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Introduction

The eXtensible Markup Language (XML) [9] is a standard widely used for data
representation and interchange, gaining popularity as native storage format and,
together with the accompanying languages and tools (the so called XML stack),
such as XML Schema De�nition (XSD) [92], XPath [89], XQuery [6], XSLT [87],
XProc [90] etc., it becomes a very powerful technology.

Consequently, the amount and complexity of software systems that utilize
XML and/or selected XML-based standards and technologies for information
exchange and storage grows very fast. The systems represent information in a
form of XML documents. One of the crucial parts of such systems are XML
formats which describe the allowed structure of XML documents. Usually, a
system does not use only a single XML format, but a set of di�erent XML formats,
each in a particular logical execution part. The XML formats usually represent
particular views on the application domain of the software system. For example, a
software system for customer relationship management (CRM) exploits di�erent
XML formats for purchase orders, customer details, product catalogues, etc. All
these XML formats represent di�erent views on the CRM domain. We can,
therefore, speak about a family of XML formats utilized in by a software system.

When the amount and overall complexity of the used interrelated XML for-
mats exceeds certain level, it is useful to create a conceptual model of the applica-
tion, which describes the used real-word entities without the clutter and excessive
verbosity often associated with XML technologies. A software engineering stan-
dard � Uni�ed Modeling Language (UML, [23]) � can be used in such cases ([25],
[65]).

Complex systems also often rely on certain invariants and data-integrity con-
straints (ICs) that are required for the system to function properly. However,
these constraints often can not be properly described by the visual languages of
UML diagrams. In the cases where diagrams are not expressive enough, Object
Constraint Language (OCL, [66]) can be used to describe additional properties
and conditions of the system. OCL is a formal language and thus its expressions
de�ned at the abstract layer can be used by the transformations and propagat-
ed to the speci�c layers. A system using a family of XML formats often uses
some of the XML formats to de�ne its interface to the outside world, e.g., us-
ing the technologies of Web Services [85] and languages WSDL [86] and XML
Schema. Documents on the inputs are checked against schemas, usually one of
the grammar-based (XML Schema, Relax NG [12], DTD [82]), sometimes also
using other validation technologies (Schematron [29], NVDL [30]). Particularly
Schematron is a suitable technology to verify integrity constraints in the contents
of the document.

Problem de�nition Having a system which exploits a family of XML formats,
we face to the problem of XML format management and evolution as a speci�c
part of management and evolution of the software system as a whole. The XML
formats may need to be evolved whenever user requirements or surrounding envi-
ronment changes. In our previous work [61, 56], we have introduced a framework
for such modeling, management and evolution of a family of XML formats. The
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framework considers di�erent levels of abstraction of the XML formats, e.g., con-
ceptual schemas, logical XML schemas or instance XML documents. These levels
are mutually interrelated by mappings to assure consistency among di�erent XML
formats in the family. In our framework, the user de�nes the representations of
the real world concepts used in the system (and their relationships) at the ab-
stract level and references (reuses) the common de�nitions from the levels below.
In [56] we solved a problem of coherent management and evolution of XML for-
mats according to changing requirements (schema evolution). This means that
when a new requirement appears, it is implemented in the XML formats so that
they are updated coherently with each other.

In this thesis, we address two areas related to XML format management.
First, the area of integrity constraints and modeling and management of schemas
that verify integrity constraints and data present in the document. We show that
integrity constraints can be managed in a similar manner as the de�nitions of real-
world concepts and their relationships. The integrity constraints (in the form of
expressions) are de�ned at the abstract level and can be reused by the levels
below automatically. One constraint can be relevant for several XML formats
and thus should be checked in by a schema for each of the particular format.

Second, we address the problem tightly related to schema evolution is doc-
ument adaptation. To adapt documents after schema evolution means to trans-
form documents valid against the old version of the schema into documents valid
against the new version of the schema. It can also be looked upon as propaga-
tion of changes from the schema (after schema evolution) to the documents in
the system. This problem is also related to integrity constraints, because the
changes in the schema might be not only changes in structure, but also changes
in the semantics of the concepts. The semantics can be described using integrity
constraints and document adaptation algorithm should take them into account.

Contributions In this thesis we focus on the impact of evolution of schemas
of XML formats on their instance XML documents. We extend the framework
previously published by XML and Web Engineering Research Group ([56]) with
versioning features and an algorithm for propagation of changes to XML docu-
ments � i.e., an algorithm for XML document adaptation. We also extend the
framework with support for the standard Object Constraint Language to create
expressions, especially integrity constraints and invariants. We utilize OCL ex-
pression to let the user to de�ne annotations to his model and thus accurately
describe the semantics of adaptation scenarios. Our main contributions can be
summed up as follows:

� We propose an extension of our previously published framework for evolu-
tion of XML formats with versioning features. The XML schemas of XML
formats are edited by designers at a more user-friendly level of conceptual
schemas instead of technical XML schemas.

� We provide an algorithm for automatic detection of changes between any
two versions of an XML schema and propagation of changes to instance
XML documents (in a form of automatically generated version transforma-
tion script).

� The framework can decide automatically whether transition from one ver-

4



sion of the schema to another requires transformation of the existing docu-
ments to make them valid against the new version.

� We add support for both de�ning and verifying integrity constraints in XML
formats.

� The adaptation algorithm can be enhanced with OCL annotations, which
ensure correct adaptation in the ambiguous cases.

� We allow the user to declare complex relationships between the old and new
version of the schema using a formal language at the conceptual level.

� In the thesis, we provide a detailed description of the algorithms and the
theoretical background. However, a proof-of-concept implementation was
also developed as a part of this research and is publicly available [43].

Outline The rest of the thesis is structured as follows: In Chpt. 1, we present
motivational scenarios for integrity constraints and document adaptation and
general requirements for an adaptation framework. In Chpt. 2, we introduce our
�ve-level framework and describe the purposes and responsibilities of each level.
The conceptual model of the platform-independent and platform-speci�c level is
introduced formally in Chpt. 3 followed by formal model for versioning. Chpt. 4
describes the adaptation framework and algorithms. Chpt. 5 introduces OCL as
an expression language for the platform-independent and platform-speci�c level,
proposes required extensions of the standard OCL and describes the algorithm
for translating OCL expressions into XPath expressions. Chpt. 6 combines the
results presented in Chpt. 5 and Chpt. 6 and enhances the adaptation algorithm
with OCL annotations. In Chpt. 7, we describe the experimental implementation.
In Chpt. 9, we outline the open problems, room for improvement and course of
our future research. In Chpt. 9.4 we conclude.
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1. Motivation and Requirements

In this chapter, we discuss motivation for the extensions of our framework with
integrity constraints and document adaptation.

1.1 Integrity Constraints

The idea behind Model Driven Development (MDD) [52] is to model the software
system on several layers varying in their degree of abstraction. A designer starts
from the very abstract speci�cation (independent of the platform and language
used) and progresses to more concrete models (using platform-speci�c constructs)
and �nally to code. Ideally, each step of the transformation of the model from
the more abstract to the less abstract is achieved by a declarative transformation
obtained (semi-)automatically. In a system using a family of XML formats, using
this approach ensures to preserve consistency across all the formats, because
the concepts (e.g., Employee, Department) and their relations are de�ned at an
abstract level (in one place), which prevents inconsistent usages or rede�nitions
of the same concept in two (or more) XML formats.

If we add integrity constraints into the system, we would like to achieve a
similar level of abstraction and consistency. An integrity constraint de�ned at
the abstract level is valid for the whole problem domain, independently of the
XML formats and schemas existing in the system. However, when the system
uses multiple XML formats, the data are often represented in di�erent structures
for each document type according to its XML schema. Therefore, for validation
purposes, it is necessary to express the constraint as a validation rule for each
relevant XML format in a suitable XML validation language, e.g., Schematron and
each translation of the integrity constraint into an expression will be meaningful
only for the particular format.

It is ine�ective to express the constraint directly in a validation language
manually. There can exist various relevant XML schemas for each constraint but
with a di�erent structure. Therefore, a designer has to express the constraint
speci�cally for each separate XML schema in a form of di�erent validation rules.
This can be very time-consuming and also error-prone. Also, when the system is
evolved and schemas are changed, all the validation expression must be examined
and adapted to the new version.

We propose a more e�ective method. We start by expressing each domain
integrity constraint only once � as a part of the abstract level. This is practi-
cal because the designer can de�ne the integrity constraints in the phase of the
domain analysis, before creating particular XML formats. Later, when XML for-
mats are derived from the abstract level, each integrity constraint is examined
from the point of view of every XML format in the system. The algorithm de-
cides, whether the particular constraint is relevant for the particular XML format
and if so, the constraint is translated into an expression that can be validated in
the particular XML format (documents valid against the XML schema of that
format) using a standard language from the XML stack.
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1.2 Adaptation Scenarios

In this section, we provide three scenarios where a document adaptation approach
might be applied.

Document update after new version adoption In the �rst scenario, we
consider an XML application storing data in XML documents. The documents
can be stored in a �le system, in an XML-enabled relational database shredded
into tables [68] or in a native XML database [19, 4, 49]. As requirements change,
the system designer needs to adjust the XML schemas existing in the system.
To keep the system consistent, the documents stored in the system must be
transformed so that they are valid against the new version of the schemas. The
process of propagation of changes from schemas to documents is called document
adaptation.

The system designer may choose to adapt the documents manually (i.e., by
editing them individually), but the amount of work will grow with the number
of documents and the whole process will be time-consuming and error-prone.
Alternatively, the user prepares an adaptation script � a sequence of commands
that can be executed upon all the documents attached to the schema and adapt
them all in one batch. Creating such a script from scratch can be di�cult and
requires a good knowledge of a suitable implementation language. Our approach
aims to eliminate these obstacles and reduces the designer's work to the necessary
minimum by generating the adaptation script semi-automatically and using an
abstract model rather than working with an implementation language directly.

In case where XML documents are stored as �les or in a native database, the
adaptation script can be executed upon them directly. When the documents are
stored in a relational database, the database vendor usually provides an interface
[67] using which transition to the new version is performed � this interface requires
the evolved schema and the adaptation script. Using our approach, the user only
needs to evolve the schema, the adaptation script is generated for him/her.

Translation/mediator In the second scenario, there are several systems ex-
ploiting the same family of XML schemas to communicate with each other. The
XML schemas are administered by one of the parties or by a standardization
authority which issues the new versions of the standard.

When the new version of the standard is issued, the involved parties are
required to adopt the new version. However, some of the parties do not adopt
the new version immediately, hence, necessarily, after a certain period of time
there are several versions of the standard deployed and actively used at the same
time. This e�ectively means that the system needs to be able to process di�erent
versions of documents. It can be achieved in two ways � either (a) by accepting
di�erent versions of the documents on the input and processing each version
di�erently, or (b) by transforming the documents to the latest version before they
are processed. A similar situation and solutions are with the output documents
(responses) � when a system sends a document valid against a schema which is a
part of the version v of the standard, it probably expects a result to be also valid
against a schema which is a part of the v (even though the other party might
internally work with documents in some other version ṽ, it should convert the
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results back to the version ṽ when sending them as a response).
The signi�cant bene�t of (b) approach is that the business logic of the pro-

cessing of the input document is compact (and the problem of di�erent versions
is solved by a stand-alone component, sometimes called mediator), whereas the
(a) approach may obfuscate the business logic by introducing new branches, cor-
rections and error recovery sections in the code with each new version supported.

Our framework signi�cantly reduces the e�ort required when the �rst way of
dealing with di�erent versions of documents on the input/output is selected. It
can generate an adaptation script for any two versions of the schema and this
adaptation script can be used to pre-process the documents sent by the parties
that have not adopted the latest versions yet in the mediator (and the process
is transparent for the business logic components). The only requirement that
the designer needs to evolve the old version to the new version in our framework
which keeps track between both versions.

Mapping between Schemas and System Integration The third scenario
does not deal with schema evolution in the system, but aims at reducing the
e�ort for integration of schemas concerning the same problem domain. For one
business area or problem domain, several independent solutions may emerge.
The result is a set of parties using their proprietary schemas. After some time,
the involved parties come to the point where they need to interact with each
other (they share the same business domain after all), companies may be merged
etc. This situation requires system integration. One approach is to pick one of
the existing solutions or create a new one and unify the participants under this
chosen solution. However, this may turn out to be too costly and the participants
may instead decide to continue using their proprietary systems and only provide
separate interfaces for the other parties. The inter-party communication can then
be solved by mappings between the proprietary systems.

In [34], we describe, how our framework deals with the integration problem and
helps the user to de�ne mappings between systems. The document adaptation
algorithm can utilize these mappings to create an adaptation script and again
supply the systems with mediator components (and use generated adaptation
scripts in these), so that they will be able to communicate with the other systems
using di�erent set of schemas.

1.3 Evolution/Adaptation Framework

Requirements

In this section, we will elaborate on the universal requirements for an evolu-
tion/adaptation framework. We formulate them generally, without presuming a
speci�c implementation language or adaptation work�ow.

Rich set of supported operations The power of an evolution framework is
to a large degree determined to the size of the set of supported operations (some-
times called evolution primitives). The absolute minimum are the operations that
create and remove the individual parts of the XML schema. The actual amount
of di�erent operations depends on the level of abstraction and the XML schema
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language used. E.g., when the framework works directly with DTDs, it will re-
quire operations such as create/remove element/attribute de�nition. A framework
working with XSDs will require a wider set of operations, because XSDs provide
a wider set of constructs. A framework that abstracts the schema using UML
will require operations such as create/remove class/attribute/association.

Supporting only create/remove kind of operations can be insu�cient for some
kinds of adaptation frameworks � those that propagate the schema editing oper-
ations directly to the adapted XML documents. In that case, every modi�cation
is actually a pair of create and remove and when this pair of operations is prop-
agated, the data is lost, not modi�ed. Some frameworks support modi�cation
scenarios by adding additional operations: move operations and modify property
operations (e.g., modify the minOccurs property of an xs:sequence in an XSD).

It must be noted that not even adding modify property P operation for ev-
ery existing property P in the language or model used by the system can cover
all the adaptation scenarios, if the system implements document adaptation as
propagation of individual schema evolution operations. In general, each time an
adaptation scenario concerns multiple constructs and properties and it must be
broken down into several operations, it may not be adapted properly. Examples
of such scenarios are splitting an XML attribute into two new attributes (by a
separator character) or adding a element attribute whose value should be com-
puted from other attributes etc. Splitting an attribute A into attributes B and
C may be implemented e.g., as a sequence:

1. remove attribute A

2. add attribute B

3. add attribute C

alternatively:

1. modify attribute A into B (this operation may have to be broken into several
operations)

2. add attribute C.

When the �rst operation from the �rst sequence is propagated, the value of A
is lost and the system will not be able to determine the value of B and C. When
the �rst operation from the second sequence is propagated, the value of B will
be the formal value of A and again, the system will not be able to determine the
value of C. There may be other translations, but when the system only works
at the schema level, the adaptation will not be correct unless the whole scenario
is recognized as one operation (more on this in the requirement Semantics of
operations further in this section).

The system might add additional operations for the more frequent scenarios
(e.g., a split attribute operation), but the number of supported operations is
always �nite.

Separation of evolution of schemas and adaptation of documents It
is highly useful when schema evolution and document adaptation are separated
phases of system evolution. The main advantage is that it allows to perform more
operations in one cycle. The main reason is that the schema evolution is a process
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that should be interactive and responsive (e.g. the user may use a CASE1 tool
to edit the schema) and it should not be in�uence by the amount of documents
in the schema.

On the contrary, document adaptation should not be interactive in the ideal
case (once the adaptation script is created, it can be applied to any document
valid against the old version of the schema). The reason for this is that the number
of documents requiring adaptation can be very high and thus every adaptation
cycle might take a large amount of time. Approaches that interleave schema
evolution and document adaptation (allow only one schema evolution operation
in each adaptation cycle) thus have a certain limit in the amount of documents
they can support (equal to the number of documents the system can process in
a time the user is willing to wait after each edit operation).

Finally, when the framework is designed in such a way that it has to propagate
the changes immediately, it may be used only in those scenarios where all the
documents that must be adapted are present in the system � from the scenarios
presented in Sec. 1.2 at the beginning of this chapter, only the �rst one satis�es
this condition.

Normalization before propagation If more than one operation in each evo-
lution cycle is allowed, the sequence of operations should be normalized to elim-
inate repetitive and redundant operations (e.g., when the user edits the same
property of a construct repeatedly or performs several operations that cancel
each other). A normalized sequence of operations has exactly the same outcome
as the original sequence, but is shorter (simpler, more e�cient). The phase of nor-
malization is not required for the correctness of the framework, but can improve
its performance signi�cantly, because the bene�ts of normalization are increasing
with the size of the set of adapted documents.

Semantics of operations, references to content of documents We have
already observed some problems which emerge when the adaptation framework
operates only at the schema level and does not allow the user to refer to the
contents of the documents when discussing the required set of operations. In
general, some adaptation scenarios depend on the contents of document and the
adaptation script should behave di�erently for di�erent documents based on the
values and contents of the particular document.

Sometimes, it is also necessary to perform adaptation of documents even when
the schema does not change from the grammatical point of view (and a grammar-
based XML schema de�nition, such as a DTD or XSD, would be the same in both
the original and the evolved version). Again, it is necessary that the framework
allows the user to de�ne not only structure, but also the relations between the
content of the source and adapted documents.

Resolving ambiguities In some cases, when a schema is evolved, there are
multiple options how to adapt the documents to the change. The user should
be at least noti�ed by the system that some operation may be interpreted in
multiple ways. A more advanced solution is either allow the user to explicitly

1Computer Aided Software Engineering
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declare the exact semantics of the operation (by providing some additional infor-
mation) or letting him choose the desired adaptation where it cannot be decided
automatically.

Advanced content generation When de�nitions of new attributes, elements
or whole subtrees are added to the schema, the attributes, elements and/or sub-
trees must be created in the adapted documents (if they are not added as op-
tional). When the respective data cannot be obtained from the source document
itself, they must be generated. Prevailing approach to this issue is either to create
some kind of minimal/default content (empty subtrees, attributes with default
values etc.) or to let the user specify the content manually. However, the system
can have the required content stored already, only in some other data source (e.g.,
in a relational database or other XML document). Framework designed upon a
conceptual model can exploit this � e.g., by automatically generating a query
(in SQL, SQL/XML, XQuery) to retrieve the required data for the revalidated
document.

Other aspects Finally, there are other aspects, that should be taken into con-
sideration, such as whether the framework has a formal background and whether
it provides some form of graphical notation. The level of abstraction the frame-
work provides is also an important criterion, which is, in fact, not universal. Some
user's may prefer a more high-level approach (which abstracts from the technical
terms of the underlying technology), another may prefer a tool that uses the ter-
minology and constructs of the implementation language (e.g., global and local
types, substitution groups etc. in the case of XSDs), because it may give him a
�ner control over the results.
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2. 5-Level Framework for Design

and Evolution of XML Formats

Our �ve-level evolution framework was partly introduced in [54, 60, 58, 59], its
updated version in [56]. The framework is a joint outcome of the collaboration
within XML andWeb Engineering Research Group. In this Chapter, we introduce
the framework as a whole, in Section 2.2, we specify which parts of the framework
play a role in this thesis.

The schema of the framework is depicted in Figure 2.1. It is partitioned
both horizontally and vertically. Vertical partitions represent individual XML
formats. Horizontal partitions represent di�erent levels which characterize each
of the XML formats from di�erent viewpoints:

� The extensional level contains XML documents formatted according to the
XML format.

� The operational level contains operations performed on the XML docu-
ments from the extensional level. These can be queries over the instances
or transformations of the instances.

� The logical level contains a logical XML schema which speci�es the syntax
of the XML format. It is expressed in an XML schema language.

� The platform-speci�c level contains schemas which specify the semantics of
each XML format in terms of the level above.

� The platform-independent level contains a conceptual schema which de-
scribes the information model of the system and covers the common se-
mantics of all XML formats in the family in a uniform way.

As we can see, the framework covers the syntax and semantics of the XML
formats as well as their instances and operations performed over the instances.
However, the XML documents, queries and schemas at di�erent horizontal levels
are not the only �rst-class citizens of our framework. There are also mappings
between the horizontal levels. They are depicted as lines connecting the levels.

The mappings are crucial for correct evolution of the XML formats. Brie�y,
evolution means that whenever a change made to any part of the framework
is performed by a user, the change is propagated to all other a�ected parts.
The need for change propagation is invoked by the mappings. The propagation
ensures that the a�ected parts are adapted so that their consistency with the
initial changed part and with each other is preserved.

In the rest of this section, we will describe particular horizontal levels in a
more detail. We will also introduce a methodology which instructs users (XML
schema designers) how to (1) build particular levels of the framework and (2)
evolve the XML schemas using the framework. However, we do not delve into
formal details. We refer to [61] for the formal background of the framework.
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Figure 2.1: Five-level XML evolution framework

2.1 Framework Horizontal Levels

Let us now describe the horizontal levels in a more detail.

2.1.1 Logical, Operational and Extensional Level

The lowest level, called extensional level, represents particular XML schema in-
stances that occur in the system. The instances are XML documents which are
persistently stored in an XML database or exchanged between parts of the system
or between the system and other systems as messages. The level one step higher,
called operational level, represents operations over the instances. These might be,
e.g., XML queries over the instances expressed in XQuery [6] or transformations
of the instances expressed in XSLT [87]. The level above, called logical level,
represents logical schemas that describe the structure of the instances. They are
expressed in a selected XML schema language, e.g., XML Schema (XSD) [80], Re-
lax NG [12], Schematron [29], etc. We demonstrate the three levels in Figure 2.2.
It shows our two sample XML formats represented at the three levels.

There are two kinds of mappings between the three levels. There are mappings
of instance XML documents to their XML schemas. The instances are XML
documents valid against the XML schema. An instance XML element or attribute
is mapped to its respective de�nition in the XML schema. The mapping is created
automatically during XML document validation. For example, XML elements
cust in the instances of XML format on the left of Figure 2.2 are mapped to the
de�nition of the XML element cust in the XML schema. A valid instance is fully
mapped to its XML schema.

The other kind are mappings of operations to XML schemas. Operations are
based on the XPath language whose basic construct is a path comprising steps
which select XML elements and attributes from the instance XML documents.
The steps also specify required hierarchical relationships between the selected
XML elements and attributes (e.g., parent/child or ancestor/descendant). A
path is mapped to a respective chain of XML element or attribute de�nitions in
the XML schema. For example, there are the following paths in the query for the
XML format on the left of Figure 2.2: //cust/hq and //cust/name. They are
mapped to the corresponding XML element de�nitions as depicted by the arrows.
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for $p in /purchaseRQ
return fn:sum(
  for $it in $p//item
  where $it/price > 20
  return $price)

for $p in /purchaseRQ
return fn:sum(
  for $it in $p//item
  where $it/price > 20
  return $price)

<purchaseRQ version="1.0">
 <bill-to>Malostranske nam. 25, Prague</bill-to>
 <ship-to>Ke Karlovu 3, Prague</ship-to>
 <cust>
  <name>Department of Software Engineering,
    Charles University</name>
  <email>ksi@mff.cuni.cz</email>
 </cust>
 <items>
  <item>
   <code>P045</code>
  </item>
  <item>
   <code>P332</code>
  </item>
 </items>
</purchaseRQ>

<purchaseRQ version="1.0">
 <bill-to>Malostranske nam. 25, Prague</bill-to>
 <ship-to>Ke Karlovu 3, Prague</ship-to>
 <cust>
  <name>Department of Software Engineering,
    Charles University</name>
  <email>ksi@mff.cuni.cz</email>
 </cust>
 <items>
  <item>
   <code>P045</code>
  </item>
  <item>
   <code>P332</code>
  </item>
 </items>
</purchaseRQ>

<custList version="1.3">
 <cust>
  <name>Martin Necasky</name>
  <address>Vaclavske 123, Prague</address>
  <phone>123 456 789</phone>
 </cust>
 <cust>
  <name>Department of Software Engineering,
    Charles University</name>
  <hq>Malostranske nam. 25, Prague</hq>
  <storage>Ke Karlovu 3, Prague</storage>
  <secretary>Ke Karlovu 5, Prague</secretary>
  <phone>111 222 333</phone>
 </cust>
</custList>

for $c in //cust
where $c/hq
return
  <corporate>{$c/name}
    </corporate>

<element name="custList">
  <sequence>
   <element name="cust" type="Customer" .../>
  </sequence>
</element>
<complexType name="Customer">
  <sequence>
   <element name="name" type="string"... />
   <choice>
    <element name="address" type="string" />  
    <sequence>
     <element name="hq" type="string" />
     ...
    </sequence>
   </choice>
  </sequence>
</complexType>

for $p in /purchaseRQ
return fn:sum(
  for $it in $p//item
  where $it/price > 20
  return $price)

for $p in /purchaseRQ
return fn:sum(
  for $it in $p//item
  where $it/price > 20
  return $price)

<purchaseRQ version="1.0">
 <bill-to>Malostranske nam. 25, Prague</bill-to>
 <ship-to>Ke Karlovu 3, Prague</ship-to>
 <cust>
  <name>Department of Software Engineering,
    Charles University</name>
  <email>ksi@mff.cuni.cz</email>
 </cust>
 <items>
  <item>
   <code>P045</code>
  </item>
  <item>
   <code>P332</code>
  </item>
 </items>
</purchaseRQ>

<purchaseRQ version="1.0">
 <bill-to>Malostranske nam. 25, Prague</bill-to>
 <ship-to>Ke Karlovu 3, Prague</ship-to>
 <cust>
  <name>Department of Software Engineering,
    Charles University</name>
  <email>ksi@mff.cuni.cz</email>
 </cust>
 <items>
  <item>
   <code>P045</code>
  </item>
  <item>
   <code>P332</code>
  </item>
 </items>
</purchaseRQ>

<purchaseRQ version="1.0">
 <cust>
  <name>Department of Software Engineering,
    Charles University</name>
  <code>ksi@mff.cuni.cz</code>
  <bill-to>Malostranske 25, Prague</bill-to>
  <ship-to>Ke Karlovu 3, Prague</ship-to>
 </cust>
 <items>
  <item code="P045"><price>17</price></item>
  <item code="P332"><price>34</price></item>
 </items>
</purchaseRQ>

for $p in /purchaseRQ
return fn:sum(
  for $it in $p//item
  where $it/price > 20
  return $price)

<element name="purchaseRQ">
  <sequence>
   <element name="cust" type="Cust" />
   <element name="items">
    <sequence>
     <element name="item" type="Item" .../>
    </sequence>
   </element>
</sequence>
</element>
<complexType name="Cust">
 <sequence>
  <element name="name" .../>
  <element name="code" .../>  
  <element name="ship-to" .../>
  <element name="bill-to" .../>
 </sequence></complexType>

(a) XML format for list of customers (b) XML format for purchase requests
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Figure 2.2: Two sample XML formats represented in the framework

Even these three levels indicate problems related to XML evolution. A change
in one of them can trigger respective changes in the other two levels. Therefore, we
need a mechanism which correctly propagates a change to the other levels. When
the structure of an XML schema changes, its instances and related queries must
be adapted accordingly so that their validity and correctness is preserved respec-
tively. Some changes can be propagated automatically. However, there are also
changes where automatic propagation is not always possible. For example, sup-
pose that we want to split XML elements name in the left-hand side XML format
from Figure 2.2 into two XML elements firstname and lastname. This change
can be automatically propagated to the mentioned query (as a corresponding
split of path /cust/name to two paths /cust/firstname and /cust/lastname).
However, it cannot be automatically propagated to the instances until a design-
er speci�es a function which splits a string with a full name to two substrings
with �rst and last name. In general, such function does not exist. However, it
may exist in some special cases, e.g., when full name strings have a strict struc-
ture consisting of �rst name followed by one white space followed by the last
name. However, this depends on the designer whether (s)he is able to specify
such function.

If we consider only the three described levels we have no explicit relationship
between the vertical partitions, i.e., between the XML formats modeled by the
framework. As we have already discussed, a change in one XML format can
trigger changes in the other XML formats to keep their consistency. Therefore,
a change in one XML schema must be propagated to the other a�ected XML
formats manually by a designer. This is, of course, highly time-consuming and
error-prone solution. The designer must be able to identify all the a�ected for-
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mats and propagate the change correctly. Often, (s)he is not able to do such a
complex work and needs a help of a domain expert who understands the problem
domain, but is, typically, a business expert rather than a technical XML format
expert. Therefore, it is very hard for him to navigate in the logical XML schemas,
operations and instances.

To overcome these problems, we introduce two additional levels to the frame-
work brie�y described at the beginning of this chapter. They represent two
additional levels of abstraction of the XML schemas and are motivated by the
MDA [52] principles. The topmost one is a platform-independent level which
comprises a single conceptual schema in a platform-independent model. We will
call it PIM schema and use the notation of UML class diagrams to express it.
A sample PIM schema modeling the domain of customers and their purchases is
depicted in Figure 2.3.

The level below is a platform-speci�c level which comprises an individual
schema in a platform-speci�c model for each XML format. We will call it PSM
schema and will also use the notation of UML class diagrams. However, we ex-
tended the notation in [61] so that it can be used for modeling XML formats.
Two sample PSM schemas for our two XML formats are depicted in Figure 2.3.

A PSM schema models an XML format and can be viewed from two per-
spectives � conceptual and grammatical. The conceptual perspective models the
semantics of the XML format in terms the PIM schema. The semantics is mod-
eled as an unambiguous mapping of the components of the PSM schema to the
components of the PIM schema. We demonstrate the mapping in Figure 2.3 on
the right-hand side PSM schema. There is depicted the mapping of PSM class
PrivateCus to PIM class PrivateCus and its PSM attributes name, code, shipto
and billto to PIM attributes name, code and address, respectively. The PSM
attributes shipto and billto are mapped to the same PIM attribute. There-
fore, the semantics of the portion of the PSM schema is that PrivateCus class
models a private customer with a name and code. Both shipping and billing
address referred to in the purchase are the same address evidenced in the sys-
tem for the customer. The PSM class CorporeCus is mapped similarly but its
PSM attributes shipto and billto are mapped to the PSM attributes storage
and headquarters, respectively. In other words, the semantics of shipto and
billto attributes in the modeled XML formats is di�erent for the private and
corporate customers. Associations are mapped as well. For example, both PSM
associations going to PrivateCus and CorporateCus are mapped to the PIM
association connecting the PIM classes Customer and Purchase. There can also
be components which are not mapped. They are displayed in the grey color, e.g.,
class Items or PSM associations cust and items in the PSM schema on the right.
These components have no semantics.

2.1.2 Platform-Independent and Platform-Speci�c Levels

From the grammatical perspective, a PSM schema models a grammar of the re-
spective XML format. In other words, it models the syntax of the XML format
which is expressed at the logical level as an XML schema. The conversion of
the PSM schema to a corresponding XML schema is automatic. Brie�y, a class
models a sequence of XML element and attribute declarations. An association
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<element name="custList">
  <sequence>
   <element name="cust" type="Cust" .../>
  </sequence>
</element>
<complexType name="Cust">
  <sequence>
   <element name="name" ... />
   <choice>
    <element name="address" ... />  
    <sequence>
     <element name="hq" ... />
     ...
    </sequence>
   </choice>
  </sequence>
</complexType>

<element name="purchaseRQ">
  <sequence>
   <element name="cust" type="Cust" />
   <element name="items">
    <sequence>
     <element name="item" type="Item" .../>
    </sequence>
   </element>
</sequence>
</element>
<complexType name="Cust">
 <sequence>
  <element name="name" .../>
  <element name="code" .../>  
  <element name="ship-to" .../>
  <element name="bill-to" .../>
 </sequence></complexType>
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Figure 2.3: Two sample XML formats represented at logical, PSM and PIM levels

with a name models an XML element whose content is the sequence modeled by
its child class.

Figure 2.3 also shows one of the extensions we introduced to the UML notation
for the purposes of modeling XML schemas � choice content models. They are
depicted as grey ovals with | symbol in the middle. A choice content model
models a choice in the XML content. For example, the choice content model in
the left-hand side schema in our example models a choice between two possible
XML contents modelled by classes PrivateCus and CorporateCus. It is worth
pointing out that the choice in the right-hand side schema is a choice between
two di�erent concepts (two di�erent PSM classes mapped to two di�erent PIM
classes), but, from the grammatical perspective, there is no di�erence between the
two (i.e., they both model exactly the same subtree). In fact, in the translation of
the schema to an XSD, there is no choice used. Both variants are equivalent from
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the grammatical perspective (but not from the conceptual, as we have shown, so
we have to distinguish them in the PSM schema).

The complete framework forms a �ve-level hierarchy which interconnects all
modeled XML formats in the family using the common PIM schema. The con-
sistent evolution of the XML formats is realized using this common point. For
instance, if a change occurs in a selected XML document, it is �rst propagated to
the respective XML schema, PSM schema and, �nally, to the PIM schema. We
speak about an upwards propagation, in Figure 2.1 represented by the upwards
arrows. It enables one to identify the part of the problem domain that was a�ect-
ed. Then, we can invoke the downwards propagation. It enables one to propagate
the change of the problem domain to all the a�ected XML formats. In Figure 2.1
it is denoted by the downwards arrows.

Computation Independent Model MDA uses yet another level of abstrac-
tion above the PIM called the computation independent model (CIM). CIM is
sometimes referred to as business model, because it uses the vocabulary of the
particular problem domain and it should be understandable to subject matter
experts of the problem domain. It is completely independent of the implementa-
tion.

In our framework, we do not support CIM explicitly and we will not refer to
it in this thesis, however it can be used in combination with our framework.

2.2 Selected Part of the Problem

This thesis focuses on several parts (levels) of the �ve-level framework. We are
adding integrity constraints into the framework. As we will show in the following
chapters, integrity constraints can be de�ned both at the PIM and PSM levels
and from the PSM level they can be automatically translated into expressions of
the operational level.

We also target the problem of document adaptation, which in our �ve-level
framework means propagating the changes from the PIM and PSM level into
the extensional level (the documents in the system). Our adaptation algorithm
uses schema comparison and for that we add versioning support into the model
(e�ectively to the PIM and PSM levels).
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3. Conceptual Model

In this chapter, we introduce the formal model of PIM and PSM schemas, as
it was published previously [56]. In Section 3.3, we extend it with a formalism
for the versioning of schemas. This formalism allows for modeling more versions
of PIM and PSM schemas. We also show how concepts in di�erent versions are
connected and why we need such connections for document adaptation. The
versioning extension was published in [46] and [45].

Both PIM and PSM schemas are UML class diagrams, but we introduce our
own formal de�nitions of PIM and PSM schemas � this will allow us to focus on the
core, which is required for XML modeling (classes, associations and attributes),
without the need to concern with additional UML constructs, such as stereotypes,
association classes, interfaces etc.

3.1 Formal Model of the PIM Level

De�nition 1. A platform-independent schema (PIM schema) is a tuple S =
(Sc,Sa,Sr,Se) of disjoint sets of classes, attributes, associations and association
ends respectively.

� a Class C ∈ Sc has a name assigned by function name. Inheritance of
classes is modeled by partial function isa, which assigns a base class to a
speci�c class. Cycles are forbidden in isa graph.

� an Attribute A ∈ Sa has a name, data type and cardinality assigned by
functions name, type, and card, respectively. Moreover, A is associated
with a class from Sc by function class.

� an Association R ∈ Sr is a set R = {E1, E2}, where E1 and E2 are members
of the set of association ends Se (E1 and E2 are called association ends
of R). Both E1 and E2 have a cardinality assigned by function card and
are associated with a class from Sc by function participant. We will call
participant(E1) and participant(E2) participants of R. Association end has
a name and a cardinality assigned by functions name and card respectively1.

For a class C ∈ Sc, attributes(C) denotes the set of attributes of C and
associations(C) denotes the set of associations with C as a participant. A subset
K ⊆ attributes(C) can be declared a key for C.

In the text, we will usually refer to the schema constructs using their name,
i.e., when describing the schema in Fig. 2.3, when we write class Purchase, we
speak about class C ∈ Sc s.t. name(C) = `Purchase'. In the case of associations,
we will refer to them by the name of the association end (if it is unambiguous)
or by the names of the associated classes, e.g., Purchase-Customer. Note that
an association is formally an unordered set of its two endpoints. In other words,
associations are unordered in PIM schemas. Even though UML distinguishes
directed associations we do not consider them in this thesis 2.

1When the name of an association end is the same as the name of the participant class (i.e.,
name(E) = name(participant(E))), we omit name(E) in the �gures. Similarly, we do not show
cardinalities 1..1.

2Similarly we do not distinguish composition and aggregation in the framework.
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As keys are concerned, the selection of attributes of each key is up to the
modeller. (S)he should choose such a subset of class's attributes which uniquely
identify an instance of the class. There can be more than one key for a class or
none, if it is not important for the model.

In the example in Fig. 2.3, PIM schema is depicted at the top as a diagram.
These are some of the constituents of the schema, according to Def. 1:

� Sc = {Customer, CorporateCus, Purchase, . . .},
� Sa = {Customer.code, Item.price, . . .},
� Sr = {Item-Product, Item-Purchase, . . .}.
� The schema also demonstrates inheritance:
isa(CorporateCus) = isa(PrivateCus) = Customer.

� Types of attributes are not shown in the �gure, but, e.g.,
type(Purchase.date) = date, card(Purchase.date) = 1.

� For the association Customer-Purchase = (ECustomer, EPurchase):
participant(ECustomer) = Customer, participant(EPurchase) = Purchase,
name(ECustomer) = `Customer', name(EPurchase) = `Purchase',
card(ECustomer) = 1, card(EPurchase) = 0..∗.

3.2 Formal Model of the PSM Level

The purpose of the platform-speci�c model is to describe the system using con-
structs more tightly coupled to the selected platform and implementation tech-
nology, while reusing and referring to the general concepts de�ned at the PIM
layer.

At the platform-speci�c level, we use slightly modi�ed class diagrams. A PSM
schema in our approach is a formal model which models the structure of XML
documents of a given document type and also their semantics in terms of a PIM
schema. A concrete PSM schema can be translated automatically to an XML
schema written using one of the XML schema languages3.

A distinctive feature of XML is its hierarchical structure � XML elements
form a tree. This needs to be re�ected in PSM. Thus, associations in our PSM
schemas are all oriented and the schema has a distinctive skeleton � a forest.

Also, there are two ways how an atomic value can be stored in XML � as an
element with a simple text content or an attribute. To distinguish these options,
we introduce function xform, which speci�es, whether an attribute of a class is
mapped to an XML attribute or an XML element with a simple text content.

Finally, another feature of XML documents is certain variability � XML
schema languages are usually based on regular tree grammars (RTG) [53] and
thus provide means of choosing between several options in a certain location of
the schema. For this purpose, we introduce the content model.

We de�ne PSM schemas formally in De�nition 2. In [61], we proved that PSM
schemas have the expressive power of RTGs.

3We currently support export to XSD, Schematron and Relax NG.
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De�nition 2. A platform-speci�c (PSM schema) is a tuple S ′ =
(S ′c,S ′a,S ′r,S ′e,S ′m, C ′S′) of disjoint sets of classes, attributes, associations, associ-
ation ends and content models respectively, and one speci�c class C ′S′ ∈ S ′c called
schema class.

� Class C ′ ∈ S ′c has a name assigned by function name. Content model M ′

∈ S ′m has a content model type assigned by function cmtype. cmtype(M ′)
∈ {sequence, choice, set}. A class or content model can have a par-
ent association assigned by partial function parentAssociation and a list of
child associations assigned by function childAssociations. Classes/content
models without parent association are called root classes/content models.
Inheritance of classes is modeled by partial function isa, which assigns a
base class to a speci�c class. Cycles are forbidden in isa graph.

� Attribute A′ ∈ S ′a has a name, data type, cardinality and XML form as-
signed by functions name, type, card and xform, respectively. xform(A′)
∈ {e, a}. Moreover, it is associated with a class from S ′c by function class
and has a position assigned by function position within all the attributes
associated with class(A′). The sequence of all the attributes of C ′ ordered
by position will be denoted attributes(C ′)

� Association R′ ∈ S ′r is a pair R′ = (E ′1, E
′
2), where E

′
1, E

′
2 ∈ S ′e (E ′1 and

E ′2 are called association ends of R′). Both E ′1 and E ′2 have a cardinal-
ity assigned by function card and each is associated with a class from S ′c
or content model from S ′m assigned by function participant. We will use
parent(R′) to denote participant(E ′1) (called parent of R′) and child(R′) to
denote participant(E ′2) (called child of R′). Associations sharing a parent
C ′ are ordered in the list childAssociations(C ′). The index of the association
in the list will be denoted position(R′, childAssociations(C ′)). Association
ends have names, denoted name(E ′). If E ′ is the parent end, its name is
`parent' by default.

We will use the notion PSM nodes N ′ = S ′c ∪S ′m for the joined set of content
models and classes. We also introduce the notion of tree association as the fol-
lowing subset of S ′r:
S ′r• = {R′ = (E ′1, E

′
2) ∈ S ′r|R′ = parentAssociation(participant(E ′2))}.

Classes, content models and tree associations form a forest. Formally, graph:(
N ′, {(n1, n2) ∈ N ′xN ′ ∧ (∃(E ′1, E ′2) ∈ S ′r•)

(participant(E ′1) = n1 ∧ participant(E ′2) = n2)}
)
is a forest of trees rooted

in root classes. Classes connected by an association to the schema class C ′S′ are
called top classes.

The main di�erence between the PIM schema and PSM schemas is that in
PSM schemas, all associations are ordered and thus form an oriented graph with
nodes fromN ′ and S ′r as edges. Associations sharing a common parent are ordered
(in other words, order is signi�cant in the list of child associations of each node).
If we remove the non-tree associations (S ′r /∈ S ′r•), we obtain a forest. Each class
C ′ in this forest is either a root class or it has a particular association assigned �
the parentAssociation.

In the �gures, we usually do not show the names of the parent association ends
(which by default is 'parent`). The name shown for the association belongs to
the child association end.
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In the example in Fig. 2.3, PSM schemas are depicted in the middle as dia-
grams. These are some of the constituents of the �rst PSM schema, according to
Def. 2:

� C ′S′ = CustomerListSchema',

� S ′c = {CustomerListSchema', CustomerList', PrivateCus', . . .},
� S ′a = {PrivateCus'.name', CorporateCus'.phone', . . .},
� S ′m = {Choice'1}
� S ′r = {custList', CustomerList'-Choice'1, . . .}.
� Types of attributes are not shown in the �gure, but, e.g.,
type(PrivateCus'.name') = string, card(PrivateCus'.name') = 1.

� For the associationR′ = CustomerList'-Choice'1 = (ECustomerList′ , EChoice′1
):

participant(ECustomerList′) = CustomerList',
participant(EChoice′1

) = Choice'1,
name(ECustomerList′) = `parent', name(EChoice′1

) = λ,
card(ECustomerList′) = 1, card(EChoice′1

) = 1..∗.
parent(R′) = ECustomerList′ , child(R′) = EChoice′1
childAssociations(Choice'1) =

(Choice'1-PrivateCus', Choice'1-CorporateCus')

� top classes: {CustomerList'}

As we have already discussed in Section 2, we view a PSM schema from two
perspectives � conceptual and grammatical. From the conceptual perspective, a
PSM schema models the semantics of an XML format in terms of a PIM schema.
This is formally expressed by mapping classes, attributes and associations in the
PSM schema to their PIM equivalents. We call the mapping interpretation of the
PSM schema against the PIM schema. The interpretation cannot be arbitrary.
There are some restrictions which prevent from semantic inconsistencies. For
example, a PSM attribute cannot be mapped to an arbitrary PIM attribute � the
class of the PSM attribute must be mapped to the class of the PIM attribute.
Without this condition, it would be possible to map, e.g., PSM attribute code′ of
PSM class Customer′ in our sample PSM schema depicted in Figure 2.3 to PIM
attribute number of PIM class Purchase. Intuitively, this does not make any
sense, but our condition prevents from this mapping explicitly. It is forbidden
because class(code') = Customer' is mapped to Customer which is not the class
class(number) = Purchase. In other words, the condition preserves semantic
consistency between PSM and PIM attributes.

In a similar fashion, we restrict association mappings. Suppose a PSM as-
sociation R′. Let child(R′) = D′ be mapped to PIM class D. Let the closest
ancestor class of R′ which is mapped to the PIM schema be a class C ′. Let C ′

be mapped to PIM class C. If C ′ and D′ do not exist, R′ cannot be mapped
at all. Otherwise, it can be mapped only to PIM association R which connects
C and D or their inheritance descendants. Similarly to the attribute condition,
the association condition preserves semantic consistency between PSM and PIM
associations. Without the condition, it would be possible to map, e.g., PSM as-
sociation R′ connecting PSM classes Items′ and Item in our sample PSM schema
to PIM association R connecting PIM classes Purchase and Customer which,
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intuitively, does not make sense.
We will use I(X ′) = X to denote that the interpretation of the PSM construct

X' is X. E.g., I(PrivateCus'.ship-to') = PrivateCus.address.
There can also be components which are not mapped to the PIM schema.

These components are displayed in grey colour. We refer to [61] for detailed and
formal description.

From the grammatical perspective, a PSM schema models the syntax of the
XML format. In other words, it models the XML schema of the XML format. For
example, the PSM schema depicted in Figure 2.3 models the syntax of the XML
format whose instance is depicted in the same �gure. The PSM schema does
not depend on any particular XML schema language. It can be automatically
translated to an arbitrary language. In [61] we showed how a PSM schema can
be translated to a regular tree grammar [53] which can be expressed in XSD [55],
Schematron [36] or RELAX NG.

Here, we describe only brie�y which XML structures are modeled by PSM
components. Let us start with the schema class of a PSM schema. It models whole
XML documents. In our example, the schema class, named PurchaseRQSchema',
models whole XML documents with purchase requests.

All other classes model a complex content which comprises of a set of XML
attributes and of a sequence of XML elements. The set of XML attributes is
modeled by the class' attributes (s.t. xform(A′) = e, see the next paragraph), the
sequence of XML elements by the class' attributes and child associations. For
example, class Purchase' models an XML content represented by its two child
associations cust' and items'. Class Item' models an XML content represented
by its attribute price' and the association going to child class Product'.

A class attribute A′ models an XML element or XML attribute depending on
its XML form. If xform(A′) = e then A′ models an XML element. Otherwise
(when xform(A′) = a), A′ models an XML attribute. The XML element or
attribute name is given by name(A′). Visually, the XML form is distinguished
by @ symbol for attributes with attribute XML form. For example, the attribute
code' of class Product' models an XML attribute code. On the other hand, the
attribute price' of class Item' models an XML element price.

An association R′ models how the complex content modeled by its child is
nested in the complex content modeled by the parent. It is therefore directed
from the parent to the child. If the name of R′ is de�ned, the complex content
modeled by the child is enclosed in an XML element with the name given by the
name of R′. For example, the association cust' has name cust. It speci�es that
the complex content modeled by its child is enclosed in the XML element cust
which is nested in the complex content modeled by the parent class Purchase.
On the other hand, the association connecting Item' and Product' does not
have a name de�ned and, therefore, models only the hierarchical structure but
no XML element. If the parent of R′ is the schema class then R′ must have a
name de�ned and models a root XML element. In our sample, this is the case
of the association with the child Purchase'. It models the root XML element
purchaseRQ because of its parent association with name purchaseRQ.

De�nition 2 introduces a PSM-speci�c construct called content model. By
default, child associations of a class in a PSM schema model a sequentially ordered
content. I.e., content modeled by child associations is propagated to the element
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modeled by the class, with order preserved. However, XML schema languages
are usually based on RTGs, which allow constructs for choosing from several
variants of sub-content or declaring that the sub-contents may appear in any
order. For these purposes, we use content models in PSM schemas � choice and
set. sequence content model can be used to model a sequence of two choices
etc.

In �gures, the content models are displayed as small ovals with a speci�c
symbol inside: �|� for choice, �{}� for set and �. . . � for sequence. Our sam-
ple PSM contains a choice content model. In this particular case it speci�es
that content of an XML element cust (modeled by the parent association of the
choice content model) is one of the contents modeled by classes PrivateCus' and
CorporateCus'.

Model Con-

struct

Modelled XML Construct

C′S′ Named child associations of the schema class C′S′ model the allowed root
XML elements. C′S′ has no attributes by de�nition.

C ′ ∈ S ′c \ C′S′ A complex content which is a sequence of XML attributes and XML
elements modelled by attributes in attributes(C ′) followed by XML at-
tributes and XML elements modelled by childAssociations(C ′)

A′ ∈ S ′a, s.t.
xform(A′) = a

An XML attribute with name name(A′), data type type(A′) and cardi-
nality card(A′)

A′ ∈ S ′a, s.t.
xform(A′) = e

An XML element with name name(A′), simple content with data type
type(A′) and cardinality card(A′)

R′ ∈ S ′r, s.t.
R′ = (E′

1, E
′
2),

name(E′
2) 6= λ

An XML element with name name(E′
2), complex content modelled by

child(R′) and cardinality card(E′
2). If parent(R′) = C′S′ then the XML

element is the root XML element.
R′ ∈ S ′r, s.t.
R′ = (E′

1, E
′
2),

name(R′) = λ

Complex content modelled by child(R′)

Table 3.1: XML modeled by PSM constructs

In [61] we have formally shown that the expressive power of our PSM schemas
is the same as the expressive power of regular tree grammars (RTG) [53], i.e., each
schema S ′ can be translated into a corresponding regular tree grammar GS′ and
vice versa. This allows us to introduce the notion of validity of an XML document
against a PSM schema.

De�nition 3. For a schema S ′, the set of conforming documents T (S ′) equals
to the language L(GS′) generated by a grammar GS′. We will say that an XML
document T is valid against S ′ if T ∈ T (S ′) = L(GS′).

PSM constructs � classes, content models, attributes and associations � from
a PSM schema S ′ correspond to non-terminals GS′ . A parser for grammar GS′
will take as an input a document T and decide whether T ∈ L(GS′). If indeed
T ∈ L(GS′), during parsing, the parser will assign each element and attribute in
T to some non-terminal corresponding to some PSM construct X ′. We will call
such elements/attributes instances of X ′ in T .
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Normalization

For the algorithms presented in this thesis, we require PSM schemas to ful�ll
certain additional conditions. A PSM schema ful�lling these conditions will be
called normalized.

De�nition 4. Let S ′ be a PSM schema. We call S ′ normalized PSM schema
when the following conditions are satis�ed:

(∀R′ ∈ childAssociations(C ′S′))(name
′(child(R′)) 6= λ

∧ card′(child(R′)) = 1..1) (3.1)

(∀R′ ∈ S ′r)(child′(R′) ∈ S ′m → name′(child(R′)) = λ) (3.2)

(∀M ′ ∈ S ′m)(∃R′ ∈ S ′r)(child′(R′) = M ′) (3.3)

If S ′ does not satisfy some of the conditions (3.1) � 3.1), it is called relaxed PSM
schema.

The main purpose of PSM schema normalization is to remove redundancies
and unreachable portions of the schema. A normalized schema is simpler than
its relaxed equivalent. In [61], we presented, in the form of an algorithm, how
every PSM schema S ′ can be normalized to schema S ′ and proved formally that
normalization does not reduce the modeled language (i.e., L(GS′) = L(GS′)).
In this paper, we exploit these previous results and work only with normalized
schemas. Therefore, the set of di�erent types of possible edit operations we need
to consider will be smaller (e.g., we do not have to consider an operation for
moving a content model to a root) and, therefore, the introduced adaptation
algorithms are less complex.

Condition (1) requires that an association with the parent being the schema
class C ′S′ has a named child end and that its cardinality is 1..1. This is natural
because each such association models a root XML element. Therefore, its name
needs to be speci�ed and it has no sense to specify a cardinality di�erent from
1..1. Condition (2) requires that an association end with a content model as a
participant does not have a name. The names of child association ends specify
element names. However, an association end with a content model as a participant
does not model an element but only a part of the content of an element. Therefore,
its name would not be used anyway. Condition (3) requires that each content
model is a child of an association. A content model which is a root is unreachable
in the schema and, therefore, redundant.

3.3 Versions of the Model

In this section, we add versioning features to the model, an extension we will use
in Chapters 4 and 6.

One of our objectives was to allow the user to evolve schemas and create new
versions, but also let him/her work with the old versions as well. In other words,
each version must be independent of the others and the old version should not be
lost and replaced by a new version. That is why in our framework, the user can
choose any existing version v of the model and via the branch operation, create a
new version ṽ as a copy of v (branch creates copies of all the concepts and their
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properties). Then, the user can evolve ṽ to a desired state, but also go back to
work with v or any other version existing in the system.

We suppose that each version is identi�ed by some label. In real systems, the
labels usually are, e.g., �1.0�, �1.1�, �2.0�, �2.1�, etc. We will use V to denote the
set of labels of all versions of the system. We will call the members of V versions
labels or simply versions. Initially it has one member v0 which denotes the initial
version of the system. A new version is established and added to V each time the
user executes the branch operation.

Versions in V allow us to say, e.g., �class C belongs to version v�. We will use
function ver which answers questions like �To which version does class C belong?�.
To de�ne the domain of function ver (i.e., everything, that can be versioned in
our framework), we will use the following auxiliary de�nition:

De�nition 5. Let S be a PIM schema and S ′ be a PSM schema. The set of all the
components in S and S ′ will be denoted Sall = Sc∪Sr∪Sa and S ′all = S ′c∪S ′r∪S ′a,
respectively.

Further, let S∗ be a set of PIM schemas and S∗′ a set of PSM schemas. We
will use M∗ to denote the set of all schemas in S∗ and S∗′, and all components
of the schemas. I.e.,M∗ = S∗ ∪ S∗′ ∪ (

⋃
S∈S∗ Sall) ∪ (

⋃
S′∈S∗′ S ′all).

Function ver speci�es which version each schema or component belongs to.

De�nition 6. The function ver :M∗ → V assigns a version to each PIM schema,
PSM schema and to each of their components.

In other words, values of function ver form the input of the change detection
algorithm. When this function is implemented in a tool, the values of ver are
automatically de�ned as the user edits the schemas and creates new versions
(using operation branch with usual semantics).

Figure 3.1 shows two versions of a PIM schema and one PSM schema, XSDs
for the schemas can be found in Appendix A.1 � A.2. The second version ṽ was
created from the �rst version v using branch operation. Branch adds a new version
to V (so that V = {v, ṽ} and de�nes values of ver for the branched schemas and
constructs. When system is branched, function ver would return v for the PIM
and PSM schema on the left side and all their constructs. For the schemas on
the right side and their constructs, it would return ṽ. Each time a construct x
is added to a schema S, ver(x) is set to ver(S). When a new PSM schema S ′
is mapped to a PIM schema S, ver(S ′) is set to ver(S). After being branched,
the two versions can be edited separately. In the example, the user decided to
reconnect PIM association Address-Purchase to Address-Customer, rename it
from delivered to has and adapt the PSM schema accordingly.

De�nition 7. Let S∗ be a set of PIM schemas and S∗′ a set of PSM schemas. Let
K ⊆ M∗ and v ∈ V. We will use K[v] = {C|ver(C) = v} to denote projection of
K to version v or simply version projection. In other words, version projection
K[v] returns members of K that belong to version v.

We require the following conditions to hold:

(∀v ∈ V)(|S∗[v]| = 1) (3.4)

(∀S ∈ S∗)(Sall ⊆M∗[ver(S)]) (3.5)

(∀S ′ ∈ S∗′)(S ′all ⊆M∗[ver(S ′)]) (3.6)
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Figure 3.1: Two versions of a PIM and a PSM schema

The conditions in De�nition 7 require that exactly one PIM schema exists
for each version (3.4) and that all components of a given PIM or PSM schema
belong to the same version (3.5, 3.6). We also require consistency in PSM � PIM
mappings (interpretations of PSM constructs can be only the PIM constructs
from the same version).

In our examples, we will usually show the system divided into version projec-
tions. Figure 3.1 shows the two version projectionsM∗[v] andM∗[ṽ],M∗[v] on
blue background,M∗[ṽ] in orange background.

Without any loss of generality, in the following text we will assume |V| = 2,
unless explicitly stated otherwise (i.e., we expect there are two versions in the
system � the old version (v ∈ V) and the new version (ṽ ∈ V)).

3.3.1 Document Adaptation in a Versioned System

Document adaptation is a process triggered by schema evolution. By schema
evolution we mean conducting certain operations upon the existing schema until
reaching the desired �nal state � new version of the schema. Such a change can
violate validity of instances of the schema, i.e. XML documents. The state which
requires adaptation can be de�ned as follows:

De�nition 8. We say that the set of conforming documents T (S ′) of schema S ′
was invalidated in the new version (or just invalidated) if: ∃T ∈ T (S ′) : T /∈
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T (S̃ ′). If no such T exists, then S̃ ′ is called backwards-compatible.

The goal of adaptation is to modify the XML documents according to changes
in the schema so that they are valid against the new version of the schema.

The document adaptation process starts with change detection � two schemas
are compared and from the set of detected changes the system deduces steps re-
quired for successful document adaptation. Detecting changes in an XML schema
or a model of an XML schema is not always straightforward; some di�erences be-
tween the old and new version can be interpreted in more than one way. For
example, consider the PSM schemas in Figure 3.2.
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(a) Employee schema
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(b) Purchase schema

Figure 3.2: Examples of schema evolution

There are two possible interpretations for evolution of schema in Figure 3.2a:
either (1) attribute ID was removed and new attribute SSN was added or (2)
attribute ID was renamed to SSN. When deciding which interpretation is the
correct one, mapping to a PIM schema can be taken into account. E.g., if the
attributes are mapped to PIM attributes p1 and p2, whereas p2 is a new version
of p1, we can assume that the second interpretation is correct and the attribute
was only renamed. But even this is still only a heuristic.

Likewise, there can be two interpretations of the change depicted in Figure
3.2b: (1) attribute price was moved from Item to Purchase or (2) the attribute
was removed from Item and a new attribute was added to Purchase, having the
same name coincidentally. The adaptation of the documents in this example is
even more di�cult to decide. In the second case, a correct value must be assigned
to the new attribute. In the �rst case, the value of attribute price should be set
to the sum of the values of price in all the items of the purchase.

These are examples of the problems that a non-trivial adaptation algorithm
must solve. As we discuss in Chpt. 8, there are two fundamentally di�erent classes
of approaches to detecting changes between the two versions of the schema: ei-
ther (1) recording the changes (as they are conducted during the schema evolution
phase) or (2) by comparing the evolved schema to the original. A schema com-
parison approach must solve the problem of ambiguities of the sort as illustrated
in the examples above.

If we do not want to settle for heuristics, the only correct solution is to �nd
all possible interpretations and then let the user select the correct one. In our
approach, we decided to solve this issue by adding another type of concepts into
the model � version links. Version links connect constructs (i.e., classes, attributes
etc.) that represent the same real-word concept in di�erent versions of the model.
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They work as a mapping between di�erent versions of the schema and allow us
to distinguish whether a given concept in the new version is a completely new
concept or whether it is an update of an existing one. Therefore, it enables us to
avoid heuristics.

In the most cases, we do not need the user to specify the version links man-
ually. In our framework, version links are most of the time kept and managed
automatically in the background. Each time the user performs the branch oper-
ation, version links are created between all the concepts and their new versions.
After that, they are maintained until a concept is deleted (then the version links
from that concept must be removed as well). The user can add and remove ver-
sion links manually (e.g., when (s)he is adding a new concept which should be
mapped to old concept), but most of the time, they are managed by the system.
One can regard version links as an adoption from the change recording approaches
and our approach can thus be considered as a combination of schema compari-
son (which is the core of the algorithm) and change recording (which maintains
version links).

De�nition 9. Let S∗ be a set of PIM schemas, S∗′ a set of PSM schemas. A
version links relation is an equivalence relation VL ⊂ M∗×M∗ s.t. for any pair
(x, x̃) ∈ VL

� both x and x̃ are of the same kind (e.g., x is a PSM class (attribute,. . . )
↔ x̃ is a PSM class (attribute,. . . )) and

� ver(x) 6= ver(x̃).

We will call (x, x̃) ∈ VL version link.

A version link (x, x̃) ∈ VL speci�es that both x and x̃ represent the same
schema or schema component but in di�erent versions v and ṽ, respectively. We
will therefore say that x represents x̃ in v or, symmetrically, x̃ represents x in ṽ.
We will also simply say that x and x̃ are di�erent versions of the same schema
or schema component.

We also introduce a partial function getInVer. Given a schema or schema
component x and version v, the function returns a schema or schema component
x̃ which represents x in version v.

De�nition 10. Function getInVer : (M∗ × V)→M∗ is de�ned as follows:

getInVer(x, v) = x̃↔ (x, x̃) ∈ VL ∧ ver(x̃) = v

For combinations of parameters (x, v) where no such x̃ can be found, we will use
the sign ⊥ in the meaning: getInVer(x, v) = ⊥ ↔ ∀(x, x̃) ∈ VL : ver(x̃) 6= v.

Pairs for VL are also added during operation branch (a new version ṽ is
created from version v), but can be changed by the user. Figure 3.3 shows the
same schemas as Figure 3.1, this time with version links as they were created
when the schemas were branched and the second schema was edited (links between
attributes were omitted for clarity, also, the �gure does not show two version links
between the schemas themselves). All the version links in the �gure were created
and maintained by the system, without the need from the user to interfere.

When we go back to the pair of schemas depicted in Figure 3.2a, with version
links, we can unambiguously decide, which interpretation is correct. The second

28



Customer

Address

state

street

city

name

PurchaseSchema

Purchase

purchase

customer

item

Customer

name

P
IM

 L
e

ve
l

P
SM

 L
e

ve
l

delivered

Item

code

price

Purchase

0..*

makes

0..*

Customer

Address

name

has

Item

code

price

Purchase

status

date

number

0..*

makes

0..*

Items Address

PurchaseSchema

Purchase

purchase

item

Items

Address

state

street

city

items

delivery

version v version v~

state

street

city

status

date

number

Item

code

price

Item

code

price

customeritems delivery

Customer

state

street

city

name
0..*

0..*

Figure 3.3: Two versions of a PIM and a PSM schema with version links visualized

interpretation (attribute ID was renamed to SSN) is correct when there exists a

version link (A′, Ã′) (where A′, Ã′ are the attributes named ID and SSN respec-
tively). The usual process leading to this situation would be that the user created
new version of the schema via branch operation (which would create schema class

ẼS ′ as a copy of schema class ES ′ named EmployeeSchema, class Ẽ ′ as a copy of

class E ′ named Employee, association ÃE ′ as a copy of association AE ′ named
employee and attribute Ã′ as a copy of attribute A′ named ID). Branch operation

would create a copy of the schema and also version links (ES ′, ẼS ′), (AE ′, ÃE ′),

(E ′, Ẽ ′), (A′, Ã′) between the copied concepts. Then the user would rename at-

tribute Ã′ from ID to SSN in the second version (but link (A′, Ã′) to the attribute
in the �rst version would be preserved). For the second example in Figure 3.2b the
situation is analogous and the interpretation would depend upon the existence of
the version link between the attributes named Item.price and Purchase.price

(moving an attribute also preserves the version link).
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4. Document Adaptation

In this chapter, we specify the set of types of changes that our system can detect
and we describe how changes are detected. For each type of change, we show
how the change is adapted in the valid documents. Where several alternatives
of adaptation exists for some change, we discuss the options. We also examine
the changes from the perspective of backwards compatibility. Our document
adaptation approach was published in [46] and [45]. Examples of issues we address
can be found in Sec. 3.3.1.

4.1 Changes

In this section, we focus on possible kinds of changes between two versions of a
PSM schema and its components. A change can be considered as a local di�er-
ence between two PSM schemas (linked by a version link so they are di�erent
versions of each other). We distinguish a �nite amount of types of changes (e.g.,
classAdded, attributeMoved, etc.). We then introduce a change detection algo-
rithm which looks for particular changes of these types on the base of the version
links.

As can be seen, we suppose that version links exist between two versions of a
PSM schema. As we showed, this can be easily achieved when the user utilizes
our framework which creates and maintains links as the user edits the versions.
When a new version of the schema was not created using our framework (e.g., it
was issued by a standardizing organization managing the speci�cation which the
modeled system adopted), the version links do not exist. To solve this problem,
our framework supports reverse engineering and integration of schemas [34, 63].
It maps new PSM schemas or their new versions to the PIM schema. The version
links can be then deduced by composing the interpretations of the versions of
the PSM schema against the PIM schema. However, various heuristics together
with broader user interaction is required to create relation VL. The possibility
to infer version links from heuristics is not studied in this thesis and is a part of
our future work.

We can divide the set of types of changes which can occur between two versions
of a PSM schema S ′ into four groups according to the character of a change (the
classi�cation is similar to [62]):

� addition � a new construct was added to S ′,
� removal � a construct was removed from S ′,
� migratory � a construct (and possibly its subtree in S ′) was moved to an-
other part of S ′,

� sedentary � an existing construct in S ′ was adjusted in place, but not moved.

For each type there is also de�ned a type of construct where it can be detected.
We call it scope of change or simply scope. There are four scopes of changes: class,
attribute, association, and content model.
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4.1.1 Change Predicates

A change predicate is a formalization of a certain type of change between two
versions of a PSM schema. Each change predicate has a certain amount of param-
eters. Change detection can be then formalized as looking for n-tuples satisfying
the change predicates. The �rst parameter always corresponds to one of the
scopes. We will use cins to denote the set of all n-tuples which satisfy a change
predicate c. We will call it the set of instances of c.

Table 4.1 contains all the change predicates grouped by the scope with their
respective categories and description. We suppose a PSM schema in two di�erent
versions v, ṽ ∈ V . We will use tilde to mark constructs that belong to M∗[ṽ],
constructs without the tilde mark belong to M∗[v]. I.e., S ′ = (S ′c, S ′a, S ′r, S ′m,
C ′S′) ∈M∗[v] denotes the PSM schema in version v and S̃ ′ = (S̃ ′c, S̃ ′a, S̃ ′r, S̃ ′m, C̃ ′S′)
∈ M∗[ṽ] denotes the PSM schema in version ṽ.

For an example of change predicates, let us go back to Figure 3.2. Let us
assume a version link between attributes A′ named ID and Ã′ named SSN in Figure
3.2a. Table 4.1 contains a change predicate attributeRenamed with parameters
Ã′ ∈ S̃ ′a and ñ′ (the new name). Statement (Ã′, "SSN") ∈ attributeRenamedins is
a formal expression of the fact that the name of the attribute was changed from
ID to SSN.

Similarly, let us assume a version link between A′p and Ã′p (i.e., attributes

Item.price and Purchase.price in Figure 3.2b, where ver(A′p) = v and ver(Ã′p) =

ṽ). Let C̃ ′p be the class named Purchase in version ṽ. Table 4.1 contains a

change predicate attributeMoved with parameters Ã′ ∈ S̃ ′a, C̃ ′n ∈ S̃ ′c and ĩ′ ∈ N0.

Statement (Ã′p, C̃
′
p, 0) ∈ attributeMovedins is a formal expression of the fact that

attribute price was moved to class Purchase to the position 0.
For the purposes of implementation of the change detection and adaptation

algorithms, we de�ned each change predicate formally; however, due to space
limitations, we will not include the formal de�nitions of all the change predicates
in this thesis. We selected three change predicates � attributeAdded , association-
PositionChanged and classMoved � for demonstration:

Ã′ ∈ S̃ ′a ∧ C̃ ′ ∈ S̃ ′c \ {C̃ ′S′} ∧ ĩ′ ∈ N0 ∧ getInVer(Ã′, v) = ⊥
∧ position(Ã′, attributes(C̃ ′)) = ĩ′ ↔ attributeAdded(Ã′, C̃ ′, ĩ′) (4.1)

(
R̃′ ∈ S̃ ′r ∧ ĩ′ ∈ N0 ∧ C ′1 ∈ N ′ ∧ C̃ ′1 ∈ Ñ ′∧

getInVer(R̃′, v) 6= ⊥ ∧ C ′1 = getInVer(C̃ ′1, v)∧
parent(getInVer(R̃′, v)) = C ′1 = getInVer(parent(R̃′), v)∧
ĩ′ 6= position(R′, childAssociations(C ′1))∧

ĩ′ = position(R̃′, childAssociations(C̃ ′1))
)

↔ associationPositionChanged(R̃′, ĩ′) (4.2)
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Change predicate Category Description

classAdded(C̃ ′, R̃′) Addition A new class C̃ ′ is added as a child of as-
sociation R̃′ (if R̃′ = ⊥, C̃ ′ is added as a
new root class).

classRemoved(C ′) Removal Class C ′ is removed.

classRenamed(C̃ ′, ñ′) Sedentary The name of class C̃ ′ is changed to ñ′.
The name is mandatory for PSM classes,
but can be changed.

classMoved(C̃ ′, R̃′
n) Migratory Class C̃ ′ is moved and becomes a child of

association R̃′
n in version ṽ (or becomes

a new root class, in that case R̃′
n = ⊥).

This change encompasses changes of the
child participant of associations (in con-
trast to associationMoved � see below).

attributeAdded(Ã′, C̃ ′, ĩ′) Addition A new attribute Ã′ is added to class C̃ ′

at position ĩ′ ∈ N0.

attributeRemoved(A′) Removal Attribute A′ is removed.

attributeRenamed(Ã′, ñ′) Sedentary The name of attribute Ã′ is changed to
ñ′.

attributeMoved(Ã′, C̃ ′
n, ĩ

′) Migratory The value of class(Ã′) is changed, i.e.,

attribute Ã′ is moved from class C ′
o to

class C̃ ′
n at position ĩ′ ∈ N0. Moves

within the same class are detected by
attributeIndexChanged.

attributeXFormChanged(Ã′, f̃ ′) Sedentary The value of xform is changed from a to e
or vice versa for attribute Ã′(f̃ ′ ∈ {a, e}).

attributeTypeChanged(Ã′, D̃′) Sedentary The type of attribute Ã′ is changed to
D̃′ ∈ D.

attributeIndexChanged(Ã′, ĩ′) Migratory Attribute Ã′ is moved to position ĩ′ ∈
N0 within the same class as in version
v. Moves between classes are detected
by attributeMoved.

attributeCardinalityChanged
(Ã′, c̃′)

Sedentary The cardinality of attribute Ã′ is
changed to c̃′.

associationAdded(R̃′, C̃ ′, ĩ′) Addition A new association R̃′ is added to the con-
tent of class C̃ ′ at position ĩ′ ∈ N0.

associationRemoved(R′) Removal Association R′ is removed.

associationEndRenamed(Ẽ′, ñ′) Sedentary The name of the association end Ẽ′ is
changed to ñ′.

associationMoved(R̃′, P̃ ′
n, ĩ

′) Migratory Association R̃′ is moved from the content
of node P ′

o to the content of node P̃ ′
n at

position ĩ′ ∈ N0. This change encom-
passes changes of the parent participant
of associations (in contrast to classMoved
and contentModelMoved � see below).

associationEndCardinalityChanged
(Ẽ′, c̃′)

Sedentary The cardinality of association end Ẽ′ is
changed to c̃′.

associationPositionChanged(R̃′, ĩ′) Migratory Association R̃′ is moved to position ĩ′ ∈
N0 (within childAssociations of the same
class as in version v).

Table 4.1: Classi�cation of changes 1/2
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Change predicate Category Description

contentModelAdded(M̃ ′, R̃′) Addition A new content model M̃ ′ is added as a
child of association R̃′.

contentModelRemoved(M ′) Removal Content model M ′ is removed.

contentModelMoved(M̃ ′, R̃′
n) Migratory Content model M̃ ′ is moved and becomes

a child of association R̃′
n in version ṽ.

Content models cannot be roots in a nor-
malized PSM schema (see De�nition 4).

Thus, unlike classMoved, R̃′
n is never null

for contentModelMoved.

contentModelTypeChanged(M̃ ′, t̃′) Sedentary The type of content model (sequence,

set, choice) M̃ ′ is changed to t̃′ ∈
{sequence, set, choice} .

Note: There are no predicates dedicated to the changes in the set S ′e
and function participant, because each change in S ′e and participant
is an inherent part of another change (classAdded, classRemoved,
classMoved, contentModelAdded, contentModelRemoved, contentModelMoved,
associationAdded, associationRemoved). Thus, changes in S ′e and participant are
detected and documents adapted within the scope of the changes listed above.

Table 4.1: Classi�cation of changes 2/2

C̃ ′ ∈ S̃ ′c \ {C̃ ′S′} ∧ R̃′n ∈ S̃ ′r ∧ getInVer(C̃ ′, v) = C ′ 6= ⊥ ∧ child(R̃′n) = C̃ ′∧[
(∃R′o ∈ S ′r)(child(R′o) = C ′∧
R′o 6= getInVer(R̃′n, v)) ∨ (∀R′o ∈ S ′r)(child(R′o) 6= C ′)

]
↔ classMoved(C̃ ′, R̃′n)) (4.3)

C̃ ′ ∈ S̃ ′c \ {C̃ ′S′} ∧ getInVer(C̃ ′, v) = C ′ 6= ⊥
∧ (∃R′o ∈ S ′r)(child(R′o) = C ′) ∧ (∀R̃′n ∈ S̃ ′r)(child(R̃′n) 6= C̃ ′)

↔ classMoved(C̃ ′,⊥)) (4.4)

Predicate (4.1) says that the examined attribute Ã′ has no counterpart A′

present in version v and the position of Ã′ among the attributes of class C̃ ′ equals
to ĩ′. Predicate (4.2) says that the parent of the examined association R̃′ has not

changed between versions v and ṽ, but the position of R̃′ in the content of its
parent has changed to ĩ′. Predicate (4.3) says that the examined class C̃ ′ was

moved under association R̃′n either from the root or from another association,

whereas Predicate (4.4) says that C̃ ′ was moved from an association R′o to a root.
With the formal de�nitions of change predicates, we are able to detect dif-

ferences between two compared versions of a schema. Now we can describe how
algorithm DetectChanges (see Algorithm 1 for pseudo-code listings). It takes as

an input two versions of the PSM schema: S ′ and S̃ ′ (s.t. ver(S ′) = v and

ver(S̃ ′) = ṽ) and the relation VL. For each change predicate, it examines all con-
structs in the appropriate scope and tests, whether the predicate is satis�ed for
any combination of other parameters. Although the description of the algorithm
may arise a suspicion of ine�ciency, it is possible to de�ne a more e�cient lookup
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subroutine for each change predicate. For instance, for predicate classMoved , it
is not necessary to test all associations for parameter R̃′n, but only the actual

parent of class C̃ ′. That is how the actual implementation works.

The output of the algorithm is the set CS′,S̃′,v,ṽ =
⋃
c

(c, cins), containing for

each change predicate the set of all of its instances. The output set CS′,S̃′,v,ṽ
captures the changes made between the two versions of a PSM schema.

Algorithm 1 DetectChanges

Input: old and new version v, ṽ ∈ V , PSM schemas S ′, S̃ ′
Output: CS′,S̃′,v,ṽ � set of changes between S ′ and S̃ ′
1: CS′,S̃′,v,ṽ ← ∅
2: for all change predicate c do
3: cins ← ∅
4: end for
5: for all change predicate c of arity k do

6: for all tuple t ∈ (S ′all × S̃ ′all)k do
7: if c(t) then {tuple t satis�es c}
8: cins ← cins ∪ t
9: end if
10: end for
11: CS′,S̃′,v,ṽ ← CS′,S̃′,v,ṽ ∪ {(c, cins)}
12: end for

Inheritance Algorithm 1 does not detect changes in PSM inheritance, but
it could be readily extended. From the document adaptation point of view,
inheritance means:

1. allowing content from the base class in the instance of the speci�c class

2. allowing instances of inherited classes in the place where an instance of the
base class is allowed

The �rst property can be achieved by treating each speci�c class C̃ ′s as if
it had another unnamed association preceding the rest of the associations in
childAssociations(C̃ ′s) and putting the inherited attributes from the base class C̃ ′g
before the attributes of C̃ ′s itself. The second property can be achieved by treating

each association R̃′ s.t. child(R̃′) = C̃ ′g as if there was leading to a choice content

model Ñ ′ and Ñ ′ had unnamed associations leading to all the classes C̃ ′si , which

inherit from C̃ ′g.

4.1.2 Impact on Validity

The output set CS′,S̃′,v,ṽ of algorithm DetectChanges can be further analyzed.
Having detected the set of change instances CS′,S̃′,v,ṽ, we can determine the im-
pact of evolution on validity. Some change instances do not a�ect validity of the
documents in T (S ′). However, they may a�ect other parts of our �ve-level frame-
work. For example, during the translation of the PSM schema into XSD, class

34



names are used for naming the generated complex types. Renaming a class does
not invalidate T (S ′) (because class names do not correspond to content of the
documents), but the XSD generated from S ′ will di�er from the XSD translated

from S̃ ′.
The ability to identify instances of change predicates not a�ecting validity

can signi�cantly simplify the process of XML document adaptation. Of course,
if we are sure that all the detected change instances in the evolved schema do
not a�ect validity, it is correct to skip the adaptation of T (S ′), because validity
against the new schema is guaranteed. For each change predicate, we can de�ne
additional tests that, if satis�ed, ensure that the instance of the change predicate
does not a�ect validity of the documents from T (S ′).

De�nition 11. Let c be a change predicate (as listed in Table 4.1) and ic ∈ cins
its instance. We de�ne predicate cNI , called NI-predicate for c, with the same
parameters as change predicate c. When cNI is satis�ed for an instance ic, this
instance does not a�ect validity of documents in T (S ′).

Example 4.1.2 shows several NI-predicates and Lemma 1 joins NI-predicates
with the notion of backwards compatibility from De�nition 8. Its proof is a direct
application of the de�nitions.

As an example consider the following NI-predicates:

classRenamedNI(C̃ ′, ñ′)↔ true (4.5)

attributeCardinalityChangedNI(Ã′, m̃′..ñ′)↔
getInVer(Ã′, v) = A′ ∧ card(A′) = m′..n′ ∧m′ ≥ m̃′ ∧ n′ ≤ ñ′ (4.6)

associationPositionChanged(R̃′, ĩ′)↔
getInVer(R̃′, v) = R′ ∧ parent(R̃′) = M̃ ′ ∈ S̃ ′m ∧ parent(R′) = M ′ ∈ S ′m ∧(
(cmtype(M ′) ∈ {sequence, set} ∧ cmtype(M̃ ′) = set) ∨
(cmtype(M ′) = choice ∧ cmtype(M̃ ′) = choice)

)
(4.7)

Predicate (4.5) is satis�ed for all instances of classRenamed , because the
name of a class does not correspond to any part of the modeled XML docu-
ment. All instances of classRenamed thus do not violate validity. Predicate
(4.6) is satis�ed for those instances of attributeCardinalityChanged which broad-
en the cardinality interval. Predicate (4.7) is satis�ed for those instances of
associationPositionChanged which reorder content of content models of type set
and choice. For these, the ordering of content is not signi�cant.

Predicates for other changes are de�ned in a similar manner (and, of course,
predicates for some changes are never satis�ed, because the change always violates
validity).

Lemma 1. Let S ′ and S̃ ′ be two versions of a PSM schema (ver(S ′) = v,

ver(S̃ ′) = ṽ). Let CS′,S̃′,v,ṽ be the output set of algorithm DetectChanges for
these schemas. Then:

(∀(c, cins) ∈ CS′,S̃′,v,ṽ)((∀i ∈ cins)(c
NI(i1, . . . , ik))→ T (S ′) ⊆ T (S̃ ′)

where i1, . . . , ik are elements of k-tuple i ∈ cins with arity k.
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In other words, if cNI is true for all the instances of every predicate c, then
S̃ ′ is backwards compatible.

It must be emphasized that NI-predicates can not decide backwards compati-
bility by themselves. It is possible that the schema is backwards compatible, even
thought some change predicates are violated (i.e., the implication in Lemma 1
can not be turned into an equivalence). Change predicates are always `local' and
they do not consider other changes in the schema (i.e., change predicates for two
change instances may be violated, but the two changes combined are backwards
compatible). Testing backwards compatibility exhaustively would mean to decide
whether L(GS′) ⊆ L(GS̃′) which is generally undecidable.

4.2 Adaptation

When the new version S̃ ′ of the schema S ′ invalidates the set T (S ′), we need
to adapt the documents consequently. For each change predicate, we describe
how documents in T (S ′) should be adapted. We will describe adaptation as a
function adapt with the following semantics:

∀T ∈ T (S ′) \ T (S̃ ′) : adapt(T ) ∈ T (S̃ ′) (4.8)

∀c,∀i, i ∈ cins, (c, cins) ∈ CS′,S̃′,v,ṽ :

instance i is adapted correctly in adapt(T ) (4.9)

The �rst condition de�nes correctness w.r.t. to the evolved schema, i.e., that
the adapted document is valid against the new version. The second condition
de�nes correctness w.r.t. the detected set of changes. It must be pointed out
that not every action, that formally makes a document valid, can be considered a
correct adaptation. For instance, let a user move an optional attribute in a PSM
schema from its current class to another class. Deleting the corresponding parts
in the document would not be the correct adaptation even though the result is
formally valid. We need a more sophisticated adaptation which correctly moves
the corresponding parts in the document.

Correct adaptations for each change predicate are described in the rest of this
section. The adapt function behaves di�erently for each change predicate and
has di�erent preconditions. For some predicates the function has more alternative
behaviours depending on various conditions which we discuss in the following text.
However, any document which is valid against the old version of the schema can
be adapted and the adaptation results into a document which is valid against the
new version of the schema.

We do not expect any speci�c implementation language [87, 91, 81, 28] in the
rest of this section, however, our implementation uses XSLT. We will describe
how our framework generates the adaptation script in XSLT in Sec. 4.3.

4.2.1 Class Changes

classAdded (C̃ ′, R̃′) If the added class C̃ ′ is a top class (i.e., child of schema

class C ′S′), De�nition 4 requires the association between C ′S′ and C̃ ′ to have a name.
New named top class models a candidate for a root node of the document. Adding
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a new such candidate does not require adaptation of the existing documents.
Similarly, when C̃ ′ is not a top class, but card(R̃′) = 0..n (the XML content
modelled by the association and the class is optional) or parent(R′) = X ′ ∈ S ′m
(class is added into a content model) and the content model is a choice or set,
the change does not require adaptation (the added class de�nes a new optional
part of a document).

In other cases, an instance of class C̃ ′ must be created during adaptation.
Creating new content is a problem of its own and we will analyse it later in this
chapter. If the card(R̃′) = 1..1 and name(C̃ ′) 6= λ, the adaptation algorithm can

create a new XML element. However, when card(R̃′) = m..n where m < n, the
algorithm must decide (or ask the user) how many instances it should create. If it

creates more then one instance and some constructs were moved under C̃ ′, again,
the algorithm must decide how to distribute the moved content into the created
instances of C̃ ′.

classRemoved (C ′) Removal of a construct from the model must be always
solved by removal of the content modeled by the removed construct from the
documents in T (S ′) (removing the instances). However, the content modeled by
the whole subtree each instance cannot be instantly removed from the document,
because some other changes may move parts of this content to other parts of the
document.

classRenamed (C̃ ′, ñ′) This change does not require any adaptation of XML
documents, because the name of a PSM class is not re�ected in the XML docu-
ment.

Translation of PSM schemas to XML Schema uses class names to name com-
plex types, groups and attribute groups, so changing the name of a class results
in changing the name of a complex type in the XSD. If names of types, groups
and attribute groups in XSD need to remain consistent with names of constructs
in other components of the systems (i.e., with names of tables and columns in
a relational database or names of classes in an object model), these construct
should be renamed too.

The remaining classMoved change will be discussed in Sec. 4.2.5.

4.2.2 Attribute Changes

attributeAdded (Ã′, C̃ ′, ĩ′) If attribute Ã′ is added as mandatory, a new con-
tent must be added into the document � either an XML element with a simple
content or an XML attribute (if xform(Ã′) = e or a respectively). The complica-
tions are similar as in the case of classAdded change.

attributeRemoved (A′) All instances of attribute A′(i.e., XML attributes or
XML elements with simple content) must be removed from the document.

attributeRenamed (Ã′, ñ′) Each XML attribute/element modeled by A′ =

getInVer(Ã′, v) (named name(A′)) must be renamed to ñ′ in the XML document.
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attributeXFormChanged (Ã′, f̃ ′) Changing the xform of a PSM attribute
A′ requires:

� creating a new XML node of the respective type in the new location �
either a new XML attribute, if xform(Ã′) = a, or an XML element, if

xform(Ã′) = e. The node value is copied from the old instance.

� deleting the instance of A′ from its previous location (It can be either an
XML attribute, if xform(A′) = a, or an XML element with simple content,
in that case xform(A′) = e.)

attributeTypeChanged (Ã′, D̃′) Let D′ be the type in version v, i.e., D′ =

type(getInVer(Ã′, v)) and dom(D′) its domain. Adaptation of documents may

be skipped in case when dom(D′) ⊆ dom(D̃′). This condition is guaranteed if

D′ is a type derived from D̃′ using restriction in the XSD type system (see [5]).
The condition means that the requirements for the documents were relaxed and
a more general set of values is allowed. In the opposite situation, instead of a
general set of values, the requirements are made more strict and only a speci�c
subset of values is allowed. E.g., instead of an arbitrary string for email attribute
in the old version, only strings valid against a regular expression describing all
the possible email addresses are allowed in the new version. In such case D′ ⊇ D̃′.
In the general case the two sets are incomparable.

Let us denote [A′][T (S ′)] the set of all values of attribute A′ in all documents

in T (S ′). Then we can extend the previous approach if [A′][T (S ′)] ⊆ D̃′. In this
case no adaptation is needed again. Verifying this condition cannot be possible
in every case; however, in some situations, it can be done easily. For instance,
when we return to the email example, the XML schema may de�ne an email
as an arbitrary string, but the system contains another component that veri�es
each email more strictly, before it can occur in a document D ∈ T (S ′). The
applicability of this approach can be decided by the user.

If adaptation is really necessary, function convA′ : D′ → D̃′ or (since we do
not need to be able to convert all the possible values in D′) convA′ : [A′][T (S ′)]
→ D̃′ must be provided for the adaptation algorithm.

Function convA′ can be reused by pairs of attributes with the same pairs of
types, i.e., for attributes (A′, Ã′) ∈ S ′a× S̃ ′a s.t. type(A′) = D′ and type(Ã′) = D̃′,
function convA′ = conv

D′,D̃′ converting values from the domain of D′ to values

from the domain of D̃′ can be used.
Alternatively, the function can be de�ned separately attribute Ã′ with changed

type.

attributeIndexChanged (Ã′, ĩ′) Adaptation depends on the values of f ′ =

xform(A′) and f̃ ′ = xform(Ã′). If either f ′ = a or f̃ ′ = a, the attribute modeled
an XML attribute in the old version or does so in the new version. Since the
order of attributes in an XML element is insigni�cant and applications should
not rely on the order of attributes, no adaptation is needed.

If both f ′ = f̃ ′ = e the order of attributes determines the order of XML
subelements, which is signi�cant. The change then requires reordering of the
subelements modeled by the attributes with respect to the new order of the list
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attributes (C̃ ′).

attributeCardinalityChanged (Ã′, c̃′) Let card(A′) = (m̃′, ñ′), getInVer(Ã′, v) =
A′ and card(A′) = m′..n′. For cardinality changes, there are two adaptation ac-
tions from which none, one or both must be undertaken to adapt a document
(varying from document to document).

� If m̃′ > m′, new content may have to be added for some documents.

� If ñ′ < n′, content may have to be removed from some documents.

For each document D ∈ T (S ′), the number of XML nodes (elements or at-
tributes, depending on the value of xform(A′)) that are instances of A′ di�ers
(unless m′ = n′), therefore the amount of XML nodes that need to be added/re-
moved di�ers too.

When removing nodes, the algorithm must either choose which nodes to keep
and which to delete (one solution can be to always keep those nodes that occur
earlier in the document) or leave this choice up to the user.

When adding nodes, the values for these nodes must be assigned. Raising the
lower cardinality fromm′ ≥ 1 to m̃′ > m′ raises the minimum allowed occurrences,
(the special case m′ = 0 and m̃′ ≥ 1 makes an optional subelement/attribute
mandatory). That is why approaches to generate values of attributes need to
be discussed. In this particular case, a simple solution would be using a default
value of the attribute � see Section 4.2.6 for more details.

attributeMoved (Ã′, C̃ ′n, ĩ
′) Moving an attribute is an evolution operation

that requires more in-depth enquiry. The aim of our approach is to keep the
semantics of the adapted document and not to loose the existing data during
adaptation. The trivial propagation solution � deleting the attribute from its
former location in the document and creating a new attribute in the new location
(as used in [77] and [24]) � is not suitable, because the value of the attribute is
lost.

The straightforward solution is to create the instance at the new location,
copy the value from the old location and remove the old instance. This is suit-
able in many cases, but when there are cardinalities involved, the situation gets
complicated. The problem is, that there may be several instances of the A′ in
the old version and the number of required instances of Ã′ in the new version is
di�erent.

The most general approach is to couple each instance (Ã′, C̃ ′n, ĩ
′) of attribute-

Moved change with an adaptation function attMove
Ã′(oldInstances, newInstance)

where oldInstances selects all existing instances of A′ and newInstance contains
the new location of the instance in the adapted document. The result of the
function is the new value for the instance of Ã′ in the new document. In general,
the function attMove

Ã′ is de�ned by the user, but the system can provide the user
with a suggestion in certain cases � several types of the most common scenarios
can be distinguished.

In the following text we expect that the attribute was moved between classes
C ′o and C̃ ′n, i.e., attribute A

′ ∈ attributes(C ′o), Ã
′ ∈ attributes(C̃ ′n). Let C̃ ′o =

getInVer(C ′o, ṽ) and C ′n = getInVer(C̃ ′n, v) be the new version of class C ′o and the
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old version of class C̃ ′n respectively, both can be ⊥. In the situation depicted

in Figure 3.2b A′ = price1, Ã
′ = price2, C

′
o = Item1, C

′
n = Purchase1, C̃ ′o =

Item2, C̃ ′n = Purchase2 (we use subscripts to distinguish constructs in version v
and ṽ). We will use an auxiliary function tree, that returns the smallest tree that
contains a set of nodes. Formally:

De�nition 12. For a rooted tree (V,E), tree(X), tree : 2V → 2(V ∪E) returns the
nodes and edges of the subgraph of the smallest common subtree for a set X ⊆ V ,
containing root b of the common subtree, members of X and for each n ∈ X path
between n and the root b.

An example of the result of function tree is depicted in Figure 4.1. The result
of tree({f, g, i}) is the set {a, b, d, f , g, i, a− b, b− f , f − i, a− d, d− g}, where
a is the root of the common subtree and a− b the edge from a to b, etc.

a

b c d

f g

h i

e

Figure 4.1: Example of tree function

In addition, we de�ne predicate stable for a subset of PSM constructs X ′ ⊆
{S ′all \ S ′a} as stable(X ′) ↔ ∀X ′ ∈ X ′ : getInVer(X ′, ṽ) = X̃ ′ 6= ⊥ ∧ X̃ ′ was
not moved, added or deleted and its cardinality was not changed (if X ′ is an
association).

The intuitive meaning of predicate stable(X ′) is that there were no radical
changes in the structure of the schema concerning the members of X ′.

In the case of C ′n 6= ⊥, T ′ = tree({C ′o, C ′n}) and stable(T ′) holds, we can suggest
the following adaptations, which cover the usual scenarios:

� If ∀ association R′ ∈ T ′ : card(R′) = mR′ ..1 (i.e., only cardinalities 0..1
and 1..1 are allowed in the a�ected part of the schema) and, therefore, the

attribute Ã′ will have 0 or 1 instance in the the subtree T ′ in the old schema,
then this instance can be copied to the only one new location in the subtree
T̃ ′. The value may need to further adapted when attributeTypeChanged(Ã′)
holds.

� If C ′o is a descendant of C
′
n in the PSM tree (the attribute is moved upwards,

but the associations between C ′o and C ′n can have arbitrary cardinalities),
then all instances of A′ under each instance of C ′n should be �aggregated� to

one instance of Ã′. Several aggregation functions can be o�ered (e.g., sum,
count, avg, max, min known from relational databases or concat inlining
the respective values).

� If C ′o is a descendant of C ′n in the PSM tree, card(A′) = m′..1 and card(Ã′)

= m̃′..∗, then this case is similar as the case above, but the cardinality of
attribute Ã′ is adjusted, so all the values from existing instances can be
used as values of Ã′. No aggregation is needed.
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� If C ′o is an ancestor of C ′n in the PSM tree, card(A′) = m′..∗ and card(Ã′) =

m̃′..1, then this is an inverse case to the one above. The respective values
of A′ can be distributed to the new locations. Nonetheless, a user may have
to specify the distribution precisely.

When none of the conditions above is satis�ed, a possible general approach is
to use the function attMove

Ã′ = identityN which returns the value of the n-
th instance of A′ when required at the n-th location in the adapted document.
Possible other generic attMove

Ã′ functions may be provided by the framework
and the framework may also allow the user to create new ones. New functions
could be de�ned either in an implementation language (such as XSLT), but this
solution is not in concord with the objective to abstract the user from working
with the implementation language directly. In Chpt. 6, we will show a di�erent
solution which uses expression languages.

4.2.3 Association Changes

In the following text, let R̃′ = (Ẽ ′1, Ẽ
′
2) ∈ S̃ ′r be a PSM association, R′ = (E ′1, E

′
2)

its previous version (if it exists), participant(Ẽ ′1) = C̃ ′1, participant(Ẽ
′
2) = C̃ ′2,

participant(E ′1) = C ′1, participant(E
′
2) = C ′2.

associationAdded (R̃′, C̃ ′, ĩ′) If name(R̃′) is de�ned (association has a name
ñ′), wrapper XML element named ñ′ will be put to the adapted document and

then the adaptation proceeds to adapt the child node C̃ ′2 = child(R̃′). If C̃ ′2 is

a construct added in the new version (getInVer(C̃ ′2, v) = ⊥), adaptation is per-
formed within the scope of adaptation of classAdded/contentModelAdded change

described later in this section. Otherwise (when getInVer(C̃ ′2)) = C ′2 6= ⊥), C ′2 was
moved from its previous location in the PSM schema tree. In that case, adaptation
is performed within the scope of adaptation of classMoved/contentModelMoved
change.

associationRemoved (R′) If name(R′) is de�ned, the matching wrapping
XML element is removed. Depending on whether child(R′) = C ′2 was deleted
or not (i.e., it was moved), the adaptation continues within the scope of adapta-
tion of classRemoved/contentModelRemoved or classMoved/contentModelMoved
changes, respectively.

associationEndCardinalityChanged (Ẽ ′, c̃′) Changing the cardinality of

the parent node does not require any revalidation. So, let us assume that Ẽ ′ is the
child node of association R̃′. Similarly as with attributeCardinalityChanged , there
exist two adaptation actions, from which none, one or both must be undertaken
to adapt a document (varying from document to document).

Let card(E ′) = m′..n′ and card(Ẽ ′) = (m̃′, ñ′).

� If m̃′ > m′, new content may have to be added for some documents.

� If ñ′ < n′, content may have to be removed from some documents.
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In case of PSM attributes, the content added or deleted involves either XML
attribute or leaf XML elements with simple content. With PSM association the
adaptation actions have to deal with whole XML subtrees.

For each document T ∈ T (S ′) the number of XML nodes that are instances
of R′ di�ers (unless m′ = n′). Therefore the amount of XML nodes that need to
be added/removed di�ers too.

When removing nodes, the algorithm must either choose which nodes to keep
and which to delete (one solution can be always keep those nodes that occur
earlier in the document) or leave this choice up to the user.

When adding, the content for the new instances must be generated (this
involves generating a whole XML subtree).

associationPositionChanged (R̃′, ĩ′) Two di�erent cases can be distinguished

for associationPositionChanged : either (1) {C ′1, C̃ ′1} ⊆ S ′c ∪ {M ′ : S ′m| cmtype

(M ′) = sequence } or (2) at least one of C ′1 and C̃ ′1 is a content model and

cmtype(C̃ ′1) ∈ {choice, set}. In the case number (1), adaptation is needed and

content modelled by C̃ ′2 must be moved to the proper location. There is only one

exception. When the subtree of C̃ ′2 models only XML attributes and no XML
elements, no adaptation is needed, because the order of attributes is not signi�-
cant in the XML data model and no application should rely on attributes being
de�ned in some particular order.

In the case numbered (2), no adaptation is necessary, because the ordering of
associations in choices/sets has no e�ect on validity of documents.

associationEndRenamed (Ẽ ′, ñ′) If Ẽ ′ is the parent association end, no
adaptation action is necessary, because the name of the parent association end is
not re�ected anywhere in the XML documents.

Since λ values must be taken into consideration, three model cases can be
distinguished. Let n′ = name(getInVer(Ẽ ′)):

� If n′ = λ∧ ñ′ 6= λ, the association was given a name, which means the each
instance (since E ′ can have cardinality 6= 1..1) will be wrapped in a new
XML element with name ñ′. If the subtree of participant(E ′) models some
attributes with xform = a, which are not in a subtree of another class with
non-empty name, the instances of these attributes will now be moved to
newly created the wrapping XML element.

� If n′ 6= λ∧ ñ′ 6= λ, the association is renamed, which means each wrapping
XML element modelled by R′will be renamed to ñ′.

� If n′ 6= λ ∧ ñ′ = λ, the name is removed from an association, the needed
adaptation is an exact opposite of the �rst case, which means that the wrap-
ping XML element is removed (and when it contains some XML attributes
they are moved upwards).

The remaining associationMoved change will be discussed in the following
Sec. 4.2.5.
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4.2.4 Content Model Changes

contentModelAdded , contentModelRemoved Adaptation of these two changes
follows the same principles as adaptation of classAdded and classRemoved changes.

contentModelTypeChanged (M̃ ′, t̃′) In this part, let L′ = childNodes(M ′), L̃′ =

childNodes(M̃ ′). The list L̃′ may contain three groups of nodes:

1. nodes added in version ṽ,

2. nodes whose counterparts in version v are members of the list L′, and

3. the rest � nodes whose counterparts in version v reside elsewhere in the
PSM tree.

Nodes from groups 2 and 3 may have instances in the document D. On the
basis of values t̃′ = cmtype(M̃ ′) and t′ = cmtype(M ′) we can distinguish the
following situations:

� If t′ ∈ {sequence, set} ∧ t̃′ = choice, when processing an instance of M ′,

one child node C̃ from L̃′ must be selected and instance of C̃ will be included
in the adapted document. Groups 2 and 3 are preferred when selecting the
node C. If there are more candidates, it is up to the user to make the
decision.

� If t′ = sequence ∧ t̃′ = set, no adaptation needed, because set is more
relaxed than sequence.

� If t′ = choice ∧ t̃′ ∈ {sequence, set}, a content must be added for each

member of L̃′ which is not optional and no instance was found for it in
document D.

� If t′ = set ∧ t̃′ = sequence, instances must be reordered to follow the
ordering of L̃′.

The remaining contentModelMoved change will be discussed in the following
Sec. 4.2.5.

4.2.5 Changes Moving Classes, Content Models and Asso-

ciations

associationMoved (R̃′, P̃ ′n, ĩ
′) The content modeled by R′ will be removed

from the processed instance of P ′o. Since in the new version, R̃′ is among contents

of P̃ ′n, the wrapping XML subelement is created (if R̃′ has a name) in the instance

of P̃ ′n.

If getInVer(child(R̃′), v) = child(R′), i.e., the association was moved with its
child (which is the usual situation, but not the general case), the adaptation pro-
ceeds to the child, i.e., the instances of child(R′) will be converted to instances

of child(R̃′). The situation is similar to adaptation of attributeMoved change
described in Section 4.2.2. The adaptation is again largely a�ected by the car-
dinalities of the concerned association and the positions of the nodes P ′o and P̃

′
n.

In case of getInVer(P̃ ′n, v) = P ′n 6= ⊥ and stable(tree(P ′o, P
′
n)), we can distinguish
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some cases corresponding to those proposed for attributeMoved and o�er simi-
lar options for adaptation. Otherwise, the user must provide his/her adaptation
function for the particular case.

Nonetheless, one additional aspect needs to be taken into consideration: the
association can be moved to or from the content of schema class C ′S′ . If the

association was moved to content(C ′S′) (i.e., child(R̃′) became a top class) and R̃′

has a name, then each instance of R′ can become a basis of a new valid document.
This way, if there were more instances of R′ in the document D, several adapted
documents can be created from D. This adaptation is correct, but the user
should always be warned before the algorithm proceeds to perform it, because
the consequences can be large-scale.

If the association is moved from content(C ′S′) elsewhere in the tree, another
top class must be selected as the new root. Candidates are those top classes
that have instances in the adapted documents or classes that serve as wrappers
for such classes. Nonetheless, if there is more than one such candidates, it is
up to the user to choose, whereas the class selected as the new root can change
from document to document. The alternative in cases when more candidates are
available is again to produce one adapted document for each such candidate.

classMoved (C̃ ′, R̃′n), contentModelMoved (M̃ ′, R̃′n) As opposed to the
previous case, it is now the node which is moved, not the association leading to
it. We introduce separate predicates to cover all possible changes between two ver-
sion of the model, but their treatment during adaptation is analogous. Let Ñ ′ =
C̃ ′/M̃ ′, N ′ = getInVer(C̃ ′, v)/getInVer(M̃ ′, v) for classMoved/contentModelMoved

respectively. The instances of N ′ will be converted to the instances of Ñ ′ in the
content of R̃′n. Again as for attributeMoved and associationMoved, adaptation
can be o�ered in some particular cases, but for the general case, the user must
provide his/her adaptation function.

In the rest of this section, we will �rst discuss approaches in situations, where
the adaptation algorithm should create new content in the adapted document.
In the end of this section, we show a larger example of schema evolution and
document adaptation.

4.2.6 Generating content

As mentioned before, certain modi�cations in the schema may require a new con-
tent to be added into some (or all) documents in T (S ′) to adapt the documents.
This happens in particular when:

� A new mandatory construct is added into the schema, either a class via
classAdded (C ′, s.t. card(parent(C ′)) = l..u, l > 0) or an attribute via
attributeAdded (A′, s.t. card(A′) = l..u, l > 0).

� A cardinality interval was extended from l1..u1 to l2..u2, where l1 < l2 (using
attributeCardinalityChanged or associationEndCardinalityChanged).

� A construct was moved or deleted from a content choice and its instance
in the XML document must be replaced by instance of one of the other
components in the content choice (using classMoved , contentModelMoved ,
or associationMoved).
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  <name>Martin Necasky</name>
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  </delivery>
 </customer> 
 <items>
    ...
 </items> 
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<xsl:template name=”purchase”>
 <purchase>
  <xsl:apply-tepmlates select=”customer | items” />
 </purchase>
</xsl:template>
<xsl:template name=”customer”>
 <customer>
  <xsl:apply-templates select=”name” />
  <xsl:apply-templates select=”../delivery” />  
 </customer>
</xsl:template>

Figure 4.2: associationMoved � adaptation

The following text discusses several possible solutions.

Default values of attributes One of the easiest ways is to introduce function
default that would assign a default value for PSM attributes. This value could
then be used each time an attribute instance needs to be generated. XML schema
languages routinely provide constructs for specifying default values of attributes,
so the result is always de�ned. However, such a solution can not be used when
no default value can be found for an attribute (e.g., when the value should be
computed based on other data in the document).

Default complex content The adaptation script can also create the missing
element content itself. The structure of the internal nodes is given, for values
of leaf nodes and attributes the default values for the given type of each PSM
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attribute (e.g., an empty string for type xs:string) can be utilized or the at-
tributes can �lled with default values speci�ed by the user, as suggested in the
previous paragraph. Where a content model of type choice is present, the �rst
component is always selected. For each attribute and association with cardinality
m..n, the algorithm creates exactly m instances. Such a content will be called
default instance. The default instance can serve as a skeleton for the user, who
can then further modify it, either in the adaptation script or, after adaptation,
in each adapted document.

Advanced techniques The previous techniques result in the same adaptation
for every document and they cannot handle situations, where adaptation script is
supposed to create di�erent content for every document. In Chpt. 6, we show how
to derive new content from the content of the adapted document. In Chpt. 9.3, we
discuss the possibilities of creating content based on some external data sources.

4.2.7 Adaptation Example

To demonstrate changes and the adaptation script, we provide an example of
schema adaptation for a purchase schema in Fig. 4.3, XSDs for the PSM schemas
can be found in Appendix A.3 � A.4. The �gure depicts the version links for the
changed constructs (the links for the unchanged constructs are hidden from the
�gure). All constructs participating in changes are also highlighted.

In the new version, association address was moved from CustomerInfo to
Customer and renamed to delivery-address. New classes Items and CustEmail
were added. Attribute email was moved from Customer to CustEmail and its
cardinality was restricted to 0..5. Attributes of Address class were reordered and
attribute weight was removed from the schema. The change instances as detected
by Alg. 1 are as follows (we use subscripts 1 and 2 to distinguish constructs from

S ′ and S̃ ′):
� associationMoved(delivery-address2, Customer2, i)

� associationEndRenamed(delivery-addres2, `delivery-address')

� classAdded(Items2, Purchase2)

� associationMoved(item2, Items2, 1)

� classAdded(CustEmail2, Customer2, 2)

� attributeMoved(email2, CustEmail2, 1)

� attributeCardinalityChanged(email2, 0..5)

� attributeRemoved(weight1)

� attributeIndexChanged(city2, 1)

� attributeIndexChanged(street2, 2)

� attributeIndexChanged(zip2, 3)

In the next section, we will describe how changes are adapted in our framework
and an adaptation script is generated as an XSL transformation.
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Figure 4.3: Adaptation example: schemas

4.3 Implementation in XSLT

In this section, we describe how our framework creates the adaptation script using
XSL.

The change detection algorithm (Alg. 1) outputs the set of changes between
the schemas. Having the set of changes, we can now describe the algorithm for
producing an adaptation script that outputs document D̃′ adapted to S̃ ′ when
applied on XML document D′ valid against S ′.

The sequence of changes made over a PSM schema can be converted to a
script/expression in one of the languages for querying and/or manipulating XML,
be it XQuery [6], XQuery Update Facility [91], XSL [87] or DOM [81].

Assuming that the XQuery Update Facility is the implementation language,
each change would be translated to an XQuery Update command(s):

� addition changes to insert commands

� removal changes to delete commands

� migratory changes would generate �rst insert command referencing some
part of the document and thus copying the content and delete command
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to remove the content from its old location

� sedentary changes would generate rename command or again insert or
delete commands

Each command would then be executed upon the adapted document. The
procedure when using DOM API would be analogous in that the document is
updated in place.

Our approach uses XSL stylesheets as the implementation language due to the
wide support for XSL among the tools working with XML data and especially
the database systems supporting XML Schema [92] evolution.

The following properties of XSL as a language must be addressed when de-
signing the adaptation algorithm:

1. No removal : XSL does not have any means of explicit removing a content
from a document. Removal is achieved by not putting the particular part of
content. This is achieved either by designing the script in such a way that
the processor never reaches the particular part of content, or by letting the
processor go through the content without sending anything to the output.

2. Outputting of unchanged content : In XSL, everything that should appear in
the output must be sent there (using XSLT instructions) explicitly. When
some part of the document was not a�ected by any changes, there still must
be an instruction that outputs the unchanged part to the result.

3. Output de�nitiveness : When XSLT processor sends a content to the output,
it can not be changed during the same transformation1, the changes have
to be grouped and conducted together.

Due to space limitations, we will show how the algorithm processes only the
core constructs (classes, attributes with xform = e and associations with name 6=
λ). According to the categories of changes, the �rst step is to divide the PSM
constructs the schema into disjoint sets Ka, Kr, Km and Ks (of added, removed,

moved and sedentary constructs) and also classi�es nodes Ñ ′ ∪ S̃ ′a (i.e., we treat
attributes as nodes in the algorithm) in schema S̃ ′ the tree into three disjoint
groups:

� red nodes � the nodes in S̃ ′ that were changed or added + old and new
parent nodes of all the migrated and renamed nodes/associations + classes
that contain changed attributes + classes from which attributes were moved
or removed

� blue nodes � nodes that are not red, but contain a red node in their subtrees

� green nodes � other nodes

The motivation for this division is: red nodes need to be adapted explicitly; blue
nodes do not need adaptation themselves, but the processor must descend into
their subtree (because there is at least one red node there); green nodes do not
need adaptation and their subtree by de�nitions contains only other green nodes
� so they can be copied to the result as they are, with the whole subtree, without

1Unless several transformations are pipelined, but we want our adaptation script to be one-
pass.
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further processing.
In XSL, stylesheets producing the same output can be written in several forms.

To keep it transparent, comprehensible and easily modi�able, the generated adap-
tation stylesheet F takes the following form:

� It is a one-pass stylesheet.

� It follows the navigational stylesheet pattern described in [32]. It relies on
a detailed knowledge of the input document. XPath expressions used for
match attributes of all top-level templates are always absolute.

� A top-level template is created for each red node.

� Each top-level template describes attributes and direct subelements of the
processed red node.

� One common top-level template is added to process all green nodes and
another to process all blue nodes.

� Implicit XSLT templates are never used, because they do not serve the
desired purpose.

� The stylesheet grows (counting the number of top-level templates) with the
amount of changes made in the schema, not with the complexity of the
schema.

The main steps of the adaptation algorithm are depicted as Alg. 2. The
algorithm creates F , the adaptation script for S ′ → S̃ ′ document adaptation in
the form of an XSL stylesheet. In the rest of this section, we will describe how
the steps on lines 5, 7 and 8 are realized, i.e., how are the templates for red, blue
and green nodes created.

Algorithm 2 GenXSLT

Input: old and new version v, ṽ ∈ V , PSM schemas S ′, S̃ ′
Output: F , an XSLT stylesheet for S ′ → S̃ ′ adaptation
1: CS′,S̃′,v,ṽ ← result of Alg. 1 DetectChanges for v, ṽ,S ′, S̃ ′

2: label nodes Ñ ′ ∪ S̃ ′a red, blue and green acc. to CS′,S̃′,v,ṽ
3: Distribute Ñ ′ ∪ S̃ ′a into groups Ka, Kr, Km and Ks acc, to CS′,S̃′,v,ṽ
4: for all Ñ ′ ∈ red nodes do
5: generate a top level template T

Ñ ′

6: end for
7: generate TB � a template processing all blue nodes
8: generate TG � a template processing all green nodes

We start by showing the templates that process the blue and green nodes
and then we show how templates processing the red nodes are constructed. For
processing blue and green nodes, F contains templates depicted in Figure 4.4.
The �rst template copies an element with its attributes and instructs the processor
to continue with its subelements (where at least one element corresponding to a
red node exists, which must be revalidated). The second template copies the
element with its whole subtree to the output. Since all red and green nodes are
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processed by these two templates, the complexity of F does not grow with the
size of the schemas, but with the amount of changes mad between S ′ and S̃ ′.

For each red node Ñ ′ the algorithm generates one template in F . During the
process, the algorithm keeps a track of the currently processed node in the source
schema (available through a variable processedPath). The algorithm can com-
pute the XPath expression that selects instances of a given node in the input doc-
ument from the processed node via function relativeXPath(X ′, processedPath).
Here are some example results of relativeXPath for Figure 4.3:

processedPath Path to node X ′ Relative path

/Purchase /Purchase/Item/@amount Item/@amount

/customer-info/Customer /customer-info/Address/city ../Address/city

Figure 4.5 shows the basic structure of the template. It uses several auxil-
iary functions. For each instance of class C ′, we will denote inAssociation(C̃ ′)

the association R̃′ s.t. child(R̃′) = C̃ ′ and R̃′ was used when recognizing the
instance (there may be more associations leading to a class). Auxiliary function

elementName returns the name(Ã′) for attribute Ã′ and name(inAssociation(C̃ ′))

for class C̃ ′. Function suggestName returns a unique, but human-friendly name

for the red node template. Finally, childNodes(Ñ ′) are simple the children of

childAssociations(Ñ ′).

If the processed node is an added node (i.e., Ñ ′ ∈ Ka), it will be a named
template (an auxiliary). Otherwise, it will be a template with match attribute.

The template creates the literal element corresponding to the node (using
elementName), then processConstruct subroutine is called for processing each

attribute (if Ñ ′ is a class and not a content model) and the same subroutine is
called also for each child of the processed node.

If the node is an attribute, xsl:value-of is used to retrieve its value and
copy it to the result. If the type of the attribute changed (attributeTypeChanged

is detected, in that case let D′ be the old type of the attribute and D̃′ the
new one), a conversion function must be called. In the pseudocode, this call is

represented by the function conv
Ñ ′ : domain(D′) → domain(D̃′). If the type

did not change, the call can be omitted (conv
Ñ ′ = identity), similarly in the

case when domain(D′) ⊆ domain(D̃′) (which is guaranteed e.g., when D′ is a

subtype of D̃′, see adaptation of attributeTypeChanged in Sec. 4.2.2 earlier in
this chapter). Subroutine processConstruct examines the state (whether the
construct belongs to the set of added nodes) and also its cardinality.

<xsl:template match="{blue-nodes-paths}">
<xsl:copy>
<xsl:copy−of select=`@∗' />
<xsl:apply−templates select=`∗' />

</xsl:copy>
</xsl:template>
<xsl:template match=`{green-nodes-paths}'>
<xsl:copy−of select=`.' />

</xsl:template>

Figure 4.4: Green and blue nodes template
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<xsl:template

{ if Ñ ′ /∈ Ka } match=`{Ñ ′.XPath}' {else} name=`{suggestName(Ñ ′)}'>

<{elementName(Ñ ′)}>

{ if Ñ ′ ∈ S ′c then foreach Ã ∈ attributes(Ñ ′)

processConstruct(Ã, card(Ã))

if Ñ ′ /∈ S ′a foreach C̃ ∈ childNodes(Ñ ′)

processConstruct(C̃, card(inAssociation(C̃))) }
{ else } // attribute(leaf) → add the value

<xsl:value−of select=`{conv
Ñ ′}{(relativeXPath(Ñ ′, processedPath))}' />

<{elementName(Ñ ′)}>
</xsl:template>

procedure processConstruct

parameter Ñ ′ ∈ S ′a ∪ S ′c // processed attribute or class
parameter l..u // cardinality

{

case Ñ ′ ∈ Ka ∧ l = 0 :
exit; // added optional element can be skipped

case Ñ ′ ∈ Ka ∧ l > 0 :

case Ñ ′ ∈ Ks ∪ Km ∧ cardinalityChanged(Ñ ′):

generateElementCardinalityReference(Ñ ′, l..u)
otherwise: // added with card = 1 or cardinality unchanged

generateElementSingleReference(Ñ ′)
}

Figure 4.5: Red nodes template � structure

Function cardinalityChanged looks up associationEndCardinalityChanged/att-
ributeCardinalityChanged change (if there is one). There are two variants of
reference generating subroutine � single (not dealing with cardinalities) and car-
dinality (designed to adapt to changes in cardinality). The �rst one is depicted
in the �rst part of Figure 4.6.

If the processed node is added, call of instance generator template for the
node is added to F . The instance generator template instanceGenerator

Ñ ′ cre-
ates the default instance, as described earlier in this chapter in Sec. 4.2.6 (to be
more prices, it creates the n instances, where n is the value passed to the count
parameter). The template instanceGenerator

Ñ ′ can be modi�ed by the user after
the script is generated. In Chpt. 6 we will also provide an alternative how the
generated instance can be created based on the content of the adapted document.

If the process node is not added, xsl:apply-templates is outputted (with
possible condition � a parameter that is used when the single variant is called
from the cardinality variant.

Finally, the cardinality variant of reference generating is depicted in the second
part of Listing 4.6. There are two parts of the template. The �rst part concen-
trates on instances already present in the document (and is therefore skipped for
added elements). Existing instances are processed again by the single reference

subroutine � either all existing instances (when the upper cardinality of node Ñ ′

was not decreased i.e., all existing instances can remain in the document) or the
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�rst k instances, where k is the new upper cardinality. The condition parameter
of single variant with built-in XPath function position is utilized to restrict the
number of instances processed. The purpose of the second part is to add new
instances of N ′ to the document. Adding several instances may be needed for two
reasons: either Ñ ′ is an node with lower cardinality > 1 or the lower cardinality
of Ñ ′ was increased. Again, instanceGenerator template is made responsible
for creating new instances.

In Sec. 4.1, we identi�ed several changes where more than one option to adapt

procedure generateElementSingleReference

parameter: Ñ ′ ∈ Ñ ′ ∪ S̃ ′a // referenced node
parameter: condition: XPath expression optional

{ if Ñ ′ ∈ Ka }

<xsl:call−template name=`{suggestName(Ñ ′)}' />
{ else }

{ var xpath ← relativeXPath(Ñ ′, processedPath) }
{ if condition is set }

<xsl:apply−templates select=`{xpath}[{condition}]' />
{ else }

<xsl:apply−templates select=`{xpath}' />
{ end if }

{ end if }

procedure generateElementCardinalityReference

parameter: Ñ ′ ∈ Ñ ′ ∪ S̃ ′a // referenced node
parameter l..u // cardinality
/∗ routine called either when cardinality of element N changed

or N' was added with lower cardinality > 1 ∗/
{ if Ñ ′ ∈ Ks ∪ Km // existing node

// cardinality of N' changed, deal with existing nodes
if ¬u decreased from prev. version

generateElementSingleReference(Ñ ′)
else

generateElementSingleReference(Ñ ′, condition = `position() ≤ '.u )
end if

end if

if Ñ ′ ∈ Ka∨ lower cardinality of Ñ ′ increased
// new nodes need to be created
var countExpr
var lower ← l(card)
if (N ′ ∈ Ka)

countExpr ← lower
else

var existing ← relativeXPath(Ñ ′, processedPath)
var countExpr ← l .` − count('. existing .')'
<xsl:call−template name=`{instanceGenerator

Ñ ′}'>
<xsl:with−param name=`count' select=`{countExpr}' />

</xsl:call−template>
{ end if }

{ end if }

Figure 4.6: Generating element reference
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a certain change exists. Our algorithm described in this section is straightforward
in those cases � where instances need to be created for cardinalities m..n, m car-
dinalities are created, for choice content model, the �rst choice is always selected
etc. In Chpt. 6, we show how this behaviour can be re�ned using expressions/
annotations.

To conclude this chapter, we refer to the example of an adaptation stylesheet
generated for the scenario from Fig. 4.3. The full text of the stylesheet can be
found in Appendix B.1.
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5. Expressions in the Model,

Integrity Constraints

In this chapter, we will discuss the expression languages used at di�erent levels
in our framework. Results presented in this chapter were published in [47, 31].

Structural diagrams are a very useful tool when describing a software system.
However, there are always limits in their expressive power. It is a common prac-
tice to describe the structure using a diagram and provide additional detailed
information about integrity constraints (invariants, pre- and post-conditions) or
some other, more �ne-grained, information about the system in a textual form.
If a formal language is used instead of the natural language, the information is
guaranteed to be unambiguous and accurate.

Formal languages for these purposes are usually some kind of expression/
functional languages. An expression language can be used not only to describe a
system, but also to de�ne actual queries which the system supports and which can
be executed at runtime. We will use this property so that our framework allows
not only, e.g., de�ne the integrity constraints that the system must meet, but
also to generate code that actually veri�es the integrity constraints in a running
system.

In the following three sections, we will describe a suitable expression language
for the PIM, PSM and operational level. For the PIM and operational levels, we
will use existing, well-estabilished languages (OCL [66] and XPath [89]). For the
PSM level, we will use the PIM level language with certain modi�cations. The
main topic of this chapter is the automatic translation of expressions from the
PIM to the PSM and operational level. This will allow us to evaluate expressions
and verify integrity constraints, which are de�ned at the abstract level, in XML
documents, without the need to manually adjust each expression for a concrete
document structure (schema).

We will refer to the PIM schema in Fig. 5.1 and the PSM schemas in Fig. 5.2
and 5.3. Translations of these schemas into XSDs can be found in Appendix A.5,
A.6 and A.7 respectively. We use several PSM schemas in this chapter to demon-
strate how a PIM expression is translated into di�erent PSM expressions in dif-
ferent PSM schemas.

Employee

empNo: String

firstName: String

lastName: String

salary: Real

phone: String [0..1]

Department

name: String

budget: Real

Team

name: String

Organization

name: String

budget: Real

1..* employer

internship

0..* 0..*

1..*

0..*

0..*

host
1..*

sponzor

0..*1..*

intern

subdepartment

master-
Department

0..*

0..1

Manager

Project

name: String

budget: Realmember

Figure 5.1: Sample PIM schema � organization
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OrganizationSchema

Employee
@ empNo: string

firstName: string

lastName: string

salary: real

Department

name: string

budget: real

Intern
@ empNo: string

firstName: string

lastName: string

Team

name: string

Member

@ empNo: string

dpt

tm

Organization

name: string

budget: double

org

emp int

1..*

0..*

1..*
mem

1..* 0..*

Figure 5.2: PSM schema showing distribution of employees in departments

5.1 OCL Expressions at the PIM Level

Since our PIM schemas are UML class diagrams, we can directly use the Object
Constraint Language (OCL [66]), which is a part of the UML standard, at the
PIM level.

OCL is a text based language, combining mathematical notation (used in,
e.g., �rst-order logic expressions) and principles known from functional languages
with object-oriented model. Its grammar allows for recursive building of formulas
from subformulas. The syntax and semantics of OCL is formally introduced
in [74]. The meta-model of the core of OCL is depicted in Figure 5.4a. The �gure
illustrates how expressions are composed of subexpressions. In the rest of this
article, OCL expressions in the text will be delimited using guillemots, e.g., this:
�x+ y > 1� is an OCL expression. We will use large uppercase letters to denote
OCL expressions at the PIM level (usually O). An apostrophe will be used to
denote OCL expressions at the PSM level (e.g., O′). The following example shows
how OCL expressions can be used in invariants:

context Organization inv PIM_IC1:
self.Department.Team->forAll(t |

t.member->size() < 0.1 ∗ self.Department.employee->size())

The constraint speci�es that in an organization, each team in any department
cannot have more than 10% of the total number of employees of the organization.

The �rst line speci�es the context (class Organization) and that what follows
is an invariant1 (with identi�er PIM_IC1). Every invariant contains an expression
which is evaluated at the instance level to true or false. For a model to be valid
at a given time, all invariants must evaluate for all instances to true. Each
subexpression in the invariant PIM_IC1 is an instance of some class from the
metamodel in Fig. 5.4a (details of FeatureCallExp are depicted in a separate

1Later in this chapter we also describe di�erent usages of OCL, besides invariants.
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OrganizationProjectsSchema

Organization

name: string

budget: double

organizations

Project

name: string

budget: double

0..*

Team

name: string

1..*

Host

name: string

Department

name: string

budget: double

1..*
departmentproject

team

host

Organizations

organization0..*

(a) A PSM schema modeling a type
of XML documents with organiza-
tions which contain projects and de-
partments in the organization. A
project contains teams and teams
contain hosting departments.

Department

name: string

Budget: double

Team

name: string

Organization

name: string

budget: double

organization

host

Employee

empNo: string

salary: double

member

Employer

name: string

Internship

name: string

employer internship

1..*

0..1

team

Teams

1..*

TeamsSchema 

teams

(b) A PSM schema modeling a type of XML doc-
uments with teams. A team contains a hosting
department and organization. It also contains its
members. For each member, there is its employing
department and, optionally, a department where
the member is currently doing his or her internship.

Figure 5.3: PSM schemas focusing on teams and projects

Fig. 5.4b), e.g.,:

� �self� is an instance of VariableExp referring to variable self (context
variable),

� �self.Department� is an instance of PropertyCallExp where �self� is the
source and �Department� the referredProperty,

� �forAll(t | t.member . . .)� is an instance of IteratorExp with iterator t
and the body subexpression is the expression starting with �t.member�,

� �0.1 ∗ self.Department.employee->size()� is an example of the metaclass
OperationCallExp with two arguments and the referredOperation being
multiplication (∗).

Invariants are one of several possible uses of OCL expression. OCL speci�ca-
tion also de�nes how to use OCL expressions to

� de�ne initial values of properties (attributes and association ends),
� de�ne pre-conditions and post-conditions for methods,
� add new properties and operations in pure OCL.

In this chapter, we will show how OCL expressions can be translated into
XPath expressions and how they can be used to validate XML documents using
Schematron, and how to annotate version links to override the default behavior
of the document adaptation algorithm presented in Chpt. 4.
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1

1

1

Variable

OclExpression

CallExp

LiteralExp

IfExp

VariableExp

LoopExpFeatureCallExp

IteratorExp IterateExp

TypeExp

MessageExp

StateExp0..1
loopExp iterator

*

10..1

loopBodyOwner

insource
1

1

0..1
result0..1

baseExp

referringExp

*

refereredVariable
0..1

LetExp

0..1

1

variable

body
1

(a) OCL expressions metamodel � overview

FeatureCallExp

NavigationCallExp

PropertyCallExp

OperationCallExp

OclExpression

Property

Operation

1

1

0..1

parentNav

referringExp

*

referredProperty

0..1

0..1
referringExp

*argument *

0..1

referredOperation

(b) Detail of FeatureCallExp

Figure 5.4: Di�erent kinds of OCL expressions (source: OCL speci�cation, Chap-
ter 8.3)

5.2 OCL Expressions at the PSM Level

Since we are using modi�ed class diagrams at the PSM level, we can also use OCL
to write expressions over PSM schemas. It would be possible to de�ne translation
of PIM OCL expression directly to the XML languages of the operational level
(see the next Sec. 5.3), but we decided to use OCL at the PSM level as well � OCL
is better suited for class diagrams (even at the PSM level), it can be managed
more easily when schemas change and transformation of constraints from the PIM
level is more transparent when the same language is used. Last, our framework
has strong support for evolution of schemas based on change propagation [56].
We leave the evolution of expression/queries to the future work (see Chpt. 9), but
integrating PIM OCL ↔ PSM OCL change propagation into the algorithm will
be easier than propagating changes between PIM OCL and expressions in XML
query languages.

However, since we modi�ed class diagrams to �t the needs of XML modeling,
we will extend OCL language for the PSM level as well. This section describes
the extensions of OCL for the PSM level.

Traversing among related PSM classes Several PSM classes can be mapped
to the same PIM class interpretation (which is the case of classes Intern′ and
Employee′ in Fig. 5.2, both representing PIM class Employee). This property
of PSM schemas requires special support in our PSM OCL expressions. Let
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us consider the following PIM OCL expression specifying an invariant ensuring
that interns are making their internships in other departments than their home
department.

context e:Employee inv PIM IC3:
e.internship <> e.employer

Suppose that we want to transform this PIM OCL expression to a PSM OCL
expression expressed over the PSM schema depicted in Fig. 5.2. We must act
cautiously because for class Intern′ there is no association end mapped to the
end employer in the PIM schema and for class Employee′, there is no association
end mapped to internship. However, PSM classes Employee′ and Intern′ are
linked semantically (they have the same interpretation � class Employee in the
PIM schema). Therefore, a single instance of class Employee may be represented
by an instance of Employee′ and a di�erent instance of Intern′ in the same XML
document. Therefore, no straightforward variant of the OCL expression above
will work for the PSM schema.

For this purpose, we introduce a new function that allows for traversing a
PSM schema along these semantic links. In fact, we introduce a function for each
class C ′ in the PSM schema. The name of the function is to followed by the
name of C ′. The function has no parameters. For example, for class Employee′

has name Emloyee. Therefore, we introduce a function toEmployee().
The function can be called on a source expression of type C ′1 s.t. interpretation

of both C ′ and C ′1 is the same PIM class C. It returns a set of all instances of C ′

which represent the same instance of C as the instance of C represented by C ′.

context i: Intern inv PSM_IC3:
i.Department <> i.toEmployee().Department

Evaluation of the expression starts in the PSM class Intern′ and needs to evaluate
two navigation paths. The former path needs to navigate from an instance i′ of
Intern′ to an associated instance di′ of Department′ via an association end which
represents the end internship from the PIM schema. This is possible because
the PSM association having Intern′ as its child represents the PIM association
with internship as an end. However, it also needs to navigate from i′ to another
associated instance de′ of Deparment′ via an association end which represents the
association end employer from the PIM schema. This is not possible. The
OCL expression has to traverse from the Intern′ instance to the corresponding
Employee′ instance using the function toEmployee′. From here, the required
navigation is possible.

In the previous sample, the two navigation subexpressions (�i.Department�
and �i.toEmployee().Department�) navigate the model in the upwards direction.
Both refer to the parent association end using the name of the class. Another
option would be to use the name of the association end, which is always `parent'
in the case of parent association ends. The previous PSM OCL constraint can be
alternatively expressed as follows:

context i: Intern inv PSM_IC3:
i.parent <> i.toEmployee().parent

Let us note that at the PIM and PSM levels, which are conceptual, we do
not solve how the function is implemented. We consider an object identity of the
instances which allow the traversing. In the phase of translation of PSM OCL
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constraints to XPath (which is the subject of Sec 5.5), we show how we deal with
the added functions at the XPath level (we use PIM keys).

Navigating to content models In De�nition 2, we introduce a PSM-level
speci�c construct � the content model. Content models behave like classes with-
out attributes � they participate in associations. However, they do not have a
name and the child end of their parent association is also unnamed in normalized
schemas. To allow OCL navigations, we need a way to identify content models
in the expressions. For this purpose, we introduce a variant of PropertyCallExp
relying on the position of the association among the child associations of a node.

We allow to expression such as �c.choice1�, �c.set2� and �c.sequence3�. A
PropertyCallExp written as �c.cmtypeN� where c is of type C ′ looks-up the as-
sociation end leading to the N-th content model of type cmtype (choice, set
or sequence) among the child association ends of the associations in child-
Associations(C ′).

5.3 Expressions at the Operational Level � XML

Queries

XML has an estabilished expression language � XPath, which is one of the most
fundamental technologies of the XML stack. The current recommendation is 2.0
[89], version 3.0 [94] is now a candidate recommendation.

XPath can be used to select nodes in an existing documents and work with
atomic values. XPath does not provide capabilities to create nodes not present
in the queried document neither to de�ne user functions2. XPath 2.0 data model
(shared by XSLT and XQuery) knows only 1 kind of collection � a sequence.
XPath 3.0 adds another kind � a map (associative dictionary).

XPath is used by many other languages in the XML stack, including XQuery
[6] (which is a superset of XPath) and XSLT [87].

We will use XPath as the ground expression language at the operational level.
In cases where we need to extend it, we will use XSLT, but XQuery could be used
as well.

The rest of this chapter presents one of the major contributions of this thesis
� translating expressions from the PIM to the PSM and operational level. Us-
ing our results, it is possible to de�ne queries and constraints at the abstract
platform-independent level and let the framework decide in which PSM schemas
the constraints apply. In the next step, the framework can automatically generate
operational-level code to verify the integrity constraints or execute the queries.

5.4 From PIM Level Expressions to PSM Level

Expressions (PIM OCL → PSM OCL)

In this section, we will discuss translation of PIM expressions into PSM expres-
sions.

2XPath 3.0 adds the possibility to de�ne and call anonymous functions
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When we want to tranlsate a certain PIM constraint O into a PSM constraint
O′, a large part of the translation is straightforward � e.g., a + (integer addition
operation) or 'word' (a string literal) stay the same. What we have to focus
on are only those parts of expressions that involve the constructs of the model �
classes, associations and attributes. Thus, for in this section, we will su�ce only
with a subset of OCL and formalize only those parts of OCL expressions which
are important for the translation between PIM and PSM levels. We introduce
navigation paths, e.g., �self.Department.Team�. A navigation path starts in a
variable and navigates via one or more steps in the structure of the PIM schema.

At the instance level, the evaluation of such navigation path starts in an
instance c of a class which is assigned to the variable and navigates to a collection
of instances associated with c via the navigation path. A path may be followed
by a collection function, e.g., forAll or size, which is a kind of iteration function.
It iterates the collection resulting from the evaluation of the path. It may return
another collection or a simple data value. Formally, a step is also a collection
function which iterates the result of the previous step, evaluates the speci�ed
navigation for each iteration and returns the new collection or value. The syntax
of OCL allows also for navigation paths which do not start in a variable, but, e.g.,
at a collection function. However, we do not consider this kind of navigation paths
in this thesis for simplicity. Let us only note that these paths can be translated
to those which start in a variable.

Having an OCL expression O over a PIM schema S, we only translate its
context class and navigation paths. The other parts of O remain untouched.
Therefore, we will use a simpli�ed formal model which represents O as a pair
(C, {p1, . . . , pn}) where C is the context class C and each pi is a navigation path
in S. A navigation path p in S is a construction s0 . . . . . sn where each si
is called step of p. The �rst step s0 is a variable. We distinguish the context
variable (denoted self ) and the other user de�ned variables (usually denoted by
a character, e.g., v, k, etc.). A step si speci�es an attribute A (then si is the
name of A) or association endpoint E (then si is the name of E or the name of
the association E belongs to). If si is an attribute then i = n.

Our sample OCL expression above is represented in our formalism as a pair:

(Organization,
{�self.Department.Team�, �t.member�, �self.Deparment.employee� })

In this section, we show how PIM OCL expressions are translated to their
PSM OCL equivalents. For this section let S be a PIM schema and S ′1, . . . , S ′n
be PSM schemas, each with an interpretation function Ii against S. Our goal is to
translate a PIM OCL expression O over S to O′i for each S ′i whenever it is mean-
ingful. The resulting O′i must specify the same constraint over S ′i as speci�ed by
O over S. Let us note that a PSM schema often does not contain representations
of the whole problem domain described in the PIM (a PSM schema may contain
several classes relevant for a certain component of the system, while others, which
are not important for the component, are not represented in the schema). It is
clear that it is meaningful to translate O only when all classes, attributes and
associations in S restricted by O are represented in S ′i. In that case, we will say
that S ′i covers O. Formally:

De�nition 13. Let X be the set of all PIM constructs referenced from the PIM
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Algorithm 3 Translating a PIM OCL navigation path to a PSM equivalent

Input: PIM OCL navigation path p = s0, . . . , sm in a PIM OCL constraint O
Output: PSM OCL navigation path p′ translated from p in a PSM OCL con-

straint O′ translated from O
1: p′ := s0
2: if s0 = self then
3: C ′1 := context class of O′

4: else
5: C ′1 := target(superior-path(p′))
6: end if
7: for i ∈ 1 . . .m do
8: Ci := I(C ′i)
9: Xi := target(si, Ci)
10: if Xi ∈ Sa then
11: Let X ′i ∈ S ′a s.t. class(X ′i) = C ′i and I(X ′i) = Xi

12: p′ := p′ . {name(X ′i)}
13: else
14: Let Ri ∈ Sr and Yi ∈ Se s.t. Ri = {Xi, Yi}
15: Let X ′i ∈ S ′r s.t. I(X ′i) = Ri and parent(X ′i) = C ′i or child(X ′i) = C ′i
16: if parent(X ′i) = C ′i then
17: p′ := p′ . {name(X ′i) = λ ? name(X ′i) : name(child(X ′i))}
18: C ′i+1 = child(X ′i)
19: else
20: p′ := p′ . parent
21: C ′i+1 = parent(X ′i)
22: end if
23: if i = m then
24: target(p′) := participant(Yi)
25: end if
26: end if
27: end for
28: return p′

constraint O. We will say that PSM schema S ′ covers O i� ∀X ∈ X ∃X ′ ∈
S ′c ∪ S ′a ∪ S ′r ∪ S ′e s.t. I(X ′) = X.

5.4.1 Direct Translation

We will �rst discuss a direct translation of the PIM OCL expression O to
its equivalent PSM OCL expression O′ over a given PSM schema S ′. Basically,
the direct translation starts with replacing the context class C of O with its
representation C ′ in S ′ (i.e., I(C ′) = C). C ′ becomes the context class of O′.

The translation then proceeds with translating all navigation paths in O.
The paths of O form a hierarchy. Each path p consisting of steps s0, . . . , sm
is a node of this hierarchy. The �rst step s0 is always a variable. When s0 =
self, then p is at the top-level of the hierarchy. Otherwise, s0 is a variable v
declared by a collection function which follows another navigation path p̄ in O,
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i.e., �p̄->colf(v | Q )�, where Q is a PIM OCL expression referencing variable v
and containing path p and colf denotes an iterator expression. (Let us note that
we do not consider the OCL construct let.) In that case, p̄ is superior to p in the
hierarchy and we will denote p̄ as superior-path(p). The translation of the paths
in O proceeds from the paths at the higher levels of this hierarchy to the lower
levels starting at the top-level.

Let us now discuss the translation of each single path p in O, s.t. p has steps
s0, . . . , sm. The pseudo-code of the translation algorithm is depicted in Alg. 3.
The translation starts with step s0, which remains unchanged. It establishes so
called translation context for the next step s1. The translation context is always
a class in S ′. When s0 = self, the translation context is the context class C ′

of O′. In other cases the translation context is the class targeted by the trans-
lation of superior-path(p). The targeted class is located during the translation
of superior-path(p). The exact mechanism of how the targeted class is located
during the translation is described in the following paragraphs.

The translation algorithm then proceeds consecutively through steps s1, . . .,
sm. Each step si is translated as follows. Let a class C ′i be the translation
context of the step si. We locate the represented PIM class Ci = I(C ′i). The
step si speci�es an attribute of Ci or an association endpoint of an association Ri

connected to Ci. We will denote the attribute or association endpoint with Xi.
When Xi is an attribute of Ci then we locate an attribute X ′i ∈ S ′a of C ′i which
represents Xi. When Xi is an association endpoint of an association Ri then we
locate an association X ′i ∈ S ′a which represents Ri and connects C ′i with another
class C ′i+1.

When the located X ′i is an attribute we replace si with the name of X ′i and
the translation of p is done. When X ′i is an association and parent(X ′i) = C ′i we
replace si with the name of X ′i or the name of child(X ′i) (when X

′
i does not have a

name). When child(X ′i) = C ′i we replace si with the reserved word parent. When
i = m the translation is done and C ′i is the class targeted by the translation of p.
When i < m the translation proceeds to si+1 and the other class C ′i+1 becomes
the translation context for the next step si+1.

Let us now demonstrate the direct translation algorithm on the PSM schema
depicted in Fig. 5.2 and recall the OCL expression O over PIM schema depicted
in Fig. 5.1 which we have already discussed in Section 5.4.1:

context Organization inv PIM_IC1:
self.Department.Team−>forAll(t |

t.member−>size() < 0.1 ∗ self.Department.employee−>size())

First, the algorithm identi�es the context class of O′. It is the PSM class
Organization′ which represents the PIM class Organization which is the con-
text class of O. Then it translates all navigation paths in O, i.e.,

� p1: �self.Department.Team�
� p2: �t.member�
� p3: �self.Department.employee�

The paths p1 and p3 start with the context variable self and are therefore at
the top level of the hierarchy of paths in O. The path p2 starts with the variable
t which is declared in the collection function forAll which follows p1. Therefore
superior-path(p2) = p1. The algorithm �rstly translates paths at the top level of
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the hierarchy, i.e., p1 and p3. For both, the initial translation context is the PSM
class Organization′. The result is

� p′1: �self.dpt.tm�
� p′3: �self.dpt.emp�

Then, it translates p′2. Its initial translation context is the class targeted during
the translation of p′1, i.e., Team

′. The resulting path is as follows:

� p′2: �t.mem�

The algorithm translates only the context class and the navigation paths in
O. The rest is not translated. The resulting PSM OCL O′ constraint is:

context Organization inv PSM_IC1:
self.dpt.tm−>forAll(t | t.mem−>size() < 0.1 ∗ self.dpt.emp−>size())

The direct translation also succeeds in translating the constraint PIM IC2
from Figure 5.1:

context Organization inv PSM_IC2:
self.budget <= self.dpt.budget−>sum()

5.4.2 Problems with Direct Translation and its Improve-

ments

The results of the direct translation algorithm are correct only in certain cases.
Let us now analyze situations when the direct translation does not work correctly.

The �rst problem is that a PIM class C ∈ Sc may have more di�erent rep-
resentations C ′1, . . . , C

′
k ∈ S ′c. Therefore, when C is the context class of O it is

hard to decide which of the representations should be the context class of O′. The
ideal option is to choose a representation C ′ whose attributes and associations
represent all attributes and associations of C restricted by O. However, such
representation may not always exist.

Let us demonstrate the problem on the PSM schema depicted in Fig. 5.2 and
the following OCL expression O over the PIM schema depicted in Fig. 5.1 (it
speci�es that an employee can not be on its internship in a department which is
his or her employer):

context Employee inv PIM_IC3:
self.internship <> self.employer

The context class of O is Employee. O restricts two associations of Employee:
{Employee, employer} and {intern, internship}. There are three di�erent
representations of class Employee in the PSM schema: Member′, Employee′, and
Intern′. We have to decide which of them will be the context class of the resulting
O′.

It is not meaningful to choose class Member′ as the context class. Its as-
sociations do not represent anything from the two associations constrained by
O. On the other hand, the parent association of Employee′ represents association
{Employee, employer}. The parent association of Intern′ represents {Employee,
internship}. At the same time however, the former is missing an association
which would represent {Employee, internship} and the other is missing an as-
sociation representing {Employee, employer}.
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As the example shows, automatic selection of the context class of O′ can not
be achieved, because they may be several candidates, evenly suitable. As a �rst
heuristic, we may restrict the candidates only to those which are meaningful. A
candidate C ′ is meaningful only when its attributes and associations represent
some of the attributes and associations of C restricted by O. Formally, there
must exist a navigation path p = s0. . . . .sn in O s.t. s0 = self and one of the
following conditions must be satis�ed:

� If s1 leads to an attribute A then there is an attribute A′ ∈ attributes(C ′)
s.t. I(A′) = A.

� If s1 leads to an association end E1 of an association R = {E1, E2} then
there is an association R′ ∈ associations(C ′) s.t. I(R′) = (E1, E2) or I(R′)
= (E2, E1).

(Let us note that a step of a navigation path always leads to an attribute or
association end because of the restrictions to the syntax of navigation paths given
in Section 5.4.1). It is clear that there may exist several di�erent meaningful can-
didates C ′cand−1, . . ., C

′
cand−m. However, we are not able to choose the candidate

automatically (in the presented case, neither candidate is better). We therefore
need a user who decides which candidate will be chosen. In our sample, we have
two candidates: Employee′ and Intern′. The user may choose any of them as
the context of the resulting translation.

The chosen candidate C ′ may be insu�cient because its attributes and asso-
ciations may not represent all attributes and associations of C restricted by O.
In other words, there may be a navigation path p = s0.s1 . . . .sn in O s.t. it is not
possible to translate the step s1 with Alg. 3. This is because it is not possible to
navigate from the chosen translation context C ′ according to s1.

In that case, it is necessary to change the current translation context to an-
other PSM class D′ s.t. I(D′) = C. The attributes and associations of D′ must
represent some of the attributes and associations of C restricted by O. A similar
situation may occur later during the translation of a step si of p because it is
not possible to navigate from the translation context C ′i of si as speci�ed by si.
Again, we need to change the translation context to class D′i similarly.

In both scenarios, the translation context is changed by applying the collection
function toD′i. This means appending .toD′i() to the end of the already translated
part of O before the translation of si itself.

Similarly to the problem of choosing the correct context class, it may be a
problem to choose the correct D′i. Again, when there are more possibilities, we
need a user who makes the selection.

As a demonstration, suppose the PSM schema depicted in Fig. 5.3a. In this
schema, interpretation I(Department′) = I(Host′) = Department. We will at-
tempt to translate the following OCL expression O over the PIM schema depicted
in Fig. 5.1 (it speci�es that project teams may be hosted only by departments in
a sponsoring organization):

context Project inv PIM_IC4:
self.Team−>forAll(t | t.host.Organization = self.sponsor)

In this case, the direct translation does not work. It automatically selects class
Project′ as the context class of O′. (There is no other class in the PSM schema
representing Project.) O contains following navigation paths:
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� p1: �self.Team�
� p2: �t.host.Organization�
� p3: �self.sponzor�

The path p1 is translated to a path �self.team�. Its translation targets the
class Team′. Because p1 is the superior path to p2, the translation of p2 starts with
the translation context set to Team′. The translation of the �rst step of p2 host

moves from Team′ to Host′ . From here it needs to move to Department′. How-
ever, there is no association in the PSM schema connected to Host′ representing
the PIM association connecting the PIM classes Department and Organization.
Therefore, we need to change the translation context to class Department′ whose
parent association represents the PIM association. For this we call the collection
function toDepartment. The last step of p2 is then translated to a step navigating
from Department′ to its parent class Organization′.

The path p3 is translated directly and the resulting translation of O is

context Project inv PSM_IC4:
self.team−>forAll(t | t.host.toDepartment().parent = self.parent)

Changing the translation context is also necessary when O compares instances
of the same PIM class which are targeted by two di�erent navigation paths in
O. Suppose the following OCL expression O over the PIM schema depicted in
Fig. 5.1

context Department inv PIM_IC5:
self.Employee.Team.host−>forAll(h | h = self)

It speci�es that teams of employees of a given department can be hosted only by
that department. It contains two navigation paths:

� p1: �self.Employee.Team.host�
� p2: �self �

Both target class Department in the PIM schema but through two di�erent
navigation paths p1 and p2. Suppose the PSM schema depicted in Fig. 5.3b. In
this schema interpretation I(Department′) = I(Employer′) = I(Internship′) =
Department. The direct algorithm translates O to the following PSM OCL ex-
pression O′:

context Employer
inv: self.parent.parent.host = self

During the translation, the user had to decide that the context class of O′

will be Employer′ because there were two possible context classes (the other
is Department′). The resulting OCL expression is not correct because it com-
pares instances of the target classes of two di�erent navigation paths in the PSM
schema: Department′ and Employer′. Instances of two di�erent classes are not
comparable. Therefore, one of the navigation paths needs to be supplemented
with to function. With this function, the resulting OCL expression compares
instances of the same class:

context Employer
inv: self.parent.parent.host.toEmployer() = self

(Let us note that this OCL expression is still not correct because there may be
more di�erent instances of class Employer′ which represent the same instance of
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the PIM class Department. Therefore, it compares a collection of instances with
a single instance which is not correct. We will discuss this in the rest of this
section.)

The second problem is the hierarchical nature of S ′ which may lead to re-
dundant occurrences of instances of classes of S in XML documents. Suppose
a class C ′ in S ′ which represents a class C in S. As we explained in Section 3,
C ′ speci�es how instances of C are represented in XML documents. In other
words, an instance of C ′ models an occurrence of the instance of C in XML doc-
uments. Let R′ be the parent association of C ′ which represents an association
R = (EC , ED) ∈ Sr, participant(EC) = C, participant(ED) = D (association R
connects classes C and D in S). Let the maximal cardinality of ED in R be m..n
st. n > 1. In that case, there may be more di�erent instances of C ′ in the same
XML document modeling an occurrence of the same instance of C. We call this
situation that C ′ leads to redundant occurrences of C.

The problem with redundant occurrences is that a PIM navigation expression
can not be directly translated to a corresponding PSM navigation expression
where the direction of navigation is upwards. Association Team′ − Employee′ in
the schema in Fig. 5.3b is an example of this issue. When t is an instance of
Team′, expression t.member returns all members of the team. However, when e is
an instance of Employee′, expression m.parent does not return all teams having
m as a member. It returns only one team (because in XML, a node has only one
parent).

In the general case, C ′ leading to redundant occurrences of C complicates
the translation of O, if O navigates via R from C to the other end D. For a
given instance of C O retrieves a collection of all associated instances of D. On
the other hand, O′ navigates from an instance of C ′, i.e., from one occurrence of
the instance of C, in the upwards direction via R′. Because of the hierarchical
structure, an instance of C ′ has only one parent instance. Therefore, O′ navigates
only to an occurrence of one associated instance of D instead of occurrences of
all associated instances of D and the directly translated O′ from O does not work
correctly.

For demonstration, suppose the PSM schema depicted in Fig. 5.3b and the
following PIM OCL expression O over the PIM schema depicted in Fig. 5.1 (it
speci�es that an employee can not be a member of more than 5 teams):

context Employee inv PIM_IC6:
self.Team−>size() < 5

This simple OCL expression is translated by the direct algorithm to the following
PSM OCL expression O′:

context Employee
inv: self.parent−>size() < 5

The problem is that while O works with an instance of Employee, O′ works with
an occurrence of that instance. Because of the cardinality of Employee in the
association, there may be more di�erent occurrences of the instance. Therefore,
O′ does not work correctly � it cannot count the number of teams an employee
is a member of.

Another complication caused by redundancies may appear when O compares
instances of the same PIM class which are targeted by two di�erent navigation
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paths in O. We have already discussed this kind of OCL expressions previously
and we have used the following sample expression:

context Department inv PIM_IC5:
self.Employee.Team.host−>forAll(h | h = self)

We have shown that the direct algorithm extended with function to results to the
following OCL expression O′ (the user chooses Employer′ as the context class):

context Employer
inv: self.parent.parent.host.toEmployer() = self

The problem is that Employer′ leads to redundant occurrences of Department.
Therefore, function toEmployer leads to a collection of more di�erent instances
of Employer′ which represent the same instance of Department. However, O′

compares this collection with a single instance of Employer′ assigned to self

variable.
On the base of the previous discussion we can see that the navigation principles

of PIM OCL expressions are di�erent from those of PSM OCL expression. This
might cause that some directly translated PSM OCL expressions are not correct.

A direct simple solution to this problem is to forbid redundancies. More
precisely, a navigation path can not navigate in a PSM schema in the upwards
direction via an association where the maximum cardinality of the child in the
association is greater then 1. In that case, the direct translation is not performed
and a user is noti�ed.

A more advanced but more complex solution is to extend the direct translation
algorithm so that it translates not only the context class and navigation paths in
PIM OCL expressions to their PSM equivalents but also works with other OCL
constructs. However, this is out of scope of this paper and we leave it as our
future work. Let us only demonstrate this extension on a few examples.

First, let us again consider the last PIM OCL expression and its translation.
The solution of the problem of comparing the collection of instances of Employer′

with a single instance is to change the comparison operator = to a collection
function forall. The resulting PSM OCL follows.

context Employer
inv: self.parent.parent.host.toEmployer()−>forall(h | h = self)

Second, let us again consider the PIM OCL expression which restricts the
number of teams an employee can participate in:

context Employee inv PIM_IC6:
self.Team−>size() < 5

The direct translation algorithm could not translate this expression to a PSM
OCL expression over the PSM schema depicted in Fig. 5.3b as we have already
discussed. The solution is to completely change the logic of the expression at
the PSM level so that it moves only in the top-down direction. Therefore, the
problems with redundancies do not occur. We need to change the context to a
class whose instance contains all instances of Team′. This class is Teams′. From
here, we need to get to all contained team members. For each member, we need
to check whether the number of teams which contain the member is lower than
5. Because we are at the PSM level, each member can be represented by more
di�erent instances of Employee′. Therefore, we will not compare instances of
Employee′, but we utilize the key for Employee (empNo) instead:
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context Teams inv PSM_IC5:
self.team.member−>forAll(m |

self.Team−>select(t | t.member.empNo−>includes(m.empNo))−>size() < 5)

Let us �nally discuss the time complexity of the translation algorithm. The
time complexity of the direct translation algorithms is linear with respect to the
total length of navigation paths in a given PIM OCL expression. However, as
we have already discuss, the direct translation does not work in many practical
cases because classes in the PIM schema may have more di�erent representations
in the PSM schema. Then we have to apply rules which choose the correct
representation for a given PIM class. Because of these rules the time complexity
becomes O(M ∗N) in the worst case where M and N are the number of classes
in the PIM schema and PSM schema, respectively (for each PIM class C , we
have to check all PSM classes which represent C). However, the worst case will
be hardly achieved in practice. Usually, a PIM class has only one or few (i.e.,
<< N) representations in the PSM schema. Moreover, the amount of construct
is not so high in real world schemas and, therefore, the time complexity of the
translation is not restricting.

5.5 From PSM Level Expressions to Operational

Level Expressions (PSM OCL → XPath)

In this section, we present an algorithm for translating PSM OCL expression
O′ into an XPath expression XO′ . We will now look at di�erent kinds of OCL
expressions in the OCL metamodel depicted in Figure 5.4. We will elaborate
how they can be expressed equivalently in XPath. As we will show later in
this section, for some classes of OCL expressions, a corresponding constructs/
functions in XPath do not exist. XPath by itself does not allow the user to de�ne
his own functions (apart from anonymous functions from version 3.0). However,
other functions, besides those de�ned by XPath standard, can be added by the
host language, which executes these expressions. We chose to XSLT as the host
language and we created a library of XSLT functions, called OclX. Functions from
OclX can be used in XPath expressions to provide su�cient expressive power. We
chose XSLT, because it is the language used throughout our framework � XSLT
transformations are created to adapt document (see Chpt. 4, 6) and XSLT can
be used to validate Schematron schemas (more on this application in Sec 5.6.1).
As an alternative, OclX might equivalently be de�ned using XQuery.

From now on, we will apply some restrictions on the class of considered OCL
expressions. We will omit StateExp and MessageExp, since the notions of state
and message(signal) have no counterparts in our domain (XML data). Due to
space restrictions, we will also omit TypeExps, which deal with casting, and we
will also treat all collections as sequences. Due to the architecture of XPath data
model, we will also not allow nested sequences in expressions. We will get back
to the problem of nested sequences and di�erent types of collections in Sec 5.5.6.
These conditions leave us with LiteralExp, IfExp, VariableExp, LetExp, two kinds
of LoopExps (IteratorExp and IterateExp) and FeatureCallExp (which encompass-
es operations (and operators) and references to attributes and associations de�ned
in the UML model). We also have to de�ne consistent handling of variables.
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Because our framework works with XML schemas tightly, we will use schema-
aware expressions at the operational level. To execute them correctly, a schema-
aware XPath engine is required, e.g., [76]. It is equally possible to translate into
non-schema-aware expressions (and our implementation allows that as an option),
but the resulting expressions are less readable, because they include a lot of casts
and conversions of atomic types. That is why we use schema-aware expressions
in the examples in this thesis.

5.5.1 Variables, literals, let and if expressions

Variables There are three ways a variable can be de�ned in an OCL expres-
sion. Each invariant has a context variable, which holds the validated object. It
can be named explicitly (such as t in Figure 5.11) or, when no name is giv-
en, the name of the context variable is self. Iterator expressions (described
later in this section) declare iteration variables (such as t in the expression
�self.team->forAll(t | . . .))� in PSM IC4 in previous section). Let expressions
(described later in this section as well) de�ne a local variable.

We will construct the expression in such a way that the following principle
holds:

Principle 1. Every OCL variable used in O′ corresponds to an XPath variable of
the same name in XO′. References to OCL variables (VariableExp) are translated
as references to XPath variables.

The OCL context variable (with default name self or named explicitly) is
common in all invariants declared for the context. Therefore, to declare corre-
sponding variable, we can utilize Schematron sch:let instruction in each rule
(line <sch:let name=�t� value=�.�/> in the example). Declaration of XPath
variables for the other OCL variables (declared as a part of LetExp or LoopExp)
will be created in accordance with Principle 1, as we will demonstrate later in
this section.

LetExp de�nes a variable and initializes it with a value. The variable can be
referenced via VariableExp in the subexpression of the given LetExp. XPath 3.0
added a corresponding construct � let/return expression. Thus, the following
principle is in accord with Principle 1.

Principle 2. Let O′ be a LetExp expression �let x : Type = initExp' in subExp'�,
where initExp' and subExp' are both OCL expressions and the latter is allowed
to reference variable x. Than O′ is translated to an XPath expression XO′: let

$x := XinitExp′ return XsubExp′., where XinitExp′ and XsubExp′ are translations
of initExp′ and subExp′ respectively.

LiteralExp OCL allows literals for the prede�ned types, collection literals (e.g.,
�Sequence{1, 2, 3}�), tuple literals and special literals �null� (representing miss-
ing value) and �invalid� (representing erroneous expression).

Principle 3. OCL literals are translated according to the following table.
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OCL XPath
prede�ned type literal (literals for Real,
e.g., �1.23�, String, e.g., �`hello'� etc.)

corresponding XSD primitive type
literal (1.23, `hello' etc.)

sequence literal, e.g.,
�Sequence(1, 2, 3)�

XPath sequence literal, e.g.,
(1,2,3)

tuple literal, e.g.,
�Tuple { name = ‘John,′ age = 10 }�

XPath map literal (more about
tuples in Section 5.5.4)

�null� literal empty sequence literal ()
�invalid� literal call of OclX function invalid()

(more about error handling in Sec-
tion 5.5.5)

IfExp Conditional expression in OCL has the same semantics as in XPath, it
can be translated directly.

Principle 4. Let O′ be an IfExp expression �if cond' then thenExp' else elseExp'�.
Then O′ is translated to an XPath expression XO′: if (Xcond′) then XthenExp′

else XelseExp′.

5.5.2 Translating Feature Calls

In the following subsections, we will show how we translate FeatureCallExp. There
are two types of features in UML � properties and operations, which can be refer-
enced via respective FeatureCallExps, as depicted in a separate diagram in Figure
5.4b. We will elaborate on both types � PropertyCallExp and OperationCallExp
separately.

PropertyCallExp Examples of navigation expressions via PropertyCallExp are
e.g., �self.budget� (in PSM IC2), �e.internship� (in PSM IC3) or �self.team.
member� (in PSM IC6). The �rst one navigates to an attribute budget' of class
Organization', the second one navigates an association end internship' which
is a part of the association between classes Employee' and Department'. Every
FeatureCallExp has a source (inherited from CallExp, see Figure 5.4). The source
in the �rst example is a VariableExp �self�, in the second example, the source is
a VariableExp �e�. The third example is a chain of two PropertyCallExps. The
source in the third example is a PropertyCallExps �self.team� whose source is a
VariableExp �self�. The whole navigation starts in class Teams', goes through
Team' and ends in Member'.

Navigation to properties can be translated by appending an XPath step which
uses either the child or attribute axis. Translation of navigation to association
ends depends on the direction of the association and whether the association
has a name (an association without a name means that the subtree under the
association is not enclosed by a wrapping tag, thus no XPath navigation is added).
The following principle thus follows the rules from Table 3.1.

Principle 5. PropertyCallExp is translated by appending an XPath step to the
translation of the source expression. Let O′ be a PropertyCallExp expression
�source'.p'� and Xsource′ be a translation of subexpression source'. If p′ navigates
to an attribute A′ ∈ S ′a and n′ = name(A′), then O′ is translated to XO′ as
follows:
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XO′ =

{
XO′/child::n' if xform(A′) = e
XO′/attribute::n' if xform(A′) = a

If R′ = (E ′1, E
′
2) is an association and p′ navigates to one of its ends E ′ ∈

{E ′1, E ′2}, O′ is translated as follows:

XO′ =


XO′ if name(R′) = λ
XO′/child::n'

if E ′ = E ′2 ∧ name(R′) = n′

XO′/parent::node() if E ′ = E ′1

OperationCallExp Application of prede�ned in�x and pre�x operators, calls of
OCL standard library operations and calls of methods de�ned by the designer in
the UML model all come under OperationCallExp. For a majority of prede�ned
operators (such as �+�, �and�, etc.), a corresponding XPath operator exists as
well. For those where no corresponding operator exists (e.g., �xor�), we provide
a corresponding function in OclX library. (We do not include the exhaustive list
in the paper. It can be found in the documentation for OclX 3.)

Principle 6. Every OperationCallExp O′ is translated into a call of correspond-
ing operation/operator (with the same number of parameters; the translation of
the source expression in O′ becomes the �rst argument in XPath in XO′, followed
by the translation of the operation arguments in O′). The corresponding opera-
tion/operator is either a built-in XPath expression or it is de�ned in the OclX
library.

In Sec. 5.2, we introduced a new function D′.toE ′, which is de�ned for each
pair of PSM classes C ′1 and C

′
2 with the same interpretation (C = I(D′) = I(E ′)).

This function call can be translated when there is a key de�ned for C and the key
is represented both in D′ and E ′. The key can be utilized to locate the instances
of C ′2 in the schema, as is described by Principle 7.

Principle 7. Let D′ and E ′ be a pair of PSM classes s.t. C = I(D′) = I(E ′) and
let KC = {A1, . . . , An} ⊆ attributes(C) be a key for C, K ′D = {D′1, . . . , D′n} ⊆
attributes(D′) a set of PSM attributes representing attributes from K and K ′E =
{E ′1, . . . , E ′n} ⊆ attributes(E ′) s.t. I(D′1) = I(E ′1), . . . , I(D′n) = I(E ′n).
OperationCallExp O′k = S ′.toE ′() (where S ′ is of type �Collection(D′)�) can be
translated as XO′k

= (for $p in XS′ return XA′[$p/name(D′1) eq ./name(E ′1)
and . . . and $p/name(D′1) eq ./name(E ′1)]), where X

′
A is an XPath expression

returning all instances of E ′ in the schema4.

To illustrate translation described in Prin. 7, we will show a translation of the
constraint IC4, which we have already described earlier (project teams may be
hosted only by departments in a sponsoring organization), for schema Fig. 5.3a.
Constraint:

context Project inv PSM_IC4:
self.team−>forAll(t | t.host.toDepartment().parent = self.parent)

3OclX documentation: http://github.com/j-maly/oclx
4The syntax also presumes that all the key PSM attributes are represented as PSM elements

(xform = e. For those attributes, which are not, attribute axes will is used to access them)
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is translated as follows:

oclX:forAll($self/team, function($t)
{ (for $p in $t/host return //department[./name eq $p/name])/.. is $self/.. } )

The translation uses the key de�ned for Department which contains the attribute
Department.name. The key is used to �nd the di�erent representation of the
same department.

5.5.3 Translating Iterator Expressions

Loop expressions, e.g., �self.Team->forAll(t | t.host.Organization = self.sponsor)�
are archetypal for OCL � they perform the task of joins, quanti�cation, maps and
iterations. They are called using �->� operator. Instead of a list of parameters,
the caller speci�es the list of local variables and the body subexpression (see Figure
5.4). There are several important facts regarding loop expressions:

1. There are two kinds of LoopExp, a general IterateExp and IteratorExp.
The general syntax of IterateExp is: �iterate(i : Type; acc : Type =
accInit | body )�, where i is the iteration variable, acc accumulator variable,
accInit the accumulator initialization expression and body is an expression,
which can refer to variables i and acc. The result is obtained by calling body
expression repeatedly for each member of the collection (which is assigned
to i and acc is assigned the result of the previous iteration). The value of
acc after the last call is the result of the operation. The general syntax
of IteratorExp is: �iteratorName(i : Type | body )�, where iteratorName
is one of the prede�ned OCL iterator expressions (such as exists, closure,
etc.) or may be de�ned in a user extension, i is the iteration variable and
body is an expression, which can refer to the iteration variable i (and all
other variables valid in the place where the iterator expression is used).
The semantics of the IteratorExp depends on the concrete iterator. The
semantics for the prede�ned operators is given by the speci�cation.

2. Except closure, all other prede�ned iterator expressions (and a majority of
collection operations) can be de�ned in terms of the fundamental iterator
expression iterate, e.g., �exists(it | body)� is de�ned as �iterate(it; acc :
Boolean = false | acc or body)�. Semantics of user-de�ned iterator expres-
sions can be de�ned using iterate as well.

3. Iterator expressions forAll and exists (serving as quanti�ers) together with
boolean operators not and implies make OCL expressions at least as power-
ful as the �rst order logic. Operation closure increases the expressive power
with the possibility to compute transitive closures. Operation iterate al-
lows to compute primitively recursive functions (for more on the expressive
power, see [48]).

4. Iterator expression collect is often used implicitly, because PropertyCall-
Exp �source.property�, where source is a collection (e.g., �team.member�)
is in fact a syntactic shortcut for �source->collect(t | t.property)� (e.g.,
�team->collect(t | t.member)�).

5. Multiple iteration variables, such as in �c->forAll(v1, v2 | v1 <> v2)�,
are allowed for some expressions, but that is just a syntactic shortcut for
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nested calls:
�c->forAll(v1 | c->forall(v2 | v1 <> v2))�.

6. Collection operations de�ne variables (iterators and accumulator) which
are local (they are valid in the subexpression only). Other variables can be
referenced from body expression as well � either the context variable (self )
or variables de�ned by outer LetExp or LoopExp expressions. Variables
except iteration variables (and accumulator in iterate) are free in the body
expression.

For translation to XPath, property 2 implies that it is su�cient to show, how
to translate closure and iterate, other operations can be de�ned using iterate. If
we succeed, property 3 ensures that we can check constraints with non-trivial
expressive power, incl. transitive closures. Property 5 relieves us from the neces-
sity to deal with expressions with multiple iterators. However, property 6 implies
that we have to deal with local variables for iterator expressions.

There is no operation similar to iterate in XPath. However, we will show that
iterate, and consequently all the other iterator expressions, can be implemented
as XSLT higher-order functions.

Higher-order functions (HOFs) are a new addition proposed for the drafts of
the common XPath/XQuery/XSLT 3.0 data model, which introduces a new kind
of item � function item. With function items, it is possible to:

1. assign functions to variables, pass them as parameters and return them
from functions,

2. function items can be called,

3. declare anonymous functions in expressions.

HOF is a function, which expects a function item as a parameter or returns a
function item as a result. OCL loop expression can be looked upon as HOF as well
� they all expect a subexpression (body, see Figure 5.4), which is evaluated (called)
repeatedly for each member of a collection. Property 6 mentioned above is im-
portant for the semantics � body subexpression can have free variables, which are,
when evaluated, bound to variables de�ned in the source of the loop expression.
E.g., in the expression PSM IC3 �self.Team->forAll(t | t.host.Organization =
self.sponsor)�, the body expression refers to two variables � self and t. Variable
t is the iteration variable, variable self is free in body.

Principle 8. IterateExp de�nes two variables, an accumulator and an iteration
variable. IteratorExp de�nes one variable � an iteration variable. Translation
of both IterateExp and IteratorExp must correspond to Principle 1, i.e., these
variables must be available as XPath variables in the translation of the body ex-
pression.

Figure 5.5 shows how iterate is implemented in OclX. It is a higher-order
function, expecting a function item of two arguments in its third parameter body.
The draft of XSLT 3.0 [93] introduces new instruction xsl:iterate, which we can
use to our advantage. The function item is called repetitively for each member
of the collection (line 10), with the two expected arguments � a member of the
collection and the current value of the accumulator. When body was de�ned as an
anonymous function item, the free variables it contains are bound to the variables
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<xsl:function name=``oclX:iterate'' as=``item()∗''>
<xsl:param name=``collection'' as=``item()∗''/>
<xsl:param name=``accInit'' as=``item()∗''/>
<xsl:param name=``body'' as=function(item()∗, item()∗) as item()∗/>

<xsl:iterate select=``1 to count($collection)''>
<xsl:param name=``acc'' select=``$accInit'' as=``item()∗'' />
<xsl:next−iteration>
<xsl:with−param name=``acc'' select=``$body($collection[current()], $acc)'' />

</xsl:next−iteration>
<xsl:on−completion>
<xsl:sequence select=``$acc'' />

</xsl:on−completion>
</xsl:iterate>

</xsl:function>

<xsl:function name=``oclX:exists'' as=``xs:boolean''>
<xsl:param name=``collection'' as=``item()∗''/>
<xsl:param name=``body'' as=``function(item()) as xs:boolean''/>

<xsl :sequence select=``oclX:iterate($collection, false(),
function($it, $acc) { $acc or ($body($it)) })'' />

</xsl:function>

Figure 5.5: Functions iterate and exists

available in the calling expression, which is in accord with the semantics of loop
expressions of OCL. The second part of Figure 5.5 shows how HOF exists can be
de�ned in terms of HOF iterate. The de�nition utilizes an anonymous function
node (line 23), which calls the function item passed as argument.

Principle 9. Every IterateExp (call of iterate) is translated as a call of OclX
HOF iterate. Every IteratorExp (call of some iterator expression, such as exists
etc.) is translated as a call of an OclX HOF of the same name. OclX contains
a HOF de�nition for each prede�ned iterator expression. Subexpression body is
translated separately and the resulting Xbody is passed as an anonymous function
item to the HOF call.

Some iterator expression can be in some cases translated using native XPath
constructs without the need to call a HOF (as de�ned in Prin. 9), e.g., OCL
exists function can be translated using some/satisfies expression. We discuss
this sort of rewriting of queries in Sec. 5.5.8.

To conclude the part about the iterator expressions, we will address the oper-
ation closure. The syntax for closure is the same as for other iterator expression,
but the di�erence is that the semantics of closure is not de�ned in terms of iter-
ate � whereas the amount of iterations needed to compute iterate is �xed, closure
computes a transitive closure of the body subexpression (the resulting collection
must be in depth �rst preorder) � thus, it is not known, how many calls of body
will be required. Again, there is no equivalent construct in standard XPath. The
implementation of closure in OclX is depicted in Figure 5.6.
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<xsl:function name=``oclX:closure'' as=``item()∗''>
<xsl:param name=``collection'' as=``item()∗''/>
<xsl:param name=``body'' as=``function(item()) as item()∗''/>
<xsl:sequence select=``oclXin:closure−rec(reverse(collection), (),body)''/>
</xsl:function>

<xsl:function name=``oclXin:closure−re'' as=``item()∗''>
<xsl:param name=``toDoStack'' as=``item()∗''/>
<xsl:param name=``result'' as=``item()∗''/>
<xsl:param name=``body'' as=``function(item()) as item()∗''/>

<xsl:choose>
<xsl:when test=``count($toDoStack) eq 0''>
<xsl:sequence select=``$result''/>
</xsl:when>
<xsl:otherwise>
<xsl:variable name=``i'' select=``$toDoStack[last()]'' as=``item()''/>
<xsl:variable name=``contribution'' select=``$body($i)'' as=``item()∗''/>
<xsl:sequence select=``oclXin:closure−rec(
($toDoStack[position() lt last()], reverse($contribution)), ($result, $i), $body)'' />

</xsl:otherwise>
</xsl:choose>
</xsl:function>

Figure 5.6: Function closure

5.5.4 Tuples

In this subsection, we show how OCL expressions using tuples (anonymous types)
can be translated to XPath. OCL allows the modeller to combine values in ex-
pressions into tuples. Tuples have a �nite number of named parts and are created
using TupleLiteralExp, a specialization of LiteralExp. An example of a tuple lit-
eral may be �Tuple { �rstName = `Jakub', lastName = `Maly', age = 26 }�.
The values of the parts may be of arbitrary type, including collections and
other tuples. The names of tuple parts (�rstName, lastName, age in the ex-
ample) must be unique and are used to access the parts of the tuple in ex-
pressions, similarly to attributes of classes (using �.� notation), i.e., it is pos-
sible to write, e.g., �employees->collect(e | Tuple { name = e.name, salary =
e.salary })->select(t | t.salary > 2000)� The result of this expression would be a
collection of tuples. Tuples are also closely related to operation product, which
computes a cartesian product of two collections:

product(c1:Collection(T1), c2:Collection(T2)) =
self−>iterate(e1; acc = Set{} | c2−>iterate(e2; acc2 = acc |
acc2−>including(Tuple{�rst = e1, second = e2})))

The result of product is a collection of type �Collection(Tuple(first : T1, second :
T2))�, which contains all possible pairs where the �rst compound comes from
collection c1 and the second from collection c2. This operation thus �nalizes the
suite of equivalents of the constructs required for a language to be relationally
complete (see [14]):

1. Select - can be expressed using select iterator expression,

2. Project - can be expressed using collect iterator expression that creates a
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tuple with the projected attributes (similarly as in the employees example
above, which, in fact, performs projection to attributes name and salary) ,

3. Union - OCL has union operation as well,

4. Set di�erence - OCL has operation `-' working on sets,

5. Cartesian product - can be expressed using product,

6. (Rename) - can be expressed using collect in the same manner as project
operation.

Thus, not only tuples can be used to write more concise expressions. Together
with the operation product, they increase the expressive power of the language to
relational completeness (see [48] for more on expressive power of OCL).

When we want to represent tuples in XPath data model, we have several
options. We will discuss the disadvantages of the less suitable ones, because they
also apply to representing collections, which we will discuss in Sec. 5.5.6.

One possibility is to use sequences, where each item in the sequence cor-
responds to one part of the tuple, i.e., the tuple from the example would be
represented as sequence (`Jakub', `Maly', 26). However, this solution is not
completely satisfactory from the following reasons:

1. We lose �safety� and clarity in the expression, because we have to write
$t[1] to represent the OCL expression �t.firstName�.

2. When some part is missing (which is in OCL indicated by null value),
we have to use some placeholder value to keep the length of the sequence
constant (e.g., (`null', `null', 26)).

3. A part of a tuple in OCL can be of any type, including other tuples and
collections. Here, this approach fails utterly, because all sequences are �at-
tened in XPath. This also makes implementing product operation impos-
sible, because it should return a collection of tuples, i.e., a collection of
sequences.

Instead of representing tuples using sequences, an alternative would be to
represent them using temporary documents, for example:

<Tuple>
<firstName>Jakub</firstName>
<lastName>Maly></lastName>
<age>26</age>

</Tuple>

This approach would overcome the �rst issue (�t.firstName� would be repre-
sented as $t/firstName), the second issue (an empty element could represent a
missing part) and also the third issue (nesting is no problem here and collections
could be encoded into trees as well). However, it brings two problems of its own:

1. The value which is about to become a part of a tuple, is copied to a tempo-
rary XML document. This would not hurt so much with atomic values, but
would be a signi�cant overhead, when the value was a node or a sequence of
nodes in the input document (whole subtree would be copied in this case).

2. When a node is copied into a temporary document, the copy of the node
is in no way connected to the original node. It would not be possible to
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navigate outside its subtree (e.g., using parent axis, see Principle 5) and
operations relying on node identity (such as the is operator) would give
unexpected results when applied on nodes from the input tree and from the
temporary tree.

XSLT 3.0 introduces another XPath item type � map item, which is a good �t
for representing OCL tuples. A map item is an additional kind of an XPath item
which was added in the Working Draft of XSLT 3.0 [93] (and is already implement-
ed in [76]). Map items use atomic values for keys and allow items of any type as
values. These properties of map items make them good candidates for represent-
ing tuples. Strings containing the name of a tuple part can be used as keys (and
the names of parts must be distinct in an OCL tuple as well). The tuple from the
example would be represented as map{`firstName' := `Jakub', `lastName'

:= `Maly', `age' := 26}, expression �t.firstName� would be represented as
$t(`firstName'). A value in a map can also be another map or sequence, which
is consistent with semantics of OCL tuples. Operation product can be de�ned
either by translating the de�nition from speci�cation (using two nested iterates)
or via a much more succinct XPath expression:

for e1 in collection1 return for e2 in collection2 return
map{`�rst' := e1, `second' := e2}

Principle 10 summarizes translation of tuples.

Principle 10. A tuple literal is translated into an XPath map item literal. Every
tuple part is translated as a key/value pair in the item literal, the type of the key
is string and the value of the key equals the name of the tuple part. Access to
tuple parts is translated as indexing the tuple with a string corresponding to the
accessed part.

Neither of the examples in the previous section uses LetExp or tuples. We
will demonstrate their usage on another example here. The expression PSM
IC7 in Figure 5.1 veri�es that an employee has at most two concurrent in-
ternships in di�erent departments. The expression �rst computes an auxiliary
variable internship, which contains a tuple for each employee in the organiza-
tion. The tuple has two parts � employee and departments (the set of depart-
ments where the employee works as an intern). The type of internships is thus
�Set(Tuple(employee:Employee', departments:Set(Department')))�, which we ab-
breviate to InternshipsSet in the expression. The full translation of constraint
PSM IC7 is depicted in Appendix C.1, together with the translations of the other
constraints from the previous section.

context o:Organization inv PSM_IC7:
/∗ Only two internships allowed concurrently for one employee ∗/
let internships : InternshipsSet = o.dpt.emp->iterate(e; acc: InternshipsSet = { } |

acc->including(Tuple (
employee = e,
departments = o.dpt->select(d | d.int.empNo->includes(e.empNo)))))

in /∗ now we work with the variable internships ∗/
internships->forAll(i | i.departments->size() < 3)

Listing 5.1: LetExp and tuples example

77



<xsl:function name=``oclX:oclIsInvalid" as=``xs:boolean''>
<xsl:param name=``func" as=``function() as item()∗'' />

<!−− evaluate func and forget the result, return false −−>
<xsl:try select=``let $result := $func() return false()''>
<xsl:catch>
<xsl:if test=``$debug''>
<xsl:message select=```Runtime error making the result invalid. '''/>
<xsl:message select=``` − code: ' || $err:code''/>
<xsl:message select=``` − description: ' || $err:description''/>
<xsl:message select=``` − value: ' || $err:value''/>
</xsl:if>
<!−− if function call fails, return true −−>
<xsl:sequence select=``true()'' />
</xsl:catch>
</xsl:try>
</xsl:function>

Figure 5.7: Implementation of oclIsInvalid using xsl:try/xsl:catch

5.5.5 Error Recovery

OCL as a language has a direct approach to �run-time� errors or exceptions.
Errors in computation cause the result of the expression to be invalid � a special
value, sole instance of type OclInvalid. It conforms to all other types (i.e., it can
be assigned to any variable and can be a result of any expression) and any further
computation with invalid results in invalid � except for operation oclIsInvalid5.
It returns true when the computations results in invalid and false otherwise.
This operation thus provides a very coarse-grained error checking mechanism
available in OCL. Unlike OCL computation, XPath/XSLT 2.0 processor halts
when it encounters a dynamic error and there is no equivalent of oclIsInvalid. It
is also not possible to instruct it to jump to the validation of the next IC when
a computation of one expression fails.

XSLT 3.0, however, introduces new instructions � xsl:try and xsl:catch �
which provide means of recovery from dynamic errors. With these instructions,
it is possible to implement oclIsInvalid as depicted in Fig. 5.7. We, again, utilize
higher-order functions capabilities � the expression is evaluated in a function call
wrapped in try/catch. OCL expression �oclIsInvalid(1/0)� can be translated
to oclX:oclIsInvalid(function() { 1 div 0 }). Optionally, our validation
pipeline (fully introduced in section 7) allows to safe-guard the evaluation of
each expression using try/catch, so that the validation of another constraint may
continue if a runtime error occurs and it is not contained by oclIsInvalid. In the
debug mode, detailed info is given using xsl:message.

Principle 11. Calls of functions oclIsInvalid and oclIsUnde�ned are translated
into calls of corresponding OclX HOFs, implemented using try/catch instructions.
Usages of invalid literal are translated into calls of invalid().

5To be accurate, another operation � oclIsUnde�ned � behaves equally to oclIsInvalid when
the argument is invalid, but it also returns true, when the result of the computation is null
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Figure 5.8: PSM schema � organization hierarchy

5.5.6 Collections

OCL de�nes an abstract type Collection and 4 di�erent types of collections - Set,
OrderedSet, Bag (in other languages sometimes called multiset) and Sequence. A
member of any collection can be an arbitrary value, including another collection.

We treat all collections as sequences in OclX, yet it would be possible to
represent the other kinds of collections using maps (or sequences as well).

Nested collections are a foreign concept to XPath data model. The disad-
vantages of encoding collections into temporary documents were discussed in
Sec. 5.5.4.

With the introduction of maps, there is, a rather ugly, way of encoding nested
sequences - thanks to the possibility of using maps as values and members of
sequences. A nested sequence ((1,2),(3),()) could be encoded to:

map{'s' := (map{'s' := (1,2)}, map{'s' := (3)}, map{'s' := ()})}.

The expression returning number two would be written as:

(map{'s' := (map{'s' := (1,2)}, map{'s' := (3)}, map{'s' := ()})})('s')[1]('s')[2].

Using this approach also requires the functions which concatenate sequences
not to use XPath operator `,', because it �attens the resulting sequence.

The double indexing (�rst to get the value from the map, second for getting
the desired member of the sequence) can seem confusing, but it can be in fact
hidden behind a library function at(i) (which OCL uses instead of the operator [i]
to get an i-th member of a sequence). The wordy and a bit unclear way of creating
a nested sequence appears in those expression that create nested sequences using
literals. This, however, could be eliminated by using preprocessing of the schemas
before evaluating the expressions.

5.5.7 Validation of Inheritance and Recursion

In this part, we examine the translation of OCL constraints regarding recursive
structures and inheritance. Recursive structures are not unusual in XML data
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context d:Department
/∗ PSM R1∗/
inv: let count:Integer = d−>closure(sd | sd.subdepartments.
department).employees.employee−>size()

in d.interns.intern−>size() > 0 implies count >= 3
message: 'Only departments with at least 3 employees can accept interns,
department {d.name} has only less employees

context e: Employee
/∗ PSM E2 ∗/
inv: e.empNo <> ''

context e: EmployeeI
/∗ PSM I1∗/
inv: e.Interns.Department <> null
implies e.Interns.Department <> e.toEmployee().Employees.Department

message: 'Internship in home department is forbidden'

context m:Manager
/∗ PSM M1 ∗/
inv: m.Department.employees.employee.empNo−>includes(m.empNo)
message: 'Manager is an employee of its department'
/∗ PSM M2 ∗/
inv: m.phone <> null
message: 'Managers must state their phone numbers'

Figure 5.9: PSM ICs for organization schema

and are supported by all XML schema languages. Inheritance is less popular and
supported only by XML Schema Language. On the other hand, inheritance is
a core construct of UML/OCL, which also supports recursive structures in the
form of associations whose association ends belong both to the same class.

Recursion and inheritance can be validated using OclX (by recursion we mean
navigation along cycles in PSM schemas using closure). We will demonstrate them
on a PSM schema in Fig. 5.8, the translation of this schema to an XSD can be
found in Appendix A.8. The sample constraints are in Fig. 5.9.

Inheritance is a common feature in UML diagrams and OCL supports in-
heritance by allowing calls of inherited features (operations and properties, via
FeatureCallExp) and rules of type conformance. The subexpression �m.phone�
from Fig. 5.9 is legal because class Manager' inherits attribute phone' from class
Employee'. The semantics of OCL also de�nes that invariants de�ned in the
superclass apply also for all its subclasses. Thus, the invariant PSM E2 de�ned
for class Employee' must also be met by instances of class Manager'.

At the PSM level, we support inheritance as well [35] � a class can inherit from
another class which means that the element corresponding to the speci�c class
will have all the attributes and subelements de�ned by the attributes and content
of the general class (the inherited subelements come before the speci�c class' own
subelements). This corresponds to the requirement that inherited features can
be used in OCL feature call expressions.

When translating OCL expressions over a schema which contains a class hier-
archy we must ensure that invariant O′ de�ned for a superclass C are also checked
for subclasses Cx. This can be achieved by:
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1. copying the rule R obtained from translation of O′ for every subclass. (It
makes the resulting schema larger and less transparent.)

2. combining all the occurrences of C and Cx into the context of R using the
XPath union operator (e.g., use the expression //employee | //manager).
The translation of R is not repeated, but the resulting schema does not
visibly show that the PSM schema utilizes inheritance.

3. utilizing the feature provided by Schematron for rule logic reuse � abstract
patterns. Unlike the previous options, this one does not require the context
variables to be named the same in the general and in the speci�c invariants.

We decided for the last option since it preserves the nature of inheritance.
The rules for shared invariants are declared in abstract patterns and called by
the patterns for derived classes. For every class participating in a generalization
as a super class, an abstract pattern is generated. For every non-abstract class,
which inherits from the class (and for the super classes themselves), an instance
pattern is generated.

Principle 12. Rules obtained by translation of invariants where the context is a
class for which specialized classes exists are placed in abstract Schematron pat-
terns. An instance pattern calling the abstract pattern is created for each subclass.

Appendix C.4 shows a translation of invariants from Fig. 5.8. Constraint
PSM E2 for class Employee is translated into an abstract pattern Employee.
This abstract pattern is called both for instances of Employee and Manager (via
patterns Employee-as-Employee and Manager-as-Employee).

The recursive association between departments (departments have subde-
partments) is represented in the PSM schema in 5.8 by the cycle Department-
Subdepartments-Department. This must be re�ected in validation. The expres-
sion de�ning the context of rule PSM R1:

organization/departments/descendant::department

utilizes descendant axis. OCL constraints concerning recursive structures often
utilize closure iterator expressions (see Sec. 5.5.3 earlier in this chapter), PSM
R1 is an example of such constraint.

As a demonstration of translation, Appendix C contains translations of the
expressions from the integrity constraints used in the examples in this section in
the form of Schematron schemas. We describe how translation to Schematron
works in 5.6.1 later in this chapter.

5.5.8 Operational Level Expression Rewriting

In Section 5.5.3, we showed that it is possible to translate iterator expressions to
XPath using OclX functions. For every prede�ned OCL iterator expression, OclX
de�nes a higher-order function which mirrors both the syntax and semantics of
the iterator expression. Thus, the default translation (as de�ned by Principle 9)
is syntactically closest to the original OCL expression. In some cases the usage of
an iterator expression may be translated to a native XPath expression equivalent
to the expression with higher-order functions. Such rewritings may be desirable
for several reasons:
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1. The resulting expression may be less complex, more readable and easier to
understand for an XPath users.

2. The resulting expression may be less costly to evaluate, because XPath/XSLT
processors are highly optimized for XPath axis evaluation. Also, every us-
age of anonymous functions has certain overhead.

3. By rewriting the expressions used in the schema, it may be possible to
evade using OclX completely and the resulting schema would be a standard
Schematron (XPath 2.0) schema, which may be used even by non-XSLT
based Schematron validators.

In the following, we will expect Xcollection′ and Xbody′ (Xcond′ , where more
appropriate) to be translations of the expressions collection' (returning the source
collection) and body' (or cond', where more appropriate) (the body expressions of
IteratorExp) respectively. Some rewritings may be used only for a certain class
of expressions � these preconditions are given for each rewriting.

De�nition 14 (x-safe). We will call an OCL expression safe with respect to
variable x or x-safe, when it does not contain iterator expression referencing
variable x.

E.g., expression 1) �x > z->select(y|y = 0)� is x-safe, because x is not refer-
enced in an iterator expression. Expression 2) �z = y->select(u|x <> u)� is not
x-safe, because x is referenced in the iterator expression select. X-safe expression
are an important subclass of expression when rewritings are concerned. When
the body expression of an iterator expression is safe with respect to the iterator
variable, references to the iterator variable can be replaced by references to con-
text node in XPath �lters. E.g., in the expression 1), the subexpression �y = 0�
is y-safe and 1) can be thus translated as $x > $z[. eq 0]. When the body
is not y-safe, it is not possible, because some iterator subexpression references y
and in that occurence, y does not correspond to context node any more. We will
denote Xexp′|x the translation of exp' where all references to x are translated as
references to context node `.'.

collect General form of collect is: �collection'->collect(x | body')�
and it can be translated as follows:

1. oclX:collect(Xcollection′, function($x) { Xbody′ })

2. for $x in Xcollection′ return Xbody′

This rewriting can be used in every case.

3. Xcollection′/XbodyR′

Allowed when Xbody′ is a PSM path starting in variable x, then XbodyR′ is
the path without variable x. This rewriting corresponds to OCL's syntac-
tic shortcut for collect. Using this rewriting, it is possible to replace, e.g.,
the following expression: oclX:collect($organization, function($o)

{ $o/department } ) with a more concise one $organization/department.

forAll/exists Expression exists/forAll returns true when at least one/every
item in the source collection satis�es given condition. General form of forAll is:
�collection'->forAll(x | cond')� and it can be translated as follows:
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1. oclX:forAll(Xcollection′, function($x) { Xcond′ })

2. every $x in Xcollection′ satisfies Xcond′

This rewriting can be used in every case. For exists, some will be used
instead of every.

select/reject Expression select/reject returns the collection of those items from
the source collection, which satisfy given condition. We will show rewritings
for select, rewritings for reject can be obtained analogously after inverting the
condition. General form of select is: �collection'->select(x | cond')� and it can
be translated as follows:

1. oclX:select(Xcollection′, function($x) { Xcond′ })

2. for $x in Xcollection′ return if (Xcond′) then $x else ()

This rewriting can be used in every case.

3. Xcollection′[Xcond′|x]

Allowed when cond' is x-safe.

4. Xcollection′[let $x := . return Xcond′|x]

This rewriting can be used as an alternative when cond' is not x-safe �
variable $x is de�ned explicitly. However, let/return expression are only
supported in XPath 3.0.

any Expression any returns one of the items from the source collection, which
satisfy given condition (or null if no such item exists). General form of any is:
�collection'->any(x | cond')� and it can be translated as follows:

1. oclX:any(Xcollection′, function($x) { Xcond′ })

2. (for $x in Xcollection′ return if (Xcond′) then $x else ())[1]

This rewriting can be used in every case. The result of evaluation is an
empty sequence when no item satisfy the condition, which is consistent with
representing null as na empty sequence (this also applies for the following
rewriting).

3. (Xcollection′[Xcond′|x])[1]

Allowed when cond' is x-safe.

4. (Xcollection′[let $x := . return Xcond′|x])[1]

Alternative when cond' is not x-safe, XPath 3.0 only.

one Expression one returns true if there is exactly one item in the collection
satisfying given condition. General form of one is: �col'->one(x | cond')� and it
can be translated as follows:

1. oclX:one(Xcol′, function($x) { Xcond′ })

2. count(for $x in Xcoll′ return if (Xcond′) then $x else ()) eq 1

This rewriting can be used in every case.

3. count(Xcol′[Xcond′]) eq 1

Allowed when cond' is x-safe.
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4. count(Xcol′[let $x := . return Xcond′]) eq 1

Alternative when cond' is not x-safe, XPath 3.0 only.

closure The general form of closure is �collection'->closure(x | body')�. This
general form can not be rewritten, but closure is often used to process hierarchical
structures. When the hierarchical structure is also represented via element nesting
in the XML document, XPath ancestor or descendant axes may be used. The
rewritings are thus as follows:

1. oclX:closure(Xcollection′, function($x) { Xbody′ })

2. Xcollection′/descendant-or-self::XbodyR′

Allowed when body' is a PSM path and all navigation steps in the path are
oriented downwards6. Expression bodyR' is a path containing only the last
step in body'. As an example, the following expression, which is a transla-
tion of the constraint PSM R1 from Fig. 5.9:
oclX:closure(., function($sd) {$sd/subdepartments/department} )

can be rewritten into much more concise form:
./descendant-or-self::department.

3. Xcollection/ancestor-or-self::XbodyR′

Allowed when body' is a PSM path and all navigation steps in the path are
oriented upwards6. Expression bodyR' is a path containing only the last
step in body'.

iterate As we have stated in Section 5.5.3, standard XPath does not contain any
expression corresponding to OCL iterate (general iteration with accumulator).
XPath iterator for ...in ... has di�erent semantics � it has no accumulator
and one iteration has no access to the results of previous iterations. Thus, when
iterate is used non-trivially, only the default translation using oclX:iterate

extension is possible.
There are several other kinds of expressions our framework allows to rewrite,

besides iterator expressions. E.g., a collection function �at(n)�, which selects the
n-th member of a sequence, can be translated either as a call of an OclX function:
oclX:at($collection,$n), or as an XPath predicate: $collection[$n]. List-
ings in Appendix C.5 shows translation of integrity constraints from Fig. 5.9
with rewritings applied. These translations are equivalent to the corresponding
translations in Appendix C.4.

5.6 Applications of OCL for XML Data

To conclude this chapter, we will show how translated OCL constraints can be
used in XML systems.

A straightforward application is to model queries at the conceptual level and
translate them automatically to the operational level (using the algorithms from
the previous two sections). The translated quires can be executed upon XML
documents.

6The rewritten expression processes the whole hierarchy. When the original expression selects
only a part of the hierarchy, the rewriting can not be used.
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Another application of OCL in our framework is to verify invariants in XML
documents. The user can de�ne invariants at the PIM or PSM level and the
system will automatically generate a schema to verify the constraints. If the
document passes validation against the schema, the invariants are satis�ed. We
will use Schematron [29] for validation. Schematron schemas are built upon
XPath expressions and we can thus apply the results of the previous sections,
where we have shown how to translate from OCL to XPath. See more on this
application in 5.6.1.

Using OCL, it is also possible to de�ne new methods incl. implementation
or de�ne implementation of the methods already de�ned in the class diagram.
Methods de�ned in OCL are `pure' (they do not have any side-e�ects) and their
body is an OCL expression. Such a method can then be used in every other OCL
expression (in invariants etc.). We will show how OCL method de�nition can be
translated into XSLT function de�nitions. See more on this application in 5.6.2.

In Chpt. 6, we will enhance the algorithm for document adaptation (Alg. 2).

5.6.1 Validation of Integrity Constraints Using Schematron

In this subsection, we describe how to translate a list of PSM OCL invariants
attached to a single PSM schema into a Schematron schema, which can be used
to validate the invariants in XML documents. A Schematron schema often com-
plements7 an XSD/RNG/DTD schema (which prescribes the overall structure
of XML documents). Schematron is a straightforward rule-based language. It
consists of rule declarations, where every portion of a document matching a rule
(match patterns follow the same syntax as in XSLT templates) is tested for as-
sertions de�ned in that rule. Assertions are expressed as XPath tests and an
assertion is violated, when the e�ective boolean value8 of the expression is false.
The example rule in Fig. 5.10 tests, whether every element person has subelement
name.

<rule context="//person">
<assert test="name">Subelement 'name' is missing.</assert>

</rule>

Figure 5.10: Simple schematron rule

The usage of XSLT patterns for contexts of rules and XPath expression for
tests of asserts was chosen because those are technologies well established in the
XML ecosystem. It also facilitates Schematron validation using an XSLT pro-
cessor � an XSLT pipeline can be used to translate a Schematron schema S into
a validation XSLT transformation TS

9. TS is executed upon a validated XML
document and outputs a report about the progress and results of validation10

7As a matter of fact, the recommendation of XML Schema 1.1[92] allows to include some of
the Schematron constructs directly in the XSD.

8The term e�ective boolean value is de�ned by XPath speci�cation[89].
9http://schematron.com o�ers an implementation of XSLT pipeline to generate TS for public

use.
10Results produced by TS are formatted using SVRL � Schematron Validation Report Lan-

guage, which is part of Schematron speci�cation [29].
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OCL construct Schematron construct

OCL script Schematron schema
Constraint block Pattern with a rule
Context classi�er Pattern id, value of context attribute
Context variable let instruction for a variable
Invariant Assert
Invariant body Expression in assert test
Error message Failed assert text
Subexpression in error message value-of instruction in assert

Table 5.1: Translation of principal OCL constructs

comprising successfully checked constraints, violated constraints, and the loca-
tions of the errors.

The power of Schematron is thus determined by the power of XPath (or XPath
running in XSLT context, when an XSLT-based validator is used), because XPath
expressions are used in tests. Since OclX is implemented using pure XSLT, our
approach does not require modi�cation in Schematron validators � if the validator
uses XSLT internally, it's logic can be preserved providing that TS imports OclX
library (details of the validation work�ow are described later in Chpt 7).

Table 5.1 outlines the rules for translation of a list of invariants into Schema-
tron constructs. Following these rules, we obtain a skeleton of the Schematron
schema S for a PSM schema S ′.

It is apparent that rules' contexts and asserts in Schematron play the same
role as contexts and invariants in OCL. Thus, by creating a rule for each OCL
context declaration and adding an assert in the rule for each invariant, we can
create a schema verifying the validity of the PSM invariant. The core of the
algorithm � translating the invariant's body O′ into an XPath expression XO′ �
was already described in Sec 5.5. What is left is to de�ne the context variable in
concord with Principle 1 � Schematron let instruction is used for the purpose.
Fig. 5.11 shows a concrete example of the translation.

<sch:schema 
    xmlns:sch="http://purl.oclc.org/dsdl/schematron">
 <sch:pattern id="Organization">
  <sch:rule context="//organization">
   <sch:let name="o" value="." />
   <!-- PSM_IC2 -->
   <sch:assert test="$o/budget le sum(o/department/budget)">
      Budget of organization 
      <sch:value-of select="$o/name" /> 
      exceeds the budgets of departments. 
   </sch:assert>
  </sch:rule>
 </sch:pattern>
</sch:schema>

context o: Organization
/* PSM_IC2 */ 
inv: o.budget <= o.department.budget->sum()
message: 'Budget of organization {o.name} 
exceeds the budgets of departments.’ 

Figure 5.11: Example of translation of principal OCL constructs
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5.6.2 Translating OCL Function De�nitions

Methods can be de�ned solely in OCL and used from OCL expressions afterwords.
Both static and instance(non-static) methods can be de�ned using operation body
expressions. Examples of both are depicted in Fig. 5.12. The �rst one (PSM DO1)
is a static method checking, whether two speci�ed date intervals overlap. The
second one (PSM DO2) adds a function that allows to �nd all departments where
an employee occupies a post of an intern. This function is used in an invariant
(PSM IN1) to check that no employee has more than two concurrent internships.
Note that PSM IN1 utilizes toEmployee � a traversal function introduced in 5.2
to get EmployeeI classes from Employee class.

Since it is not possible to de�ne named functions in XPath, we will use XSLT
to de�ne the new functions at the operational level (Similarly as we did with
OclX libarary.

OCL operation de�nitions and calls are naturally translated to XSLT function
de�nitions and calls. Depending whether the function is static or not, the method
gets an additional parameter standing in for the context variable. The translation
is formalized by Principle 13 and sample translations are depicted in Fig. 5.13.

Principle 13. Each operation M ′ of class C ′ de�ned using OCL de�nition with
expression O′ is translated into an XSLT function declaration FM ′. The name
of the function is name(C ′)-name(M ′). If M ′ is not static, the �rst parameter
of FM ′ corresponds to the context variable. The parameters of M ′ are translated
as the remaining parameters of FM ′. Every call of M ′ is translated as a call
of FM ′ and the instance of C ′ is passed as the �rst parameter to FM ′ when M ′

is not static. The remaining parameters in the function call are translated as
subexpression. Function FM ′ returns the value of the expression XO′ obtained by
translating O′.

context Date
/∗PSM DO1∗/
static def: isOverlap(d1from : Date, d1to : Date, d2from : Date, d2to : Date) : Boolean =
if (d1from > d1to or d2from > d2to) then invalid /∗ check inputs ∗/
else (d1from < d2todB) and (d2from < d1to)

context e:Employee
/∗ PSM DO2 ∗/
def: getInternshipDepartments() : Set(Department) =
e.toEmployeeI().parent.Department

context e:Employee
/∗ PSM IN1 ∗/
inv: e.getInternshipDepartments()−>size() < 3
message: 'Only two internships allowed concurrently for one employee'

Figure 5.12: Method de�nitions in OCL
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<!−− translations of OCL−de�ned operations,
this goes into XSLT user functions �le −−>

<xsl:function name=``user:Date−isOverlap'' as=``xs:boolean''>
<xsl:param name=``d1from'' as=``xs:dateTime'' />
<xsl:param name=``d1to'' as=``xs:dateTime'' />
<xsl:param name=``d2from'' as=``xs:dateTime'' />
<xsl:param name=``d2to'' as=``xs:dateTime'' />
<xsl:sequence select=``if (d1from &gt; d1to or d2from &gt; d2to)
then oclx:invalid() /∗ check inputs ∗/
else (d1from &lt; d2to) and (d2from &lt; d1to)'' />

</xsl:function>

<xsl:function name=``user:Employee−getInternshipDepartments'' as=``xs:item()∗''>
<xsl:param name=``e'' as=``item()'' />
<xsl:sequence select=``let $p := $e return //intern[./id = $p/id]/../..'' />

</xsl:function>

<!−− schematron schema with invariant using the ocl−de�ned operation −−>
<sch:schema xmlns:sch=``http://purl.oclc.org/dsdl/schematron''>
<sch:pattern id=``EmployeeO''>
<sch:rule context=

``/organization/departments/descendant::department/employees/employee''>
<sch:let name=``e'' value=``.'' />
<sch:assert test=``count(user:Employee−getInternshipDepartments($e)) &lt; 3''>
Only two internships allowed concurrently for one employee</sch:assert>

</sch:rule>
</sch:pattern>
</sch:schema>

Figure 5.13: Translation of the OCL-de�ned operatoins as XSLT functions
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6. Document Adaptation with

Semantic Annotations

In this chapter, we will extend our adaptation approach from Chpt. 4. We will
focus on the semantics of more complex changes, where mere mapping between
structures does not provide su�cient information. In this chapter, we will apply
the results from the previous chapter � translation of OCL expressions into XPath
expressions. In this chapter, we will show how to use the expressions to pull and
transform the data from the adapted document. This is an enhancement of
version links described in Chpt. 4 � sometimes, connecting the constructs in the
old and new version with a version link does not fully describe the relationship
between the two version. For this cases, we propose annotations, which have the
form of formal OCL expressions over the old and new version of the model.

6.1 Requirements for Semantic Adaptation

In Chpt. 4, we introduced a �nite set of change predicates, that can be tested for
the old and new versions of the schema to detect change instances. The proposed
set of predicates can be used to detect all changes in the structure of documents.
However, when we want to generate the adaptation script, we need not only to
adapt the structure, but also the content. Since content is not described in the
PSM schema, detected change instances do not always provide us with enough
information to adapt the documents accordingly. We will demonstrate this using
the example in Fig. 6.1. It shows two versions of a PSM schema which models a
history of customer's purchases in an e-commerce system, together with sample
XML documents. The following changes were made by the designer to the schema
in version v:

1. Attribute name is replaced by a pair of attributes firstName and lastName.
The value of name in v consists of �rst name and last name separated by
space character, in ṽ, they are represented as separate elements.
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 <firstName>John</...>
 <lastName>Smith</...>
 <realizedPurchases>
  <purchase @code="p12">
   <totalPrice>777.25</...>
   <item @code="a113">
    <price>551.25</price>
    <quantity>1</quantity>
   </item>
   <item @code="c24">
    <price>113.00</price>
    <quantity>2</quantity>
   </item> 
  </purchase>
 </realizedPurchases>
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Figure 6.1: Two versions of customer history schema
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<xsl:stylesheet version=`3.0' xmlns:xsl=
`http://www.w3.org/1999/XSL/Transform'>
<xsl:template match=`/customer'>
<customer>
<�rstName/>
<lastName/>
<xsl:call−template name=`RealizedList'/>
<xsl:call−template name=`PendingList'/>
</customer>
</xsl:template>

<xsl:template name=`RealizedList'>
<realizedPurchases/>
</xsl:template>
<xsl:template name=`PendingList'>
<pendingPurchases/>
</xsl:template>

<xsl:template match=`/customer/purchase'>
<purchase>
<xsl:apply−templates select=`code' />
<totalPrice/>
<xsl:apply−templates select=`item' />
</purchase>
</xsl:template>

<xsl:template

match=`/customer/purchase/item'>
<item>
<xsl:apply−templates select=`code'/>
<xsl:apply−templates

select=`price'/>
<xsl:apply−templates

select=`quantity'/>
</item>
</xsl:template>

<xsl:template priority=`0'
match=`item/code | purchase/code' >
<xsl:attribute name=`{name()}'>
<xsl:value−of select=`.' />
</xsl:attribute>
</xsl:template>

<xsl:template priority=`0'
match=`price | quantity' >
<xsl:copy−of select=`.' />
</xsl:template>
</xsl:stylesheet>

Figure 6.2: Stylesheet for syntactic (structural) adaptation

2. A new attribute totalPrice is added to Purchase class. The value of
totalPrice must be the sum of prices of all the purchased items.

3. The list of purchases is divided (based on the value of status) into two
wrapping PSM classes � realizedPurchases and pendingPurchases.

4. All codes in the schema now model XML attributes instead of XML ele-
ments (xform is changed from e to a).

Algorithm 2 will be able to correctly adapt change (4) and will create the
structure for changes (1)-(4)(elements realizedPurchases, pendingPurchases,
firstName, lastName and totalPrice). The substantial part of the resulting
adaptation script is depicted in Fig. 6.2. This script is capable of adapting to the
structural changes, but it does not contain any information about how to:

1. Initialize the new attributes (Customer.firstName, Customer.lastName,
Purchase.price).

2. Create the subtrees corresponding to added classes � associations between
classes RealizedList-Purchase and PendingList-Purchase both have car-
dinality 0..∗ and since the adaptation algorithm always chooses the lower
cardinality when creating new content, the elements will be created emp-
ty in the adapted document. The stylesheet in Figure 6.2 does contain a
template for Purchase, but it is never applied.

The algorithm has no way of telling how to �ll the created elements with val-
ues/content merely from the version links themselves, without any additional
information.

In this chapter, we will show how to add semantic annotations to the version
links and schemas. Semantic annotations allow the modeller to de�ne the rela-
tionship between the contents of the documents in the old and new version of the
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schema. We extend Alg. 2 by providing the user with a way to re�ne the default
behaviour of Alg. 2 at the conceptual level, formally and without the need to use
the implementation language.

6.2 Extending OCL to De�ne Relationships In Ver-

sioned Model

To formally express the relations between the content of the old and adapted
version of the document, we will again use OCL. E.g the second change from the
motivational example can be described using an equation:

totalPrice = item->collect(price ∗ quantity)->sum()

and saying that the equation must be true for all instances of Purchase after
the document is adapted. However, we phrased the condition using only the
terms of the adapted version schema and the values in the adapted document.
Our goal is to de�ne the new value of the attribute primarily in the terms of the
original version of the schema and the values in the original document. This
is more evident for the �rst change in the example � to de�ne the new value
of the attributes firstName and lastName, we must refer to the value of name
in the original document. Standard OCL does not provide any means to write
expressions over multiple versions of the model. In this section, we will extend
OCL to allow that.

In general, to de�ne the value of attribute Ã′ of class C̃ ′, we will use an
expression init

Ã′ and an attribute initialization constraint, which is de�ned by
the OCL speci�cation:

context C̃ ′::Ã′

init: init
Ã′

The notation above signi�es that init
Ã′ is evaluated and its result is assigned

as a value of attribute Ã′. Attribute initialization expression is one of the an-
notations, we support in our model (another one � association end initialization
expression � will be introduced later in this section). We will use standard OCL
syntax in the paper, but an implementation of this approach might choose anoth-
er way to enter/display these annotations, e.g. in some kind of details view for
an attribute, on mouse hover or directly in the diagram, similarly as comments
in UML are usually displayed. OCL allows the expression init

Ã′ to refer to the

context variable of type C̃ ′ and named self by default. From the context variable,
the rest of the model can be navigated. This does not wholly �t our needs, be-
cause during adaptation, we need to refer to and pull the necessary information
from the previous version of the model. For this purpose, we add a new operation
prev.

De�nition 15. Function prev() can be called on any instance (object) of class

C̃ ′ in the target schema, which is linked to class C ′ in the source schema via a
version link (C ′, C̃ ′) ∈ VL. The return type of C̃ ′.prev() is then C ′. Calling

prev() returns the instance of C̃ ′ in the old version of the model.

In our framework, every version of the model has a unique label (because
there can be more than two versions). We will use this label in the beginning of
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source version v

context Customer::�rstName
init: self.prev().name.tokenize('\\s+')->�rst() // initfirstName

context Customer::lastName
init: self.prev().name.tokenize('\\s+')->last() // initlastName

context Purchase::totalPrice
init: self.prev().item->collect(price ∗ quantity)->sum() // inittotalPrice

Figure 6.3: Integrity constraints for purchase schema

the script to identify the previous version for the script. The calls of prev in the
script will point to that version.

Figure 6.3 demonstrates the usage of prev function for the example from
Section 6.1. The �rst and second constraints have the same structure � the
previous version of a Customer is reached via prev, the value of name is splitted
by whitespace and the �rst string becomes the value of firstName and the last the
value of lastName1. In the third constraint, the previous version of a Purchase

is reached again via prev, its items are iterated and for each item, a price is
computed. Finally, sum function computes the total price.

Theoretically, it would be possible to refer to the current version of the model
in the expression init

Ã′ . However, we chose not to support this so that the
adaptation of each document can be one-pass2.

Similarly as for attributes, OCL allows for initialization of associations be-
tween objects, which in the XML domain corresponds to creating subtrees of
elements. The skeleton of the syntax is the same, only now we are initializing an
association R̃′.

context C̃ ′::R̃′

init: init
R̃′

However, OCL lacks an expression3 that returns a new instance of a class
(analogy to constructors in procedural object-oriented languages). Therefore we
add a new kind of OCL literals � class literals.

De�nition 16. ClassLiteralExp is a new kind of LiteralExp [66]. ClassLiteral-
Exp is written in concrete syntax as
ClassLiteralExpCS ::=

`new' classNameCS `{' variableDeclarationListCS `}',
where classNameCS is an identi�er of a class and variableDeclarationListCS
contains initialization of the attributes. The expression returns a new object o of
type classNameCS the properties of o are initialized according to variableDecla-
rationListCS.

We will use class literals to initialize the list of realized and pending purchases
from the motivational example in Figure 6.3. The constraint in Figure 6.4 uses
class literal to create new instances of Purchase class.

1We expect each person to have exactly two names for simplicity.
2This does not limit the `power' of the adaptation algorithm � no additional semantic infor-

mation can be obtained by navigating the new version of the document.
3At least in version 2.3.1.
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We would like to point out that an attempt to simplify the expression to:

parent.prev().purchase->select(status = `realized')

will be rejected by an OCL compiler, because it is not correct w.r.t. the type
system � class Purchase in the old version is a di�erent class than Purchase in
the new version. Association end RealizedList::purchase expects instances
of class Purchase from version ṽ, but the expression �parent.prev().purchase�
returns instances of Purchase from version v. The expression in Fig. 6.4 also
does not deal with the association between classes Purchase and Item (splitted
in two purchase associations in ṽ). One option is to write a separate initialization
expression for purchase associations. The drawback of such approach is that it
would require us to write initialization expression in OCL for every attribute and
association in a subtree of some association, which was initialized in OCL. This
is not desirable, because we want the algorithm to use the information acquired
from the mapping in most cases and use OCL only when necessary � when the
mapping is annotated. That is why we need a way to signal that we are `returning
back'. For this purpose, we add another function next, which is a counterpart of
prev. Fig. 6.5 demonstrates the usage of next function.

De�nition 17. Function next() can be called on any instance (object) of class

C ′ in the source schema, which is linked to class C̃ ′ in the target schema via a
version link (C ′, C̃ ′) ∈ VL. The return type of C ′.next() is then C̃ ′. Calling

next() returns the instance of C̃ ′ in the new version of the model.

Figure 6.5 demonstrates the usage of next function in the expression �p.next()�.
Here, p is of type Purchase ∈ S ′c. The type of the expression �p.next()� is, by

Def. 17, Purchase' ∈ S̃ ′c. The value of �p.next()� is computed by the host lan-
guage implementing the adaptation script. In the next section, we will describe,
how next, prev and class literals can be implemented (we will extend translation
of the adaptation algorithm (Algorithm 2) from Sec. 4.3 and the translation of
OCL constraints from Sec. 5.5).

6.3 Translating Annotations to XPath/XSLT

In this section, we will show how to incorporate the OCL mapping annotations
into the adaptation stylesheet. We will use XSLT as the implementation language,
as we did in Chpt. 4 and 5.

The heart of both types of annotations � attribute and association initializa-
tion � is an OCL expression init

X̃′ (where X
′ is either an association end or an

attribute). The expression init
X̃′ can be an arbitrary OCL expression, which can

contain (besides standard constructs introduced in 5) several extension constructs

source version v

context RealizedList::purchase
init: parent.prev().purchase->select(status = `realized')->

collect(p | new Purchase{status = p.status, code = p.code})

Figure 6.4: Initialization of an association
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source version v

context RealizedList::purchase
init: parent.prev().purchase->select(status = `realized')->collect(p | p.next())

context PendingList::purchase
init: parent.prev().purchase->select(status = `pending')->collect(p | p.next())

Figure 6.5: Using next to signal a return to mapping based adaptation

� functions prev and next to traverse between the source and target schema and
class literals to indicate creating new instances.

6.3.1 Translating Class Literals

Class literals allow us to initialize subtress in init
X̃′ . We need to �nd a corre-

sponding construct for XPath/XSLT. XPath by itself does not allow to create new
nodes in expressions. This is only available in XQuery (using node constructors).

In XSLT, new nodes can be created in XSLT instructions which can contain
sequence constructors. On such instruction is xsl:function, which de�nes a new
XSLT function. Functions de�ned in a stylesheet can also be called from XPath
expression � thus, by calling an XSLT function, we can bypass the limitations
of XPath � from an XPath expression, we can call an XSLT function an this
function constructs the new elements.

Figure 6.6 contains our generic constructor function, which creates a new
element with given name and content (the content is passed as an XSLT 3
map item). Generic constructor can be called from an XPath expression, e.g.,:
oclX:genericConstructor(`Purchase', ...).

6.3.2 Translating prev Function

We introduced prev function to allow the system designer to declare the semantic
relationship between the source and target schema. It can be used in init

X̃′ in
those positions, where data (information) need to be pulled from the adapted

<xsl:function name="oclX:genericConstructor" as="item()∗">
<xsl:param name="element−name" as="xs:string"/>
<xsl:param name="subelements" as="map(∗)" />

<xsl:element name="{$element−name}">
<xsl:for−each select="$subelements">
<xsl:variable name="key" select="map:keys($subelements)" />
<xsl:element name="{$key}">
<xsl:sequence select="$subelements($key)" />
</xsl:element>
</xsl:for−each>
</xsl:element>
</xsl:function>

Figure 6.6: Generic element constructor
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document. This data can be later modi�ed by other parts of the expression
init

X̃′ .
In Sec. 4.3, we described how for each changed class a top-levelmatch template

is created in the adaptation XSLT. Inside each template, a node in the source
document corresponding to the adapted classs, is accessible as the current node
of the template. We will translate the expression C̃ ′.prev as an XPath relative
path expression P , where P satis�es the following:

1. P returns the portion of the source XML corresponding to C ′.

2. P is relative to the current node of the template where the expression
C̃ ′.prev is used.

Thus, the expression �self.prev()� in initfirstName is translated as simply as
the expression returning the current node: . and it returns the XML element
purchase being adapted. If we wanted to refer to the information from Purchase

when adapting Item, we could write �self.parent.prev()� (�self� is of type Item,
navigation �parent� returns an instance of Purchase) and this expression will be
translated as ./parent::purchase or just .., because the current node of the
template adapting Item is item and element purchase is its parent node.

6.3.3 Translating next Function

Counterpart function to prev function is next function. It can be called on a class
C ′ participating in version link (C ′, C̃ ′). It si used to signal that the transforma-

tion from an instance of C ′ to an instance of C̃ ′ not described in the OCL script
in the current OCL expression. Because we are using XSLT, the instance of C ′

should be passed to the corresponding XSLT template. This is achieved by using
XSLT apply-templates instruction.

We have a similar problem as with the generic constructor wrapping element

instruction � we need a functionality provided by a certain XSLT instruction,
but XSLT instructions can not be called directly from an XPath expression (this
time, we want to call apply-templates instruction). Again, we have to wrap the
instruction in an XSLT function and call this function instead. Figure 6.7 depicts
the wrapping function.

Let �E� be some OCL expression. We will translate the expression �E.next()�
into XPath expression oclX:apply-templates(XE), where XE is an XPath ex-
pression obtained by translating expression �E�.

In our motivational example, next is used to adapt class Purchase in the
expression initializing association end Purchase:

context RealizedList::purchase
init: parent.prev().purchase->select(status = `realized')->collect(p | p.next())

<xsl:function name=`oclX:apply−templates' as=`item()∗'>
<xsl:param name="target" as=`item()∗'/>
<xsl:apply−templates select=`$target'/>
</xsl:function>

Figure 6.7: XSLT apply-templates instruction wrapped as a function
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<xsl:template match=`/customer'>
<customer>
<xsl:variable name=`�rstName−new'
select= `tokenize(name,'\s+')[1]' />

<xsl:variable name=`lastName−new'
select= `tokenize(name,'\s+')[2]' />

<�rstName>
<xsl:sequence select=`$�rstName−new'/>
</�rstName>
<lastName>
<xsl:sequence select=`$lastName−new'/>
</lastName>
<xsl:call−template name=`RealizedList'/>
<xsl:call−template name=`PendingList'/>
</customer>
</xsl:template>

<xsl:template name=`RealizedList'>
<realizedPurchases>
<xsl:variable name=`purchase−new'
select="for $p in purchase[status eq `realized']
return oclX:apply−templates($p)"/>

<xsl:sequence select="$purchase−new"/>
</realizedPurchases>
</xsl:template>

<xsl:template name=`PendingList'>
<pendingPurchases>
<xsl:variable name=`purchase−new'
select=``for $p in purchase[status eq `pending']
return oclX:apply−templates($p)''/>

<xsl:sequence select="$purchase−new"/>
</pendingPurchases>

</xsl:template>

<xsl:template match=`/customer/purchase'>
<purchase>
<xsl:apply−templates select=`code' />
<xsl:variable name=`totalP−new'
select=`sum(for $i in item
return $i/price ∗ $i/quantity)' />

<totalPrice>
<xsl:sequence select=`$totalP−new'/>
</totalPrice>
<xsl:apply−templates select=`item' />
</purchase>
</xsl:template>

Figure 6.8: Translation of the OCL annotations

The subexpression �p.next()� will be translated into an XPath expression
oclX:apply-templates($p). Call to apply templates will ensure that a correct
match template is triggered when adapting Purchase. This way, it is possible to
signal from the OCL expression that the structural adaptation algorithm (based
on version links) should be called again.

To conclude this section, Figure 6.8 show the updated translation of the tem-
plates from the motivational example where OCL annotations are involved4. The
complete stylesheet can be found in Appendix B.2.

With the combination of structural adaptation algorithm from Chpt. 4, trans-
lation of OCL constraints and semantic annotations, the user can specify the
mapping between the versions of a document to an arbitrary detail and the gen-
erated adaptation script can be more versatile. The limit of the approach is that
it can not (in its current state) connect to other data sources during adapta-
tion � all required data must be present in the adapted document. We leave the
prospect of connecting to other data sources (external documents, databases, the
Internet. . . ) for our future work (see Chpt. 9). Finally, though it is de�nitely
possible to de�ne whole new XML subtrees in the adapted documents using class
literals, it is cumbersome. We get back to this problem again when discussing
open problems (see Chpt. 9.3).

4Translations for last-name and PendingList are omitted, because they are variations on
the previous translations
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7. Implementation

We gradually incorporate the results of all our research activities related to our 5-
level framework (see Figure 2.1) into an experimental tool eXolutio [43]. Fig. 7.1
depicts a screenshot of the application. We will �rst describe its overall architec-
ture, then we focus on the modules related to this thesis.

Figure 7.1: eXolutio

7.1 Architecture

The architecture of eXolutio is based on the well known Model�View�Controller
(MVC) design pattern. This means that we hold all the project data in the model
component. The structure of the model component corresponds to the de�nitions
from Chpt. 3. The model contains one or more versions (V) of the system, each
version contains one PIM schema and arbitrary amount of PSM schemas. The
model contains the relation of version links (VL). A PIM or PSM schema can
contain a set of OCL scripts with integrity constraints. The model does not
expose any operations or methods. Modi�cations to the model are performed
through controller.

The controller component contains operations of schema evolution. There is
a �nite set of atomic operations and an extensible set of composite operations,
where composite operations are build from other operations (atomic or compos-
ite). In [56] we describe the theoretical background for our atomic and composite
operations. OCL expressions are edited using an integrated editor. Besides the
operations described in [56] (in that paper we do not consider multiple versions
of the model), the controller also contains operations concerning versioning, such
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as branch (see Chpt. 3.3), create version link etc. Usually, the user only needs
to use branch to create new version and the system can manage version links
automatically, but manual corrections of version links are allowed as well.

The responsibility of the view component is to display the model to the user
and update each time the model is modi�ed (each time the controller executes
an operation). The connections between individual parts are loose enough so it
is possible to, e.g., use multiple visualizations. We have a Windows Presentation
Foundation [51] visualization (a desktop application) and a proof-of-concept Sil-
verlight [50] visualization (a browser application). Both visualizations share the
same model and the same controller.

7.2 Adaptation

The user can edit the schemas and create new versions (using branch operation),
modify version links and add OCL annotations in the tool. All versions of the
system can be edited.

When the user selects two versions of a PSM schema, he can generate an
adaptation script in XSLT. The adaptation script uses XSLT 3.0 [93] and can
be executed in any conforming processor. It must be noted that [93] does not
have a status of a recommendation yet (it was a working draft at the time of
writing this thesis) and may be subject to change. However, the core construct of
higher-order functions is shared with XPath/XQuery (which is now a candidate
recommendation), is already implemented by several vendors [76, 49, 4, 19] and
can be considered quite stable.

The structure and properties of the generated XSLT script are described in
Chpt. 4.3, the algorithm was further enhanced in Chpt. 6. The script can be
used ad-hoc to adapt individual documents, it can be used in a batch adaptation-
process or it can be integrated into a software component (majority of platforms
allows to call XSLT in some ways) that adapts documents on demand. When the
script is created, it is not dependent on eXolutio and to run it does not require
any information from the more abstract levels of our framework.

7.3 Validation of Integrity Constraints

We integrated an OCL editor into eXolutio, for both PIM and PSM level OCL
expressions. Expressions for semantic adaptation (see Chpt. 6) can be added for
the evolved schemas. The OCL editor provides standard editing features and
syntax highlighting. OCL expressions are processed by a parser created using
ANTLR [69].

The tool implements algorithm for suggesting/translation of relevant con-
straints from PIM to PSM (steps 1.-3.) and translation from OCL (4.) to Schema-
tron schemas. The user may choose between schema-aware and non-schema-aware
(which add data conversion for extracting typed values from the XML document)
schema and between implementation of iterator expressions using dynamic eval-
uation or higher-order functions. Translating iterator expressions using dynamic
evaluation is described in [31] as an alternative to higher-order functions. Dynam-
ic evaluation is available in some XSLT 2.0 processors [76] as a vendor extension.
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The generated Schematron schema can be then used to validate an XML
document. XProc pipeline is used to perform the validation. It �rst executes the
transformation steps from standard Schematron pipeline (5.), adds includes for
OclX library (6.) and then validates the document (7.) with the resulting XSLT.
The pipeline expects the schema (5.) and validated document (8.) on its input
ports and writes validation result - a SVRL document - to its output port (9).
Again, when the schema is created, it is not dependent on eXolutio and can be
run using any XProc processor (or using an XSLT processor in several steps).

PIM OCL PSM OCL
Schematron

schema

OclX XSLT 
library

Schematron to 
XSL transform

Validation 
XSLT

Validated
XML

Validation

Validation 
output 
(SVRL)

1.
2.

3.
4.

5.
6.

7.

8.
XProc

9.

Figure 7.2: Work�ow for integrity constraints modeling and validation

OclX library can be downloaded from [42] and used as a standalone library
for XSLT development in a functional-programming style.

In Chpt. 5.5.8, we introduce rewritings of certain queries. These can be ap-
plied as a part of step the translation step (4.). The selection of rewritings is
interactive � the user is o�ered with a list of subexpressions, at which rewritings
can be applied. For each rewritings, a list of options is o�ered and he can choose
applications of rewritings individually.
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8. Related Work

In this chapter, we discuss related work in the areas of schema evolution, docu-
ment adaptation and integrity constraints.

8.1 Schema Evolution and Document Adaptation

Currently there exists a signi�cant number of approaches that detect changes
between two schemas of data and output the sequence of edit operations that
enable document adaptation [44]. For the goal of determining whether T (S ′) was
invalidated, the system must recognize and analyse the di�erences between S ′
and S̃ ′. There are three possible ways to recognize changes:

a) only a single change allowed with immediate propagation,

b) recording of the changes as they are conducted during the design process,

c) comparing the two versions of the schema and looking for changes.

We will brie�y describe the consequences of choosing the �rst trivial approach
and then discuss in more detail the other two. Either way has both advantages
and disadvantages and the choice between the two signi�cantly in�uences the
capabilities of any adaptation algorithm.

The supported operations can be also variously classi�ed. For instance, paper
[78] proposes migratory (e.g., movements of elements/attributes), structural (e.g.,
adding/removal of elements/attributes) and sedentary (e.g., modi�cations of sim-
ple data types) operations. Classi�cation according to complexity distinguishes
atomic and composite operations.

The changes can also be expressed variously and more or less formally, some-
times using domain-speci�c languages created for this purpose. For instance in
[10] a language called XSUpdate is described. In [21] the authors propose the
XSchemaUpdate language1.

8.1.1 Incremental Evolution with Immediate Propagation

The basic approach is to allow only a single change between S ′ and S̃ ′ which is
immediately propagated to T (S ′). In particular, the tool o�ers a �nite set of
evolution primitives, the user selects one and as the schema is evolved, the doc-
uments are adapted right away. As this approach does not support conducting
multiple operations in one evolution cycle, adaptation is not e�ective (with more
operations, the set T (S ′) will be adapted over and over, each time with only a
small local change). Moreover, tools that choose this approach o�er a limited
set of primitives, which results in the necessity of using more primitives for one
logical operation (e.g. `rename element' requires `remove element` and `add ele-
ment'). This results in unwanted loss of data. Since each primitive is propagated
immediately, such an approach can never meet the requirement for separation of
the schema evolution and document adaptation phases (they are interleaved).

1Both XSUpdate and XSchemaUpdate are not to be confused with W3C XQuery Update
Facility [91] language
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System X-Evolution [24] is built upon a graphical editor for creating schemas
in the XML Schema language. Each single evolution operation executed upon the
schema is immediately propagated to valid documents. Backward compatible op-
erations are identi�ed (and note propagated). Backward compatibility is decided
particularly by marking each evolution primitive as backward-(in)compatible.

The set of supported operations is limited to insertions and deletions, which
need to be used for all more complex operations (like move, adding a wrap-
ping element etc.). A part of the set of available operations is rather technical
(switching between a local and global de�nition of a type etc.). It considers only
elements without attributes and recognizes choice/sequence/set content models.
X-Evolution does not use any conceptual model for the schemas.

In [21] G. Guerrini and M. Mesiti further describe the XSchemaUpdate lan-
guage. Using statements in this language, a new content can be created with
non-default values.

The system is implemented as a schema visualization tool, where the user
can select a construct which (s)he wants to evolve and then select the desired
evolution primitive from the set of available primitives. Revalidation of T (S ′) is
triggered right after an evolution primitive is selected.

XEM [77] is another immediate propagation approach to manage schema
evolution, but this time, DTD is used as a schema language. It deals both with
changes in DTD and XML documents. Both DTD and instance XML documents
are represented in the system as directed acyclic graphs and the evolution primi-
tives are de�ned as operations on these graphs. For each DTD altering primitive
a resulting data change is de�ned in terms of the primitives altering instance
documents.

The set of proposed primitives is proven to be sound and complete in the
terms of being able to transform any DTD to any other DTD; however, there
are primitives for addition and removal, but none for moving or renaming. Any
change in DTD can thus be expressed via the proposed primitives, but when these
are propagated to the valid XML documents, they lead to removing a signi�cant
part of the XML document and recreating it again. This applies even for small,
local changes. E.g., when an element needs to be renamed, it must be removed
�rst (which can only be done after its subtree is removed) and then added under
new name. In this process the structure is created properly by the algorithm, but
the data is lost.

Since XEM works with DTDs, its capabilities are restricted (e.g., no support
for set content model, limited support for cardinalities etc.). A conceptual model
is not utilized.

There are other papers which deal with propagation of a single change ex-
pressed in DTD [1, 16] or XSD [78, 10] to respective XML documents. There
also exists an opposite approach that enables one to evolve XML documents and
propagate the changes to their XML schema [7].

Problems of Immediate Propagation

Immediate propagation approaches carry certain drawbacks and disadvantages.
The most prominent is the mingling of schema evolution and document adap-
tation (we discussed this issue in Chpt. 1.3). As every change in the schema is
propagated immediately to all documents, the approach can be very ine�ective
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when the set T (S ′) is large � after each operation, the user has to wait until
all documents are adapted, before he can continue with another operation. If
the user conducts operations that cancel each other or a conducts several opera-
tions, that are backwards compatible only as a whole, the tool cannot optimize
adaptation. Version comparison and change recording approaches target these
drawbacks.

8.1.2 Version Comparison and Change Detection

In general, with approaches that compare schemas, the user can edit both schemas
independently until (s)he is satis�ed with them. The change detection algorithm
then takes the two schemas as an input and compares them. The result of the
comparison is a list of di�erences between the schemas. The characteristics of
the comparison approach are as follows:

� The approach allows for clear separation of schema evolution phase and
document adaptation phase. Batch adaptation is also possible.

� Some type of changes are ambiguous and cannot be distinguished without
additional information or user's decision (rename vs. add & remove, move
vs. add & remove), methods for mapping discovery are necessary.

� There is no need to look for redundancies; the set of changes is always
minimal.

� Both old version S ′ and new version S̃ ′ can be edited without limitations.
The system may contain an arbitrary amount of versions, any pair of ver-
sions can be compared. This can increase e�ciency, e.g., when a document
valid against version S ′1 is revalidated against S ′3 � the script obtained from
comparing S ′1 and S ′3 can be more e�cient than the concatenation of the
scripts for transformations S ′1 → S ′2 and S

′
2 → S ′3.

� The process of schema evolution can be arbitrarily stopped and resumed.
� The reversed operation can be easily handled by the same algorithm, only
with the two schemas on the input swapped.

� A schema from an outer source can be imported into the system and serve
as an input to the change detection algorithm.

Change detection of two given versions of data is a key part of, e.g., data
integration, versioning, similarity evaluation, etc. [73] In all the cases we are
interested in the sequence of edit operations, which is further used for mapping
purposes, evaluation of the degree of di�erence etc. At the level of XML docu-
ments we can restrict ourselves to detecting changes between trees, either ordered
[13, 40] or unordered [11, 95]. Since the problem is proven to be NP-hard [13],
various heuristics re�ecting the respective application are often incorporated, as
well as optimization strategies for processing large documents and gaining better
results using relational databases [40, 39], XPath queries [71], tuning steps [38]
etc.

In the area of XML schemas the amount of approaches is much lower. It is
given mainly by the fact that in this case we do not compare two trees, but two
general graphs possibly with cycles and with nodes of highly di�erent semantics
(elements, attributes, operators). One of the �rst approaches that deals with
detection of changes between two given DTDs (possibly extensible to XSDs) which
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shows that the approaches for XML data cannot be directly applied for XML
schemas due to the mentioned semantics of nodes is proposed in [41]. It exploits
a heuristics based on MD5 hashing. There exists also an approach that detects
changes among XML schemas for the purpose of evaluation of their similarity on
the basis of classical tree-edit distance [97].

The algorithm in [37] starts at roots of the source and target XML schema
and continues recursively (the routine attempts to match sets of children of two
already matched nodes). The mapping is �best-e�ort� and partial, hence the
produced XSLT script does not guarantee correct revalidation (the output docu-
ment will not be valid against the target schema) � the user is expected to adjust
it. The commercial tool [2] o�ers semi-automatic schema comparison (of XML
schemas, i.e., at the logical level) and subsequent creation of an adaptation script,
but the task of resolving ambiguities inherent in schema comparison approaches
is left up to the user.

8.1.3 Recording Changes

A system that records changes has the advantage of knowing the sequence of
operations that were performed. However, the sequence does not have to be opti-
mal, because the user could reach the result using various more or less reasonable
sequences of operations. Here is the outline of the key characteristics of recording
approach:

� The approach allows for clear separation of schema evolution phase and
document adaptation phase. Batch adaptation is also possible.

� Recorded set provides enough information to propagate changes in the
schema to the documents, there are no ambiguities or possible misinter-
pretations of operations.

� The recorded set may contain redundancies (repeated changes in the same
location etc.), but it could be normalized to eliminate them.

� Once the evolution process is started, the old version S ′ cannot be easily
changed.

� A user may want to interrupt his/her work at some point and continue in
another session. The sequence of recorded changes would have to be stored
and recording resumed later.

� When the user wants to retrieve the sequence for reverse process, (s)he

will have to either start with the new version S̃ ′ and record the operations
needed to go back to the old version S ′ again, or the system will have to be
able to create an inverse sequence for each sequence of operations.

� When the evolved schema comes from an outer source, the sequence of
operation changes cannot be retrieved directly; the user must start with
his/her old version S ′ and manually adjust it to match the new schema S̃ ′.

System CoDEX (Conceptual Design and Evolution of XML Schemas) [33]
is an example of an approach to schema evolution using the true recording ap-
proach. The changes made in the visualization of the schema are logged and
when the evolution process is �nished, the resulting sequence of changes is nor-
malized (using static, but extensible set of rewriting rules) and then performed in
the XML schema and respective XML documents. The approach also recognizes
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backward-compatible changes.
The visualised model used by CoDEX is not a conceptual model, even though

it hides some technical details of XML schema languages.

8.1.4 Other Approaches

In [18] the authors propose an approach for expressing changes at the level of
UML classes and their propagation to respective XML schemas and XML doc-
uments with the emphasis on traceability, i.e., preserving the links between the
levels. This is probably the closest system to our basic idea of �ve-level evolu-
tion framework [62]; however, the authors consider only its part. The authors of
[18] do not consider operation move or other more complex operations (adding,
deleting, renaming and changing a property to a class is supported) and the frame-
work provides directly the output documents, not the set of operations in some
standard syntax, that might be further processed with regard to the respective
operation.

In [72] the authors propose an algorithm for incremental schema validation,
i.e., checking validity of an XML document with regard to a modi�ed schema,
whereas the aim is not to check the whole document, but only necessary parts.
For this purpose, the old and the new version of the schema are analysed and
an intersection automaton is built from the two versions of the schemas. A
modi�cation of the algorithm also enables to e�ciently check validity of a modi�ed
XML document against the new version of XML schema.

8.1.5 Summary

We have identi�ed several ways of how XML document adaptation is approached
in the existing work. All approaches to our best knowledge work with prede�ned
(and thus limited) set of operations (evolution primitives) in the phase of schema
evolution. When the schema designer needs to make a change which does not
�t to the prede�ned set of changes, he must use several operations to compose
the change. This may be done safely on the platform-speci�c or logical (schema)
level, but when the change is propagated to the extensional level (adapted docu-
ments), it may result in data loss or unexpected outcomes. The adaptation script
thus require some kind of manual correction in the more complex cases, usually
using the implementation language of the script (with the exception of [21], which
introduces a language speci�cally designed for de�ning updates). Our approach
of OCL annotations (see Chpt. 6) solves more complex changes by formally de-
scribing an arbitrary mapping on the platform-independent or platform-speci�c
level, without being limited to a prede�ned set of operations/scenarios.

8.2 Integrity Constraints in Schemas, OCL

Existing academic works, e.g., [96, 3], in the area of integrity constraints for XML
focuses mainly on the fundamental integrity constraints (ICs) known from rela-
tional databases � keys, unique constraints, foreign keys and inverse constraints �
and their mathematical properties, such as decidability, consistency, tractability
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(with separate results for one-attribute vs. multi-attribute and relative vs. ab-
solute keys). Paper [20] studies the problem of consistency of a set of ICs and a
DTD, i.e., whether a �nite XML document, which is valid against a given DTD
and satis�es the ICs, exists. The problem is proven to be undecidable for the
most general class o ICs, but for the class of unary keys and foreign keys, it is
proven NP-complete.

Authors of [8] propose validation of ICs in XML using attribute grammars
and automatons. Their path language is less expressive than XPath or OCL, but
thanks to this limitation, the validation can be achieved in one pass of the XML
document in linear time. The aim of our approach was to support the largest
subset of OCL as possible and translate OCL constraints into XPath constraints
with similar structure.

ICs spanning several XML documents were studied in [64]. The project con-
verts ICs into XLink [83] links and the consistency can be checked through veri-
fying the validity of the generated links.

Several approaches for modeling XML using UML were proposed [15, 18, 75],
but they deal mainly with modeling the structure of the schemas, without debat-
ing the integrity constraints present in the model. OCL and UML and related
technologies are being researched [27] at Technische Universität Dresden, which
is also the coordinator of the leading open-source implementation � Dresden OCL
[79]. Dresden OCL research was mainly targeting relational databases platform
[17]. A generic framework for generating for translation OCL expressions in-
to other expression languages was proposed in [26]. It mentions 2 applications:
OCL→ SQL translation and also OCL→ XQuery [6]. The OCL→ SQL patterns
are based on [17], OCL → XQuery on [22]. The expression are translated into
the target language via patterns. It expects much tighter mapping between UML
model and XML schema (unlike PIM/PSM schemas used in our approach, it does
not consider regular properties of schemas). The paper does not describe how to
translate general iterator expressions, as we did in Sec. 5.5. The authors support
constructs corresponding to projections, cartesian products and restrictions in
the expressions (omitting the general iteration and closures facilities).

Authors of [22] examine the fundamental similarities of the two expression
languages � OCL and XQuery. They propose a mapping from XQuery queries to
OCL constraints (bottom-up approach). They show how the parts of elementary
XQuery expressions can be mapped to OCL constructs, but they do not elaborate
on translating de�nitions of and references to (local) variables, which would be
interesting for queries with multiple variables (such queries correspond to more
complex OCL iterator expressions, which are not mentioned in the paper, and
which we translate using XSLT higher-order functions). In consequence, the full
expressive power of OCL is not harnessed (for more on expressive power of OCL,
see [48]).

CONSIDER: Neco vic o IC
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9. Open Problems and Future Work

In this chapter we describe possible enhancements and improvements of our ap-
proach.

9.1 Evolution of Constraints

In our paper [56], we have proposed a framework of atomic and composite oper-
ations for schema evolution. The operations work at the platform-independent
and platform-speci�c levels (see Fig 2.1) and allow for coherent evolution of a
family of PSM schemas. Operations proposed in [56] work with PIM and PSM
schemas as de�ned by Def. 1 and 2 (XML schemas of the extensional level are
generated automatically from the PSM schemas). The extension of the frame-
work in [35] also considers inheritance in both PIM and PSM. The key principle
of the operations is their propagation � a change on one level is propagated to
the neighbouring levels and the system as a whole stays consistent. Propaga-
tion is de�ned for atomic operations, composite operations are created strictly by
combining multiple atomic operations (thus when a new composite operation is
created, the propagation is de�ned by the framework).

In this work, we include expression languages (OCL) both for PIM and PSM.
However, PIM and PSM expressions will not be resilient to schema evolution in
the majority of cases (e.g., renaming an attribute would invalidate all expressions
referencing that attribute). To support expressions-aware evolution, the atomic
schema evolution operations described in [56] would have to be extended to prop-
agate not only to the neighbouring levels, but also to the expressions at the same
level. A tightly related topic of query adaptation was studied in [70].

Another interesting topic is the backwards compatibility for schemas with con-
straints. We studied backwards compatibility for structural schemas in 4.1.2 and
introduced conditions (NI-predicates), which guarantee backwards compatibility
for schemas without constraints. However, when both the original and the evolved
schema have their own integrity constraints, NI-predicates do not guarantee that
the integrity constraints in the evolved schema will not be violated.

9.2 Version Links for Imported Schemas

As we have mentioned, before our adaptation algorithm can be used, it requires
the relation VL to be de�ned (i.e., version links joining the previous and the
evolved version of each construct). If the schemas are evolved using our tool [43],
the tool can manage the relation automatically in the majority of cases (and the
user can alter the relation manually when necessary).

If we want to use our adaptation algorithm for schemas managed elsewhere
(e.g., by a third party or a standardization authority), we can import both ver-
sions of the schema into the tool. When the schemas are imported, the relation
VL will be empty and must be created manually by the user. This is a time-
consuming process.

It would be useful to extend the system with a heuristic that could create a
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Figure 9.1: Referencing external content in an adapted schema

larger part of VL automatically and ask for user input only in the unresolved
cases. There exists a lot of methods for �nding similarities and patterns among
two XML schemas (a survey can be found in [57]). Outcomes of these methods
can be used when searching for an algorithm for �nding similarities between two
PSM schemas/two versions of a PSM schema and thus discovering version links
for VL.

9.3 Content Templates, External Content

To date, our document adaptation approach is able to deal with changes that
modify the structure and data present in the document. However, scenarios,
where new content must be added to the adapted documents, is frequent. This
can be realized either by modifying the generated adaptation script or by running
some kind of update query on the adapted document (after the adaptation script
is applied). Currently, our approach does not provide any support for these
scenarios.

In Chpt. 4.2.6, we indicated approaches how to handle adding content during
adaptation. Besides the basic methods of using default values or letting the user to
supply the content manually, other methods can be utilized, one we have proposed
in Chpt. 6 � OCL initialization expressions. Using initialization expression, it
is possible to de�ne derived values of attributes and also whole XML subtrees
(with the introduced class literals). However, de�ning of complex subtrees using
OCL class literals is possible, but cumbersome. We want to address this issue by
introducing some kind of templating. The idea is to let the user de�ne a template
and then specify (using expressions) how the dynamic parts of the template are
�lled with data. We are considering two options of how templates will be de�ned:
1) as �raw� XML documents/fragments or 2) at the PSM level, either as a separate
PSM schema or as a part of the evolved schema. The �rst approach is more
straightforward, the second one �ts better into the overall architecture of our
framework.
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When the required data is already present in the system, but not in the
adapted documents themselves (e.g., in a database, in other XML documents,
available through some service interface), these sources can be used to retrieve the
data during adaptation. In our future work, we want to extend our framework in
such a way that it will be possible to de�ne the relations between the source XML
document, the adapted XML document and other (external) documents/data
sources. This information should be de�ned either on the platform-independent or
platform-speci�c level and the adaptation script should take it into consideration.

To be able to model this, the external data should be mapped to the PIM
as another kind of PSM (the system can support many types of PSMs, not only
PSMs for XML formats, but also for relational database schemas etc.). The map-
ping to the external sources (other PSMs) can utilize OCL expressions (similarly
as we did in Chpt. 6).

Figure 9.1 depicts an example of an adaptation scenario, where new content
should be added in the adapted document (because new attribute Employee.email
was added in the evolved schema). There is no initialization or default value pro-
vided for the attribute and because the attribute is optional, the adaptation script
will not create it in the adapted documents.

The value of email should be retrieved from an external document ed contain-
ing the list of emails of all the employees in the organization. This information
could be described using OCL annotation from Fig. 9.2. The import document
clause at the beginning de�nes an external source (an XML document with a PSM
schema) and makes the external document accessible through variable �ed�. The
initialization expression uses a modi�cation of standard OCL let expression (Let-
Exp, see Chpt. 5.5.1) with added in external source part, which declares, that the
body expression should be evaluated in the external document �ed�.

source version v

import document ed at emails.xml as EmailListSchema

context Employee::email
init:
let e:string = self.empNo in external source ed
Email.allInstances()->select(m | m.empNo = e).mail-address

<xsl:variable name=`ed' select=``doc(`emails.xml')/∗'' />
...
<xsl:template match=`/organization/team/member'>
<member>
<xsl:apply−templates=`@empNo | �rstName | lastName' />
<xsl:variable name=`email-new'
select=`let $e := $self/@empNo return

$ed//email[@empNo = $e]/mail-address' />
<email>
<xsl:sequence select=`$email-new' />
</email>
</member>
</xsl:template>

Figure 9.2: Initialization expression referencing an external document and its
translation into XSLT (excerpt)
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The translation into XSLT is also depicted in Fig. 9.2. A global variable
ed corresponding to the import document clause is declared at the top of the
adaptation script. This variable is used in the translation of the let expression
from the initialization expression.

The example in Fig. 9.2 is a straightforward example, where the de�nition
of the mapping is up to the user (the mapping is de�ned explicitly using OCL,
the external document is not mapped to the PIM). A more advance approach
would be to infer the OCL expression from the mapping between PIM and the
external document(s). Also, the example uses external XML document which can
be queried by XPath/XSLT. Other possibilities are to retrieve data by an SQL
from a relational database, a SPARQL [88] query from an RDF [84] triple store
etc.

9.4 Full XPath Axes Support in PSM OCL, En-

hancments of Translation Algorithms

As opposed to OCL, XPath provides a wide range of axes to the user. In Ch-
pt. 5.2, we extended OCL language for PSM and added constructs corresponding
to parent and child axes. However, a user familiar with XPath might �nd sup-
port for only these two axes limiting. It is true that some PSM OCL expressions
might become more straightforward, if constructs corresponding to axes such as
descendant, following etc. were available. This is certainly a �eld for further
improvement.

Finally, algorithms presented in Chpt. 5.4 restrain the classes of expressions,
most importantly, they do not consider navigation applied on a result of a general
function. In such cases, the subexpression must be translated from the PIM to
the PSM manually. This step
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Conclusion

Document adaptation

The �rst aim of this work was to propose an approach to XML document adapta-
tion built upon a conceptual model for XML schemas. The described framework
identi�es changes in the schema, determines the impact of the changes on the ex-
isting documents valid against its old version and produces an adaptation script
when adaptation of the existing documents is necessary with regard to the new
version.

The key contributions of the approach can be summed up as follows:

� We exploit the idea of a conceptual model of XML schemas and, hence, the
user is provided with a user-friendly tool for expressing changes. We have
built the algorithm upon a general schema model, which is proven [61] to be
equivalent to regular tree grammars (which form a theoretical background
to schema languages used in practice, such as DTD, XML Schema and
RELAX NG).

� Our approach is integrated within a �ve-level evolution framework where
the two conceptual levels � platform-independent and platform-speci�c �
together with the versioning support enable to model multiple schema ver-
sions at once.

� We overcame the problem inherent in all approaches comparing/mapping
two versions of schemas � the need to resolve ambiguities when interpreting
changes � via introducing the version links. Each construct in the model
is then correctly connected with its counterpart constructs in all other ver-
sions, where the construct exists. Adding the version links allowed us to
de�ne changes that can occur between two versions v and ṽ of a schema
and detects these changes algorithmically.

� Our approach outputs an XSLT script that adapts the modi�ed XML doc-
uments with regard to a new version of a schema. The adapted document
preservers semantic meaning of the constructs due to utilizing the version
links.

� The user works with and evolves a conceptual model of a schema and the
mappings are de�ned for the conceptual model as well. This is a signi�cant
improvement compared to working directly with often lengthy and hard to
read XML schemas.

In Chpt. 1.3, we proposed requirements for an adaptation framework and the
resulting script. To conclude, we examine to what degree our approach meets
these requirements.

Set of supported operations It is crucial for an approach to support a rich
set of schema evolution operations � The approach should be able to cover a
transition of the source schema to an arbitrary schema. This can be achieved
plainly by removing and recreating the modi�ed parts of the schema, but the
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better solution is to achieve the transition by updates small and local. For this
purpose, the framework must provide operations to update all properties of all
constructs. Our framework uses a set of atomic schema evolution operations
proposed in [56, 35]; atomic operations can be further combined into composed
operations. The atomic operations allow to create and remove any supported
construct and update all the properties of all constructs.

The two versions of schemas are compared and changes are detected in the
schemas. The set of recognized changes, proposed in Chpt.4.1, again, allows to
detect added and removed constructs and changes in all properties of all types of
constructs. For every type of change, we proposed possible validation in Chpt. 4.2.
Our implementation selects one of the alternatives of validation, which can be
modi�ed by using OCL annotations introduced in Chpt. 6.

The user can not extend the set of recognized changes, but he can override
how a particular instance of a change is adapted, again using OCL annotations.
This way, particular adaptation scenarios can be modi�ed.

The generated adaptation script is using standard XSLT, which the user can
also alter manually after it is created, before it is applied.

Separation of schema evolution from document adaptation The two
phases are separated completely in our framework. The user can edit the old and
the new version independently (together with an arbitrary amount of versions).
Document adaptation script can be generated for any two versions of the schema,
in both directions and repeatedly.

Normalization before propagation Normalization is not performed in our
approach, because it makes sense only for approaches where schema evolution
primitives map directly to document adaptation update actions. In our approach,
schema is adapted as a whole, not change by change.

References to content The approach allows to reference the content of the
document using OCL expressions in OCL annotations. Thanks to that, it is
possible to steer the adaptation algorithm according to the contents of individual
documents (e.g., to introduce if/then/else and choices testing the actual contents
of the document into the adaptation script).

Resolving ambiguities Structural ambiguities in our approached are resolved
using version links introduced in Chpt. 3.3. E.g., a moved attribute is connected
by a version link to an attribute in the old version and that is how the algorithm
can decide that the attribute was indeed moved and it is not a new attribute.
This requires the set of version links to be maintained � this is done by the tool
in the background and the user must intervene only when he wants to manually
change the version links. E.g., when an attribute was moved, but the used add
attribbute and remove attribute instead of move attribute. In this case, the link
must be created manually.

Advanced content generation Our approach creates default instances (min-
imal subtrees, attributes with default values) where content should be generated
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during adaptation. If this is not su�cient and the content to be created can be
derived entirely from the adapted document, the user can again use OCL initial-
ization expressions and class literals, as proposed in Chpt. 6. It must be noted
that using OCL to generate complex subtrees is cumbersome and we leave the
improvements of this scenario for our future work (see Chpt. 9.3. When the gen-
erated content can not be derived entirely from the adapted document, but some
data need to be retrieved from another data source, OCL initialization expres-
sions, as proposed in Chpt. 6, are not powerful enough. Utilizing external data
sources is also a direction of our future work Chpt. 9.3.

Other aspects Our approach has a formal background, but this formalism
is not concealed from the user, who can work with a graphical notation (UML
diagrams) in a CASE tool [43].

The approach is language independent at the PIM and PSM level, the schemas,
expression/queries and transformations generated by the approach are using stan-
dard languages of the XML stack (XSD, Relax NG, Schematron, XPath, XSLT).

It must be noted that when the user wants to utilize integrity constraints
and semantic annotations, he can do so using OCL at the PIM and PSM level
together with UML class diagrams. We use only a subset of UML which is easy
to learn and understand, but OCL is a full-�edged expression language and less
well established among XML developers. However, thanks to its design, it allows
to reuse expressions in di�erent platforms (they can be translated to Java expres-
sions, SQL queries or XPath, see 8.2). Systems that use several implementation
languages and technologies (i.e., Java for business logic, SQL and/or XML for
storage and XML for data exchange) would bene�t most from our approach.

Our approach is e�cient, because the phase of adaptation is clearly separat-
ed from schema evolution. We do not require to adapt after each change in a
schema, but only when the whole schema is evolved (and all evolution steps are
consolidated). We are able to decide, whether changes made in the schema are
backwards-compatible or not. The generated adaptation script is one-pass and
skips those portions of adapted documents that were not changed. Its complexity
grows proportionally to the number of changes in the schema, not to the size of
the schema itself.

Expressions and Integrity Constraints

The second aim of this work was to extend the framework with support for
expressions. The motivation came from the adaptation scenarios, which can not
be described solely by mapping between structural schemas, but we managed to
integrate model expressions into two fundamental applications of our framework
� schema design and document adaptation.

With expressions support, the user can model not only grammar based schemas,
but is also given �ner control over the contents of the document by the possibility
to also model rule-based Schematron schemas. We have shown how to write OCL
constraints for XML and how to obtain them from existing constraints de�ned
over the platform-independent model. We proposed a translation from OCL into
XML (Schematron) schemas, which can be used directly for validation.
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Using our tool, it is possible to reuse the de�nition of an integrity constraint
from the conceptual level easily to generate actual veri�cation/validation code for
all the places where the constraint is relevant. Thanks to automated translation
process, the system designer may focus on the work at the conceptual level and
make the model as accurate as possible using UML and OCL. This may be of
more appeal to him than working with platform-speci�c languages (Schematron
and XPath). Also, when the constraints are de�ned using OCL over a UML model
it is easier to maintain them when the schema changes. This is allowed because
of the tight connection between the two languages. When the model changes, it
is very easy to �nd out which constraints were in�uenced by the change. A keen
tool may even suggest/perform corrections automatically.

When there are several XML formats where a certain constraint should be
checked, the user can de�ne the constraint only at the abstract level, without
being concerned about the structure (arrangement) of a concrete schema. Our
algorithm will then help him to �nd the concrete XML schemas, where the con-
straint is applicable. Then the user can translate the constraint automatically to
a form which can be checked/evaluated in the concrete schema. When the struc-
ture of a speci�c schema changes, the constraint just needs to be re-translated.

Last, but not least, constraints described at the PIM level are often much
clearer and easier to understand (even for a non-technical person) than their
translation to XML schemas. In document adaptation, expressions can be used
to make the mappings between structures more precise and to compute contents of
adapted documents from the source data. We have also proposed several possible
enhancements which could bene�t greatly from the availability of expressions in
the model.
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A. XSDs for the Sample Schemas

Listing A.1: XSD for the PSM schema from Fig. 3.1 � version v

<?xml version=`1.0'?>
<xs:schema xmlns:xs=`http://www.w3.org/2001/XMLSchema'
version=`1.1' elementFormDefault=`quali�ed'>

<xs:element name=`purchase' type=`Purchase' />

<xs:complexType name=`Purchase'>
<xs:sequence>
<xs:element name=`customer' type=`Customer'/>
<xs:element name=`items' type=`Items'/>
<xs:element name=`delivery' type=`Address'/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=`Customer'>
<xs:sequence>
<xs:element name=`name'/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=`Items'>
<xs:sequence>
<xs:element name=`Item' maxOccurs=`unbounded'/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=`Item'>
<xs:sequence>
<xs:element name=`code'/>
<xs:element name=`price'/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=`Address'>
<xs:sequence>
<xs:element name=`state'/>
<xs:element name=`street'/>
<xs:element name=`city'/>

</xs:sequence>
</xs:complexType>

</xs:schema>
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Listing A.2: XSD for the PSM schema from Fig. 3.1 � version ṽ

<?xml version=`1.0'?>
<xs:schema xmlns:xs=`http://www.w3.org/2001/XMLSchema'
version=`1.1' elementFormDefault=`quali�ed'>

<xs:element name=`purchase' type=`Purchase' />
<xs:complexType name=`Purchase'>
<xs:sequence>
<xs:element name=`purchase−date' type=`xs:date'/>
<xs:element name=`customer−info' type=`CustomerInfo'/>
<xs:element name=`item' type=`Item' maxOccurs=`unbounded'/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=`CustomerInfo'>
<xs:sequence>
<xs:element name=`customer' type=`Customer'/>
<xs:element name=`address' type=`Address' minOccurs=`0'/>

</xs:sequence>
</xs:complexType>
<xs:complexType name=`Customer'>
<xs:sequence>
<xs:element name=`customer−no' type=`xs:integer'/>
<xs:element name=`email' type=`xs:string'
minOccurs=`0' maxOccurs=`unbounded'/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=`Item'>
<xs:sequence>
<xs:element name=`product' type=`Product'/>
<xs:element name=`qty' type=`ItemI'/>

</xs:sequence>
</xs:complexType>
<xs:complexType name=`ItemI'>
<xs:sequence>
<xs:element name=`amount' type=`xs:integer'/>
<xs:element name=`unit−price' type=`xs:integer'/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=`Address'>
<xs:sequence>
<xs:element name=`zip'/>
<xs:element name=`city'/>
<xs:element name=`street'/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=`Product'>
<xs:sequence>
<xs:element name=`code' type=`xs:integer'/>
<xs:element name=`subcode' type=`xs:integer'/>
<xs:element name=`title' type=`xs:string'/>
<xs:element name=`weight' type=`xs:integer'/>

</xs:sequence>
</xs:complexType>

</xs:schema>
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Listing A.3: XSD for the PSM schema from Fig. 4.3 � version v

<?xml version=`1.0'?>
<xs:schema xmlns:xs=`http://www.w3.org/2001/XMLSchema'
version=`1.1' elementFormDefault=`quali�ed'>

<xs:element name=`purchase' type=`Purchase' />

<xs:complexType name=`Purchase'>
<xs:sequence>
<xs:element name=`customer' type=`Customer'/>
<xs:element name=`items' type=`Items'/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=`Customer'>
<xs:sequence>
<xs:element name=`name'/>
<xs:element name=`delivery' type=`Address'/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=`Items'>
<xs:sequence>
<xs:element name=`Item' maxOccurs=`unbounded'/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=`Item'>
<xs:sequence>
<xs:element name=`code'/>
<xs:element name=`price'/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=`Address'>
<xs:sequence>
<xs:element name=`state'/>
<xs:element name=`street'/>
<xs:element name=`city'/>

</xs:sequence>
</xs:complexType>

</xs:schema>
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Listing A.4: XSD for the PSM schema from Fig. 4.3 � version ṽ

<?xml version=`1.0'?>
<xs:schema xmlns:xs=`http://www.w3.org/2001/XMLSchema'
version=`1.1' elementFormDefault=`quali�ed'>

<xs:element name=`purchase' type=`Purchase'/>

<xs:complexType name=`Purchase'>
<xs:sequence>
<xs:element name=`purchase−date' type=`xs:date'/>
<xs:element name=`customer−info' type=`CustomerInfo'/>
<xs:element name=`item' type=`Items' maxOccurs=`unbounded'/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=`CustomerInfo'>
<xs:sequence>
<xs:element name=`customer' type=`Customer'/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=`Customer'>
<xs:sequence>
<xs:element name=`customer−no' type=`xs:integer'/>
<xs:element name=`delivery−address' type=`Address' minOccurs=`0'/>
<xs:element name=`emails' type=`CustEmail'/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=`Items'>
<xs:sequence>
<xs:element name=`item' type=`Item' maxOccurs=`unbounded'/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=`Item'>
<xs:sequence>
<xs:element name=`product' type=`Product'/>
<xs:element name=`qty' type=`ItemI'/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=`Address'>
<xs:sequence>
<xs:element name=`zip'/>
<xs:element name=`city'/>
<xs:element name=`street'/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=`Product'>
<xs:sequence>
<xs:element name=`code' type=`xs:integer'/>
<xs:element name=`subcode' type=`xs:integer'/>
<xs:element name=`title' type=`xs:string'/>
<xs:element name=`weight' type=`xs:integer'/>

</xs:sequence>
</xs:complexType>
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<xs:complexType name=`ItemI'>
<xs:sequence>
<xs:element name=`amount' type=`xs:integer'/>
<xs:element name=`unit−price' type=`xs:integer'/>

</xs:sequence>
</xs:complexType>
<xs:complexType name=`CustEmail'>
<xs:sequence>
<xs:element name=`email' type=`xs:string'
minOccurs=`0' maxOccurs=`5'/>

</xs:sequence>
</xs:complexType>

</xs:schema>
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Listing A.5: XSD for the PSM schema from Fig. 5.2

<?xml version=`1.0'?>
<xs:schema xmlns:xs=`http://www.w3.org/2001/XMLSchema'
version=`1.1' elementFormDefault=`quali�ed'>
<xs:element name=`org' type=`Organization'/>
<xs:complexType name=`Organization'>
<xs:sequence>
<xs:element name=`name' type=`xs:string'/>
<xs:element name=`budget' type=`xs:double'/>
<xs:element name=`dpt' type=`Department' maxOccurs=`unbounded'/>

</xs:sequence>
</xs:complexType>
<xs:complexType name=`Department'>
<xs:sequence>
<xs:element name=`name' type=`xs:string'/>
<xs:element name=`budget' type=`xs:double'/>
<xs:element name=`tm' type=`Team' minOccurs=`0' maxOccurs=`unbounded'/>
<xs:element name=`emp' type=`Employee' maxOccurs=`unbounded'/>
<xs:element name=`int' type=`Intern' minOccurs=`0' maxOccurs=`unbounded'/>

</xs:sequence>
</xs:complexType>
<xs:complexType name=`Team'>
<xs:sequence>
<xs:element name=`name' type=`xs:string'/>
<xs:element name=`mem' type=`Member' maxOccurs=`unbounded'/>

</xs:sequence>
</xs:complexType>
<xs:complexType name=`Member'>
<xs:attribute name=`empNo' type=`xs:string'/>

</xs:complexType>
<xs:complexType name=`Employee'>
<xs:sequence>
<xs:element name=`�rstName' type=`xs:string'/>
<xs:element name=`lastName' type=`xs:string'/>
<xs:element name=`salary' type=`xs:double'/>

</xs:sequence>
<xs:attribute name=`empNo' type=`xs:string'/>

</xs:complexType>
<xs:complexType name=`Intern'>
<xs:sequence>
<xs:element name=`�rstName' type=`xs:string'/>
<xs:element name=`lastName' type=`xs:string'/>

</xs:sequence>
<xs:attribute name=`empNo' type=`xs:string'/>

</xs:complexType>
</xs:schema>
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Listing A.6: XSD for the PSM schema from Fig. 5.3a

<?xml version=`1.0'?>
<xs:schema xmlns:xs=`http://www.w3.org/2001/XMLSchema'
version=`1.1' elementFormDefault=`quali�ed'>
<xs:element name=`organizations' type=`Organization'/>
<xs:complexType name=`Organization'>
<xs:sequence>
<xs:element name=`name' type=`xs:string'/>
<xs:element name=`budget' type=`xs:double'/>
<xs:element name=`project' type=`Project' minOccurs=`0' maxOccurs=`unbounded'/>
<xs:element name=`dpt' type=`Department' maxOccurs=`unbounded'/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=`Project'>
<xs:sequence>
<xs:element name=`name' type=`xs:string'/>
<xs:element name=`budget' type=`xs:double'/>
<xs:element name=`team' type=`Team' maxOccurs=`unbounded'/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=`Department'>
<xs:sequence>
<xs:element name=`name' type=`xs:string'/>
<xs:element name=`budget' type=`xs:double'/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=`Team'>
<xs:sequence>
<xs:element name=`name' type=`xs:string'/>
<xs:element name=`host' type=`Host'/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=`Host'>
<xs:sequence>
<xs:element name=`name' type=`xs:string'/>

</xs:sequence>
</xs:complexType>

</xs:schema>
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Listing A.7: XSD for the PSM schema from Fig. 5.3b

<?xml version=`1.0'?>
<xs:schema xmlns:xs=`http://www.w3.org/2001/XMLSchema'
version=`1.1' elementFormDefault=`quali�ed'>
<xs:element name=`teams' type=`Team'/>
<xs:complexType name=`Team'>
<xs:sequence>
<xs:element name=`name' type=`xs:string'/>
<xs:element name=`host' type=`Department'/>
<xs:element name=`member' type=`Employee' maxOccurs=`unbounded'/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=`Department'>
<xs:sequence>
<xs:element name=`name' type=`xs:string'/>
<xs:element name=`budget' type=`xs:double'/>
<xs:element name=`organization' type=`Organization'/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=`Organization'>
<xs:sequence>
<xs:element name=`name' type=`xs:string'/>
<xs:element name=`budget' type=`xs:double'/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=`Employee'>
<xs:sequence>
<xs:element name=`empNo' type=`xs:string'/>
<xs:element name=`salary' type=`xs:double'/>
<xs:element name=`employer' type=`Employer'/>
<xs:element name=`internship' type=`Internship' minOccurs=`0'/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=`Employer'>
<xs:sequence>
<xs:element name=`name' type=`xs:string'/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=`Internship'>
<xs:sequence>
<xs:element name=`name' type=`xs:string'/>

</xs:sequence>
</xs:complexType>

</xs:schema>
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Listing A.8: XSD for the PSM schema from Fig. 5.8

<?xml version=`1.0'?>
<xs:schema xmlns:xs=`http://www.w3.org/2001/XMLSchema'
version=`1.1' elementFormDefault=`quali�ed'>
<xs:element name=`organization' type=`Organization'/>

<xs:complexType name=`Organization'>
<xs:sequence>
<xs:element name=`name' type=`xs:string'/>
<xs:element name=`departments' type=`Departments'/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=`Departments'>
<xs:sequence>
<xs:element name=`department' type=`Department'
minOccurs=`0' maxOccurs=`unbounded'/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=`Department'>
<xs:sequence>
<xs:element name=`name' type=`xs:string'/>
<xs:element name=`employees' type=`Employees' minOccurs=`0'/>
<xs:element name=`manager' type=`Manager' minOccurs=`0'/>
<xs:element name=`subdepartments' type=`Subdepartments'
minOccurs=`0'/>

<xs:element name=`interns' type=`Interns' minOccurs=`0'/>
</xs:sequence>

</xs:complexType>

<xs:complexType name=`Employees'>
<xs:sequence>
<xs:element name=`employee' type=`Employee' maxOccurs=`unbounded'/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=`Manager'>
<xs:complexContent>
<xs:extension base=`Employee'/>

</xs:complexContent>
</xs:complexType>

<xs:complexType name=`Subdepartments'>
<xs:sequence maxOccurs=`unbounded'>
<xs:element name=`department' type=`Department'/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=`Employee'>
<xs:sequence>
<xs:element name=`empNo' type=`xs:string'/>
<xs:element name=`�rstName' type=`xs:string'/>
<xs:element name=`lastName' type=`xs:string'/>
<xs:element name=`salary' type=`xs:double'/>
<xs:element name=`phone' type=`xs:string'
minOccurs=`0' maxOccurs=`1'/>

</xs:sequence>
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</xs:complexType>

<xs:complexType name=`Interns'>
<xs:sequence>
<xs:element name=`Intern' type=`EmployeeI'
maxOccurs=`unbounded'/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=`EmployeeI'>
<xs:sequence>
<xs:element name=`empNo' type=`xs:string'
minOccurs=`1'/>

</xs:sequence>
</xs:complexType>

</xs:schema>
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Listing A.9: XSD for the PSM schema from Fig. 6.1 � version v

<?xml version=`1.0'?>
<xs:schema xmlns:xs=`http://www.w3.org/2001/XMLSchema'
version=`1.1' elementFormDefault=`quali�ed'>

<xs:element name=`customer' type=`Customer'/>

<xs:complexType name=`Customer'>
<xs:sequence>
<xs:element name=`name' type=`xs:string'/>
<xs:element name=`purchase' type=`Purchase' maxOccurs=`unbounded' />

</xs:sequence>
</xs:complexType>

<xs:complexType name=`Purchase'>
<xs:sequence>
<xs:element name=`status' type=`xs:string'/>
<xs:element name=`code' type=`xs:string'/>
<xs:element name=`item' type=`Item' maxOccurs=`unbounded'/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=`Item'>
<xs:sequence>
<xs:element name=`code' type=`xs:string'/>
<xs:element name=`price' type=`xs:double'/>
<xs:element name=`quantity' type=`xs:integer'/>

</xs:sequence>
</xs:complexType>

</xs:schema>
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Listing A.10: XSD for the PSM schema from Fig. 6.1 � version ṽ

<?xml version=`1.0'?>
<xs:schema xmlns:xs=`http://www.w3.org/2001/XMLSchema'
version=`1.1' elementFormDefault=`quali�ed'>

<xs:element name=`customer' type=`Customer'/>

<xs:complexType name=`Customer'>
<xs:sequence>
<xs:element name=`�rstName' type=`xs:string'/>
<xs:element name=`lastName' type=`xs:string'/>
<xs:element name=`realizedPurchases' type=`RealizedList'/>
<xs:element name=`pendingPurchases' type=`PendingList'/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=`RealizedList'>
<xs:sequence>
<xs:element name=`purchase' type=`Purchase' minOccurs=`0' maxOccurs=`unbounded'/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=`PendingList'>
<xs:sequence>
<xs:element name=`purchase' type=`Purchase' minOccurs=`0' maxOccurs=`unbounded'/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=`Purchase'>
<xs:sequence>
<xs:element name=`totalPrice' type=`xs:double'/>
<xs:element name=`item' type=`Item' maxOccurs=`unbounded'/>

</xs:sequence>
<xs:attribute name=`code' type=`xs:string'/>

</xs:complexType>

<xs:complexType name=`Item'>
<xs:sequence>
<xs:element name=`price' type=`xs:double'/>
<xs:element name=`quantity' type=`xs:integer'/>

</xs:sequence>
<xs:attribute name=`code' type=`xs:string'/>

</xs:complexType>
</xs:schema>
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B. Adaptation Scripts for the

Sample Scenarios

Listing B.1: Adaptation sript for Fig. 4.3

<xsl:template match=`/purchase'>
<purchase>
<xsl:apply-templates select=`purchase-date'/>
<xsl:apply-templates select=`customer-info'/>
<xsl:call-template name=`purchase-items'/>

</purchase>
</xsl:template>

<xsl:template match=`/purchase/customer-info'>
<customer-info>
<xsl:apply-templates select=`customer'/>

</customer-info>
</xsl:template>

<xsl:template match=`/purchase/customer-info/customer'>
<customer>
<xsl:apply-templates select=`customer-no'/>
<xsl:apply-templates select=`../address'/>
<xsl:call-template name=`emails'/>

</customer>
</xsl:template>

<xsl:template match=`/purchase/customer-info/address'>
<delivery-address>
<xsl:apply-templates select=`city'/>
<xsl:apply-templates select=`street'/>
<xsl:apply-templates select=`zip'/>

</delivery-address>
</xsl:template>

<xsl:template name=`emails'>
<emails>
<xsl:copy-of select=`email[position() &lt;= 5]'/>

</emails>
</xsl:template>

<xsl:template name=`purchase-items'>
<items>
<xsl:apply-templates select=`item'/>

</items>
</xsl:template>

<xsl:template match=`/purchase/item/product'>
<product>
<xsl:apply-templates select=`code|subcode|title'/>

</product>
</xsl:template>

134



<!−− blue nodes template −−>
<xsl:template match=`/purchase/item'>
<xsl:copy>
<xsl:copy-of select=`@∗'/>
<xsl:apply-templates select=`∗'/>

</xsl:copy>
</xsl:template>

<!−− green nodes template −−>
<xsl:template match=`/purchase/purchase-date
| /purchase/customer-info/customer/∗
| /purchase/item/product/∗[.= ../code|../subcode|../title]
| /purchase/item/qty/∗
| /purchase/customer-info/address/∗'>
<xsl:copy-of select=`.'/>

</xsl:template>
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Listing B.2: Adaptation sript for Fig. 6.1

<xsl:stylesheet version=`3.0' xmlns:xsl=`http://www.w3.org/1999/XSL/Transform'>
<xsl:template match=`/customer'>
<customer>
<xsl:variable name=`�rstName-new' select= `tokenize(name,'\s+')[1]' />
<xsl:variable name=`lastName-new' select= `tokenize(name,'\s+')[2]' />
<�rstName>
<xsl:sequence select=`$�rstName-new'/>
</�rstName>
<lastName>
<xsl:sequence select=`$lastName-new'/>
</lastName>
<xsl:call-template name=`RealizedList'/>
<xsl:call-template name=`PendingList'/>

</customer>
</xsl:template>

<xsl:template name=`RealizedList'>
<realizedPurchases>
<xsl:variable name=`purchase-new'
select="for $p in purchase[status eq `realized'] return oclX:apply-templates($p)"/>

<xsl:sequence select="$purchase-new"/>
</realizedPurchases>
</xsl:template>

<xsl:template name=`PendingList'>
<pendingPurchases>
<xsl:variable name=`purchase-new'
select="for $p in purchase[status eq `pending'] return oclX:apply-templates($p)"/>

<xsl:sequence select="$purchase-new"/>
</pendingPurchases>
</xsl:template>

<xsl:template match=`/customer/purchase'>
<purchase>
<xsl:apply-templates select=`code' />
<totalPrice/>
<xsl:apply-templates select=`item' />
</purchase>
</xsl:template>

<xsl:template match=`/customer/purchase/item'>
<item>
<xsl:apply-templates select=`code'/>
<xsl:apply-templates select=`price'/>
<xsl:apply-templates select=`quantity'/>
</item>
</xsl:template>

<xsl:template priority=`0' match=`item/code | purchase/code' >
<xsl:attribute name=`{name()}'>
<xsl:value-of select=`.' />
</xsl:attribute>
</xsl:template>
<xsl:template priority=`0' match=`price | quantity' >
<xsl:copy-of select=`.' />
</xsl:template>
</xsl:stylesheet>
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C. Schematron Schemas for the

Sample Constraints

Listing C.1: Translation of constraints for OrganizationSchema from Fig. 5.2

<!−− Constraints for OrganizationSchema from Figure 5.2 −−>
<sch:schema xmlns:sch=``http://purl.oclc.org/dsdl/schematron''/>
<sch:pattern id=``Organization''>
<sch:rule context=``/org''>
<sch:let name=``self'' value=``.'' />
<!−− PSM IC1 −−>
<sch:assert test=``oclX:forAll($self/dpt/tm, function($t)

{ count(t/mem) < 0.1 ∗ count($self/dpt/emp) } )'' />
</sch:rule>
<sch:rule context=``/org''>
<sch:let name=``o'' value=``.'' />
<!−− PSM IC7 −−>
<sch:assert test=``

let $internships := oclX:iterate($o/dpt/emp, (), function($e, $acc) {
oclX:including($acc, map {
'employee' = $e,
'departments' = oclX:select($o/dpt, function($d) {

oclX:includes($d/int/@empNo, $e/@empNo) } ) } ) } )
return oclX:forAll($internships, function($i) { count($i('departments')) lt 3 })'' />

</sch:rule>
</sch:pattern>

<sch:pattern id="Intern">
<sch:rule context=``/org/dpt/int''>
<sch:let name=``i'' value=``.'' />
<!−− PSM IC3 −−>
<sch:assert test=``not( $i/.. is

(for $p in $i return //emp[./@empNo eq $p/@empNo]/..) )'' />
</sch:rule>
</sch:pattern>
</sch:schema>
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Listing C.2: Translation of constraints for OrganizationProjectsSchema from
Fig. 5.3a

<!−− Constraints for OrganizationProjectsSchema from Figure 5.3a −−>
<sch:schema xmlns:sch=``http://purl.oclc.org/dsdl/schematron''/>
<sch:pattern id=``Organization''>
<sch:rule context=``/organization''>
<sch:let name=``self'' value=``.'' />
<!−− PSM IC2 −−>
<sch:assert test=``$self/budget le sum($self/project/budget)'' />
</sch:rule>
</sch:pattern>

<sch:pattern id=``Project''>
<sch:rule context=``/organization''>
<sch:let name=``self'' value=``.'' />
<!−− PSM IC4 −−>
<sch:assert test=``oclX:forAll($self/team, function($t) {

(for $p in $t/host return //department[./name eq $p/@name])/.. is $self/.. } )'' />
</sch:rule>
</sch:pattern>

</sch:schema>
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Listing C.3: Translation of constraints for TeamsSchema from Fig. 5.3b

<!−− Constraints for TeamsSchema from Figure 5.3b −−>
<sch:schema xmlns:sch=``http://purl.oclc.org/dsdl/schematron''/>
<sch:pattern id=``Teams''>
<sch:rule context=``/teams''>
<sch:let name=``self'' value=``.'' />
<!−− PSM IC6 −−>
<sch:assert test=``oclX:forAll($self/team/member,

function($m) { count(oclX:select($self/team,
function($t) { oclX:includes($t/member/empNo, $m/empNo) } )) lt 5})'' />

</sch:rule>
</sch:pattern>
</sch:schema>
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Listing C.4: Translation of constraints from the organization hierarchy schema
(Figure 5.8

<!−− Constraints for OrganizationHierarchySchema from Figure 5.8 −−>
<sch:schema xmlns:sch=``http://purl.oclc.org/dsdl/schematron''>
<sch:pattern id=``Department''>
<sch:rule context=``/organization/departments/descendant::department''>
<sch:let name=``d'' value=``.'' />
<sch:assert test=``let $count := count(oclX:collect(oclX:collect(

oclX:closure(.,function($sd) { $sd/subdepartments/department }),
function($d) { $d/employees }), function($e) { $e/employee }))

return if (count(interns/intern) gt 0) then $count ge 3 else true()''>
Only departments with at least 3 employees can accept interns,
department <sch:value−of select=``$d/name'' /> has less employee(s)

</sch:assert>
</sch:rule>
</sch:pattern>

<sch:pattern id=``Employee'' abstract=``true''>
<sch:rule context=``$e''>
<sch:assert test=``empNo ne `' '' /> <!−− empNo is not an empty string −−>
</sch:rule>
</sch:pattern>

<sch:pattern id=``EmployeeI''>
<sch:rule context=``//intern''>
<sch:let name=``e'' value=``.'' />
<sch:assert test=``if (exists(../..)) then

not(../.. is (for $e2 in . return
(//manager | //employee)[./empNo = $e2/empNo])/parent::employees/..)

else true()''>
Internship in home department is forbidden

</sch:assert>
</sch:rule>
</sch:pattern>

<sch:pattern id=``Manager''>
<sch:rule context=``//manager''>
<sch:let name=``m'' value=``.'' />
<sch:assert test=``oclX:includes(oclX:collect(../employees/employee,

function($e) { data($e/empNo) }), data(empNo))''>
Manager is an employee of its department

</sch:assert>
<sch:assert test=``exists(phone)''>
Managers must state their phone numbers

</sch:assert>
</sch:rule>
</sch:pattern>

<!−−instance pattern for PSMClass: Manager's ancestor Employee−−>
<sch:pattern id=``Manager-as-Employee'' is−a=``Employee''>
<sch:param name=``e'' value=``//manager'' />
</sch:pattern>
<!−−instance pattern for PSMClass: ``Employee''−−>
<sch:pattern id=``Employee-as-Employee'' is−a=``Employee''>
<sch:param name=``e'' value=``//employee'' />
</sch:pattern>
</sch:schema>
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Listing C.5: Translation of selected constraints from the organization hierarchy
schema (Figure 5.8) with applied rewritings

<sch:schema xmlns:sch=``http://purl.oclc.org/dsdl/schematron''>
<sch:pattern id=``Department''>
<sch:rule context=``/organization/departments/descendant::department''>
<sch:let name=``d'' value=``.'' />
<sch:assert test=``let $count :=

count(./descendant-or-self::department/employees/employee)
return if (count(interns/intern) gt 0) then $count ge 3 else true()''>
Only departments with at least 3 employees can accept interns,
department <sch:value−of select=``$d/name'' /> has less employee(s)

</sch:assert>
</sch:rule>
</sch:pattern>

<sch:pattern id=``Manager''>
<sch:rule context=``//manager''>
<sch:let name=``m'' value=``.'' />
<sch:assert test=``../employees/employee/empNo = $m/empNo''>
Manager is an employee of its department

</sch:assert>
</sch:rule>
</sch:pattern>
</sch:schema>

141


	Introduction
	Motivation and Requirements
	Integrity Constraints
	Adaptation Scenarios
	Evolution/Adaptation Framework Requirements

	5-Level Framework for Design and Evolution of XML Formats
	Framework Horizontal Levels
	Logical, Operational and Extensional Level
	Platform-Independent and Platform-Specific Levels

	Selected Part of the Problem

	Conceptual Model
	Formal Model of the PIM Level
	Formal Model of the PSM Level
	Versions of the Model
	Document Adaptation in a Versioned System


	Document Adaptation
	Changes
	Change Predicates
	Impact on Validity

	Adaptation
	Class Changes
	Attribute Changes
	Association Changes
	Content Model Changes
	Changes Moving Classes, Content Models and Associations
	Generating content
	Adaptation Example

	Implementation in XSLT

	Expressions in the Model, Integrity Constraints
	OCL Expressions at the PIM Level
	OCL Expressions at the PSM Level
	Expressions at the Operational Level – XML Queries
	From PIM Level Expressions to PSM Level Expressions (PIM OCL  PSM OCL)
	Direct Translation
	Problems with Direct Translation and its Improvements

	From PSM Level Expressions to Operational Level Expressions (PSM OCL  XPath)
	Variables, literals, let and if expressions
	Translating Feature Calls
	Translating Iterator Expressions
	Tuples
	Error Recovery
	Collections
	Validation of Inheritance and Recursion
	Operational Level Expression Rewriting

	Applications of OCL for XML Data
	Validation of Integrity Constraints Using Schematron
	Translating OCL Function Definitions


	Document Adaptation with Semantic Annotations
	Requirements for Semantic Adaptation
	Extending OCL to Define Relationships In Versioned Model
	Translating Annotations to XPath/XSLT
	Translating Class Literals
	Translating prev Function
	Translating next Function


	Implementation
	Architecture
	Adaptation
	Validation of Integrity Constraints

	Related Work
	Schema Evolution and Document Adaptation
	Incremental Evolution with Immediate Propagation
	Version Comparison and Change Detection
	Recording Changes
	Other Approaches
	Summary

	Integrity Constraints in Schemas, OCL

	Open Problems and Future Work
	Evolution of Constraints
	Version Links for Imported Schemas
	Content Templates, External Content
	Full XPath Axes Support in PSM OCL, Enhancments of Translation Algorithms

	Conclusion
	Bibliography
	Appendices
	XSDs for the Sample Schemas
	Adaptation Scripts for the Sample Scenarios
	Schematron Schemas for the Sample Constraints

