
Charles University in Prague

Faculty of Mathematics and Physics

DOCTORAL THESIS

Václav Vlček

Classes of Boolean Formulae
with Effectively Solvable SAT

Department of Theoretical Computer Science

and Mathematical Logic

Supervisor of the doctoral thesis: doc. RNDr. Ondřej Čepek, Ph.D.

Study programme: Computer Science

Specialization: Theoretical Computer Science (I1)

Prague 2013

I would like to thank to my supervisor Ondřej Čepek for kind, helpful and en-
couraging approach and lots of constructive ideas to the preliminary versions of
this thesis. I would also like to thank to other attendants of the Seminar on
Boolean functions for their participation on the joint research, namely Martin
Babka, Tomáš Balyo, Štefan Gurský and Petr Kučera.

I dedicate this thesis to my parents.

I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In Prague, 28th June 2013

Název práce: Tř́ıdy booleovských formuĺı s efektivně řešitelným SATem

Autor: Václav Vlček

Katedra: Katedra teoretické informatiky a matematické logiky

Vedoućı disertačńı práce: doc. RNDr. Ondřej Čepek, Ph.D., Katedra teoretické
informatiky a matematické logiky

Abstrakt: Práce studuje tř́ıdy booleovkských formuĺı pro které je problém splnitel-
nosti řešitelný v polynomiálńım čase. Zaměřuje se na tř́ıdy založené jednotkové
rezoluci; popisuje tř́ıdy unit refutation complete formuĺı, unit propagation com-
plete formuĺı a specialně se zaměřuje na tř́ıdu SLUR. Shrnuje jej́ı vlastnosti a
posledńı výsledky dosažené v této oblasti. Hlavńım výsledkem je coNP-úplnost
testováńı zda daná formule patř́ı do tř́ıdy SLUR. V závěru je tř́ıda SLUR rozvin-
uta do několika r̊uzných hierarchíı a jsou studovány jejich vlastnosti a vzájemný
vztah vzhledem k inkluzi.

Kĺıčová slova: booleovské formule, splnitelnost, SAT, single lookahead, jednotková
rezoluce

Title: Classes of Boolean Formulae with Effectively Solvable SAT

Author: Václav Vlček

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: doc. RNDr. Ondřej Čepek, Ph.D., Department of Theoretical Com-
puter Science and Mathematical Logic

Abstract: The thesis studies classes of Boolean formulae for which the well-known
satisfiability problem is solvable in polynomially bounded time. It focusses on
classes based on unit resolution; it describe classes of unit refutation complete
formulae, unit propagation complete formulae and focuses on the class of SLUR
formulae. It presents properties of SLUR formulae as well as the recently obtained
results. The main result is the coNP-completness of membership testing. Finally,
several hierarchies are built over the SLUR class and their properties and mutual
relations are studied.

Keywords: Boolean formulae, satisfiability, SAT, single lookahead, unit resolution

Contents

Introduction 2

1 Notation and well known results 3
1.1 Terms connected to the CNF formulae 4
1.2 Resolution method . 6

2 Unit resolution and refutation 11
2.1 SAT solvers . 11
2.2 Unit refutation completeness . 15
2.3 Propagation completeness . 16

3 Class of SLUR formulae 18
3.1 Properties of SLUR formulae . 19
3.2 coNP-completenes of recognition problem 20
3.3 Further properties of SLUR formulae 26

4 Hierarchies over the SLUR class 30
4.1 Hierarchy SLUR(i) . 30
4.2 Hierarchy SLUR*(i) . 33
4.3 Hierarchy SLURi . 36

4.3.1 Algebraic definition of the SLUR class 36
4.3.2 Generalised unit propagation 37
4.3.3 SLURi definition and summary of the results 38

4.4 Mutual relations of the hierarchies in inclusion 39

Conclusion 42

Bibliography 43

1

Introduction

A problem of testing satisfiability of a Boolean formula (SAT) is one of the best
known NP-complete problems. In fact it was the first one proven to be NP-
complete [9]. Since Boolean formulae are widely used as a natural encoding
language for many problems of computer science, and contemporary SAT solvers
are rather effective when solving the problem, Boolean functions and testing
their satisfiability appears in many areas such as planning, scheduling, automated
theorem proving, program verification, etc.

There are two main directions in contemporary research to tackle the SAT
problem effectively. The goal of the first one is to design a general SAT solver
which works fast on most of formulae, but does not guarantee a polynomial time
bound (achieving such a bound is considered very unlikely thanks to the NP-
completeness of the problem). The other direction is to isolate a subclass of for-
mulae and design a specific algorithm for this class that is guaranteed to work in
polynomial time. This approach is well justified in a situation when we deal with
a problem which naturally leads to formulae of specific properties, or if we are able
to choose the target encoding language (as for example in the case of knowledge
compilation).

In this dissertation we will mainly focus on the second approach. We will con-
centrate on the class of Single Lookahead Unit Resolution formulae (SLUR) [31,
18]. It is a class which contains many other known classes such as Horn formu-
lae [17, 32], hidden Horn [2, 27], extended Horn [7] and CC-balanced [8] formulae.
The class is interesting from the point of view of the general SAT solvers as well,
because most of these solvers are guaranteed to work fast on SLUR formulae.

In Chapter 1 we will define the necessary notation, sum up some general re-
sults about Boolean formulae, and also describe the well-known resolution method
for obtaining a canonical formula. In Chapter 2 we focus on a special case of res-
olution called unit resolution, which is a key part of almost any contemporary
general SAT solver. We also present the algorithm for deciding the satisfiability
of formulae from the SLUR class. We will also describe a method of clause learn-
ing [28] which speeds up the performance of general SAT solvers considerably, and
which will bring us to the definitions of unit refutation complete formulae [16] and
the propagation complete formulae [6]. In Chapter 3 the SLUR class is defined
and some general results about this class are derived. The main result about the
SLUR class is that the recognition of a formula membership is a coNP-complete
problem. On the other hand, a sufficient condition is proven there: every for-
mula which allows to generate every prime implicate by at most one resolution
step belongs to the SLUR class. In Chapter 4 several hierarchies built over the
SLUR class are studied. These hierarchies extend the SLUR class such that they
contain more formulae, but the time needed for satisfiability testing increases
exponentially depending on the layer of the hierarchy, however, the testing time
remains polynomial at any fixed level. One of these hierarchies [21, 22] constitutes
a hierarchy over unit refutation complete formulae as well, and as a consequence
of the fact that the initial layer coincides with the SLUR class and the class
of unit refutation formulae, the authors of [21, 22] showed these two classes to be
equal. The dissertation finishes with a brief conclusions chapter.

2

1. Notation and well known
results

In this section we define a collection of standard terms from the area of Boolean
functions and sum up some known basic results we will need further in the text.

Boolean function on n variables is any function f : {0, 1}n → {0, 1}. For
a Boolean function f : V → {0, 1} a mapping v : V → {0, 1, ∗} assigning values
to variables of f is called partial assignment ; if all variables are assigned values
from {0, 1}, we call v just assignment. The value ’∗’ denotes that a given variable
does not have an assigned value from {0, 1}. However, the function value can be
still determined by a partial assignment in the case that the function values for
all extensions of the given partial assignment into an assignment are equal. By
f [v] we denote the fact that we substitute (partial) assignment v into function f .
If v substitutes into one variable x only, we write f [x = i] where i ∈ {0, 1} is the
value assigned. For two partial assignments v1 and v2 expression v1 ∪ v2 denotes
the partial assignment we obtain by taking v1 and adding those assignments of
v2 which substitutes to variables not assigned by v1.

We say that Boolean function f is satisfiable if there is an assignment −→x ∈
{0, 1}n to the variables of f such that f(−→x) = 1, in the other case we say that f
is unsatisfiable.

As in case of real valued functions, we can define a partial ordering on Boolean
functions in the following way. Let f and g be two Boolean functions on n

variables, we write f ≤ g if for every assignment −→x ∈ {0, 1}n it holds f(−→x) ≤
g(−→x), i.e. if every assignment which satisfies f satisfies g too.

There are many possibilities how to represent Boolean functions. As any
function on a finite domain, they can be represented by a table of all possible
assignments and the corresponding function values. Other common ways are to
use decision trees, binary diagrams or Boolean circuits (see e.g. [33, 38] for further
details on some of possible representations). Even though these representations
do have many advantages, we will focus mainly on Boolean functions represented
by a propositional logic formula.

It is well known (see e.g. [20]), that any Boolean function can be represented
by a propositional formula in a so called conjunctive normal form (or CNF,
for short). The usual proof proceeds as follows. Let us have a Boolean function
given by the following function table.

x1 x2 x3 f(x1,x2,x3)

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

For every row for which the function value equals 0 we take a disjunction of all

3

variables such that we put xi into it if the corresponding column contains 0 and xi

if it contains 1. Then we connect all these disjunctions by conjunctions. For the
function f from the example bellow we get formula FCNF = (x1 ∨ x2 ∨ x3)&(x1 ∨
x2 ∨ x3)&(x1 ∨ x2 ∨ x3).

We can construct yet another formula if we consider lines where f evaluates
to 1, take conjunction of all variables xi for ones and xi for zeros and finally
take a disjunction of all these conjunctions. Formulae of this form are said to
be in disjunctive normal form (DNF). This formula for the example above the
DNF formula is of the following form: FDNF = (x1&x2&x3) ∨ (x1&x2&x3) ∨
(x1&x2&x3) ∨ (x1&x2&x3) ∨ (x1&x2&x3).

Almost all results about DNFs have a corresponding result in the CNF for-
malism, therefore we will use CNF as they are more common. Let us define CNF
formulae and the satisfiability problem formally.

1.1 Terms connected to the CNF formulae

Definition 1. Propositional variable x or its negation x is called a literal (the vari-
able without negation is a positive literal and the other one is a negative literal).
Clause is a finite disjunction of literals and formula is in conjunctive normal form
(CNF) if it is formed by a finite conjunction of clauses.

By F [x = i] we will denote the formula we obtain from formula F by replacing
literal x by value i to and x by the opposite value. For a partial assignment
v : V → {0, 1, ∗} assigning values to the set V of variables of F , the expression
F [v] denotes the formula we obtain by applying assignments of corresponding
values to all variables of V which are assigned either 0 or 1 by v.

We will restrict our attention to clauses which do not contain variable and its
negation at the same time. This is not restrictive because such clauses can be
found in linear time in the CNF length and every such clause is always satisfied.
In contrast to that, we permit clauses without any literal (empty clauses, usually
denoted by ⊥) and CNF formulae without a clause (empty formulae). Empty
clause is considered as unsatisfiable, as there is no literal in the empty disjunction
which could be satisfied, while empty formula is always satisfied by definition,
because there is no violated constraint in the conjunction.

Let us also note that because there is no point of using a literal more than
once in a clause, and the order does not matter, we can see clauses as a set of its
literals. In the same way we can see CNF formulae as sets of its clauses. We will
use set and formula notation interchangeably as there is no danger of confusion.

Boolean function can have more than one CNF representations. For example,
identically zero function can be represented by x & x or by (x1 ∨ x2) & (x1 ∨
x2) & (x1 ∨ x2) & (x1 ∨ x2) and in many other ways.

Probably the most studied problem in computer science is the problem of
Boolean satisfiability. It was also the first proven to be NP-complete [9, 19] and
it will be one of the main topics of this thesis as well. The problem is formally
defined as follows.

4

Satisfiability (SAT)

Instance : A formula F in CNF.

Question : Is there an assignment v to the variables of F such
that F (v) = 1?

We can see clauses of a CNF as constraints given on a solution of a problem
described by a Boolean formula. In order to simplify the problem, it is sometimes
handy to consider the ordering ’≤’ we have defined on Boolean function also for
Boolean formulae (and as every literal and every clause are also formulae we
can use the notion here as well). This notation allows as to specify some types
of clauses which are clearly unnecessary in a CNF formula and can be opted out
without changing the function.

Definition 2. We say that clause C1 subsumes clause C2 if C1 ≤ C2. Clause C

is an implicate of a Boolean function f if f ≤ C, it is a prime implicate if there
is no other implicate C ′ of f subsuming C.

As can be checked by considering the satisfying assignments, the fact that
C1 subsumes C2 is in reality equivalent to the claim that every literal of C1 is
contained also in C2 (i.e. C1 ⊆ C2). Note that every clause of a CNF formula is
an implicate of the function which the formula represents. It is also easy to see
that we can omit clauses which are subsumed by other clause in the formula, and
the prime implicates are the clauses that cannot be shortened in terms of the
number of literals without changing the represented function.

Definition 3. A Boolean formula which consists only of prime implicates is called
a prime formula. A formula which contains exactly all the prime implicates is
known as the canonical formula. If there is no clause which could be removed
from a formula without changing the represented function then the formula is
called irredundant.

Example 4. The following three formulae represents same function:

1. F1 = (x ∨ y) & (x ∨ y) & (x ∨ z),
2. F2 = (x ∨ y) & (x ∨ y) & (x ∨ z) & (y ∨ z) and
3. F1 = (x ∨ y) & (x ∨ y) & (x ∨ y ∨ z).

Their equivalence is clear from the fact that first two clauses give us the equiva-
lence of variables x and y. The first two formulae are prime and the second even
canonical, whereas the third one is not prime because its last clause is subsumed
by a implicates (x ∨ z) and (y ∨ z).

Canonical formulae (or more precisely formulae containing canonical formu-
lae as subsets) have an interesting property with respect to partial assignments
as stated in the following lemma. This lemma will be later generalized for a larger
class of formulae in section 3.3 (Lemma 33).

Lemma 5. [36] Let F ′ be the canonical formula for Boolean function f . Let
F ⊇ F ′ be a formula representing the same function f and let x be any of its
variables. Then formula F [x = i] that we get by assigning i ∈ {0, 1} to x contains
the canonical representation of the restricted function f [x = i] as a subformula.

5

Proof. Let C be a prime implicate of f [x = 0]. Then C ∨ x is implicate of f and
thus there is a prime implicate C ′ of f in F such that C ′ ≤ C ∨ x. We will treat
two cases separately:

1. x 6∈ C ′: Then C ′ ≤ C also holds. Because C is the prime implicate of
f [x = 0] and C ′ is a prime implicate of f and because C ′ does not depend
on x we have also C ≤ C ′. That implies C = C ′ and because C ′[x = 0] = C ′

we have proved that C is contained in F [x = 0].

2. x ∈ C ′: Than C ′ = C ′′ ∨ x for some C ′′. Because C ′′ ∨ x = C ′ ≤ C ∨ x we
have C ′′ ≤ C. But we have C ′[x = 0] = C ′′ ≤ (C ∨ x)[x = 0] = C and C

is a prime implicate of f [x = 0]. Thus follows that C ′′ = C and because
C ′[x = 0] = C ′′ = C we have proved that C is contained in F [x = 0].

We have proved that an arbitrarily chosen prime implicate C of f [x = 0] is
contained in F [x = 0]. The case assigning x = 1 is similar.

In the following section we present a method how to generate the canonical
formula from a formula on input. It will be clear that the canonical formula can
be in general exponentially longer than the input formula if we measure the length
by the number of literal occurrences in the formula.

1.2 Resolution method

Definition 6. We say that two clauses have a conflict in a variable x, if x occurs
as a positive literal in one of them and as a negative literal in the other. Two
clauses C1 = (A∨x) and C2 = (B ∨x) having a conflict in exactly one variable x
are said to have a resolution over x (or to be resolvable). Their resolvent is clause
C = R(C1, C2) = (A ∨ B).

The concept of resolution (see e.g. [29, 30]) can be used to generate further
implicates from a formula, as it is clear from the following lemma. As we will see
later, we can actually find all the prime implicates of the represented function.

Lemma 7. [10] Let C1 and C2 be two resolvable clauses of a Boolean formula F

which have resolvent C = R(C1, C2). Then C is an implicate of F and therefore
F & C represents the same function as F .

Proof. We will prove F ≤ C by considering the assignments to the variables
contained in C1 and C2. Let x be the variable in which C1 and C2 have a conflict.

Let us have a satisfying assignment of F . It has to satisfy clauses C1 and C2,
too. If there are satisfied literals in both clauses that are over variables other than
x, then C is also satisfied as it contains these literals as well. If one of clauses C1

and C2 is satisfied thanks to the valuation of x, let say it is clause C1. Then C2

cannot be satisfied thanks to x, hence there must be other literal satisfying C2

and this literal will be preserved after the resolution and satisfies C.

As we said before, we can add all generated implicates to the formula with-
out changing the function represented. But, if we generate an implicate that

6

is subsumed by a clause already contained in F , there is no point of adding.
On the other hand, if some clause of F became subsumed, we can omit it without
changing the represented function. In fact, by performing all resolutions possible
and eliminating subsumed clauses the canonical formula can be generated. This
procedure, called resolution method, was described in [29, 30] performs as follows.

Algorithm 1 Resolution method

Input: CNF formula F .
Output: Canonical CNF formula representing the same function as F .
F := F with subsumed clauses omitted
while (F contains resolvable clauses C1 and C2 such that R(C1, C2) is not
subsumed by any clause in F) do
F := F ∪ R(C1, C2)
F := F with subsumed clauses omitted

end while
return F

We have yet prove that the procedure finally stops and all the prime implicates
are generated.

Theorem 8. [10] Resolution method returns canonical representation of the func-
tion represented by input CNF formula.

Proof. It is clear that the algorithm is finite, because no implicate will be added
more than once and it either stays in the formula till the end of computation
or it is replaced by a subsuming (shorter) clause and never added again.

We will show the fact that the output formula contains all the prime impli-
cates by contradiction. Let F be the formula returned by the algorithm and
let C be a prime implicate which is not contained in F . Let IC be set of all
the implicates of the function which are subsumed by C but are not subsumed
by any implicate in F , i.e. IC = {C ′ : (C ⊆ C ′) & [(∀C ′′ ∈ F) C ′′ 6⊆ C ′]}.
Let us note that IC is non-empty, because it contains C. Hence, we can take
a clause in IC which contains most literals, let it be clause C∗. C∗ is the longest
clause subsuming C which yet is not subsumed by any clause presented in F .
We will consider two cases:

a) C∗ contains all n variables appearing in F . In this case every clause of F has
a conflict with C∗ thanks to the (∀C ′′ ∈ F) C ′′ 6⊆ C∗ condition. Therefore,
if C∗ evaluates to 0, F evaluates to 1 thank to the fact that every clause
contains at least one literal of opposite polarity than in C∗ which satisfies
it.
On the other hand, it holds that if C∗ evaluates to 0, then C evaluates to
0 as well (see C ⊆ C ′ condition). But that yields that F evaluates to 0,
because C in an implicate. This gives us the contradiction.

b) C∗ contains less than n variables. Let x and x be literals over a variable
not contained in C∗, i.e. neither C∗∨x nor C∗∨x is contained in IC . It can
be only so that they violate the (∀C ′′ ∈ F) C ′′ 6⊆ F condition. Let A be
a clause of F such that A ⊆ C∗ ∨ x and similarly let B be such that

7

B ⊆ C∗ ∨ x. As C∗ ∈ IC , we have that x ∈ A and x ∈ B. The resolvent
R(A, B) of A and B is an implicate not subsumed by any clause in F which
is a contradiction with the termination of the algorithm.

It is quite obvious the that resolution method can be used for solving the sat-
isfiability problem. It is an easy consequence of the fact that a formula is un-
satisfiable if and only if its only prime implicate is the empty clause. The draw-
back of this way of satisfiability testing is its complexity. There are formulae
which for which the canonical representations contains exponentially many claus-
es and therefore the resolution algorithm performs exponentially many steps.

Example 9. Let V = {x1, . . . xn} be a set of variables, and let us define a formu-
la F =

∧

P⊆V [
∨

xi∈P
xi ∨

∨

xi∈V \P xi]. This formula is unsatisfiable, it contains
all possible clauses on n variables and does not leave any room for satisfying
assignments. The run of resolution algorithm for two variables is shown in Fig-
ure 1.1. Its vertices correspond to the clauses, the top layer consist of the clauses
of the input formula, and each further layer contains clauses that can be derived
by one resolution step from the previous (in case we always generate all clauses
possible and after that we add them to the formula altogether).

x1Úx2

x1 x1x2 x2

x1Úx2 x1Úx2 x1Úx2

^

Figure 1.1: Resolution graph of complete quadratic formula

Definition 10. Let F be a formula in CNF and let C be a clause derivable
from F by series of resolutions. A resolution graph is an oriented connected
acyclic graph where each vertex corresponds to a clause, every vertex of non-zero
out-degree corresponding to clause CR has two child nodes corresponding to C1

and C2 such that CR = R(C1, C2), every leaf (i.e. vertex with out-degree zero)
corresponds to some clause of F and clause C is contained in a root. Resolution
tree is a special case where the resolution graph is a tree.

Resolution tree can be obtained from a resolution graph by splitting shared
vertices into copies and omitting vertices to which there is no path from derived
clause C.

Example 11. Let now F = (x1∨y1)& . . .&(xn∨yn)&(x1∨. . . xn), its length mea-
sured by number of literal occurrences clearly equals to 3n. Each of the quadratic
clauses is resolvable with clause (x1 ∨ . . . xn), which yields a resolvent of length n

in which one x-variable is replaced by the corresponding y-variable. This resol-
vent clearly is not absorbed by any clause. The quadratic clauses cannot absorb

8

it because each of them contains a positive literal, which is not the case of the re-
solvent, and therefore they obviously cannot be its subset. On the other hand,
every non-quadratic clause contains n literals, because there are only resolutions
which replace some x-variable by y-variable or other way round.

Hence, the canonical formula consists of all the quadratic clauses presented
in the initial formula F and all clauses of length n of the form (z1∨ . . .∨zn) where
zi ∈ {xi, yi}. The overall length of the canonical formula measured by number
of literal occurrences therefore equals to 2n+ n · 2n. We have that the canonical
formula is 2n+n·2n

3n
= Θ(2n) times longer than the input formula, which means

that the resolution algorithm has to perform exponentially many steps.

There are occasions when we are interested in the complexity of derivation
of some concrete implicate. One of the most natural measures is the minimum
length of resolution proof of clause C from formula F , i.e. series C1, C2, . . . , Ck =
C where every clause in the series is either clause of formula F or is a resol-
vent of two preceding clauses. In this case the number k is called length of this
resolution proof. For example, for the pigeon hole principle formulae (see [23])
the minimum length of resolution proof of ⊥ is exponentially large in the length
of the input formula.

Other possible measure of resolution complexity is the depth of resolution.
It corresponds to the minimal possible layer in the resolution graph on which
a certain clause appears. This measure has a trivial upper bound for unsatisfiable
formulae [35], because the contradiction can be derived in depth no larger than
the number of variables of the formula (this result is a consequence of a result
of [34] stating that for any tree resolution proof there is a tree resolution proof
where on any path from root to leave no variable is resolved more than once).
We will, however, need this definition just for prime implicates in order to define
a hierarchy of formulae we is needed further in the text.

Definition 12. Given a formula F , the depth of resolution for an implicate C is
the least possible number we can get by following procedure:

1. If C ∈ F then its depth is 0.
2. If C is derived by a series of resolutions C1, . . . , Ck = C as a resolvent

of some preceding clauses Ci and Cj , then its depth is equal to maximum
of depths of Ci and Cj increased by 1.

The hierarchy of formulae we will use is then defined in the following way.
It has been established in [4].

Definition 13. We say that a Boolean formula F belongs to class CANON(i)
if every prime implicate of the function which F represents can be derived by
a series of resolutions of depth i.

For example canonical formulae are just the formulae of CANON(0). Class
CANON(1) then contains all the formulae from which each of their prime impli-
cates can be obtained by at most one resolution step.

Sometime it can be interesting to consider restricted variants of resolution.
One of such restrictions is a requirement that each time we perform a resolution
step, one of the clauses is from the original formula. This variant of resolution is

9

called input resolution. Other possible restriction is so called non-merge resolution
where we require that resolved clauses do not have common literal. Yet another
variant is so called unit resolution which will be explained thoroughly in the next
section, because it is a key part of many SAT-solvers and it is also very important
for definition of the classes of Boolean formulae we will focus on.

10

2. Unit resolution and refutation

A clause which contains just one literal is usually called a unit clause. If there is
such a clause in a formula, then it forces a value that the corresponding variable
has to have in every satisfying assignment. When our goal is to find such an as-
signment, we can replace every occurrence of the variable by the forced value.
After that we can omit all 0 from the clauses because it cannot help with satis-
fying in any way. We can also withdraw all the clauses that already has became
satisfied. If some of the clauses became empty, we can conclude that the formula
is not satisfiable and nor was the original one because the value assigned was
forced.

The whole process described above is actually equivalent to the situation
of resolution when one of the clauses used is a unit clause. Such restricted vari-
ant of resolution is called unit resolution. If we proceed further and repeatedly
perform until there is no unit clause, we get a procedure that is commonly called
unit propagation (or unitprop for short). We use symbol F ⊢1 C to denote the fact
that clause C can be obtained from F by unit propagation.

It is known that unit propagation can be performed in a linear time in length
of the input formula [12]. Thanks to this effectiveness and thanks to the fact it
speeds up computation considerably, unit resolution is used in almost every con-
temporary procedure for deciding SAT problem on general formulae. Such a pro-
cedure is usually called SAT-solver and we will discuss some basics in the next
section.

2.1 SAT solvers

The most basic idea to test satisfiability of a formula over n variables is to try all
2n possible assignments. As we mentioned above, this can be speed up by per-
forming unit resolution after every assignment of a value to a variable. This usu-
ally saves up some decisions and lowers the amount of branching. The method is
known as Davis-Putnam procedure [15]. It was refined into DPLL-procedure [14]
which uses depth-first-search approach in order to decrease space complexity to
linear in number of variables.

DPLL procedure is a keystone of almost any contemporary SAT-solver. It is for-
mally described in Algorithm 2. The procedure called unitprop performs unit
propagations and returns a pair consisted of the simplified formula and the as-
signments forced during the procedure. Some variants of DPLL also contain
a step where they assign a value to the variables which occur in the whole formu-
la just as a positive or just as a negative literal, but this step is not usually used
in the modern SAT-solvers, because in practice it slows down the computation
rather than speeds it up.

Example 14. In the Figure 2.1 you can see a search tree of the DPLL procedure
on a formula F = (x1 ∨ x6 ∨ x7) & (x6 ∨ x7) & (x6 ∨ x7) & (x6 ∨ x7) & (x2 ∨ x4 ∨
x5) & (x2 ∨ x3 ∨ x4) & (x2 ∨ x4) & (x3 ∨ x5) & (x4 ∨ x5). The algorithm proceeds
as follows (we assume that it picks the variables in the order of their numbers):

11

Algorithm 2 DPLL procedure

Input: CNF formula F .
Output: Satisfying assignment or unsatisfiable.
(F , t) := unitprop(F)
if F is empty then
return t

else
Let x be any variable from F

if DPLL(F&x) does not return unsatisfiable then
Add assignments returned by the DPLL call into t.

else if DPLL(F&x) does not return unsatisfiable then
Add assignments returned by the DPLL call into t.

else
return unsatisfiable

end if
end if

x1

SAT

x2

x3

x6

^

^

1

1

1

0

0

x2

x3

x4

x6 x6

x6

^

^

^

^

^

1

1

1

1

1

1

0

0

0

0

0

0

^ ^

1 0

Figure 2.1: Search tree of DPLL on formula F

1. It picks the first variable x1 and try to assign 1. After the unit resolution it
gets a formula with x1 missed out, because x1 is presented just negatively.
We get (x6∨x7) & (x6∨x7) & (x6∨x7) & (x6∨x7) & (x2∨x4∨x5) & (x2∨
x3 ∨ x4) & (x2 ∨ x4) & (x3 ∨ x5) & (x4 ∨ x5).

2. The formula still is not satisfied, so we pick x2 and try to assign 1. The for-
mula after the assignment looks like this: (x6 ∨ x7) & (x6 ∨ x7) & (x6 ∨
x7) & (x6∨x7) & (1∨x4∨x5) & (0∨x3∨x4) & (0∨x4) & (x3∨x5) & (x4∨x5).
One clause contains 1 and therefore can be missed out. Also a new unit
clause x4 appeared. It forces value 0 for variable x4. If we assign this value,
we get (x6∨x7) & (x6∨x7) & (x6∨x7) & (x6∨x7) & (x3∨0) & (1) & (x3∨
x5) & (0 ∨ x5). We get yet another two unit classes which forces x3 and x5

to be 1. But after assignment we got the clause (x3 ∨ x5) empty and not
possible to satisfy. Therefore the algorithm has to go back to the last point
where it did a decision to assign value to x2, i.e. to the formula from point
1.

12

3. After returning back to the decision point it tries to assign the other value
0 to the variable x2. It leads to the formula (x6 ∨ x7) & (x6 ∨ x7) & (x6 ∨
x7) & (x6∨x7) & (0∨x4∨x5) & (1∨x3∨x4) & (1∨x4) & (x3∨x5) & (x4∨x5).
This time we get no unit clause and we have to do another decision.

4. After assigning 1 to x3 we get (x6 ∨ x7) & (x6 ∨ x7) & (x6 ∨ x7) & (x6 ∨
x7) & (x4∨x5) & (0∨x5) & (x4∨x5) which contains a unit clause. It forces
to assign 0 to x5. This leads to (x6 ∨ x7) & (x6 ∨ x7) & (x6 ∨ x7) & (x6 ∨
x7) & (x4 ∨ 0) & (1) & (x4 ∨ 0). And we have to assign 1 to x4.

5. In the next step algorithm tries to assign value to the x6 which leads im-
mediately to a formula with empty clause. Let us note, that formula itself
(x6 ∨ x7) & (x6 ∨ x7) & (x6 ∨ x7) & (x6 ∨ x7) is unsatisfiable.

6. Algorithm returns back to the point where it assigned a value to x3 and con-
tinue with the other value. Let us just skip the computation up to the point
where it returns to the root assigns 0 to x1. At this point the algorithm
gets a formula (x6 ∨ x7) & (x6 ∨ x7) & (x6 ∨ x7) & (x2 ∨ x4 ∨ x5) & (x2 ∨
x3 ∨ x4) & (x2 ∨ x4) & (x3 ∨ x5) & (x4 ∨ x5).

7. Then it picks variable x2, try 1 and get (x6∨x7) & (x6∨x7) & (x6∨x7) & (1∨
x4∨x5) & (0∨x3∨x4) & (0∨x4) & (x3∨x5) & (x4∨x5). And that actually
the interesting point, why we did examine the run of procedure so in-depth.
One can notice that formula over the variables x3, x4 and x5 is actually
the same as in step 2 and there it was the part that leads to the contradiction
(variables x6 and x7 were not even assigned there). The question is whether
it would be possible to discover the contradiction faster, without assigning
value to x2 this time. We will discus this question bellow, but let us just
briefly say, how the algorithm finishes.

... The algorithm returns back to x2, try the valuation 1 of x3 with variables
of x4 and x5 forced. And at the end it will check both possibilities for x6

where the first one, assigning 1, leads to contradiction and the second one
to satisfying all the clauses. It will search no more and return the satisfying
assignment: x1 = 0, x2 = 0, x3 = 1, x4 = 1, x5 = 0, x6 = 0, x7 = 0.

As we mentioned in step 6 of the example, there might be occasions when
some part of the formula is already unsatisfiable independently on some choices
made before (x1 in the example). It yielded to the emergence of so called Conflict-
Driven Clause Learning SAT solvers (known as CDCL solvers, see e.g. Chapter 4
of [5]).

The idea of CDCL solvers is to analyse why the conflict occurred and than
add a clause that allows us to derive it faster using unit propagation next time.
In the mentioned example such a clause would be simply x2 which would prevent
the solver from assigning x2 other value than 0, as 1 inevitable leads to contra-
diction. In order to describe a way how to get such a clause we have to define
an implication graph, as the authors of CDCL solver did [28].

Definition 15. An oriented implication graph corresponding to a state of algo-
rithm consists of set of vertices V which correspond to the variable valuations
performed on the path from the root and with one special vertex corresponding
to contradiction. There is an edge from vertex u to vertex v, if v corresponds to
an assignment that was forced as a consequence of assignment u (i.e. v assigns
value to a variable which appeared as a unit clause after applying the valuation
u).

13

Moreover for each vertex we remember whether it was chosen as one of the op-
tions in algorithm or whether it was derived as a consequence of other assign-
ment. We also mark the number of variables chosen by the algorithm before
(i.e. the number of decisions). For every edge we make a note which clause forced
value of the variable (we note the corresponding clause from original formula).

x =11 @ 0 x =12 @ 1

x =13 @ 1 x =15 @ 1

K

x =4 0 @ 1

()x2Úx4

()x2Úx3Úx4 ()x4Úx5

()x3Úx5()x3Úx5

Figure 2.2: Implication graph for example 14, step 2

The implication graph for the Example 14 in the step 2 is in the Figure 2.2.
In order to construct a clause which speeds up the discovery of the contradic-
tion, we take an edge cut separating vertex K from all decision points (marked
in black). The literals corresponding to the vertices at the beginnings of the edge
cut’s edges form sufficient condition for contradiction - if they are satisfied by a par-
tial assignment, this assignment cannot be extended into one that satisfies the for-
mula (e.g. in the example the conditions corresponding to marked cuts are x2 and
x3&x4). But we want to avoid the contradiction and add a further clause which
would speed up the contradiction discovery, therefore we take negation of this
condition and according to de Morgan laws we get clauses x2 and (x3∨x4). Then
whenever we assign all but one variables in this added clause, unit resolution
forces the opposite value other than one which leads to the contradictory partial
assignment.

Let us verify that these clauses are implicates of given formula F and therefore
can be added to the formula without changing the represented function. Let us
start with clause (x3∨x4). It can be obtained as a resolution of (x3∨x5) and (x4∨
x5) of the original formula F and therefore (x3∨x4) is an implicate of F . The proof
that x2 is an implicate is more complex. Let us consider clauses (x2 ∨ x4), (x2 ∨
x3 ∨x4), (x3 ∨x5), and (x4 ∨x5) of F . By resolution of first two we obtain clause
(x2 ∨ x3), and by resolution of second two we get (x3 ∨ x4). Resolution of these
two clause gives us clause (x2∨x4), which is resolvable with first considered clause
(x2 ∨ x4) leading to desired clause x2. Thus x2 is an implicate of F . Note that
in both cases the clauses adjacent to edges of implication graph was used.

In a similar manner, for every clause C obtained from an edge cut separat-
ing vertex K from vertices of decision, it can be proven that C is an implicate
of the original formula. On the other hand, it is pointless to add all clauses we
can get in this way. The ones we want to add are those, which would immediately
after backtracking to the decision point lead to a derivation of a contradiction
by unit resolution. Such a clause contains just one literal from that decision level

14

and is known as an assertion clause. Such clauses can be found using resolutions.
For more information on this topic refer Chapter 4 of [5].

We referred just the basics of current SAT solvers. Besides these techniques
they also incorporate many heuristics on how to pick variables in the most efficient
order, which value try first, after how long the algorithm should restart, which
of the added clauses it should preserve, and so on. There are also many clever
data structures to represent formulae.

Other approach then described are the SAT solvers which do not guarantee
completeness (i.e. do not have to terminate), but are usually faster in discovering
satisfying assignment. For example SAT solvers working on the basis of random
walks. Many information about SAT solvers in general can be found in book [5].

However, no general SAT solvers do guarantee polynomial upper bound on
the computation time because SAT is an NP-complete problem and there is no
know polynomial algorithm for NP-complete problems. That is why there is also
an approach to identify subclasses of formulae such that the satisfiability of every
CNF from such a subclass can be tested in polynomial time. This is sufficient
in a case we are solving specific problem that we know will generate formulae
with a specific properties. In the rest of the thesis we will focus on such classes.

2.2 Unit refutation completeness

In the previous section we have seen that it is sometimes useful to add further
information to a formula in order to enable fast detections of contradictions.
CDCL solvers add such clauses at the moment the contradiction is discovered.
However we can define a class of formulae so that we require that the formulae al-
ready contain all clauses that after applying any partial assignment we can detect
the conflict by a unit resolution (if the formula obtained by partial assignment is
unsatisfiable). These formulae form a class of unit refutation complete formulae.
It was first described in [16] where it was presented as a more efficient alternative
for representing knowledge than canonical formula.

Definition 16. A formula is called unit refutable if it is not satisfiable and there
is a unit resolution proof of a contradiction. Formula F is unit refutation com-
plete (UC) if for its every implicate C the formula F & ¬C is unit refutable,
i.e. F & ¬C ⊢1⊥.

Let us note that ¬C is for a clause C = (l1 ∨ . . . ∨ lk) according to the
de Morgan’s laws equivalent to l1 & . . .& lk which is actually forcing the partial
assignments to the variables presented.

Other thing to notice is that for C empty the condition is: if ⊥ is an implicate
of F , than F ⊢1⊥, i.e. if F is unsatisfiable, it can be detected by unit propa-
gation only. And that is equivalent to the requirement that any unsatisfiable
formula from the class of unit refutation complete formulae can be recognized
by a unit resolution. It may seem as rather strong condition on a class of for-
mulae, and in some sense it actually is. In Chapter 4 we will cite a recent result
of [21, 22] that the class of unit refutation complete formulae is the same as
the class of SLUR formulae introduced in Chapter 3, where is also cited other
result that a randomly generated formula has a diminishing probability to be
in this class.

15

On the other hand, these classes are interesting from the practical point of view
of SAT solvers, because they contain formulae which are easy to solve. In that
sense they present a good candidates to encode some problem into.

For this reason they are of interest for a research area called knowledge compi-
lation. The goal of this field is to create a representation of some set of knowledge
(a database) which would afterwards allow to pose questions and answer them
efficiently. In our case the database is a set of clauses and a query is a clause
for which we want to test whether it is a logical consequence of the database.
The requirements usually laid on the database are that it is compact to represent
and allows us to resolve queries quickly. We usually require that the database
which represents knowledge can be compiled quickly, but it is not as critical as
the time requirement for answering queries since it is done only once in a pre-
processing phase. Knowledge compilation is, though, much more general term,
other representation than CNF formulas can be used; for a survey see [13].

The property required by the definition of unit refutation complete formulae
is easily valid for the canonical formulae. If C is an implicate of canonical formula
F , than it is subsumed by some prime implicate C ′ (clause of F), therefore ¬C
together with C suffices for derivation of contradiction.

We can see the class of unit refutation complete formulae as a trade of between
the size of the representation of a given function and the complexity of compu-
tation we have to perform in order to solve a query using this function. We are
not, thought, guaranteed to obtain polynomial sized representation every time
(but we usually obtain smaller representations than the canonical formula). It is
very unlikely to discover such a class of formulae which would guarantee small
representation for every function and allow efficient procedures for generating
the knowledge base and answering queries at the same time.

Various ways how to obtain a unit refutation complete formula from any for-
mula on input were presented in [16]. We will discuss this class later in the con-
nection to the SLUR class, as it was proven in [21, 22] that these classes are
actually equivalent.

2.3 Propagation completeness

In comparison to canonical formulae the class of unit refutation complete formu-
lae provides potentially smaller representation of a formula for which it is easy
to discover contradiction after a partial assignment. The class of propagation
complete formulae goes yet further. A stronger condition is required: if a par-
tial assignment forces a value of some variable, then its value must be deducible
by unit propagation.

Definition 17. A formula F is called propagation complete (PC) if for any set
of literals l1, . . . , lk and any literal d the following condition holds: if d is satisfied
in every assignment that satisfies F & l1 & . . .& lk than F & l1 & . . .& lk ⊢1 d.

This definition originates from [6]. There was also proven that we can obtain
a PC formula from any formula by adding so called empowering implicates. Those
are clauses that add power to derive a literal by unit resolution under some partial
assignment that we were not able to derive earlier.

16

Definition 18. We say that clause C = l1 ∨ . . .∨ lk is empowering for a formula
F if for some of its literals li it holds:

1. F &
∧

j∈{1,...,k}\{i} ¬lj 6⊢1⊥,

2. literal li is satisfied in every assignment satisfying F &
∧

j∈{1,...,k}\{i} ¬lj , but

3. F &
∧

j∈{1,...,k}\{i} ¬lj 6⊢1 li.

It is easy to see from the definitions that every propagation complete formula
is also refutation complete. Indeed, let C = (l1 ∨ . . . ∨ lk) be an implicate of F ,
then F&

∧k−1
i=1 li ⊢1⊥ or F&

∧k−1
i=1 li ⊢1⊥. It implies F&

∧k

i=1 li ⊢1⊥.
The other inclusion between these two classes does not hold. Let us consider

e.g. formula F = (a ∨ x1 ∨ x2 ∨ x3) & (a ∨ x1 ∨ x2 ∨ x4). This formula is
prime and has yet another prime implicate C = (x1 ∨ x2 ∨ x3 ∨ x4), as can be
seen by resolution method. It is unit refutation complete, because if we add
¬C = x1 & x2 & x3 & x4 to F to make the unsatisfiable formula, we obtain a & a

and consequently the contradiction ⊥ by series unit resolutions. On the other
hand, F is not propagation complete because if we set x2, x3 and x4 to false (by
adding x2 & x3 & x4 to F), we obtain formula (a ∨ x1) & (a ∨ x1)) by unit
propagation. Hence we get neither a unit clause, nor the empty clause. In fact,
C is an empowering implicate of F with empowering literal x1 (and x2).

17

3. Class of SLUR formulae

A class of SLUR formulae was defined in [31, 18] by a non-deterministic algorithm.
Its name SLUR is an acronym for ’Single Lookahead Unit Resolution’ which states
how the algorithm operates. If it is at a point where unit resolution cannot derive
anything new, it chooses a variable, tries both assignments, verifies if there cannot
be detected a contradiction by a unit resolution and finally chooses some branch
where it does not. The class is then defined as such formulae on which this
approach never fails, see a more formal definition bellow.

Algorithm 3 SLUR

Input: A CNF formula F .
Output: An assignment satisfying F , unsatisfiable or give up.
1: F , v := unitprop(F)
2: if F contains an empty clause then
3: return unsatisfiable
4: end if
5: while F is not an empty set of clauses do
6: x := arbitrary variable from F

7: (F1, v1) := unitprop(F&x)
8: (F2, v2) := unitprop(F&x)
9: if both F1 and F2 contain an empty clause then

10: return give up
11: else if F1 does not contain an empty clause then
12: F := F2

13: v := v ∪ v2
14: else if F2 does not contain an empty clause then
15: F := F1

16: v := v ∪ v1
17: else
18: Choose arbitrarily:
19: 1. F := F1, v := v ∪ v1 or
20: 2. F := F2, v := v ∪ v2
21: end if
22: end while
23: return v

Definition 19. [31, 18] A formula F belongs to SLUR class if Algorithm 3 does
not give up after any series of non-deterministic choices made on lines 6 and 18.

It is known, that SLUR contains many of other known classes of formulae such
as Horn, hidden Horn, (hidden) extended Horn and CC-balanced formulae [31].
For overview of relationships of some well studied classes see e.g. [37] or [36].

There is also an obvious resemblance of SLUR algorithm to the DPLL proce-
dure. Except of the non-determinism, the main difference is that DPLL procedure
backtracks more than one level, whereas the SLUR algorithm just tests whether
a given variable assignment leads to a contradiction by unit propagation (which
is in fact equivalent to one layer backtracking).

18

In some sense we can see, though, SLUR formulae as a class of formulae
for which the DPLL (resp. CDCL) procedure works fast. According to [18]
the SLUR algorithm can be implemented in to run linear time.

3.1 Properties of SLUR formulae

Let us mention some of the basic properties of SLUR class proven in [37].

Lemma 20. [37] The class of SLUR formulae is closed under complementing all
occurrences of a variable and under partial assignments.

Proof. The proofs are straightforward. The case of variable complementation is
clear because the SLUR algorithm does not make any difference between positive
and negative literal. Hence, if we take a formula from SLUR class and complement
a variable SLUR algorithm would not give up because it does not on the original
formula. We can conclude that formula remains in the class and therefore the class
is closed under variable complementation.

We prove the fact that the class is closed under partial assignment for the case
of one variable assignment, the rest can be done by induction. We consider two
cases according to whether the value was assigned to the variable on line 1 or dur-
ing performing the while cycle. In the first case the value of the variable is forced
by a unit clause. If we assign the value that is forced anyway, nothing will change.
If we assign the other, the formula became unsatisfiable and the contradiction is
detected before entering the while cycle, hence the formula remains in the class.
In the second case, when the value is assigned during the while cycle, we can
assume that the value is assigned in the first run as the SLUR procedure must
succeed for all orders. The partial assignment either shortens the computation
by one step or it makes the formula unsatisfiable, which we detect immediately
by unit resolution as follows from the assumption that the formula was SLUR
(i.e. the wrong branch has been recognized by unitprop). Therefore we see that
the formula after partial assignment remains in the SLUR class.

Lemma 21. [37] The class of SLUR formulae is not closed under deletion of a lit-
eral or a clause nor on complementation of a literal.

Proof. The cases of literal and clause deletion are easy to prove. It is sufficient
to consider situation when the clause or literal is necessary for forcing something
else. For example formula F = a &(a∨ x∨ y)&(x∨ y)&(x∨ y)&(x∨ y) is SLUR,
but if we delete the first clause a or the first literal of the second clause, it will
clearly fall out the SLUR class. That is because in both cases we are left with an
unsatisfiable formula (for variable order a, x and y the algorithm gives up) which
is not detected before entering the while cycle. The same obviously holds if we
complement one of ’a’ literals. Then it will be missed out from the formula by
unitprop before entering the cycle and we are in the same situation again.

In [18] it was proven that the probability that a random formula is from
the SLUR class is quite low. To precisely cite this result we need to define
a probabilistic space of formulae Mk

M,n.

19

Definition 22. A random formula in Mk
M,n is a multi-set of m clauses select-

ed uniformly, independently and with replacement where each clause contains
exactly k variable distinct literals over a set of n variables.

The exact statement of [18] is formulated in the following theorem.

Theorem 23. [18] The probability that a random formula from Mk
M,n, with

m
n
=

r > 2
k(k−1)

and k ≥ 3 is in the SLUR class tends to 0 for n tends to infinity.

3.2 coNP-completenes of recognition problem

In this section we will focus on a problem of testing whether a formula is in
the SLUR class. We will prove that this problem is coNP-complete. Let us
present a formal definition of this problem.

SLUR membership (SLUR-m)

Instance : A formula F in CNF.

Question : Does F belong to the SLUR class?

The following result is quite obvious, but forms a necessary part of SLUR-m
coNP-completeness proof. It was observed in [37].

Lemma 24. [37] Problem SLUR-m belongs to the coNP class.

Proof. We will use the certificate definition of coNP membership, i.e. we will
present a certificate verifiable in polynomial time which for a non SLUR formu-
la proves that it really is not SLUR. Such a certificate is formed by the series
of non-deterministic choices which, if followed by the SLUR algorithm, leads to
the give up result. This certificate clearly has a linear size in the number of vari-
ables and can be verified by performing the SLUR algorithm under given choices
by verifying that it gives up.

We yet have to prove the other element necessary for coNP-completeness,
the fact that SLUR-m is coNP-hard problem [11]. It is done by a reduction
of 3D matching problem, which is known to be NP-complete [19, 24]. 3D matching
problem is defined as follows.

3D matching (3DM)

Instance : Sets X , Y , Z of the same cardinality |X| = |Y | =
|Z| = q and a set of triples W ⊆ X × Y × Z.

Question : Does W contain a matching of size q? I.e. is there
any M ⊆ W such that |M | = q and any two different
triples E,E ′ ∈ M are disjoint (E ∩ E ′ = ∅)?

The transformation will be constructed such that for any instance of 3DM we
create a formula FW such that it holds that FW is in the SLUR class if and only if

20

for the original problem was not possible to construct any 3D matching. The idea
is to construct a formula such that if the original problem admits a matching, then
the formula will be unsatisfiable but it will not be possible to detect a conflict
at the beginning by unit propagation. On the other hand, if it there is no match-
ing, then the algorithm does not give up for any order. The actual construction
is presented bellow.

Construction 25. [11] Let us have an instance of 3DM problem: let X =
{x1, . . . , xq}, Y = {y1, . . . , yq} and Z = {z1, . . . , zq} be the sets of the same
cardinality q and let W = {E1, . . . , Ew} be a set of w triples we are choosing
the matching from. We shall assume that Ej = (xf(j), yg(j), zh(j)), where f , g,
and h are functions determining which elements of X , Y , and Z belong to Ej .

· For every i ∈ {1, . . . , q} let us denote Ai = (ai ∨ ai+1), where a1, . . . , aq+1

are new variables.
· For every i ∈ {1, . . . , q} and j ∈ {1, . . . , w} let us denote B

j
i = (b1i ∨ · · · ∨

b
j−1
i ∨ b

j
i ∨ b

j+1
i ∨ · · · ∨ bwi), i.e. B

j
i denotes a clause on variables b1i , . . . , b

w
i ,

in which every literal is negative except bji .

· For every i ∈ {1, . . . , q} and j ∈ {1, . . . , w} let us denote C
j
i = (c1i ∨ · · · ∨

c
j−1
i ∨ c

j
i ∨ c

j+1
i ∨ · · · ∨ cwi), i.e. C

j
i denotes a clause on variables c1i , . . . , c

w
i ,

in which every literal is negative except cji .
· Given a triple Ej ∈ W , let Dj = (Af(j) ∨ B

j

g(j) ∨ C
j

h(j)).

· Finally let FW =
∧w

j=1Dj ∧ (aq+1 ∨ a1) ∧ (a1 ∨ u) ∧ (u ∨ a1).

Let us denote the sets of variables in FW as follows:

· A = {a1, . . . , aq+1, u},
· Bi = {b1i , . . . , b

w
i } for every i ∈ {1, . . . , q},

· B =
⋃q

i=1 Bi,
· Ci = {c1i , . . . , c

w
i } for every i ∈ {1, . . . , q},

· C =
⋃q

i=1 Ci and
· V = A∪ B ∪ C.

Firstly we will show some properties of the formula, which we use afterwards
to show the relationship of SLUR membership and the matching solution. We say
that a clause is trivial if it is empty or it evaluates to 1, otherwise we say it is
nontrivial. Let F [v] denote a formula we get from a formula F by applying
a partial assignment v.

Lemma 26. [11] Let v : V → {0, 1, ∗} be a partial assignment and let j, k ∈
{1, . . . , w} be arbitrary. Let us assume that Dj [v] and Dk[v] are nontrivial. Then
Dj [v] and Dk[v] are resolvable if and only if Ej ∩Ek = ∅, particularly Dj and Dk

are resolvable over a variable in A, and moreover

· j = k + 1 and v(af(j)) = ∗ or
· j = k − 1 and v(af(k)) = ∗.

Proof. Let us at first assume that Dj [v] and Dk[v] are resolvable, which means
that they have a conflict in exactly one variable. It immediately follows that j 6=
k. Let us at first show, that Ej and Ek must be disjoint. For contradiction let us
at first assume, that they share an element of Z, i.e. that h(j) = h(k). In this case

21

also C
j

h(j) and Ck
h(k) are on the same set of variables Ch(j) = Ch(k). But according

to definition of Cj

h(j) and Ck
h(k) we have that they have conflict in two variables

c
j

h(j) and ckh(j). If t assigns value to neither of them, then Dj and Dk would not
be resolvable, if t assigns value to one of them then no matter which value it is,
we have that one of Dj[v] and Dk[v] would be equal to constant 1. Hence it must
be the case that h(j) 6= h(k). Similarly we can show that g(j) 6= g(k) we only
consider set Y instead of Z. It also follows that if Dj [v] has one conflict variable
with Dk[v], then it must be either af(j), or af(k). The proposition follows from
definition of Af(j) and Af(k).

Now let us assume, that Ej ∩ Ek = ∅, f(j) = f(k) + 1, and v(af(j)) = ∗
(the case when f(j) = f(k)− 1 is similar and is left to the reader). In this case
there is only one conflict variable of Dj and Dk and it is af(j), which is left intact
by v and hence it is also a conflict variable of Dj[v] and Dk[v], which means that
Dj [v] and Dk[v] are resolvable.

Lemma 27. [11] Let v : V → {0, 1, ∗} be any partial assignment of variables
in FW and let j ∈ {1, . . . , w}. If Dj [v] is not equal to 1 and it contains exactly
one literal with variable in Bg(j) (Ch(j) respectively), then no other nontrivial clause
in FW (t) can contain a variable in Bg(j) (Ch(j) respectively).

Proof. The proof is similar to the proof of Lemma 26. Let us proceed by con-
tradiction and let us assume that there is a clause Dk, k 6= j, such that Dk(t) is
a nontrivial clause containing a variable from Bg(j), which means that g(k) = g(j).
Let us denote the only variable in Bg(j) which appears in Dj [v] by brg(j) for some

r ∈ {1, . . . , w}. Since v sets all variables from Bg(j) except b
r
g(j), otherwise Dj [v]

would contain all variables from Bg(j) unset by v, we have that brg(j) is also the on-

ly variable from Bg(j) which appears in Dk[v]. If r 6= k, then literal bkg(j) is set
to 1 by v in one of Dj or Dk meaning that one of these clauses would be trivial,
because Dj and Dk have a conflict in bkg(j). If r = k, then the same can be told

about bj
g(j), because also in this variable Dj and Dk have a conflict.

From the Lemma 27 we can conclude an easy corollary.

Corollary 28. [11] Let v : V → {0, 1, ∗} be any partial assignment of variables
in FW such that FW (t) does not contain the empty clause and let x ∈ B ∪ C be
a variable, which is not set by v (i.e. v(x) = ∗). Then one of FW [v, x = 0] and
FW [v, x = 1] does not contain the empty clause.

Proof. If the empty clause occurs in FW [t, x = 0], then it is because literal u is
present in FW [v], according to Lemma 27 we have that this literal u is the only
occurrence of variable u in FW [v], hence setting u to 1 cannot produce the empty
clause.

In the rest of this section we will say that SLUR algorithm gives up on a for-
mula F with variable x and assignment v if x was the last variable chosen at line
6 before the algorithm gives up and v was the variable assignment at the moment
of that choice.

The following lemma shows we show that only variables from A can cause
that SLUR algorithm gives up.

22

Lemma 29. [11] Let us assume that SLUR algorithm gives up on FW with vari-
able x and assignment v : V → {0, 1, ∗}, then x ∈ A.

Proof. If SLUR algorithm gives up on FW with variable x and assignment v,
then unit propagation on both FW [v, x = 0] and FW [v, x = 1] generate the empty
clause. Let us assume for contradiction that v ∈ B ∪ C.

If the empty clause is directly present in FW [v, x = 0] or FW [v, x = 1], it
would mean that we have a unit clause in FW [v], which is not possible, because
performing unit propagation each time after assigning a value to a variable en-
sures, that in SLUR algorithm at the beginning of while cycle, formula F contains
neither a unit clause nor the empty clause.

It follows that both FW [v, x = 0] and FW [v, x = 1] contain new unit clause
which causes unit propagation to generate the empty clause, let us assume, that
d = b

j
i for some i ∈ {1, . . . , q} and j ∈ {1, . . . , w} (the case of variable from C

is the same). Let Dk be the clause for which g(k) = i and Dk[v] is a quadratic
clause containing literal with b

j
i . If the other variable in Dk[v] belongs to B ∪ C,

then no resolution can occur by setting b
j
i to 0 or 1 according to Lemma 26,

and therefore unit propagation cannot generate the empty clause. If the other
variable belongs to A, then b

j
i occurs only once in FW [v] according to Lemma 27

and therefore Dk[v, b
j
i = 0] ≡ 1 or Dk[v, b

j
i = 1] ≡ 1, which means that in one

of these cases unit propagation will not do anything and in particular it will not
generate the empty clause.

Lemma 30. [11] Let us assume that SLUR algorithm gives up on FW with vari-
able x ∈ A and assignment v : V → {0, 1, ∗}, then A1, . . . , Aq, (aq+1 ∨ a1), (a1 ∨
u), (u ∨ a1) are all present in FW [v].

Proof. The idea of the proof is as follows. According to Lemma 26 if two clauses
in FW [v′] for any partial assignment v′ are resolvable, then they are resolvable
over a variable in A, thus to generate the empty clause in FW [v, x = 0] we must
follow chain of resolutions over variables from A, the only chain of such resolu-
tions in whole formula is formed by clauses among A1, . . . , Aq, (aq+1∨a1), (a1∨u).
If all these clauses are present in FW [v], then setting any variable in A to any
value causes unit propagation to generate the empty clause. On the other hand,
we shall show, that if this chain is broken, i.e. some of these clauses do not appear
directly in FW [v] (although they may appear as a proper subclause of a clause
in FW [v]), then in one of the assignments unit propagation stops before it gener-
ates the empty clause. To this end we have to distinguish several cases according
to x ∈ A.

· If x = a1, then because SLUR algorithm have not yet unit propagated a1,
then (aq+1 ∨ a1), (a1 ∨ u) and (u ∨ a1) must all belong to FW [v]. Because
unit propagation generates the empty clause in FW [v, a1 = 0], we have
that a1 must appear positively in a quadratic clause in FW [v], note that
FW [v] does not contain any unit clauses, because we have proceeded with
unit propagation on it. Let us now show that also A1, . . . , Aq all belong
to FW [v]. Let us proceed by contradiction and let us assume that some
Ai 6∈ FW [v]. Let i ∈ {1, . . . , q} be the smallest index for which Ai 6∈ FW [v]
and let j ∈ {1, . . . , q} be the maximum index for which Aj 6∈ FW [v]. If i = 1,
then the only unit clause in FW [v, a1 = 0] is aq+1. Unit propagation will

23

follow the chain of quadratic clauses Aq, Aq−1, . . . , Aj+1, where from Aj+1 we
will get a unit clause aj+1 (if j = q, then we still have aq+1 = aj+1). Let Dk

be an arbitrary clause such that Dk[v, a1 = 0] is nontrivial and such that it
contains aj+1. If no such clause exists, then unit propagation stops without
generating the empty clause. Similarly if Dk[v, a1 = 0] contains at least
three literals, then unit propagation sets aj+1 to 1 and still Dk[v, a1 = 0]
will after this assignment contain at least two literals, which means that unit
propagation will stop without generating the empty clause. If Dk[v, a1 = 0]
is quadratic then because Aj is not directly present in FW [v], we have that
the other literal in Dk[v, a1 = 0] must be on a variable from B ∪ C, but
according to Lemma 27 this is the only occurrence of this variable in FW [v]
and hence again unit propagation will not generate the empty clause.
Now let us assume that 1 < i ≤ j ≤ q. Now we have two chains of quadratic
clauses, one is A1, . . . , Ai−1, and the other is Aq, Aq−1, . . . , Aj+1. But using
the same arguments as in the case of only one chain we can argue that
in this case unit propagation would not generate the empty clause in any
of these chains. This is true even if i = j, in which case both literals in Ai

are assigned values, in this case any clause Dk[v] which contains Ai must
contain at least three literals, otherwise Ai would be present in FW [v], if it
contains at least four literals, then after assigning values to the variables
in Ai, we have two literals remaining in Dk[v] and thus unit propagation
stops. If only one literals remains inDk[v], then it is on a variable from C∪B
in which case it is the only occurrence of this variable in FW [v] according
to Lemma 27 and thus unit propagation again does not generate the empty
clause.

· x = ai for some i ∈ {2, . . . , q}. Let us again proceed by contradiction a let
j ∈ {1, . . . , i} be maximum index for which Aj is not present in FW [v] and
let k ∈ {i, . . . , q} be maximum index for which Ak is not present in FW [v].
If we set ai to 0, then we get a unit clause, otherwise unit propagation cannot
generate the empty clause, therefore Ai = (ai∨ai+1) belongs to FW [v]. Unit
propagation then follows the chain of clauses Ai, Ai+1, . . . , Ak−1, in which
case we can argue in the same way as in the case of a1 that it unit propaga-
tion stops when it reaches clauses containing Ak as a subclause. Similarly,
if we set ai to 1, then Ai−1 = (ai−1∨ai) must belong to FW [v] and then unit
propagation follows the chain of clauses Ai−1, Ai−2, . . . , Aj−1 and again we
can argue that it stops when it reaches clauses having Aj as a subclause.
It follows that A1, . . . , Aq all belong to FW [v]. It means that we have not
yet unit propagated a1 and aq+1 and thus also (aq+1 ∨ a1), (a1 ∨ u), and
(u ∨ a1) must belong to FW [v].

· x = aq+1. If we set aq+1 to 1, then because we have to produce a quadratic
clause by this assignment to be able to generate the empty clause using
unit propagation, we must have that Aq = (aq ∨ aq+1) belongs to FW [v].
Thus next step in unit propagation is equivalent to assigning aq = 1 and by
the same arguments as in the case x = aq we can show that it means that
all A1, . . . , Aq belong to FW [v]. Because we have not yet unit propagated
aq+1 clause (aq+1 ∨ a1) must be present in FW [v] and thus we have not yet
unit propagated a1 as well, which implies that (a1 ∨ u) and (u ∨ a1) must
also be present in FW [v].

24

· If x = u. No matter which value we assign to u, next step in unit prop-
agation is to assign a1 = 0, as we have already shown, it implies together
with the fact that we have not yet unit propagated neither u nor a1, that
all required clauses belong to FW [v].

In the following lemma we finally show, that FW is not SLUR if and only if W
contains a perfect matching.

Lemma 31. [11] Instance X, Y , Z and W of 3DM contains a perfect matching
if and only if FW is not SLUR.

Proof. First let us assume, that W contains a perfect matching M ⊆ W , and let
M = {Ej1 , . . . , Ejq}. Let v be a partial assignment, which assigns variables

in B
j1
g(j1)

, . . . , B
jq
g(jq)

and C
j1
h(j1)

, . . . , Ch(jq) and no other variables, moreover this

assignment sets the variables in such a way that B
j

g(j)[v] = 0 and C
j

h(j)[v] = 0

for every j ∈ {j1, . . . , jq}. Note, that since triples in M are pairwise disjoint, all

variables appear at most once in B
j1
g(j1)

, . . . , B
jq
g(jq)

and C
j1
h(j1)

, . . . , Ch(jq), and thus
such assignment v exists and is unique. If SLUR chooses variables assigned by v

in any order and if it chooses their values according to v, then we can observe,
that no unit resolution will ever occur, because no unit clause will be produced
by these assignments. Hence the SLUR algorithm will not fail in the process and
in each step it will be able to choose the assignment of a variable according to v.
When all variables are set according to v, we thus get formula FW [v], in which
from every clause Dj for j ∈ {j1, . . . , jq} remained only Aj. Thus we get, that
FW [v] contains the following subformula:

∧

j∈{j1,...,jq}

Aj

 ∧ (aq+1 ∨ a1)(a1 ∨ u)(u ∨ a1) (3.1)

Because M is a matching and thus every xi ∈ X appears in exactly one triple
of M , we get that CNF (3.1) is equivalent to:

(

q
∧

j=1

Aj

)

∧ (aq+1 ∨ a1)(a1 ∨ u)(u ∨ a1) (3.2)

It follows, that FW [v] is actually equivalent to (3.2), because each clause in FW [v]
is absorbed by one of the clauses in (3.2). Using definition of Aj we get that this
is equivalent to:

(a1 ∨ a2)(a2 ∨ a3) . . . (aq ∨ aq+1) ∧ (aq+1 ∨ a1)(a1 ∨ u)(u ∨ a1) (3.3)

Observe, that CNF (3.3) is an unsatisfiable quadratic CNF (it reduces to a1 ∧ a1
after resolutions are made) and therefore it is not SLUR. Hence whole formula
FW is not SLUR.

Now let us assume that SLUR fails on FW . According to Lemma 29 it must
fail on a variable from A, let v : V → {0, 1, ∗} be a partial assignment produced
by SLUR algorithm before it chooses a variable on which it fails. Then according

25

to Lemma 30 we must have that all clauses A1, . . . , Aq ∈ FW [v], let Dj1, . . . , Djq

be some clauses such that Dj1 [v] = A1, . . . , Djq [v] = Aq. Now let a, b ∈ {1, . . . , q}
such that a 6= b. Because Aa 6= Ab we have that Dja 6= Djb , and thus ja 6= jb.
Because f(ja) = a and f(jb) = b, we also have that xf(ja) 6= xf(jb). By the same
arguments as in only if part of the proof of Lemma 26 we can show, that in fact
Eja ∩ Ejb = ∅. In particular let us assume that h(ja) = h(jb) (the case with
g(ja) = g(jb) is the same), in this case both C

ja
h(ja)

and C
jb
h(jb)

are on the same set
of variables Ch(ja) = Ch(jb) and each of these variables is assigned a value 0 or 1

by v. By definition there is a variable, in which C
ja
h(ja)

and C
jb
h(jb)

have a conflict

in a variable, that implies that one of Cja
h(jb)

[v] and C
jb
h(jb)

[v] is evaluated to 0,

which is in contradiction with fact that Dja[v] = Aa and Djb[v] = Ab.

Now we can use previous to show the result of coNP-completeness of SLUR
membership testing.

Theorem 32. Problem SLUR-m is coNP-complete.

Proof. The result is consequence of Lemma 24 and 31.

3.3 Further properties of SLUR formulae

As we have seen in Section 3.2, there is a very small chance to find out an al-
gorithm recognizing SLUR formulae polynomially. For that reason it is natural
to ask for some sufficient conditions. In [11] we showed that every formula which
contains all the prime implicates, i.e. contains the canonical formula as a subfor-
mula, is SLUR.

Later in [4] we strengthened this result so that it claims that it suffices if the
prime implicates can be derived by one resolution step from the formula. The key
part of the proof is the following lemma, which is extending Lemma 5.

Lemma 33. [4] Let F ∈ CANON(1) and let x be any variable of F . Then both
F [x = 0] and F [x = 1] are also in CANON(1).

Proof. We will show only the case x = 0, the case x = 1 is similar. Let us denote
F ′ = F [x = 0], our goal is to prove that F ′ is in CANON(1), i.e. each of its prime
implicates is either in F ′ or can be derived from it in one resolution step. Let f
denote the function represented by F and let f ′ denote the function represented
by F ′.

Let us fix an arbitrary prime implicate C ′ of f ′ and let us show, that C ′ ∈ F ′

or there are two clauses C1, C2 ∈ F ′ such that C ′ = R(C1, C2). That is exactly
the property required for F ′ to belong to CANON(1) and thus by this our proof
will be completed.

Because F ′ = F [x = 0], we can observe, that C ′ ∨ x is an implicate of f .
Indeed, let v be an arbitrary assignment satisfying f and let us show that C ′ ∨ x

is satisfied by t, too. If v(x) = 0, then t satisfies f ′ and thus C ′[v] = 1. If v(x) = 1,
then clearly (C ′ ∨ x)[v] = 1. This implies, that there has to be a prime implicate
C of f such that

C ≤ C ′ ∨ x. (3.4)

26

It follows, that C[x = 0] ≤ (C ′ ∨ x)[x = 0] = C ′ and because C ′ is a prime
implicate of f ′, while C[x = 0] is an implicate of f ′, we get, that in fact

C[x = 0] = C ′. (3.5)

If C ∈ F , then clearly C ′ = C[x = 0] ∈ F .
Let us now assume that C 6∈ F . From our assumption that F ∈ CANON(1)

it follows, that there are C1, C2 ∈ F such that C = R(C1, C2). We will divide
the proof into several cases.

1. Clause C does not contain variable x.

(a) If the resolution step does not use variable x as a conflict one, then
also x 6∈ C1, C2, which immediately means that both C1 = C1[x = 0]
and C2 = C2[x = 0] are present in F ′ including their conflict variable.
We can therefore do the same resolution step as before and get C =
C ′ = R(C1, C2).

(b) On the other hand, if the resolution step uses x as a conflict variable,
then we can write C1 = A ∨ x, C2 = B ∨ x, and C = R(C1, C2) =
A ∨ B for some clauses A and B which do not have a conflict. After
substitution to x we get C1[x = 0] = A and C2[x = 0] = 1. It follows
that C1[x = 0] = A ≤ A ∨ B = C ≤ C ′ ∨ x, where the last inequality
follows from 3.4. Now since C1 ∈ F , we get that C1[x = 0] = A ∈ F ′

and because C ′ is a prime implicate of f ′, it must be the case that
in fact C ′ = A ∈ F ′.

2. It remains to consider the case when C contains x, but C 6∈ F . This case
is, in fact, similar to the case when C does not contain x and it was derived
by a resolution which did not use x as a conflict variable. Let us again
assume, that C = R(C1, C2), where C1, C2 ∈ F . Therefore C1[x = 0],
C2[x = 0] are two resolvable clauses which belong to F ′ and we have that
C ′ = R(C1[x = 0], C2[x = 0]).

We will also need the following simple observation about unsatisfiable clauses
from the class CANON(1).

Lemma 34. [4] If F is unsatisfiable and F ∈ CANON(1), then either F contains
an empty clause, or an empty clause is generated during unitprop(F).

Proof. Let f denote the function represented by F . If F is unsatisfiable, then f

has only one prime implicate — an empty clause ∅. Due to the assumption that
F ∈ CANON(1), we get that either ∅ ∈ F or ∅ = R(C1, C2), where C1, C2 ∈ F .
In the latter case the only possibility how an empty clause can be generated in one
resolution step is, if C1 = x and C2 = x for some variable x (or symmetrically
C1 = x and C2 = x). It means that an empty clause would be generated during
unit propagation.

Now we prove promised result that CANON(1) ⊆ SLUR and afterwards
present an example showing that the inclusion is strict.

27

Theorem 35. [4] If F is in CANON(1) then it is also in the SLUR class.

Proof. If F is unsatisfiable, then by Lemma 34 SLUR algorithm would correctly
recognize it after unit propagation in step 2.

Let us assume, that F is satisfiable. Inductive use of Lemma 33 ensures that
in every step of the algorithm the formula considered belongs to CANON(1).
This is because every formula originates from F by a partial assignment and unit
propagation do nothing other then partial assignments. Particularly, F&x cor-
responds to F [x = 0] and F&x corresponds to F [x = 1]. If at the beginning
of the while cycle formula F is satisfiable, then one of F1 and F2 is satisfiable
and if one of them is unsatisfiable, it contains an empty clause by Lemma 34.
Thus, at the beginning of the next cycle F is again satisfiable and at the end
the SLUR algorithm finds satisfying assignment.

Example 36. It is not hard to create a formula which is in the SLUR class, but it
is not in CANON(1). It suffices to consider as simple formula as x&(x∨y)&(y∨x).
The SLUR algorithm clearly discovers that this formula is unsatisfiable, but it is
not CANON(1) because its only prime implicate, the empty clause, lays in depth
two.

In [4] we have given also an example of a formula which showed that the result
of Theorem 35 cannot be strengthen to class of CANON(2). The formula proving
this is as follows.

F = (x ∨ y ∨ a)&(x ∨ y ∨ b)&(x ∨ y ∨ c)&(x ∨ y ∨ d) (3.6)

All the other implicates which can be derived by resolution from F are the fol-
lowing:

(x ∨ a ∨ b), (y ∨ a ∨ c), (y ∨ b ∨ d), (x ∨ c ∨ d), (a ∨ b ∨ c ∨ d). (3.7)

The last clause has resolution depth two, thus F ∈ CANON(2). All the remaining
clauses have resolution depth one. In order to show that F is not SLUR let us
consider the following run of the SLUR algorithm. Let the algorithm first choose
variables a, b, c and d and sets them all to 0. It leads to a complete quadratic
CNF, which is unsatisfiable and thus the SLUR algorithm must give up later
in the process. This implies that not all CNF formulae from CANON(2) are
SLUR.

CNF F from line (3.6) above has another interesting property. It is the only
prime and irredundant CNF representing the given function f . And it is also
the only prime representation which is not SLUR. It suffices to add any other
implicate from list 3.7 to F to make it SLUR.

If e.g. we add (x∨ a∨ b) to F , then the SLUR algorithm recognizes an unsat-
isfiable formula during unit propagation after setting a, b, c and d to 0 and thus
it would not give up. If x or y is assigned a value before a, b, c or d, or if one of a,
b, c or d is assigned value 1, then SLUR algorithm gets a satisfiable quadratic
formula, which is SLUR. The cases of the next three implicates in 3.7 are symmet-
ric. Adding the implicate (a∨ b∨ c∨ d) makes the formula belong to CANON(1)
and therefore SLUR, because it is the only implicate with resolution depth 2.

28

CANON(0)

CANON(2)

CANON(1)

SLUR

Figure 3.1: Mutual inclusions of CANON(i) hierarchy and the SLUR class

This is also an example of a function, that does not have a prime and irredun-
dant SLUR representation.

Yet further insight into the area of sufficient condition arise as a consequence
of the proof of equivalence of SLUR class and class of unit refutation formula
discussed in [21, 22]. As it concerns hierarchies described in the following chapter,
we will discuss this matter later on.

29

4. Hierarchies over the SLUR
class

In this chapter we will consider some ways of extending the SLUR class into
hierarchies. We will present some of their properties and show mutual relations.

4.1 Hierarchy SLUR(i)

In this section we shall show the most straightforward idea how the SLUR class
can be generalized into a hierarchy of classes of CNFs. This approach was pre-
sented in [37, 11]. For each fixed i ≥ 1 we define class SLUR(i) by parametrized
version of the original SLUR algorithm (Algorithm 3 on page 18) as follows.

Instead of selecting a single variable as on line 6 of Algorithm 3 (the orig-
inal SLUR algorithm), the parametrized version SLUR(i) (Algorithm 4) non-
deterministically selects i variables, and instead of considering the two possible
values for the selected variable on lines 7 and 8 in Algorithm 3 it considers all pos-
sible 2i assignments for the selected i-tuple. If all assignments produce the empty
clause in the first iteration (after selecting the first i-tuple of variables) algorithm
SLUR(i) returns unsatisfiable. If all assignments produce the empty clause in any
of the subsequent iterations SLUR(i) gives up. If at least one of the assignments
does not produce the empty clause SLUR(i) non-deterministically chooses one
of such assignments and continues in the same manner. The class SLUR(i) is
then defined as the class of CNFs F on which SLUR(i) (i.e. Algorithm 4) never
gives up regardless of the choices made. Note that the SLUR class is a strict subset
of SLUR(1) since there is a CNF on which the SLUR algorithm gives up after se-
lecting the first variable but the contradiction is discovered by unitprop on the first
layer. For instance complete quadratic formula (x∨y) & (x∨y) & (x∨y) & (x∨y)
is not in the SLUR class because it does not contain any unit clause and the ini-
tial unitprop of the SLUR algorithm (step 1 of Algorithm 3) does not discover
the contradiction. Whereas, if we assign a value to any of the variables, unitprop
can derive the empty clause and because both branches on the first layer lead
to a contradiction, the formula is SLUR(1).

Definition 37. Formula F is a member of SLUR(i) if Algorithm 4 does not give
up on F after any series of non-deterministic choices on lines 10 and 26.

It is obvious from the definition, that SLUR(i) provides for every fixed i

a polynomial time SAT algorithm with respect to the length of the input CNF F

(of course, the time complexity grows exponentially with i). It is also clear from
the definition that every CNF on n variables belongs to SLUR(n), and hence
the hierarchy (i.e. the infinite union of SLUR(i) classes) contains all CNFs.

Since there are 2i possible combinations of positive and negative literals over
the set of i literals, the for-cycle on line 12 can be implemented in time O(n · 2i)
provided that we implement unitprop in linear time [12]. That gives us an upper
bound of O(n2 · 2i) for the whole algorithm.

In the rest of this section we shall show two more results. First, we prove,

30

Algorithm 4 SLUR(i)

Input: A CNF formula F .
Output: An assignment satisfying F , unsatisfiable or give up.
1: F , v := unitprop(F)
2: if F contains an empty clause then
3: return unsatisfiable
4: end if
5: j := 0
6: while F is not empty do
7: j := j + 1
8: Q := empty set
9: lQ := 0

10: A := set of arbitrary i variables from F (if it contains less variables, then
all of them)

11: B := {l1 & . . . & l|A| : l1, . . . , l|A| are literals over all variables from set A}
{Every element of B is a formula of unit clauses over variables of A}

12: for all S ∈ B do
13: FS, vS := unitprop(F & S)
14: if FS does not contain an empty clause then
15: add (FS, vS) into Q

16: lQ := lQ + 1
17: end if
18: end for
19: if lQ = 0 then
20: if j = 1 then
21: return unsatisfiable
22: else
23: return give up
24: end if
25: else
26: F, vchosen := arbitrary element of Q
27: v := v ∪ vchosen
28: end if
29: end while
30: return v

that the SLUR(i) hierarchy does not collapse, and then we extend the coNP-
completeness recognition result for SLUR(1) to SLUR(i) for an arbitrary i.

Lemma 38. [37, 11] For every i there is a formula Fi+1 such that Fi+1 ∈
SLUR(i+ 1) \ SLUR(i).

Proof. Let us construct Fi+1 as an unsatisfiable CNF on i + 2 variables V =
{x1, . . . , xi+2}. It contains each possible combination of positive and negative
literals and can be written as:

Fi+1 =
∧

P⊆V

∨

v∈P

v ∨
∨

v∈V \P

v

 .

31

If we assign values to any i-tuple of variables some of the clauses disappear
and the rest of the formula is the complete unsatisfiable formula over two vari-
ables (e.g. if we assign arbitrary zero-one values to x1, . . . , xi, we get (xi+1 ∨
xi+2) & (xi+1 ∨ xi+2) & (xi+1 ∨ xi+2) & (xi+1 ∨ xi+2)). Unitprop will not derive
the empty clause on such CNF and the algorithm SLUR(i) will have to give up
in the next step.

On the other hand, if we assign values to any (i+1)-tuple we will get a CNF
of the x & x form. Unitprop will derive the empty clause on such a formula
and so the algorithm SLUR(i+ 1) returns unsatisfiable.

It is also easy to observe that any CNF formula is an element of SLUR(i)
for some i. It holds because if we chose i equal to the number of variables
in the formula or greater, algorithm obviously never gives up.

It is not a big surprise that recognition of SLUR(i) formulae is coNP-complete
again. In the following lemma we present a way how to show that using the anal-
ogous result for SLUR class.

Lemma 39. [11] For each i the membership problem for the class SLUR(i)
is coNP-complete.

Proof. Similarly as in the SLUR case, an order of selected variables and the values
assigned to them which forces SLUR(i) to give up on F , serves as a polynomi-
ally verifiable certificate that F is not in SLUR(i). Therefore, the membership
problem for SLUR(i) is in coNP.

To prove coNP-hardness we modify the proof used for the SLUR case. We take
i copies of formula FW defined in Section 3.2, each of them on a new set of vari-
ables, and add one more clause containing disjunction of another i new variables.
That is, given an instance W of 3DM we construct a CNF

F = FW
(1) & FW

(2) & . . . & FW
(i) & (n1 ∨ . . . ∨ ni),

where F
(1)
W , . . . , F

(i)
W are copies of FW on pairwise disjoint sets of variables. It now

suffices to prove that the input instance of 3DM contains a perfect matching
if and only if F does not belong to the class SLUR(i).

Let us first assume that the input instance of 3DM contains a perfect match-
ing. Using Lemma 31 we get that the original SLUR algorithm gives up on FW

for some order of variable assignments. Now we construct an order of variable
assignments which will force SLUR(i) to give up on F . First the algorithm picks
the dummy variables {n1, . . . ni} and assigns some values that lead to the satisfy-
ing assignment of the last clause of F (this step prevents the algorithm to return
unsatisfiable instead of giving up in the case when the original SLUR algorithm
gives up after assigning just one variable). Now SLUR(i) on formula F will fol-
low the order of variable assignments by using the one which forces the SLUR
algorithm to give up on FW . Every time the SLUR algorithm pick a variable
and assigns a value to it, SLUR(i) does the same in all i copies of FW which sit
inside of F . This order clearly leads SLUR(i) to give up on F , proving that F

does not belong to the class SLUR(i).
Now let us assume that F does not belong to the class SLUR(i). That means

that SLUR(i) gives up on F for some order of variable assignments. Since F con-
sists of i+1 sub-CNFs on disjoint sets of variables, it follows that SLUR(i) derives

32

the empty clause by unit propagation from one of these subCNFs for all possible
assignments of the last selected i-tuple of variables. Clearly, this cannot happen
for the last clause in F , so it must happen for one of the copies of FW . But now
restricting the variable assignment only to the variables from this particular copy
of FW , we get an order of variable assignments which makes the original SLUR
algorithm give up on FW . Thus FW is not SLUR and using Lemma 31 we get
that the input instance of 3DM contains a perfect matching.

4.2 Hierarchy SLUR*(i)

Further step in building up hierarchies is to realise that we can perform unit prop-
agation after each variable assignment [4]. This way we get a stronger hierarchy,
as can be seen from the following example.

Example 40. [4] Let us consider the following formula

F =(x ∨ y) & (x ∨ y) & (x ∨ y ∨ a ∨ b) & (x ∨ y ∨ a ∨ b)

(x ∨ y ∨ a ∨ b) & (x ∨ y ∨ a ∨ b)
(4.1)

It can be observed, that this formula is not in the SLUR(2) class. If we
choose x and y and then we choose assignment x = y = 0, the SLUR(2) algo-
rithm gives up as it is left with a complete unsatisfiable quadratic formula. Here
SLUR(2) actually does not take any advantage from the fact that it can choose
two variables at once, because it chooses two equivalent variables. If however
after choosing a value for x, the SLUR(2) algorithm were allowed to perform
unit propagation, then it would not choose y as the second variable and it would
recognize, that in case x = 0 the rest is an unsatisfiable formula. This example
leads us to a hierarchy consisting of classes SLUR*(i). The SLUR*(i) algorithm
also chooses i variables at each step, but it performs unit propagation after each
substitution into every single variable rather then one unit propagation after all
of them. Formally, the SLUR*(i) class is defined using Algorithm 6, which uses
procedure test (Algorithm 5) as a sub-procedure.

Definition 41. [4] Formula F is a member of SLUR*(i) class if Algorithm 6 does
not return give up for any of non-deterministic choices made during its run.

Note, that all non-determinism is now stored in step 8 of procedure test

(Algorithm 5). In this step by choosing literal instead of a variable we also give
no preference to whether the first value tested will be 1 or 0. The test procedure
is in fact a DPLL procedure (see [14]), in which we bound our search by given
depth. If i is a fixed constant, algorithm SLUR*(i) runs in polynomial time,
though it is naturally exponential with increasing i.

It is easy to show that the SLUR*(i) hierarchy does not collapse, i.e. for ev-
ery i ≥ 1 the inclusion

SLUR*(i) (SLUR*(i+ 1)

is strict, in fact exactly the same argumentation as for the previous SLUR(i) hier-
archy can be used. Modification of the proof to SLUR*(i) hierarchy is contained
in the following lemma.

33

Algorithm 5 test

Input: A pair of a CNF formula F and a number of variables to be assigned k.
Output: A partial assignment of k variables which does not enable us to conclude

a contradiction from F by unit propagation or unsatisfiable, if there is no such
assignment.

1: F , v := unitprop(F)
2: if F contains an empty clause then
3: return unsatisfiable
4: end if
5: if k = 0 then
6: return an empty assignment
7: end if
8: l := a literal (positive or negative) over an unassigned variable from F

9: t1 := test(F & l, k − 1)
10: if ’test’ on the previous line did not return unsatisfiable then
11: return t ∪ t1
12: end if
13: t2 := test(F & l, k − 1)
14: if ’test’ on the previous line did not return unsatisfiable then
15: return t ∪ t2
16: end if
17: return unsatisfiable

Algorithm 6 SLUR*(i)

Input: A CNF formula without an empty clause.
Output: A partial assignment satisfying F , unsatisfiable or give up.
1: F , v := unitprop(F)
2: if F contains an empty clause then
3: return unsatisfiable
4: end if
5: while F contains a clause do
6: t′:=test(F , i)
7: if previous test returns unsatisfiable then
8: if it is the first run of the while cycle then
9: return unsatisfiable

10: else
11: return give up
12: end if
13: end if
14: return t:=t ∪ t′

15: end while
16: return t

Lemma 42. [4] For each i there is a formula Fi+1 such that Fi+1 ∈ SLUR*(i+
1) \ SLUR*(i).

Proof. Let Fi+1 be the complete CNF formula on i+2 variables V = {x1, . . . , xi+2},

34

i.e. formula containing all 2i+2 possible clauses.

Fi+1 =
∧

P⊆V

∨

v∈P

v ∨
∨

v∈V \P

v

 .

Now we can see that assigning values to any i-tuple of variables some of the claus-
es disappear and the rest of the formula is quadratic and unsatisfiable. E.g. if we
assign arbitrary zero-one values to x1, . . . , xi, we get (xi+1 ∨ xi+2) & (xi+1 ∨
xi+2) & (xi+1∨xi+2) & (xi+1∨xi+2). Unit propagation after each variable assign-
ment does not help us, because all clauses are too long. The last unitprop will
not derive the empty clause on such CNF and the algorithm SLUR*(i, Fi+1) will
have to give up in the next step.

On the other hand, if we assign values to any (i+1)-tuple we will get a CNF
of the x & x form. Unitprop will derive the empty clause on such a formula
and so the algorithm SLUR*(i+ 1,Fi+1) returns unsatisfiable.

It can be immediately seen, that every CNF F on n variables belongs to
SLUR*(n). It can be also observed that by doing unit propagation before each
choice, we do not loose anything and thus

SLUR(i) ⊆ SLUR*(i)

for every i ≥ 1, in particular SLUR ⊆ SLUR*(1). The formula (4.1) de-
fined in Example 40 at the beginning of this section shows that the inclusion
SLUR(2) ⊆ SLUR*(2) is in fact strict, this example can be generalized to show
the following lemma. Note, that in case i = 1 we do not gain anything and thus
SLUR(1) = SLUR*(1).

Lemma 43. [4] For every i > 1 we have [SLUR(i)\SLUR(i−1)]∩SLUR*(2) 6= ∅.

Proof. Let i > 1 be a fixed constant and let us consider the following formula:

F = (y1 ∨ y2) & . . . & (yi−1 ∨ yi) & (yi ∨ y1)

& (y1 ∨ . . . ∨ yi ∨ a ∨ b) & (y1 ∨ . . . ∨ yi ∨ a ∨ b)

& (y1 ∨ . . . ∨ yi ∨ a ∨ b) & (y1 ∨ . . . ∨ yi ∨ a ∨ b)

This formula is logically equivalent to

(y1 ↔ y2 ↔ . . . ↔ yi) &
(

y1 ∨ . . . ∨ yi ∨
(

(a ∨ b) & (a ∨ b̄) & (ā ∨ b) & (ā ∨ b̄)
)

)

If the SLUR(i) algorithm chooses at first the i-tuple y1, . . . , yi, and then it sets all
these variables to 0, then it will get an unsatisfiable complete quadratic formula
on variables a and b, which means, the SLUR(i) algorithm will give up.

On the other hand Algorithm 6 which performs unit propagation after each
pick of a variable will assign equivalent values to all y1, . . . , yi variables after it
will come across the first one of them. So it can use the remaining step to deal
with the rest of the formula. Again, no problem can arise, if the first chosen
variable is a or b. This means that formula F belongs to SLUR*(2).

The following is now an easy corollary.

35

Corollary 44. [4] For every i > 1 we have that SLUR(i) (SLUR*(i).

Let us now return to the classes CANON(i). Let F = (x ∨ y ∨ a) & (x ∨ y ∨
b) & (x∨y∨c) & (x∨y∨d), i.e. the CNF formula (3.6) defined on page 28. We have
seen that this CNF belongs to CANON(2), but it is not SLUR. Now we can
even observe that F does not belong to SLUR(2), this is because if the SLUR(2)
algorithm chooses first a and b and sets them to 0, then c and d and sets them to 0,
what remains is a complete unsatisfiable quadratic formula. Moreover, in this case
unit propagation after choosing value for a or c does not help and thus F does
not even belong to SLUR*(2). By concatenating copies of F by disjoint union,
we could in fact get an example of a formula showing the following lemma (we
omit formal proof).

Lemma 45. [4] For every i ≥ 1 we have that [SLUR*(i) \ SLUR*(i − 1)] ∩
CANON(2) 6= ∅.

This means, that CANON(2) is not a subclass of any level of SLUR*(i) hier-
archy.

4.3 Hierarchy SLURi

In [21, 22] the previous two hierarchies were generalized yet further. In fact, they
showed that the SLUR class coincides with the class of unit-refutation complete
formulae and built up a hierarchy based on generalized variant of unit resolution.
This hierarchy is called SLURi and it generalizes even CANON(i) hierarchy, which
was not included in the previous ones.

We will present some results of [21, 22] here. In order to do that it is natural
to start with an algebraic definition of SLUR class presented there.

4.3.1 Algebraic definition of the SLUR class

The algebraic approach to the SLUR class definition presented in [21, 22] is based

on relation ’
SLUR
−−−→’ which corresponds to one step of SLUR algorithm consisting

of assigning a value and performing unit propagation.

Definition 46. [21, 22] We say that formula F and formula F ′ that does not con-

tain an empty clause are in relation F
SLUR
−−−→ F ′ if there is a literal l in F such

that F ′ is obtained from F by applying the partial assignment to that variable
in l that sets l to 1 and performing unit propagation afterwards. The transitive

and reflexive closure of relation ’
SLUR
−−−→’ is then denoted by F

SLUR
−−−→∗ F

′.

The actual SLUR class can be equivalently defined in the following way.

Firstly, for a formula F a set of formulae reachable by ’
SLUR
−−−→∗’ relation which

has no successor, called slur(F), is defined. Then SLUR formulae corresponds
to a formulae F from which an empty clause can be derived by unit propagation
or slur(F) contains just the empty formula.

Definition 47. [21, 22] Let F be a formula. We define slur(F) = {F ′ : F
SLUR
−−−→∗

F ′ & ¬∃F ′′ : F ′ SLUR
−−−→ F ′′}.

36

The SLUR class is then defined this way. SLUR = {F : [unitprop(F) does
not contain an empty clause] ⇒ [slur(F) contains only the empty formula]}.

The equality between this SLUR definition to the original one is straight-
forward because the new one is nothing other than reformulating the algorith-
mic notion in more algebraic manner. The SLUR*(i) hierarchy can be defined

in a similar way by using relation ’
SLUR∗

i−−−−→’ that performs i valuations and decisions
instead of just one. For further details see [21, 22].

4.3.2 Generalised unit propagation

In [21, 22] the authors used their previously discovered generalization of unit
propagation [25] and developed a hierarchy over the SLUR class. This generalized
propagation is defined as follows.

Definition 48. [21, 22, 25] Let CLS be a class of all formulae. Let ri : CLS →
CLS, i ∈ N be mappings defined as follows:

· r0(F) =

{

{⊥} if ⊥∈ F

F otherwise

· ri+1(F) =

{

ri+1(F [l = 1]) if ∃ literal l : ri(F [l = 0]) = {⊥}
F otherwise

Then we call ri generalised unit clause propagation of level i.

In the previous definition r1 corresponds exactly to unit propagation. The fact
that ri is well-defined (i.e. it is defined for all formulae and the recursive definition
is not inconsistent), as well as other properties of the generalized unit propagation
can be found in [21, 22, 25]. In the rest of this section we shall need the following
complexity result about generalized unit clause propagation.

Lemma 49. [21, 22, 25] Let F be a formula over n variable which contains l

literal occurrences. Then ri(F) can be computed in O(l · n2(i−1)) time and linear
space.

In [22, 25, 26] was also mentioned that relations ri can serve as approxima-
tions of the relation F |= C (i.e. relation ’C is implicate of F ’). These mappings
represent weaker variants of general resolution, which can be used to algorith-
mically test relation F |= C. In this sense notation F |=i C was used for these
weaker variants (see definition bellow).

Definition 50. [22, 25, 26] Let F be a CNF formula and C = (l1 ∨ . . . ∨ lk)
a clause. We write F |=i C if ri(F & l1 & . . . & lk) = {⊥}.

Note that for i = 1 it exactly coincides with the requirement we have in
definition of unit refutation complete formula (Definition 16 on page 15).

The author of [26] also proved that relation ri coincides with the so called
i-times nested input resolution. It is defined using the Horton-Strahler number,
which is a number defined for an arbitrary binary tree in the following way.

Definition 51. [1, 21, 22] Horton-Strahler number of a rooted binary tree T

is defined as follows

· hs(T) = 0 for T with only one node,

37

· hs(T) = max(hs(T1), hs(T2)) if for T with the left sub-tree T1 and the right
sub-tree T2 holds hs(T1) 6= hs(T2),

· hs(T) = max(hs(T1), hs(T2)) + 1 if for T with the left sub-tree T1 and the
right sub-tree T2 holds hs(T1) = hs(T2).

Definition 52. [21, 22, 25, 26] We say that a clause C can be derived from
a formula F in CNF by i-times nested input resolution if there exists C ′ ⊆ C

which can be derived by a tree resolution from F with resolution tree T satisfying
hs(T) ≤ i. We denote this fact by F ⊢i C.

Lemma 53. [22, 25, 26] For a formula F in CNF and a clause C it holds that
F |=i C if and only if F ⊢i C.

4.3.3 SLURi definition and summary of the results

Hierarchy SLURi was defined in exactly the same way as the SLUR class in its
algebraic definition but instead of using unit propagation r1 generalised unit
propagation ri is used.

Definition 54. [21, 22] We say that two formulae F and F ′ are in relation

F
SLUR:i
−−−−→ F ′ if there is a literal l such that F ′ = ri(F [l = 1]) and F ′ is not a for-

mula with an empty clause. Transitive and reflexive closure of this relation is

denoted ’
SLUR:i
−−−−→∗’.

Let sluri(F) = {F ′ : F
SLUR:i
−−−−→∗ F

′ & ¬∃F ′′ : F ′ SLUR:i
−−−−→∗ F

′′}, then the SLURi

hierarchy is defined as follows: SLURi = {F : [ri(F) does not contain an empty
clause] ⇒ [sluri(F) contains only the empty formula]}.

The equality of SLUR and SLUR1 is obvious, because we use unit propagation
r1 in this case. Thanks to the Lemma 49 we have that the satisfiability problem
for SLUR*(i) formulae can be solved in O(l · n2i−1) time, where l is the number
of literal occurrences in the input formula and n the number of variables.

In [21, 22] the authors also showed that this hierarchy is actually the same
as a hierarchy they built over unit refutation complete formulae. The definition
of this hierarchy uses the concept of hardness and is defined below.

Definition 55. [21, 22] The hardness of a formula F in CNF, denoted by hd(F),
is the minimal i such that for all clauses C satisfying F |= C we have F |=i C

(or equivalently F ⊢i C thanks to Lemma 53).

Definition 56. [21, 22] The class of unit refutation complete formulae of level i
is UCi = {F : F is a CNF, hd(F) ≤ k}.

Determining the hardness of a formula F , and consequently the membership
problem of the class UCi is coNP-complete. However the following equivalence,
which follows directly from Lemma 53, is known.

Theorem 57. [22] A CNF formula F is in UCi if and only if for every prime
implicate C we have that F ⊢i C.

Lemma 58. [21, 22] Let F be a formula in CNF and let v be a partial assignment

such that ri(F [v]) 6= {⊥} then F
SLUR:i
−−−−→∗ ri(F [v]) holds.

38

Proof. It follows from the fact that assignments of v can be performed by ’
SLUR:i
−−−−→’

transitions.

Theorem 59. [21, 22] For every i SLURi = UCi.

Proof. The equivalence corresponds to the fact that for any formula F it is true
that F ∈ SLURi ⇔ hd(F) ≤ i. If F is unsatisfiable the equivalence follows
directly from the definitions.

Let now F ∈ SLURi be a satisfiable formula and let us consider a partial
assignment v such that F [v] is unsatisfiable. We have to prove that ri(F [v]) =
{⊥}. Let us assume for contradiction that ri(F [v]) 6= {⊥} holds. It follows that

F
SLUR:i
−−−−→∗ ri(F [v]) by Lemma 58. Generally it holds that if F is satisfiable,

F ∈ SLURi and F
SLUR:i
−−−−→∗ F

′ then F ′ is satisfiable. Thus ri(F [v]) is satisfiable,
which is a contradiction with the assumption of unsatisfiability of F [v]. We can
conclude that hd(F) ≤ i.

For the other direction let us assume that hd(F) ≤ i. We show that F ∈
SLURi, i.e. sluri(F) contains only the empty formula (which is always satisfied).
Assume for contradiction that there is F ′ ∈ sluri(F) other than the empty for-

mula. According to the condition ¬∃F ′′ : F ′ SLUR:i
−−−−→∗ F

′′ in definition of sluri(F)
(see Definition 54) we have that F ′ is unsatisfiable but ri(F

′) 6= {⊥}. Howev-
er by Lemma 3.11 in [25] hardness cannot be increased by applying a partial
assignment, i.e. hd(F ′) ≤ i and therefore ri(F

′) = {⊥}.

4.4 Mutual relations of the hierarchies in inclu-

sion

In this section we present known results [4, 21, 22] about mutual relations of pre-
sented hierarchies under inclusion. The first one is rather clear.

Lemma 60. [4] SLUR(SLUR(i)⊆SLUR*(i) for every i ≥ 1.
SLUR(i)(SLUR*(i) for i ≥ 2.

Proof. The first inclusion is obvious from the definitions of SLUR class and
SLUR(i) extension. Its strictness is a consequence of modification in the SLUR
algorithm we proposed (not giving up after the first round if all the branches lead
to contradiction).

The mutual relation between SLUR(i) and SLUR*(i) for i ≥ 2 was already
discussed in Corollary 44 on page 35. Note that for i = 1 the classes SLUR(i)
and SLUR*(i) are exactly the same as the algorithms perform equally in this
case.

In Lemma 35 we proved that CANON(1) is contained in the SLUR class. This
obviously holds for every class that extends SLUR class, i.e. all the hierarchies
presented. On the other hand, there is a formula from CANON (2) which is
neither SLUR(i) nor SLUR*(i).

Lemma 61. [4] CANON(2) is not contained in SLUR*(i).

Proof. The proof follows simply by concatenating i copies of the formula (3.6)
mentioned below Example 36 on page 28.

39

In [21, 22] it was proven that hierarchy SLURi generalizes all SLUR, SLUR(i),
SLUR*(i) and CANON(i) hierarchies as well as the class of generalized unit
refutation complete formulae UCi, and as a consequence of this result we see that
SLUR contains the class of propagation complete formulae, as well. The direct
proof of that fact can be found in [3].

Theorem 62. [22] For every i it holds:

1. CANON(i) ⊆ UCi,
2. UC1 6⊆ CANON(i),
3. SLUR∗(i) (SLURi+1,
4. SLUR2 6⊆ SLUR∗(i),
5. for every i ≥ 2 it is SLUR∗(i) 6⊆ SLURi and SLURi 6⊆ SLUR∗(i).

Proof. 1. The fact that CANON(i) ⊆ UCi is a consequence of Theorem 57
and the fact that Horton-Strahler number is at most the depth (i.e. weight)
of the resolution tree.

2. In order to prove UC1 6⊆ CANON(i) let us consider the following formula:
x2i & (x0∨x1) & (x1∨x2) & . . . & (x2i−2∨x2i−1) & (x2i−1∨x2i). It is a SLUR
(i.e. UC1) formula because it is completely solvable by unit propagation,
however it is not in CANON(i) since the derivation with the smallest depth
has to use a binary tree of height at least i to deal with all 2i binary clauses
and one more resolution in order to derive prime implicate x0.

x0 1Úx

x0Úx2 x2

x0

x0 /2Úx2

x0 4Úx

x2 /2Úx2

x2 -4 2Úx

x2 4Úx x2 -2 2Úxx0 2Úx x2 -4 2 -2Úx

x1 2Úx x2Úx3 x3Úx4 x2 -4 2 -Úx 3 x2 -3 2 -Úx 2 x2 -2 -1Úx2 x2 -1Úx2

i

i

i i

n i i

i

i i

i i ii i ii i

i

...

....
.

....
.

i

Figure 4.1: Example of a UC1 formula that is not CANON(i).

3. SLUR∗(i) ⊆ SLURi+1 is given by the fact that hardness of a formula does
not increase after partial assignment (see Lemma 3.11 in [25]) and by an easy
fact that slur∗(k)(F) = {F} for F other than the empty formula implies
ri+1(F) = {⊥}. The strictness follows from the fact that the hardness
of a formula is always bounded by the number of variables (Lemma 3.18
in [25]).

4. SLUR2 6⊆ SLUR∗(i) follows from Lemma 61, the first item of this theorem
and equality UCi = SLURi.

40

5. The last item follows from the previous one in the direction SLURi 6⊆
SLUR∗(i). The other direction is given by the observation made in Lem-
ma 42 that full unsatisfiable clause on i variables Fi is element of SLUR(i+
1) but it is not in SLUR∗(i) because hd(Fi+1) = i + 1 (by Lemma 3.18
in [25]).

All the inclusions proved in Theorem 62 are depicted in Figure 4.2.

CANON(0)

CANON()i

SLUR*(1) SLUR*(2) SLUR*()i SLUR*(+1)i

SLURi

CANON()3

CANON(2) SLUR2

SLUR3

CANON(1)

Figure 4.2: Mutual inclusions of CANON(i), SLUR*(i) and SLURi hierarchies.

41

Conclusion

The main topic of this dissertation is the study of the SLUR class of Boolean
formulae. We showed that the problem of recognition of SLUR formulae is coNP-
complete. On the other hand, we proved that every formulae which allows deriv-
ing all prime implicates in at most one resolution step is SLUR.

Despite the fact, that it is very improbable to find a polynomial time algo-
rithm for the membership problem, the SLUR class is still interesting as a target
class for compiling the knowledge into, because the algorithm for testing SLUR
satisfiability does not need to know whether the input formula is from the SLUR
class or not. If it is, it guarantees that it will answer, however it may still answer
correctly in the other case (particularly if the formula is satisfiable and the algo-
rithm makes right choices).

The same holds about the hierarchies presented in Chapter 4. These hier-
archies extend the idea of the original SLUR algorithm such that they apply
more time consuming operations in each round of the main cycle. The most
basic SLUR(i) hierarchy just picks i variables instead of just one. Its extension
SLUR*(i) applies unit propagation after each substitution to one of the chosen
variables, instead of just one unit propagation after all i variables are chosen and
substituted into. The last hierarchy SLURi uses a more complex variant of unit
propagation. All of these hierarchies slow down the satisfiability testing exponen-
tially in the parameter i and the membership remains coNP-complete for every
level of every hierarchy.

42

Bibliography

[1] Ansótegui, Carlos, Bonet, Maŕıa L., Levy, Jordi, Manyà, Felip. Mea-
suring the hardness of SAT instances. In Proceedings of the 23th AAAI
Conference on Artificial Intelligence (AAAI-08) (eds. Fox D., Gomes C.).
2008, pp. 222-228.

[2] Aspvall, Bengt. Recognizing Disguised NR(1) Instances of the Satisfiability
Problem. Journal of Algorithms. Volume 1, Issue 1, March 1980, pp. 97–103.

[3] Babka, Martin, Balyo, Tomáš, Čepek, Ondřej, Gurský, Štefan,
Kučera, Petr, Vlček, Václav. Complexity Issues Related to Propagation
Completeness. Submitted to Artifficial Intelligence.

[4] Balyo, Tomáš, Gurský, Štefan, Kučera, Petr and Vlček, Václav.
On hierarchies over the SLUR class [online]. In International Symposium
on Artificial Intelligence and Mathematics (ISAIM 2012), January 2012.
Available at http://www.cs.uic.edu/pub/Isaim2012/WebPreferences/

ISAIM2012_Boolean_Balyo_etal.pdf.

[5] Biere, Armin, Heule, Marijn, van Maaren, Hans, Walsh, Toby (Eds.).
Handbook of Satisfiability. IOS Press, 2009. ISBN 978-1-58603-929-5.

[6] Bordeaux, Lucas, Marques-Silva, João . Knowledge Compilation with
Empowerment In SOFSEM 2012: Theory and Practice of Computer Science
(eds. Bielikova M., Friedrich G., Gottlob G., Katzenbeisser S., Turán, G.)
LNCS 7147. Springer Berlin Heidelberg, 2012, pp. 612-624. ISBN 978-3-642-
27659-0 (print), ISBN 978-3-642-27660-6 (online). DOI: 10.1007/978-3-642-
27660-6 50.

[7] Chandru, Vijay, Hooker, John N. Extended Horn sets in propositional
logic. Journal of the ACM. Volume 38 Issue 1, January 1991, pp. 205-221.
DOI: 10.1145/102782.102789.

[8] Conforti, Michele, Cornuéjols, Gérard, Kapoor, Ajai, Vušković,
Kristina, Rao, M. R. Balanced Matrices. In Mathematical Programming:
State of the Art. (eds. Birge J. R., Murty K. G.). Braun-Brumfield, United
States. Produced in association with the 15th Int’l Symposium on Mathe-
matical Programming, University of Michigan, 1994.

[9] Cook, Stephen A. The complexity of theorem-proving procedures. In Pro-
ceedings of the third annual ACM symposium on Theory of computing STOC
’71. ACM, New York, NY, USA, 1971, pp. 151-158.

[10] Čepek, Ondřej. Private communication.

[11] Čepek, Ondřej, Kučera, Petr, Vlček, Václav. Properties of SLUR For-
mulae. In SOFSEM 2012: Theory and Practice of Computer Science (eds.
Bielikova M., Friedrich G., Gottlob G., Katzenbeisser S., Turán, G.) LNCS
7147. Springer Berlin Heidelberg, 2012, pp. 177-189. ISBN 978-3-642-27659-
0 (print), ISBN 978-3-642-27660-6 (online). DOI: 10.1007/978-3-642-27660-
6 15.

43

http://www.cs.uic.edu/pub/Isaim2012/WebPreferences/ISAIM2012_Boolean_Balyo_etal.pdf
http://www.cs.uic.edu/pub/Isaim2012/WebPreferences/ISAIM2012_Boolean_Balyo_etal.pdf

[12] Dalal, Mukesh, Etherington, David W. A hierarchy of tractable
satisfiability problems. Information Processing Letters. Volume 44, Issue
4, 10 December 1992, pp. 173–180. ISSN 00200190. DOI: 10.1016/0020-
0190(92)90081-6.

[13] Darwiche, Adnan, Marquis, Pierre. A Knowledge Compilation Map.
Journal of Artificial Intelligence Research. Volume 17, 2002, pp. 229-264.
DOI: 10.1613/jair.989.

[14] Davis, Martin, Logemann, George, Loveland, Donald. A machine pro-
gram for theorem-proving. Communications of the ACM. New York: Associ-
ation for Computing Machinery, Volume 5, Issue 7, July 1962, pp. 394-397.
ISSN 00010782. DOI: 10.1145/368273.368557.

[15] Davis,Martin, Putnam, Hilary. A Computing Procedure for Quantification
Theory. Journal of the ACM. Volume 7, Issue 3, July 1960, pp. 201-215. ISSN
00045411. DOI: 10.1145/321033.321034.

[16] del Val, Alvaro. Tractable databases: How to make propositional unit
resolution complete through compilation. In Proceedings of the 4th Interna-
tional Conference on Principles of Knowledge Representation and Reasoning
(KR’94). pp. 551-561.

[17] Dowling, William F., Gallier, Jean H. Linear-time algorithms for test-
ing the satisfiability of propositional Horn formulae. The Journal of Log-
ic Programming. Volume 1, Issue 3, October 1984, pp. 267–284. DOI:
10.1016/0743-1066(84)90014-1.

[18] Franco, John, van Gelder, Allen. A perspective on certain polynomial-
time solvable classes of satisfiability. Discrete Applied Mathematics. Volume
125, 2-3, 2003, p. 177-214. DOI: 10.1016/S0166-218X(01)00358-4.

[19] Garey, Michael R., Johnson, David S. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1979. ISBN 0-7167-1045-5.

[20] Genesereth, Michael R., Nilson, Nils J. Logical foundations of artificial
intelligence: a guide to the theory of NP-completeness. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1987. ISBN 0-934613-31-1.

[21] Gwyne, Matthew, Kullmann, Oliver. Generalising and unifying SLUR
and unit-refutation completeness. In SOFSEM 2013: Theory and Practice
of Computer Science. (eds. van Emde Boas P., Groen F. C. A. , Italiano G.
F., Nawrocki J., Sack H.), LNCS 7741, Springer, 2013, pages 220–232. ISBN
978-3-642-35842-5 (print), 978-3-642-35843-2 (online). DOI: 10.1007/978-3-
642-35843-2 20.

[22] Gwyne, Matthew, Kullmann, Oliver. Generalising unit-refutation com-
pleteness and SLUR via nested input resolution. Journal of Automated Rea-
soning, 2013. To appear.

44

[23] Haken, Armin. The Intractability of Resolution. Theoretical Computer Sci-
ence. Vol. 39, January 1985, pp. 297-308. ISSN 03043975. DOI: 10.1016/0304-
3975(85)90144-6.

[24] Karp, Richard M. Reducibility among combinatorial problems. Complexity
of Computer Computations (eds. Miller R. E., Thatcher J. W.). Plenum
Press, 1972, pp. 85-103.

[25] Kullmann, Oliver. Investigating a general hierarchy of polynomially de-
cidable classes of CNF’s based on short tree-like resolution proofs. Techni-
cal Report TR99-041, Electronic Colloquium on Computational Complexi-
ty (ECCC), October 1999. Available at http://eccc.hpi-web.de/report/
1999/041/.

[26] Kullmann, Oliver. Upper and lower bounds on the complexity of gen-
eralised resolution and generalised constrained satisfaction problem An-
nals of Mathematics and Artificial Intelligence, 2004, Volume 40, Is-
sue 3-4 , pp. 303-352. ISSN 1012-2443 (print), 1573-7470 (online). DOI:
10.1023/B:AMAI.0000012871.08577.0b.

[27] Lewis, Harry R. Renaming a Set of Clauses as a Horn Set. Journal of the
ACM. Volume 25 Issue 1, January 1978, pp. 134-135.

[28] Marques-Silva, João P., Sakallah, Karem A. GRASP: A new search
algorithm for satisfiability. In Proceedings of the 1996 IEEE/ACM interna-
tional conference on Computer-aided design, ICCAD ’96. IEEE Computer
Society, San Jose, California, USA, November 1996, pp. 220-227. ISBN 0-
8186-7597-7.

[29] Quine, Willard van O. The problem of simplifying truth functions. The
American Mathematical Monthly. Vol. 59, No. 8 (Oct., 1952), pp. 521-531.
Mathematical Association of America.

[30] Quine,Willard van O. A Way to Simplify Truth Functions. In The American
Mathematical Monthly. Vol. 62, No. 9 (Nov., 1955), pp. 627-631. Mathemat-
ical Association of America.

[31] Schlipf, John S., Annexstein, Fred S., Franco, John V., Swami-
nathan, R.P. On finding solutions for extended Horn formulas. Information
Processing Letters. 1995, Volume 54, Issue 3, p. 133-137. DOI: 10.1016/0020-
0190(95)00019-9.

[32] Scutellà, Maria Grazia. A note on Dowling and Gallier’s top-down al-
gorithm for propositional Horn satisfiability. The Journal of Logic Pro-
gramming. Volume 8, Issue 3, May 1990, pp. 265–273. DOI: 10.1016/0743-
1066(90)90026-2.

[33] Somenzi, Fabio. Binary Decision Diagrams. Calculational System Design,
Volume 173 of NATO Science Series F: Computer and Systems Sciences.
1999.

45

http://eccc.hpi-web.de/report/1999/041/
http://eccc.hpi-web.de/report/1999/041/

[34] Tseitin, Grigorii S. On the complexity of derivation in propositional cal-
culus. In Studies in Constructive Mathematics and Mathematical Logic (ed.
Slisenko A. O.), Part 2. Consultants Bureau, New York, 1970, pp. 115–125.
Reprinted in [20], Vol. 2, pp. 466–483.

[35] Urquhart, Alasdair. The Depth of Resolution Proofs. Studia Logica, 2011,
Volume 99 Issue 1-3, pp. 349-364. ISSN 0039-3215 (print), 1572-8730 (online).
DOI: 10.1007/s11225-011-9356-9.

[36] Vlček, Václav. Classes of Boolean Formulae with Effectively Solvable SAT.
In WDS’10 Proceedings of Contributed Papers: Part I — Mathematics and
Computer Sciences (eds. Šafránková J., Pavl̊u J.). Matfyzpress, Prague, pp.
42–47, 2010. ISBN 978-80-7378-139-2. Available at http://www.mff.cuni.
cz/veda/konference/wds/proc/pdf10/WDS10_107_i1_Vlcek.pdf.

[37] Vlček, Václav. Tř́ıdy Booleovských formuĺı s efektivně řešitelným SATem.
Prague, 2009. Master thesis [in Czech]. Charles University in Prague. Faculty
of Mathematics and Physics. Supervised by Ondřej Čepek.

[38] Wegener, Ingo. The Complexity of Boolean Functions. John Wiley & Sons,
Inc. New York, NY, USA, 1987. ISBN 0-471-91555-6.

46

http://www.mff.cuni.cz/veda/konference/wds/proc/pdf10/WDS10_107_i1_Vlcek.pdf
http://www.mff.cuni.cz/veda/konference/wds/proc/pdf10/WDS10_107_i1_Vlcek.pdf

	Introduction
	Notation and well known results
	Terms connected to the CNF formulae
	Resolution method

	Unit resolution and refutation
	SAT solvers
	Unit refutation completeness
	Propagation completeness

	Class of SLUR formulae
	Properties of SLUR formulae
	coNP-completenes of recognition problem
	Further properties of SLUR formulae

	Hierarchies over the SLUR class
	Hierarchy SLUR(i)
	Hierarchy SLUR*(i)
	Hierarchy SLURi
	Algebraic definition of the SLUR class
	Generalised unit propagation
	SLURi definition and summary of the results

	Mutual relations of the hierarchies in inclusion

	Conclusion
	Bibliography

