half-opening angle ∆0 . 5◦. The initial inclination of the disc plane
with respect to the CND, which is defined by the mean angular momentum of
the stars in the disc, is denoted i0CWS. We follow the evolution of this system
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M• = 4 × 106 M⊙ MCND = 0.3 M• Mc = 0.03 M•

m = 4–120 M⊙ α = 1 β = 7/4
N = 200 i0CWS = 70◦ ∆0 = 2.5◦

Total mass of the young stellar disc ≈ 6.8 × 103 M⊙

(& 90 % by ≈ 140 stars with m ≥ 12 M⊙)

Table 4.1: Parameters of the canonical model (see Fig. 4.1 for the corresponding results).

numerically, by means of the N -body integration code NBODY6. The gravita-
tional potentials of both the SMBH and the cluster of late-type stars have been
incorporated into the original code as additional external fields.

4.2 Coherent evolution of the core of the disc

The evolution of the stellar disc may, in principle, depend upon all the parameters
of the system under consideration: MCND, Mc, β, N , mmin, mmax, α, ∆0, and
i0CWS. Hence, in order to investigate the evolution properly, it is necessary to
cover all the reasonable values of these parameters. On the other hand, in order
to demonstrate the results of our calculations, it is useful to define a ‘canonical’
model with the parameters set to the values listed in Table 4.1.

The observations indicate that all of the WR/OB stars have mass m & 12 M⊙

(Paumard et al. 2006; Bartko et al. 2009, 2010). However, since it is likely that
a number of undetected less massive early-type stars exist in the Sgr A* region,
we consider m ∈ [4 M⊙, 120 M⊙] in the canonical model. For a more convenient
comparison with the currently available observational data, we display properties
of only a subset of the stars with mass m ≥ 12 M⊙ in figures.

Due to the stochastic nature of the studied system, the results should be aver-
aged over a number of realisations with identical values of the model parameters
in order to distinguish general trends from random fluctuations. For this pur-
pose, we first considered 120 realisations of the canonical model. It has, however,
turned out that the results become statistically relevant already for 12 realisa-
tions. Hence, we consider only 12 realisations of all the other models discussed
in this paper in order to shorten the necessary computational time (≈ 5 hours
on 3 GHz CPU per run; ≈ 2000 runs in total). Since we attempt to explain the
configuration of a specific observed system, every single realisation represents a
possible course of its evolution. We thus show the standard deviation for some of
the key quantities for a more thorough description of the set of possible evolutions.

The results for the canonical model are shown in Fig. 4.1. The top-left panel
demonstrates the differential precession of the orbits in the disc. It shows the
evolution of the mean value of Ω within different groups of stars, which are deter-
mined by their initial distance from the centre. It turns out that the precession
of the ascending node affects more strongly the orbits in the outer parts of the
disc (dotted and dot-dashed lines) than those in the inner parts (dashed and solid
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Figure 4.1: Results for the canonical model (see Table 4.1 for the corresponding parameters).
Only properties of the stars with m ≥ 12 M⊙ are displayed. The dotted lines in the middle
panels denote standard deviation for the set of 120 included realisations. Top: Evolution of the
mean value of Ω (left) and i (right) within different parts of the disc for one of the realisations
of this model. The solid line describes the group of the innermost stars, followed by the dashed,
dot-dashed and dotted line, which correspond to successive outer groups. Middle-left: Number
of stars within the CWS (i. e. with angular momentum deviating from the mean angular
momentum of the CWS by less than 20◦). Middle-right: Inclination of the CWS with respect
to the CND. Bottom-left: Eccentricity distribution for the stars after 6 Myr of orbital evolution.
The empty boxes denote distribution for all the stars in the young stellar system while the grey
ones represent only stars within the CWS. Bottom-right: Mean eccentricity of all the stars in
the young stellar system (solid line) and within the CWS (dashed line).

lines). This result is in accord with formula (4.1) and proves the gradual defor-
mation of the disc. Our results further show that the precession of the ascending
node in the outer parts of the disc is globally accelerated. We attribute this effect,
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Figure 4.2: Angular momenta of individual stars in the young stellar disc in sinusoidal
projection after 6 Myr of orbital evolution. The initial state is denoted by an empty circle.
Latitude on the plots corresponds to i while longitude is related to Ω. The left panel shows the
results for one of the realisations of the canonical model (only stars with m ≥ 12 M⊙ displayed).
For comparison, the right panel illustrates the situation with negligibly small mass of the stars
in the disc (single mass, m = 0.004 M⊙, the other parameters are the same as in the canonical
model).

which becomes significant on longer time scales, to the evolution of inclination
due to two-body relaxation of the disc. Such an acceleration was not found by
Šubr et al. (2009) as they had neglected the gravity of the stars in the disc. The
sudden drop of 〈Ω〉 on the dotted line in the top-left panel of Fig. 4.1 is a residue of
Kozai oscillations. Since the cluster of late-type stars is, in our canonical model,
not massive enough to suppress the oscillations of e and i entirely, the first time
derivative of Ω also varies on the timescale of TK.

The evolution of the mean inclination 〈i〉 with respect to the CND within
different parts of the disc is shown in the top-right panel of Fig. 4.1. We see
that the inclination of the outer parts of the disc is decreasing (dotted and dot-
dashed lines), while it grows and saturates at ≈ 90◦ in the inner parts (dashed
and solid lines). We further find that the evolution of both Ω and i is similar for
all the orbits in the inner parts of the disc. Hence, the core of the disc remains
rather undisturbed and coherently changes its orientation towards perpendicular
with respect to the CND. This effect can be seen in the left panel of Fig. 4.2,
which shows the directions of angular momenta of the individual stars in the disc
after 6 Myr of orbital evolution for one of the realisations of the canonical model
(the initial state is denoted by an empty circle). Our results indicate that the
compact group at inclination ≈ 90◦ is formed by the stars from the inner parts of
the disc, while the remaining scattered stars represent the entirely dismembered
outer parts. Hence, we see that the dynamical evolution of the initially thin
stellar disc leads to a configuration similar to that observed in the Sgr A* region
(see Paumard et al. 2006; Bartko et al. 2009, 2010). In particular, the core of
the disc can be identified with the CWS observed today and, at the same time,
the stars from the dissolved outer parts can stand for the WR/OB stars found
outside the CWS.

In order to compare our results with the observations more thoroughly, we
further define CWS within our model in the following iterative way. As the zeroth
step, the CWS is considered to be formed by a fixed number of the innermost
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stars from the initial disc. In the next step, we exclude from the CWS all the
stars whose angular momenta deviate from the mean angular momentum of the
CWS by more than 20◦. On the other hand, the stars initially from outside
the CWS, which do not fulfill the latter condition, are included into the CWS.
Then, we recalculate the mean angular momentum of the CWS and repeat the
whole procedure iteratively until there are no changes of the CWS in between
two subsequent steps.

Observations indicate (Paumard et al. 2006; Bartko et al. 2009, 2010) that
roughly one half of the WR/OB stars are members of the observed CWS. We
thus follow within our calculations the relative number of stars, NCWS/N , which
belong to the CWS. As can be seen in the middle-left panel of Fig. 4.1, this
number reaches, within our model, the value of ≈ 0.5 at t = 6 Myr. Furthermore,
Paumard et al. (2006) show that the normal vectors of the observed CWS and
the CND are nearly perpendicular with nCWS·nCND ≈ 0.01. Hence, we investigate
the evolution of the inclination iCWS of the CWS with respect to the CND in our
computations. We find that iCWS ≈ 90◦ at t = 6 Myr (see the middle-right
panel of Fig. 4.1), which is in a remarkable agreement with the observational
data. Finally, we investigate the eccentricity distribution ne within the CWS
and in the whole young stellar system after 6 Myr of orbital evolution. The
corresponding histograms in the bottom-left panel of Fig. 4.1 show that in both
cases a substantial fraction of the orbits have, in accord with the observations,
moderate eccentricities. The mean eccentricity of the stars within the CWS
(see the dotted line in the bottom-right panel of Fig. 4.1) is then ≈ 0.25, which
is somewhat lower than the value 0.36± 0.06 recently reported by Bartko et al.
(2009). However, at the current level of accuracy, the observations do not provide
sufficient information for a reliable determination of the orbital eccentricity for a
significant number of the WR/OB stars. Hence, the eccentricity criterion should
be considered only as supplemental.

4.2.1 Application of the semi-analytic model

In Chapter 3, we have developed a simple semi-analytic model for the orbital
evolution of N mutually interacting stars on initially circular orbits that are, in
addition to the dominating Keplerian potential of the central SMBH, exposed to
the gravitational potential of an extended spherical cluster and a distant axisym-
metric ring. We have seen that, depending on the strength of the interaction of the
stars, the orbits may evolve in two qualitatively different modes. Either the orbits
interact strongly and, under such circumstances, they are dynamically coupled
and precess synchronously in the axisymmetric potential, or, given their mutual
interaction is weaker, the orbits precess independently, periodically interchanging
their angular momentum, which leads to oscillations of their inclinations. In the
following, we shall show that this effect is responsible for the above described
results of our N -body calculations.

For this purpose, we analyse the evolution of a system which bares the main
qualitative features of the canonical model (see Table 4.1) by means of the previ-
ously derived equations (3.30). In particular, we consider an initially thin stellar
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Figure 4.3: Evolution of the initially thin stellar disc of 100 stars in the compound potential of
the central SMBH, spherical cluster and axisymmetric ring. The values of orbital semi-major
axes ak in the disc range from 0.02 Rr to 0.2 Rr and their distribution obeys dN ∝ a−1da.
The stellar masses are all equal with m = 5 × 10−6 M• while the mass of the ring is set to
Mr = 0.3 M•. Initial inclination i0 of all the orbits with respect to the ring equals 70◦.

disc with the distribution of semi-major axes of the orbits dN ∝ a−1da. As we
show in Fig. 4.3, the oscillations of the orbital inclinations no longer have the
simple patterns which we observed for the models discussed in Chapter 3. On
the other hand, we can still identify a well defined group of orbits which coher-
ently change their orientation with respect to the CND towards higher inclination.
These orbits thus form a rather thin disc during the whole monitored period of
time. It turns out that they represent the innermost parts of the initial disc where
the separations of the neighbouring orbits are small enough for their mutual in-
teraction to couple them together. In the outer parts, however, the disc is not so
dense and, therefore, the influence of the CND dominates the mutual interaction
of the stars, leading to decomposition of the initially coherent structure.

Furthermore, by means of the semi-analytic formulae derived in Chapter 3,
let us evaluate the order of magnitude characteristic time-scale for the stellar
disc evolution. In order to determine the rough time estimate, we use formula
(3.25). As this formula has been derived for a system of two stars, we replace the
stellar disc from the canonical model with two characteristic particles at certain
radii a′, a in the sense of Section 3.2. For this purpose, let us divide the stars
in the disc into two groups according to their initial distance from the centre
and define a′ and a as the radii of the orbits of the median stars in the inner
and outer group, i.e. a′ = 0.06 pc and a = 0.23 pc. Inserting these values
into formula (3.25), we obtain Tchar ≈ 37 Myr for the canonical model. This
value is in order of magnitude agreement with the estimated age of the early-
type stars, ≈ 6 Myr (Paumard et al. 2006), since the core of the disc reaches its
maximal inclination with respect to the CND already after a fraction of period
Tchar as can be seen in Figs. 3.3 and 4.3. Hence, we conclude that the simple
semi-analytic model developed in Chapter 3 indeed reveals the main cause of
the behaviour observed in our numerical N -body calculations and represents a
plausible physical explanation of the stellar configuration observed in the centre
of our Galaxy.
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Finally, let us also mention that, in addition to the core of the disc, less signif-
icant groups of orbits with coherent secular evolution may exist even in the outer
parts of the disc (see Fig. 4.3) if their separations are small enough. Our semi-
analytic approach thus admits possible existence of secondary disc-like structures
in the observed young stellar system which has indeed been discussed by several
authors (Genzel et al. 2003; Paumard et al. 2006; Bartko et al. 2009).

4.3 Discussion of the problem

As we have shown in the previous Section, all the WR/OB stars may have been
formed within a single gaseous disc and, subsequently, brought to their present
location by the effects of the dynamics in the combined potential of the central
SMBH and the axisymmetric CND. In the following we establish a set of param-
eters for which the evolution of the young stellar system leads to a configuration
compatible with the current observational data. For this purpose, we follow the
evolution of the system for various values of the model parameters. Within the
results, we then concentrate on NCWS/N , iCWS, 〈eCWS〉 and 〈e〉 and confront their
values at t = 6 Myr with the observations.

4.3.1 Model parameters compatible with observations

To begin with, we follow the evolution of the young stellar system for various
values of MCND and Mc with the other parameters fixed to their canonical val-
ues (see Table 4.1). The results indicate that the strongest constraints on the
possible values of MCND and Mc come from NCWS/N and iCWS. Their values
for Mc ∈ [0.01 M•, 3 M•] are depicted by the solid lines in the top panels of
Fig. 4.4, whereas MCND remains constant along each of the lines and is set to
either 0.1 M• or 0.3 M• or 0.6 M•. According to these results, the evolution of
the young stellar disc leads to values of NCWS/N which accommodate the ob-
servational constraints, if 0.1 M• . MCND . 0.3 M• and 0.01 M• . Mc . 2M•.
However, the upper limit for the mass of the cluster of late-type stars has to be
reduced to Mc . M• since larger values do not lead to the observed iCWS ≈ 90◦.
Both observational criteria are, therefore, fulfilled if 0.1 M• . MCND . 0.3 M•

and 0.01 M• . Mc . M•. Moreover, the results of our computations with Mc = 0
show that even in this case, the evolution of the young stellar system leads to
a configuration which matches the observational data (due to logarithmic scale
in Fig. 4.4, the corresponding values are not displayed). Hence, we find the fi-
nal intervals 0.1 M• . MCND . 0.3 M• and 0 ≤ Mc . M•. If we substitute
M• = 4×106 M⊙, the intervals transform to 4×105 M⊙ . MCND . 1.2×106 M⊙

and 0 ≤ Mc . 4 × 106 M⊙.
The intervals for allowed MCND and Mc are not affected if we evaluate the

eccentricity criterion. As can be seen in the bottom panels of Fig. 4.4 (solid lines),
all the considered values of MCND and Mc lead to similar values of both 〈eCWS〉 and
〈e〉, which satisfy the observational constraints. Nevertheless, our results show
that the orbital eccentricities in the young stellar system reach slightly higher
values for lower Mc. We attribute this effect to Kozai oscillations, which are less
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= 70◦.

suppressed by the cluster of late-type stars. Furthermore, our results suggest that
also for Mc ≈ M•, all the orbits in the young stellar system gain somewhat larger
eccentricities, regardless the mass of the CND. Around the same value, Mc ≈ M•,
iCWS appears to be more sensitive upon the variations of Mc and NCWS/N reaches
its minima (see the solid lines in the top panels of Fig. 4.4). Hence, it seems that
all of these effects are somehow connected with a stronger influence of the CND
on the dynamical evolution of the young stellar disc. However, at this point, we
can not provide any explanation of this effect.

In order to investigate whether the suggested intervals for MCND and Mc

depend upon the density profile of the cluster of late-type stars, we model the
evolution of the young stellar system also for β = 1/2 and Mc ∈ [0.01 M•, 3 M•].
The other parameters remain at their canonical values (see Table 4.1). The dotted
line in Fig. 4.4 proves that NCWS/N , as well as iCWS and both 〈eCWS〉 and 〈e〉,
reach the same values as in the case with β = 7/4, except for the neighbourhood
of the point Mc ≈ M•. The absence of the ‘resonant’ effects observed in this
case can be interpreted as a consequence of the different mass of the cluster of
late-type stars enclosed within the young stellar disc, due to the different value
of β. However, since the value Mc ≈ M• represents only the approximate upper
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boundary of the suggested interval for Mc, the latter effect is, for the purpose of
this study, rather insignificant.

Similarly, in order to test the dependence of the intervals upon the mass
function of the young stellar disc itself, we perform a set of computations with
the disc treated as a group of 136 single mass stars each with mass m = 50 M⊙.
The other parameters are set to their canonical values. In this case, the total
mass of the disc is the same as in all the models, which we have presented so far
(≈ 6.8 × 103 M⊙). As demonstrated by the dashed line in Fig. 4.4, none of the
results depend upon the mass function of the disc if its total mass is preserved.

Our calculations further show that the evolution of the young stellar disc is
not affected significantly if its total mass is changed within the range ≈ 103–
104 M⊙. On this account, all the results presented in the previous Section would
remain entirely unaffected even if we did not include the undetected stars with
mass m ∈ [4 M⊙, 12 M⊙] as their overall mass represents only a small fraction of
the total mass of the whole disc.

On the other hand, decreasing the total mass of the disc by reducing the
mass of the individual stars m inhibits the effect of mutual dynamical coupling of
the stellar orbits as their interaction becomes weaker. Consequently, we do not
observe the evolution of iCWS if m becomes negligibly small, i. e. if the stars in
the disc can be considered as test particles. This effect is demonstrated by the
right panel of Fig. 4.2, where we set m = 0.004 M⊙. We see that except for the
few outermost stars, which are still slightly affected by Kozai oscillations caused
by the CND, the inclination of the orbits remains constant throughout the disc.
Hence, our results are in accord with the findings of Šubr et al. (2009).

We have determined the intervals for MCND and Mc under assumption i0CWS =
70◦. Our results indicate that if i0CWS & 60◦ and both the MCND and Mc fall
into the determined intervals, the evolution of the young stellar system leads
within 6 Myr to a configuration that agrees with the current observations (see
also Haas & Šubr 2012b). With lower values of i0CWS considered, the CWS is
entirely destroyed by the differential precession before it can reach the orientation
perpendicular to the CND. On the other hand, considering i0CWS closer to 90◦

may increase the allowed intervals for MCND and Mc. However, in order to fully
understand the impact of different values of i0CWS on the suggested intervals, a
more detailed study would be required. We will focus on this issue in our future
work.

In the presented analysis, we consider the young stellar disc to be initially
thin. Our calculations show that the course of its evolution does not depend
upon the value of its initial half-opening angle if ∆0 . 5◦.

4.3.2 Structure of the CND

So far, we have modelled the CND as a single massive particle on a circular
orbit around the SMBH. This approximation has been used instead of analytical
descriptions, e.g. infinitesimally thin ring, for numerical reasons. Namely, due
to its simplicity, single-particle approach minimizes the necessary computational
time, and the corresponding perturbing particle can be implemented into the
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Figure 4.5: Angular momenta of individual stars in the young stellar disc at t = 6 Myr
(initial state denoted by an empty circle) within one of the realisations of the model with the
CND treated as a group of NCND = 20 equal-mass particles. The other parameters are set to
their canonical values (see Table 4.1), except for MCND = 0.1 M• and Mc = 0.1 M•.

original NBODY6 code in a trivial way.

The single-particle approximation follows from the standard averaging tech-
nique described in Section 1.2. As a consequence, the single-particle approxima-
tion is equivalent to the model with the CND treated as an infinitesimally thin
ring if the assumptions of the averaging technique are satisfied. For the stud-
ied young stellar system, these assumptions can be written as the following two
conditions for the orbital period Pp of the massive CND particle: (i) Pp must be
significantly longer than the orbital periods P j

d of the early-type stars in the disc,
and (ii) Pp must be significantly shorter than the characteristic period Pc of the
studied phenomena. Since Pc ∼ 106 yr, Pp ∼ 105 yr, and P j

d ∼ 102–104 yr, both
conditions are fulfilled and, therefore, the use of single-particle approximation is,
in our case, well justified.

The real CND is, rather than a ring-like structure, a gaseous torus, which
consists of several somewhat autonomous clumps (see, e.g., Christopher et al.
2005). In order to test whether the evolution of the young stellar disc can be
affected by the clumpiness of the CND, we further consider the CND to be a
group of NCND equal-mass particles. It turns out that the CND constructed in
this way is unstable with respect to its own gravity. Consequently, some of the
particles successively migrate towards the SMBH. These particles can eventually
be identified with several gaseous streams, which are indeed observed within the
radius of the CND (for one of the most recent studies, see Zhao et al. 2010). The
results further show that all the effects of the dynamics in the combined potential
of the central SMBH and the axisymmetric CND remain present (see Figs. 4.5
and 4.6 for the case with NCND = 20). Moreover, the infalling CND particles
pose a stronger perturbation for the young stellar disc. As a result, the orbits in
the disc gain higher eccentricities compared to models with the CND treated as
a single massive particle on a stable orbit (cf. the right panel in Fig. 4.6 and the
bottom-left panel in Fig. 4.1). Similarly, the gradual deformation of the young
stellar disc, as well as its eventual destruction, are also accelerated.

Hence, it appears that the models with the CND treated as a single massive
particle somewhat underestimate its influence upon the dynamical evolution of
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Figure 4.6: One of the realisations of the model with the CND treated as a group of NCND =
20 equal-mass particles. The other parameters are set to their canonical values (see Table
4.1), except for MCND = 0.1 M• and Mc = 0.1 M•. Left: Number of stars within the CWS
(solid line). For comparison, we show the results for the canonical model (dashed line). Right:
Eccentricity distribution at t = 6 Myr for all the stars in the young stellar system (empty boxes)
and within the CWS (grey boxes).

the young stellar disc. On the other hand, the perturbative influence of the
infalling parts of the gaseous CND would probably not be as strong as the impact
of infalling point-like particles in the latter model. A more precise approach to
the gas dynamics would thus be required in order to obtain a more accurate
description of the CND.
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Chapter 5

Conclusions

We have investigated the orbital evolution of an initially thin self-gravitating
stellar disc in the dominating potential of the central SMBH. The potential of
the SMBH has been considered Keplerian and perturbed by the potential of an
extended spherically symmetric star cluster surrounding the disc. In particular,
we have focused on the evolution of the root-mean-square values of eccentricity
and inclination of the orbits in the disc in order to test whether it differs from
the theoretical dependence erms, irms ∝ t1/4 derived for isolated stellar discs. By
means of numerical N -body modelling, we have shown that, given the cluster
is emulated by an analytic power-law radial density profile, the evolution of the
followed quantities is not affected, regardless the characteristic mass of the clus-
ter (as long as the potential of the cluster can be considered a perturbation).
This conclusion, however, changes dramatically if the cluster is modelled by a
large number of gravitating stars. Our N -body calculations have revealed that,
in such a case, the eccentricity vectors of the individual orbits in the cluster tend
to synchronise their evolution, reaching similar orientations parallel to the disc
plane. This process thus leads to formation of a somewhat flattened substructure
in the cluster which is roughly perpendicular to the plane of the disc. Although
the resulting deviation from the initial spherical symmetry of the cluster is rather
small, our results indicate that it is strong enough to cause the Kozai-Lidov oscil-
lations of individual stellar orbits. As the number of oscillating orbits gradually
increases, the evolution of the root-mean-square values of the orbital eccentricity
and inclination in the disc is accelerated. Let us point out that the large number
of highly eccentric stellar orbits is important for many astrophysical processes,
such as the production of hyper-velocity stars and the S-stars in the Galactic
Centre, the tidal disruption of stars and their subsequent feeding to the SMBH
(e.g., Karas & Šubr 2007) or the generation of the gravitational waves.

Furthermore, it turns out that the potential of the flattened structure in the
cluster induces formation of similar structures in the disc. In other words, the disc
evolves a non-uniform distribution of the orbital arguments of pericentre. This
feature represents an outcome of our hypothesis that can be directly confronted
with the observational data, when these are available. In this context, the system
of the early-type stars observed in the Galactic Centre is particularly promising
as it is expected that, in the nearest future, the observational data will be able to
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provide the orbital elements for a statistically significant number of these stars.

In the second part of the Thesis, we have considered the evolution of the stellar
disc to be further perturbed, in addition to the spherical star cluster, by a distant
axisymmetric source. In this case, we have restrained ourselves to modelling the
cluster by the analytic radial density profile, which has enabled us to develop
a simple semi-analytic model for the secular evolution of the orbits in the disc.
Given the spherical potential is strong enough, we have shown that the evolu-
tion of initially circular orbits reduces to the evolution of inclinations and nodal
longitudes. The spherical potential itself can then be factorized out from the out-
coming momentum equations. Since it is not possible, in a general case, to solve
the derived equations analytically, we have set up an integrator for their efficient
numerical solution. The acquired results have been, in order to confirm their
validity, compared with the corresponding full-fledged numerical integrations in
the space of classical positions and momenta, showing a remarkable agreement.
In the case of the simplest possible system of two stars on initially coplanar orbits
interacting in the considered perturbed potential, we have identified two qualita-
tively different modes of their secular evolution. If the interaction of the stars is
weak (yet still non-zero), the secular evolution of their orbits is dominated by an
independent nodal precession. Difference of the individual precession rates then
determines the period of oscillations of the orbital inclinations. On the other
hand, when the gravitational interaction of the stars is sufficiently strong (de-
pending on their mass and the radii of their orbits), the secular evolution of the
orbits is dynamically coupled and, consequently, they precess coherently around
the symmetry axis of the gravitational potential. Induced oscillations of inclina-
tions have generally smaller amplitudes in comparison to the case of the weak
interaction regime. We have further confirmed, by means of numerical integration
of the derived momentum equations, that the coupling of strongly interacting or-
bits is a generic process that may occur even in more complex N -body systems.
In particular, a subset of stars with strong mutual interaction evolves coherently
and, as a result, its dynamical impact upon the rest of the N -body system is
similar to the effect of a single particle of suitable mass and orbital radius.

As an example, we have investigated the orbital evolution of a disc-like struc-
ture that roughly models the young stellar system which is observed in the Galac-
tic Centre. It has turned out that coupling of the strongly interacting stars from
the inner parts of the disc leads to their coherent orbital evolution, which allows
us to observe a disc-like structure even after several million years of dynamical
evolution in the tidal field of the CND. Orientation of this surviving disc then
inevitably changes towards higher inclinations with respect to the CND, which
is in accord with the observations. On the other hand, the stellar orbits from
the outer parts of the disc evolve individually, being gradually stripped out from
the parent thin disc structure. We emphasize here that the high mutual incli-
nation of the young stellar disc and the CND, which is naturally reproduced in
our model, represents an observational constraint that has not been considered
in any of the previous analyses. The conclusions of our semi-analytic model have
been confirmed by means of direct numerical N -body modelling of the young stel-
lar system, considering the gravitational influence of both the analytic spherical
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cluster and the CND. Scanning of the parameter space of our numerical model
has revealed that the parameters for which the evolution of the system leads to
the observed configuration are in a good agreement with the observational con-
straints. Hence, it appears possible for the puzzle of the origin of the early-type
stars in the Galactic Centre to be solved by the hypothesis of their formation via
fragmentation of a single gaseous disc, as suggested in Šubr et al. (2009), Šubr
(2011) and Haas et al. (2011a,b). Our results might be more or less affected if
the cluster were modelled in the full N -body way as in the first part of the Thesis.
Hence, we shall focus on this issue in our future work, which should result in a
unified model of the innermost parsec of the Galactic Centre.
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