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Chapter 1

Introduction

A fixed point of a mapping f:Y C X — X is a point z € X that satisfies
flx) =x.

Fixed point theorems provide us with answers to the following question:
What assumptions must be passed on a topological space X, its subset Y
and a mapping f : Y — X to guarantee that f has one or more fixed points?

Brouwer fixed point theorem is one of the oldest theorems in fixed point
theory. In 1909, Brouwer [4] stated that every continuous mapping from
a closed unit ball in n-dimensional normed linear space into itself has a
fixed point. It immediately raised a great interest among mathematicians,
who brought numerous quite different proofs and alternative formulations.
Brouwer fixed point theorem and its reformulations were found to be a pow-
erfull tool both in theoretical and in applied mathematics. They also turned
out to be suitable for wide extensions and generalizations.

A comprehensive survey on fixed point theory is the matter of the book
Fixed Point Theory by Andrzej Granas and James Dugundji [6] (1982) and
its re-edition [7] (2003). These books served as a rich source of information
for my thesis.

The thesis focuses on Brouwer fixed point theorem and closely related
results.

In the first chapter, Examples From Real Life, we illustrate Brouwer
fixed point theorem on examples in dimensions 1,2, 3.

The largest chapter, Brouwer Fixed Point Theorem, begins with five al-
ternative formulations of Brouwer fixed point theorem, that are themselves
widely used in mathematical sciences, and proofs of their equivalence. Fur-
ther it contains four proofs (a combinatorial proof, a proof based on Sperner’s
lemma. an analyvtic proof. a proof applying topological degree), that present



rather distinct approaches to the theorem.

The chapter Extensions deals with the following question: “Does Brouwer
fixed point theorem hold in infinite dimension?” In 1935, Tychonoff [21] an-
swered the question in a negative way, showing that the unit sphere in [ is a
retract of the unit ball. Kakutani [10] gave another example: The continuous
map ¢ : B* — B* of the unit ball B® = {z = {z;} € by, ||z]| = D o, 2%}

into itself, defined as (21, s, ...) — (\/1 = (||&|]*), 22, .. .) is fixed point free.

Thus, to obtain any extension of Brouwer fixed point theorem to infinite
dimension, we must either restrict the type of the self-map or the type of
the normed space.

If we consider compact mappings in place of continuous mappings, we get
a generalization of Brouwer fixed point theorem valid in any normed linear
space. Obviously. this statement is precisely Brouwer fixed point theorem
whenever a normed linear space is finite-dimensional, since any continuous
self-map of such a space is compact. We present a slightly stronger result
by Schauder.

We also introduce three well-known generalizations of Brouwer fixed
point theorem preserving the assumption of continuous mapping (by Ky
Fan. Tychonoff (1935), Markoff and Kakutani (1936)), applying Ky Fan’s
KKM principle [9] (1952). KKM principle generalizes Knaster-Kuratowski-
Mazurkiewicz theorem [11] (1929), which is equivalent to Brouwer fixed point
theorem (see section Proof Based on Sperner’s Lemma).

This chapter is of illustrative character and the theorems are stated
mostly without proofs.

The last chapter is devoted to applications of fixed point theory and
closely related results.

In the first section. we formulate Borsuk-Ulam antipodal theorem [3]
(1933), that casily implies Brouwer fixed point theorem (see section Com-
binatorial Proof). We apply the theorem to prove a few basic topological
and algebraic results (e.g. Invariance of dimension number, Fundamental
theorem of algebra).

In the second section, Fixed Point Spaces, we prove two basic observa-
tions on preserving fixed point property and we give an example of infinite-
dimensional fixed point space, the Hilbert cube.

The third section, Evasiveness of Graph Properties, serves as an example
of an application of fixed point theory to graph theory, that scems to have
no link with topology at first sight.



Chapter 2

Examples from real life

2.1 Monk Problem - dim. 1

One morning, exactly at sunrise, a Buddhist monk began to climb a tall
mountain. The narrow path, no more than a foot or two wide, spiraled
around the mountain to a glittering temple at the summit. The monk as-
cended the path at varying rates of speed, stopping many times along the
way to rest and to eat the dried fruit he carried with him. He reached the
temple shortly before sunset. After several days of fasting and meditation he
began his journey back along the same path, starting at sunrise and again
walking at variable speeds with many pauses along the way. His average
speed descending was, of course, greater than his average climbing speed.
Prove that there is a spot along the path that the monk will occupy on both
trips at precisely the same time of day.

Here is an intuitive proof of the monk problem. Imagine that there are
two monks, one going down and one going up, each beginning on the same
day at sunrise. At some point in the day the hiker’s must meet!



Geometrical Illustration in dim. 1

A continuous function f : [0,1] — [0, 1] has a fixed point. It means that
f must cross the diagonal.

AR
A . X=y

. Fixpoim

2.2

Take two equal size sheets of graph paper with coordinate systems on
them, lay one flat on the table and crumple up (but don’t rip) the other one
and place it any way you like on top of the first. Then there will be at least
one point of the crumpled sheet that lies exactly on top of the corresponding
point (i.e. the point with the same coordinates) of the flat sheet.

2.3 Cup of Coffee - dim. 3

Consider a cupful of coffee. Each point is somewhere in 3-dimensional space.
Stir. At least one point ends up in the same place as it began.

9



Chapter 3

Preliminaries

3.1 Homotopy

Definition 3.1.1. Two continuous maps f,g: X — Y are called homotopic
if there is a continuous map H : X x [0,1] — Y such that for each z € X
H(z,0) = f(x) and H(x,1) = g(z). The map H is called a homotopy
or continuous deformation of f to g (written H : f =~ g). A mapping
f: X — Y homotopic to a constant map is called nullhomotopic (written
f ~0). A space X is called contractible if id : X — X is nullhomotopic.

The relation of homotopy is an equivalence relation on the set of all
continuous maps of X into Y. Classes of this equivalence relation are called
homotopy classes.

3.2 (' Functions

Definition 3.2.1 (Derivation). Let G be an open subset of R", and let
f=0f fo o, fi) : G € R* — R* be a mapping with components f; : G —
R.:i=1.2...., k. We say that a linear mapping L : G — R" is a derivation
of fin a point a € G, if

fla+h)— fla)— L(h) _0
[1Al] |

/I'IH,;.H()'

Derivation of the mapping f in the point a is denoted by f’(a).
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The matrix of the linear mapping f'(a) is called Jacobian matriz and is
of the form

0 P
g'_g;(“) E %j; (a)
-a—af(a) . %(a)
af, o :
57%((1) . %(a)

If & = n, then the determinant of the Jacobian matrix in a is called
Jacobian determinant and is denoted by J¢(a).

Definition 3.2.2 (C' functions). Let G be an open subset of R", and let
f: G c R" — R* be a mapping. We say that f belongs to C! class of
functions if all its partial derivatives g—a{; (1 =1,2,...,n) are continuous.

Let f: B" — R™ We'll say that f € CY(B™) if there exists an open set
B" and f* € C'(B™) such that f*|g. = f.

Definition 3.2.3 (Regular Mapping). Let G be an open subset of R"
and let f : G — R"™ be a mapping. We say that f is a regular mapping if
feCHG) and Jy(z) # 0 for all z € G.

Theorem 3.2.4 (Special case of Stone-Weierstrass Theorem). Let G be
an open. bounded subset of R™, and let C'(G) be the space of continuous
mappings from G to R™ with the sepreme norm. Then for every € > 0 and
cvery f € C, there exists a f* € C such that ||f — f*|| <e.

3.3 Simplicial Complex

Abstract Simplicial Complex

Definition 3.3.1. A simplicial complex is a finite collection K of sets such
that

(1) VN e KLY CX =Y €K and
(2) K #0.

The sets in A are called (abstract) simplices. The elements of all sets in K
are called vertices of IS. The set of all vertices is denoted by V/(K).

11



Geometric Realization

Definition 3.3.2. A finite set of vectors in a linear normed space is called
affinely independent if none of its elements lies in the affine hull of any subset
of the others.

Definition 3.3.3 (Geometric Simplex, Face, Boundary). Let V =
{po, o ,p,g} be a finite set of s + 1 affinely independent vectors in a linear
normed space. The convex hull o of V' {}° _, v : Xy = 1,0 > 0} is
called the (closed) s-simplex and is denoted [po, ..., ps]. Elements of V' are
called vertices. The dimension of the simplex o is |V| + 1.

The convex hull of arbitrary subset of vertices of the simplex o is called
face of o.

The boundary of the s-dimensional simplex o is the union of all faces of
dimensions < s — 1.

Let K" be an abstract simplicial complex. We can construct a correspond-
ing geometric realization & C RY¥) in the following way: First we define
the mapping - : V(K) — RV such that no vertex of K is mapped to the
affine hull of any subset of the others. Then we extend © to the elements of
K (sets of vertices): If X € K then X = (D ex U, 2 ay = 1 a, > 0}.
FinaSlly we extend - to K: K = Uxex X.

Obviously for each X € K| X is a simplex and each point z € K has a
unique representation r = ZUEX a0 for some X € K. Denote Ax = {v €
X : a, # 0} the support simplex of .

In correspondence with an abstract simplicial complex, we can define a
geometric simplicial complex.

Definition 3.3.4 (Geometric simplicial complex). A collection K =
{S1.5,.....5,} of simpleces is said to form a geometric stmplicial complex
if

(1) ¥VS,, T a face of S; = T € K,
(2) VS,.S, € K,S,NS; #0 = 5,NS;is aface of both S; and S

Definition 3.3.5 (Polyhedron). The union of all simplices in a geometric
simplicial complex o is the polyhedron of o.

Definition 3.3.6 (Triangulation). Let X be a topological space. A sim-
plicial complex o such that X is homeomorphic 7, if one exists, is called a

triangulation of X.

12



Definition 3.3.7 (Barycentric subdivision). The barycenter of an n-
simplex o = [py, ..., p,) is the point [o] = 3 7 L.

Let K be a geometric simplicial complex. The first barycentric sub-
division of K is a simplicial complex Sd'(K) consisting of all simpleces
oo, ..., [os]], where 09 C 0y C ... C 04 is a sequence of simplices of K.

The m-th barycentric subdivision is defined inductively by

SA(K) = K, Sd™(K) = Sd'(Sd™(K))

Iterated barycentric subdivision can be used to construct arbitrarily fine
triangulations of a given polyhedron.

Simplicial Mappings

Definition 3.3.8. Let K and L be two abstract simplicial complexes. A
simplicial mapping is a mapping f : V(K) — V(L) that maps simplices to
simplices, i.e. f(X) € L whenever X € K.

Definition 3.3.9. Let K; and K, be two abstract simplicial complexes
and o, and o, the corresponding geometric simplicial complexes. Let f :
V(K,) — V(K,) be a simplicial mapping of K5 into K,. Then we define the
mapping f : 0, — 0y as follows:

13



Chapter 4

Brouwer Fixed Point Theorem

Brouwer fixed point theorem is a very useful tool in many mathematical
fields because it offers several different equivalent formulations, many differ-
ent proofs, many extensions and generalizations and numeruous interesting
applications.

4.1 Equivalent Formulations of Brouwer
Fixed Point Theorem

Theorem 4.1.1 (Brouwer fixed point theorem). Fvery continuous map-
ping f : B" — B™ from the unit closed ball of n-dimensional Euclidean space
to itself has at least one fized point.

Theorem 4.1.2. The following statements are equivalent:
(1) Brouwer fived point theorem.

(2) (Non-retraction Theorem). There is no retraction r: B" — Sl
from the unit closed n-dimensional ball to the unit (n —1)-dimensional
sphere, i.e. there’s no continuous mapping r : B" — Sn=1 which is
identical on S"71

(3) Fvery f € CY(B") has at least one fived point.
(/) There is no retraction f € C'(B"), f: B" — Sn—t,

(5) The unit (n-1)-dimensional sphere S™ 1 4s not contractible in itself.

14



(6) Poincaré-Miranda Theorem. (See Theorem 4.2.2)

Proof. (1) < (2). If there exists a retraction r : B® — S™~ ! than the map
r +— —r(x) is a continuous map of B" into itself without a fixed point.

On the contrary, suppose that f : B" — B™" is continuous and has no
fixed point. Since there is no z € B", such that f(z) = x, for each x there
is exactly one ray (x, f(z)) originating in f(z) and going through z. So we
can construct a continuous retraction g : B® — S™ 1 where g(x) as a point
is an intersection of (z, f(z)) and S™ !, (Detailed construction of g is the
same as in the implication (4) = (3) and is given in the section Analytic
Proof.)

(1) = (3). Bach f € C'(B™) is continuous.

(3) = (1). Let f: B™ — B"™ be a continuous mapping. Since B" is a
compact metric space, there exist & = mingepgn | f(z) — x| and zy € B" such
that o = | f(z¢) — zo|. We want to show that a = 0.

Due to ??, for each € > 0 there exists g € C'(B"), g : B — R" such that
1/ —all < Thus llgl| < |1l + If = gl| < 1+ and (1+)"lg € C}(B")
maps B" into B". Due to (2) (1 +¢) 'g has a fixed point z.. We obtain
following inequalities:

|f(x:) — xe]

|f(5136> - (1+ 5)~‘19($5>‘
< [flze) +ef(z) —gle)| (1 +e)
< 1f(z2) - gla)] +e | flao)] < 2.

For each £ > 0 we proved that o < 2¢ and hence o = 0.

(3) < (4). Proof is given in the section Analytic Proof.

(2) = (5). Suppose that S™! is contractible in itself, which means that
there exists a homotopy h : S ! x [0,1] — S™ ! such that h(z,0) = z and
hix,1) = 1, € S" ' Then we can continuously extend idgn-1 to a retraction
c:B"— S L

L e

R el <
=0 (2l = 1) el 2

(5) = (1). Let f: B" — B" be continuous without any fixed point,
then we can define a continuous deformation H : S" ! x [0,1] — S™ ! of
id: 5" ! — S" ! to a constant.

e (@) i<l
Hx.t) = { H;(rfz_f?:;ff)(?‘—)‘]}[(w 2t)z] (1) = =
oo ey 2 Sts 1

15



(1) < (6) The proof is given in the following section. O

4.2 Poincaré-Miranda Theorem

History of the statement in Brouwer fixed point theorem goes back to the
19th century when Bernard Bolzano (1781-1848), the outstanding Czech
philosopher and mathematician, proved that if a function f, continuous in
a closed interval [a, b], changes signs at the endpoints, then f equals zero at
some point of the interval. In 1883-1884, Henri Poincaré extended this result
to finite families of continuous functions on n-dimensional cubes [15],[16].

“Let f1,..., fn be n continuous funcionts of n variables zy,...,x,: the
variable is subjected to vary between the limits +a; and —a;. Let us suppose
that for =, = a,, f; is constantly positive, and that for x; = —a;, f; is
constantly negative; I say there will exist a system of values of x where all
the f’s vanish.”

In 1940, Miranda [14] proved that Poincaré theorem was equivalent to
Brower fixed point theorem. That is the reason why Poincaré theorem is
often called Poincaré-Miranda theorem.

Let us first show that Brouwer fixed point theorem implies Poincaré-
Miranda theorem 4.2.2.

Proposition 4.2.1 (Theorem on partitions). Let I" denote the n-cube
{(xy.... )| o] <1 fori=1,2,....n}. The i-th face {x € I"|x; = 1}
of 1" will be denoted by I}, and the opposite face {x € I"|x; = —1} by I;.
For each i € {1...., n} let A, be a closed set separating I and I (i.e.
I"\ A, = U UU, where the U, U are disjoint open sets and I;* C U],
I cU ). Then (-, A #0.

Proof. Since I™ is a connected set, A; # () for each i.
For each 7 € {1..... n} define

—d(x, A), xeU,
hi(x) =< d(z,4;), xelU,
0 T € Ai-

We'll show that the mapping h : @ — x + (hi(z), ho(x), ..., hy(2)) maps "
into itself. in other words, that |x; + h;(2)] < 1 for each i € {1,...,n}:

16



Let a € I""!, each segment
X =Aze "] <1,(Vi <j)(@j = a;), (V] > i)(x; = a;-1)}

is a connected subset of I so that either X¢ C U, or X* C U, or X¢
meets A;. Since XP N IT # 0 # XeN I, only XN A; # 0 is possible. For
x € I" and each = 1,2, ..., n, find a' such that = € Xl-“i. If z € A;, then
hi(z) = 0 and |z; + hi(z)| = |x;| < 1. If z € U, then z; — d(z, A;) < 1,
since d(x, A;) > 0. As x € X2 for some a' € I""!, it follows that d(z, 4;) <
d(x, 1, ) < d(x;,—1) and consequently z; — d(x, A;) > x; — d(z;, —1) > —1.
Similarly for x € U;".

We proved that the continuous mapping h maps [" to itself. According
to Brouwer fixed point theorem, h has a fixed point zg, so that h;(zq) =0

for all z € {1,...,n} and consequently zo € (_, A;. O

Theorem 4.2.2 (Poincaré-Miranda). Let fi,..., f, be continuous real-
valued functions on I™ such that for each i € {1,...,n}

fi(x) >0 forazel’,

filx) <0  forxzel .
Then there exists ' € I™ such that f;(x') =0 for each i € {1,...,n}.
Proof. For i = 1,2,..., n denote AT = f7'[0,00) and A; = f;'(—o0,0].

Obviously A, = Af, N A7 # 0 is a closed set, fi(a) = 0 for all a € A; and
Ut = A"\ A, U~ = A\ A open sets, such that [;* C U and I; C A

Applying 4.2.1, there exists 2’ € Ay N AyN...N A, which satisfies f;(z') =0
for each 7 =1,2,..., n. O

Now we show how easily Poincaré-Miranda theorem implies Brouwer
fixed point theoren.

Theorem 4.2.3 (Coincidence theorem). Let f,g: I" — I" be continuous
mappings. If f(I7) C I7 and f(I;) C I foreachi =1,2,...,n, then there
cxists a point x € I" such that g(x) = f(x).

Proof. Define h(x) = g(x) — f(x). The mapping h satisfics the assumptions
of Miranda-Poincaré theorem and therefore there is a point z with h(z) = 0,
which means that g(z) = f(x). O
Theorem 4.2.4 (Brouwer fixed point theorem). Every continuous map-
ping g : I" — I" has a fized point.

Proof. We just apply the Coincidence theorem to f, the identity map on
I O

17



4.3 Proofs of Brouwer Fixed Point Theorem

Brouwer [4] proved his theorem for n = 3 in 1909. A year later, Hadamar
gave the first proof for arbitrary n. In 1912 Brouwer [5] presented a proof
using the simplicial approximation technique. Simple and short proof was
given by Knaster-Kuratowski-Mazurkiewicz in 1929 (based on Sperner’s
lemma [19] from 1928). First proof of analytic nature was presented by
Milnor [13] in 1978. There have been given numerous various proofs using
various techniques in language of various mathematical theories. We prove
Brouwer fixed point theorem in four different ways to show that it cannot
be considered as a part of a single mathematical theory.

Combinatorial Proof

We are going to prove the non-retraction theorem, which is equivalent with
Brouwer fixed point theorem:

Theorem 4.3.1 (Non-retraction Theorem).

There is no retractionr : B® — S™~! from the unit closed n-dimensional ball
to the unit (n — 1)-dimensional sphere, i.e. there is no continuous mapping
r . B" — S" " which is identical on S™71.

The non-retraction Theorem is a direct consequence of one of the equiv-
alent formulations of Borsuk-Ulam theorem:

Theorem 4.3.2. There is no continuous antipodal mapping f : S™ — S™~!
(antipodal means f(—x) = —f(x) for each x € S™).

Proof of 4.3.2 = 4.3.1. Let r: B — S"~! be a retraction of B" onto Sn=t
Y 1 +l

Denote S = {(z1,....xp1) € R™ 570 2?2 = 1,2,,1 > 0} the upper

hemisphere of S™ and S™ the lower hemisphere of S™. Clearly the projection

78" — B" (xy....,7,41) — (x1,...,2,) is a homeomorphism and thus

I, = 7oris a retraction of S" onto S™7'. Since S"7' = ST N S", the

extension h: S™ — S of h, to the whole sphere S™

N hi(z) ax€St
h(r) = { ~h (-z) xe€S",

. . . . ) . . n—1
is a continuous and antipodal mapping from S™ into 5", O

Existence of a mapping f from 4.3.2 contradicts Lusternik-Schnirelmann-

Borsuk theorem:

18



Theorem 4.3.3 (Lusternik-Schnirelman-Borsuk). Let {My,..., M1}
be a closed covering of S™. Then there exists i such that M; N —M; # (.

Proof of (4.3.3) = (4.3.2). Let f : 8™ — S™ ! be an antipodal mapping.
(n — 1) simpleces in basic triangulation ¥"~! of S™ provides decomposition
of S Vinto n + 1 closed sets A;,..., A,41. Clearly, no A; contains a pair
of antipodal points.

Let M; = f71A;)],i=1,...,n+ 1. {M;}""!is a collection of closed sets
that covers S™ and M, N —M,; = 0. If for some i existed x € M, N —M; # 0,
then both f(z) € A, and f(—z) = — f(x) € A;, which is a contradiction. [

Proof of 4.3.3. The proof is based on a simplicial approximation of S™. Thus
we consider the unit sphere in R™™? with the norm ||z|| = Y21/ |2, which
is homeomorphic with S™ in the Euclidean norm. In this norm the unit

sphere can be regarded as a union of simpleces of a triangulation.

Definition 4.3.4 (Basic triangulation). The unit ball B"*! is the con-
vex hull of the set {e;, —e1,... e,41, —€n41} and the set of all n-simpleces
E2T +e,41] and all their faces provides a triangulation of S™. This
triangulation is called basic triangulation and is denoted as ¥™)

A special group of triangulations of S™ will be important for our purposes:
g P p

Definition 4.3.5 (Symmetric triangulation). A triangulation S" of 5™
is called symmetric if for each & < n the complex of k-simpleces of S"
forms a triangulation of S* and for each k-simplex o* € 8" the set —oFis a
k-simplex of 8™.

Definition 4.3.6. Let f : 8" — " be a simplicial mapping, where S" is
a symmetric triangulation of S™. An r-simplex [py,...,p,] of " is called

positie if f([po. ..., p]) = [+en, —€i o, (=1)7¢; ] is an r-simplex of S*.
An r-simplex [po, ..., pr] of 8" is called negative if f([po,...,p]) =
e =€y oo (—1)7e;, ] is an r-simplex of S*.
An r-simplex [pg. .. .. p,] of 8™ is called neutral if it’s neither positive nor
negative.

For any simplicial mapping f : S* — S™ and any subset L C 8™, denote
p(f. L.r) the number of positive r-simpleces in L under f.
Theorem 4.3.7 (Combinatorial lemma). Let 8" be a symmetric trian-
gulation of S™ and let f : 8" — X" be an antipodal simplicial mapping.
Then f maps an odd number of simpleces in 8™ to [e1, —ea, ..., (=1)"eni1].
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Proof of combinatorial lemma.
It’s enough to prove that p(f, S* k) = p(f,S* 1k — 1) mod 2 for each
k < n, because it directly implies that p(f,S™,n) = p(f,S%0) mod 2.
Since S? consist of exactly two antipodal points, f|go maps them onto a pair
of antipodal vertices and clearly p(f, S™,0) = 1.

Denote S* the upper hemisphere of S* (recall that S*~! = Sk N.S*) and
decompose the set of k-simpleces of S™ in S¥ into three disjoint classes:

A, = {s" c S%|s" is positive },
A = {s" C S%|s" is negative },
Ay = {s" c S¥|s" is neutral }.

Consider the sum

T= 3 p(fs"k=D+ Y p(fs"k=D+ Y plfis" k1),

ske Ay ske A skeAg

We'll count the parity of 7" in two ways:

Clearly the sum T contains all positive s* 1 in S¥. Because each (k —1)-
simplex is a face of exactly two k-simpleces of S™, all positive s*~! not in
ST geeur in the sum T exactly twice and those which are in S*~! exactly
once and T = p(f, S¥1. k- 1) mod 2.

Let’s count the parity of N = Y _ . p(/f, s® k —1). Since a neutral
sk can contribute to the sum N only if dim f(s*) > k — 1, we can write
fs%)y =leq, ..., e, ], where all the vertices are either distinct, or one occurs
twice, and the signs do not alternate. As (k — 1)-face of s* is obtained by
romoving one vertex from s, we get a positive (k—1)-face if and only if there
is at most one pair of adjacent vertices with the same sign. If removing one
of these vertices provides a positive face, so also will removal of the adjacent
one. Thus for each s* € Ag, p(f,s*, k—1) is even, so that

T = Z p(f.s" k—1)+ Z p(f.s" k—1) mod 2.

ske Ay ske A
As mentioned above, each positive s* € A, has exactly one positive

(k — 1)-face and so does each negative sk € A_, so that

Z p(f. sfk—1)=|A,

ske Ay

ST st k= 1) = AL

skeAy

\
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and therefore

T = (JAy]+]A-[) mod 2.

Because f is antipodal, s* C S* is positive if and only if —s* C S* is
negative, which means that [A_| = [{s* C S*|s* € | A, [}|. Therefore |A |+
|A_| = p(f,S* k) and the proof of combinatorial lemma is complete. O

The following result is well-known and we shall omit the proof; it can be
found in numerous books, e.g. [6].

Theorem 4.3.8 (Lebesgue lemma). Let (X, d) be a compact metric space
and {G1,...,G,} its open covering. Then there exists a A > 0 (a Lebesgue
number of covering ) with the property: if A C X,

diamX < X, then for some 1 € {1,...,n}: A CG,.

Combinatorial lemma and Lebesgue lemma helps us to prove the theorem
which directly implies Lusternik-Schnirelman-Borsuk theorem.

Theorem 4.3.9. Let M, ..., M, be closed subsets of S™ such that none
of them contains a pair of antipodal points. If the collection of sets

{]Vf], _‘A4l) s 7Mn+1) _M'FH-I}
1s a covering of S™, then ﬂ;fll M; # 0.

Proof. 4.3.9. For contradiction assume that ﬂ?:ll M, = 0.

Define open sets Gy = S™— M, fori € {1,...,n+1}. Let A be a Lebesgue
number of the open covering {Gy,...,G,1} (so that (VA : diam(A) <
N (Fie{l, ..., n+ 1} (M, NA=0)).

Denote — M, := M _,. Because M; N M_; =0, d(M;, M_;) =¢; > 0.

Let A, be a symmetric triangulation of S™ such that the diameter of each
simplex in A, is < r = min{A, z,... ,En+1 ). We first construct an abstract
simplicial mapping f: V(K,) — V(E") as follows:

For each vertex p € V(K,.), f(p) = sgn(j)(—1)"'ey;, where j is the first
index such that p € M;. Obviously f is antipodal. If f does not map two
vertices pg. p of a simplex in K, to a pair of antipodal vertices, then f is
also a vertex map: Assume that f(py) = —f(p). it means that p, € M; and
p € M, for some i or conversely. But d(pg, pi) < r and d(M;, M_)>r.

1.3.7 gives existence of a simplex s" = [py,...,pp41) such that f(s") =
e, —€eo, ..., (—1)"€,41]. Due to the definition of f, p; € M; (i > 0), which
means that s" A, £ 0fori=1,...,n+ 1. But diam(s") < A, so that for
some 79 € {1..... n+1} M, Nns*=0. O
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To end the proof of Lusternik-Schnirelman-Borsuk theorem 4.3.3, we
simply apply 4.3.9:

Let M = {M;,... ,M,,1} be a closed covering of S™, where none of
the sets M, contains a pair of antipodal points. Because the collection of
sets {My, =M, ..., M, 1, —M, 1} covers S™, there exists xg € My N Mo N
..M M, 1. Because M covers S™, there exists j € {1,...,n+ 1} such that
—x9 € M;, which means that M, contains both zy and —xzy.

O

Proof Based on Sperner’s Lemma and KKM Theorem

In 1929, Knaster, Kuratowski and Mazurkiewicz applied Sperner’s lemma
to prove so called KKM-theorem, from which they deduced Brouwer fixed
point theorem. The ease at which they obtained Brouwer’s theorem brought
a question if these three theorems were equivalent. This question remained
open until 1974, when Yoseloff [22] showed that Brouwer fixed point theorem
implies Sperner’s lemma.

Equivalence of these three theorems is one of most important relation-
ships Brouwer’s theorem has with any results, since this trinity has a great
number of applications.

The KKM theorem was extended to topological vector spaces by Ky Fan
9] in 1952.

L

Theorem 4.3.10 (Sperner’s Lemma (1928)). Let P be a subdivision of
an n-dimensinal simplex [po, . .., pa], and let V(P) be the set of all vertices of
simplexes in P. If a labeling h - V(P) — {0,1,...,n} satisfies the condition

h(v) € {ig,iy,. .., ir} whenever |a;y, a;,. ..., a;] is the support of v,
then the number of simpleces in P label by {0,1,...,n} is odd.

Theorem 4.3.11 (KKM). Let X = conv{zg,z1,...,ZTn} be an m-simplex.
Suppose that Ag, Ay, ..., A, are closed subsets of X such that

A.
conv{Z,, iy ... Ty, } C U A
i=0

holds for any subset {x;} of {zi}ity. Then (N Ai # 0.



Proof of 4.3.10 = 4.3.11. Let X = conv{zg,z1,...,Z,»} be an m-simplex.
For each n € N, we find a simplicial subdivision X" of X such that the
diameter of each m-subsimplex of X™ is less than 1/n. We find a labeling of
the vertices of simplices in X", that satisfies the assumptions in Sperner’s
lemma: each vertex ¢ € X" has its support simplex [z, T, ..., ;] By
our assumption, ¢ € A;, for some 0 < j < k. By Sperner’s lemma, there is
an m-simplex in X" labelled by {0,1,...,n} : conv{p{.pt,....ph}. Upon
relabeling if necessary, we can assume that p? € A;. Compactness of X
guarantees that for each i € {0,1,...,m} there is a convergent subsequence
of {¢"}°°,. Since the diameter of the simplexes in X™ goes to zero, all the
subsequences must converge to a common point. Each A, is closed in X,
and thus this limit must be in (", 4,. 0

KKM-theorem easily implies Brouwer fixed point theorem:

Let S = [s0,81,...,8y,) be an m-simplex and f = (fi,...,fm) : S — S5
be a continuous mapping. Each x € S is represented as = = > ", a;s;,
where > o, = 1 and x; > 0. Define closed sets

Ai={z €S filz) <z}

Applying KKM-theorem we get a point y € S such that fi(y) < y; for
each i. Since "y, = 1 = > (f(y)): we obtain y; = (f(y)); for each 7 and
consequently f(y) = y.

Analytic Proof

Until the 1970’s, no proof based on analysis was known. In 1978, John
Milnor published the first analytic proof of Brouwer fixed point theorem.
Variations on Milnor’s proof followed (e.g. Rogers [17]). In past decades,
many other proofs analytic in nature appeared (e.g. Samelson [18], Su [20]).

We are going to prove the non-retraction theorem 4.3.1 for C ! functions
which is equivalent to Brouwer fixed point theorem.

Theorem 4.3.12. The following statements are equivalent:
(1) Each f € CY(B"), f:B" — B" has at least one fized point.

(2) There is no retraction f € cCYBm"), f:B"— S™ 1
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Proof. (1) = (2). Let f be a mapping described in (2). Denote ¢ = —f.
Then ¢ € C'(B") and ¢ : B® — B™. Due to (1) there exists zy € B" such
that ¢(z¢) = xo. Because |¢(xq)] = |—f(z0)| = 1, |zo| = 1 and 2 = f(z0) =
—f(xg) = —xo. In other words zy = 0, which is a contradiction.

non(1) = non(2). Let ¢ : B* — B", ¢ € C'(B") without a fixed point.
We're going to construct a retraction f : B* — S™, f € C'(B").

Let B" O B"™ be an open ball, ¢* : B* — R", ¢* € CY(B™"), ¢*|g» = ¢.

We'll show that Vo € B : ¢*(z)x # 1: ¢*(x)x < |¢p*(x)| |z| < 1. If there
was © € B", such that ¢*(x)z = 1 then |z| = |¢*z| = 1 and there exists
¢ € R such that ¢*(z) = cx and thus ¢ = cx -z = ¢*(x)z = 1 and ¢*(z) = =.

So we can suppose that ¢*(z)z # 1 on B" and define

1 —zx

de)*(ﬂf),l' € B™ .

filz) =z -
Obviously f; € CY(B™).
f{ is nonzero on B™: If there was = € B" then there would exist ¢ € R
such that © = c¢*(r) and thus

v — (¢*(x)x)r — ¢*(x) + (z - x)d" (2) _ T »*(z)
1 —o¢*(z)x 1— ¢*(x)z’
so x would be the fixed point of ¢. We showed that f;(z) # 0 on B™ and

we can suppose that f; # 0on B". f* = f7/|ff| is the required retraction:
e CYB"), |f*| =1on B", fi(x) =z for each z € S~ 1. O

Now if we prove non-retraction theorem for C'' functions, Brouwer fixed
point theorem will be proven.

Theorem 4.3.13. There is no retraction f € CY(B™), f: B" — S"1.

Proof. For contradiction we assume that there exists f € C'(B"), f: B" —
S 1 such that f(x) =z for all z € S" 1.

Let B" > B"and f*: B" — R"such that f* € C'(B"") and f*|z» = f.
Define ¢ € CY(B™) as g(z) = f*(z) —x, * € B". We can suppose that
there exists & € R, for which ||(¢g*)(2)|| < k for every € B™". Mean value
theorem gives us an inequality |¢*(z) — g*(y)| < k |z — y|, Yo,y € B™.

Define deformations f(s) = x + tg*(z), for t € [0,1], z € B™". Clearly
fr(r) = for v e S" 't €[0,1]. We'll prove that for t € [0,1/k), f} is
injective and regular on B™:
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Let o,y € B"™ and suppose that f7(z) = f;(y). Then |z —y| =
itl1g*(z) — g*(y)| < tk|x —y|. From tk <1 we see that z = y.

(f)(z) = I + t(g*)(z). Since ||t(g*) (z)]| < th < k(1/k) = 1 for all
x € B" (f7)(z) is an injective linear mapping and f; is regular.

Due to the inverse mapping theorem, f; is an open mapping and thus
fr(Bg), By is the interior of B", is an open set. For z € B", |fi(x) <1,s0
that f;(B") C B™. Since f; is a compact mapping, f;(B") is a closed subset
of B f3(B") = fr(B)U fr(S") = f(BUS™. f;(By)ns" ! =0,
because f; is injective. It yields f;(By) = f;(B") N By and so f1(B§) is
both open and closed subset of Bf. However Bj is a connected space, so
that f7(B{) = B{ and f(B") = B".

All the ssumptions of the substitution theorem are satisfied (A" is the
Lebesgue measure in R"):

et ()l do = [ det(f7 @yt (41

By

v (Bg) = X ) =
By
The function ¢ — det(f7)(z), x € By is a polynomial, which is 1 for ¢ = 0
and non-zero for t € [0,1/k) (because (f;)’ is injective for ¢ € [0,1/k) and
cach © € B""). This verifies the last equality in (4.1).
From (4.1) we can see that the polynomial ¢ — fBS’ det(f) (z)dx is
constant on the interval [0,1/k) and thus for all ¢ € [0,1).

N'(B)) = /B det(f}) (z)dx = /B det(f*) (z)dz.

If for some o € By holds det(f*)(zo) # 0, then the image of some neigh-
bourhood of xg is an open set. This cannot happen, beacuse f*(B") =S
It means that \'(B") = 0, which is a contradiction. O

Proof Based on Topological Degree in R"

Definition 4.3.14. Topological Degree in R". Denote by D the set of
all triples (f, G.p). where G is an open set in R", f: G — R"is a continuous
mapping and p € R\ f(0G). A mapping deg : D — R is a Topological
degree in R™ if the following conditions are satisfied:

(1) If f is the identity on G and p € G then deg(f, G,p) =1

(2) If Gy, Gy C G are two disjoint open sets and p ¢ f(G\ Gy UG,) then
deg(f.G.p) = deg(f.G1.p) + deg(f, Ga, p).
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(3) If H : [0,1] x G — R" is a continuous mapping, fo(z) = H(0, ),
filz) = H(1,z) and H(t,z) # p for t € [0,1] and =z € OG, then
deg(fo, G, p) = deg(f1, G,p).

(4) If deg(f, G, p) # 0, then there exists x € G such that f(z) = p.

Theorem 4.3.15 (Leray-Schauder [8]). Topological degree in R" exists
and is unique.

Proof of Brouwer’s theorem. Let f : B"™ — B™ be a continuous mapping
without a fixed point (i.e. Vo € B", f(z) # z). Define the homotopy H
as H(t.z) = o — tf(z), for x € R* and t € [0,1]. For z € S"! and
t €1[0,1], H(t,x) # 0: for t = 1 it follows from the assumption, for ¢ € [0, 1),
tf(x)l] <t < 1 and thus z # tf(z). Denote B! the unit open ball in
R", and go(z) := H(0,z) = z and ¢;(z) := H(l,z) = 2 — f(x). Due to
4.3.14(3): deg(go, G,0) = deg(gy,G,0). Because gg is identical on G, due
to 4.3.14(1) deg(go, G,0) = 1 and consequently deg(g;,G,1) = 1. 4.3.14(4)
gives us existence of € G with g;(z) = 0, which contradicts x # f(x) for
all 7 € B™. O

Remark. Some of the proofs of Brouwer fixed point theorem are elementary
and thus long (such as our Combinatorial and Analytic proof). Some other
proofs are very short but they require deeper knowledge of some mathemat-
ical theories (such as our proof based on topological degree). For example
a proof using algebraic topology based on the theory of homology groups is
very short. Having counted homology groups of the unit closed n-ball and
its sphere, it is easy to prove that there is no retraction of the ball onto the

sphere.
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Chapter 5

Extensions

Brouwer fixed point theorem follows three assumptions - n-dimensional Eu-
cleidean space, compact convex subset of this space and a continuous map-
ping from the subset to itself. The goal of the extensions is to relax some
assumptions, while usually losing some generality of the others.

We show two extensions of Brouwer fixed point theorem to infinite dimen-
sions. First valid for all normed spaced, but only for a subspace of continuous
maps - compact maps. The main idea of this extension is approximation of
compact maps between normed linear spaces by finite-dimensional maps.

Second part presents an extension of KKM theorem (being equivalent
to Brouwer fixed point theorem) to infinite dimension, to so called KKM-
principle. Three simple, but important applications of KKM-principle to
fixed point theory follow without proofs.

5.1 Compact maps

Definition 5.1.1. Let X and Y be topological spaces. A continuous map
f:X — Y is called compact if f(X) is contained in a compact subset of Y.
Let A be a subset of a metric space (X,d) and F': A — X. Given € > 0,
any point a € A with d(a, F'(a)) < ¢ is called an e-fized point for F.

Proposition 5.1.2. Let A be a closed subset of a metric space (X,d) and
F A — X a compact mapping. Then F has a fived point if and only if 1t
has =-fired point for each € > 0.

Proof. 1f F has a fixed point ag, then ag is an e-fixed point for cach & > 0.
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For each n € w, let a, be a 1/n-fixed point of F, so that d(a,, F(a,)) <
1/n. Since F' is compact, there exist a subsequence {a,, }3>, € {an}ne,
such that F(a,,) — = € —Czﬁ It follows that a,, — = € A. Since F'is
continuous, F(a,) — F(z); consequently = = F(x) and z is a fixed point of

F. U

Theorem 5.1.3 (Schauder approximation theorem). Let X be a topo-
logical space, let C' be a convex subset of a normed linear space V' and let
F: X — C be a compact mapping. Then for each € > 0, there exists a
finite set N = {cy,...,¢c,} € F(X) C C and a finite-dimensional mapping
F.: X — C such that:

(i) ||F: — F(x)|| < e forallz € X,
(11) F.(X) C convN C C.

Theorem 5.1.4 (Schauder fixed point theorem). Let C' be a convex (not
necessarily closed) subset of a normed linear space V. Then each compact
map F . C'— C has at least one fixed point.

Proof. According to 5.1.2, it is enough to prove that F' has an e-fixed point
for each ¢ > 0.
Fix = > 0. By 5.1.3, there is a F. : C' — C with properties:

||F.(x) = F(z)|] < e, reC
F.(C) C conv(N) C C for some finite set N C C.

Since F.(conv(N)) C conv(N) and conv(N) is homeomorphic to a finite-
dimensional closed ball, it follows from Brouwer fixed point theorem that F.
has a fixed point x.. Because ||z, — F(z.)|| = ||Fe(z:) — F(z.)|| < e, . is
the required e-fixed point for F. O

5.2 KKM-Principle

KK M-principle extends KKM theorem that is equivalent to Brouwer fixed
point theorem (see section Proof Based On Sperner’s Lemma and KKM The-
orem) to infinite-dimensional topological vector spaces (Ky Fan [9] (1952)).
Further extensions and their applications have given rise to a branch of
research known as KKM theory. Its results are widely used as a tool for
fixed point theory, minimax problems, dimension theory, and mathematical

CCONOMICS.
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Definition 5.2.1. Let V be a vector space and X C V an arbitraty subset.
A mapping G : X — 2F is called a Knaster-Kuratowski-Mazurkiewicz map
(or simply a KKM-map) if for each finite subset {zy,...,z,} C X,

conv{zy,...,zs} C U G(xi)
i=1

We present Ky Fan'’s extension of KKM-theorem without proofs:

Theorem 5.2.2 (KKM-Map Principle). Let X be an arbitraty subset of
a vector space V', and let G+ X — V be a KKM-map such that each G(x)
is finitely closed (i.e. for each finite-dimensional flat L C 'V, G(z) N L 1s
closed in the Euclidean topology of L). Then the family {G(z)|lz € X} of
sets has the finite intersection property.

Theorem 5.2.3 (Ky Fan). (Topological KKM-principle). Let X be an
arbitraty subset of a topological vector space V and let G : X — 2V be
a KKM-map. If all the sets G(x) are closed in 'V and if one of them 1s
compact, then {G(z)|x € X} # 0.

The following lemma says that KKM-principle can be used to show the
existence of the best approximations.

Lemma 5.2.4 (Ky Fan). Let C' be a compact convex subset of a normed
space Voand let F: C — 'V be continuous. Then there exists at least one
point yo € C' such that

lyo = F(yo)ll = inf [[z — F(yo)l].
Proof. Define a KMM-mapping G : C — 2 by
G(r)={y € Cllly = FWIl < [l= = F(y)ll}
O

The following results from fixed point theory generalizing Brouwer fixed
point theorem can be obtained applying KKM-principle.

Theorem 5.2.5 (Ky Fan). Let C be a compact convex subset of a normed
space V. Let F o C'— V be a continuous mapping such that for each c € C
with ¢ # F(c) the line segment [c, F(c)] contains at least two points of C.
Then I has a fived point.
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Theorem 5.2.6 (Schauder-Tychonoff). Let C' be a compact convex set

i a locally convex topological space V. Then every continuous mapping
F:C — C has a fized point.

Theorem 5.2.7 (Markoff-Kakutani). Let C' be a compact convez set in a
locally convex linear space V' and let F be a commuting family of continuous
affine mappings of C' into itself. Then F has a common fized point.

Markoff-Kakutani theorem has numeruous applications. Kakutani also
proved that it implies Hahn-Banach theorem.



Chapter 6

Applications and Related
Results

The application of fixed point theory is vast. It is used in all fields of both
theoretical and applied mathematics, where equations in topological spaces
appear. However it can also be applied to problems, that seem to be far
away from topology, such as problems in combinatorics.

Brouwer fixed point theorem and its extensions are existential tools.
They can be used in game theory to show the existence of a winner in
some two player mathematical games, in theory of differential equations, in
economics, in physics (any time there is a spot on the earth’s surface where
the winds are not blowing in any vertical direction - the flow lines of the
winds on the earth’s surface constitute a continuous mapping of that surface
to another point thereon), to simplify existing proofs of many results, etc.

Among the most important applications of Brouwer fixed point theorem,
KKM-principle is usually stated. Its extensions and their applications gave
birth to a mathematical branch, KKM-theory, which has a wide range of
applications in fixed point theory, minimax problems, dimension theory,
and mathematical economics.

We prove several well-known fundamental results applying Borsuk-Ulam
theorem (it implies Brouwer fixed point theorem), and one surprising appli-
cation of fixed point theory in graph theory. Part Fixed Point Spaces covers
two basic observations on preserving fixed point property and an example
of an infinite-dimensional fixed point space.
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6.1 Borsuk-Ulam Theorem

Borsuk-Ulam theorem, which easily implies Brouwer fixed point theorem (see
4.3.2), and its several equivalent formulations has a wide range of important
and surprising applications in different parts of mathematics (see [12]).

Theorem 6.1.1 (Borsuk-Ulam). Fvery continuous mapping f : S™ — R"
sends at least one pair of antipodal points to the same point.

Proof. Let f : S™ — R™ be continuous and f(x) # f(—z) for all x € S™.
Define a continuous mapping g : S™ — S"~! as follows

flz) — f(—=
sy = @ =)
1f () = f(==)]]
As g(—x) = W’E—_;;—_—;% = g(x), g is antipodal. It however contradicts
4.3.2 ' ]

Theorem 6.1.2 (Invariance of dimension number).
R"™ s not homeomorphic to R™, whenever n # m.

Proof. Let n > m and f : R" — R™ continuous. f|gm : S™ — R" is
continuous and 6.1.1 gives us existence of a point z € S™ with f(z) = f(—x).
It means that f is not injective. O

Theorem 6.1.3. Let f: R" — R" be a continuous involution (i.e. fo f =
id), then f has a fized point.

Sketch of proof. Suppose that x # f(x) for every & € R". We will construct
a continuous mapping g : S™ — R" that will contradict this assumption. The
construction goes by induction on the dimension of the sphere. In dimension
1. S% = {—1.1} and we set go(1) = z¢ for any o € R", and go(—1) = f(zo).
We extend gy to a mapping ¢; continuous on S;7 and set g;(z) = f(g(—2))
for cach r € S, . In the next step, we extend ¢; to a g, continuous on Sy
and set go(x) = f(g(—x)) for z € S5 . Finally we get g, = g : S™ — R" such
that for every r € S, g(x) = f(g(—x)). Borsuk-Ulam theorem guarantees
existence of a point x € S with g(x) = g(—z) = f(g(x)) and we get a fixed
point g(r) of the mapping f. O

Theorem 6.1.4 (Fundamental Theorem of Algebra).
Every polynomial has a complex root.
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Sketch of proof. Let P : C — C be a polynomial, P(z) = 2" + a,_12""' +
...+taz+ag. We want to prove that there exists zy € C such that P(zy) = 0.

Set p = |ag|+|a1|+. ..+ |an_1|+1+1 and define a continuous f : C — C
as follows

, 2 =re¥.

We will show that f maps B = {z: |z| < p} to itself. For z € B, |z| > 1 we
get the following inequalities

z2  a,12" Y. +ag

p pz"
1 1 a
1— —1 + i—(an_1+...+ =)
pl o 1p z

f(2)] =

< |z

-1 1
pp_ + =(Jan-1| + lan-2| ...+ lao]) < p— 1.
P P

IA

Similarly for |z] < 1

: P(z 1
FE < 1+ 22 il v ta
p p
1 p—1

According to Bouwer fixed point theorem, f has a fixed point, say zg, and
from the definition of f, P(zy) = 0. O

6.2 Fixed Point Spaces

Definition 6.2.1. A topological space X is called a fized point space if every
continuous mapping f : X — X has a fixed point.

Observation 6.2.2. Let X be a fized point space, so also is every space
homeomorphic to X .

Proof. Suppose that X is a fixed point space and h : X' — Y is a homeo-
morphism. Let f:Y — Y be continuous. Then h_yo foh: X — X is
continuous and thus has a fixed point, say x. Then f(h(z)) = h(xz) and Y
15 a fixed point space. O
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Observation 6.2.3 (Borsuk(1931) [1]). If X is a fized point space, so also
15 every retract of X.

Proof. Let X be a fixed point space, and let 7 : X — Y C X a retraction.
Suppose f : Y — Y is continuous. Then for: X — X is continuous and
hence has a fixed point, i.c. for some z € X, f(r(z)) = z. Since z € Y,
r(z) = x, so that x is a fixed point for f and consequently Y is a fixed point
space. O

Proposition 6.2.4 (Borsuk(1932) [2]). Let (X, d) be a compact metric space
and assume that for each £ > 0, there is a continuous mapping f. such that

(i) d(x, f-(x)) < e for each v € X,

(ir) f-(X) 1s a fized point space.
Then X s a fized pownt space.
Proof. 1t easily follows from 5.1.2. O
Example 6.2.5. The Hilbert cube I is a fized point space.

Proof. The Hilbert cube can be considered as a metric space, indeed as a
specific subset of a Hilbert space with countably infinite dimension. For our
purposes, it is the best to think of it as a product

0,1] x [0,1/2] x [0,1/3] x .....,

so that an element of the Hilbert cube is an infinite sequence (z,), that
satisfies 0 < x, < 1/n. Any such sequence belongs to the Hilbert space [y,
so the Hilbert cube inherits the metric from here.

We will define s-mappings as in 6.2.4. For every ¢ > 0, we find an
n € w satisfying >°, . 1/k* < e, and define p. : I* — I* as a projection
to first n coordinates (i.e. p.((,)5%,) = (1,29, ..., 2,,0...)). D(IF) =
0.1] % [0,1/2] x ... x [0,1/n] is an n-dimensional compact, convex subset of
a nornied space, and thus due to Brouwer fixed point theorem it is a fixed
point space. As all the assumptions of 6.2.4 are satisified, /> is a fixed point
space. O
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6.3 Evasiveness of Graph Properties

A number of important result in combinatorics, discrete geomtery and the
theoretical computer science have been proved by surprising applications of
topology. We show the link between monotone graph functions and simpli-
cial complexes, that can be regarded both as a combinatorial and topological
subject, which is the base of Kahn-Saks-Sturtevant technique. They proved
that the simplicial complex associated with a non-evasive monotone func-
tion is contractible. They applied a fixed point theorem which states, that
every continuous mapping from a finite contractible polyhedron to itself has
a fixed point. For f a monotone graph property on graphs with a prime
power munber of nodes, they characterized all the possible fixed points sets
of simplicial mappings to show that if f is non-trivial, no fixed point can
exist, and thus f is evasive.

Aanderaa-Karp-Rosenberg Conjecture

Definition 6.3.1. A simple decision three for a function f : {0,1}"* — {0,1}
is a binary tree with nodes labelled with elements of {0, 1,...,n}, and leaves
labelled by either 0, or 1. If a node has a label i, then the test performed
at that node is to examine the i-th bit of the input. If the result is 0, one
descends into the left subtree, whereas if the result is 1, one descends into
the right subtree. The label of the leaf reached by this procedure is the value
of the function on the input.

Definition 6.3.2. A function f : {0,1}" — {0,1} is called evasive, if the
depth of the simple decision tree of f is n.

We can represent arbitrary functions on graphs by encoding the adje-
cency matrix in the input to the function. For an undirected graph on n
nodes, we let zfl -1 <1 < j < n represent the presence or absence of the
edge (7, 7) by taking value 1 or 0 respectively.

We restrict out attention to graph properties - boolean functions whose
values are independent of the labeling of the nodes of the graph:

Definition 6.3.3. A boolean function f: {x;; : 1 <i<j<n}—{0,1}is
a graph property if for any permutation 7 € S,, and for any x

/( T IEE ) =, ( s La(ym()s - - )

A graph property is called monotone if adding edges preserves the property.
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Conjecture 6.3.4 (Aanderaa-Karp-Rosenberg Conjecture).
Any monotone, non-trivial graph property is evasive.

Simplicial Complexes Associated with Monotone
Boolean Functions

Lemma 6.3.5. Let K be a simplicial complex. If for some v € K, the
polyhedrons given by subcomplezes K\ v ={X € K :v ¢ X} and K/v =
{(Xe K:v¢ X, XU{v}e K} are contractible, then K is contractible.

A monotone boolean function f # 1 gives a simplicial complex
Kp={SC{1,2,....n}: f(2%) = 0}.
Naturally

[\'7.”.“:“ - {Sg {1,...,i— 1,i+1,...,n} 5 € Kf} "—'Kf\i,
1\’1.!-'",:1 = {S(_: {1,...,7:-—1,7:—}—1,...,7?,} : SU{Z} € Kf} ZKf/i.

Lemma 6.3.6 (Kahn-Saks-Sturtevant). If f # 1 is monotone and non-
evasive, then Ky us contractible.

Proof. Proof goes by induction on the number of nodes. O

Fixed Points of Simplicial Mappings

Let o V(K) — V(K) be a one-to-one simplicial mapping. We want to
characterize all the fixed poil/ltifor ©. Suppose that z is a fixed point with the
support simplex A. Since ¢(A) contains z, it contains A. However, A and
2(A) are of the same size, which implies that ¢(A) = A and consequently
»2 premutes the vertices of the simplex A. Clearly the barycenter of A must
also be a fixed point. If the cycles of the permutation induced by ¢ on A are
Hy. ..., Hy., then H, is a face of A with the barycenter a fixed point. Also,
any convex combination of these barycenters is a fixed point.

Let us show that the convex combinations of the barycenters of the faces
corresponding to the cycles of ¢ are all the fixed points of . We showed that
if 7 with the support simplex A is a fixed point, then ¢|a is a permutation
of the vertices of A. Since

—

Z a0 =1 = p(x) = Z a,p(v),

vEA VEA
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it follows that cv, = v,y (7 is a unique convex combination of vertices in A).
So that for each cycle H; of ¢ on A, we find f; such that u € H; = «, = [3;

and we get,
T = Zavﬁ = Z Z Biv = Zﬁz \H; | w;,

vEA 1 vEH; )
where w, is the barycenter of H,.

Application of Fixed Point Theory

We have everything prepared to a apply a consequence of Lefschetz-Hopf
fixed point theorem, a generalization of Brouwer fixed point theorem, to
show evasiveness of a non-trivial monotone boolean function invariant under
a cyclic permutation of its imputs.

Theorem 6.3.7 (Lefschetz-Hopf). A nullhomotopic map of any connected
polyhedron always has a fized point.

We restrict out attention to contractible polyhedra, so for our purposes
we refurmulate the theorem for this special case:

Theorem 6.3.8. Fvery continuous map f : K — K from a contractible
polyhedron K into itself has a fized point.

Lemma 6.3.9. Let f:{0,1}" — {0,1} be a monotone, non-trivial function
invariant under a cyclic permutation of its imputs. Then f is evasive.

Proof. Let us assume without loss of generality that f is invariant under the
permutation (i) =7+ 1 mod n and assume that f is non-evasive, so that
the simplicial complex I/\\f is contractible. Since f is invariant under ¢, ¢
is a simplicial map of K, so that ¢ has a fixed point. As discussed in the
previous part, fixed points correspond to the cycles of ¢ contained in K.
Since the only cycle of v is {1,2,...,n}, this set must be a simplex of K.
Thus f(1.1,.... 1) = 0, which contradicts that f is non-trivial. O

Applying previous lemma and a theorem on fixed points of groups of sim-
plicial mappings of contractible polyhedrons, we can prove the main evasive
result of this section:

Theorem 6.3.10. Let I' be a group of stmplicial mappings of a contractible
polyhedron K onto itself. Let Ty be a normal subgroup of T' with |T'y| = p*
for a prime p. and with T' /T’y cyclic. Then there exists an xo € K such that

2(rg) = 1o for ecach p €T
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Theorem 6.3.11. Let f be a non-trivial monotone graph property on graphs
with a prime power p* number of nodes. Then f is evasive.

Proof. Let G be a graph of a prime power p* number of nodes. Identify the
nodes of G with GF(p*) (GF(p*) is the Galois field of order p*). Consider
the linear mapps = — ax + b : GF(p*) — GF(p*) as a group I', and the
mappings = +— x + b as I';. Clearly |T';| = p*, and its normality follows
from (((az +b) +b') —b)/a = z+b/a. The factor group I'/T'; is isomorphic
to the group of mappings = +— az : a # 0, i.e. the multiplicative group of
GF(p*) — {0}, which is known to be cyclic. If f is non-evasive, then Ky is
contractible, and due to_the preceding lemma, all the actions of T' have a
common fixed point on K. Since I is transitive on the edges, the only cycle
of " consists of all of the edges. But that means that K; must have as an
element the set of all edges, and f = 0. ]
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