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SUMMARY 

The goal of this thesis was to define the contribution of lymphocyte receptor diversity to the 

functions that define adaptive immunity. Most in the field of immunology believe that immune 

fitness requires lymphocyte receptor diversity. In models of contracted lymphocyte diversity, we 

tested this idea.  We tested the fitness of cell-mediated immunity in mice with contracted T cell 

diversity and we tested the impact of contracted T cell receptor diversity on the generation of B 

cell responses to model antigens. 

We tested the concept of that the fitness of cell-mediated immunity depend on TCR
 
diversity 

using JH
–/–

 mice that lack
 
B cells and have TCR V  diversity < 1 % that of wild-type mice

 
and 

QuasiMonoclonal (QM) mice with oligoclonal B cells and TCR
 
V  diversity 7 % that of wild-

type mice. Despite having a TCR
 
repertoire contracted > 99 % and defective lymphoid 

organogenesis,
 
JH

–/–
 mice rejected H-Y-incompatible skin grafts

 
as rapidly as wild-type mice. 

JH
–/–

 mice exhibited
 
T cell priming by peptide and delayed-type hypersensitivity,

 
although these 

responses were less than normal owing either
 
to TCR repertoire contraction or defective 

lymphoid organogenesis.
 
QM mice with TCR diversity contracted > 90 %, and normal lymphoid

 

organs rejected H-Y incompatible skin grafts as rapidly as wild
 
type mice and exhibited normal T 

cell priming and normal delayed-type
 

hypersensitivity reactions. QM mice also resisted 

Pneumocystis
 
murina like wild-type mice. Thus, cell-mediated immunity can

 
function normally 

despite contractions of TCR diversity > 90 %
 
and possibly > 99 %.  Our results showed that 

many of the responses attributed to T cells appear to be independent of TCR diversity.   

In search for an adaptive advantage of receptor diversity, we asked whether contractions of T cell 

receptor diversity impaired B cell responses and the generation of high affinity antibodies.   

Contrary to the prediction of that in mature individuals the generation of B-cell memory would 

proceed independently of the thymus, we show here that removal of the thymus after the 

establishment of the T-cell compartment or sham surgery without removal of the thymus impairs 

the affinity maturation of antibodies.  Because removal or manipulation of the thymus did not 

decrease the frequency of mutation of the Ig variable heavy chain exons encoding antigen-

specific antibodies, we conclude that the thymus controls affinity maturation of antibodies in the 

mature individual by facilitating selection of B cells with high affinity antibodies. 

 

Key words: repertoire, TCR, BCR, thymus, thymectomy, B cells, affinity maturation 
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SOUHRN 

Cílem disertační práce bylo definovat podíl diverzity receptorů pro antigen na funkcích, které 

určují adaptivní imunitu. Obvykle se předpokládá, že imunologická způsobilost vyžaduje 

diverzitu lymfocytárních receptorů. My jsme tuto hypotézu ověřili na modelu omezené 

lymfocytární diverzity. Byla testována způsobilost buňkami zprostředkované imunity myší 

s omezenou diverzitou receptorů TCR. Byl ověřen vliv omezené diverzity receptorů TCR na 

vznik B lymfocytární odpovědi indukované modelovými antigeny.  

Koncept způsobilosti buňkami zprostředkované imunity ve vazbě na diverzitu receptorů PCR byl 

ověřen na myších  experimentálních modelech, který zahrnovaly myši JH
-/-

, u kterých nejsou 

vyvinuty B lymfocyty a mají diverzitu receptorů TCR < 1 %, kmen konvenčních myší a 

quasimonoklonální (QM) myši s oligoklonální B lymfocytární populací a diverzitou oblastí V 

TCR receptorů 7 % v porovnání s konvenčním kmenem. V experimentech jsme zjistili, že myši 

JH
-/-

 odhojují H-Y inkompatibilní kožní štěpy stejně rychle jako konvenční kmen myší, přestože 

mají omezený repertoár TCR receptor > 99 % a projevují známky defektní organogeneze 

lymfoidních orgánů. Myši JH
-/-

 reagují  aktivací T lymfocytů po stimulaci peptidem a vykazují 

opožděný typ hypersenzitivity, přestože intenzita těchto reakcí je nižší než u konvenčních myší, 

buď jako důsledek omezeného repertoáru TCR nebo defektní organogeneze lymfoidních orgánů. 

Myši QM s repertoárem TCR omezeným na > 90 % a normálním vývojem lymfoidních orgánů, 

odhojují H-Y inkopatibilní kožní štěpy srovnatelně s konvenčním kmenem myší a mají 

zachovanou schopnost aktivace T lymfocytů i opožděné hypersenzitivní reakce. Myši QM jsou 

také odolné vůči infekci Pneumocystis murina v míře srovnatelné s konvenčním kmenem myší. 

Lze tedy uzavřít, že buňkami zprostředkovaná imunita u myší JH 
-/-

 a QM myší vykazuje 

normální funkce, přestože je diverzita receptorů TCR je omezena na > 99 % a > 90 %. Naše 

výsledky ukázaly, že mnohé z aktivit připisovaných T lymfocytům se jeví být nezávislé na 

diverzitě receptorů TCR.  

S cílem ověřit adaptivní výhody diverzity receptoru pro antigen, jsme ověřili hypotézu, zda 

omezení repertoáru TCR receptorů negativně ovlivní B lymfocytární odpověď a tvorbu 

vysokoafinních protilátek. V protikladu vůči předpokladu, že u dospělých jedinců probíhá vznik 

paměťových B lymfocytů nezávisle na thymu, prokázali jsme experimentálně, že odstranění 

thymu po ustavení T lymfocytárního kompartmentu nebo po „sham― operaci bez odstranění 
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thymu negativně ovlivní afinitní vyzrávání protilátek. Protože odstranění nebo manipulace 

s thymem nesnižuje frekvenci mutací v exonech kódujících variabilní část molekuly protilátek 

specifických pro antigen, uzavíráme, že thymus kontroluje afinitní vyzrávání protilátek u 

dospělých jedinců mechanismem usnadnění selekce klonů B lymfocytů se schopností produkovat 

vysokoafinní protilátky. 

 

Klíčová slova: repertoár, TCR, BCR, thymus, thymektomie, B lymfocyty, afinitní vyzrávání 
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THESIS 

BACKGROUND 

The immune system is the body defense mechanism. It acts by responding to any offending 

agent. This consists of a series of molecular and cellular events that lead to contain the 

aggravating agent. This agent usually is a pathologic organism, toxic substance, cellular debris or 

tumor cell.  

Traditionally, the immune system divided in to two categories: innate and adaptive. The innate 

immune system responds to offending agent without specialized recognitions or previous 

encounter. The adaptive immune system is more sophisticated in with it requires recognition 

from previous encounter to mount an immune response.  

Immune responses: 

1. Innate immunity characterized by having a preset very standardized method of 

responding to offending agent that is recognized in antigen-independent matter. 

This reaction leads to the production and release of cytokines and mediators to 

attach the offending agent. Cells involved in this reaction include neutrophils and 

macrophages (Delves and Roitt 2006).  

2. Adaptive immunity in the other hand needs a specific antigen to be activated to 

generate a response. This mechanism is carried on by the antigen specific effector 

cells (B-cell, T-cells). The first step is to recognize the foreign material and 

ensure that it is not-self.  Then it gets broken to unique antigenes that are 

recognized by the immune effector cells and the processes of elimination or 

isolation starts (Delves and Roitt 2006). 

One of the important features of the adaptive immune system is that it is adaptive. After 

eliminating self-reacting cells during the early development (Male 1996), it starts generating 

cells with receptors reactive against new unrecognized molecular structure. In this process 

antigen specific T cells and antigen specific antibodies are produced.  
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This system is contently evolving as it encounters new antigens. B cells do that by 

recombination, rearrangement and mutation of the naive gene (Lim et al. 2008; Schatz et al. 

1989). This allows this system to have very large repertoire of receptors that potentially could 

recognize a huge number of antigens (Oettinger et al. 1990).  

In this review, we will focus on the adaptive system component and function.  The mechanism of 

function of the system, is thought to be triggered by antigens. This mostly proteins but could be 

lipids or carbohydrates(Bollum 1978). As we described earlier this response is mediated by 

specific T-cell and B- cells. These cells have antigen receptors (paratopes) that is presented in the 

T lymphocytes or on antibodies produced by B cells. These receptors are specific for each 

antigen segment (epitope). This series of reaction (recognition, processing and responding) 

explain the delay in the adaptive immune response. One of the hallmarks of adaptive immune 

system that it utilizes memory to previous encounter. This leads to stronger, faster secondary 

response to the same offender. 

The mechanism of action of the adaptive immune system can be divided to three stages. In the 

first stage the offending molecule encounter antigen presenting cells and interaction occur. This 

then lead to processing of the offending molecule antigen and then presents it to (T cells, B cells, 

antibodies). The antigen presenting cells encounter the antigen at different sites then it migrates 

through lymphatics to lymph nodes. Then the effector cells and antibody’s migrate to primary 

site of encounter to form immune complex or delayed hypersensitivity reaction.  

B lymphocytes main function is the production of antibodies after getting activated by helper T 

lymphocytes. Antibodies are molecules that have a specific receptor for one antigen epitope and 

they are made of glycoproteins. Majority of B cells start as naïve lymphocytes.  A certain 

population of B cells functions as an antigen presenting cells. They express IgM and IgD on their 

surface that functions as antigen receptor that recognizes antigen epitope. At this point helper T 

cell interacts with B cells leading to farther activation and differentiation. This include but not 

limited to cell division, synthesize and release antibody’s, expressing of accessory molecules and 

change the antibody class from IgM to IgG, IgA or IgE (Gilfillan et al. 1993; Honjo et al. 2002; 

Wu et al. 2003). T cell cytokines play a major role in regulating these changes at the genetic 

level.  
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Classical teaching of T cells function stress that helper T cells are the main functional cell type 

for immune processing. CD4 is expressed on most helper T lymphocyte cell membrane.  T cells 

recognize antigens only when it is presented on APC with HLA molecule after it have been 

processed. When this complex bind to antigen receptor on T lymphocyte, CD4 molecule function 

both, as a bond stabilizer and a signal enhancer. This leads to T cell activation and release 

cytokines in addition to cell division and expression cell adhesion molecule and costimulatory 

molecules. The release of IL-2 by this mechanism is an important factor in the progression of T 

cell activation and functional differentiation.  

In Summary, the adaptive immune system of higher vertebrates has two distinguishing 

properties.  These properties are specificity, and memory.  Adaptive immunity has the ability of 

mounting responses to disparate molecules in part due to the great diversity of lymphoid 

receptors which in humans exceed 10 million.  Responses that result from engaging one receptor 

with one ligand are generally specific to that pair of ligand and receptor. Once a productive 

response has been generated, subsequent responses directed at the same antigen will develop 

faster and with increased efficiency enhancing protection of the host.  These properties are often 

referred to as memory. The goal of my thesis was to define the contribution of lymphocyte 

receptor diversity to the functions that define adaptive immunity. 

Most in the field of immunology believe that immune fitness requires lymphocyte receptor 

diversity (Thompson and Neiman 1987; Yoshikawa et al. 2002).  In models of contracted 

lymphocyte diversity we tested this idea.  In Chapter 3 I tested the fitness of cell mediated 

immunity in mice with contracted T cell diversity and in Chapter 4 I tested the impact of 

contracted T cell receptor diversity on the generation of B cell responses to model antigens 

(Tuaillon and Capra 2000). 

 Fitness of cell-mediated immunity is thought to depend on TCR
 
diversity (Cabaniols et al. 

2001); however, this concept has not been tested formally.
 
We tested the concept using JH

–/–
 

mice that lack
 
B cells and have TCR V  diversity  < 1 % that of wild-type mice

 
and 

QuasiMonoclonal (QM) mice with oligoclonal B cells and TCR
 
V  diversity 7 % that of wild-

type mice. Despite having a TCR
 
repertoire contracted > 99 % and defective lymphoid 

organogenesis,
 
JH

–/–
 mice rejected H-Y-incompatible skin grafts

 
as rapidly as wild-type mice. 

JH
–/–

 mice exhibited
 
T cell priming by peptide and delayed-type hypersensitivity,

 
although these 

responses were less than normal owing either
 
to TCR repertoire contraction or defective 
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lymphoid organogenesis.
 
QM mice with TCR diversity contracted > 90 %, and normal lymphoid

 

organs rejected H-Y incompatible skin grafts as rapidly as wild
 
type mice and exhibited normal T 

cell priming and normal delayed-type
 

hypersensitivity reactions. QM mice also resisted 

Pneumocystis
 
murina like wild-type mice. Thus, cell-mediated immunity can

 
function normally 

despite contractions of TCR diversity > 90 %
 
and possibly > 99 %.  Our results showed that 

many of the responses attributed to T cells appear to be independent of TCR diversity.  In search 

for an adaptive advantage of receptor diversity we asked whether contractions of T cell receptor 

diversity impaired B cell responses and the generation of high affinity antibodies.   

The generation of B-cell responses to proteins requires a functional thymus to produce CD4
+
 T 

cells which help in the activation and differentiation of B cells.  Because the mature T-cell 

repertoire has abundant cells with the helper phenotype, one might predict that in mature 

individuals the generation of B-cell memory would proceed independently of the thymus.  

Contrary to that prediction, we show here that removal of the thymus after the establishment of 

the T-cell compartment or sham surgery without removal of the thymus impairs the affinity 

maturation of antibodies.  Because removal or manipulation of the thymus did not decrease the 

frequency of mutation of the Ig variable heavy chain exons encoding antigen-specific antibodies, 

we conclude that the thymus controls affinity maturation of antibodies in the mature individual 

by facilitating selection of B cells with high affinity antibodies. 
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OBJECTIVES OF THE THESIS 

 

Specific Aim 1: To determine what mechanisms maintain the number and diversity of T cells in 

the peripheral T cell compartment.  

Rationale: Our lab recently found that TCR diversification in the thymus depends on B cell 

receptor or immunoglobulin (lg) diversity. We also found that B cells help maintain the number 

and diversity of T cells in the peripheral T cell compartment. We will determine the extent to 

which thymus output, peripheral survival or proliferation maintain the size and diversity of the T 

cell compartment.  

 

Specific Aim 2: To determine how the T cell compartment adapts to contraction of T cell 

diversity.  

Rationale: We found that when T cell diversity is contracted, T cells commonly exhibit a 

"memory-like" phenotype; the functional significance of this phenotype in this setting is 

unknown. We will determine whether the T cells in mice with contracted T cell diversity exhibit 

memory-like function, and/or whether the cells cross-react more widely than normal T cells 

and/or immune-regulation is modified in this setting.  

 

Specific Aim 3: To determine which functions of cell-mediated immunity are impaired by 

contraction of T cell diversity.  

Rationale: We have found that human subjects and mice with profoundly decreased T cell 

diversity can reject allografts, even across minor antigen barriers, mount normal primary immune 

responses and avoid the opportunistic infections characteristic of DiGeorge syndrome and AIDS. 

Still these individuals have higher levels of gamma herpes viruses (in the case of humans) and 

Pneumocystis murinae (in the case of mice) than do normal individuals. We will test whether 

mice with severe contraction of T cell diversity can clear pathogenic microorganisms and 

whether these organisms cause disease, as opposed to modifying endogenous levels without 

causing disease. We will also test whether these mice suffer increased susceptibility to auto-

immunity.  
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Specific Aim 4:  To determine how thymectomy, T cell depletion and immunosuppression in 

mice, separately or in combination, compromise B cell memory responses.  

Rationale: Postnatal thymectomy of mice, at 5 weeks decreases persistently the number of CD4 

and CD8 T cells while maintaining the number of B cells in the periphery. 

We performed thymectomy in C57BL/6 mice at 5 weeks of age. Thymectomy effectively 

abrogated thymic function because thymectomized mice lacked any measurable T cell receptor 

excision circles. 

To determine if thymectomy perturbed the T and B cell compartments we enumerated T and B 

cells in the spleens of thymectomized, sham operated or unmanipulated mice 5 and 10 weeks 

after the operation.  We will show that postnatal thymectomy causes a persistent 4 fold decrease 

in the number of CD4- or CD8-positive T cells, while the number of B cells is maintained. Our 

results suggest that the adult thymus contributes to the maintenance of T cells in the periphery of 

mice.   

 

Specific Aim 5:  If B cell memory is maintained following thymectomy in young mice  

B cell memory antibody responses critically depend on T cell help.   

Rationale: To determine the extent to which T cell function was maintained in thymectomized 

mice we performed male to female skin grafts.  To determine whether thymectomy perturbed 

primed T cell responses we tested delayed type hypersensitivity (DTH) to ovalbumin in the 

footpad of mice.   

The median survival time of male skin grafts was 37 days in thymectomized female mice and 

only 25 days in sham operated and control mice. Thus, thymectomy impairs cellular immunity to 

minor antigens. The median survival time of secondary male skin grafts was 19 days in 

thymectomized female mice, 16 days in sham operated mice and 15 days in control mice.  Re-

transplant 30 days after shedding of the primary graft, hastened graft rejection in all mice even 

though thymectomized recipients had delayed graft rejection compared to controls. Accelerated 

secondary graft rejection indicates efficient generation of T cell memory. To test long-lived 

plasma cells we will determined the number of NP-specific antibody secreting cells in the spleen 

or in the bone marrow 6 months after boosting thymectomized, sham operated or control 

C57BL/6. 
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INTRODUCTION 

Specific Aim 1, 2 and 3 

B cell deficiency has been associated with defective T cell responses
 

to intracellular 

microorganisms such as Salmonella enterica
 
(Mastroeni et al. 2000), Bordetella pertussis (Elkins 

et al. 1999), Plasmodium chabaudi
 
(Langhorne et al. 1998), Chlamydia trachomatis (Yang and 

Brunham 1998), Leishmania major (Hoerauf et al. 1996), coronavirus
 
(Bergmann et al. 2001), 

and Lymphocytic choriomeningitis virus (Homann et al. 1998). Like B cell-deficient
 
mice, 

humans with X-linked agammaglobulinemia, who have very
 
few peripheral B cells and very 

reduced levels of serum Ig,
 
are highly susceptible to such organisms as mycoplasma (Minegishi 

et al. 1999),
 
enteroviruses (Minegishi, Rohrer and Conley 1999), and echoviruses (Wilfert et al. 

1977) and to the development
 
of poliomyelitis following vaccination with attenuated viruses

 

(Wright et al. 1977). Defective responses to intracellular pathogens suggest
 
the possibility that, in 

addition to hypogammaglobulinemia,
 
individuals and mice with B cell deficiency may suffer 

intrinsic
 
abnormalities in the T cell compartment. We recently found that

 
B cell-deficient mice 

have a remarkable decrease in the number
 
and diversity of thymocytes (Joao et al. 2004; 

Keshavarzi et al. 2003) and hypothesized that defects
 
in cell-mediated immunity could result 

from contraction of the
 
TCR repertoire. Because each TCR recognizes a limited number

 
of 

different peptides associated with MHC, the recognition of
 
diverse Ags, even allowing for cross-

reactivity, is thought
 
to reflect the diversity of the TCR repertoire. Thus, the competency

 
of 

cellular immunity is thought to depend on the number and
 
diversity of T cells available to mount 

a response (Nikolich-Zugich et al. 2004).
 
 

However, the concept that TCR diversity determines the competence
 
of cell-mediated immunity 

does not explain every aspect of immune
 
physiology. Although the TCR repertoire contracts 

profoundly
 

with age (Goronzy and Weyand 2005) and elderly individuals can suffer 

disseminated
 
viral infections and heightened susceptibility to tumors, most

 
elderly individuals 

experience neither of these ailments (compared
 
with those who have AIDS). Still more dramatic 

is the observation
 
that those who undergo cardiac transplantation in infancy and

 
have a profound 

contraction of the TCR repertoire owing to "total"
 
thymectomy and mature T cell depletion 

suffer no excess of opportunistic
 
infections or tumors (Ogle et al. 2006).
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We asked whether and to what extent defects in TCR diversity
 
impair cell-mediated immunity. 

Toward this end, we exploited
 
mice that, owing to defects in the assembly of Ig genes (Cascalho 

et al. 1996; Chen et al. 1993) have profoundly contracted TCR repertoires. Our results
 
indicate 

that extreme contractions of TCR repertoire do not
 
impair cell-mediated immunity and host 

defense. These unexpected
 
results have profound implications for transplantation and in

 
the 

treatment of immune deficiencies.
 
 

 

 

 

 

 

 

 

 

 

 

 

 



20 

 

Specific Aim 4 and 5 

B cell memory confers lasting immunity to microorganisms and their products by ensuring rapid 

production of high affinity antibodies of switched isotype(s) (particularly immunoglobulin G 

(IgG)), distinct from those that predominate in the ―natural‖ immune response.  Antibodies 

opsonize microbes and neutralize toxins and viruses, precluding cell entry and damage.  The high 

affinity of recall antibodies may be the most critical property for effective neutralization of 

toxins since those are toxic at very low concentrations.  Production of high affinity class 

switched antibodies requires that activated B cells undergo somatic hypermutation and class 

switch recombination, followed by antigen selection of B cells expressing the receptors with 

enhanced affinity.  B cell memory is manifested by recall antibody responses the result of plasma 

cells generated from B memory cells upon re-exposure to the antigen and by persisting antigen-

specific antibodies secreted by long-lived plasma cells in the bone marrow (Manz et al. 2002).  

The generation of B cell memory requires T cells.  Thus, removal of the thymus in newborn mice 

(during the first 16 hours of life) causes severe cellular immunity defects (Miller 1961) and 

abolishes antibody responses to protein antigens (Miller et al. 1965).  However, removal of the 

thymus of mature mice (between 5 and 8 weeks of age) has no immediate effect on the primary 

antibody responses to protein antigens or cellular immune responses (Metcalf 1965; Miller 1965; 

Taylor 1965).  Whether or not removal of the thymus in mature individuals perturbs B cell 

memory is not known.  

T cells promote B cell responses to protein antigens by directly interacting with B cells.  Thus, 

deficiencies in the CD40 or CD154 or blocking their interaction by antibodies impairs antibody 

responses to protein antigens, immunoglobulin isotype class switch, somatic hypermutation and 

B cell memory (Davies and Thrasher 2010; Kawabe et al. 1994; Korthauer et al. 1993). Because 

primary responses to protein antigens proceed to establish memory, the specific requirements for 

the generation and/or maintenance of B cell memory cannot be exploited in their absence.  We 

have recently found that individuals with severe contraction of the T cell repertoire owing to 

removal of the thymus and depletion of mature T cells before cardiac transplantation in infancy 

do not develop hyper immunoglobulin M (IgM) syndrome and/or hypo-gamma-globulinemia, 

indicating some level of T cell help.  Preliminary studies in subjects of cardiac transplantation in 
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infancy suggested defective B cell memory to vaccination with protein antigens in spite of 

normal primary antibody responses.  These observations suggested that the T cell help required 

to generate primary antibody responses might differ in some respects from T cell help necessary 

to establish and/or evoke B cell memory responses (Ogle, West, Driscoll, Strome, Razonable, 

Paya, Cascalho and Platt 2006). Here we report that selection of affinity mature antibodies 

generated in response to protein antigens requires the integrity of the thymus.  
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MATERIALS AND METHODS 

Specific Aim 1, 2 and 3 

Strains of mice  

C57BL/6 mice were purchased from The Jackson Laboratory (Bar Harbor, ME, USA). B cell-

deficient
 
strains of mice used included JH

–/–
 mice, obtained

 
by gene-targeted deletion of the JH 

segments (Chen, Trounstine, Alt, Young, Kurahara, Loring and Huszar 1993), and 

QuasiMonoclonal
 
(QM) mice, generated by gene-targeted replacement of the endogenous

 
JH 

elements with a VDJ rearranged region from a 4-hydroxy-3-nitrophenylacetate-specific
 

hybridoma (Cascalho, Ma, Lee, Masat and Wabl 1996). The JH
–/–

 mice lack mature B cells
 
and 

Ig (Chen, Trounstine, Alt, Young, Kurahara, Loring and Huszar 1993). QM mice have 80 % of B 

cells that are 4-hydroxy-3-nitrophenylacetate
 
specific (Cascalho, Ma, Lee, Masat and Wabl 

1996). Monoclonal B cell-T cell mice have monoclonal
 
B and T cell compartments; the T cells 

express a DO 11.10
 
transgenic cell receptor restricted to MHC class II

B
 (Keshavarzi, Rietz, 

Simoes, Shih, Platt, Wong, Wabl and Cascalho 2003).  

JH
–/– 

and QM mice were bred and all mice were housed in a specific
 
pathogen-free facility at the 

Mayo Clinic. All mice were between
 
6 and 18 wk of age, and all experiments were conducted in 

accordance
 
with protocols approved by the Mayo Clinic Institutional Animal

 
Care and Use 

Committee.
  

Determination of TCR V  diversity  

Isolation of RNA. Spleens harvested from mice were placed in RPMI 1640 and pushed
 
through 

a 70-µm cell strainer. Leukocytes were isolated
 
by Ficoll-Paque (Amersham Biosciences) 

gradient. Total RNA was
 

obtained with an RNeasy kit (Qiagen) per the manufacturer’s
 

instructions.
 
 

Generation of diversity standards. Diversity standards were prepared by generating 

oligonucleotide
 
mixtures of known diversity, as previously described (Ogle et al. 2003). For

 

example, to generate an oligonucleotide sequence with diversity
 
of 10

6
, 18-mer oligonucleotides 

were synthesized with 10 sites
 
of random assignment generating 4

10
 or 1,040,526 different 



23 

 

oligomers.
 

Similarly, we created oligomer mixtures with 1, 10
3
 and 10

9 
variants. 

Oligonucleotides were biotin-labeled and hybridized
 
to the gene chips as explained below.

 
 

Generation of lymphocyte receptor-specific cRNA. First strand cDNA was obtained by 

reverse transcription with
 

a mouse TCR C  reverse primer, T7 plus C  (5'-

GGCCAGTGAATTGTAATACGACTCACTATAGGGAGGCGGCTTGGGTGGAGTCACAT

TTCTC-3').
 
Second strand synthesis and preparation of biotin-labeled cRNA

 
was conducted 

according to Affymetrix standard protocols.
 
 

Application of cRNA to the gene chip. Equal amounts of cRNA from different samples and 

diversity standards
 
were hybridized to U133B gene chips (Affymetrix). Gene chips

 
were 

processed at the Microarray Core Facility, Mayo Clinic,
 
Rochester, MN.

 
 

Data analysis. Raw data corresponding to oligo location and hybridization intensity
 
were 

obtained. The number of oligo locations with intensity
 
above background (i.e., number of hits) 

was summed. A standard
 
curve was generated by hybridizing samples with known numbers

 
of 

different oligomers. Diversity of the test samples was estimated
 
by comparison with the standard 

curve.
 
 

CDR3 size spectratyping of TCR V   

PCR primers. Primers were synthesized by Mayo Molecular Biology Core Facility (Pannetier et 

al. 1995).
 
Two C  primers were designed to be homologous to the 3' end of

 
the constant region 

of the -TCR for the initial RT-PCR and a
 
second nested constant region primer near the 5' end 

of the
 
constant region was end labeled with Well RED D4 fluorescent

 
dye for detection on a 

CEQ 8000 DNA fragment analyzer (Beckman
 
Coulter). Twenty-four V  specific primers were 

synthesized to
 
distinguish individual V  genes (Rodriguez et al. 1993).

 
 

cDNA production. cDNA was produced using a C  constant region primer in a RT-PCR
 

amplification. The reverse transcriptase reaction was performed
 
using Moloney murine leukemia 

virus reverse transcriptase (Invitrogen
 
Life Technologies) by incubating heat-denatured RNA 

template
 
and the constant region primer (Nest I) at 37°C for 40 min

 
and 42°C for 20 min 

followed by a heat-deactivating incubation
 
at 100°C for 5 min. The final reaction concentrations 



24 

 

contained
 
10 mM Tris-HCl (pH 8.3), 50 mM KCl, 1.25 mM MgCl2, and 0.25

 
mM dNTP in a 

final volume of 5 µl per reaction.
 
 

cDNA amplification. Following cDNA synthesis, provision for a subsequent "hot-start"
 
PCR 

was made by adding an AmpliWax PCR Gem 100 tablet (PerkinElmer)
 
to each tube before 

incubation in the cycler at 100° for
 
5 min. This incubation inactivates the Moloney murine 

leukemia
 
virus reverse transcriptase and melts the wax tablet. After

 
removing the tubes from the 

cycler, the wax layer was allowed
 
to set for 1 min and an upper PCR mix was added. This layer

 

consisted of 5 mM MgCl2, 10 mM Tris-HCl (pH 8.3), 50 mM KCl,
 
5 pmol of a specific V  

variable region primer, and 0.5 U of
 
Taq polymerase (Promega) in a final volume of 20 µl. PCR

 

cycling parameters were one cycle of denaturation at 94°
 
for 5 min, annealing at 56° for 30 s, and 

extension at 72°
 
for 1 min followed by 29 cycles with denaturation at 94°

 
for 40 s and the same 

annealing and extension parameters. A
 
final extension was conducted at 7° for 5 min.

 
 

Second nested PCR for labeling. A second nested PCR was performed to label the products 

from
 
the first amplification reaction. One microliter of the first

 
PCR was used as template for the 

second reaction. The same specific
 
V  variable region primers were used and a nested constant 

region
 
primer (GAGGGTAGCCTTTTGTTTGT) with a fluorescent tag, WellRED

 
D4 (Proligo), 

for detection on a Beckman CEQ 8000 DNA fragment
 
analyzer for all reaction products. This 

reaction consisted
 
of 5 mM MgCl2, 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 5 pmol of

 
a specific 

V  variable region primer, and 0.6 U of Taq polymerase
 
in a final volume of 25 µl. PCR cycling 

parameters were
 
one cycle of denaturation at 94° for 2 min, annealing at

 
56° for 30 s, and 

extension at 72° for 1 min followed
 
by 29 cycles with denaturation at 94° for 40 s and the same

 

annealing and extension parameters. A final extension was conducted
 
at 72° for 5 min. Data 

acquisition and peak detection were
 
handled by the manufacturer’s supplied software for the

 

CEQ 8000 (Beckman Coulter).
 
 

TCR V  gene sequencing. Total RNA was isolated from splenocytes of C57BL/6, QM, and
 
JH

–

/–
 mice with an RNeasy mini kit (Qiagen). cDNA

 
was obtained by reverse transcription with a 

ThermoScript RT-PCR
 
system (Invitrogen Life Technologies). Amplification of V  sequences

 

were done using 10 pmol of the V  8.1 specific (forward) primer
 

(CATTACTCATATGTCGCTGAC), 10 pmol of the C  (reverse) primer
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(GAGACCTTGGGTGGAGTCAC), and 1.25 U of PfuTurbo DNA polymerase
 
(Stratagene) in 

50 µl. PCR conditions were 35 cycles of
 
94°C for 30 s, 60°C for 30 s, and 72°C for 1 min

 

followed by a final extension at 72°C for 7 min. The presence
 
of a PCR product was detected by 

visualizing the appropriate
 
size bands on 1.5 % agarose following gel electrophoresis. The

 
PCR 

products were cloned using TOPO TA cloning (Invitrogen Life
 
Technologies). Sequencing was 

performed at the Mayo Clinic Molecular
 
Biology Core Facility using an M13 (forward and 

reverse) primer.
 
Analysis of the sequences was done with Sequencher software

 
(Gene Codes 

Inc.), and the sequences were aligned using the
 

software provided by the international 

information system of
 

ImMunoGeneTics, IMGT (M.-P. Lefranc, Montpellier, France; 

http://imgt.cines.fr)
 
(Bosc and Lefranc 2000; Giudicelli et al. 2005).

 
The following is a list of the 

specific V  variable primers used
 
and their sequences (5' to 3') with the IMGT nomenclature 

according
 
to Bosc and Lefranc (Bosc and Lefranc 2000) in parentheses:  

V 1 (IMGT V 5), CTGAATGCCCAGACAGCTCCAAGC; 

 
V 2 (IMGT V 1), CAAAGAGGTCAAATCTCTTCCCGGTG; 

 V 3 (IMGT V 26), GTTCTTCAGCAAATAGACATCACTG; 

 
V 4 (IMGT V 2), CTTATGGACAATCAGACTGCCTCA; 

 V 5.1 (IMGT V 12-2), CATTATGATAAAATGGAGAGAGAT; 

 
V 5.2 (IMGT V 12-1), AAGGTGGAGAGAGACAAAGGATTC; 

 V 5.3 (IMGT V 12-3),
 
AGAAAGGAAACCTGCCTGGTT; 

 V 6 (IMGT V 19), TCAATAACTGAAAACGATCTT; 

 
V 7 (IMGT V 29), TACGATGTTGATAGTACCAGCG; 

 V 8.1 (IMGT V 13-3), CATTACTCATATGTCGCTGAC; 

 
V 8.2 (IMGT V 13-2), CATTATTCATATGGTGCTGGC; 
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 V 8.3 (IMGT V 13-1),
 
TGCTGGCAACCTTCGAATAGGA; 

 V 9 (IMGT V 17), ATGATAAGATTTTGAACAGGGA; 

 
V 10 (IMGT V 4), GCAATCCATTGTAAACGAAACAG; 

 V 11 (IMGT V 16), CAAGCTCCTATAGATGATTCAGGG; 

 
V 12 (IMGT V 15), AAGTCTCTTATGGAAGATGGTGG; 

 V 13 (IMGT V 14), TCCTCTATAACAGTTGCCCTCG; 

 
V 14 (IMGT V 31), TGTTGGCCAGGTAGAGTCGGTGCAA; 

 V 15 (IMGT V 20), GCACTTTCTACTGTGAACTCAGC; 

 
V 16 (IMGT V 3), GGTAAAGTCATGGAGAAGTCTAAAC; 

 V 17 (IMGT V 1), AGAGATTCTCAGCTAAGTGTTCCTCG; 

 
V 18 (IMGT V 30), CAGCCGGCCAAACCTAACATTCTC; 

 V 19 (IMGT V 121), CTGCTAAGAAACCATGTACCA; 

 
V 20 (IMGT V 23), TCTGCAGCCTGGGAATCAGAA.

 
 

Fluorescence activated cell sorting analysis  

Splenocytes were obtained by pushing minced spleen tissue through
 
a 0.70-µm mesh followed by 

hemolysis in an NH4Cl lysis
 
buffer. The total number of splenocytes was determined using

 
a 

Neubauer chamber. Cells were stained with one, two or three
 
of the following mAbs (all the Abs 

were from BD Pharmingen)
 
as described (Cascalho, Ma, Lee, Masat and Wabl 1996): FITC-

conjugated rat anti-mouse CD4 (clone
 
GK1.5), rat anti-mouse CD8  (clone Ly-2), and rat anti-

mouse
 
CD19 (clone 1D3); PE-conjugated rat anti-mouse CD8  (clone 53-6.7)

 
and rat anti-mouse 

CD44 (Pgp-1, Ly-24); and biotin-conjugated
 
rat anti-mouse CD62L (LECAM-1, Ly22) and rat 

anti-mouse CD3
 
(clone 145-2C11). PE-conjugated anti-mouse Forkhead box P3 (clone

 
FJK-
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16S) was bought from eBioscience. Lymphocytes were gated
 
on the light scatter plot by back 

gating onto CD4
+
CD3

+
 and CD8

+
CD3

+ 
cells; numbers of the splenocytes in the subpopulations 

were
 
determined by multiplying their total number by the percentage

 
as defined by gating on the 

FACS plot. Data were collected on
 
a FACScalibur (BD Biosciences) and analyzed with 

CellQuest software
 
(BD Biosciences).

 
 

T cell priming to Pan DR reactive epitope (PADRE) peptide  

Age-matched B6 mice were injected subcutaneously with the 140-µg
 

PADRE peptide 

aK(X)VAAWTLKAAa, where "a" is alanine and X is
 
cyclohexyl alanine (Wei et al. 2001) in 

PBS. Three weeks later, CD4
+
 Th cells

 
were purified from draining lymph node and spleens and 

cultured
 
with dendritic cells isolated according to Kodaira et al. (Kodaira et al. 2000)

 
and 

matured by incubation with LPS (from Escherichia coli 0111:B4;
 
Sigma-Aldrich) at 5 µg/ml 

overnight in the presence of
 
PADRE (35 µg/ml) for 5 days. Data represent the mean counts

 
per 

minute of three wells ± SE in one representative
 
experiment.

 
 

Delayed-type hypersensitivity assay  

Mice were primed by the injection of 100 µg of OVA subcutaneously
 
and challenged by 

intradermal injection of 20 µg of OVA
 
in the footpad 6 days after priming. Non primed mice 

controls
 
were included. Effective swelling was indicated by the difference

 
in thickness measured 

with a caliper between Ag-injected footpad
 
and a PBS-injected footpad. Responses were 

recorded at 24, 36,
 
and 60 h.

 
 

T cell proliferation assay  

Isolated CD4
+
 T cells from age-matched (B6, QM, and JH

–/–
)
 
ware cultured in a 96-well plate 

coated with anti-CD3 (clone
 
H57-597) (in three different concentrations: 0.2, 1, and 10

 
µg/ml) in 

the presence of anti-CD28 at 10 µg/ml
 
for 48 h. Alternatively, T cells were cultured with Con A 

(BD
 
Biosciences) (in three different concentrations (ConA to medium):

 
1/20, 1/10, and 1/5) in 

the presence of anti-CD28 at 10 µg/ml
 
for 48 h. Proliferation was measured by (

3
H)thymidine 

incorporation.
 

Data represent the mean counts per minute of three wells ±
 

SE in one 

representative experiment.
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Skin grafts  

Skin grafts were performed according to a modified technique
 
of Billingham et al. (Billingham et 

al. 1953). Briefly, full thickness tail skin
 
(0.5 x 0.5 cm) was grafted onto the lateral flank. Grafts 

were
 
observed daily after removal of the bandage at day 8. Grafts

 
were considered rejected when 

90 % or more of the graft lacked
 
any viable signs (hair, pigment, and scale pattern). All mice

 

were grafted between 6 and 18 wk after birth. Re-transplants
 
were performed 16–20 wk after the 

primary graft was shed.
 
 

Pneumocystis murina infection and assessment of organismal burden  

P. murina was isolated from the lungs of heavily infected, SCID
 
mice as previously described 

(Keely et al. 2004). The infected lungs were aseptically
 

minced and disaggregated in a 

Stomacher laboratory blender.
 

Pneumocystis organisms were isolated by differential 

centrifugation,
 
washing, and filtration through micropore filters containing

 
10-µm pores as 

previously reported (O'Riordan et al. 1995). The organisms
 
were resuspended in freezing 

medium (RPMI 1640 with glutamine
 
containing 10 % FCS and 7.5 % DMSO), aliquoted, and 

frozen in
 
liquid nitrogen. All mice were infected with the same frozen

 
stock of Pneumocystis.

 
 

As described by Shellito et al. (Shellito et al. 1990), inoculation was performed
 
by inserting a 22-

gauge feeding tube into the trachea of anesthetized
 
animal, visualizing its position through the 5-

mm long incision
 
of the skin, and injecting 75 µl of Pneumocystis suspension

 
(containing 10

7
 

organisms) followed by 300 µl of air.
 
Control animals were injected with 75 µl of saline 

followed
 
by 300 µl of air. Two weeks after the infection the mice

 
were sacrificed and the lungs 

were removed and frozen until
 
analysis for Pneumocystis burden by quantitative RT-PCR was

 

conducted.
 
 

Quantitative RT-PCR to enumerate Pneumocystis was performed
 
using the Bio-Rad iCycler 

System, SYBR Green detection software,
 

and primers targeting the Pneumocystis large 

mitochondrial subunit
 
(Wakefield et al. 1990). Lung DNA was isolated by phenol-chloroform 

extraction
 
and ethanol precipitation and finally resuspended in Tris-EDTA

 
buffer. Amplifications 

of unknown samples were compared with
 
plasmid standards containing mouse Pneumocystis-

specific mitochondrial
 
DNA. All samples were run in triplicate.
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Statistical analysis  

Statistical analysis for comparison of the TCR V  diversity of
 
groups was performed using 

natural log transformation of the
 
data and subsequent one-way ANOVA. The comparison of the 

groups
 
was performed by an unpaired, two-sided Student’s t test

 
on the natural log transformed 

data. Group comparisons of the
 
numbers of T cells in the splenocyte subpopulations were 

performed
 
using the Student’s t test after testing the global difference

 
with a one-way ANOVA. 

Comparison of skin graft survivals was
 
performed by a log-rank test. A value of p < 0.05 was 

considered
 
significant.
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Specific Aim 4 and 5 

 

Strains of mice 

C57BL/6 mice were purchased from The Jackson Laboratory (Bar Harbor, ME, USA). Mice 

were housed in a specific pathogen-free facility at the University of Michigan.  All mice were 

between 5 and 25 weeks of age and all experiments were carried out in accordance with 

protocols approved by UCUCA. 

Thymectomy and gene analysis 

Thymectomy: Thymuses were removed surgically from mice or sham-surgery was performed at 

5 weeks of age.  Mice were anesthetized with ketamine (120-200 mg/kg) + xylazine (10 mg/kg) 

i.p.  An incision was made on the ventral neck midline extending from 0.5 cm cranial of the 

sternal notch.  The clavicle was cut along the sternum to the second rib and retracted to expose 

the trachea, sternohyoid and sternothyroid muscles which were gently separated to expose the 

superior end of the thymic lobes.  The thymus was then gently dissected with blunt instruments 

and excised by vacuum.  The thorax was closed using 6-0 absorbable suture placed through the 

dorsal thorax to draw the clavicle and ribs together.  The fat pad with the submaxillary gland was 

returned to its original position and held in place by liquid skin adhesive.  Skin was closed using 

6-0 absorbable suture.  Mice were monitored every 12h for the first 48h, and daily thereafter.  

Sham-operated mice underwent the same surgical procedure, except for the fact that the thymus 

was not excised, just manipulated with the tip of blunt scissors. 

Blood collection: Done following the recommendations of the University of Michigan 

Committee on Use and Care of Animals (UCUCA).  

Immunizations: T-independent immunizations were performed as explained by Mantchev et al. 

(Mantchev et al. 2007) by injecting mice i.p. with 30 µg of NP-Ficoll (NP41- AECM-Ficoll; 

Biosearch Technologies, Novato, CA, USA) diluted in 100 µl PBS once.  Primary T-dependent 

immunizations were performed by i.p. injection of 100 μl of an emulsion of incomplete Freund’s 

adjuvant containing 100 µg NP (25)-ovalbumin (Biosearch Technologies, Novato, CA, USA) 
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and boost immunizations performed by i.p. injection of 100 μl of a PBS solution containing 10 

µg NP (25)-ovalbumin.  To obtain RNA from memory B cells, mice were boosted a second time 

by i.v. injection of 50 µg NP (25)-ovalbumin dissolved in 100 μl of PBS.  

Ig gene analysis: RNA was obtained from spleen cells and extracted with QIAGEN RNeasy 

(Qiagen, Inc., Valencia, CA, USA).  cDNA was obtained from 0.2 µg of RNA using oligo(dT) 

primed reverse transcription.  VH186.2 gene sequences joined to the IgG1 constant region were 

amplified with VH186.2 and C1 specific primers in a nested reaction and with Pfu polymerase, 

followed by cloning with pCR4-TOPO (Invitrogen, USA).  Sequencing of cloned PCR fragments 

was done by the Mayo Clinic Sequencing Core. Forward primer: 

CATGCTCTTCTTGGCAGCAACAGC (specific for VH186.2), reverse primer: 

GTGCACACCGCTGGACAGGGATCC (specific for C 1).  PCR was performed for 30 cycles 

of 1 minute at 94
0
 Celsius, 2 minutes at 55

0
 Celsius, and 3 minutes at 72

0
 Celsius.  Nested PCR 

amplification forward primer: CAGGTCCAACTGCAGCAG, and reverse primer, 

AGTTTGGGCAGCAGA.  Sequences were aligned and analyzed using Sequencher software 

(Gene Codes, MI, USA) and with a software program developed by Dr. Calvacoli at the 

University of Michigan Sequencing Core.  VH, D and JH gene CDR3 sequence assignments 

were done according to the international ImMunoGeneTics (IMGT) system software developed 

by Dr Lefrank at the CNRS, France (Giudicelli, Chaume and Lefranc 2005).  Complementary 

determining regions were determined according to Kabat et al. (Kabat et al. 1991). 

FACS analysis and antibodies 

Splenocytes were obtained and prepared for flow cytometry analysis as in (Cascalho, Ma, Lee, 

Masat and Wabl 1996).  Fluorescently conjugated or biotinylated antibodies were purchased 

from BD Biosciences unless noted: rat anti-mouse CD4 (GK 1.5), rat anti-mouse CD21a/CD35 

(7G6), rat anti-mouse CD3 (145-2C11), rat anti-mouse IgD
b
 (AMS9.1), rat anti-mouse CD4 

(GK1.5), rat anti-mouse CD44 (Pgp-1, Ly-24), rat anti-mouse CD23 (Fc ε RII), rat anti-mouse 

IgMb (DS-1), rat anti-mouse CD8 (Ly-2), rat anti-mouse CD19 (1D3), rat anti-mouse CD62L 

(LECAM-1, Ly22), rat anti-mouse CD25 (IL-2R α chain, p55) and rat anti mouse Foxp3 (FJK-

16S, eBiosciences).  Biotinylated antibodies (Abs) were revealed by streptavidin-PE-Cy5 

purchased from BD Biosciences, USA.  Data were collected on a FACScalibur (BD Biosciences) 
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and analyzed with CellQuest software (BD Biosciences).  Isotype controls were used to define 

gates.   

Delayed type hypersensitivity (DTH) assay  

Mice were primed by subcutaneous injection of 100 µg of ovalbumin dissolved in PBS, and 

challenged by intra-dermal injection of 20 µg of ovalbumin in PBS in the footpad, 6 days after 

priming.  Non-primed mice challenged with PBS were included as controls.  Footpad swelling 

was measured with a caliper.  Effective swelling indicates the difference in the thickness of 

footpads in the same mice (one injected with the antigen, another injected with PBS).  Responses 

were recorded at 24 and 48 hours post-challenge. 

Skin Grafts 

Skin grafts were performed according to a modified technique of Billingham et al. (Billingham, 

Brent and Medawar 1953).  Secondary transplants were 30 days after the primary graft was shed.  

TRECS (T cell receptor excision circles)  

DNA was obtained from splenocytes with a DNeasy Blood and Tissue Kit (Qiagen, Inc., 

Valencia, CA, USA).  PCR amplification of sjTREC DNA was done from 100 ng of DNA in a 

Mastercycler ep realplex real-time PCR system (Eppendorf) using specific primers targeting 

murine δRec-ψJα excision circles.  Real-time PCR cycler conditions were set for 95
0
C for 10’ 

followed by 40 cycles of 95
0
C for 15’’ and 60

0
C for 1’ with 5µM forward and reverse primers 

and 0.05µl of 100µM FAM-QSY probe.  Forward primer (upstream of ψJα segment): 5’CAT 

TGC CTT TGA ACC AAG CTG3’; Reverse primer (downstream of the δRec1 segment): 5’TTA 

TGC ACA GGG TGC AGG TG3’ according to (Sempowski and Rhein 2004).  A fluorescent 

probe for RT-PCR: FAM - CAG GGC AGG TTT TTG TAA AGG TGC TCA CTT - QSY 

(Applied Biosystems).  The mouse transferring receptor gene Tfrc gene (TaqMan Copy Number 

Reference Assay, Applied Biosystems) was amplified to quantify cell number in mouse DNA 

samples.  Each sample was run in triplicate.  Standard curves were created with either serial 

dilutions sjTREC plasmid DNA or of C57BL/6J DNA followed by Tfrc gene amplification.  
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ELISA (Enzyme-linked immunosorbent assay)   

MaxiSorp-treated or PolySorp-treated polystyrene 96-well plates (Thermo Scientific, Rochester, 

NY, USA) were coated with 4 μg/mL of goat anti-mouse Ig (SouthernBiotech, Birmingham, AL, 

USA) in PBS to measure total Ig, or with 5 μg/mL of NP-BSA in borate saline buffer to detect 

NP-specific antibodies, for 1 hour at room temperature.  ELISA was performed according to 

previously described protocols (Cascalho, Ma, Lee, Masat and Wabl 1996; Cascalho et al. 1997).  

Plates were developed with ABST (SouthernBiotech, Birmingham, AL, USA) read at 405 nm in 

microplate reader Synergy 2 (BioTec Laboratories Ltd., Suffolk, UK) and analyzed using Gen 5 

software version 1.04.5 (BioTek, VT, USA).  The 17.2.25 IgGl was used as a standard for 

quantification.  

ELISPOT (Enzyme-linked immunosorbent spot)   

Done according to standard procedures in the laboratory (Mantchev, Cortesao, Rebrovich, 

Cascalho and Bram 2007).  MultiScreen HTS-HA 96-well plates (Millipore, Billerica, MA, 

USA) were coated with 5 μg/mL NP-BSA or 5 μg/mL BSA in sodium carbonate buffer 

overnight at 4°C and blocked with 5 % milk in TBS-Tween for 2 hours at 37°C.  B cells isolated 

from the spleen by negative selection were serially diluted, seeded in the wells and cultured in 

complete RPMI-1640, overnight at 37°C in 5 % CO2 atmosphere.  ELISPOT analyses of 

antibody secreting cells obtained from adoptively transferred recipients were done with 

splenocytes.  To detect NP-specific antibody secreting cells, each well was washed and 

incubated with AP-conjugated goat anti-mouse IgM or IgG antibody (SouthernBiotech, 

Birmingham, AL, USA) for 2 hours at 37°C.  Each well was developed with BCIP/NBT (Sigma-

Aldrich, St. Louis, MO, USA).  The number of spots of NP-specific IgM or IgG secreting cells 

was counted by ImmunoSpot Professional Analyzer version 5.0.9 (Cellular Technology Ltd., 

Shaker Heights, OH, USA) and confirmed by direct observation.  

TCR beta chain diversity analysis 

TCR beta chain diversity analysis was done as reported (Wettstein et al. 2008).  Briefly, RNA 

was obtained from spleens using a RNeasy Protect Minikit (Qiagen, CA).  Residual DNA was 
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removed from RNA samples using a RNase-Free DNase Set (Qiagen).  cDNA was produced 

from 15 ng of RNA with a 20 pmol of a 5’biotynilated TCR Cb primer and pools of 21 

different TCR V primers homologous to the CDR 1 region providing 66 pmol of each (three 

pools of 5 and one pool of 6 primers), at 50
0
C for 32’ followed by incubation at 94

0
C to 

inactivate the reverse transcriptase.  cDNA synthesis was followed by PCR amplification at 1’ at 

94
0
C, 30’’at 60

0
C, and 1’ at 72

0
C for  25 cycles.  RT-PCR products were purified by QIAquick 

PCR Purification Kit (Qiagen) and biotynilated products separated with MyOne
TM

 Streptavidin 

C1 Dynabeads (Dynal Biotech ASA, Oslo, Norway) according to the manufacturers’ 

instructions.  TCR V diversity was determined by real time PCR in a total of 240 individual 

reactions using combinations of 20 TCR V and 20 TCR J primers, as described (Wettstein, 

Strausbauch, Therneau and Borson 2008).  Reactions were performed in a 10 ml volume 

containing 10 pmol of a nested TCR V primer homologous to TCR V CDR2, 10 pmol of a 

TCR J primer, l µl of purified PCR products and 5 l of Power SYBR Green PCR master mix 

(2x) (Applied Biosystems).  Cycling was preceded by incubation at 50
0
C for 2’ and at 95

0
C for 

10’, followed by 40 cycles of 15’’ at 95
0
C and 1’ at 60

0
C.  Data were analyzed with the 7900HT 

Sequence Detection System Version 2.3 software (Applied Biosystems) to estimate the cycle 

threshold (Ct) for all reactions.  Ct values are fractional cycle numbers at which fluorescence 

passes the threshold set to be within the exponential region of the amplification curve 

corresponding to a linear relationship between the log of change in fluorescence and cycle 

number.  Primers were as published (Wettstein, Strausbauch, Therneau and Borson 2008) and 

synthesized by Invitrogen (Carlsbad, CA, USA).  

Statistical analysis 

Performed using Prism software (Prism Software Corporation, Irvine, CA).  Group comparisons 

were performed using the unpaired, two-sided Student’s t test after testing the global difference 

with a one-way analysis of variance (ANOVA).  Comparison of skin graft survival was 

performed by a log rank test.  A value of p < 0.05 was considered significant.  
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RESULTS 

Specific Aim 1, 2 and 3 

Diverse B cells and Ig maintain T cell numbers in the spleen and TCR 

diversity  

Competence of the T cell compartment, particularly cell-mediated
 
immunity, is thought to 

depend upon the number and diversity
 
of T cells available to respond to antigenic challenge 

(Nikolich-Zugich, Slifka and Messaoudi 2004).
 
T cell diversity would seem to assure that one or 

more clones
 

of T cells will bear a TCR capable of recognizing a peptide(s)
 

from a 

microorganism, a toxin, or a minor histocompatibility
 
Ag associated with self-MHCs, thus 

allowing the activation of
 
rare Ag-specific T cells (Kanagawa et al. 1982; Lindahl and Wilson 

1977; Suchin et al. 2001). To test this concept,
 
we studied the structure of the T cell compartment 

and cell-mediated
 
immunity in mice with defects in Ig assembly.

 
 

We asked whether mice with B cell defects have normal numbers
 
of T cells. The numbers of 

CD3
+
, CD4

+
, or CD8

+
 T cells in the

 
spleen of QM mice were not significantly changed compared 

with
 
those of wild-type mice (p > 0.05), indicating that QM mice

 
with oligoclonal B cells 

maintain normal numbers of T cells
 
in the adult spleen (Figure. 1). In contrast, numbers of CD3

+
 

or
 
CD4

+
 but not CD8

+
 T cells were significantly decreased in JH

–/– 
mice (p < 0.05). This finding 

is in agreement with the observations
 
of Ngo et al. (Ngo et al. 2001), who showed reduced T cell 

numbers in the
 
spleen of B cell deficient µMT mice.

 
 

We next tested whether mice with B cell defects and low diversity of thymocytes (Joao, Ogle, 

Gay-Rabinstein, Platt and Cascalho 2004) also have decreased diversity in the periphery. TCR 

V  diversity was measured according to Ogle et al. (Ogle, Cascalho, Joao, Taylor, West and 

Platt 2003). In this assay, T cell diversity is proportional to the number of hybridization hits of 

TCR V  cRNA on a gene chip and quantified by comparison to a standard curve obtained with 

DNA oligomers of known diversity. TCR V  diversity of JH–/– splenocytes was 1.1 x 103 per 

10 µg of RNA, whereas TCR V  diversity of C57BL/6 splenocytes was 1.3 x 106 per 10 µg of 

RNA (p < 0.05). TCR V  diversity of QM splenocytes was intermediate, 8.8 x 104 per 10 µg of 

RNA (p < 0.05, compared with C57BL/6). In addition to the specificity of the primers, we 
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assured that the assay detected TCR V  diversity and not B cell diversity, because sorted 1.5 x 

107 B cells from C57BL/6 splenocytes containing 0.09 % of CD3+ cells yielded a mean 

diversity of only 136 corresponding to 0.023 % of the diversity obtained from equal number of 

splenocytes containing 20 % of CD3 positive cells. Because QM mice are B cell and Ig 

proficient, our results indicate that T cell diversity in the spleen is not a function of B cell 

number and/or of serum Ig concentration (Joao, Ogle, Gay-Rabinstein, Platt and Cascalho 2004) 

but may rather depend on the diversity of Ig in the serum and/or on the surface of B cells.  

T cell function in mice with contracted TCR diversity  

We next tested whether T cells from mice with a contracted T cell repertoire exhibit normal 

functions at a cellular level. As Figure. 2 shows, T cells from JH–/– and QM mice proliferated in 

response to anti-CD3 (Figure. 2A) or Con A (Figure. 2B), as did T cells from C57BL/6 mice. 

Next, we asked whether T cells in JH–/– and QM mice could be primed in vivo. To this end, 

mice were injected with 140 µg of the PADRE peptide and 14 days later CD4+ T cells purified 

from the spleen were cocultured with mature dendritic cells in the presence of 35 µg/ml PADRE 

peptide. Figure. 3 shows that QM T cells mount robust proliferation and JH–/– T cells have 

detectable albeit reduced proliferation (26 % of QM or 27 % of C57BL/6 values) to the PADRE 

peptide. The results indicate that 90 % contraction of the TCR repertoire (in QM mice) does not 

impair priming of T cells and that 99 % contraction, as in JH–/– mice, does not preclude T cell 

priming.  

Lymphoid organogenesis in mice with contracted TCR repertoires  

Aberrant T cell response in JH–/– mice could be due to the contraction of TCR diversity or to 

defective lymphoid organogenesis. We questioned whether T cells from JH–/– mice respond 

normally to mitogens but fail to undergo priming because of defective lymphoid organogenesis. 

Golovkina et al. (Golovkina et al. 1999) showed that lack of B cells in JH–/– mice causes 

defective peripheral lymphoid organogenesis with an absence of Peyer patches and a follicular 

dendritic cell network. Consistent with this possibility, Figure. 4 shows that although JH–/– 

lymph nodes lack a follicular dendritic cell network, QM mice have a normal one, suggesting 
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that abnormal lymph nodes rather than contracted T cell diversity in JH–/– mice could contribute 

to defective T cell priming.  

Impact of TCR diversity on cell-mediated immunity  

We next asked to which extent contraction of the T cell repertoire
 
per se impairs cell-mediated 

immunity. To avoid the confounding
 

influence of impaired lymphoid organogenesis, we 

addressed the
 
question using QM mice that show nearly normal lymph nodes.

 
First, we compared 

the rate of rejection of skin allografts
 
by QM and C57BL/6 mice. The outcome of skin grafts is 

thought
 
to be independent of Ab responses directed against the graft (Bogman et al. 1984; 

Cascalho and Platt 2001; Parker et al. 1996) and, hence, this test could be conducted in mice
 
with 

oligoclonal B cells. The kinetics of rejection of allografts
 
is modified in animals with defective 

lymphoid organogenesis (Lakkis et al. 2000) or T cell signaling (Harmsen and Stankiewicz 1990; 

Ito et al. 2005) and, therefore, the assay would
 
help exclude these problems. Table 1 shows that 

MHC-disparate
 
skin grafts were rejected with similar kinetics by QM and wild-type

 
recipients. 

This result suggests that the QM mice have functional
 
lymph nodes and that their T cells have the 

capacity to function
 
like T cells from wild-type mice.

 
 

We next tested the outcome of grafts across a minor histocompatibility
 
barrier. We reasoned that 

contracted TCR diversity would more
 

likely hinder responses to minor than to major 

histocompatibility
 
Ags, because the frequency of T cells specific for those Ags

 
is less by orders 

of magnitude than the frequency of T cells
 
specific for allogeneic MHC (Kanagawa, Louis and 

Cerottini 1982; Lindahl and Wilson 1977; Suchin, Langmuir, Palmer, Sayegh, Wells and Turka 

2001). For this test, skin
 
from the tails of male mice was transplanted onto female mice

 
flanks. 

As Table 1 shows, QM or JH
–/–

 females rejected
 
male skin grafts as reliably as wild-type mice 

and with the
 
same kinetics at 26 or 23 days (median), respectively, while

 
C57BL/6 females 

rejected male skin grafts at 23 days (median)
 
(Table 1 and Figure. 5). QM and wild-type mice 

rejected secondary
 
skin grafts always faster than primary grafts (Table 2). These

 
results indicate 

that contraction of the repertoire of T cells
 
has little or no measurable impact on primary or 

secondary alloimmune
 
responses. 
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To confirm that contraction of the TCR repertoire has little
 
impact on cell-mediated immunity, 

we tested the responses to
 
OVA in QM, JH

–/–
, and C57BL/6 mice. Responses to

 
OVA were 

examined in mice primed 6 days earlier by measuring
 
the footpad thickness at 24, 36, and 60 h 

following intradermic
 
injection of 20 µg of OVA. Mice were either primed by

 
s.c. injection with 

100 µg of OVA or injected with PBS
 
(not primed controls). Footpad swelling did not differ 

between
 
QM and wild type mice (Figure. 6) at 60 h following challenge.

 
However, footpad 

swelling was decreased in QM mice at 36 h after
 
challenge, suggesting a delayed kinetics 

compared with that
 
of C57BL/6 mice. JH

–/–
 mice had decreased footpad

 
swelling 36 and 60 h 

after challenge, which could be due to
 
defective lymphoid organogenesis (see above). The 

footpad swelling
 
reflected cell-mediated immunity because it was fully prevented

 
by daily 

injection with cyclosporin A (600 µg/day i.p.
 
for 3 days) (data not shown). 

Impact of TCR repertoire contraction in host defense  

As a further test of cell-mediated immunity, we asked whether
 
host defense was challenged by 

TCR repertoire contractions.
 
To test the impact of contracted TCR repertoire on host defense,

 
we 

infected QM or C57BL/6 mice with P. murina and measured the
 
organism burden in the lungs 2 

wk later. Pneumocystis is an
 
intracellular pathogen, the elimination of which depends on

 
T cells; 

T cell-deficient mice fail to clear the agent, ultimately
 
causing pneumonia and the death of the 

host (Harmsen and Stankiewicz 1990). Figure. 7 shows
 
that the level of Pneumocystis in the 

lungs of QM or C57BL/6
 
mice 2 wk postinfection was similar. Thus, contraction of the

 
TCR 

repertoire did not compromise host defense. 

TCR repertoire contraction in B cell-deficient mice is balanced  

Those with impaired cell-mediated immunity caused by AIDS or
 
DiGeorge syndrome have both 

TCR diversity contractions and gaps
 
and/or oligoclonal expansions (Giacoia-Gripp et al. 2005). 

Whether these changes impair
 
immunity is unknown. To address that question, we evaluated

 
the 

TCR V  repertoire in mice with severely contracted diversity
 
by spectratyping and sequencing.

 
 

TCR -chain CDR3 lengths for each V  gene spectratype were generated
 
for each of the V  

genes using RNA derived from splenocytes obtained
 
from three JH

–/–
 and three C57BL/6 mice 

according
 
to Pannetier et al. (Pannetier, Even and Kourilsky 1995). This analysis showed that the 
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majority
 
of the 24 V  genes were associated with spectratypes exhibiting

 
Gaussian distributions. 

There were a limited number of exceptions
 
as described in Figure. 8, where single peaks were 

over-represented
 

against a background of normally distributed CDR3 lengths. Thus,
 

the 

contracted repertoire in JH
–/–

 mice did not
 
alter the distribution of CDR3 lengths, indicating that 

contraction
 
was balanced in contrast to what is observed in immunodeficiencies

 
such as AIDS 

(Connors et al. 1997; Gorochov et al. 1998).
 
 

To determine whether a normal spectratype profile reflects a
 
balanced contraction of the 

repertoire, we sequenced the TCR
 
CDR3 regions of genes containing V 13-3 (IGMT designation 

for
 
V 8.1) in splenocytes obtained from C57BL/6 (Table 3), QM (Table 4), or JH

–/–
 mice (Table 

5). Tables 3, 4, and 5 show fewer repeat sequences in QM or JH
–/–

 splenocytes
 
compared with 

those of wild-type mice. Of 46 C57BL/6 sequences
 
bearing V 13-3, 29 had different CDR3 

regions, the lengths of
 
which averaged 11.5 codons. Of 45 QM sequences bearing V 13-3,

 
43 

had different CDR3 regions, the lengths of which averaged
 
11.5 codons. Of 67 JH

–/–
 sequences 

bearing V 13-3,
 
54 had different CDR3 regions, the lengths of which averaged

 
11.9 codons. The 

CDR3 lengths of sequences containing the TCR
 
V 13-3 obtained from mice of all strains 

showed a Gaussian distribution,
 
as one might expect if differences in repertoire diversity were

 

balanced. In further support of an equilibrated contraction
 
without oligoclonal expansions, Table 

4 shows that the V  sequences
 
obtained from all of the mice used diverse J  segments. These

 

results demonstrated that B cell-deficient mice have balanced
 
contraction of TCR diversity and 

suggest that it is the gaps
 
and oligoclonal expansions and not the repertoire contraction

 
in itself 

that cause disease in immunodeficiencies such as AIDS
 
and DiGeorge.

  

 

Increased "memory-like" CD4
+
 and regulatory T cells in mice with contracted TCR repertoire 

 

The normal kinetics of skin graft rejection in mice with profound
 
contraction of the TCR 

repertoire suggested that the T cell
 

compartment had "compensated" in some way. We 

hypothesized that
 
such compensation might occur if T cells had proliferated to

 
maintain the 

dimensions of the T cell compartment and, as a
 
result, acquired "memory-like" functions 

(Mackall et al. 1997; Tanchot et al. 1997). To explore
 
this possibility, we enumerated "memory-

like" T cells in unmanipulated
 
QM, JH

–/–
, or C57BL/6 mice based on phenotype (Berard and 

Tough 2002; Berg et al. 1991; Goldrath et al. 2000; Sallusto et al. 1999). Figure. 9 shows that 

QM mice had 3-fold and JH
–/– 

2-fold more "memory-like" CD4
+
 T cells 
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(CD4
+
/CD44

high
/CD62L

–
)
 
than C57BL/6 mice (p < 0.05) but similar numbers of "memory-like"

 

CD8
+
 T cells. These results suggest that the T cell compartment

 
compensates for the contraction 

of TCR diversity by homeostatic
 
proliferation.

 
Because thymic dysfunction or thymectomy 

performed in the second
 
to the third day of life impairs the production of natural T

 
regulatory T 

cells (Kim and Rudensky 2006), we questioned whether B cell-deficient
 
mice might have 

impaired production of T regulatory cells, thus
 
enhancing cell-mediated immunity. To address 

this question,
 
we determined the number of T regulatory cells in QM and JH

–/– 
mice. The relative 

number of Forkhead box P3-positive T cells
 
(a marker of T regulatory cells) (Fontenot et al. 

2003) in the spleen was 1.9 %
 
in JH

–/–
 mice, 1.8 % in QM mice, and 1 % in wild-type

 
mice. Our 

results thus indicate that the maintenance of cell-mediated
 
immunity cannot be ascribed to loss of 

natural regulatory T
 
cells. Whether a 2-fold relative increase in T regulatory cells

 
may modify or 

control T cell responses in mice with contracted
 
T cell repertoires is not clear. 
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Specific Aim 4 and 5 

 

Removal of the thymus of mature mice causes a persistent decrease in the 

number of CD4+ or CD8+ T cells without contracting T cell receptor diversity 

To explore the role of the thymus in B cell memory responses we removed the thymus of mice at 

5 weeks of age reasoning that at this age mice already have an established T cell compartment 

and competent cellular immunity (Miller 1965). Removal of the thymus at 5 weeks of age 

completely abrogated recent thymic emigrants because mice lacking the thymus (in the 

manuscript referred to as athymic mice) lacked any measurable T cell receptor excision circles 

(TRECs) at 5 and 10 weeks following thymectomy (Figure 10). Consistent with absent thymic 

function, athymic mice had reduced CD4+, CD25+, Foxp3 cells, at 10 weeks of age ( Figure 11). 

Mice from which the thymus had been removed (athymic mice) at 5 weeks of age had fewer T 

cells in the spleen 5 and 10 weeks after the surgery, compared to control mice.  Figures 12A, 

12B and Table 6 show that thymectomy caused a persistent 2.8 or 3.0 fold decrease in the 

number of CD4+ or CD8+ T cells respectively, 10 weeks after surgery.  Sham operation of the 

thymus also decreased the number of CD4+ or CD8+ T cells 10 weeks after surgery, albeit less 

profoundly than removal of the thymus (Figures 12 A, 12 B and Table 6). Results from other 

laboratories are consistent with ours showing close to 2 fold reduction in the number of CD4 T 

cells in the spleen.  Thus, Gagnerault et al. (Gagnerault et al. 2009) found a 2 fold reduction in 

the number of CD4 T cells in the spleen following thymectomy in 3-week-old mice; and 

Bourgeois et al. (Bourgeois et al. 2008) found a reduction of almost 2 fold in the number of 

peripheral CD4-positive T cells 15 weeks after interrupting thymic output in a model of chemical 

thymectomy. 

To determine whether the removal of the thymus caused compensatory proliferation, we 

enumerated CD4+ or CD8+ cells with a memory-like phenotype (CD62L-negative and with high 

expression of CD44).  Figures 12C, 12D and Table 6 show that athymic mice and controls had 

similar numbers of CD4+ or CD8+ T cells with a ―memory‖ like phenotype in the spleen.  

However, the proportion of CD4+ memory-like T cells was significantly increased in athymic 

mice (14 %) compared to sham-operated (11 %) or control (9 %) mice. Likewise, the proportion 
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of CD8+ memory-like T cells was increased in athymic mice (45 %) versus sham-operated 

(25 %) or non-manipulated control mice (19 %).  Since the absolute number of ―memory-like‖ T 

cells is similar in athymic and control mice, the increased proportion of ―memory-like‖ T cells 

brought about by removal of the thymus probably reflects the decrease in the absolute number of 

naïve T cells rather than compensatory proliferation of T cells brought about by removal of the 

thymus.  The apparent lack of compensatory proliferation in athymic mice might partly reflect a 

decrease in IL-7 which is produced by thymic epithelial cells (Alves et al. 2009). 

Because cellular immunity depends in part on the diversity of T cell receptors we analyzed TCR 

diversity in athymic mice and in controls 10 weeks after surgery.  We used a novel approach to 

quantify TCR beta transcript diversity using a real-time polymerase chain reaction (PCR)-based 

method (Wettstein, Strausbauch, Therneau and Borson 2008).  Briefly, the method amplifies 

TCR V beta (β) transcripts using combinations of primers specific for a total of 240 Vβ-Jβ 

combinations.  Cycle threshold (Ct) values were determined for each Vβ-Jβ combination for 

each RNA template and mean Ct values were calculated.  Results shown in Table 7 indicate that 

Ct values did not significantly differ in control (17.8), sham-operated (17.9) or athymic mice 

(18.7) suggesting that removal of the thymus or sham operation did not cause significant 

decrease in TCR diversity or oligoclonal expansions.  These results were supported by Shannon 

entropy calculated for each Vβ-Jβ matrix in each set of mice (Shannon and Warren 1949) 

(Table 7).  An estimate of entropy (H) was calculated by the equation H=Σ (p log 2 p)/log 2 

(1/240) where p was the probability of abundance calculated for each Vβ-Jβ combination by the 

equation p=2−y/Σ2−y where y was the Ct value for each Vβ-Jβ primer pair and p=0 when Ct > 

40 cycles.  Entropy ranges from zero to one with one representing maximal diversity.  Control 

mice had an average entropy of 0.85, sham-operated mice had an average entropy of 0.84 and 

athymic mice had an average entropy of 0.85.  These results agree with values reported for wild-

type repertoires (0.88 on average) and contrast with values obtained in SCID-nude mice (0.76) 

(Dr. Wettstein, personal communication).   

Thymectomy does not impair T cell memory  

To determine whether and how removal of the thymus might impair memory T cell responses we 

used delayed type hypersensitivity (DTH) to ovalbumin as an index.  Figure 13A shows that 
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challenge of athymic mice, produced larger foot-pad swelling than challenge of control mice, 

indicating that removal of the thymus did not impair and may instead enhance memory T cell 

responses.  To determine whether removal of the thymus impairs primary T cell responses and 

test whether memory T cell responses are enhanced in athymic mice, we tested the rate of 

rejection of male to female skin grafts.  Figure 13B shows that removal of the thymus slows the 

kinetics of skin graft rejection in athymic female recipients to male antigens since the median 

survival time of male skin grafts was 37 days in athymic mice and only 25 days in sham-

operated and control mice, respectively.  This result suggests that primary T cell responses were 

impaired.  However T cell memory responses were intact as second set grafts were rejected with 

accelerated kinetics by all recipients, including those lacking the thymus. The results 

demonstrated that generation of T cell memory does not require an intact thymus.  

Removal of the thymus in adult mice does not impair primary or secondary 

antibody responses but increases long-lived antibody secreting cells in the bone 

marrow 

Manifest B cell memory requires antigen specific antibody production at times remote from 

primary antigen stimulation.  At least some B cells engaged in a primary response must survive 

and some must have the ability to respond upon re-exposure.  These antibody responses require 

T cell help (Elgueta et al. 2010).  Whether the thymus is necessary to generate B cell memory 

responses beyond generating a diverse T cell repertoire is not known.  To answer that question 

we tested B cell memory in mice from which the thymus had been removed or manipulated 

without removal 5 weeks before.   

To exclude the possibility that thymectomy imposed a B cell autonomous defect independent of 

T cells we asked whether athymic mice mounted antibody responses to NP-Ficoll, a T-

independent antigen.  Figures 14A and 3B show comparable concentrations of NP-specific IgM 

and IgG3, 21 days following immunization, in athymic mice (230 µg/ml IgM and 64 µg/ml 

IgG3, on average) and sham-operated mice (167 µg/ml IgM and 86 µg/ml IgG3, on average).  

Hence, thymectomy did not perturb T-independent antibody production.  Indeed B cells 

developed normally in mice lacking the thymus compared to sham-operated mice (Figure 15).  

Figure 15 shows that the average number of mature CD19-positive B cells is comparable in mice 
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lacking the thymus,
 
sham-operated or control mice at 5 weeks and at 10 weeks of age, 

respectively.  There were no population unbalances, as the number of marginal zone B cells 

(CD19+ and CD21+) or follicular (CD19+, CD21+ and CD23+) B cells was comparable in 

athymic, sham-operated and control mice.   

A hallmark of B cell memory is the rapid production of high affinity antibodies upon re-exposure 

(Elgueta, de Vries and Noelle 2010).  These properties reflect the survival of fully differentiated 

antigen specific B cells and plasma cells.  To determine whether B cell memory responses were 

impaired in mature athymic mice, we studied responses to immunization with 4-hydroxy-3-

nitrophenyl acetyl (NP), conjugated to ovalbumin.  Figures 16A and 16B show that athymic mice 

produced as much NP-specific IgM or IgG1 as sham-operated mice indicating that removal of 

the thymus did not impair antigen-specific antibody primary or secondary antibody responses to 

vaccination with proteins.  Consistent with that conclusion we found that the number of antibody 

secreting cells present in the bone marrow 6 months after immunization was maintained in sham-

operated mice and increased by 2 fold in athymic mice compared to non-manipulated controls 

(Figure 17).  In fact, since the number of ASC in athymic mice was significantly increased 

compared to the number of ASC in control or sham-operated mice, our results suggest that the 

thymus in the adult may inhibit either the differentiation or the maintenance of long-lived 

antibody secreting cells in the bone marrow.   

Removal or manipulation of the thymus impairs the generation of Ig heavy 

chains associated with high affinity to NP   

The most significant function associated with antibody recall responses is selection of cells 

bearing receptors with increased affinity for the antigen.  To determine if affinity maturation 

requires the integrity of the thymus in the adult, we sampled antibody heavy chain variable 

region nucleotide and protein sequences of IgG1-positive B cells obtained from mice that had 

their thymus removed, manipulated (sham operation) or of non-manipulated controls, 10 days 

following booster immunization.  Sequences were obtained from cloned PCR gene products 

amplified with VH186.2-specific primers (NP selects antibodies encoding the VH186.2 

canonical germline sequence rearranged to DFL16.1 and JH2 (Bothwell et al. 1981)) and C1 

reverse primers in a nested PCR reaction and with Pfu proof-reading polymerase.  Two 
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sequences were obtained per clone and a consensus was generated.  To determine if selection of 

antigen responsive B cells was perturbed in athymic or sham-operated mice we first determined 

the frequency of the VH186.2, DFL16.1 and JH2 joins in all the unique VH186.2 encoding HC 

sequences obtained for each group of mice.  Out of 76 sequences encoding VH186.2 exons 

obtained from athymic mice, 19 had different joins (25 %) and 12 of used DFL16.1 and JH2 

(63 %).  In a total of 70 sequences encoding VH186.2 exons obtained from sham-operated mice, 

37 had different joins (53 %), and 20 used DFL16.1 and JH2 (54 %).  In 48 sequences encoding 

VH186.2 exons obtained from control mice, we found 17 different joins (35 %) and 11 used 

DFL16.1 and JH2 (65 %).  These results suggested that removal of the thymus decreased, while 

sham operation increased, clonal diversity of NP responding B cells in comparison to controls 

even-though the majority of clones encoding the VH186.2 gene segment also encoded DFL16.1 

and JH2 in all the three groups of mice.   

Next we compared the amino-acid sequences of CDR3 regions encoded by each unique join.  

NP-binding antibodies often encode Tyr or Gly at position 95 (Takahashi et al. 1998).  While 

94 % CDR3 joins sequenced from control mice had Y or G at position 95 only 68 % of the 

unique CDR3 joins obtained from sham-operated mice had Y or G at position 95 and 84 % that 

of the unique CDR3 joins sequenced from athymic mice had Y or G at position 95.  These results 

suggest that removal of the thymus and sham operation disturbs selection of NP-reactive clones.  

These results are consistent with defective selection of NP-specific antibodies in sham-operated 

and athymic mice.   

Because defective selection of NP-specific antibodies could result from defective somatic 

hypermutation we measured the mutation frequency of the unique VH gene segments obtained 

from athymic, sham-operated or control mice in relation to the VH186.2 germline sequence.  The 

VH mutation frequencies were 2.6 %, 3 % and 2.3 % in athymic, sham-operated and control 

mice, respectively, suggesting that manipulation or removal of the thymus in the adult did not 

impair somatic hypermutation, per se.  However, the frequency of mutation in the CDR1 region 

of VH186.2 encoding antibodies obtained from control mice was 13.6 % and consisted of very 

focused changes at mostly 3 positions (Figure 18A), but the frequency of mutation in the CDR1 

region of antibodies obtained from athymic and sham-operated mice was only 8.5 % and 7.2 %, 

respectively, and less focused (Figures 18B and 18C).  Decreased frequencies of mutations in the 
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CDR1 regions of the VH186.2 exons in athymic or sham-operated mice compared to CDR1 

sequences obtained from non-manipulated mice suggested a defect in the selection of antigen-

specific antibodies.  In fact, the fraction of sequences containing the W33L NP-affinity 

enhancing mutation was decreased in athymic mice (87 %, figure 19A) and in sham-operated 

mice (21 %, figure 19B), compared to that fraction (98 %) in sequences obtained from control 

mice in which all sequences except for one contained the W33L mutation (Figure 18C).  

Contingency analysis (Chi-square test) revealed the reduction in the number of W33L mutations 

in athymic or sham-operated mice relative to control mice to be significant (p < 0.05, p < 0.0001, 

respectively).  Remarkably, manipulation of the thymus caused a significant reduction in the 

number of the W33L mutations compared to that number in athymic mice (p < 0.0001), 

suggesting that manipulation of the thymus without its removal compromises affinity maturation 

more seriously than its removal.  Because the W33L mutation in the VH186.2 exon by itself 

causes a 10 fold increase on affinity to NP (Allen et al. 1988) the reduction in the frequency of 

the W33L mutation in athymic and in sham-operated mice indicates that the integrity of the 

thymus is necessary for the production of high affinity antibodies (Table 8).    
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DISCUSSION 

Specific Aim 1, 2 and 3  

Cell-mediated immunity is thought to depend on the number and
 
the diversity of T cells available 

to respond to an antigenic
 
challenge. Consistent with this concept, decreased numbers of

 
T cells 

and/or contractions of the T cell repertoire are viewed
 
as causing immunodeficiency (O'Keefe et 

al. 2004). Although decreases in the
 

numbers of T cells are clearly associated with 

immunodeficiency,
 
we found that diversity of T cells does not necessarily predict

 
the capacity to 

mount effective cellular immunity. Rather, our
 
results indicate that extensive and homogeneous 

contractions
 
of the TCR repertoire (by over 100-fold) do not preclude normal

 
T cell-mediated 

responses as measured by skin graft rejection,
 
delayed-type hypersensitivity, and host defense.

 
 

The finding that individuals with dramatically contracted diversity
 
of the T cell repertoire (but 

normal numbers of T cells) can
 
have relatively normal cell-mediated immunity is not without

 

precedent. We (Ogle, West, Driscoll, Strome, Razonable, Paya, Cascalho and Platt 2006) have 

found that human subjects who undergo
 
cardiac transplantation in infancy have profound 

contraction
 
of the TCR repertoire, with diversity of V  being as low as 10

4 
(compared with 10

6
 in 

age matched controls), but do not suffer
 
a heightened risk of disseminated viral infections or of 

infections
 
with opportunistic organisms or tumors compared with other transplant

 
recipients. In 

the course of cardiac transplantation (or nontransplant
 
cardiac surgery) early in life, the thymus is 

removed and the
 
recipient is treated with Thymoglobulin or anti-CD3 to deplete

 
mature T cells. 

In addition, those patients subjected to thymectomy
 
for nonimmune disease and those who are 

elderly (Goronzy and Weyand 2005; Ogle, West, Driscoll, Strome, Razonable, Paya, Cascalho 

and Platt 2006) do
 
not suffer from the opportunistic infections seen in subjects

 
with DiGeorge 

syndrome or AIDS, conditions associated with defects
 
in TCR diversity (Killian et al. 2004). 

Clearly, a narrow but otherwise unperturbed
 
repertoire of T cells can provide enough host 

defense for an
 

ostensibly normal life. Adaptation of the T cell compartment
 

following 

lymphopenia may in part be contributed by the adoption
 
of "memory-like properties" (Goldrath, 

Bogatzki and Bevan 2000). We would postulate that subjects
 
with DiGeorge syndrome or AIDS 

have impaired host defense not
 
because of narrowing of the repertoire of T cells but rather
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because of nonbalanced lacunae in the TCR repertoire or defects
 
in T cell function that preclude 

adaptation to the depletion
 
of T cells.

 
 

The work reported here takes advantage of mice in which contractions
 
of the T cell repertoire are 

secondary to B cell deficiency,
 
lack of B cells, or B cell oligoclonality. To exclude the possibility

 

that our tests of T cell function reflected directly the properties
 
of the B cell compartment, we 

measured T cell functions that
 
are thought to be independent of B cells or Ig — the rejection

 
of 

skin transplants (Cascalho and Platt 2001; Parker, Saadi, Lin, Holzknecht, Bustos and Platt 

1996). Our results showing that QM mice
 
reject MHC-incompatible skin as quickly as wild-type 

mice indicate
 
that the T cells and the lymphoid tissue in these mice are functionally

 
normal, 

although, because of the high frequency of alloreactive
 
T cells ( 3 % in C57BL/6 mice) (Huseby 

et al. 2005), these responses indicate
 
little about the impact of repertoire contractions. In contrast,

 

responses to conventional peptide Ags such as minor histocompatibility
 
Ags or OVA, which are 

thought to depend on responses by relatively
 
rare T cells expressing an Ag-specific TCR 

(Kanagawa, Louis and Cerottini 1982; Lindahl and Wilson 1977; Suchin, Langmuir, Palmer, 

Sayegh, Wells and Turka 2001), were
 
normal in QM mice. These results indicated that that a 

balanced
 
TCR repertoire contraction of at least 90 % does not impair cell-mediated

 
immunity.

 
 

Our results showing that severe contractions of the TCR repertoire
 
do not cause increased 

Pneumocystis load in the lungs of QM
 
compared with wild-type mice are consistent with 

maintained
 
host defense. Because the QM mice have very reduced B cell diversity,

 
a case could 

be made for the lack of specific Abs in the outcome
 
of infection. However, B cell and Ab 

deficiency is thought to
 
cause increased susceptibility to infections by these organisms

 
rather 

than relative resistance. In an exemplary study, Marcotte
 
et al. (Marcotte et al. 1996) reported an 

outbreak of Pneumocystis carinii in
 
µMT mice that have very few B cells owing to a gene-

targeted
 
deletion of the membrane exon of IgM (Kitamura et al. 1991). The authors interpreted

 

these results to indicate that B cells and Abs are important
 
to the clearance of P. carinii. Because 

QM mice can produce
 
Abs against a variety of pathogens (Lopez-Macias et al. 1999) and did 

produce Pneumocystis-specific
 
Abs (results not shown), our studies were not limited by deficient

 

humoral responses.
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Our studies raise the possibility that normal host defense might
 
be restored in some conditions by 

promoting the "homeostatic"
 
proliferation of certain clones even if that adaptation does

 
not 

reconstitute repertoire diversity. The T cells resulting
 
from homeostatic proliferation exhibit the 

phenotype and some
 
functions of bona fide memory T cells (Bourgeois et al. 2005; Cho et al. 

2000) and might account
 
for the robust cellular immune responses and host defense in

 
QM mice 

and in subjects thymectomized in infancy (Ogle, West, Driscoll, Strome, Razonable, Paya, 

Cascalho and Platt 2006).
 
 

It is not necessary to invoke memory as the only mechanism of
 
compensation. In favor of 

changes other than memory is the finding
 
that the memory T cells resulting from homeostatic 

proliferation
 
may not survive as long as bona fide memory T cells generated

 
following specific 

Ag stimulation (Bourgeois, Kassiotis and Stockinger 2005) and, thus, be most important
 
when 

the generation of the latter is compromised (Bourgeois, Kassiotis and Stockinger 2005). 

Memory-like
 
T cells may thus work best in infancy before Ag-specific memory

 
T cells have a 

chance to develop (Bourgeois, Kassiotis and Stockinger 2005) and in conditions of B
 
cell 

deficiency that may cause defective Ag-specific T cell
 

memory formation. The normal 

functioning of the T cell compartment
 
in humans and mice with contracted T cell repertoires 

might
 
also reflect the cross-reactivity of TCR or a lesser dependence

 
on peptide specificity than 

is commonly thought. Because memory
 
T cells are functionally more cross-reactive, one may not 

be
 
able distinguish the two. Regardless of what mechanism is eventually

 
proved, our findings 

may inspire the design of therapies aiming
 
at the reconstitution of cellular immunity.
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Specific aim 4 and 5 

Our results show that the thymus contributes to priming T cell responses (as expected), and to 

affinity maturation of antibodies.  Surprisingly, in spite of compromised selection of B cells 

bearing high affinity B cell receptors, production of long lived antibody secreting cells is not 

defective in athymic or sham-operated mice.  In fact, our results suggest the possibility that the 

thymus may inhibit the generation and/or maintenance of long-lived antibody secreting cells.  

Since removal of the thymus did not critically contract the T cell receptor diversity or decrease 

the number of T cells in a substantive manner, these results suggest that affinity maturation of 

antibodies is critically dependent on the integrity of the thymus.   

Recent studies support the idea that T cell help and the B cell receptor (BCR) strength determine 

B cell fate in response to T-dependent antigen activation.  Thus Paus et al. (Paus et al. 2006) and 

Phan et al.(Phan et al. 2006) suggested that high BCR affinity for antigen dictates differentiation 

to extra-follicular antibody secreting cells causing primary antibody responses.  O’Connor et al. 

(O'Connor et al. 2006) proposed that B cells with a low affinity BCR typically undergo somatic 

hypermutation, while B cells with BCR with moderate affinity for antigen produced mostly long-

lived antibody secreting cells.  BCR affinity and T cell help are interdependent since B cells 

present antigens to T cells following Ig-dependent internalization (Lanzavecchia 1990).  Thus B 

cells that have a competitive advantage to bind antigen owing to higher affinity receptors may 

also better compete for limiting T cell ―help‖ which in turn may determine their fate.  The 

interdependence between BCR affinity and B cell antigen presentation to T cells has made it 

difficult to dissociate the contributions of each to B cell selection and differentiation.  In a ―tour 

de force‖, Victora et al. (Elgueta, de Vries and Noelle 2010) showed that enhancing antigen B 

cell presentation without engaging the BCR promoted migration of B cells from the light zone to 

the dark zone of the germinal center, clonal expansion and plasmablast differentiation.  These 

authors concluded that T cell help limits expansion and differentiation of B cells in the germinal 

center independently of BCR engagement.  However, enhancing B cell antigen presentation by 

germinal center B cells did not induce antibody affinity maturation, suggesting that the combined 

signals provided by BCR ligation and engagement of T cells determine the B cell fate.   
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Our results showing normal or enhanced antibody responses to protein antigens suggested that T 

cell help in athymic or sham-operated mice is adequate to activate and promote differentiation of 

antibody secreting cells short- and long-term.  However since removal or manipulation of the 

thymus compromised affinity maturation of antibodies our results suggest that disruption of 

thymic integrity selectively impairs affinity maturation of antibodies much in the same way as 

enhancing antigen presentation independently of the BCR as reported by Victora et al.(Victora et 

al. 2010).  Because removal of the thymus interrupts the flux of new T cells we considered the 

possibility that the availability of cognate help may be reduced to a greater extent than non-

cognate help, enhancing BCR-independent antigen presentation which in turn would impair 

selection of high affinity B cells.  We propose that absence of optimal cognate T cell help owing 

to interruption of thymic emigration or following manipulation of the thymus abrogates 

competition for B cells expressing B cell receptors with high affinity for antigen randomizing 

differentiation and apoptosis.  Other functions of the thymus such as production of IL7 or 

production of regulatory T cells could also contribute to the regulation of immunity.  We 

observed that removal of the thymus impairs production or maintenance of T regulatory cells 

(Figure 11).  Whether or not decreased production of T regulatory cells in athymic mice 

contributes to defective affinity maturation of antibodies in these mice is not known and this 

question will be an interesting one to resolve.    

Our findings concur with those of Ahuja et al. (Ahuja et al. 2008) who proposed that the long-

lived antibody secreting cell compartment is maintained independently of the memory B cell 

compartment because it does not decline when memory B cells are abrogated.  Our results 

indicate that differentiation of long-lived antibody secreting cells occurs independently of 

affinity maturation that normally accompanies B cell memory responses.  Our work suggests that 

strategies to immunize individuals with congenital or acquired thymic defects (such as following 

cardiac transplantation or cardiac surgery in infancy), or with contracted T cell repertoires (such 

as in aging or after T cell depletion to treat cancer) would benefit from new vaccine designs 

including surrogates of cognate T cell help. 
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FIGURES 

FIGURE 1. 

 

 

Figure 1. Numbers and TCR V  diversity of splenocytes in C57BL/6, QM, and JH
–/–

 mice. The 

numbers of splenocytes were calculated by multiplying the respective percentage of the total 

events as defined in the flow cytometry dot plot analysis with specific CD4, CD8, and CD19 

mAbs by the total number of white blood cells obtained by counting using a Neubauer counting 

chamber. The number of total splenocytes (average ± SD) was 1.4 x 10
8
 ± 7.3 x 10

7
 in C57BL/6, 

1.1 x 10
8
 ± 5.6 x 10

7
 in QM, and 2.7 x 10

7
 ± 4.3 x 10

7
 in JH

–/–
 mice. The number of CD3

+
 

splenocytes (average ± SD) was 2.2 x 10
7
 ± 1.5 x 10

7
 in C57BL/6, 1.6 x 10

7
 ± 8.3 x 10

7
 in QM, 

and 6.7 x 10
6
 x 1.5 x 10

6
 in JH

–/–
 mice. The number of CD4

+
 splenocytes (average ± SD) was 1.2 

x 10
7
 ± 7.4 x 10

6
 in C57BL/6, 9.4 x 10

6
 ± 4.6 x 10

6
 in QM, and 4.1 x 10

6
 ± 7.6 x 10

5
 JH

–/–
 mice. 

The number of CD8
+
 splenocytes (average ± SD) was 5.8 x 10

6
 ± 3.6 x 10

6
 in C57BL/6, 4.8 x 

10
6
 ± 2.5 x 10

6
 in QM, and 2.2 x 10

6
 ± 6.1 x 10

5
 in JH

–/–
 mice. Asterisks mark statistically 

significant differences compared to wild type. Mice were between 13 and 15 wk of age. 
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FIGURE 2. 

 

 

 

Figure 2. T cell proliferation assays. CD4
+
 T cells isolated from unmanipulated C57BL/6 (B6), 

QM, or JH
–/–

 mice were cultured on plates coated with anti-CD3 Ab in the concentrations 

indicated (x-axis) and with soluble anti-CD28 Ab (10 µg/ml) (A) or with Con A diluted as 

indicated (x-axis) (B). Proliferation measured at 72 h of culture by (
3
H) thymidine incorporation 

is depicted in counts per minute in the y-xis. 
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FIGURE 3. 

 

 

 

Figure 3. Proliferation assay of in vivo primed T cells. Mice were injected with a 140-µg 

PADRE peptide. Fourteen days later, CD4
+
 T cells purified from the spleen were cocultured with 

mature dendritic cells in the presence of 35 µg/ml PADRE peptide. QM and B6 T cells mounted 

robust proliferation to the PADRE peptide, JH
–/–

 T cells had reduced proliferation (26 % of QM 

or 27 % of B6). Proliferation measured at 72 h of culture by (
3
H) thymidine incorporation is 

depicted in counts per minute in the y-axis. 
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FIGURE 4.  

 

Figure 4: Follicular dendritic cell network in lymph nodes. Follicular dendritic cells were 

stained bright fluorescent green and were detected in cryostat sections of lymph nodes stained 

with mAb directed against murine CD21/CD35. H & E-stained sections are shown. Photographs 

are representative of three to four different mice per genotype analyzed. 
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FIGURE 5.  

 

 

 

Figure 5: Kaplan Meier survival curves for H-Y-incompatible skin grafts in C57BL/6 (B6), QM, 

and JH
–/–

 mice. The x-axis depicts days following surgery and the y-axis depicts the skin graft 

survival fraction values. Grafts were considered rejected when 90 % or more of the graft lacked 

any viable signs, i.e. hair, pigment, and scale pattern. The median time of rejection was 23 days 

in C57BL/6, 26 days in QM, and 23 days in JH
–/–

 mice. Statistical analysis was done with a log-

rank test. 
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FIGURE 6.  

 

 

Figure 6: Delayed-type hypersensitivity assay. We compared delayed-type hypersensitivity 

responses in QM and C57BL/6 (B6) mice. Delayed-type hypersensitivity responses to OVA 

were examined at 24, 36, and 60 h after challenge with 20 µg of OVA (intradermally) in the 

footpads of mice primed 6 days earlier with 100 µg of OVA (s.c). The bars represent the mean 

footpad thickness measured in primed mice minus the mean footpad thickness measured in mice 

injected with PBS and the SD values of the mean; asterisks indicate statistically significant 

differences (*, p < 0.05).  

 

 

 

 

 

 

 

 

http://www.jimmunol.org/content/vol178/issue5/images/large/zim00507478
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FIGURE 7. 

 

Figure 7:  P. murina organismal burden. Pneumocystis murina was isolated from the lungs of 

heavily infected, SCID mice as previously described (Keely, Fischer, Cushion and Stringer 

2004). Inoculation was as described by Shellito et al. (Shellito, Suzara, Blumenfeld, Beck, Steger 

and Ermak 1990). The number of P. murina genomes was determined by real time RT-PCR in 

lung tissue of mice infected 2 wk earlier or of mice treated with PBS. Quantitative RT-PCR to 

enumerate Pneumocystis was performed using the Bio-Rad iCycler system, SYBR Green 

detection software, and primers targeting the Pneumocystis large mitochondrial subunit (Shellito, 

Suzara, Blumenfeld, Beck, Steger and Ermak 1990). Amplifications of unknown samples were 

compared with plasmid standards containing mouse Pneumocystis-specific mitochondrial DNA. 

The bars represent the SD values of the mean and the numbers above refer to the number of mice 

examined per group. 

 

 

 

http://www.jimmunol.org/content/vol178/issue5/images/large/zim00507478
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FIGURE 8. 

 

 

 

 

Figure 8: Spectratyping analysis of the V  repertoire of C57BL/6 and JH
–/–

 splenocytes. Shown 

are the spectra of CDR3 length distribution corresponding to the families V 4, V 8.2, and V 12, 

which differed the most in C57BL/6 and JH
–/–

 mice. 
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FIGURE 9.  

 

 

 

 

Figure 9: Numbers of "memory-like" CD4-positive or CD8-positive T cells in the spleens of 

C57BL/6 (B6), QM or JH
–/–

 mice. Memory CD4
+
 or CD8

+
 T cells were defined as 

CD4
+
/CD44

high
/CD62L

–
 by FACS analysis. In the graph the height of the bar represents the 

average of each distribution. All of the mice were between 13 and 15 wk of age. Significant 

differences are noted with asterisks. 
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FIGURE 10.  

 

Figure 10: Measurement of T cell receptor (TCR) excision circles (TREC). Figure depicts the 

number of TRECs per 100 nanogram (ng) of genomic DNA in mice lacking the thymus (T), 5 

weeks after surgery, and in age matched controls (C) by real time PCR. Control mice had an 

average of 721 TRECs per 100 ng of DNA while mice lacking the thymus had less than 117 per 

100 ng DNA which is the detection limit of the assay. The two groups differed significantly by 

paired T test analysis (p=0.0028, two-tailed). 
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FIGURE 11. 

   

Figure 11: Number of CD4+, CD25+, Foxp3+ (Treg) cells in the spleens of athymic (T), sham-

operated (S) or non-manipulated control (C) mice, 5 weeks and 10 weeks after surgery.  

Numbers were calculated by multiplying the respective percentage as defined in a flow 

cytometry dot plot analysis with specific CD4, CD25 and Foxp3 monoclonal antibodies, by the 

total number of white blood cells (WBC). Groups compared by T test analysis. Statistically 

significant differences were denoted by an asterisk and indicate P < 0.05. 
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FIGURE 12. 
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Figure 12:  Number of lymphocytes in spleens harvested from mice lacking the thymus, 

sham-operated or non-manipulated controls at 5 and at 10 weeks of age.  Thymectomies 

were performed 2 days before the mice turned 5 weeks old.  Numbers of lymphocytes were 

calculated by multiplying the respective percentage as defined in a flow cytometry dot plot 

analysis, with specific monoclonal antibodies, by the total number of white blood cells (WBC) in 

athymic (T), sham-operated (S) or unmanipulated control (C) mice at 5 and 10 weeks (W) after 

surgery. (A) Number of CD4+ splenocytes or, (B) Number of CD8+ splenocytes. (C, D) Number 

of memory-like T cells in spleens defined as (CD4
+
or CD8

+
)/CD44hi/CD62L- by FACS 

analysis.  In the graphs, the bar represents the average of each distribution.  Means were 

compared by a paired two-tailed T test.  Statistically significant differences are denoted by an 

asterisk and indicate P <0.05.   
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FIGURE 13.  

 

 

Figure 13:  Primary cellular immune responses are delayed in mice lacking the thymus but 

T cell memory responses are maintained. Affinity maturation of antibodies requires 

integrity of the adult thymus  (A) Delayed Type Hypersensitivity (DTH) responses to 

ovalbumin in control (C), sham-operated (S) or athymic (T) mice.  DTH responses to intradermic 

injection of 20 μg ovalbumin were examined in the footpad of mice 6 days after priming by 

subcutaneous injection with 100 μg of ovalbumin (priming) or PBS (control).  Footpad swelling 
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measured in mm is indicated on the y-axis.  Mice lacking the thymus produced significantly 

larger swelling (15 mm, on average) in response to challenge than sham-operated mice (6.0 mm, 

on average) or control mice (6.5 mm, on average).  Footpad swelling was compared by a paired 

two-tailed T test. 

(B) Kaplan Meier survival curves for H-Y incompatible skin grafts in athymic (T), sham-

operated (S) or control (C) mice.  X-axis, days following surgery; y-axis, skin graft survival 

fraction.  Grafts were considered rejected when 90 % or more of the graft lacked any viable 

signs: hair, pigment and scale pattern.  The median survival time of first set grafts was 25 days in 

control mice, 25 days in sham-operated mice and 37 days in mice lacking the thymus.  Skin graft 

rejection by athymic mice was significantly delayed compared to rejection in controls (p=0.0052, 

log-rank, Mantel-Cox test).  Secondary transplants were done 8 to 12 weeks after rejection of the 

first transplant.  The median survival time of initial transplants was 15 days in control mice, 16 

days in sham-operated mice and 19 days in athymic mice.  Secondary graft survival in athymic 

recipients did not significantly differ from graft survival in control or sham-operated recipients.   

 

 

 

 

 

 

 

 

 

 

 



66 

 

FIGURE 14. 

 

Figure 14:  T-independent antibody responses maintained in athymic mice.  (A, B) T-

independent antibody responses to NP-Ficoll in athymic mice (T) or in sham-operated (S) mice.  

Figures 3A and 3B represent the concentrations of NP-specific IgM (A) or NP-specific IgG3 (B), 

in µg/ml (y-axis) prior to and 21 days after immunization.  Mice lacking the thymus and sham-

operated mice had on average 4.0 µg/ml and 5.0 µg/ml NP-specific IgM respectively, and non-

detectable NP-specific IgG3, prior to immunization.  Athymic and sham-operated mice had 

230µg/ml and 167µg/ml NP-specific IgM, on average, 21 days after immunization, respectively.  

Mice lacking the thymus and sham-operated mice had on average 64µg/ml and 86 µg/ml NP-

specific IgG3, 21 days after immunization, respectively.  The concentrations of NP-specific IgM 

or IgG3 in athymic mice and in sham-operated mice did not significantly differ.  
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FIGURE 15.  

 

Figure 15: Number of B cells in the spleens of athymic (T), sham-operated (S) or non-

manipulated control (C) mice, 5 weeks and 10 weeks after surgery.  

Numbers were calculated by multiplying the respective percentage as defined in a flow 

cytometry dot plot analysis with specific CD19, CD21 and CD23 monoclonal antibodies, by the 

total number of white blood cells (WBC). No significant differences were found between groups 

of similar age. 
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FIGURE 16. 

 

 

Figure 16:  Removal of the thymus or sham operation maintained IgG1 specific antibody 

responses (A, B) T-dependent responses to NP-ovalbumin.  Figures 4A and 4B represent the 

concentrations of NP-specific IgM or NP-specific IgG1, in µg/ml (y-axis) prior to (PI) and the 21 

days after primary (D21) or booster immunization (21PB), respectively.  (A) Athymic mice (T) 

and sham-operated mice (S) had an average of 8.4µg/ml and 4.4µg/ml NP-specific IgM, prior to 

immunization (PI), 76 µg/ml and 111µg/ml, 21 days after immunization (D21), 293 µg/ml and 

296 µg/ml 21 days after boosting (21PB), respectively.  There were no significant differences 

between athymic and sham-operated mice.  (B) Mice lacking the thymus or sham-operated mice 

had no detectable NP-specific IgG1 prior to immunization, but produced on average, 121µg/ml 

and 231µg/ml NP-specific IgG1 21 days after immunization, 596 µg/ml and 622 µg/ml 21 days 

after boosting, respectively.  T test analysis revealed no significant differences between athymic 

and sham-operated mice.   
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FIGURE 17. 

 

Figure 17:  Number of NP-specific IgG1 antibody secreting cells (ASC) in the bone marrow 

of mice lacking the thymus or control mice, 6 months after boost immunization.  Mice 

lacking the thymus (T) had on average 198 ASC per 10
6
 B cells while sham-operated mice (S) 

had an average of 113 ASC per 10
6
 B cells and, control mice (C) had an average of 100 ASC per 

10
6
 B cells NP-specific IgG1 antibody secreting cells in the bone marrow.  The number of ASC 

in athymic mice was significantly increased compared to the number of ASC in control 

(P=0.0042) or sham-operated mice (P=0.0075) (unpaired T test). The number of ASCs was 

calculated from 4 mice per group. 

 

 

 

 

 

 

 



70 

 

FIGURE 18. 

 

Figure 18: Heavy chain VH 

CDR1 and CDR 2 DNA 

sequences of IgG1-B cells 

obtained from the spleen of 

mice lacking the thymus (T), 

sham-operated (S) or control 

(C) mice, 10 days following 

boost immunization.   

Figures show the CDR1 or CDR2 

sequences of all the distinct VH 

sequences aligned to the germline 

VH186.2 segments.  Shadowed 

are CDR1 and CDR2 regions.  

(A) Sequences obtained from 

control non-manipulated mice; 

(B) Sequences obtained from 

athymic mice;  

(C) Sequences obtained from 

sham-operated mice. 
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FIGURE 19. 

 

 

Figure 19: Heavy chain VH 

amino-acid sequences of 

IgG1-B cells obtained from 

the spleen of mice lacking 

the thymus (A), sham-

operated (B) or control (C) 

mice, 10 days following 

boost immunization.   

Figures show the aligned 

translation of all the distinct 

VH186.2 segments obtained 

from each group of mice.  

Shadowed are CDR1 and 

CDR2 regions and in a darker 

grey shade residue #33 is 

indicated.  Antibodies with 

high affinity to NP often 

encode a W to L mutation in 

this position.  
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TABLES 

Table 1. Median rejection times for H-Y- and MHC-incompatible mice  

 

H-Y-Incompatible Mice Median Rejection 

Times 

MHC-Incompatible Mice Median 

Rejection Times 

 

C57BL/6 23 (n = 12; 15, 15, 17, 17, 18, 23, 23, 23, 

24, 25, 33, 36) 

13 (n = 3; 13, 13, 13) 

QM 26 (n = 13; 12, 12, 12, 14, 17, 26, 26, 26, 

32, 32, 32, 34, 39) 

11 (n = 4; 11, 11, 12, 13) 

JH
–/–

 23 (n = 15, 22, 23, 24) Not done 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



73 

 

Table 2. Median rejection times for first and second transplants  

 

First Transplant Median Rejection 

Times (days) 

Second Transplant Median Rejection 

Times (days) 

 

C57BL/6 17 13 

C57BL/6 24 15 

C57BL/6 24 15 

QM 32 13 

QM 32 16 

QM 32 20 

QM 26 15 

QM 26 16 

QM 26 18 
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Table 3. Sequences obtained by PCR amplification of cDNA obtained from one C57BL/6   

Spleen. 
a
 Sequences were aligned using the software provided by the IMGT server (Bosc and 

Lefranc 2000; Giudicelli, Chaume and Lefranc 2005). 

TCR 

V 13-3 V Region N1/P1 D Region N2/P2 J Region 

 

C57.17 GCCAGCAGTGA  AGGGGG  AGAAGTCTTCTTT 

C57.19 GCCAGCAGTG  GGACAGGGG C CACAGAAGTCTTCTTT 

C57.6 GCCAGCAG CGTA GGGAC GGC TTCTGGAAATACGCTCTATTTT 

C57.50 GCCAGCAGTGAT CCCGGC GGGG A TTCTGGAAATACGCTCTATTTT 

C57.39 GCCAGC G TGGG  TTCTGGAAATACGCTCTATTTT 

C57.22 GCCAGCAGT C CAGGGG C CGAAAGATTATTTTTC 

C57.24 GCCAGCAG AA GGACAG A TAACAACCAGGCTCCGCTTTTT 

C57.1 GCCAGCAGTGAT CGGC   ACCAGGCTCCGCTTTTT 

C57.29 GCCAGCAGT CCC GGGACAGGGGG AAGG TCGCCCCTCTACTTT 

C57.5 GCCAGCAGTG GGGA   TAACTATGCTGAGCAGTTCTTC 

C57.36 GCCAGCAGTGATG GGGC   TGCTGAGCAGTTCTTC 

C57.37 GCCAGCAGTGATG CG CAGGGGGC T TATGCTGAGCAGTTCTTC 

C57.18 GCCAGCAGTGATG CAAG GGGACTGGGGGG CCCC TAACTATGCTGAGCAGTTCTTC 

C57.28 GCCAGCAGT CC GGACTGGGGGG A TAACTATGCTGAGCAGTTCTTC 

C57.8 GCCAGC  GGGGGGC T TGCAGAAACGCTGTATTTT 

C57.34 GCCAGCAGTG  GGACAG  GTGCAGAAACGCTGTATTTT 

C57.9,14 

,15,16,25, 

27,42,43,44 

,48,31,38 

GCCAGCAG CA ACAGGGGG GGAGAAG ACACCTTGTACTTT 

C57.12 GCCAGCAGTGA GG CAGGGGG  CACCTTGTACTTT 

C57.47 GCCAGCAGTG GGG GTCCC GGGAC 

AGGGGG 

AGTCAAAACACCTTGTACTTT 

C57.2,7 

,10,20,35 

GCCAGCAGTGAT  CTGGGG AGG CAAAACACCTTGTACTTT 

C57.3 GCCAGCAG  GGACTGGGGG CCT AGTCAAAACACCTTGTACTTT 
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C57.21,46 GCCAGCAGTGA AGC GGGGGGGC GC AACACCTTGTACTTT 

C57.11 GCCAGCA A GGACA TA CAAGACACCCAGTACTTT 

C57.13 GCCAGCAGTGAT CC GGGACA A CAAGACACCCAGTACTTT 

C57.26 GCCAGCAGTGA CGC GGACA T CCAAGACACCCAGTACTTT 

C57.4,23 GCCAGCAGTG  GGACAGGG AGGGG TGAACAGTACTTC 

C57.49 GCCAGC  GGACAGG TTC CCTATGAACAGTACTTC 

C57.32 GCCAGCAGT  CTGGGGGGGC GA GAACAGTACTTC 

C57.30 GCCAGCAGTGA CAA   CTCCTATGAACAGTACTTC 
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Table 4. Sequences obtained by PCR amplification of cDNA obtained from one QM spleen
a
 

TCR V 13-3 V Region N1/P1 D Region N2/P2 J Region 

 

QM.6 GCCAGCAGTGAT CC GGGA TTGG ACACAGAAGTCTTCTTT 

QM.16,37 GCCAGCAGTGATG  GGGAC GG GAACACAGAAGTCTTCTTT 

QM.18 GCCAGC GGAGGG CAGGGG C CAGAAGTCTTCTTT 

QM.50 GCCAGCAG  GGACAGGGGGC CCC CAGAAGTCTTCTTT 

QM.19 GCCAGCAGTG   TTCCAGAG GTCTTCTTT 

QM.57 GCCAGCAGTGAT TCCGGAAT   CACAGAAGTCTTCTTT 

QM.58 GCCAGCA AAG   CAAACACAGAAGTCTTCTTT 

QM.8 GCCAGCAGTGATG  GGGACAGGG C CTCCGACTACACCTTC 

QM.38 GCCAGCAGTG GG CAGG CGC ACTCCGACTACACCTTC 

QM.40 GCCAGCAGT TGG CAGGGG AC CTCCGACTACACCTTC 

QM.21 GCCAGCAGTGA AG AGGGGG  CTGGAAATACGCTCTATTTT 

QM.53 GCCAGCAGTGATG  GGACAGGG CC TTCTGGAAATACGCTCTATTTT 

QM.2 GCCAGCA AGGGA GGGAC C TCCAACGAAAGATTATTTTTC 

QM.9,10 GCCAGCAGTGA CC GGGACA A TTCCAACGAAAGATTATTTTTC 

QM.24 GCCAGCAGTGATG  GGGGC G CCAACGAAAGATTATTTTTC 

QM.27 GCCAGCAGTGATG  ACAGGGGGC GGGT CAACGAAAGATTATTTTTC 

QM.29 GCCAGCAGTGA  CAGGG  ACAACCAGGCTCCGCTTTTT 

QM.11 GCCAGCAGTGAT   AGACG CAACCAGGCTCCGCTTTTT 

QM.3 GCCAGCAG GGCGACGG   CCTATAATTCGCCCCTCTACTTT 

QM.5 GCCAGCAGTGATG   ACAA TTCCTATAATTCGCCCCTCTACTTT 

QM.14 GCCAGCAGTG   CCGG TTCCTATAATTCGCCCCTCTACTTT 

QM.31 GCCAGCAGTGA   CA ATAATTCGCCCCTCTACTTT 

QM.4 GCCAGCAGTGATG CACCCTCT CTGGG TT CTATGCTGAGCAGTTCTTC 

QM.44 GCCAGCAGTG  GGGACTGGGGG CTA TATGCTGAGCAGTTCTTC 

QM.46 GCCAGCAGTGAT AAC CTGGGGGGG TCT TATGCTGAGCAGTTCTTC 

QM.7 GCCAGCAGTGAT   CTCGGG AACTATGCTGAGCAGTTCTTC 
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QM.42 GCCAGCAGTGATG  CAGGGGG  CACCGGGCAGCTCTACTTT 

QM.48 GCCAGCAGTG  GGACAGGGG  ACACCGGGCAGCTCTACTTT 

QM.43 GCCAGCAGTGAT T TGGGGG  ACACCGGGCAGCTCTACTTT 

QM.51 GCCAGCAGT AC GACTGGGGGGGC GCC CACCGGGCAGCTCTACTTT 

QM.33 GCCAGCAGTGA  GAACAA  AAACACCGGGCAGCTCTACTTT 

QM.17 GCCAGCAGTG  GGACA CAG GCAGAAACGCTGTATTTT 

QM.13 GCCAGCAG CCCT GGACTGGGGG  ACACCTTGTACTTT 

  QM.20 GCCAGCAGTGATG  TGGGGGGG  CAAAACACCTTGTACTTT 

QM.22 GCCAGCAG GG CTGG  AGACACCCAGTACTTT 

QM.15 GCCAGCAGTGAT C CAGGGG AC GAACAGTACTTC 

QM.23 GCCAGCAGTGA GA GGGACAGGG AT TATGAACAGTACTTC 

QM.30 GCCAGCAGTGATG T ACAG  TATGAACAGTACTTC 

QM.36 GCCAGCAGTGA  CAGGG CT TATGAACAGTACTTC 

QM.1 GCCAGCAGTGAT CCC GACTGGGGG AG CTCCTATGAACAGTACTTC 

QM.28 GCCAGC    TATGAACAGTACTTC 

QM.39 GCCAGCAGTGATG GGG   CCTATGAACAGTACTTC 

QM.45 GCCAGCAGTG GG   CTATGAACAGTACTTC 

 

a
 Sequences were aligned using the software provided by the IMGT server (Bosc and Lefranc 

2000; Giudicelli, Chaume and Lefranc 2005). 
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Table 5. (A)Sequences were obtained by PCR amplification of cDNA obtained from one JH
–/–

 

spleen
a. a

 Sequences were aligned using the software provided by the IMGT server. 

TCR V 13-3 V Region N1/P1 D Region N2/P2 J Region 

 

JH.18 GCCAGCAGTGA  GACAGGG  GAAGTCTTCTTT 

JH.63 GCCAGC GGAGGG CAGGGG C CAGAAGTCTTCTTT 

JH.46 GCCAGCAGTGATG  TGGG  CAAACACAGAAGTCTTCTTT 

JH.5,19 GCCAGCAGTGA  GACAGGGGGC  AACTCCGACTACACCTTC 

JH.30 GCCAGCAGTGAT  CTGGGGGGGC CGT ACACCCAGTACTTT 

JH.29 GCCAGCAGTGA G AGGG T TTCTGGAAATACGCTCTATTTT 

JH.35 GCCAGCAGTG G GGGACA AAA TTCTGGAAATACGCTCTATTTT 

JH.50 GCCAGCAGTG GC GGGACA AA TTCTGGAAATACGCTCTATTTT 

JH.60 GCCAGCAGTGA AT GGACAGGGG  CTGGAAATACGCTCTATTTT 

JH.43 GCCAGCAGTGA   CAA TTCTGGAAATACGCTCTATTTT 

JH.62 GCCAGCAGTGA CAA   TTCTGGAAATACGCTCTATTTT 

JH.9,10 GCCAGCA CC GACAGGGG AC CCAACGAAAGATTATTTTTC 

JH.32 GCCAGCA TCC GGGA TA TTTCCAACGAAAGATTATTTTTC 

JH.45 GCCAGCAGTGATG CGTGGT   TTTCCAACGAAAGATTATTTTTC 

JH.71 GCCAGCAGCC   CCCGGCATC TTTCCAACGAAAGATTATTTTTC 

JH.51 GCCAGCAG  GGGA AT CAACCAGGCTCCGCTTTTT 

JH.41 GCCAGCAGTGATG   CACGG AACAACCAGGCTCCGCTTTTT 

JH.6 GCCAGCAGTGATG CTC GGGGGC GGGTC GCTGAGCAGTTCTTC 

JH.67 GCCAGCAGTG TCC GGGACTGGGGGGGC  GCTGAGCAGTTCTTC 

JH.3 GCCAGCAGTGA AGAC   AACTATGCTGAGCAGTTCTTC 

JH.20,22 GCCAGCAG GT GGGACAG AG ACACCGGGCAGCTCTACTTT 

JH.48,54 GCCAGCAGTGAT  CACCGGGC GGT CACCGGGCAGCTCTACTTT 

JH.36 GCCAGCAGTGATG  GGGGGG A AAACACCGGGCAGCTCTACTTT 

JH.66,68,72 GCCAGCAG CCTCGC GGGGGG T AACACCGGGCAGCTCTACTTT 

JH.4 GCCAGCAGTGATG CCA   CAAACACCGGGCAGCTCTACTTT 
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JH.47 GCCAGCAGTGAT C GGGGGGGC GC TGCAGAAACGCTGTATTTT 

JH.27,55 GCCAGCAGT CCTGAC GGGGGC G GTCAAAACACCTTGTACTTT 

JH.42 GCCAGCAGTGATG  ACAGGGG AG CCTTGTACTTT 

JH.59 GCCAGCAG CC GGGACA AC CAAAACACCTTGTACTTT 

JH.34 GCCAGCAG GTC ACTGGGGGGGC GGC CAAAACACCTTGTACTTT 

JH.39 GCCAGCAGT TT ACTGGGGGGGC GGGGG CAAAACACCTTGTACTTT 

JH.70 GCCAGCAG  CTGGGGGGG G AGTCAAAACACCTTGTACTTT 

JH.38 GCCAGCAGTG   GAGGT AGTCAAAACACCTTGTACTTT 

JH.25 GCCAGCAGTGA  CAGG CCCTT CCAAGACACCCAGTACTTT 

JH.21 GCCAGCAG  GGACA AACT CCAAGACACCCAGTACTTT 

JH.44 GCCAGCAGTGATG TC GGGACAGGGGGC CGG GACACCCAGTACTTT 

JH.57 GCCAGCAGTGA  CAGGGG  CCAAGACACCCAGTACTTT 

JH.31 GCCAGCAGTGA  GACAGGGGGC  AACTCCGACTACACCTTC 

JH.37 GCCAGCAGT AACAGGGC CTGGGGGGGC G ACCAAGACACCCAGTACTTT 

JH.40 GCCAGCAGTGATG  GGACTGGGGG T AACCAAGACACCCAGTACTTT 

JH.56 GCCAGCAGT C GACTGGG T CAAGACACCCAGTACTTT 

JH.23 GCCAGCAG  GACTGGGGGGG G CTATGAACAGTACTTC 

JH.33 GCCAGCAGT CCC GGGACAGGGGG  CTCCTATGAACAGTACTTC 

JH.49 GCCAGCAGT TT GGACAGGGG A GAACAGTACTTC 

JH.52 GCCAGCAGT ACC GGGACA  TCCTATGAACAGTACTTC 

JH.61 GCCAGCAGTGATG  GGGGG TC CTCCTATGAACAGTACTTC 

JH.64 GCCAGCAGTG G AGGG  GAACAGTACTTC 

JH.65 GCCAGCAGTGATG  ACAG  CTATGAACAGTACTTC 

JH.1,15 GCCAGCAGTG  GGACTGGGGGG  TATGAACAGTACTTC 

JH.7,8,11,12,14,16 GCCAGCAGTGA CCTC GGGACTGGGGGG  TCCTATGAACAGTACTTC 

JH.13 GCCAGCAG A GGGGGGC C CTCCTATGAACAGTACTTC 

JH.24 GCCAGCAGTGATG ACAG   CTATGAACAGTACTTC 

JH.26 GCCAGCAGTGATG CCCTTTC ACTGGGGGG  CTCCTATGAACAGTACTTC 

JH.28 GCCAGCAGTG GAG CTGGGGGGGC GCG TGAACAGTACTTC 
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Table 5. (B) The number of V 13-3 sequences containing each J  per strain
a
 

TCR J Genes C57BL/6 QM JH
–/–

 

 

J1-1 2 7 4 

J1-2 0 3 3 

J1-3 3 2 6 

J1-4 1 4 5 

J1-5 2 2 2 

J1-6 1 4 0 

J1-7 5 0 0 

J2-1 0 4 3 

J2-2 0 5 9 

J2-3 2 6 1 

J2-4 14 2 8 

J2-5 3 1 8 

J2-7 5 8 9 

 

a
 Sequences were aligned using the software provided by the IMGT server (Bosc and Lefranc 

2000; Giudicelli, Chaume and Lefranc 2005). 
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Table 6. Numbers of lymphocytes in the spleen of athymic (T), sham-operated (S) or non-

manipulated (C) control mice. 

 

 

 

 

 

 

 

 

 5 Weeks 10 Weeks 

Number 

(average ± SD) 

T S C T S C 

CD4+ 4.77 x 106 ± 

0.85 x 106 

7.92 x 106 ± 

0.82 x 106 

8.37 x 106 ± 

1.73 x 106 

3.6 x 106 ± 

0.97 x 106 

8.8 x 106 ± 

2.96 x 106 

10.1 x 106 ± 

1.78 x 106 

CD8+ 2.42 x 106 ± 

0.47 x 106 

4.32 x 106 ± 

0.41 x 106 

2.59 x 106 ± 

0.39 x 106 

2.52 x 106 ± 

0.72 x 106 

5.74 x 106 ± 

2.14 x 106 

7.68 x 106 ± 

2.55 x 106 

CD4+ 

CD44hiCD62L- 

1.3 x 106 ± 

0.1 x 106 

1.4 x 106 ± 

0.4 x 106 

1.7 x 106 ± 

0.45 x 106 

1.04 x 106 ± 

0.44 x 106 

1.6 x 106 ± 

0.53 x 106 

1.2 x 106 ± 

0.23 x 106 

CD8+ 

CD44hiCD62L- 

0.74 x 106 ± 

0.05 x 106 

0.94 x 106 ± 

0.3 x 106 

1.1 x 106 ± 

0.26 x 106 

1.15 x 106 ± 

0.46 x 106 

1.44 x 106 ± 

0.3 x 106 

1.5 x 106 ± 

0.34 x 106 

CD19+CD21+CD23- 1.29 x 106 ± 

0.32 x 106 

1.36 x 106 ± 

0.45 x 106 

1.53 x 106 ± 

0.3 x 106 

4.3 x 106 ± 

2.5 x 106 

3.6 x 106 ± 

01.1 x 106 

5.93 x 106 ± 

1.6 x 106 

CD19+CD21+CD23+ 21.59 x 106 ± 

2.11 x 106 

20.50 x 106 ± 

3.89 x 106 

24.32 x 106 ± 

4.9 x 106 

27.31 x 106 ± 

11.33 x 106 

24.49 x 106 ± 

6.9 x 106 

25.12 x 106 ± 

5.7 x 106 
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Table 7. Cycle threshold values (Ct values) were estimated for all Vβ-Jβ combinations for each 

RNA template and mean Ct values were calculated.  Ninety-five percent confidence intervals 

(CI) are shown.  Diversities of expressed Vβ-Jβ pairs were calculated with Shannon entropy 

(86).  An estimate of scaled entropy (H) was calculated for each Vβ-Jβ matrix by the equation 

H=Σ (p log 2 p)/log 2 (1/240) where p was the probability of abundance calculated for each Vβ-

Jβ combination by the equation p=2−y/Σ2−y where y was the Ct value for the Vβ-Jβ primer pair 

and p=0 when Ct > 40 cycles.  Scaled entropy ranges from zero to one with one representing 

maximal diversity.  

T=athymic mice, S=sham-operated mice, C=non-manipulated mice 

Sample Entropy Mean Ct 95 % CI 

C-spleen #1 0.85 17.4 17.1-17.4 

C-spleen #2 0.84 18.1 17.8-18.4 

S-spleen #1 0.83 18.0 17.7-18.4 

S-spleen #2 0.84 17.8 17.4-18.2 

T-spleen #1 0.84 18.8 18.4-19.1 

T-spleen #2 0.85 18.5 18.2-18.8 
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Table 8. 

Table 8: Analysis of Vh186.2 Somatic mutation in NP-immunized mice. Expressed sequences 

from twice boosted Controls, sham and thymectomized mice were analyzed. The Vh186.2 

Sequences were 294 bp that translate to 98 AA. We found that thymectomized mice do have 

somatic mutation frequency as wild type but have reduced frequency of affinity enhancing 

mutation at codon 33 of DR1.Also thymectomized mice showed higher frequency of repeated 

sequences suggesting of possible clone expansion. 
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Day of 

rejection  1st  Tx 2nd  Tx Difference  1st  Tx 2nd  Tx 

Differenc

e  

1st  

Tx 2nd  Tx Difference 

Control 1 23 12 11 Sham 1 22 13 9 Thymectomized 1 27 19 8 

Control 2 25 15 10 Sham 2 24 16 8 Thymectomized 2 33 21 12 

Control 3 25 16 9 Sham 3 25 16 9 Thymectomized 3 45 17 28 

Control 4 25 16 9 Sham 4 28 20 8 Thymectomized 4 48 19 29 

Control 5 27 13 14 Sham 5 29 14 15 Thymectomized 5 37 18 19 

Mean 25 14.4 10.6 Mean 25.6 15.8 9.8 Mean 38 18.8 19.2 

 

Base mutation  

Total 

Number of 

sequences 

Repeated  

sequences 

Total # of 

mutations 

Mutation 

frequency  

Proportion of (C-> T 

or G->A) Mutation 

Control 80 21 489 2.819 % 34.56 % 

Thymectomized 86 62 196 2.778 % 37.24 % 

      

AA Changes 

Total 

Number of 

sequences 

Repeated  

sequences 

Total # of 

replacement 

mutations 

Replacement  

frequency  
Frequency(33)W->L  

Control 77 20 336 6.02 % 80.702 % 

Thymectomized 85 60 131 5.35 % 64.000 % 
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SUMMARY AND CONCLUSION  

In summary after our lab found that TCR diversification in the thymus depends on B cell 

receptor or immunoglobulin (Ig) diversity we also found that B cells help maintain the number 

and diversity of T cells in the peripheral T cell compartment. In this work we determined the 

extent to which thymus output of T cell, peripheral survival or proliferation maintain the size and 

diversity of the T cell compartment and how it adapts to contraction of T cell diversity.  

We also found that when T cell diversity is contracted, T cells commonly exhibit a "memory-

like" phenotype of unknown functional significance.  

In our study we also investigated mice with severe contraction of T cell diversity and their 

response to pathogenic microorganisms or if they suffered increased susceptibility to auto-

immunity. We described how mice respond to thymectomy and determined if thymectomy 

perturbed the T and B cell compartments. We also specifically studied if B cell memory is 

maintained following thymectomy in young mice  

B cell memory antibody responses critically depend on T cell help.  To determine the extent to 

which T cell function was maintained in thymectomized mice we performed male to female skin 

grafts.  The median survival time of male skin grafts was 37 days in thymectomized female mice 

and only 25 days in sham operated and control mice. Thus, thymectomy impairs cellular 

immunity to minor antigens. Re-transplant 30 days after shedding of the primary graft, hastened 

graft rejection in all mice even though thymectomized recipients had delayed graft rejection 

compared to controls. Accelerated secondary graft rejection indicates efficient generation of T 

cell memory.  

To determine whether thymectomy perturbed primed T cell responses we tested delayed type 

hypersensitivity (DTH) to ovalbumin in the footpad of mice. After priming by subcutaneous 

injection of 100 micrograms of ovalbumin in PBS, thymectomized mice mounted a significant 

DTH response to the challenge comparable to the responses in sham operated and control mice.  

Our results are consistent with the idea that thymectomy does not impair primed T cell 

responses. 
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One hallmark of memory is the production and maintenance of long-lived plasma cells capable 

of maintaining serum specific antibodies for very long periods of time following last exposure to 

the antigen.   If  thymectomy impairs B cell memory, the number of long lived antibody 

secreting cells (ASC) should be reduced at times remote from antigenic exposure.  We 

determined the number of NP-specific antibody secreting cells in the spleen or in the bone 

marrow 6 months after boosting thymectomized, sham operated or control C57BL/6.  

In our conclusion we found that manipulation of the thymus may perturb affinity maturation in 

sham operated mice. 

Thymectomy impairs primary T cell responses while sustaining ―normal‖ T cell memory and 

primed responses as depicted by delayed primary male to female skin graft rejection and faster 

secondary skin graft rejection and normal DTH responses.  Surprisingly despite impairing 

primary T responses, thymectomy appears to enhance B cell memory.    Enhanced B cell 

memory in the presence of certain T cell dysfunctions suggests dissociation between T cell help 

requirements to generate B cell memory and those required to generate primary T cell responses. 

We will also consider the possibility that T cell regulation of B cell memory is altered by 

thymectomy. 

Our findings propose that the long-lived antibody secreting cell compartment is maintained 

independently of the memory B cell compartment because it does not decline when memory B 

cells are abrogated.  Our results indicate that differentiation of long-lived antibody secreting cells 

occurs independently of affinity maturation that normally accompanies B cell memory responses.  

Our work suggests that strategies to immunize individuals with congenital or acquired thymic 

defects (such as following cardiac transplantation or cardiac surgery in infancy), or with 

contracted T cell repertoires (such as in aging or after T cell depletion to treat cancer) would 

benefit from new vaccine designs including surrogates of cognate T cell help. 

Specific aim 1, 2 and 3 were published in Journal of Immunology, in print Volume 178, Issue 

5, pages 2950–2960, Mar 1, 2007  

Specific aim 4 and 5 were published in European Journal of Immunology, online: 27 Dec 2011, 

in print Volume 42, Issue 2, pages 500–510, February 2012 
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