
Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Maroš Kasinec

Desktop client for open social networks

Department of Applied Mathematics

Supervisor of the bachelor thesis: RNDr. Tomáš Valla, Ph.D.

Study programme: Informatika

Specialization: Programováńı

Prague 2012

I would like to express appreciation for help and guidance throughout this thesis
to my supervisor, RNDr. Tomáš Valla, Ph.D. Least but not last great thanks
belongs to Diane and Matúš Kasinec for their prompt assistance and expertise
regarding proofreading.

I declare that I carried out this bachelor thesis independently, and only with
the cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In date signature of the author

Název práce: Desktop client for open social networks

Autor: Maroš Kasinec

Katedra: Katedra aplikované matematiky

Vedoućı bakalářské práce: RNDr. Tomáš Valla, Ph.D., Informatický ústav Uni-
verzity Karlovy

Abstrakt: Sociálne siete zaž́ıvajú v poslednej dekáde obrovský romach a ov-
plyvnili nielen spôsob on-line komunikácie a sociálnej interakcie ale tiež oblasť
obchodu, médíı či vládnych inštitúcíı. Avšak ich hlavný nedostatok, uzvretý
a centralizovaný charakter, ostáva nepovšimnutý medzi širokou verejnosťou. Táto
práca pojednáva a hodnot́ı ich otvorené a decentralizované alternat́ıvy a súčasne
sa zameriava na jednu konkrétnu – buddycloud. Vďaka využitiu XMPP pro-
tokolu, buddycloud a jeho protokol Channel sa jav́ı ako šlubný pŕıstup pre otvore-
nie ekosystému sociálnych siet́ı. Umožňuje im komunikovať federat́ıvnym spôso-
bom ako funguje dnes e-mailová sieť. Ako pŕıspevok do projektu buddycloud táto
práca predstavuje aplikáciu SocialDesktopClient, desktopový klient pre širokú
škálu sociálnych siet́ı. Bližšie sa zaoberá modulárnym návrhom klienta a imple-
mentáciou protokolu Channel ako prvej sociálnej sieti.

Kĺıčová slova: desktop client, open social networks

Title: Desktop client for open social networks

Author: Maroš Kasinec

Department: Department of Applied Mathematics

Supervisor: RNDr. Tomáš Valla, Ph.D., Computer Science Institute of Charles
University

Abstract: For the past decade social network sites emerged rapidly and effect
not only online communication and social experience but also businesses, me-
dia and governments. However, their greatest deficiency, closed and centralized
character, remains unnoticed among the general public. This thesis discusses
and evaluates open and decentralized alternatives for them and draws attention
to one particular – buddycloud. While leveraging the use of XMPP protocol, bud-
dycloud with its Channel protocol appears to be a promising approach for open-
ing ecosystem of social networks. It enables them to work in federated manner
like e-mail network does today. As a contribution to the buddycloud project
this thesis presents SocialDesktopClient, a desktop client for multiple social net-
work services. It deals with modular client architecture and a Channel protocol
implementation as the client’s first social network service.

Keywords: desktop client, open social networks

Contents

1 Social Network 2
1.1 Problem definition . 2

2 Federated Social Network 5
2.1 Network topology . 5
2.2 Social network aspects . 6
2.3 Existing technologies . 7
2.4 Evaluation . 14

3 XMPP – the golden mean 17
3.1 Protocol basics . 18

3.1.1 Communication primitives 18
3.2 Components . 20

4 buddycloud 22
4.1 Channels . 22

4.1.1 Privacy settings . 23
4.2 Channel protocol . 23

4.2.1 XEP-0060: Publish-subscribe 24
4.3 Content format . 25
4.4 Operations . 27

4.4.1 Channel service discovery 27
4.4.2 Creating and controlling channel 28
4.4.3 (Un)subscribing . 30

4.5 Current project overview . 31

5 SocialDesktopClient 33
5.1 Implementation and preliminaries 34
5.2 Architecture . 36

5.2.1 Threading model . 36
5.2.2 Core . 37
5.2.3 Qt GUI . 40

5.3 buddycloud plugin . 41
5.4 Overview and future works . 41

Conclusion 42

Bibliography 44

List of Figures 48

List of Tables 49

List of Abbreviations 50

Attachments 51

1

1. Social Network

The term social network was introduced in 1954 by J. A. Barnes in his research
of class and committees in Norwegian island parish [1]. In theory, it describes
a social structure composed of entities, either individuals or organizations, tied
together according to the relationship between them. A whole field of theory has
been formed to study and analyze social networks.

However, the term itself acquired a new meaning in ordinary vernacular.
It becomes more of a phenomenon than a sociological term in the past decade.
As the matter of fact, for many people the “social network” of today is just
a synonym to the actual largest social network provider - Facebook.

To avoid misconception, we are going use appropriate terminology. Common
denominator for all those online social network service is a Web-based architec-
ture. For this reason we are going to use the term Social Network Sites, further
SNS. Boyd and Ellison defined SNS as “Web-based services that allow individuals
to

• construct a public or semi-public profile within a bounded system,

• articulate a list of other users with whom they share a connection,

• view and traverse their list of connections and those made by others within
the system.” [2]

On the other hand, SNS are often referred to as Social Media. This term is
also correct, nonetheless it has broader meaning, because it exceeds the range
of internet-based applications. TV or radio broadcast can also be considered
as Social Media.

As the content-sharing phenomena grew, many websites progressively imple-
mented new social features and become SNS. As we can see in Figure 1.1, a spec-
trum of SNSs is quite colorful. They are focusing on various kinds of data,
from simple bookmark sharing to streaming entire online activity.

They also differ in a way they address audience. While many of them reaching
the crowds without difference, some are attracting users and communities with
shared interests or common language, nationality or religious identity.

They have expanded further beyond the personal utilization. Media us-
es them for publishing, businesses for advertising, governments for campaigns
and the space of opportunities continuously grows. To conclude, the impact
of SNSs on our society is great and inevitable.

1.1 Problem definition

While the significance of SNSs at present is apparent, serious deficiency of them
remains unnoticed among general public. The environment SNS work and run in
is closed and controlled by a single company, naturally driven by profit. Users’
data is collected in one big information silo, where they are sold and used for tar-
geted advertising in better-case scenarios. Information from one silo cannot be

2

Figure 1.1: Variety of SNSs [45]

3

reused in the other. This pushes users to sign up for every such SNS by ac-
cepting service’s policies agreement, thus creating profiles and articulating same
connections every time.

Moreover, people have only little control over how their data is presented
to them or to their connections. Even less control over how they are processed.
There are numerous cases, where people suffered from those SNS practices. Deac-
tivating accounts [3], censoring information [4], discretely changing privacy poli-
cies [5], gradually leaking private data to advertisers and trackers [6], etc. Having
to choose between sharing content at a cost of loosing privacy and keeping data
to ourselves is a dilemma aware users have to face.

Of course, people are not obligated to stay with particular SNS provider.
But the cost of leaving the party is too high. It means loosing important con-
nections, consequently loosing the way to communicate with them. In the worse
case also loosing valuable personal content.

In this project we are going to map and describe current situation and efforts
in the field of open social networks. We clarify the paradigm of open or rather
federated social network and take a look at existing technologies, protocols, stan-
dards and implementations dealing with various aspects of this paradigm. As long
as majority of them are built on top of Web we will evaluate this approach in terms
of federated social network.

Further on we bring attention to eXtensible Messaging and Presence Protocol,
XMPP in short or Jabber as many are familiar with, and show reasons why is it
befitted for building federated social network platform.

Our main focus will be on buddycloud project as the prospective approach for
building such platform. In frame of buddycloud we are going to discuss Channel
protocol, an extension build upon XMPP, which proposes model for federated
social network interaction.

As a result of software engineering part of this thesis we present SocialDesk-
topClient, a desktop application for multiple social network services. We take
closer look at its modular design and architecture in general.

In order to contribute to the buddycloud project, first social network ser-
vice plugin will be an implementation of buddycloud Channel protocol. To this
extent we stayed in touch with buddycloud open-source community throughout
SocialDeskopClient development.

As long as there is no open-source, cross-platform, desktop client designed
especially for social networks, we think this project can bring a decent product
for the users. Moreover, by implementing buddycloud plugin we want to manifest
the principles of open federated social network.

4

2. Federated Social Network

The problem menioned above can be solved by giving a user the ability to move
between providers without taking away their connections and also retain the abil-
ity to interact with those connections in the same or similar fashion. It will not
only solve users’ isolation problem and breaks information silos, but it may also
lead to healthier competitive ecosystem of social network providers.

In such environment independent providers are capable of exchanging rich
social content. The way they interact together would be standardized in open
and collaborative manner and improvements accepted by consensus, thus no one
can dictate the terms. From a user perspective one may freely choose a trust-
worthy provider, as long as technically capable, install its own private service
and join in.

As the problem clearly states, proposed platform requires decentralized ap-
proach. Such network architecture of a system is not a new concept. We are
all familiar with e-mail architecture (Figure 2.1). One does not have to sign
up to different providers in order to exchange messages with users of the same
provider. A little further behind internet boundaries - telecommunication system
shows another example of a world interconnected by different providers.

2.1 Network topology

For the network topology side of architecture we need to distinguish a couple
of decentralized models. A fully decentralized topology constitutes a peer-to-
peer network, where all nodes are able to communicate with each other, therefore
are considered to be equal. However, such topology is not suitable for social net-
working, since there is no guarantee a user always stays online in order to provide
his profile and other shared content.

There has to be a compromise made between entirely centralized client-server
model and fully decentralized peer-to-peer network. A federated model offers

Internet

gmail.com

clients

seznam.cz

clients

yahoo.co.uk

clients

hotmail.com

clients

Figure 2.1: Decentralized architecture of e-mail network

5

provider

client1

client2

client3

peer1 peer2

peer3

peer4

peer5

Centralized topology Fully decentralized topology

provider1 provider2

provider3

user3 user4 user5user2user1

Federated topology

Figure 2.2: Network topologies comparison

such a network. Unlike fully decentralized topology it is always on home server
which acts on behalf of a user, while still preserving decentralized character.
In Figure 2.2 we can see the comparison of three mentioned topologies.

Because of federated newtork topology, in this project we will refer to the pro-
posing social network platform as Federated Social Network, further FSN.

2.2 Social network aspects

In terms of decentralized social network architecture certain aspects need to be
discussed in order to understand the challenge of building FSN.

Social graph representation

A social graph, in the context of online social networks, constitutes a data struc-
ture of a graph, where nodes represents entities and edges a specific relationships
between them. Such data structure can be very beneficial in terms of searching
capabilities or statistics. Facebook’s Open Graph protocol [7] is an example of
utilizing social graph.

Opposed to centralized system, capturing such graph in FSN can be quite
challenging task, however not impossible.

Data model and distribution

Speaking of acting entities in online social network in general, it is important
to define a model of interaction. In detail, such model will define how entities

6

interact with each other, what information they can share and in what way are
they shared.

For FSN it is essential to develop standardized data format and protocol of
communication for the content to be distributed between independent providers.
This can be a long-term process, in which a community of developers and testers
takes their part.

Security

For an arbitrary online social system it is essential to preserve an identity of
the involved individual. Because a user, specifically client’s software, cannot
guarantee to be constantly active, the identity has to be maintained on an always-
online server, which will act on behalf of a user.

On the other hand there is a matter of privacy settings. While a central
authority is ruling, present SNSs lacks of fine control over content privacy. There-
fore it is desired that privacy setting will be implemented at the very protocol
level.

2.3 Existing technologies

There is an ongoing effort to build FSN using Web technologies. As a matter
of fact, World Wide Web of today is an ultimate sphere of data presentation.
While the field of Web technologies is constantly emerging, a W3C1 group called
Federated Social Web, takes part in supervising in this matter. In the following
we are going to briefly present those technologies and the use of them. They are
all open and designed to work in a decentralized fashion.

OpenID

A simple and widely-used decentralized authentication across the web presents
OpenID protocol [8]. It was adopted by big companies like Google, Yahoo!,
Facebook and MySpace.

The principle of authentication is straightforward. Basically the user is queried
for authentication by some third party system that implements OpenID protocol.
Subsequently the user provides his identifier, which is an HTTP(S) URL given by
OpenID provider. User’s browser is then redirected to the OpenID provider’s site
for authentication, which in return advises the third party of the result. Means
of such communication are shown in Figure 2.3.

OAuth

While OpenID provide just a simple way of authentication, OAuth [9] protocol
extends security in terms of authorization. It enables service provider to share
only limited resources with a third party on behalf of a user.

Initiative to create OAuth comes from increasing trend of Web data utiliza-
tion. Web service providers were pushed to open up user’s content to the third

1World Wide Web Consortium

7

HTTP client

Identity Server

example.com

service.com

social-network.com

Figure 2.3: Identity server network model

party applications. Each provider was developing his own system of accessing us-
er’s data, which ends up with with protocols like Google’s AuthSub, AOL’s Ope-
nAuth, Yahoo’s BBAuth and FlickrAuth and Facebook’s FacebookAuth. OAuth
main design goal is to unify those existing proprietary protocols, which shows
as a difficult challenge as main protocol developer claims [10].

WebID

A slightly different approach for authentication presents WebID protocol [11].
The idea behind it is to use a self-signed certificate in the user’s browser to log
in to a third-party site.

Initially, on user’s request, WebID provider generates X.5092 certificate.
Among other information inside the certificate, there is also WebID URI pointing
at user’s profile page. In order to be authenticated by a third party, user’s
browser provides stored certificate. Third-party site will then extract domain
part and verifies identity with the server. This process is described closely in
Figure 2.4.

The key advantage of WebID is that it utilizes existing infrastructure already
implemented in Web browsers.

Webfinger

A question of representing identity as a form of unique human-readable identifier
has not yet been dealt with. Assuming identifier shall be addressable there are not
many choices, while trying to reuse existing infrastructure. Identifier as a form
URL is fairly acceptable, since it is readable and discoverable by design. However,
users’ mindset recognizes URL to be a representation of a resource as a document
or media file rather than identity of a person.

The most suitable would be to use an e-mail address as it reflects identity in
the online world the most. It is discoverable and broadly implemented in network
application. The problem with e-mail addresses is that it is not readable like URL
in the Web space.

Webfinger [12] makes it possible to attach rich metadata to e-mail address,
like public profile, pointer to identity provider, services used by that address.

2X.509 – A standard for security systems with public key infrastructure described in RFC
3280

8

Figure 2.4: WebID authentication process [11]

FOAF

Another aspect that needs to be covered in a social network is a representation of
relationships. There are many personal websites, blogs, social network profiles,
that articulates relationships with others.

Project FOAF, as an abbreviation of Friend Of A Friend, is designated for
such purpose. It introduces FOAF language, that is based on W3C’s RDF [13]
framework FOAF vocabulary [14] can help machines to understand how people
are linked on the web. Listing 2.1 shows an example of a person’s profile and his
connections using FOAF.

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:foaf="http://xmlns.com/foaf/0.1/">

<foaf:Person>

<foaf:name>Harry Potter</foaf:name>

<foaf:gender>Male</foaf:gender>

<foaf:title>Mr</foaf:title>

<foaf:givenname>Harry</foaf:givenname>

<foaf:family_name>Potter</foaf:family_name>

<foaf:homepage rdf:resource="http://www.hogwarts.edu"/>

<foaf:weblog rdf:resource="http://www.hogwarts.edu/blog/"/>

<foaf:knows>

<foaf:Person>

<foaf:name>Ron Weasley</foaf:name>

</foaf:Person>

9

</foaf:knows>

<foaf:knows>

<foaf:Person>

<foaf:name>Hermione Granger</foaf:name>

</foaf:Person>

</foaf:knows>

</foaf:Person>

</rdf:RDF>

Listing 2.1: FOAF example

Atom Syndication Format

In order to distribute data over a decentralized system with independent software
implementations there has to be some sort of consensus for the structure of carried
data. For this purpose standard like The Atom Syndication Format has been
developed [15].

Atom is an XML-based format designed to hold related information in so-
called feeds. Each feed is composed of items known as entries. Format describes
an extensible set of attached metadata like title, author name, content category,
related timestamps, and more. An example of atom feed is shown in Figure 2.2.

<?xml version="1.0" encoding="utf-8"?>

<feed xmlns="http://www.w3.org/2005/Atom">

<title>Example Feed</title>

<link href="http://example.org/"/>

<updated>2003-12-13T18:30:02Z</updated>

<author>

<name>John Doe</name>

</author>

<id>urn:uuid:60a76c80-d399-11d9-b93C-0003939e0af6</id>

<entry>

<title>Atom-Powered Robots Run Amok</title>

<link href="http://example.org/2003/12/13/atom03"/>

<id>urn:uuid:1225c695-cfb8-4ebb-aaaa-80da344efa6a</id>

<updated>2003-12-13T18:30:02Z</updated>

<summary>Some text.</summary>

</entry>

</feed>

Listing 2.2: Atom example

Atom format is currently used Web-wide by all sorts of different applications.
Since it is a format it is not bound to any particular communication protocol.
Thanks to extendible XML based structure it can used for various content syn-
dication.

10

ActivityStreams

In comparison with Atom, which defines a format for content syndication in gener-
al, ActivityStreams standardize a way of expressing an online activity in a machine-
readable format [16]. Motivation comes from SNSs, that opened up to a third-
party applications. The standard was adopted by big players in the field like
Facebook, MySpace, Opera, Socialcast, Superfeeder, Windows Live, and others.

Standard in the simplest form describes activity as a composition of three
types of information, an actor, a verb and an object. For example “Joe posted
a video” or “Sara uploaded a photo”. In addition to those three, there may be
metadata like time, when it happens, target to which activity was performed, e.g.
“Sam saved a movie to wishlist”, ID of an object, summary, a human-readable
description of an object, etc.

Activity base schema [17] defines wide spectrum of verbs and object types,
thus offering rich expression capabilities for variety of applications also beyond
social services.

OExchange

People browsing the Web are all familiar with sharing Web content by provid-
ing its URL. With the advent of social network services, this practice becomes
instantaneous. SNS providers developed mechanism for sharing URL-based con-
tent within their system, so when a user chooses to share particular content all
she has to do is to click on SNS provider symbol somewhere near the content on
the same site and the URL is shared instantly.

Since each SNS provider developes its own way of sharing URLs, content sites
had to integrate with each individually. OExchange protocol addresses this issue
by providing a standardized mechanism of sharing URLs. It also describes how
a service can be discovered for an OExchange support automatically [18].

Moreover, it can be used for posting URLs to arbitrary services like online
translation or printing. Protocol is as of now adopted by practically every popular
SNS.

Pubsubhubbub

As the distribution of user’s content is essential in a decentralized system, there
has to be a way of pushing new content to the interested parties. Such task can be
typically addressed by a publish-subscribe pattern known in sofware architecutre.

For delivering content within the meaning of this pattern a protocol called
Pubsubhubbub has been created [19]. It introduces three components in the pro-
cess. A publisher, subscriber and a hub in the middle. Publisher and subscriber
can either be a public service like content aggregator or a private webserver with
user’s profile. The concept is rather straightforward. When the publisher up-
dates his content, she pings hub for the update. Hub will retrieve the content
from the publisher and pushes it to every subscribed party. Illustration of this
process can be found in Figure 2.5.

All of this is happening on the basis of HTTP GET and POST requests,
therefore the URL endpoint needs to be provided by publishers and subscribers.
To that end, it is impossible to push content directly to clients.

11

Figure 2.5: Pubsubhubbub architecture [20]

Salmon

On the contrary feed subscribers often requires to interact on the published con-
tent in the form of comment, annotations, replies, mentions, etc. Once the con-
tent is already out of the source site, it is desired for the content publisher to be
notified of such feedback and possibly being able to republish it.

For this reason Salmon protocol has been developed [21]. It provides a kind
of counter-part for the Pubsubhubbub protocol.

OStatus

Each protocol or standard we have mentioned so far provides only partial func-
tionality required for FSN. Implementation of an arbitrary subset of them would
result in compatibility issues for federation. A compound solution proposes OSta-
tus [22]. It is rather a suite of protocols than protocol itself. It covers the following
five of aforementioned protocols.

• Atom

• Activity Streams

• Pubsubhubbub

• Salmon

• Webfinger

It takes and adopts these standards together in a way that enables users to follow
each other independently on OStatus provider.

It has found a widely recognition in the field FSN implementors and has been
adopted by projects like StatusNet, Friendica, Duuit!, GNU Social, Lorea, Project
Danube, buddycloud and others.

Tent

Tent [23] is an HTTP-based protocol for federated social interaction. It enables
users to share profiles, statuses, messages, photos and other content types. Tent
implements a concept of apps, which makes it possible for the developers to build
custom applications upon Tent network. Eventually, users can make a use of
them by authorizing app for access to certain content selectively.

12

Control over data is entirely in the hand of users. For this reason, as the doc-
umentation states, Tent server can also be employed as a user’s personal data
vault.

In relation with other standards, Tent leverages JSON [24] format for data
syndication and for the apps authorization side of things OAuth 2.0 [9] protocol
has been utilized.

DSNP

Distributed Social Networking Protocol is an example of a comparatively differ-
ent approach to those we have presented so far [26]. Although it is a protocol,
we describe it here, because it has the one and only reference implementation
consisting of two parts.

The first one is a deamon, DSNPd, which is responsible for server-to-server
communication on behalf of its users. It implements core protocol [25]. DSNP
address the security as a key factor of social interaction. To do that it leverages
RSA-based identity. This type of cryptography is used also for the sharing of
secrets and the declaration of relationships. In summary, protocol defines several
RSA private keys, each for a different priviledge level. Network communication
is not specified in the DSNP, therefore it is independent of network protocols.

The second part is a front-end called ChoiceSocial, written in PHP. It is
installed together with DSNPd on a server machine where it provides a Web-
based interface. This way the presentation layer is separted and can represented
by any front-end in the future.

Diaspora

Very popular for its mediated startup is Diaspora project [27] started by the group
of sholars in 2010. Their goal was to make an open decentralized social network
platform for everyone. Some people also believed it is the Facebook’s first serious
challenger. Figure 2.6 shows a preview of Diaspora’s Web interface.

Diaspora’s approach for creating FSN was to attract as many people as pos-
sible. They put the effort for documentation and protocol development beside,
which results in the inability for developers to implement compatible software.
Despite the fact Diaspora is decentralized, it can communicate only within its
own instances.

Independent attempts were made to interconnect Diaspora with existing tech-
nologies, but they could not cope with further separated development of the project.
As of now this project is in the hands of open-source community.

buddycloud

The buddycloud project has been in the field of FSN for quite some time. It pro-
poses an architecture for building FSN on top of existing XMPP network infras-
tructure.

The idea of sharing content spins around the concept of Channels. A particular
channel can be bound to a user, organization, or any topic in general. Access
model of buddycloud protocol allows users to create, moderate, publish, or just
follow the channel.

13

Figure 2.6: Diaspora* preview [28]

FSN buddycloud as a whole will be further discussed in chapter 4.

Other projects

There are also other projects more or less involved in the process of building
FSN we did not mention like a french multi-purpose communication tool Salut à
Toi [31] or Kune as an Apache Wave implementation [30].

However, many of them are either dead in development, or addresses FSN
only partialy. Others does not take any part in standardization process, which
makes it impossible for other implementations to be established, thus getting
little attention from the side of developers.

2.4 Evaluation

What most of those mentioned protocols, standards, implementations have in
common is a Web-based architecture. From a protocol perspective, they are
designed to communicate over HTTP3 protocol. Taking Web phenomenon into
consideration, it is only reasonable that aforementioned technologies advanced
this way.

However, several shortcomings arises for building FSN on top of Web tech-
nologies.

3RFC 2616 - http://www.ietf.org/rfc/rfc2616.txt

14

Non bi-directional communication Network topology of HTTP connections
follows simple client-server model. The communication between client and server
works on a request-response basis. After satisfying client’s request HTTP con-
nection is terminated.

For communication in federated environment it is desired to exchange infor-
mation between server both ways instantly. In such a way network bandwidth
can be conserved and additional state can be held naturally.

For HTTP server-to-server communication is not native and must be circum-
vented by higher level of application protocol abstraction.

Stateless connections By the means of client-server conversation HTTP pro-
vide stateless connection by design. In order to hold a state by HTTP client, e.g.
for the purpose of preserving identity, Web browser cookies or URL parameters
have to be used.

For the purpose of preserving identity, which is a fundamental element in FSN
architecture, it is desired the communication protocol holds the state if required.

Lack of real-time We described the mechanism for event-driven content dis-
tribution provided by Pubsubhubbub [19] and Salmon [21] protocols. However
they can only communicate between URL-based endpoints. By no means can
data be pushed to an HTTP client. Because of this it is impossible to make
almost real-time communication at protocol level, which is an important aspect
of social network architecture.

Polling character In order to provide almost real-time experience HTTP client
is forced to poll the server for the new updates. Whereas in most cases server’s
answer is simply “nothing new”. As a result of this TCP connections has to be
established frequently, which impacts network load and server resources.

As the large service like Twitter demonstrates, polling character of HTTP
makes it difficult to scale for third party services [32] [33].

URL addressing scheme limitation Furthermore communication over HTTP
is limited to the URL-based endpoint. As we pointed out in Section 2.3, when
explaining Webfinger protocol, it is not natural to conceptualize identity as URL.

Again abstraction layer in form of standard like Webfinger has to be intro-
duced to solve this.

Fragmentation Moreover, all those protocols we talked about completes dif-
ferent tasks separately. In terms of security, which is crucial in FSN system,
it cannot be implemented vertically through all protocols at once, thus each one
has to deal with it individually.

There are several standards for doing the same thing, e.g. OpenID and WebID
for authentication. Implementing different subset of mentioned technologies may
result in compatibility issues.

The point here is that the Web of today is too fragmented. It is not consistent
enough to provide fundamental components of FSN.

15

Whenever you find yourself on
the side of the majority, it is time
to pause and reflect.

Mark Twain

It seems as a right approach to reuse existing Web infrastructure, but from
architectual point of view it is not satisfactory for FSN. To move forward, the bar-
riers of pervasive omnipresent Web phenomenon need to be left behind. FSN
requires more integrated network approach.

Some projects like Diaspora are making its own path to establish social net-
work for independent providers. Although it solves centralization problem, it does
not follow the principle of federation.

On the other hand projects like DSNP are trying to build a whole new ap-
plication layer protocol for FSN. It is a reasonable approach, however, inventing
a new network standard is quite a challenging task. It is a long and living pro-
cess, which requires not one but several implementations that put the protocol
to the test.

To conclude, there is no need to build a new TCP/IP protocol or stack of
protocols from the ground up. It is even undesirable, since there already exists
suitable technologies to build upon.

16

3. XMPP – the golden mean

An ideal foundation for building a federation of social networks is Extensible
Messaging and Presence Protocol (XMPP). It is also known as Jabber and it has
been introduced by Jeremie Miller in 1999 [34], who was tired of using multiple
clients for closed IM messaging services at that time. Since then a communi-
ty of developers started to emerge and build Jabber-compatible software. Later
on in a process of development protocol has undergone rigorous public review
within Internet Engineering Task Force (IETF) and published as Request For
Comments (RFC 6120) [36]. After that it has found its applications in multiple
areas. Also various prominent companies got interested about XMPP and used
it for their own purposes. Today we know instant messaging services like Google
Talk or Facebook Chat are based on XMPP.

There are numerous reasons why to use XMPP for FSN.

Low level XMPP is an application layer protocol within TCP/IP network
layered model. Like HTTP it is based directly upon TCP transport protocol.
For this reason it is freed from lower application protocol dependency compared
to Web technologies.

Federated topology Network topology of XMPP network is federated by its
very nature. XMPP specifies two types of network conversation, i.e. client-to-
server (c2s) and server-to-server (s2s). Therefore it conforms to the federated
network topology we explained in section Section 2.1.

Addressability Addressing scheme relies on generally employed Domain Name
System (DNS). Anyone can set up its own XMPP server and join the federation.

Identity awareness In order to take a part in XMPP network one has to be
registered within its home server. Upon connection a server verifies user’s iden-
tity based on his credentials and initiates bi-directional communication. Since
the XMPP conversation is always mediated by the home server, there is a guar-
antee of a veritable identity.

Extensible data format XMPP leverages XML data format for network con-
versation in general. For this reason it is easy to customize payload in order
to satisfy the needs of variety of applications.

“Real-time” Due to event-driven charater of XMPP network communication
it is possible to create almost real-time social network experience.

Security Integral part of core protocol specification is support for encryption
and strong authentication. Significant deployments at some of the most security-
conscious financial organizations and government agencies put XMPP security
to the test and proved it [35].

17

Standardization In addition to the XMPP core specification [36] there is
a possibility to create XMPP Extension Protocol (XEP). XMPP Standards Foun-
dation (XSF), a nonprofit organization, has been established to take part in the pro-
cess of XEPs standardization. As of now there are over two hundred XEPs dealing
with diverse XMPP use-cases.

Community & proven XMPP yet exists for over 10 years. It has acquired
large community of independent developers, involving companies, wide deploy-
ments with dozens of interoperable codebases and millions of end users.

Existing infrastructure XMPP is already broadly employed for instant mes-
saging purposes. Greatest social network service provider like Google and Face-
book employed XMPP long ago into Google Talk and Facebook Chat. This might
be an important aspect for FSN propaganda.

3.1 Protocol basics

In this section we throw a light on basic principles of XMPP protocol.

XMPP communication is connection-oriented, which means it holds the state
between connected endpoints. Because of that the whole communication can be
event-driven. There is no need for the client to poll the server for the information
like HTTP protocol requires. Server will push it to the client when that particular
event arises.

It can significantly minimize server load and preserve network bandwidth,
since it is cheaper to keep long-lived TCP connection rather than repeatedly
TCP handshake. This is the fundamental difference from HTTP connections.

However it is not always possible to preserve long-lived TCP connection. Es-
pecially mobile device possess such incapability, while they are hopping from
network to network as they move.

Every client has its home server and all of client’s traffic is distributed between
their home servers.

As we pointed out XMPP relies on DNS addressing scheme. Every user has
unique identifier called Jabber ID (JID in short). Here is another similarity
to the familiar e-mail system. JID in its bare form look very much like an email
address(e.g. user@example.com).

Another substantial advantage of XMPP is that it permits connection of mul-
tiple clients of the same user. One can use multiple devices with different avail-
ability states, capabilities, etc. In order to distinguish between those devices JID
includes a resource identifier that follows the account address. For example us-
er can have user@example.com/home JID for his home desktop computer client
and user@example.com/mobile JID for his smartphone.

3.1.1 Communication primitives

XMPP is essentially a technology for streaming XML [35]. A session consists
of XML streams in both directions, that take place upon long-lived TCP connec-

18

tion. The actual communication happens when client or server send XML chunk
of data, which is interpreted by the other end. These chunks are called stanzas
and they constitutes basic units in XMPP communication. All data that is send
through XMPP network is wrapped into stanza.

There are three types, i.e. <message/>, <presence/> and <iq/>. Each of them
behaves distinctively and are used for different purposes. We take a brief look
at each one in the following text.

Message

The simplest stanza is <message/>. It is used for pushing data through the XMPP
network. Servers treat messages as some kind of packets that need to be deliv-
ered from one end to another. They don’t do deep investigation of stanza, they
just take a look at a to parameter and forward message to its destination. In IP
analogy messages are routed as packets and XMPP server acts as a routers for
them. Here a simple example of message stanza:

<message from="harry@hogwarts.wiz/desktop_client"

to="ron@hogwarts.wiz"

type="normal">

[... any kind of~XML payload ...]

</message>

When a target entity is offline, message is held by its home server in offline
message queue until the recipient comes online again.

Presence

A fundamental element in XMPP world is presence. Presence stanzas are used
to advertise availability of entity on the network. One can subscribe to other’s
presence and get notified every time the presence changes.

For example, if an entity comes online it sends presence to its home server.
In the shortest form presence can look like this:

<presence/>

Server is then responsible to broadcast this presence to all subscribed nodes.
Here we gets to another aspect of protocol, which is XMPP contact list also called
as a roster. Any entity has a roster stored on its home server. Every item in a list
consists of JID and the state of its subscription. In order to broadcast presence
of an entity server simply look up its roster.

IQ

Info/Query stanza provide a request-response mechanism similar to GET, POST,
PUT methods from HTTP. Let’s illustrate this on an example. A client typically
request a roster after it negotiates a connection with its home server. In order
to do that it sends an IQ stanza of type get.

<iq from="harry@hogwarts.wiz/social_client"

to="hogwarts.wiz"

type="get"

19

id="w2f3">

<query xmlns="jabber:iq:roster"/>

</iq>

A server will then respond with <iq/> of type result.

<iq from="hogwarts.wiz"

to="harry@hogwarts.wiz/social_client"

type="result"

id="w2f3">

<query xmlns="jabber:iq:roster">

<item jid="ron@hogwarts.wiz" subscription="both"/>

<item jid="hermione@hogwarts.wiz" subscription="both"/>

</query>

</iq>

Notice response’s id parameter. Server include the same id as was in the re-
quest so the client can pair request with response. This is important for the asyn-
chronic character of XMPP communication.

In comparison with <message/> and <presence/> stanza, an <iq/> stanza
must be acknowledged every time.

3.2 Components

Another feature of many XMPP server is the ability to attach components to itself
as defined in XEP-0114: Jabber Component Protocol. Components can be deemed
as a separate software running within the XMPP server machine and providing
additional functionality.

In order for the component to be attached to the server, it needs to authen-
ticate itself to avoid server exploitation. For this purpose a shared key must be
set on both ends. Whole communication between component and server happens
upon an XML stream.

When component successfully connects to the server it obtains configured
subdomain. This serves as an identifier for XMPP communication. Let’s consider
we have an XMPP server running on example.com domain and three components
connected to server. Figure 3.1 shows such installation with MUC1 conference,
SMS gate service and channel service components. A stanza from a client or
a remote server addressed to sms.example.com will be delivered right to that
component. The server only mediates the XMPP communiacation. Note that
subdomain is known only to the server, it does not have to do anything with
DNS space.

By design components runs autonomously and can be attached to any XMPP
server. This makes them independent from a server codebase. By leveraging
component architecture many XMPP exentension protocol can be implemented
and proven without touching server codebase.

Disadvatages Higher abstraction of XMPP and protocol core features, al-
though they are reasonable, have taken their toll. XMPP compared to HTTP is

1XEP-0045: Multi-User Chat

20

XMPP Server

conference.example.com sms.example.comchannels.example.com

XML
stream

XML
stream

XML
stream

Server machine

Figure 3.1: XMPP server and components

rather complicated, which has several adverse implications. For its complexity
it is unattractive for developers, therefore little software is created. It is usu-
ally known only for its instant messaging features, thus it is used just for such
intentions, exceptionally as a proprietary solution for company’s purposes.

Conclusion For its robustness XMPP provides stepping stone for a wide range
of applications. It is able not only to meet social networking requirements of to-
day, but also to extend them by any means. buddycloud protocol employs the use
of XMPP in a way that fits the praxis of present social networks.

21

4. buddycloud

buddycloud originaly started as a pure mobile project founded by entrepreneur
and technologist Simon Tennant.

The philosophy of buddycloud project is to build simple and user-friendly
product for people to share, discover and communicate whatsoever. Focus is
revolving around user needs in the first place. While trying to keep things simple
question of “What would Simon’s mom do?” became a catch phrase among
buddycloud developers [39].

The approach for building FSN here is to design the product first and then
come back to the protocol specific stuff. Protocol should not do too many as-
sumption as it can lead to useless complexity.

However the overall architecture is also very important. As a result of de-
signing protocol on top of XMPP standard lot of FSN fundamental questions
were solved right away. In order to provide a seed for healthy FSN ecosystem
buddycloud is primarily focusing on the sole core protocol and good reference
implementations throughout rather than secondary peripheral stuff.

We already outlined the benefits of building FSN on top of XMPP protocol.
In this chapter we are going to explain how buddycloud leverages the XMPP core
and its extensions.

4.1 Channels

Basic interaction model of buddycloud is elementary as it was intended in the be-
ginning. In the center of content creation stands the concept of channels. We can
look upon channels as a feed of rich content such as simple mood or status mes-
sages, short tweet or long blog posts, additional meta information like geographi-
cal location, user’s connections or online activity in general. buddycloud presently
introduces two types of channels, i.e. a personal channel and a topic channel.

Personal channel

The purpose of a this channel is to provide a personal online place for an individual
to share content with others in general. The user has a full control over what
and to whom data is shared. Main content type in buddycloud channel model
is called simply a post. There are no particular length limits for the post, it can
either be long as a blog post or short as a tweet1.

There are two categories of posts available in a channel, i.e. a topic and a com-
ment. A simple conversation can be made by binding the two together as illus-
trated in Figure 4.1.

Besides posts, the channel model currently provides a way to share location,
simple status messages and a list of channel followers.

1tweet - a Twitter’s main content entry, it is limited to 140 characters

22

Figure 4.1: Expression of buddycloud channel [42]

Topic channel

On the contrary to the personal channel, topic channel is intended just for a par-
ticular subject of discussion. Therefore, it lacks irrelevant location features.

4.1.1 Privacy settings

Because of privacy settings being the stumbling-block of present online social net-
works, we breach the subject of channel privacy first before we dig into any pro-
tocol specifics. buddycloud enables users to set their channels either

• open or

• private.

An open setting makes the channel visible for anyone and for everyone to
subscribe to. This also makes channels discoverable and its content crawled by
search engine like the one we describe at the end of this chapter.

On the other hand, it may not be desired for the channel to be publicly ac-
cessed. Ergo user has the ability to restrict it to a whitelist. To follow such
a channel an authorization request has to be approved by the owner or a channel
moderator.

In order to get a clear control over user access buddycloud defines five roles for
a channel described in Table 4.1. It is apparent that the scope of user abilities is
satisfactory enough. From the owner of the channel who has the ultimate control
over it, down to banned users that are ignored and have no rights at all.

4.2 Channel protocol

As we pointed out channel data model enables users to follow and/or publish.
But what it actually means to follow a channel? From the protocol perspective it
is more correct to identify follower as a subscriber. In order to read content from
channel one has to be subscribed to it.

23

User role Reported as Capabilities
producer owner ultimate control
moderator moderator read, publish, remove posts,

approve new followers
follower+post publisher read, publish posts
follower subscriber read posts only
banned outcast no access, new follow requests are ignored

Table 4.1: Channel roles

In Section 2.3 we described Pubsubhubbub protocol implementing publish-
subscribe pattern for content distribution on the Web. For channel purposes we
need something similar, however, on top of XMPP. There is no need to design
XEP from ground up. We have a fairly known extension, called Publish-Subscribe,
which fits to our needs precisely. In the next section we will briefly introduce this
extension while being the cornerstone for content distribution in buddycloud.

4.2.1 XEP-0060: Publish-subscribe

Publish-subscribe, shortly called Pubsub, is a fairly known XMPP extension de-
fined in XEP-0060 [37]. It provides functionality for publish-subscribe pattern
over XMPP network. Pubsub has widely used implementations in the field of
micro-blogging services.

Although the Pubsub specification is quite long, the basic idea behind it is
very simple. Pubsub service resides on a server machine either as an XMPP
component or built in right into the server codebase. User’s content is stored in
so-called nodes. There are publishers feeding the node on one side and subscribers
receiving content updates on the other. When an entity publishes data to the node
the Pubsub service pushes an event notification to all of the node’s subscribers.

We outline a sample data flow for ’Potions class’ node owned by JID ha-

rry@hogwarts.wiz. The publisher sends <iq type="set"/> stanza to pubsub
service declaring node and filling desired content.

<iq from="harry@hogwarts.wiz/social_client"

to="pubsub.hogwarts.wiz"

type="set" id="pub1">

<pubsub xmlns="http://jabber.org/protocol/pubsub">

<publish node="Potions class">

<item>

[... DATA ...]

</item>

</publish>

</pubsub>

</iq>

Pubsub service is then responsible to push event notifications to all sub-
scribed entities. In our example these are ron@hogwarts.wiz and hermione@hog-

warts.wiz.

<message from="pubsub.hogwarts.wiz"

24

to="ron@hogwarts.wiz" id="foo">

<event xmlns="http://jabber.org/protocol/pubsub#event">

<items node="Potions class">

<item id="ae890ac52d0df67ed7cfdf51b644e901">

[... DATA ...]

</item>

</items>

</event>

</message>

<message from="pubsub.hogwarts.wiz"

to="hermione@hogwarts.wiz" id="bar">

<event xmlns="http://jabber.org/protocol/pubsub#event">

<items node="Potions class">

<item id="ae890ac52d0df67ed7cfdf51b644e901">

[... DATA ...]

</item>

</items>

</event>

</message>

In the terms of node access control Pubsub defines a set of affiliations that
can be configured on per-JID basis. With the exception of the moderator role,
Pubsub affiliations correspond with channel roles as we indicated in the Report-
ed as column in Figure 4.1. In order to distribute the burden of maintaining
the channel among several users, it is necessary to have kind of moderator role,
e.g. capable to approve new subscriptions or remove spam posts. Inasmuch as on-
ly owner posses the ability to approve new subscribers in Pubsub, buddycloud
Channel protocol introduces a moderator role.

Pubsub specification is rather extensive and covers many use-cases, that are
out of scope of buddycloud channels. To preserve simplicity of a channel, buddy-
cloud uses only a subset of features defined in XEP-0060 [37].

4.3 Content format

As well as for the data format buddycloud is trying to reuse as many existing
standards as possible. To express channel post in the most conventional way it
uses Atom Syndication Format, which we have already described in Section 2.3.

<entry xmlns="http://www.w3.org/2005/Atom"

xmlns:activity="http://activitystrea.ms/spec/1.0/"

xmlns:buddycloud="http://buddycloud.com/atom-elements-0">

<published>2010-01-06T21:41:32Z</published>

<author>

<name>Harry</name>

<buddyclud:jid>harry@hogwarts.com</buddycloud:jid>

</author>

<content type="text">I am a~Half-blood Prince</content>

25

<geoloc xmlns="http://jabber.org/protocol/geoloc">

<text>Number 12, Grimmauld Place, England</text>

<locality>London</locality>

<country>Great Britain</country>

</geoloc>

<id>/user/harry@hogwarts.com/posts:1291048772456</id>

<activity:verb>post</activity:verb>

<activity:object>

<activity:object-type>note</activity:object-type>

</activity:object>

</entry>

Listing 4.1: buddycloud topic post

Content format is rather self-explanatory as Listing 4.1 shows. We can notice
four different XML namespaces here.

• http://www.w3.org/2005/Atom - Atom Syndication Format

• http://buddycloud.com/atom-elements-0 - buddycloud

• http://jabber.org/protocol/geoloc - XEP-0080: User Location

• http://activitystrea.ms/spec/1.0/ - Activity Streams

Worth noting is namespace of Activity Streams standard, which we described
in Section 2.3. The vocabulary defined in this standard is used to declare actions,
that were performed with a channel content. Currently there is only single verb
post supported by Channel protocol.

In order to distinguish between topic and comment post, Activity Streams
object type of note and comment is used respectively. It is also required that
a comment post includes <in-reply-to> element with an ID of a specific topic
post. Otherwise the comment cannot be tracked, thus will not be visible in
the channel. An example of comment post is shown in Listing 4.2.

<entry xmlns="http://www.w3.org/2005/Atom"

xmlns:thr="http://purl.org/syndication/thread/1.0"

xmlns:buddycloud="http://buddycloud.com/atom-elements-0">

<author>

<name>Ron</name>

<buddycloud:jid>ron@hogwarts.wiz</buddycloud:jid>

</author>

<content type="text">

Whatever!

</content>

<published>2010-11-29T16:40:10Z</published>

<updated>2010-11-29T16:40:10Z</updated>

<id>/user/harry@hogwarts.com/posts:1291048810046</id>

<geoloc xmlns="http://jabber.org/protocol/geoloc">

<text>On the~quidditch pitch</text>

<locality>Hogwarts</locality>

<country>England</country>

26

</geoloc>

<thr:in-reply-to ref="1291048772456"/>

</entry>

Listing 4.2: buddycloud comment post

If we look at the ref attribute closely, we can see that Ron actually commented
on Harry’s previous topic post.

4.4 Operations

The first step of using channels is to create one, naturally. The prerequisite for
this is that a provider maintains XMPP server with a channel service component.
We also assume that a user has an existing XMPP account, but is not acquainted
with buddycloud FSN yet. In this section we will describe particular actions,
that can be performed on a channel.

4.4.1 Channel service discovery

For number of reasons we described in Section 3.2 buddycloud channel service
implementation resides in an XMPP component alongside XMPP server. To
avoid naming collisions for component subdomain, e.g. channels.example.com,
the decision is left to specific server configuration.

For the component to be discoverable it has to advertise itself. Service Dis-
covery mechanism defined int XEP-0030 [38] is then used to find channel service.

The algorithm is following. In the first place user’s client initiate standard
XMPP connection with its home server. Using Service Discovery protocol client
queries server for its capabilities.

<iq from="harry@wizards.wiz"

to="wizards.wiz"

type="get" id="req1">

<query xmlns="http://jabber.org/protocol/disco#items"/>

</iq>

Server answers with the following exemplary output.

<iq type="result" id="req1"

to="harry@wizads.wiz"

from="wizards.wiz">

<query xmlns="http://jabber.org/protocol/disco#items">

<item jid="mediaserver.wizards.wiz"/>

<item jid="channels.wizards.wiz"/>

<item jid="search.wizards.wiz"/>

</query>

</iq>

Consequently client has to query each item for its information. Note the dif-
ferent to parameter and info XML namespace.

<iq from="harry@hogwarts.wiz"

to="channels.hogwarts.wiz"

27

type="get" id="query1">

<query xmlns="http://jabber.org/protocol/disco#info"/>

</iq>

Channel service is then recognized by <identity/> element with following
attributes.

<iq type="result" id="query1"

to="harry@wizards.wiz"

from="channels.wizards.wiz">

<query xmlns="http://jabber.org/protocol/disco#info">

...

<identity type="channels" category="pubsub"/>

...

</query>

</iq>

4.4.2 Creating and controlling channel

To create a channel, one has to register within the channel service. In practice
registration can be performed by service custom interface, i.e. Web registration
form, or directly between XMPP client and channel component. This is done by
In-Band Registration extension defined in XEP-0077. For this to work component
must advertise this feature by Service Discovery.

...

<feature var="jabber:iq:register"/>

...

By simply sending following stanza, channel service performs all actions re-
quired for channel creation.

<iq from="user@example.com/ChannelCompatibleClient"

to="channels.example.com" type=’set’>

<query xmlns=’jabber:iq:register’/>

</iq>

This process should be done transparently by the client’s software, so the user is
not burdened with any registration forms.

Nodes

From the perspective of Pubsub, channel constitutes a set of Pubsub nodes, which
serve as an elementary storage for content. The naming convention for channel
nodes is /user/user@example.com/name. Upon channel registration following
Pubsub nodes are created.

• /users/user@example.com/posts

• /users/user@example.com/status

• /users/user@example.com/geo/current

28

• /users/user@example.com/geo/previous

• /users/user@example.com/geo/next

• /users/user@example.com/subscriptions

From now on we will be discussing in terms of a specific node rather than channel
in general. Although we will not discuss geo nodes, i.e. geo/current, geo/next,
geo/previous, because there is unfinished logic around them.

Posts node

Posts node is basically used to store user’s general content. We can look upon it
as a kind of a channel representative node. Table 4.2 show properties that can be
configured for posts node. Important security attribute is pubsub#access model.

Property
name

Field Options Defaults

Title pubsub#title
any XML
string

[jid]
Channel Posts

Description pubsub#description
any XML
string

A buddycloud
channel

Access model pubsub#access model
- open
- whitelist

open

Publish
model

pubsub#publish model
- subscribers
- publishers

subscribers

Default affili-
tation

buddycloud#default

affiliation

- publisher
- subscriber

publisher
(follower+post)

Type
buddycloud#channel

type

- personal
- topic

-

Creation date pubsub#creation date
ISO 8601
time format

-

Table 4.2: Channel properties

By setting node access model to whitelist no items can be retrieved until sub-
scription request is approved by channel owner. On the other hand, open access
model subscribe JID on request automatically and also makes it possible to re-
trieve posts items regardless of JID subscription.

While access model restricts node reading capabilities, publish model is used
to limit user ability to write into the node. Channel protocol makes use of the two
entered options, i.e. subscribers and publishers. Apparently, subscribers setting
allows all of the subscribed entities to publish content to the node, whereas pub-
lishers restricts this ability just to the respective role. Typically channel follower
should be permitted to interact with channel content, therefore subscribers pub-
lish model is required for posts node.

As we can see protocol logic adds to standard Pubsub XEP properties, i.e.
channel type and default affiliation. For setting and resetting properties standard
Pubsub <configure/> construct is used.

29

Status node

Status node provides a place for publishing user’s mood status messages. On
the contrary to posts node, other connection can subscribe to the node, however
only publisher role has the right to write status messages. This is restricted by
the publishers publish model setting.

Subscriptions node

Important aspect of social networks is the possibility to traverse the list of user’s
connections or channel followers in case of buddycloud. There is no way to do
this by Pubsub protocol unless user is also the owner of a node. For this reason
a subscriptions node has been proposed.

It is a channel component’s responsibility to fill the node according to user’s
subscribing activity. Each subscription item includes ID of a node and chan-
nel component JID, e.g. Harry’s subscriptions would contain items like one in
the following listing.

...

<item jid="channels.hogwarts.wiz"

node="/user/harry@hogwarts.wiz/posts"

name="ron@hogwarts.wiz"/>

...

On the contrary to other channel nodes, subscription item payload conforms to
XEP-0030: Service Discovery item, therefore the protocol is also used for item
listings.

Above all, subscriptions node can also be used by client in order to avoid
unnecessary steps to discover remote channel component.

4.4.3 (Un)subscribing

To follow someone’s channel means to be subscribed to it. However we are ac-
tually subscribing to channel’s Pubsub nodes. Again Pubsub mechanism for
subscribing is used.

<iq type="set"

from="harry@wizards.wiz"

to="channels.wizards.wiz"

id="sub1">

<pubsub xmlns="http://jabber.org/protocol/pubsub">

<subscribe node="/user/dumbledore@wizards.wiz/posts"

jid="harry@wizards.wiz"/>

</pubsub>

</iq>

Based on what sort of access model node is set, user receives notice with sub-
scription state. In case of whitelist access model subscription keeps the state of
pending until the channel owner approves it.

Unfollowing the channel is done very much like subscribing with the exception
that client sends <unsubscribe/> element instead. On the contrary to subscrip-
tion request there is no reason to approve user’s will to be unsubscribed, thus

30

the action performs outright.

4.5 Current project overview

As of now Channel protocol is in development stage, and is still evolving, thus
changes can be made to it until it becomes a XEP standard. All of the project
work is tracked at rich wiki Web site, buddycloud.org [41], together with draft
Channel protocol specification [40]. Center of protocol and development dis-
cussion is located at buddycloud-dev mailing list provided by Google Groups
service.

There are also other buddycloud sub-projects and implementations on the way,
dealing with various FSN aspects or social networking in general.

Channel component codebases

Reference implementation for channel component or as usually called buddycloud
server is built in Node.js2. Work has been commenced also on other channel
server implementations in Java and Python programming language.

Bridging with Web

Project is now mainly focusing on integration with Web services in order to
address the majority of online users and developers. For this reason buddycloud
Web client and HTTP API server are being developed. To that end it is important
to point out the contrast between TCP connections of HTTP and XMPP we
discussed earlier in this project. An XMPP extension, Bidirectional-streams Over
Synchronous HTTP protocol defined in XEP-0124, is used for emulating XMPP
connection over HTTP.

Channel directory & search component

As in any content system, significance of search capabilities in FSN is obvious.
It is always convenient to welcome new user with display full of nearby, similar,
or otherwise interesting channels. In contrast with centralized platform providing
search capabilities in federated enviroment can be quite a challenging task.

For this purpose buddycloud directory & search component was created. It is
able to crawl nearby content and search within channel metadata and channel
content. Consequently, it enables users to search for similar channels and make
recommendations based on what channels user follows.

Media sharing

Since XMPP is an XML text streaming protocol, it falls short of binary data
sharing like multimedia. To deal with such an important aspect of FSN, buddy-
cloud came up with media server. It is supposed to provide seamless sharing of

2Node.js is a platform, which uses an event-driven, non-blocking I/O model that makes
it lightweight and efficient, perfect for data-intensive real-time applications that run across
distributed devices. (http://nodejs.org/)

31

media with other channel followers and also the ability to archive them.

In conclusion, buddycloud project is growing tremendously in many directions
in pursue to build FSN. It is open and seeking for developers in every area,
whether it is protocol stuff, codebase development or UI designs. Among list of
alternatives it appears as a highly promising solution for FSN platform for its
openness and overall architecture.

32

5. SocialDesktopClient

Purpose of a software engineering part of this project is to bring contribution
to the buddycloud and FSN in general. buddycloud community has already
started development on console client, web client, and mobile clients for iPhone
and Android. To fill the gap we decided to implement desktop client.

Apart from this, objectives of our software exceed buddycloud project. The ap-
plication might be designated for other social network services too. In this way we
want to address more people and by creating support for buddycloud in the first
place we could manifest the principles of FSN in general. For this reason appli-
cation earns rather general name – SocialDesktopClient.

Before we begin it is desired to define a set of requirements or axioms that our
software development is going to conform. It is immensely important to define
such axioms, as it determines the purpose and the foundation of the software.
Having them in mind will also create barriers that should not be overcome during
the development. In the following text we are going to describe these axioms,
explain why are they significant for FSN and shortly discuss how are they related
to the current state of the project.

Requirements are like water.
They’re easier to build on when
they’re frozen

Anonymous

Openness

Vital aspect of this project is to bring code to the community, so it can be eval-
uated and extended. This of course implies a free distribution of the software.

SocialDesktopClient is issued under the terms of General Public License, ver-
sion 3. The project is available online as a Git repository situated in public
repository space at the following URL:

https://github.com/maros-/SocialDesktopClient

Modularity

To conform to variety of social networking services out there, client application
should be easy to extend and add new functionality. Therefore it should pro-
vide simple interface for potential developers, so they can leave common client
implementation details behind and focus on particular social service from the be-
ginning.

Current version of SocialDesktopClient offers an interface for an implementa-
tion of other social network services in the form of shared 1 libraries, in context

1shared library – *.so file on Linux platforms, dynamic library - *.dll file on Windows plat-
forms

33

of our design commonly called plugins. In addition to this the Core of the appli-
cation is designed independently on UI framework. Main motivation was to take
the overhead away from core client components.

Cross-platform

In order to address as many users as possible it is desired for the application
to support multiple operating systems.

SocialDesktopClient place emphasis on the use of cross-platform code and li-
braries. However in the current stage of development it is only tested on Linux
platform.

Desktop environment

In terms of desktop environment we mean a non-browser always-on application
running withing desktop operating system. Although the motivation for the desk-
top client comes from the buddycloud project, there are other reasons for this
too.

Intention with the SocialDesktopClient is to exploit desktop resources as much
as possible and not being limited by browser capabilities. It is also vital for
the FSN to have an always-on desktop client.

Among many existing desktop clients, none conforms to all of our require-
ments. They are either platform-specific or proprietary, thus closed-source, e.g.
popular ones Tweetdeck, Seesmic. On the other hand there are also several decent
open-source XMPP clients, however, they are designed as an instant messengers,
not a social network service clients. As a result we decided to build one from
scratch.

5.1 Implementation and preliminaries

Programming language decision Since the purpose of this application is
to work in a desktop environment we want the application to run natively on
a platform. Our intention is to let programmer have the full control over desktop
resources and avoid being dependent on third party runtime. For the SocialDesk-
topClient implementation we choose to employ C++ programming language.

GUI framework Decision for C++ programming language also relates with
the choice of GUI2 tools for the program. There is not many options in the field
of cross-platform GUI frameworks. As a result for many advantages over different
existing GUI tools, we choose to use fairly known Qt framework. It has a quality
documentation, lots of exemplary source code and the community of developers
behind it. It not only aims on GUI implementation but it also provides tools
for the work with Multimedia, Databases, Networking, Web applications, etc.
To that end it may be beneficial for the SocialDesktopClient future development.

2Graphical User Interface

34

Boost Libreries While keeping the application core independent on used GUI
framework certain implementation questions like multi-threading, filesystem ac-
cess, data serialization had to be addressed. It would have been a needless effort
to redevelop these common paradigms as long as they are available in many
frameworks and libraries. In order to minimize the distance from C++ standard
library the decision was made to use Boost.

Boost libraries are constantly developed, close to the standards, as well as
many parts of present C++ standard actually transfered from Boost. They pro-
vide variety of low-level functionality, good documentations and above all are
cross-platform, which is a must for our software.

XMPP library For the XMPP protocol side of implementation we choose
an appropriate library for C++. Preconditions were a satisfactory documenta-
tion, support for wide range XMPP features, continuous development and sup-
port. Among several options, some libraries were dead in development, some
supported only a little XMPP features and many poorly documented. The deci-
sion was finally made to use Swiften XMPP library [44].

It has wide range of features, especially a full XMPP core protocol [36] imple-
mentation. Except library itself, there is a Swift IM client in development built
on top of Swiften. This would not only gives us an exemplary use of library inter-
face but also motivates Swiften developers to keep library supported. Moreover,
library source code is rather self-explanatory.

Conventions From the beginning we choose to follow conventions according
to Google C++ Style Guide [43]. However in the process of development it ap-
peared bothersome to follow some of the conventions strictly. In the end, we had
to also conform them to the conventions of Qt framework and Swiften XMPP
library, which are extensively used in this project.

In terms of code commenting we employed Doxygen as a widely-used tool
for auto-generated documentation. Therefore all source code comments are con-
formed to Doxygen redundant vocabulary and commenting guidelines.

IDE During the work on SocialDesktopClient it has been shown that it is impor-
tant to choose appropriate development environment. In the beginning a choice
has been made to leverage Eclipse IDE with CDT extension and Qt Integration
plugin. There is a great community behind Eclipse, IDE is universal and a lot
of features can be added by easily attaching plugins from Eclipse Marketplace.
C++ language integration has been provided by CDT extension to Eclipse. For
the Qt project manager and GUI elements designer comes also with the easy
Eclipse plugin integration. But the cost of universality has taken its toll. After
a project increases on its size Eclipse IDE slows down accordingly.

We had to look for alternatives, where there was only one left with Qt inte-
gration running on Linux platforms. Qt creator shows as the most suitable IDE.
In contrast with Eclipse, which is a Java-based IDE, Qt Creator runs natively
in operating system. The increase of IDE speed was apparent. Qt Creator proves
to be the most appropriate IDE for SocialDesktopClient development, despite
the early prejudice.

35

Core UI

Plugin

uses

loads uses and im-

plements

interface

SocialDesktopClient

Figure 5.1: SocialDesktopClient top design perspective

5.2 Architecture

From the top architectural point of view we differentiated three general parts of
application.

1. Core

2. UI

3. Plugin

Figure 5.1 shows how they relate with each other

5.2.1 Threading model

Design of SocialDesktopClient should allow to run multiple social service simul-
taneously. This requires to plan a threading model for service network connec-
tions. For this, two network handling models can be considered, i.e. synchronous
or asynchronous.

While using synchronous connections for each service there is no need to cre-
ate additional application threads. All connections would be queued and upon
the start of each connection, thread would be blocked until a response came from
network. But what if the connection protocol required to be kept for a longer
period or even for the whole application run. One example of such protocol is
XMPP, which runs upon long-lived TCP connection. In such a case the syn-
chronous network model comes short.

In order to give the service plugin implementer choice for asynchronous net-
work connections each service instance has to reside in its own separate thread.
In addition also the Core needs its own thread in order to provide thread safe ac-
cess to common core shared data. Taking into consideration also the GUI threads,
overall threading model presented in Figure 5.2 is used for SocialDesktopClient.

36

GUI
threads

Core
thread

Service
thread 1

Service
thread 2

Service
thread 3

queued queued

Figure 5.2: Threading model

5.2.2 Core

We can look upon Core as a heart of SocialDesktopClient. It is responsible for
initiating and terminating main application components. From the source code
perspective, it can be said that Core is everything except for UI and plugins.

According to the specific competences the Core is divided into several com-
ponents. We call them managers. Implementation for each manager resides
in separate class inherited from AbstractManager.

Each component provides specific functionality as we describe them in next
sections together with other significant Core aspects.

DataManager

The role of data manager is to provide a storage for the application. Currently it
offers an interface for the work with program configuration and service account
data.

The configuration is stored in an XML document, sdc.xml, located in root
directory together with the application executable. The serialization process for
XML is done by Boost Serialization library. For the filesystem, Boost Filesystem
library was used.

PluginManager

An entry point for application plugins is coordinated by PluginManager. From
the operating system perspective, plugin is nothing but a shared library (or dy-
namic library on Windows platform) file. In order for the plugin to be loaded it
has to be situated in ./plugins directory relative to the executable.

There is no pretty way in standard C++ to attach shared library and work
with classes implementations right away in the program runtime. While trying
to preserve independence from other frameworks low-level C functions need to be
used. At program startup PluginManager tries to load available shared libraries

37

and through dlsym() function interface looks up for registerLibrary symbol,
which represents respective C function in actual plugin library. Function signa-
ture has to match beforehand in order to return a Registration object holding
required plugin information3.

PluginManager currently provides interface for the Service class plugin im-
plementation, which holds actual social network service implementation. However
it is very simple to add new pluginable type for future program needs 4.

EventManger

EventManager job is to provide a thread-safe access for shared core data within
whole application. It is the EventManager’s event loop that make the Core thread
alive.

In order to access shared data an event callback is pushed back to the event
loop queue. Events in the loop are processed sequentially, therefore the access
from multiple threads is synchronized and shared data are secured against race
conditions.

Accounts

Another Core responsibility is to manage specific service accounts. All com-
mon necessary data are encapsulated in Account type5. Most important account
information include UID, a unique user ID, password, service signature to deter-
mine particular social service and enabled flag determining the activated state of
an account.

On application exit DataManager stores accounts in sdc.xml file.

Core singleton

Essential part of SocialDesktopClient we did not mention yet is the Core class.
It mixes business logic of all mentioned SocialDesktopClient components together.

During the application runtime it actually behaves as a singleton6. Core
instance can be access by a call to sdc::Core::Instance().

Within the application main function core instance and GUI specific imple-
mentation is initialized7. This is the point where actual specific GUI implemen-
tation and Core object binds together.

In order to start the application simply call to sdc::Core::Instance()

->Start() is made.

Signals

Important aspect of the Core is its signaling interface. The idea behind signals is
to provide a notification mechanism for external components. Signals can be also

3Implementation can be found in plugins/buddycloud/main.cc file
4see PluginProvider template class in sdc/core/plugin manager.h file
5see sdc/core/account.h file
6Singleton is a software architectural design pattern restricting the instantiation of a certain

class to the only single object
7see main.cpp

38

referred to as publishers or event in similar systems. By using signals object can
emit specific signal on a particular event without the need to know the receiver
of it. In order for this to work a slot callback has to be connected onto the signal.
When object emits particular signal all connected slots execute.

This makes objects fully independent from external components, while still
providing the means of communication. It is entirely up to external component
whether to use the signal or not.

For the SocialDestkopClient, Boost Signals library is used extensively through-
out whole application. In such a way business logic in the Core can be completely
separated from UI specific implementation and still be able to provide event no-
tification mechanism.

Moreover, this kind of separation makes it possible for the Core to be packed
and used as a library in the future.

Services

Integral part of SocialDesktopClient is a social service implementation. Due
to modular character of the Core it is possible to implement it in a plugin library.

At the top, there is the Service class encapsulating social service metadata
and important factory methods for creating ServiceModel and ServicePresenter

instances. The abstraction of latter two is taken from Model-View-Presenter de-
sign pattern.

Job of ServiceModel is to encapsulate entire social network service business
logic such as connecting and disconnecting, synchronization, all sorts of service
features, etc. As a model it acts solely upon itself. In other words it is not de-
pendent on ServicePresenter or any of the Views. It uses signaling interface for
firing notifications outside.

On the contrary, ServicePresenter is responsible to hide all the service presen-
tation logic. It has direct access to the main UI elements such as main window
and central account button. In order to get notified for ServiceModel events it
connects to its signals.

Connecting signals between ServiceModel and ServicePresenter can be kind
of a tricky thing. As for the application Core, ServiceModel is designed to be
independent from any UI logic whatsoever. It means there are no UI classes
or any UI framework parts involved at all.

The other thing is multi-threading. As we presented in Figure 5.2, service
instances and GUI framework operates in different application threads. Single
service thread in the latter Figure is an actual running instance of particular
ServiceModel, while ServicePresenter instance works within a GUI thread. Re-
garding Qt GUI threads, there is a restriction, that class members can be accessed
only on objects of same parenting thread. In order to access members on object
from different thread, Qt signal/slot queued connection must be used, whereas it
ensures a thread-safe access.

39

Figure 5.3: SocialDesktopClient preview

This leaves us with Boost Signals interface on the side of ServiceModel and Qt
signal/slot mechanism on the side of ServicePresenter. There is no standard way
to make a queued connection between them as Qt thread requires. For such
a reason bind() function was introduced8.

5.2.3 Qt GUI

In order to separate UI implementation from the Core an abstraction of UI class
is introduced. SocialDesktopClient currently provides GUI implementation using
Qt framework. It resides in QtGui class inherited from UI abstract type9. QtGui
responsibility is to handle and process Core signals.

Now we look closer on the actual user interface. Taking it from the top there
is a main window managed by a MainWindow class10. Figure 5.3 shows a preview
of SocialDesktopClient main window.

There are two main elements in the view, i.e. top control panel and content
panels. Job of control panel is evident. It provides main application control along
with activated accounts buttons for the control of particular account.

More interesting is the concept of content panels11. There are two common
always available panels in the view, i.e. contacts panel and activities panel12.

8see sdc/qtgui/bind.h file
9see sdc/qtgui/qtgui.h file

10see sdc/qtgui/main window.h file
11see ContentPanel class
12see ContactsPanel and ActivitiesPanel classes

40

Contacts panel is a common place for social network contacts from all accounts,
while activities provide a room for displaying activities throughout all running
social network services.

In the preview (Figure 5.3) we can see another panel on the right, which
is actual service implementation of content panel. This way GUI enables plu-
gin service developers to implement specific content display using the standard
SocialDesktopClient content panel.

5.3 buddycloud plugin

Channel protocol plugin uses previously described service interface implemented
in respective classes, i.e. BcService, BcModel, BcPresenter.

For the work with XMPP protocol, Swiften XMPP Library has been em-
ployed extensively. In order to work with new types of XMPP payloads, Swiften
provides interface for Parsers and Serializers. Implementation for Channel proto-
col parsers and serializers resides in files plugins/buddycloud/pubsub parser.h

and plugins/buddycloud/pubsub serializer.h.

An issue or rather inconveniece worth noting, which is related with Swiften
library it the incapability to register XMPP account upon XML stream initiation
as In-Band registration proposes.

Since XMPP communication is asynchronous by design, lot of handler func-
tion is required further on to process each type of XMPP stanza. Therefore it was
decided to use new C++ standard lambda functions in order to make cleaner code.

5.4 Overview and future works

Detailed look at source code and particular implementation details can be found
in auto-generated Doxygen documentation, which is included with attached CD
(see Attachment C). In order to compile the application from the source, there
is a procedure described in Attachment A. Also user manual for SocialDesktop-
Client can be found in Attachment B.

At the current stage of development SocialDesktopClient is not a complete
product due to constantly developing specification of Channel protocol. It is also
dependent on other social services’ implementations.

As long as it is an open-source project, it is publicly available to the commu-
nity of developers and users. Therefore it is open for developers to implement
new plugins and also to contribute to the SocialDesktopClient codebase.

Whereas buddycloud project and channel protocol is constantly developing,
future works for SocialDesktopClient will be focused on buddycloud plugin, while
still introducing new Core features on the way.

41

Conclusion

The idea of Federated Social Network running the way e-mail network runs to-
day is quite distant. It requires great contribution of the community to develop
and test various implementations, while making a standard protocol or protocols’
specifications for others to get involved in.

On the other hand it is also the willingness of the very users to quit those closed
social silos and support the federation. This might be the toughest challenge FSN
might face, however it is necessary for the healthy ecosystem of distinct providers.

We described existing technologies and software focusing on social network
decentralization and federating social content. It turns out the majority of them
are built and developed on the Web under the W3C’s Federated Social Web
group. Considering the fragmentation of the Web mentioned technologies, which
could hardly satisfy all FSN requirements as a whole. Each can address only
certain FSN aspect at a time, e.g. OpenID for authentication, Pubsubhubbub
for pushing Web content. This can result in compatibility and security issues.

Moreover Web’s HTTP protocol is by design not suitable for content syndica-
tion and entities interaction in the federated manner. As we pointed out there are
serious shortcomings like stateless connections, non-bidirectional communication,
polling character, URL addressing limitation, etc.

On the other hand it turns out there is no need to create completely new
application layer protocol for FSN like some of the mentioned projects were try-
ing to do. There is an XMPP protocol, which fits many requirements of FSN.
For various characteristics and features implanted right into the core protocol,
aspects like federated topology, identity preservation, entity addressability, ex-
tensible data format, etc. were solved right away.

In relation to XMPP, presented buddycloud project and its proposed Chan-
nel protocol, show as a prospective approach for building FSN on top of XMPP.
To the extent of Channel protocol, project involves various extensions like direc-
tory & search component, media server, HTTP API server and others. As a result
of this, the overall architecture of buddycloud appears to be the most promising
one among many other approaches in this field.

By applying Publish-subscribe XMPP extension and reusing existing stan-
dards like Atom and Activity Streams, Channel protocol proposes a simple way
of sharing content between affiliated users.

As a contribution to the buddycloud project this thesis dealt with architec-
ture and development of SocialDesktopClient, a desktop client for multiple social
network services. As a result of no open-source, cross-platform, social-network-
oriented desktop clients decision was made to build one from scratch. It turns
out as a challenging task to design modular architecture and implement it in
a relatively low-level programming language like C++. Dealing with problems
like simultaneous debugging of executable and plugin library or interconnecting
Boost and Qt signal/slot mechanism in a thread-safe manner prolonged overall

42

development time significantly.
In regard to buddycloud project, service plugin for Channel protocol has been

implemented and is still in development due to changing character of protocol
specification and actual server reference implementation. Protocol implemen-
tation also required a certain involvement in the events of active buddycloud
community - developers mailing list, chat-rooms, video-conferences.

Despite the inconsistencies in “living” Channel protocol specification, the code-
base of SocialDesktopClient is ready to be extended and reused for other so-
cial network service plugins. Since the project is open-source, contribution by
the community is desired and welcome. It has already attracted attention from
buddycloud open-source community. This is a good sign for SocialDesktopClient
as it may become a desktop platform for social networking in general.

43

Bibliography

[1] Barnes, J. A. Class and committees in a Norwegian island parish Hum.
Relat. 7:39-58, 1954 London School of Economics. University of London.
England

[2] Boyd, Danah M. – Ellison, Nicole B. Social Network Sites: Definition,
History, and Scholarship Journal of Computer-Mediated Communication,
issue 13 (2008), pages 210-230

[3] O’Brien, Dany Michael Anti’s exile from Facebook over ’real-
name policy’ [online] 9.3.2011 [cit. 12.11.2012] Available at:
http://www.cpj.org/internet/2011/03/michael-antis-exile-from-facebook-
over-real-name-p.php

[4] Gerstein, Josh Activists upset with Facebook [on-
line] 18.9.2010 [cit. 12.11.2012] Available at:
http://www.politico.com/news/stories/0910/42364.html

[5] Opsahl, Kurt Facebook’s Eroding Privacy Policy: A
Timeline [online] 28.4.2010 [cit. 8.11.2012] Available at:
https://www.eff.org/deeplinks/2010/04/facebook-timeline

[6] Esguerra, Richard Facebook’s Broken Promises: Facebook Apps Leaking
Private Data to Advertisers and Trackers [online] 18.10.2010 [cit. 8.11.2012]
Available at: https://www.eff.org/deeplinks/2010/10/facebooks-broken-
promises-facebook-apps-leaking

[7] The Open Graph protocol [online] [cit. 18.11.2012] Available at:
http://ogp.me

[8] Fitzpatrick, Brad – Hardt, Dick – Recordon, David and company
Final: OpenID Authentication 2.0 - Final [online] 5.12.2007 [cit. 29.11.2012]
Available at: http://openid.net/specs/openid-authentication-2 0.html

[9] Hardt, D. draft-ietf-oauth-v2-31 - The OAuth 2.0 Authoriza-
tion Framework [online] 31.7.2012 [cit. 29.11.2012] Available at:
http://tools.ietf.org/html/draft-ietf-oauth-v2-31

[10] Hammer, Erran OAuth 2.0 and the Road to Hell [online] 26.7.2012
[cit. 29.11.2012] Available at: http://hueniverse.com/2012/07/oauth-2-0-
and-the-road-to-hell

[11] Sporny, Manu – Inkster, Toby – Story, Henry We-
bID 1.0 [online] December 2011 [cit. 29.11.2012] Available at:
http://www.w3.org/2005/Incubator/webid/spec/

[12] Jones, Paul E. – Salgueiro, Gonzalo draft-jones-appsawg-webfinger-
00 - WebFinger [online] 23.10.2011 [cit. 30.11.2012] Available at:
http://tools.ietf.org/html/draft-jones-appsawg-webfinger-00

44

[13] Beckett, Dave – McBride, Brian RDF/XML Syntax Specifi-
cation (Revised) [online] 10.2.2004 [cit. 14.11.2012] Available at:
http://www.w3.org/TR/rdf-syntax-grammar

[14] Brickley, Dan – Miller, Libby FOAF Vocabulary Specification [online]
9.8.2010 [cit. 29.11.2012] Available at: http://xmlns.com/foaf/spec/

[15] RFC 4287 - The Atom Syndication Format [online] [cit. 21.11.2012] Available
at: http://tools.ietf.org/html/rfc4287

[16] Atkins, M., et al. Activity Streams Working Group: Atom Ac-
tivity Streams 1.0 [online] 13.2.2011 [cit. 22.11.2012] Available at:
http://activitystrea.ms/specs/atom/1.0/

[17] Snell, J., et al. Activity Streams Working Group: Activity Base
Schema (Draf) [online] 30.8.2012 [cit. 22.11.2012] Available at:
http://activitystrea.ms/specs/json/schema/activity-schema.html

[18] OExchange Technical Specification [online] 14.5.2010 [cit. 14.11.2012] Avail-
able at: http://www.oexchange.org/spec

[19] Fitzpatrick, B. – Slatkin, B. – Atkins, M. Draft: PubSubHubbub
Core 0.3 – Working Draft [online] 8.2.2010 [cit. 14.11.2012] Available
at: http://pubsubhubbub.googlecode.com/svn/trunk/pubsubhubbub-core-
0.3.html

[20] Slatkin, Brett Comparison of PubSubHubbub to light-pinging
protocols [online] 24.2.2010 [cit. 6.12.2012] Available at:
http://code.google.com/p/pubsubhubbub/wiki/ComparingProtocols

[21] Panzer, J. Draft: The Salmon Protocol [online] 7.1.2011 [cit. 14.11.2012]
Available at: http://salmon-protocol.googlecode.com/svn/trunk/draft-
panzer-salmon-00.html

[22] Prodromou, Evan Understanding OStatus — StatusNet [online] 7.3.2010
[cit. 29.11.2012] Available at: http://status.net/2010/03/07/understanding-
ostatus

[23] Protocol Introduction · Tent - the decentralized social web [online]
[cit. 29.11.2012] Available at: https://tent.io/docs

[24] Crockford, D. RFC 4627 - JavaScript Object Notation (JSON) [online]
July 2006 [cit. 29.11.2012] Available at: http://www.ietf.org/rfc/rfc4627.txt

[25] Dr. Thurston, Adrian D. DSNP: Distributed Social Networking Proto-
col, Protocol Specification [online] 19.5.2011 [cit. 6.11.2012]. Available at:
http://www.complang.org/dsnp/spec/dsnp-spec.pdf

[26] Dr. Thurston, Adrian D. DSNP: A Protocol for Personal Identity
and Communication on the Web [online] Vancouver, British Columbia,
Canada Available at: http://www.complang.org/dsnp/dsnp-overview.pdf

45

[27] The Diaspora Project [online] [cit. 29.11.2012] Available at:
http://diasporaproject.org/

[28] Bilton, Nick Diaspora, the Open Facebook Alternative, Releases Its
Code - NYTimes.com [online] 16.9.2010 [cit. 6.12.2012] Available
at: http://bits.blogs.nytimes.com/2010/09/16/diaspora-open-facebook-
alternative-releases-code

[29] Maka, Stephan Design and Implementation of a Federated Social Network
1.6.2010 Hochschule für Technik und Wirtschaft Dresden. Supervised by
Prof. Dr. rer. nat. Ralph Großmann.

[30] Kune: a web tool to encourage collaboration, content sharing and free culture
[online] [cit. 17.11.2012] Available at: http://kune.ourproject.org/

[31] Salut à Toi: the multi-frontends, multi-purposes communication tool [online]
[cit. 17.11.2012] Available at: http://sat.goffi.org/overview.html

[32] Stone, Biz Twitter and XMPP: Drinking from The Fire Hose [online] Twit-
ter Blog 7.7.2008 Available at: http://blog.twitter.com/2008/07/twitter-
and-xmpp-drinking-from-fire.html

[33] Fitzsimmons, Seth Fire Eagle Location Streams [online] Blog on
Fire 19.2.2009 Available at: http://feblog.yahoo.net/2009/02/19/fire-eagle-
location-streams/

[34] Open Real Time Messaging System - Slash-
dot [online] 4.1.1999 [cit. 23.12.2012] Available at:
http://slashdot.org/story/99/01/04/1621211/open-real-time-messaging-
system

[35] Saint-Andre, Peter – Smith, Kevin – Tronçon, Remko. XMPP: The
Definitive Guide O’Reilly Media, Inc., 2009. ISBN 978-0-596-52126-4

[36] Saint-Andre, Peter RFC 6120 - Extensible Messaging and Pres-
ence Protocol (XMPP): Core [online] March 2011 Available at:
http://tools.ietf.org/html/rfc6120

[37] Millard, Peter – Saint-Andre, Peter – Meijer, Ralph.
XEP-0060: Publish-Subscribe [online] 12.7.2010 Available at:
http://xmpp.org/extensions/xep-0060.html

[38] Hildebrand, Joe – Millard, Peter – Eatmon, and company XEP-
0030: Service Discovery [online] 6.6.2008 [cit. 3.12.2012] Available at:
http://xmpp.org/extensions/xep-0030.html

[39] Tennant, Simon buddycloud - A Quick Update [online]
buddycloud blog 15.11.2011 [cit. 3.12.2012] Available at:
http://blog.buddycloud.com/post/19625443663/a-quick-update

[40] XMPP XEP - buddycloud wiki [online] [cit. 3.12.2012] Available at:
https://buddycloud.org/wiki/XMPP XEP

46

[41] buddycloud wiki [online] [cit. 3.12.2012] Available at:
https://buddycloud.org/wiki/Main Page

[42] Tennant, Simon buddycloud-diagrams/Omnigraffle/what is a chan-
nel.png at master · buddycloud/buddycloud-diagrams · GitHub [online]
[cit. 6.12.2012] Available at: https://github.com/buddycloud/buddycloud-
diagrams/blob/master/Omnigraffle/what%20is%20a%20channel.png

[43] Google C++ Style Guide [online] [cit. 23.11.2012] Available at:
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml

[44] Swiften [online] [cit. 23.11.2012] Available at: http://swift.im/swiften/

[45] The Conversation Prism: Květina 2.0 [online] 5.11.2010 [cit. 6.12.2012]
Available at: http://captaview.wordpress.com/2010/11/05/the-
conversation-prism-kvetina-2-0/

47

List of Figures

1.1 Variety of SNSs . 3

2.1 Decentralized architecture of e-mail network 5
2.2 Network topologies comparison 6
2.3 Identity server network model . 8
2.4 WebID authentication process . 9
2.5 Pubsubhubbub architecture . 12
2.6 Diaspora* preview . 14

3.1 XMPP server and components . 21

4.1 Expression of buddycloud channel 23

5.1 SocialDesktopClient top design perspective 36
5.2 Threading model . 37
5.3 SocialDesktopClient preview . 40
5.4 Pure main window . 52
5.5 Adding SocialDesktopClient account 53
5.6 Posting topic . 53
5.7 Posting comment . 54
5.8 Subscribe to user . 54
5.9 CD contents . 55

48

List of Tables

4.1 Channel roles . 24
4.2 Channel properties . 29

49

List of Abbreviations

FSN Federated Social Network

IETF Internet Engineering Task Force

JID Jabber ID

SNS Social Network Site

Web World Wide Web

XEP XMPP Extension Protocol

XMPP eXtensible Messaging and Presence Protocol

XSF XMPP Standards Foundation

50

Attachments

Attachment A: Program compilation

This is a procedure for building SocialDesktopClient application and buddycloud
plugin extension. Note that this procedure can be functional only for the time
being of writing this thesis. Due to the application development it is most likely
that it changes. Actual information can be found on project hosting at

https://github.com/maros-/SocialDesktopClient

Requirements

• OS Linux (tested on Kubuntu 12.04.1 LTS 64 bit)

• Qt Libraries (tested with version 4.8.1)

• GCC 4.5 or later

• Boost 1.46.0 or later

Build steps

Install following developer packages.

apt-get install build-essential libboost-all-dev qt4-dev-tools

openssl git

Clone project repository from project hosting.

git clone git://github.com/maros-/SocialDesktopClient.git

Build SocialDesktopClient

cd SocialDesktopClient

./build.sh

Build buddycloud plugin

cd plugins/buddycloud

./build.sh

Run program

cd ../..

./social_desktop_client

51

Attachment B: User manual

SocialDesktopClient is a desktop client for multiple social networks services.
At this stage it is being developed to support buddycloud Channel protocol.
In order to use it, user must have an existing XMPP account on the server with
the support for Channel service.

User interface

Upon application start main window is displayed as shown in Figure 5.4. There are
seven elements described below.

Figure 5.4: Pure main window

1. Main control panel Contains main application buttons for settings, con-
tacts, activities and activated SocialDesktopClient accounts.

2. Content area Place for all application content. It uses the concept of con-
tent panels which are behaving equaly within the content area. Basically, all
content are displayed in content panels situated side by side within the con-
tent area. Each content panel can be closed by clicking the grey button in
the panel’s upper right corner.

3. Settings button Entry point for application settings.

4. Contacts button Shows/hides contacts panel.

5. Activities button Shows/hides activities panel.

6. Contacts panel Common place for social service’s contacts.

7. Activities panel Common place for social service’s activities.

52

Adding account

For adding new account we step into the settings (3. Settings button) and by
clicking Add button we invoke New Account dialog. Since there can be multiple
social services we choose the right one from the combobox and fill the form (see
Figure 5.5).

Figure 5.5: Adding SocialDesktopClient account

After creating new account, it is activated automatically. We can deactivate
by checking the box in the accounts table. By clicking account in the table,
we can also edit it or remove it completely. As a result of activating account,
the account button shows in the application control panel.

Channel account operations

Upon Channel account activation, an actual user’s channel shows in the content
area. We can post topic message by clicking white button on the left of channel’s
title (see Figure 5.6).

Figure 5.6: Posting topic

If we want to comment on topic post, by clicking it commenting field shows
up (see Figure 5.7).

53

Figure 5.7: Posting comment

In order to follow a new channel, we access New Contact dialog by clicking
contacts panel upper left orange button (see Figure 5.8). Then we choose actual
Channel account and enter channel’s user name. Unfollowing channel is easily

Figure 5.8: Subscribe to user

done by right-clicking on choosen user in contacts panel.

54

Attachment C: CD contents

Figure 5.9: CD contents

• Binaries Location for SocialDesktopClient and buddycloud plugin bina-
ries.

• Documentation Location for thesis, user manual and auto-generated doxy-
gen documentation.

– Doxygen Location for auto-generated doxygen documentation.

• SocialDesktopClient Source code location.

– plugins Location for plugin implementations.

– resources Location for application runtime resources.

– sdc Location for SocialDesktopClient source code.

∗ core Location for Core source code.

∗ qtgui Location for Qt GUI implementation.

55

	Social Network
	Problem definition

	Federated Social Network
	Network topology
	Social network aspects
	Existing technologies
	Evaluation

	XMPP – the golden mean
	Protocol basics
	Communication primitives

	Components

	buddycloud
	Channels
	Privacy settings

	Channel protocol
	XEP-0060: Publish-subscribe

	Content format
	Operations
	Channel service discovery
	Creating and controlling channel
	(Un)subscribing

	Current project overview

	SocialDesktopClient
	Implementation and preliminaries
	Architecture
	Threading model
	Core
	Qt GUI

	buddycloud plugin
	Overview and future works

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Attachments

