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Chapter 1

Introduction

The characterization of probability distributions is a section of probabi-
lity theory and mathematical statistics. It’s corner stone is the monograph
KAcaN A.M., LINNIK YU.V., Rao C.R. - Characterization problems of
mathematical statistics, that is especially devoted to characterization theo-
rems, which deal with subsequent problem: we have some set of identically
distributed random variables with some desired property and want to find
out the distribution of these random variables. From one point of view, we
can say that there are two possibilities how to understand characterization
theorems: either we want to find out some methods of proofs of charac-
terization theorems, or we concentrate on certain concrete characterization
theorems. I chose the second approach, concretely I will work with the Bern-
stein’s theorem and the Polya’s theorem, which give us some information
about normally distributed random variables.



Chapter 2

Bernstein’s theorem

Let X, X5 be two independent random variables. We denote by
Ly = X1+ X,
Lz = X1 — X2.
Then L, and L, are independent <= X; and X, are normally distributed,
Xl ~ N(M1,0'2), X2 ~ N(M2702)'
Proof:

1. Let L; and L, be independent. Further on, we will denote by fy ()
the value of the characteristic function of the random variable Y in the
point t. From the independency of L; and L, we see that

f(Ll,Lz) (t,S) = le (t) ’ fL2 ('5)

Moreover
f(Ll‘Lz)(t, S) — Ee’iiL1+lSL2 — ]Eelt(X1+X2)+'LS(X1—X2) —

— ]Eeixl(t+s)+iX2(t——s) — ]Eein(H-s)ein(t——s) —

= fx,(t+8) fx, (t —9)

from the independency of X; and X,. Taking together the last two
identities, we have

fx, (t+8) - fx, (t=8) = fr, (t) - fr, (s)

If we put s = 0, then fr, (t) = fx, (t) - fx, (t), analogously fr, (s) =
fx, (8) - fx, (—s), together we get

f,\’x (t + S) ’ f.\'z (t - S) = fX1 (t) ’ sz (t) ' le (S) ’ fX2 (_S)'
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We will now work with the functions g; = log f; there, where f; # 0.
Then

gi(t+s)+g(t—s)=g(t) +92(t) + g1 (s) +g2(—s).

Suppose that the derivatives g}, g7 exist. If we differentiate this equa-
tion with respect to t and then with respect to s (in the first case we
take s as a parameter, in the second t as a parameter), we get

git+s)+gy(t—s) = g (t)+95(t)
g (t+s)+gy(t—s) = 0.

If we denote u := t — s, then the last equation can be written in the
form

gy (u+2s) = gy (u) for any s € R, where f, # 0.
Therefore
gi=g,=acC

on the whole real line (except those points where f; (s) = 0). Then
g; (t)=at2+bjt—+-cj, bj,Cj eC

fo, (t) = exp{at® + bjt + ¢;}
whence we see that the functions g; are well defined on the whole real
line. Moreover,
o2
fe; )] S 1= a<0,a:= - f(0)=1=¢; =0;

also f;, (t) = fa, (—t), therefore b; =ip;, u; € R and
, a?t?
fe (1) = expfipt = T,

which are the characteristic functions of normally distributed random
variables with X; ~ N(u1,0?), Xo ~ N(ua,0?).

. Now let X, X» be two independent random variables, X; ~ N(u1,0?),
X, ~ N(pgz,0?). Then X; + Xy ~ N(u1 + pa,20%) and X; — X5 ~
N(p1 — pt2, 20?) according to convolution theorem. So we will compare

f(Ll,L2) (t,s) = EeitLitisle and
le (t) . sz (S) - ]Ee'itLl . ]EeitLl



(a)

EeitL1+isL2 ]Eeit(X1+X2)+is(X1—X2) — Eeixl(t+s)+i.x2(t—s) —

]Eein(t+s)eiX2(t—s) — ]Ee’iXI(t—f'S) . ]Ee'iXQ(t—s)

because X; and X, are independent and therefore also eiX1(t+s)

and ¢X2(=9) are independent. Further,
B B0 = fi (14 5) - fra (6 5) =

2,2 2,2 ) )
_ eim(t—%s)—-ﬁ—’éu—eim(t—s)—gt—f‘—zi — ezu1(t+s)+wz(t——s)_

2 . .
e & (t2+2ts+sz+t2—2ts+sz) — e (t+s)+ipz(t—s)—o? (t2+sz)

]EeitLl . EeitL1 — le (t) . fL2 (3) — ei(ﬂ1+ﬂ2)t_ga§t2 .

2.2 . s
pilm—p)s= 2255 _ i (vhs)Hina(t=s) =0 (2457)

We see that (a) and (b) are identical, therefore Li and L, are
independent.



Chapter 3

Polya’s theorem

Let X, X, be two independent identically distributed random variables,
whose characteristic function is symmetric. We denote by

L1 = Xl
X1+ X,
Ly = ——~,
’ V2
Then L; and L, are identically distributed <= X, (and therefore also X5)
is normally distributed, X; ~ N(0, 0?).

Proof:

1. Let X; ~ N(0,0?), then from the independency and identical distribu-
tion of X; and Xy we have

fr, (1) = Eeit<§%§£2) — ]EeiX1( !

_ g2 L)
i ()
Since X; ~ N(0,0?),

fL () = 12 (%) =

so L, and L, have the same characteristic function. Because the dis-
tribution functions and corresponding characteristic functions are in
reciprocal unambiguous relation, L; and Lo are identically distributed.

(:bs
S
|
&=
=
S5
&=
5
&
Il

o2

)?) — e"—'zf' = le(t) = fL1(t)7

&

2. Let L; and L, have the same distribution function. From the previous
part of the proof we have

fra(t) = f%, (%)
9



and this must be equal to fx,(t). We must now prove that fx,(¢) is a
characteristic function of N(0, o?).

(a)

fx,(t) does not attend 0: if there would exist t € R, for which
fx,(t) =0, then also f% (75) =0 and fx,(75) = 0. But then

t
Vn €N fX1(—E):0a
22

from which follows that

lim fx,(57) =0,
n—o00 22

which is equal to fx, (0) from the continuity of fx,, because every
characteristic function is continuous. But the equality fx,(0) =
= 0 is in contradiction with the fact that fx, is a characteristic
function, for which must be valid fx, (0) = 1.

due to (a) we can write ®(t) := log fx,(t) on the whole real line.
Therefore ;
®(t) =20(—=).
() = 20()

For t > 0 we will now introduce the function W(t),
B(t) = t2U(t).
The condition for fy,(t) can therefore be written in the form

t2 ot

—V(— or V() =V
oy (t) = ¥
Since t > 0, there exists @ € R such that t = e®. So we will
re-write the last equation subsequently:

t*(t) = 2

w(ea) — \p(ea~%log2).
If we denote by U(a) = ¥(e?), we get
1
Ula) =U(a — —2—log2),

so that U(t) is a 3 log2-periodic function. Since ¥(t)=U (logt)
and t2U(t) = ®(t), we have

®(t) = t*U(logt) and fx,(t) = exp{t*U(logt)}.

10



1—e”®
T

Because lim,_, = 1, we can write

1 — fx,(t) ~ t*U(logt) or }——_—{25& ~ Ul(logt)

for t — 0. If there would be

lim - /()

t—04 12

(the limit must exist because of the periodicity of U(t)), then there
must exist some t; € R, t; > 0 such that U(logt) = 400, but then
also

fxi(tr) = exp{t*U(log t)} = +oo,

which is in contradiction with the fact, that for every characteristic
function is valid: |fx, (t)] < 1Vt € R. Consequently,

lim L- /1)

t—04 t2

< +00

Because fy,(t) is symmetric, we can write

1= fx, () = 1*/OOCOSt$dF(w)=/Ool—cost:c dF(z) =

o0 —00

= 2/ sin2%v dF(x)

o0

and therefore

1— f(t 1 [ sin® &
lim f( ) = lim - ——21* dF (),
t—04 t? t—04 2 —00 (%)2

if both limits exist. We know from previous that lim,_.q, l_t%t) is

bounded. Moreover,

— 1 A gip?tz
lim inf 1=/ > 3 lim inf/ T 3 dF(x)

t—04 12 t—0+ J_4 (%)2

for any A > 0, A € R. The function
2tz
2

)2

sin

(

$2

Nl
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is non-negative and

A gn2te
/ Sutlx 221'2 dF(z) < o0,
~a (%)

2

so we move the limit under the integral sign and get

_ A
00 > liminfl——f—(t2 > l/ z? dF (z).
t—04 t2 2 —A

If we apply lim4_, on both sides of this inequality, we see that
[, x* dF(z) is finite and X has finite second moment. We know
that if any random variable has finite k-th moment, then there
exist it’s characteristic function’s derivatives up to order k£ and
these are continuous (this theorem can be found in [1]). So in our

case fx, has continuous derivatives up to order 2, therefore also
®”(t) is continuous, especially in 0, because

PO — (P10
YO=""Gor

where f(t), f'(t) and f”(t) are continuous in 0. Then the equation

B(t) = 2@(%)

can be differentiated twice and we get
i )
\/Q .

Thus ®”(t) is a constant: let us presume that there exist two real
numbers t, s > 0 such that

@//(t) — (b”(

P"(t) = ¢, ®"(s) = 2, c1,c0 € C, s # 2kt k € Z.
Then from the continuity of ®”(t) in zero follows that

t
®”(0) = lim @"(2—2) =0 but also
"(0) = lim ®"(—) = ¢

n—00 22

which leads to contrary.
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(c) due to (b) we have ®"(t) =a Vt € R, a € C and

O(t) = at®+bt+c, b,ceC
f(t) = exp{at® + bt +c}.

Now we apply the neccesary conditions for a characteristic func-
tion:

f0O)=1 = ¢=0

ft)=F(=t) = a€R, b=iy, peR
If(t)] = a<0,

we denote a = —102. Finally, f(t) = f2(%), therefore y = 0 and

ft) = exp{—%dzﬁ},

which is a characteristic function of N(0, 0?).

13



Chapter 4

Connection between
Bernstein’s and Polya’s
theorem

These two theorems look quite different on the first sight. One concerns the
independency of two linear combinations of independent random variables,
the second studies the distribution of other linear combination of two in-
dependent random variables, which are in this case identically distributed.
The independency and distribution of random variables are two quite differ-
ent concepts, but as is clear from the proofs of this two theorems, they are
closely linked through characteristic functions, especially by two key qualities
of characteristic functions:

1. the distribution function and the corresponding characteristic function
are in reciprocal unambiguous relation

o

for independent random variables is valid: the sum of two independent
random variables has the characteristic function equal to the product
of the characteristic functions of the two random variables.

We can therefore re-write our two theorems subsequently:
Bernstein’s theorem:
0.2t2
f-\'x (t + S) ’ f.\'z (t - 5) = fL1 (t) : fL2 (‘5) — fzx (t) = exp{zﬂlt - T}
. o’t?
far (t) = exp{ipat — T}

Polya’s theorem:

242
f(t) = f() = for(0) = exp{-T5},

[S]

14



where in both theorems we have a;,a; € C,0? > 0. So we see that these
are some kind of functional equations for characteristic functions. If the
two random variables would be identically distributed also in the Bernstein’s
theorem, the close connection between these two theorems would be even
clearer, because the functional equations would have consequential form:

fxl(t + S)fxl(t - S) = le(t)fxl(t)le (S)le(—S),
fa2t) = [ @) fx,(-t) fort=s

while in Polya’s theorem

fx,(2t) = fx,(t).

15



Chapter 5

Modification of Bernstein’s and
Polya’s theorem

Let us see now, how the situation would change, if we take not two but four
random variables in each theorem. The modification of Polya’s theorem can
be proved easily from the original theorem, because the functional equation

L

=1z

is equivalent with
n, t
f(t) = f2 (55)’
2
therefore also for any n € N
2'”
"X
X, < -2—5:_1—— = X; ~N(0,0%)
2
(of course if X; are iid).

In the modification of the Bernstein’s theorem we will have

Ly = (X1+X2)+(X3+X4)
Li = (Xi+X)— (Xs+ Xy).

We denote by

Yl = (/Y1+X2)
Y:.Z = (X3+X4).

Clearly, if X; ~ N(ay,0?), X2 ~ N(ag,02), X3 ~ N(as,03), X4 ~ N(aq,03),
where 0% 4+ 02 = 02 = 0% + 0%, then (according to convolution theorem) we

16



will have Y; ~ N(a; + ag,202),Ys ~ N(az + a4,202). But then according to
Bernstein’s theorem L3 and L, are independent. The question therefore is,
whether if L3 and L4 are independent, then X; have the distributions which
were given in previous. Again from Bernstein’s theorem follows that ¥; ~
N(by,02), Yo ~ N(by,02), but the distribution of X; is possible to get only
with some theory concerning characteristic functions.

17



Chapter 6

Theory

Definition: A characteristic function f(t) is said to be decomposable, if it
can be written in the form

f(t) = fu(t) fa(t),

where f1(t) and f(t) are both characteristic functions of non-degenerate dis-
tributions. We say that fi(t) and fa(t) are factors of f(t).

Definition: Let z = t +iy,t,y € R,z € C. A characteristic function is
said to be analytic characteristic function, if there exists a function A(z) of
the complex variable z which is regular in the circle |z| < p,p > 0 and a
constant r such that A(t) = f(t) for |t| <.

Remark: It is valid: If an analytic characteristic function is regular in
some neighbourhood of the origin of the C-plane, then it is also regular in a
horizontal strip including the real line. Proof can be found in 4].

Definition: If the strip of regularity of f(z) is the whole C-plane, then
we say that f(z) is an entire characteristic function.

Definition: Let f(z) be an entire characteristic function. We denote by

M(r, f) == max|f(z)].

|z|<r
Then the order of an entire characteristic function f (z) is defined as

_ log log M (r, f)
p = limsup :
r—00 log

18



Theorem 1: Let f (2) be an analytic characteristic function, which is regular
in the strip —a < Im (y) < §; a, 3 > 0. Then any factor f (2) of f(2) is
also an analytic characteristic function which is regular, at least in the strip
of regularity of f (2).

Proof: Let
f@)=f(t) fo(t),

where f) (t), fo(t) are two non-degenerate factors of f(t), then the cor-
responding distribution functions F'(t), F (t), F» (t) satisfy the relation

F<w>=/_°°F1<x~y)sz<y>:/wmx—y)dﬂ(y)

o0 —00

according to convolution theorem. Then for A, B,a;, a0 € R, A, B > 0,
o > «rp we have

F<a1>:/_°° Fy(ar — y)dFs (y), F(a2)=/_°° Fy (s - y) dFs (y).

F (ag) > F (ay) =
F(az) — F (o) 2 / [Fi (o —y) = Fy (an — y)] dF2 (y) - (6.1)
—A

From the theory concerning analytic characteristic functions we know, that
for v € R, —a < v < 3, the integral

/—00 e’ dF (z)

o0

exists and is finite. Clearly for a,b € R, a < b is valid

e dp (1) >  erap ().
/ /

o0

Now we will consider a sequence of subdivisions of the interval [a, b]:

;E-(in):a%_b;la’(j_l) j=1,2,..,2"+1, n=12 ..,

so that we can representate the last integral by Darboux sums:

/ab edF (z) = lim ;i_;exp (val2h) |[F (af2) — F (én))] .

19



We denote by
hjn(y;v) = exp ( ")) [Fl (zgf_)l - y) - R <J:§") - y)] for v > 0

i
Ly
= exp ( 5:?1) [Fl (:vg:i)l — y) - F (asg.") — y)] for v <0

and by
271
U) = Z hj,n (ya U)
j=1

From (6.1) follows that

)~ () 2 [ (45 0) -6 ()

so that

b 2"
/ edF (o) = lim Y exp (val)) [F (282) = F ()] = (62)
a n—oo o
271
> ,}E’;OZGXP (vwﬁ’i)l)/ F ( - y) - I (335-") - y) dF (y) =
j=1 -

B
= lim gn (y,v) dFy (y) .

n—oo J_ 4

Now we return to the qualities of the division {:r§ = ",. Clearly

_(n+1) (n+1) (n+1)
27; 1 < 372? < £2?+1
and also
(n+1) _ (n)
2j-1 = L s
because 1‘(2?+11) = 3-(2/-2)= 1:(").

We note that g, ( Y, v ) lS a sum of 2" terms while g,,+1 (y, v) is a sum of twice
as much terms, so we will compare terms

k = hj,(y;v) =exp (UJJ ) [Fl ( T —y) — <$§n) - y)]
I = hgjns1(y;v) =exp (U5'32J ) [Fl ( 27;:3) - y) - B (37(27;“) - y)]

0= a0 = o) [ (57 ) - (57 )

20



for v > 0, because for v < 0 are the relations identical. Because a:é?ﬂ)

| S— )

= z§n), we have m — k = exp (ng;i-%)> |:F1 (xgjﬁ—l) —y) - F (JJSZ_)I B y)

and therefore (+m—k = exp (vxé’;ﬂ)) [Fl (a:g;]:i) - y) - F (ng’l) - y)]
+ exp (ué’jf})) [Fl (1'(2?“) - y) - F (3351)1 - y)] > exp (uw%‘f?) :

[Fl (xg;ﬂ) - y) - F (;1:5-1)1 - y)} = 0. This implies that

-

hjn (y;v) < hojnir (Y5 0) + hoj_1n41 (Y3 0)

and therefore also g, (y,v) < gn+1 (y,v). So the sequence {g, (y,v)}52, is
non-decreasing, it’s terms are non-negative, because they are sums of non-
negative numbers, therefore according to monotone convergence theorem
(see [2]) we can write

B B
tw [ g 0)iR@ = [ lneaea)dRe. 63
n—oo |_ 4 _A M0

The functions g, (y,v) are Darboux sums from definition and

b—y

lim gn (y,0) = / SOGR ()

a-y

If we take this equation together with (6.2) and (6.3), we get

n—0o0 A —A

_ /_ i ( / :y ) g (z)) dF; (y) = /_ i e [ / :y e dFy (z)] dF; (y) .

Because y € (—A, B), then b —y >b— B and a —y < a+ A and thence

b—y b—-B
/ e (2) > / ¢ dF, (z).

-y a+A

b B B
/e”dF(:c)Z lim/ 9n (y,v) dFy ('y)=/ lim g, (y,v) dF3 (y) =

But this integral does not depend on y, so we can write

00 > /_ Z e dF (z) > / AR (1) > [ / :B e (z)] { /_ i e"VdF, (y)}.

This inequality is valid independently on a,b, A, B, so that

/ Z erdF (z) > [ / Z e dF, <z>] [ / Z eV, (y)] |

21



where both integrals on the right side exist and are finite. Here v is a real
number, —a < v < 3, so the mentioned integrals exist and are finite for all
such v. Then for z € C, —a < I'm (2) < 3 the integrals

o0 [e o]

he = [ emanGe),  pe)= | ean@

0 —00

exist and are finite, so we can see that f) (z) and f, (z) are analytic charac-
teristic functions, whose strip of regularity is at least the strip of regularity
of f(z). Moreover, the equation f (t) = f; (t) f2 (t), which holds for real ¢, is
also valid in the entire strip of regularity of f(z).

Theorem 2: Let f(z) be a decomposable analytic characteristic function
with strip of regularity —a < I'm (z) < 8. If fi(t) is a factor of f(z), then
there exist positive constants C' and a such that

fi (—iv) < Cell f (—iv)
for all v satisfying —a < v < (.

Proof: From the previous theorem we get

few) = [ emrez [T enn) [ evn ) -

o0 — 00 —00

= fi(~iv) [m e"dFy (y).

o0

We choose two real numbers ay,as such that 0 < F (ay), 1 > F, (az). Then

/—00 eVdF, (y) > /00 eVdF; (y) > /00 e?VdFy (y) = e®'[1 — Fy (ay)]

00 az a2
forv >0
/ eVdF, (y) > / eVdFy (y) > / eUdFy (y) = e [Fy (a)] forv <0

Let a = max [|a1], |az|]. Then surely e~ < em?, e=el’l < e®2v Vo € (—q, ).
But if we denote by C~! = min [1 — F, (az) , F> (a1)], then

/ A, (y) > Cle= and f (=iv) > Cle P, (—iv),

from which immediately follows the statement given in Theorem 2.
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Lemma: Let f(z) be an analytic characteristic function. Then |f (2) | at-
tains it’s maximum along any horizontal line contained in the interior of it’s
strip of regularity on the imaginary axis. The derivatives f®* (2), k € Z of
f (2) have the same property.

Proof: -
f(z)= / e dF (), —a<Im(z)<p
—00
Since f(z) is an analytic characteristic function, then all moments of the
corresponding distribution exist. Then we see that the integral

oo .
/ i"x" e dF (z), reZ
—0o0

has an integrable majorant and we can therefore derivate under the integral
sign (for proof see [3])

fM(2) = ir/ z" e dF (z), z=a+1iy, a €R, ye (—a,pf)

o0

oo o0

27|+ dF (z) = / 12" |e~™VdF (z)

—00

£ (a+1iy)| < /

—00

so if we take r =2k, £ =0,1,2,..., we get
@t ig)| < [ e aF @) = £ (iy)|
so that

max |f(2k) (a+1iy)| = 1f(2k) (iy) |.

—oo<a<oo

Remark: From this lemma immediately follows, that

M (r, f) = max [f (ir), f (—ir)].

Theorem 3: Every factor of an entire characteristic function is an entire
characteristic function. The order of this factor cannot exceed the order of

the original characteristic function.

Proof: Theorem 1 says that every factor of an analytic characteristic func-
tion is an analytic characteristic function, which is regular at least in the
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strip of regularity of the original characteristic function. Therefore clearly
any factor of an entire characteristic function is an entire characteristic func-
tion. From the previous remark we have M (r, f) = max[f (ir), f (—ir)]
and from Theorem 2 f; (—iv) < Celf (—iv), where f; is a factor of f.
Therefore evidently

M (r, f1) < M (r, f) Ce™

and we see that the order of f; cannot exceed the order of f.

Theorem 4 (Cramer): The characteristic function
, t20?
f(t) = exp{int — —~}
of normal distribution has only normal factors. Moreover, if
2 2

f(@)=fi(t) f2(t), where fi (t) = exp{ip;t — %}, =12

then py + po = p and o} + o3 = o2,

Proof: The function f (t) is an entire characteristic function that does not
attend 0, so according to Theorem 3 the factors of f (¢) have the same pro-
perty. Therefore f; (t) has the form

fi(t) = exp{g1 (1)}

and it follows from the Marcinkiewicz theorem (proof can be found in [4])
that g; (t) is a polynomial of degree not exceeding 2. So let

g1 (t) = ag + art + ant®.

Since f; (0) = 1, we see that ap = 0. Because f; (t) must satisfy the relation
fi(t) = fi(—t), the same must be valid for g; (t), so a; = iu; and ap € R.
Further,

1> |fi (t) = exp{ast?},
2
therefore a; < 0 and we set a; = —%l. Together we get

. t2g?
fi1(t) = exp{ipt — ———2—i}

The same must be valid for f;(¢) and it is easy to see that p; 4+ p2 = p and
o? + 0% = o*, because
2 2 2 2 1262

. t“o . t‘o )
exp{iut — ——5——} = exp{iut — ——2—1} -exp{ipgt — —2—}
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Chapter 7

Modification of Bernstein’s and
Polya’s theorem - continuation

From the Cramer’s theorem we can see that Xi,..., Xy are normally dis-

tributed with X; ~ N(al,al) Xy ~ N(a2,02) X3 ~ N(as,02), X4 ~

N(ay,02), where o? + 02 = 08 = 02403, a; +ay = by, a3+ ag = by,

and the modification of Bernstein’s theorem is therefore proved.

We also note that with Cramer’s theorem we can prove Polya’s theorem
in more general way: if we write again the equation

f(t)=f2(%> or f(—t)=f2<—\;—;>,

then by multiplying these two equations we get

ror=1 () 1(55)r

But now we can set g( ) f <7> f (\;—5> = (%), so that g (t) is a

symmetric characteristic function, for which is valid

o0 =1o (5

We see that ¢ () is real and from the yet proved version of Polya’s theorem
g (t) is a characteristic function of N (0,0?). But since g (t) = f (t) - f (—t),
then from the Cramer’s theorem follows that f (t) is a characteristic function

of N (O, "72) So the presumption for symmetry of the characteristic function

in Polya’s theorem is not necessary.
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Chapter 8

Applications

At the end let us see some uses of Polya’s theorem:

1. Polya’s theorem can be understood as some equivalent of central limit
theorem: Let us have a sequence of iid random variables {X;}, we
denote

1 n
SnZ=¢;Z;;§;)Q

. : d
and presume that there exists a random variable Y such, that S,, — Y
d :
for n — oo.Then also Sy, — Y for n — oo and we can write

2n n 2n
1 1 1 1
Son = — Xi=—= | —= Xi+ — Xi). 8.1
’ \/2n; ﬁ(ﬁ; \/'E.Z ) 8.1)

t=n+1

We know that

n 2n
1 . d 1 d /
—— E X, — Y for n — oo, — E X, — Y forn — oo,
vn i=1 \/r_liz:n+1

where Y £ Y. Then we have (after applying limn — oo on both sides

of (8.1))
y £ % <Y+ Y') :

but according to Polya’s theorem Y must have normal distribution with
N(0,0?).
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2. Polya’s theorem can be also used when we want to model the move-
ment of the Brown’s particle in some liquid. If we set it’s movement’s
trajectory to the R2-plane, then on the axes we can observe the val-
ues of random variables Y] and Y,, which we can presume are iid with
the distribution N(0,0?). If we now shift the axes by an angle of 7 in
the anti-clockwise sense, the random variable Y] will be transformed
to random variable Y42 which has according to Polya’s theorem the

same distribution as Y;.
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Chapter 9

Conclusion

This thesis shows us the importance and usefulness of the concept of charac-
teristic functions. They are not only a useful tool for proving characteriza-
tion theorems, but we can also understand the connection between particu-
lar characterization theorems better due to characteristic functions, because
they enable us to re-write the characterization theorems in the form of func-
tional equations and thus give us the possibility to use the huge arsenal of
functional analysis for getting significant results in probability theory and
mathematical statistics.

28



Bibliography

(1] Lachout P.: Teorie pravdepodobnosti, Karolinum, Praha, 2004.
2] Loeve M.: Probability theory, D. Van Nostrand, New York, 1963.

(3] Cramer H.: Mathematical Methods of Statistics, Princeton University
Press, Princeton, 1964.

4] Lukacs E.: Characteristic functions, Griffin, London, 1970

PRIJATO K OBHAJOBE

3005006 (]

PREDSEDA KOMISE PRO BSZZ
STUDIJNI PROGRAM MATEMATIKA

29



