Charles University in Prague 1st Faculty of Medicine 4th Department of Medicine # **Biochemistry and Pathobiochemistry** Mgr. Lucie Vávrová Activity of antioxidant enzymes in different pathophysiological states Aktivita antioxidačních enzymů za různých patofyziologických stavů **Doctoral Thesis** Supervisor: RNDr. Eva Tvrzická, CSc. Prague, 2013 **Proclamation:** I hereby state that I have prepared my thesis independently and that I have cited all the used references and other sources. I also state, that this work was not used to obtain any other academic degree. I agree with archiving of my thesis in electronic form in the archive of the system Theses.cz, because of the possibility to search for instances of plagiarism. Prague, the 14th May 2013 Lucie Vávrová Prohlášení: Prohlašuji, že jsem závěrečnou práci zpracovala samostatně a že jsem řádně uvedla a citovala všechny použité prameny a literaturu. Současně prohlašuji, že práce nebyla využita k získání jiného nebo stejného titulu. Souhlasím s trvalým uložením elektronické verze mé práce v databázi systému meziuniverzitního projektu Theses.cz za účelem soustavné kontroly podobnosti kvalifikačních prací. V Praze, 14. 5. 2013 Lucie Vávrová #### Identification/Identifikační záznam: VÁVROVÁ, Lucie: Activity of antioxidant enzymes in different pathophysiological states. [Aktivita antioxidačních enzymů za různých patofyziologických stavů]. Praha, 2013. 152s, 7 příloh. Disertační práce. Univerzita Karlova v Praze, 1. Lékařská fakulta, IV. Interní klinika; Vedoucí závěrečné práce/Školitel: RNDr. Eva Tvrzická, CSc. #### **Acknowledgment** I would like to thank all who supported me. First of all I would like to thank Prof. MUDr. Aleš Žák, DrSc., who enabled to curry out all the clinical studies and helped me during writing doctoral thesis. Thanks belong to my supervisor RNDr. Eva Tvrzická, CSc. I would like to thank all my colleagues from Lipid Laboratory of Institute of Clinical Biochemistry and Laboratory Diagnostics, first of all Mgr. Jana Kodydková and then Mgr. Barbora Staňková and RNDr. Marek Vecka, Ph.D. and technician Jiřina Trávníčková, Iva Smítalová and Růžena Marshová. I also appreciated very much the help from my clinical colleagues from different units of 4th Department of Internal Medicine namely Doc. MUDr. Miroslav Zeman, CSc., MUDr. František Novák, Ph.D., MUDr. Jaroslav Macášek, and MUDr. Tomáš Krechler, CSc. I am very grateful to the research nurse Jitka Bartíková for the screening and precise data collection. I also thank very much to my parents for their support and patience during my long days and nights lived out with the work on my thesis. The studies presented in this thesis were supported by the Czech Ministry of Health research grants: IGA MZ NR/8943 – 4; IGA MZ NS 9769-4; IGA NR 8806-3 and by the research project MSM0021620820 of Ministry of Education, Youth and Sports, Czech Republic. # **TABLE OF CONTENTS** | TAB | LE O | F CONTENTS | 4 | | | | |------|---|--|----|--|--|--| | Abbr | eviati | ons | 8 | | | | | 1. | Intr | oduction | 10 | | | | | 1.1. | Cat | alase | 11 | | | | | 1. | 1.1. | Structure | 11 | | | | | 1. | 1.2. | Function | 13 | | | | | 1. | 1.3. | Determination | 16 | | | | | 1.2. | Sup | peroxide dismutase | 17 | | | | | 1.2 | 2.1. | Structure | 17 | | | | | 1.2 | 2.2. | Function | 18 | | | | | 1.2 | 2.3. | Determination | 19 | | | | | 1.3. | Para | aoxonase | 20 | | | | | 1.3 | 3.1. | Structure | 20 | | | | | 1.3 | 3.2. | Function | 23 | | | | | 1.3 | 3.3. | Determination | 25 | | | | | 2. | Ain | ns and scopes | 26 | | | | | 3. | Ma | terials and Methods | 27 | | | | | 3.1. | Stu | died pathophysiological states | 27 | | | | | 3.2. | Blo | od sample collection and preparation | 28 | | | | | 3.3. | Me | asurements of antioxidant enzymes activities | 28 | | | | | 3.4. | Me | asurements of markers of oxidative stress | 30 | | | | | 3.5. | 6. Measurements of antioxidant enzymes cofactors and lipid parameters | | | | | | | 3.6. | Statistical analysis | | | | | | | 4. | Results | | | | | | | 4.1. | Metabolic syndrome | | | | | | | 4.2. | Depressive disorder | | | | |------|--|----|--|--| | 4.3. | Sepsis and septic shock | 33 | | | | 4.4. | Acute pancreatitis | | | | | 4.5. | Pancreatic cancer and chronic pancreatitis | 40 | | | | 5. | Discussion | 41 | | | | 5.1. | Catalase | 41 | | | | 5.2. | Superoxide dismutase | 43 | | | | 5.3. | Paraoxonase | 44 | | | | 6. | Conclusions | 48 | | | | 7. | References | 49 | | | | 8. | Publications | 66 | | | | A. | With IF | 66 | | | | B. | Without IF | 67 | | | | C. | Under review | 67 | | | | 9. | Abstracts on the topics of the doctoral thesis | 68 | | | | 10. | Supplements | 71 | | | #### **Abstract** Background: Oxidative stress is supposed to be implicated in the pathogenesis of several diseases which are connected with increased formation of reactive oxygen and nitrogen species (RONS). Oxidative stress could play an important role in the pathogenesis of inflammation and sepsis, acute and chronic pancreatitis or in the development of cancer. Organisms are protected against RONS from antioxidant system that is composed of antioxidant enzymes and non-enzymatic antioxidants. To the most important antioxidant enzymes belong superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase, glutathione reductase and paraoxonase (PON). The aim of this Doctoral Thesis was to investigate the behaviour of three of these antioxidant enzymes – CuZnSOD, CAT and PON1 in different pathophysiological states. *Materials and methods:* The activities of CuZnSOD, CAT and PON1 were measured in six different pathophysiological states. Forty patients with metabolic syndrome (MetS), 35 women with depressive disorder (DD), 30 septic patients (SP), 50 patients with pancreatic cancer (PC), 50 patients with chronic pancreatitis (CP) and 13 patients with acute pancreatitis (AP) were included in different studies together with sex- and agematched healthy controls (CON). Patients with AP and SP were observed in the course of the disease and samples were taken four times (three times, respectively). The enzymatic activities were determined with spectrophotometric kinetic methods. In all these studies also the levels of oxidative stress markers were measured. **Results:** The activity of CAT was found to be decreased in patients with sepsis or septic shock, MetS and PC in comparison with CON, while in patients with DD, CP and AP no differences in CAT activity were detected. The activities of CuZnSOD were in the contrast to CAT either increased or unaffected. Increased activities of CuZnSOD were observed in MetS, DD, PC and SP, while no differences in CuZnSOD activities were found between CP or AP and CON. In all observed pathophysiological states the arylesterase activity of PON1 was measured and was found to be decreased (with the exception of DD) in comparison with CON. **Conclusion:** It was shown, that all selected diseases are connected with increased oxidative stress, which leads to the changes in antioxidant enzymes activities. #### **Abstrakt** **Úvod:** U onemocnění spojených se zvýšenou tvorbou reaktivních sloučenin kyslíku a dusíku (RONS) se přepokládá účast oxidačního stresu v jejich patogenezi. Oxidační stres hraje roli v řadě onemocnění; významnou úlohu má v patogeneze zánětu a sepse, akutní a chronické pankreatitidy či vzniku rakovinného bujení. Organismus je proti působení RONS chráněn antioxidačním systémem, který je tvořen antioxidačními enzymy a neenzymatickými antioxidanty. K nejdůležitějším antioxidačním enzymům se řadí superoxiddismutasa (SOD), katalasa (CAT), glutathionperoxidasa (GPX), glutathionreduktasa (GR) a paraoxonasa (PON). Cílem této disertační práce bylo vyšetření aktivity tří těchto antioxidačních enzymů – SOD, CAT, PON za různých patofyziologických stavů. Materiál a metody: U šesti různých patofyziologických stavů byly měřeny aktivity CuZnSOD, CAT a PON1. Do jednotlivých studií bylo zařazeno 40 pacientů s metabolickým syndromem (MetS), 35 žen s depresivní poruchou (DD), 30 pacientů se sepsí (SP), 50 pacientů s karcinomem pankreatu (PC), 50 pacientů s chronickou pankreatitidou (CP) a 13 pacientů s akutní pankreatitidou (AP). Ke každé sledované skupině pacientů byla zařazena též kontrolní skupina spárovaná na základě věku a pohlaví (CON). Pacienti s AP a SP byli sledováni v průběhu jejich onemocnění a vzorky byly nabírány celkem 4x respektive 3x. Aktivity antioxidačních enzymů byly stanovovány spektrofotometrickými kinetickými metodami. Ve všech studiích byly zároveň měřeny markery oxidačního stresu. *Výsledky:* Snížené hladiny aktivit CAT byly pozorovány u pacientů se sepsí či septickými šokem, MetS a PC v porovnání s kontrolami, zatímco u pacientů s DD, CP a AP nebyly zjištěny žádné rozdíly v aktivitě CAT při srovnání s CON. U pacientů s MetS, DD, PC a SP byly zjištěny zvýšené aktivity CuZnSOD, i když u pacientů s CP a AP nebyly pozorovány rozdíly v aktivitě CuZnSOD při srovnání s CON. U všech sledovaných patofyziologických stavů (s výjimkou depresivních poruch) byly nalezeny snížené aktivity PON1 v porovnání s CON. **Závěr:** Provedené studie ukazují, že všechna sledovaná onemocnění jsou spojena se zvýšeným oxidačním stresem, v rámci kterého dochází k ovlivnění chování námi sledovaných antioxidačních enzymů. #### **Abbreviations** Å Ångström (dimension 10 ⁻¹⁰m) ANOVA analysis of variance – statistical models AP acute pancreatitis APACHE II score - Acute Physiology and Chronic Health Evaluation II Apo apolipoprotein ARDS acute respiratory distress syndrome CAD coronary artery disease CAT catalase CD-LDL conjugated dienes in precipitated LDL CON "healthy" controls CP chronic pancreatitis CRP C-reactive protein CuZnSOD CuZn-superoxide dismutase DD depressive disorder DSM Diagnostic and Statistical Manual of Mental Disorders
EDTA ethylenediaminetetraacetic acid ELISA Enzyme Linked-Immuno-Sorbent Assay GPX glutathione peroxidase GR glutathione reductase GSH reduced glutathione H helix HAM-D Hamilton Depression Rating Scale Hb hemoglobin HDL high density lipoprotein IL interleukin LDL low density lipoprotein MetS metabolic syndrome NAD nicotine amid adenine dinucleotide NADP nicotine amid adenine dinucleotide phosphate NBT nitro blue tetrazolium salt NT nitrotyrosine Ox-LDL oxidized-LDL PC pancreatic cancer PCT prokalcitonin PON1 paraoxonase 1 PON1-A arylesterase activity of PON1 PON1-L lactonase activity of PON1 PON1-P paraoxonase activity of PON1 RONS reactive oxygen and nitrogen species ROS reactive oxygen species SP septic patients S1 1st sampling of sepsis S7 2nd sampling of sepsis (7 days after onset of sepsis) R7 3rd sampling of septic patients (7 days after recovery from sepsis) SAA serum amyloid A S.D. standard deviation TC total cholesterol TG triglycerides TNF tumour necrosis factor TRIS 2-Amino-2-hydroxymethyl-propane-1, 3-diol #### 1. Introduction Antioxidants are compounds that control the redox-balance in biological systems. Even in small concentrations they prevent the oxidation of instable substrates and/or eliminate the reactive oxygen and nitrogen species (RONS). Antioxidants represent heterogeneous group of chemical compounds with respect to their structure and function. They could be divided according to their location to extracellular (paraoxonase, albumin, bilirubin, etc.), membrane (vitamin E, phospholipases, β-carotene) and intracellular (catalase, glutathione, ascorbic acid, etc.) antioxidants and according to their character to enzymatic and non-enzymatic antioxidants. To the most important antioxidant enzymes belong superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR) and paraoxonase (PON). The most important non-enzymatic antioxidant is reduced glutathione (GSH). In physiological conditions there is equilibrium between RONS's creation and degradation in organism due to the antioxidants. In the course of metabolic processes different RONS are created and organism is able to utilize them; for example the elimination of pathogenic organisms by leukocytes or nitrogen oxide as neurotransmitter. However, overproduction of RONS in connection with impaired function of antioxidant system leads to oxidative stress. It was shown that RONS and/or oxidative stress could be involved in the pathogenesis of some diseases such as atherosclerosis, diabetes mellitus, inflammation and sepsis or neurodegenerative diseases. The role of RONS in clinical medicine was in detail described by Macasek et al. (2011; supplement 5). The research of RONS and antioxidants became actual theme in medicine in the recent years. This doctoral thesis deals with the activity of three antioxidant enzymes – SOD, CAT and PON in different pathophysiological states. Activities of these enzymes together with levels of oxidative stress markers were established in patients with metabolic syndrome (MetS), depressive disorder (DD), sepsis or septic shock (SP), pancreatic cancer (PC), chronic (CP) and acute pancreatitis (AP). #### 1.1. Catalase Catalases (CAT, H₂O₂: H₂O₂ – oxidoreductase, EC: 1.11.1.6), enzymes with long history, that goes back to the 19th century, when they became one of the first sources of valuable information about the nature and behaviour of enzymes (Zámocký & Koller, 1999). The name catalase became in 1900 according to its catalytic action on hydrogen peroxide (Loew, 1900). Human catalase belongs to the group of monofunctional hemcontaining catalases; members of this large subgroup are found in almost all aerobically respiring organisms (Chelikani et al., 2004; Zámocký & Koller, 1999). Catalase is primarily an intracellular enzyme; the highest concentrations in mammalians are in erythrocytes and liver and occasionally in kidney (Deisseroth & Dounce, 1970). In tissues such as liver, catalase is found predominantly in peroxisomes (Quan et al., 1986). In the following text, human catalase will be discussed. #### 1.1.1. Structure Human catalase (Figure 1a) is a tetrameric protein of 244kDa comprising four identical subunits of 69.7 kDa. Each subunit contains 527 amino acid residues, one heme group with iron in the ferric state and a tightly bound molecule of NADPH (Kirkman & Gaetani, 1984; Ko et al., 2000; Safo et al., 2001). The subunit could be conceptually divided into four domains (Figure 1b): N-terminal threading arm (residues 5-70), wrapping loop, β-barrel comprised of two four-stranded sheets and α-helical domain composed of four helices α 4 to α 7 (residues 155-207) and four C- terminal helices α 16 to α 19 (residues 440-501). The human catalase is extensively hydrated, only the hydrophobic β-barrel and the immediate vicinity of the active site are substantially devoid of the structural water molecules (Putnam et al., 2000). The active site of enzyme is internally located and contains the heme prosthetic group, namely iron(III) protoporphyrin IX (Kirkman & Gaetani, 2006). The structure of CAT shows, that the iron protoporphyrin is pentacoordinated (Figure 1c); to the substrate accessible at his distal side. The reactivity of the heme is tuned by electron donation by the Tyr358 ligand, and neutralization of the carboxylate charge by Arg72, Arg112 and Arg365. In the active site charge relay are involved four amino acid residues on the proximal side of the heme: His218, Asp348, Arg354 and Tyr358 (Putnam et al., 2000). There are three channels that have been implicated as potentially having a role in access to the active site – the perpendicular = main channel (Figure 1d), the lateral = minor channel and channel leading from heme to the central cavity of the tetramer. All three channels are quite narrow; this restricts accessibility to relatively small molecules. (Switala & Loewen, 2002). Figure 1: Structure of human catalase A: Structure of human catalase; B: individual unit of human CAT, helices – blue, β -barrel - yellow; C: Active site of human catalase; D: main channel; E, F: NADPH binding site, NADPH - bronze; heme – red; (Putnam et al., 2000). Human catalase binds the molecules of NADPH on the surface of the molecule at a cleft between the α 6 and α 7 helices of helical domain and the β-barrel. The NADPH binding pockets (Figure 1e, f) contain His194, Arg203, Val302, Trp303 and His305, which may be considered to be signatures for NADPH binding (Putnam et al., 2000; Chelikani et al., 2004). The reduced form of NADP - NADPH has the highest affinity to catalase surface. The order of affinity is NADPH > NADH >> NADP⁺ > NAD⁺. The dissociation constant for NADPH is less than 10nM (Kirkman & Gaetani, 1984). Normal erythrocytes contain $1.31-2.71\mu g$ CAT/mg Hb. These values correspond to an expected concentration of 6.6 to $13.7~\mu M$ for catalase-bound NADPH in human erythrocytes (Kirkman & Gaetani, 1984). The concentration of unbound NADP in human erythrocytes is approximately $2\mu M$ (Kirkman et al., 1987). Human erythrocyte catalase has been crystallized in orthorhombic, monoclinic, tetragonal and hexagonal unit cells till now (Maté et al., 1999; Ko et al., 2000; Putnam et al., 2000; Safo et al., 2001). #### 1.1.2. Function The main function of catalase is the decomposition of hydrogen peroxide to water and oxygen – catalatic activity. It is generally accepted, that this reaction occurs in two steps. **Scheme I: Catalatic reaction of catalase** In the first step reacts one molecule of hydrogen peroxide with the iron(III) protoporphyrin IX group of CAT (ferricatalase). In this step compound-I and one molecule of water are formed, through what is known as heterolytic scission of peroxide O-O bond. Compound-I is iron(IV) oxo-protoporphyrin π -cation radical of CAT. In the second step compound-I reacts with the second molecule of hydrogen peroxide, a molecule of oxygen and molecule of water are produced and the iron(III) protoporphyrin IX group of CAT is regenerated (Scheme I). Both forms of CAT – ferricatalase and compound-I – are active forms of this enzyme (Kirkman et al., 1987; Almarsson et al., 1993; Kirkman & Gaetani, 2006). In the reaction of compound I with a single electron of the compound-II, the inactive form of CAT, is formed. Compound-II is iron(IV) oxo-protoporphyrin IX (Kirkman & Gaetani, 2006), however it was provided that it exists also in iron(IV) hydroxy-protoporphyrin IX form (Scheme II), (Rovira, 2005). #### (a) Compound $I + e^{-} \rightarrow$ Compound II #### Scheme II: Formation of compound II During lengthy exposure of CAT to H₂O₂, the CAT bound NADPH became oxidized to NADP⁺ and the activity of enzyme fell to about one-third of the initial value. NADPH protects CAT against inactivation by H₂O₂ (Kirkman & Gaetani, 1987). The exact role and function of NADPH in CAT was discussed in different articles (Kirkman & Gaetani, 1987; Hillar & Nichols, 1992; Almarsson et al., 1993; Olson & Bruice, 1995; Kirkman et al., 1999; Rovira 2005; Kirkman & Gaetani, 2006). It was estimated, that NADPH prevents the formation of compound II and also mildly increases the rate of removal of compound II (Kirkman et al., 1999). Almarson et al. (1993) proposed that NADPH could react with both - compound I and compound II (Scheme III). #### Reaction with compound I - 1. Compound $I + NADPH \rightarrow Compound II + NADPH^+$. - 2. $NADPH^+ + B \rightarrow NADP^+ + BH^+$ - 3. Compound II + NADP \rightarrow ferricatalase + NADP $^+$ #### Reaction with compound II - 1. Compound II + NADPH \rightarrow ferricatalase + NADPH⁺. - 2. $NADPH^{+} + B \rightarrow NADP + BH^{+}$ - 3. $NADP + O_2 \rightarrow NADP + O_2$ #### Scheme III: Reactions of NADPH with compound I and II In addition to a very efficient catalatic reaction mode, catalase could also catalyse 2-electron peroxidations of short-chain aliphatic alcohols at reasonable rates
(Zámocký & Koller, 1999). The catalatic reaction predominates when the H₂O₂ concentration is higher than 10⁻⁴M, while below this concentration in the presence of an acceptable hydrogen donor the peroxidatic reaction dominates (Maté et al., 1999). Peroxidatic activity is relatively slow (Kirkman & Gaetani, 2006). There are three families of enzymes which could remove hydrogen peroxides *in vivo*: catalases, glutathione peroxidases and peroxiredoxins. Catalase may be the key enzyme for H₂O₂ removal in peroxisomes, although peroxiredoxin 5 may contribute. At low H₂O₂ concentrations GPX1 and peroxiredoxins are responsible for its degradation. Although peroxiredoxins are slower at catalysing H₂O₂ degradation than GPX1, it is suggested that at low H₂O₂ concentrations, peroxiredoxins dispose most of H₂O₂ generated inside the cells (Halliwell & Gutteridge, 2007). In 2003 Heck et al. discovered, that in keratinocytes CAT could generate reactive oxygen species (ROS) in response to UV light. The ability of the enzyme to generate ROS depended on the dose of UV light utilized and on the concentration of CAT (Heck et al., 2003). Chelikani et al. speculate that the NADPH cofactor could have a role in ROS generation suggesting another role for NADPH in catalase physiology (Chelikani et al., 2004). #### 1.1.3. Determination For the determination of the activity of CAT numerous methods were used. The first methods were based on permanganate (von Euler & Josephson, 1927) or iodimetric (Yamagata et al., 1952) titrations. For the reaction with permanganate, the photometric detection was later applied (Goldblith & Proctor, 1950). In 1958 Dobkin and Glantz presented colorimetric method for CAT determination based on reaction of hydrogen peroxide with ferricyanide in alkaline solution (Dobkin & Glantz, 1958). Another possibility of colorimetric determination of the residual hydrogen peroxide after incubation with CAT was described by Cohen et al. (1996). In this method ferrous ions and thiocyanate were used for the H₂O₂ determination (Cohen et al., 1996) The flotation rate of a paper disk saturated with the enzyme solution was also utilized for the CAT activity measurement. The method is based on the liberation of oxygen due to the action of catalase on hydrogen peroxide (Gagnon et al., 1959; Lamoureux et al., 1987). Wheeler et al. (1990) have automated the CAT activity determination that was previously described by Johansson & Borg (1988). The method measured peroxidatic activity of CAT and is based on the reaction of the enzyme with methanol in the presence of an optimal concentration of hydrogen peroxide. The formaldehyde produced is then measured spectrophotometrically with 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole (Purpald) as a chromogen (Wheeler et al., 1990; Johansson & Borg, 1988). In 1996 discontinuous measurement of CAT activity at nearly physiological levels of hydrogen peroxide was described by Ou & Wolff. They used ferrous oxidation in xylenol orange for CAT activity determination (Ou & Wolff, 1996). For the determination of CAT activity also polarographic (Góth & Mészáros, 1975), gasometric (Siqueira et al., 1999), fluorometric (Wu et al., 2003) and chemiluminiscence (Mueller et al., 1997) assays were utilized. However, the most used method is those of Aebi; it is spectrophotometric method, based on the measurement of decomposition of hydrogen peroxide at 240nm (Aebi, 1974). Concentration of CAT was determined with immunochemical assays (Higashi et al., 1961). The polarography was used as other possibility to measure the CAT concentration. In this method CAT was measured simultaneously with SOD (Rigo & Rotilio, 1977). #### 1.2. Superoxide dismutase In 1969 McCord and Fridovich have shown that copper proteins that were previously isolated from bovine (in 1939, "hemocuprein") and human erythrocytes ("erythrocuprein") are associated with the enzymatic activity of superoxide free radical anion dismutation. The proteins became its name according to its function – superoxide dismutase (McCord & Fridovich, 1969). In mammalians three different isoforms of superoxide dismutase have been biochemically and molecularly characterized. Firstly, SOD1, or CuZnSOD (EC 1.15.1.1) that is a copper and zinc-containing homodimer found almost exclusively in intracellular cytoplasmic space. The second form of SOD containing manganese as cofactor is SOD2, or MnSOD (EC 1.15.1.1). MnSOD is initially synthesized in cytosol as a tetramer containing a leader peptide which targets enzyme exclusively to the mitochondrial spaces. SOD3, or EC-SOD (EC 1.15.1.1) exists as a copper and zinc-containing tetramer with a signal peptide that directs this enzyme exclusively to the extracellular space (Zelko et al., 2002). This Thesis is focused on the human CuZnSOD that is widely distributed in the nucleus and cytosol of human cells and in lower concentration also in peroxisomes. (Crapo et al., 1992). #### 1.2.1. Structure Human CuZnSOD is a dimeric enzyme of relative molecular mass 32,000 Daltons, containing two identical subunits of circa 150 amino acids. Each monomer is built upon a β -barrel motif and possesses two large functionally important loops, called the electrostatic and zinc loops, which encase the metal-binding region that binds one copper and one zinc ion (Figure 2a). It has been found that in the active site the copper ion is coordinated by the nitrogen atoms of four histidine residues (His46, His 48, His 63 and His120) and by a water molecule. One of the histidine residues (His63) bridges copper and zinc when the copper ion is in the 2^+ oxidation state (Figure 2b). Coordination of zinc is completed by two other histidine residues (His71 and His80) and one aspartate residue (Asp83) in a tetrahedral geometry (Figure 2c); (Potter et al., 2006; Hart et al., 1998; Banci et al., 1999). A hydrogen bond network further stabilizes the structure around the metal ions (Valentine et al., 2005). Figure 2: Structure of human CuZn-Superoxide dismutase A: The structure of CuZnSOD dimer, copper ions: green, zinc ions: gray, the intramolecular disulfide bonds: orange, zinc loops: cyan, electrostatic loops: pink (Potter et al., 2006); B: Active center of CuZnSOD, Wat: water (Hart et al., 1998); C: The coordination of zinc in CuZnSOD (Banci et al., 1999). #### 1.2.2. Function The main function of superoxide dismutase is the decomposition of superoxide to hydrogen peroxide and oxygen - dismutation. It is widely accepted, that this reaction occurs in two steps. The first step of the reaction (Scheme IV) involves the reduction of Cu(II) by superoxide, producing dioxygen and Cu(I) form of SOD. In the second step Cu(I) form of SOD is oxidized by another superoxide, producing hydrogen peroxide (Rotilio et al., 1972a; Rotilio et al., 1972b; Klug-Roth et al., 1973; Fielden et al., 1974). (1) $O_2^{-} + Cu(II)ZnSOD \Rightarrow O_2 + Cu(I)ZnSOD$ (2) $$O_2^- + Cu(I)ZnSOD + 2H^+ \Rightarrow Cu(II)ZnSOD + H_2O_2$$ #### Scheme IV: Reaction mechanism of superoxide dismutase The reduced Cu(I) form of the enzyme has another structure than the oxidized one: the copper ion undergoes a shift in position, moving away from the His63 nitrogen where was bound in the oxidized form of the enzyme. The copper ion also releases the water ligand, going from irregular five-coordinate geometry to a nearly trigonal planar three-coordinate configuration. His63 is bind exclusively to the zinc ion that remains in tetrahedral geometry (Figure 3); (Valentine et al., 2005). Figure 3: Active site of CuZn-Superoxide dismutase in reduced form (Valentine et al., 2005) #### 1.2.3. Determination Indirect two steps methods are mainly used for the determination of CuZnSOD activity, because of the low stability of its substrate – superoxide (Flohé & Ötting, 1984). In the first step of the reaction superoxide is generated either enzymatically or non-enzymatically. To give a controlled rate of superoxide generation, the system of xanthine plus xanthine oxidase is used (McCord & Fridovich, 1969; Beauchamp & Fridovich, 1971; Štípek et al. 1995). Superoxide could be generated non-enzymatically by the autooxidation of epinefrin (Misra & Fridovich, 1972) or pyrogallol (Marklund & Marklund, 1974), or by the degradation of potassium superoxide (Marklund, 1976). In the second step of the reaction the generation of superoxide is spectrophotometrically detected using indicator which reacts with superoxide. Nitro blue tetrazolium salt - NBT (Beauchamp & Fridovich, 1971; Štípek et al., 1995) or cytochrome c (McCord & Fridovich, 1969) could be used as indicators. #### 1.3. Paraoxonase Paraoxonase gene family is composed of three members PON1, PON2 and PON3 that are located adjacently on chromosome 7 in humans (Précourt et al., 2011). The PON proteins share 60% sequence identity. The name, paraoxonase, is purely historical, as the PON members are a hydrolase family with one of the broadest specificities known (Harel et al., 2004). This thesis is focused on the human PON1. Paraoxonase-1 (PON1; EC 3.1.8.1.) is synthesized in the liver and secreted into the blood, where it associates with HDL (high-density lipoprotein), (Deakin & James, 2004). #### 1.3.1. Structure Human paraoxonase 1 is glycoprotein with the size of 43 000 kDa, including 354 amino acids and four potential N-linked glycosylation sites (Josse et al., 2001). The molecule of PON1 forms six-bladed β -propeller (Figure 4A, 4B), where each blade contains four strands (Harel et al., 2004). A disulfide bond at Cys 41–Cys 352 forms the covalent closure of the N and C termini which is conserved throughout the PON family (Josse et al., 2001). In the central tunnel of the β -propeller, there are two calcium ions 7.4 Å apart from each other. One calcium ion could be found at the top (Ca1) and one in the central section (Ca2) of the tunnel (Harel et al., 2004; Harel et al., 2007). Ca2 (Figure 4C) is most probably a "structural calcium" whose
dissociation leads to irreversible denaturation of protein (Kuo & La Du, 1998). Ca1 is assigned as the "catalytic calcium" and it seems to interact with five protein residues (the side chain oxygens of Asn224, Asn270, Asn168, Asp269 and Glu53) one water molecule and one of the oxygens of a phosphate ion (Figure 4D); (Harel et al., 2004). There are four potential *N*-glycosylation sites on PON1: two glycan chains are linked to asparagine residues in positions 253 and 324 on surface loops (Kuo & La Du, 1995), two other potential positions are Asn224 and Asn270 in the central tunnel of the propeller and are largely inaccessible (Harel et al., 2004). Glycosylation is not essential for the hydrolytic activities of PONs (Josse et al., 1999), however may be important in increasing their solubility and stability, or in preventing nonspecific binding to the cell membranes (Harel et al., 2004). Figure 4: Structure of paraoxonase 1 A: Overall structure of PON1, view of the six-bladed β-propeller from above. Shown are the N and C termini, and the two calcium atoms in the central tunnel of the propeller (Ca1, green; Ca2, red); B: Overall structure of PON1, a side view of the propeller, including the three helices at the top of the propeller (H1–H3); C: Detailed view of PON1's calcium binding site for the inner (structural) calcium (Ca-2). D: Detailed view of PON1's calcium binding site for the upper (catalytic) calcium (Ca-1); W: water molecule; N: Asn, E: Glu, D: Asp; (Harel et al., 2004). PON1 is synthesized in the liver and secreted into the blood, where associates with HDL particles. In anchoring of PON1 to HDL, the hydrophobic N terminus of PON1 is thought to be involved (Sorenson et al., 1999). The entire sequence of the N terminus is compatible with a transmembrane helix and forms two helixes: H1 hydrophilic part of N terminus and H2 with amphipathic character. Helices H1 and H2 form two adjacent hydrophobic patches that provide a potential membrane-binding surface (Figure 5). The interface with HDL was further defined by a characteristic 'aromatic belt' rich in tryptophan and tyrosine side chains (Tyr185, Phe 186, Tyr190, Trp194, Trp202) and by a lysine (Lys 21) side chain on H1 (Harel et al., 2004). Figure 5: Association of paraoxonase 1 with HDL particles Proposed model for anchoring of PON1 to the surface of HDL. Hydrophobic residues proposed to be involved in HDL anchoring (side chains yellow). The active site and the selectivity-determining residues are blue, and the proposed glycosylation sites (Asn253 and Asn324) are red; (Harel et al., 2004). Figure 6: The postulated catalytic site of paraoxonase 1 (Harel et al., 2004) At the very bottom of the active site cavity lays the upper calcium (Ca1), and a phosphate ion. The study of Josse et al. (2001) identified four histidine residues (His115, His134, His243, His285) and one tryptophan residue (W281) to be essential for the activity of PON1. Later in the study of Harel et al. (2004) the His115-His134 dyad was identified (Figure 6) and it was hypothesized that His115 (4.1 Å from Ca1) acts as a general base to deprotonate a single water molecule and generate the attacking hydroxide, whereas His134 acts in a proton shuttle mechanism to increase His115's basicity (Harel et al., 2004). #### 1.3.2. Function A variety of physiological roles have been proposed for PONs. Serum PON1 catalyzes the hydrolysis and thereby the inactivation of oxons like paraoxon (from which it takes its name; diethyl 4-nitrophenyl phosphate), chlorpyrifos oxon and diazoxon which are toxic metabolites of organophosphate insecticides like parathion (O,O-Diethyl O-(4phosphorothioate) chlorpyriphos (O,O-Diethyl nitrophenyl) and O-3.5.6trichloropyridin-2-yl phosphorothioate). Paraoxonase is able to hydrolyze also the nerve agents sarin ((RS)-propan-2-yl methylphosphonofluoridate) and soman (3,3dimethylbutan-2-yl methylphosphonofluoridate). In addition, PON1 hydrolyzes arylesters like phenylacetate, thiophenylacetate and 2-naphthylacetate (Davies et al., 1996; Aviram et al., 1998a). It also hydrolyses different aromatic and aliphatic lactones as well as cyclic carbonates like homogentisic acid lactone, dihydrocoumarin, γ butyrolactone and homocysteine thiolactone (Billecke et al., 2000; Rajkovic et al., 2011). Scheme V: Reaction mechanism of paraoxonase 1 (Harel et al., 2004). Proposed mechanism of action of PON1 on ester substrates such as phenyl and 2-naphthylacetate is shown in the scheme V. The first step involves deprotonation of a water molecule by the His-His dyad to generate hydroxide anion that attacks the ester carbonyl producing an oxyanionic tetrahedral intermediate. This intermediate breaks down (second step) to an acetate ion and either phenol or 2-naphthol (Harel et al., 2004). It was hypothesises (Draganov et al., 2005; Nguyen et al., 2009) that the native activity of PON1 could be lactonase activity, for which the free cystein 284 in PON1 structure is very important (Yilmaz, 2012) and that the physiological substrate could be some derivates of fatty acid oxidation process such as 5-hydroxy - 6E, 8Z, 11Z, 14Z eicosatetraenoic acid (5-HETE) lactone that resides in HDL or some lactones which are consumed as food ingredients or drug metabolites (statins, spironolactone and glucocorticoid y-lactones). Furthermore was shown that homocysteine thiolactone is naturally occurring substrate of PON1 (Jakubowski, 2000). Homocysteine thiolactone is a metabolite of homocysteine that can impair protein function leading to endothelial dysfunction and vascular damage (Macharia et al., 2012). By detoxifying homocysteine thiolactone, PON1 protects proteins against homocysteinylation (Perla-Kaján & Jakubowski, 2010; Yilmaz, 2012). Other group of lactones that could be degraded by PON1 are acyl-homoserine lactones, small quorum sensing signaling molecules of Gram-negative bacterium Pseudomonas aeruginosa. Pseudomonas aeruginosa uses these lactones to coordinate phenotypic changes, including biofilm formation and virulence factor secretion (Estin et al., 2010; Rai, 2012). In vitro assays have shown that PON1 can inhibit LDL (low-density lipoprotein) lipid peroxidation and inactivate LDL-derived oxidized phospholipids. This could potentially reduce the serum content of the oxidized lipids involved in the initiation of atherosclerosis (Mackness et al., 1991; Mackness et al., 1993; Watson et al., 1995). It was shown, that PON1 have also peroxidase-like activity (Aviram et al., 1998b; Précourt et al., 2011) – it is capable to hydrolyze hydrogen peroxide, reduce lipoprotein peroxides (by 19%) and cholesteryl linoleate hydroperoxides (by 90%). #### 1.3.3. Determination The activity of paraoxonase 1 is determined towards different types of substrates. For the measurement of arylesterase activity of PON1 phenyl acetate as substrate is used (Eckerson et al., 1983). The paraoxonase activity of PON1 is determined using paraoxon as substrate (Eckerson et al., 1983; Hasselwander et al., 1998; Ferré et al., 2002). For the determination of PON1 activity towards lactones different substrates are used – methods with 5-thiobutyl butyrolactone (Gaidukov & Tawfik, 2007), dihydrocoumarin (Draganov et al., 2000), 2-coumaranone (Billecke et al., 2000) and homogentistic acid lactone (Billecke et al., 2000) were previously described. ### 2. Aims and scopes The aim of this doctoral thesis was to investigate the behaviour of three antioxidant enzymes — superoxide dismutase, catalase and paraoxonase in different pathophysiological states. This thesis was focused on antioxidant enzymes activities and their changes in acute phase of the disease such as sepsis or acute pancreatitis, where the activities were followed up in the course of sepsis or acute pancreatitis. In chronic states such as metabolic syndrome, pancreatic carcinoma or chronic pancreatitis the antioxidant enzymes activities were compared with those of healthy volunteers. #### 3. Materials and Methods #### 3.1. Pathophysiological states studied Antioxidant status and oxidative stress markers were observed in different types of pathophysiological states. Patients with metabolic syndrome (MetS), depressive disorder (DD), sepsis (SP), pancreatic cancer (PC), chronic pancreatitis (CP) and with acute pancreatitis (AP) were involved in the studies of antioxidant status. The short characteristics of all studied groups are summarized in the Table 1. Informed consent was obtained from all participants. The study protocols were approved by the Ethical Committee of the First Faculty of Medicine, Charles University Prague or by the Ethical Committee of the University Teaching Hospital, Prague. Table 1: Characteristics of the studied groups of patients | | N (M/F) | Age (years) | Reference | |------|------------|-----------------|--| | MetS | 40 (20/20) | 58 (53 - 62) | Vavrova et al. (2013) – Supplement 1 | | | , | , | , , 11 | | DD | 35 (0/35) | 61.5 ± 16.5 | Kodydkova et al. (2009) – Supplement 3 | | a= | 30 (16/14) | 57.7 ± 15.3 | Novak et al. (2010) – Supplement 4 | | SP | 19 (10/9) | 74 (56-79) | Vavrova et al. (under review) – Supplement 7 | | PC | 50 (40/10) | 63 (56 - 68) | Kodydkova et al. (2013) – Supplement 2 | | СР | 50 (40/10) | 59 (53 - 65) | | | AP | 13 (9/4) | 56.1 ± 21.5 | Vavrova et al. (2012) – Supplement 5 | MetS: metabolic syndrome, DD: depressive disorder, SP: patients with sepsis, PC: pancreatic carcinoma, CP: chronic pancreatitis, AP: acute pancreatitis; M: male, F: female The exclusion criteria in all studies were the following: current antioxidant therapy, excessive alcohol consumption (> 30 g/day), hormonal replacement therapy, supplementation with polyunsaturated fatty acids; chronic, immunosuppressive and anti-inflammatory therapy; manifestation of cardiovascular and/or cerebrovascular diseases, diabetes mellitus type 1, liver (with exception of non-alcoholic fatty liver disease) and kidney
diseases (creatinine $> 130~\mu mol/l$), microalbuminuria (urinary albumin 30 - 300 mg/day), hypothyroidism and recent infections, malignancies (with exception of PC). Persons who were operated on upper gastrointestinal tract (in the previous 1 year) and subjects after systemic inflammation in the previous 6 months were also excluded. #### 3.2. Blood sample collection and preparation All blood samples were obtained after overnight fasting. Blood was taken puncturing a peripheral vein. Activities of CAT and CuZnSOD were measured in haemolysed erythrocytes and both activities of PON1 were determined in serum. Serum was also used for the determination of all other parameters. The blood samples for CAT and CuZnSOD measurements were collected into the tubes with K₂EDTA. Erythrocytes were separated by the centrifugation at 3500 rpm at 4°C for 10 minutes and then washed three times with a NaCl isotonic solution (9 g/l). Serum was prepared following coagulation in vacutainer tubes, by centrifugation at 3500 rpm at 4°C for 10 min. The samples were stored at -80°C until assay. The haematological parameters were carried out by routine laboratory techniques using an autoanalyzer (Coulter LH750 -haematological analyzer, Beckman Coulter). #### 3.3. Measurements of antioxidant enzyme activities The methods for measurement of antioxidant enzymes: catalase, superoxide dismutase and arylesterase – PON1 activities were described in detail in the publication of Kodydkova et al. (2009). The CAT activity was determined by the modified method of Aebi (1974). The determination is based on the monitoring of the rate of H_2O_2 degradation at 240 nm. The reaction mixture in cuvettes contained 876 μ l of 50 mM potassium phosphate buffer, pH = 7.2 and 25 μ l of diluted sample. The reaction was started after 10 minutes of incubation at 30 °C by addition of 99 μ l of 10 mM H_2O_2 . Blank was run for each sample. Catalase activity was calculated using the molar extinction coefficient of H_2O_2 43.6 M^{-1} cm⁻¹ and expressed as kU/g haemoglobin (U = μ mol/min). The activity of CuZnSOD was determined according to the modified method of Štípek et al. (1995). The reaction mixture in cuvettes contained 700 µl of 50 mM potassium phosphate buffer, pH = 7.2; 50 μ l of xanthine oxidase; 100 μ l of NBT and 50 μ l of diluted sample. The reaction was started after 10 minutes of incubation at 25 °C by addition of 100 μ l of 1 mM xanthine. The rate of NBT-formazan generation was monitored spectrophotometrically at 540 nm. Blank was run for each sample. Superoxide dismutase activity was calculated by means of calibration curve and expressed as U/g haemoglobin (U = μ mol/min). The arylesterase activity of PON1 was measured according to the method of Eckerson et al. (1983) using phenylacetate as a substrate. Briefly, 900 μ l of 20 mM Tris-HCl buffer containing 1 mM CaCl₂, pH=8.0 was added to cuvettes followed by 50 μ l of diluted serum sample. The reaction was started by addition of 50 μ l of 100 mM phenylacetate. The rate of phenol generation was monitored spectrophotometrically at 270 nm. Blank was run for each sample. Arylesterase activity of PON1 was calculated using the molar extinction coefficient of the produced phenol, 1310 M⁻¹cm⁻¹ and expressed as U/ml serum (U = μ mol/min). Paraoxonase activity of PON1 was measured using paraoxon (O,O-Diethyl O-(4-nitrophenyl) phosphate) as a substrate in tubes containing 940 μ l of 90 mM Tris-buffer (pH = 8.5, with 2 mM CaCl₂) and 50 μ l of 100 mM paraoxon. The reaction was started by addition of 10 μ l of serum and measured at 405 nm at 25 °C. The activity was calculated using the molar extinction coefficient of the produced p-nitro-phenol, 18053 M^{-1} cm⁻¹ and expressed in U/l serum. The lactonase activity of PON1 was determined according to the modified method of Draganov et al. (2000). Briefly, to 800 μ l of 50 mM TRIS-buffer (pH = 8, with 1 mM CaCl₂) in cuvettes 100 μ l of diluted serum sample was added. The reaction was started after incubation at 30 °C for 5 minutes with 100 μ l of dihydrocoumarin (final concentration 1 mM). The increase in absorbance at 270 nm was monitored along 2 minutes. Kinetic rate was estimated during the linear phase of reaction and converted to the enzyme activity using the molar extinction coefficient of the reaction product 3-(2-hydroxy-phenyl)-propionate (ϵ = 1295 dm³mol⁻¹cm⁻¹), (Rainwater, 2009). The lactonase activity of PON1 was expressed as U/ml serum (U = μ mol/min). #### 3.4. Measurements of markers of oxidative stress In all studies concentrations of conjugated dienes in precipitated LDL (CD-LDL) as marker of oxidative stress were measured. In some studies also levels of nitrotyrosine (NT) and/or oxidized LDL (ox-LDL) were established. Concentrations of CD-LDL were measured by the modified method of Wieland et al. (1983). Serum low density lipoproteins were isolated by the precipitation method of Ahotupa et al. (1996). 110 μ l of serum with EDTA (10:1) was added to 1 ml of 0.064 M citrate buffer (pH = 5.05, with 50.000 U/l heparin), the suspension was then incubated for 10 min at room temperature. The precipitated lipoproteins were separated by centrifugation at 2800 rpm for 10 min and the pellet was resuspended in 100 μ l of NaCl isotonic solution (9g/l). Lipids were extracted by dichlormethan – methanol (2:1) mixture, for the phase separation 250 μ l redistilled water was used. The mixture was centrifuged at 3000 rpm for 5 min. The 800 μ l of lower layer (infranatant) was dried under nitrogen, redissolved in 300 μ l of cyclohexane, and analyzed spectrophotometrically at 234 nm. The concentration of CD was calculated using the molar extinction coefficient (2.95 x 10⁴ M^{-1} cm⁻¹) and expressed as mmol/l serum. The concentration of NT was measured using the ELISA kit (Hycult biotech, HK 501). The NT ELISA is a solid-phase enzyme-linked immunosorbent assay based on the sandwich principle. The levels of ox-LDL were established with the ELISA kit (Mercodia). Oxidized LDL ELISA is a solid phase two-site enzyme immunoassay. This method is based on the mouse monoclonal antibody, which is directed against a conformational epitope in oxidized ApoB-100. # 3.5. Measurements of antioxidant enzyme cofactors and lipid parameters The concentrations of serum amyloid A (SAA) were determined using solid phase sandwich ELISA kit (Invitrogen, KHA 0011). All routine clinical tests were measured at the Institute for Clinical Biochemistry and Laboratory Diagnostics of General University Hospital in Prague: Copper and zinc were measured using atomic absorption spectrometry. Concentration of calcium was established by the photometric method with o-kresolftalexon. High-density lipoprotein cholesterol was determined in the supernatant after precipitation of lipoproteins B by PTA/Mg²⁺, using the kit (Boehringer Mannheim, Germany). Concentrations of apo A-I were measured by the Laurell rocket electroimmunoassay using standard and specific antibodies (Behringwerke Marburg, Germany). #### 3.6. Statistical analysis The mean ± standard deviation (S.D.) for parametric values and median (25th-75th percentiles) for non-parametric values were used for the data expression. Normality of distribution of data was tested with Shapiro-Wilks W test. Differences between two compared groups were tested with t-test for parametric values and Mann-Whitney U test for non-parametric values. Differences between three or more compared groups were tested with one-way ANOVA with Scheffé and Newman-Keuls post tests. For nonparametric analysis Kruskal-Wallis ANOVA was used. Friedman ANOVA was used for dependent analysis. The Spearman correlation coefficients were used for correlation analysis. All statistical analyses were performed using versions 7.0 to 9.0 of StatSoft software Statistica (2007, CZ). #### 4. Results #### 4.1. Metabolic syndrome Into the study were included 40 patients with MetS (20 male/20 female) and 40 sex- and age matched volunteers (CON) without MetS. The diagnosis of MetS was done according to the International Diabetes Federation criteria (Alberti, 2005). The activities of CuZnSOD, CAT and PON1-A were assessed. As marker of oxidative stress, concentrations of CD-LDL were determined. Furthermore levels of CuZnSOD cofactors – copper and zinc, PON1 cofactor Ca as well as levels of apo-A1 and HDL-C were determined. In the MetS group, 21 patients (52.5%) had three, 13 patients (32.5%) four and 6 patients (15.0%) had all five basic components of MetS (abdominal obesity, raised glucose levels, raised TG levels, hypertension, reduced HDL-C). The subjects with MetS had elevated activities of CuZnSOD (p < 0.01) and concentrations of CD-LDL (p < 0.001). On the other hand, activities of CAT (p < 0.05) and PON1-A (p < 0.05) were found to be decreased. Levels of apo-A1 (p < 0.01) and HDL-C (p < 0.001) were significantly decreased in the patients with MetS. There were found no differences in concentrations of Cu, Zn and Ca between MetS and CON groups. In the correlation analysis in MetS group, positive correlation was found between PON1 activity and apo-A1 (r=0.498, p<0.001) and HDL-C (r=0.459, p<0.01) concentration. The same correlations were also observed in the whole group (MetS + CON, N = 80), furthermore correlations between activity of CuZnSOD and concentration of Zn (r=0.363, p<0.01) were found in the whole group. There were no correlation between CuZnSOD activity and level of serum copper. Negative correlation was observed between activity of CAT and concentration of CD-LDL (r=-0.233, p<0.05). The concentration of CD-LDL correlated positively with the number of MetS components (r=0.442, p<0.01). More results could be found in the publication of Vavrova et al., 2013 (Supplement 1). #### 4.2. Depressive disorder In the study of depressive disorder 35 drug-naive women with DD and 35
age-matched healthy women were investigated. Depressive disorder was diagnosed according to Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, DSM-IV (American Psychiatric Association, 1994). All patients were evaluated using Hamilton Depression Rating Scale (HAM-D). The activities of CuZnSOD, CAT and PON1 – A were observed. As marker of oxidative stress concentrations of CD-LDL were determined. Furthermore levels of CuZnSOD cofactors – copper and zinc, PON1 cofactor Ca as well as levels of apo-A1 and HDL-C were determined. Erythrocyte activities of CuZnSOD and concentrations of CD in precipitated LDL were increased in depressive women in comparison with healthy CON. Activities of CAT and PON1-A were not altered in patients with DD. No differences were also found in concentrations of copper, zinc, calcium, HDL-C or Apo-A1. In women with DD, activities of PON1 were positively correlated with concentrations of HDL-C (r = 0.457, p < 0.01), apo A-1 (r = 0.379, p < 0.05) and calcium (r = 0.371, p < 0.05). Furthermore, activities of CuZnSOD were positively correlated with concentrations of zinc (r = 0.393, p < 0.05), but there were no significant correlation with copper. Positive correlation was observed between activity of CuZnSOD (r = 0.483, p < 0.01) or CAT (r = 0.550, p < 0.01) and concentrations of CD-LDL in DD women. In the whole group (DD + CON, N = 70) the results were similar; however there were no correlation between activity of CuZnSOD or CAT and levels of CD. More results could be found in the publication of Kodydkova et al., 2009 (Supplement 3). # 4.3. Sepsis and septic shock Two different studies were done with the patients suffering from sepsis. In the first pilot study only the paraoxonase and arylesterase activities of PON1 and concentrations of HDL-C in serum were determined. Thirty septic patients (SP) and 30 age- and sexmatched outpatient controls (CON) without clinical and laboratory signs of sepsis were included into this pilot study. Patients fulfilled the criteria of sepsis according to the Society of Critical Care Medicine/American College of Chest Physicians SCCM/ACCP) definitions (Bone, 1992) not longer than 24 hours together with the following criteria for inclusion: APACHE II score ≥ 10 (Knaus, 1985) and C-reactive protein in serum > 20 mg/l. The samples of SP were taken two times during the first 24 hours after onset of sepsis and then 7 days after recovery. The samples after recovery were available in 11 patients. Six patients (20 %) died of sepsis. The main source of sepsis were lungs – in 14 cases, other sources were venous catheter infection (6 cases), abdominal infection (6 cases) or urinary tract infection (3 cases). Significantly decreased arylesterase and paraoxonase activities of PON1 and levels of HDL-C were found in SP relative to controls. After recovery both activities of PON1 reached nearly the control levels, although a significant increase compared to the onset of sepsis was observed only in activity of PON1-A. Also the levels of HDL-C reached the control level and were significantly higher after recovery in comparison with those in sepsis. No significant difference between survivors and non-survivors was found in the PON1 activities, however there was a trend toward lower arylesterase PON1 activity in non-survivors as compared to survivors $(64.94 \pm 29.83 \text{ vs. } 94.13 \pm 36.14; p = 0.07)$. Regardless of the source of sepsis, there were no differences in PON1 activities or concentrations of HDL-C among septic patients. In this study strong positive correlation was demonstrated between both PON1 activities $(r=0.725,\,p<0.001)$ in the whole group $(SP+CON,\,N=60)$ as well as in the SP $(r=0.667,\,p<0.001)$. Both PON1 activities also correlated positively with the HDL-C concentrations (PON1-A: $r=0.684,\,p<0.001$; PON1-P: $r=0.352,\,p<0.01$) in the whole group, while in SP there was significantly positive correlation only between PON1-A and HDL-C $(r=0.560,\,p<0.01)$. More results could be found in the publication of Novak et al., 2010 (Supplement 4). Thirty SP, 30 healthy CON and 15 critically ill patients without sepsis (NS) were involved into the second study concerned with sepsis. The criteria of involvement into the study were the same as in the pilot study. The samples of SP were taken three times during the first 24 hours after onset of sepsis (S1), 7 days after the first sampling (S7) and then 7 days after recovery (R7). The samples after recovery were available in 19 patients. Samples from CON and non-septic group were obtained once. Eight patients (26.7%) died of sepsis and 3 patients were lost from follow up because they never fully recovered from sepsis. In the first part of this study the changes in antioxidant status and oxidative stress markers were analysed in severe sepsis/septic shock and after the clinical recovery phases and compared with CON. The activities of CuZnSOD, CAT and PON1-A were determined together with levels of oxidative stress markers: CD-LDL, ox-LDL and NT. The concentrations of HDL-C, Apo-A1, Ca, Cu, Zn, Fe and SAA were also measured. In this study CuZnSOD activity was increased in S1 and returned to the CON value already in S7. The decline in the CAT activity found in S1 and S7, returned to the CON level in R7. Marked fall in the PON1 activity appeared at the onset (S1) and persisted until recovery (R7). Decreased PON1 activity was closely followed by the decrease in HDL-C and ApoA1 concentrations. Whereas SAA concentration was significantly increased in S1, marked decline was observed in S7 and reached nearly CON level in R7. Furthermore the decrease in Zn was observed in both S1 and S7 compared to HC, nevertheless the decline returned nearly to the CON values in R7. However, the decrease in Fe observed in S1, persisted still 7 days after recovery (R7) and never reached the CON levels. The levels of ox-LDL/LDL, CD/LDL and nitrotyrosine were increased in S1, culminated in S7 and returned to the HC values in R7. In the septic group (S1) positive correlation was found between PON1 activity and concentration of HDL-C (r = 0.613, p < 0.01) and negative correlation was observed between PON1 activity and levels of CD/LDL (r = -0.632, p < 0.05) and ox-LDL/LDL (r = -0.605, p < 0.05). The levels of CD/LDL correlated positively with levels of ox-LDL/LDL (r = 0.644, p < 0.01). No significant correlation was found between activity of CuZnSOD and concentrations of Cu or Zn and between CAT and concentration of Fe. More results could be found in the publication of Vavrova et al. (currently under review; supplement 7). In the second part of this study activities of antioxidant enzymes and markers of oxidative stress in septic patients and non-septic critically ill patients were compared. As previously mentioned 15 critically ill patients without sepsis were enrolled into the study according to their sex, age and APACHE II score. These NS patients were matched with SP patients. The activities of CuZnSOD, CAT and PON1-A were determined together with levels of oxidative stress markers: CD-LDL and ox-LDL. The concentrations of HDL-C, Apo-A1, Cu, Zn, Fe and SAA were also measured. The basic characteristics are summarised in Table 2. Table 2: Basic characteristics of septic patients and non-septic patients | | SP | NS | CON | |------------------------------|--------------------------|-----------------------|----------------------| | N (M/F) | 15 (9/6) | 15 (9/6) | 15 (9/6) | | Age (years) | 74 (61-79) | 70 (57-79) | 71 (58-79) | | APACHE II score | 16 (13-20) | 17 (13-20) | - | | CRP (mg/l) | 96.0 (47.0-185.5)*** | 84.8 (4.8-130.6)** | 2.1 (2.8-7.8) | | PCT (mg/l) | 2.39 (0.79-10.0)**** | 0.28 (0.14-0.73) | 0.585 (0.32-0.90) | | IL-6 (μg/l) | 114.0 (51.0-313.1)*** | 21.5 (10.9-48)** | 1.15 (0.58 - 2.86) | | IL-10 (μg/l) | 8.58 (5.12 - 16.57)*** | 5.16 (1.76-6.98)*** | 0.79 (0.00 - 1.03) | | TNF- α(μg/l) | 21.8 (11.9 - 39.2)*** | 6.54 (4.16 - 9.50) | 11.89 (6.82 - 14.47) | | TC (mmol/l) | 3.04 ± 0.71*** | 3.31 ± 1.14*** | 5.77 ± 1.05 | | TG (mmol/l) | 1.30 ± 0.48 | 1.28 ± 0.51 | 1.41 ± 0.68 | | LDL-C (mmol/l) | 1.76 ± 0.55*** | 1.77 ± 0.93*** | 3.67 ± 0.75 | | Ferritin (µg/l) | 336.6 (196.9 - 1297.5)** | 356.1 (222.2-1346.8) | 278.4 (193.9-646.4) | | Transferin (g/l) | 1.58 (1.46 -1.91)*** | 1.92 (1.40 - 2.47)*** | 2.50 (2.45 - 2.65) | APACHE II score: Acute Physiology and Chronic Health Evaluation II score, CRP: C-reactive protein, PCT: procalcitonin, IL: interleukin, TNF- α : tumour necrosis factor- α , LDL: low density lipoprotein, TC: total cholesterol, TG: triglycerides; SP: septic patients, NS: critically ill patients without sepsis, CON: healthy volunteers; *SP or NS vs. CON, *** p < 0.001, ** p < 0.01, * p < 0.05; *SP vs. NS, *** p < 0.001, ** p < 0.01, ** p < 0.05; one-way ANOVA with Newman-Keuls post test for parametric and Kruskal-Wallis ANOVA for non-parametric analysis. Figure 7: Oxidative stress markers SP: septic patients, NS: non-septic critically ill patients, CON: healthy controls; CD: conjugated dienes, ox-LDL: oxidized LDL, LDL: low density lipoprotein; *SP or NS vs. CON, *** p < 0.001, ** p < 0.01, * p < 0.05; *SP vs. NS, ** p < 0.01, ** p < 0.001; one-way ANOVA with Newman-Keuls post test. Figure 8: Superoxide dismutase and catalase and their cofactors SP: septic patients, NS: non-septic critically ill patients, CON: healthy controls; CuZnSOD: copper-zinc superoxide dismutase, CAT: catalase; *SP or NS vs. CON, *** p < 0.001, ** p < 0.001, * p < 0.05; *SP vs. NS, ** p < 0.01, ** p < 0.001; one-way ANOVA with Newman-Keuls post test. As shown in Figure 7 the levels of oxidative stress markers were increased in both patients group (SP and NS, respectively) compared to CON, however there was no difference between the SP and NS subjects. The activities of CuZnSOD were significantly higher in SP in comparison with NS and with CON. In the contrast to CuZnSOD,
activities of CAT and levels of Zn and Fe were significantly decreased in SP as well as in NS compared to CON (Figure 8). The activities of PON1-A and concentrations of HDL-C and Apo-A1 were depressed in both patient groups compared to CON. In contrast, concentrations of SAA were elevated in SP and NS in comparison with CON (Figure 9). Figure 9: Paraoxonase and parameters connected with PON1 function SP: septic patients, NS: non-septic critically ill patients, CON: healthy controls; PON1-A: paraoxonase – arylesterase activity, HDL-C: high density lipoprotein cholesterol, Apo: apolipoprotein, SAA: serum amyloid A; *SP or NS vs. CON, *** p < 0.0001, ** p < 0.001; *SP vs. NS, * p < 0.05; one-way ANOVA with Newman-Keuls post test. # 4.4. Acute pancreatitis Into our study 13 patients with acute pancreatitis (AP) were included together with 13 sex- and age- healthy controls (CON) and 13 sex- and age- matched controls enrolled from persons that suffered from AP 2 – 3 years ago (PAP). In this study, patients in the course of AP were observed. The blood samples were taken four times – in the first 24 hours of disease (AP1), after 72 hours from disease onset (AP3), on the 5th day (AP5) and on the 10th day (AP10) of disease. Gallstones were found as an etiological factor in 8 cases, alcohol intake in 2 cases, endoscopic retrograde cholangio-pancreatography in one case and 2 cases were idiopathic AP. Eight patients suffered from mild form of AP, four patients from moderate and one patient form critical form of AP. In all studied groups markers of oxidative stress (level of conjugated dienes in precipitated LDL and level of oxidized LDL) and activities of CuZnSOD, CAT, PON1-A and PON1-L were determined. Also the levels of Cu, Zn, Fe, Ca, HDL-C and Apo-A1 were established. In our study increased oxidative stress in AP was confirmed, with higher levels of CD/LDL in all AP samplings compared to CON (p < 0.05) and with increased levels of ox-LDL during the AP with the maximum on the 5^{th} day. Both PON1 activities were depressed in all AP samplings in comparison to CON. The lowest activity of PON1-A was observed on the 5^{th} day. Also the levels of HDL-C and Apo-A1 were decreased in all AP samplings compared to controls. Activities of CuZnSOD and CAT in AP did not differ from those of CON. Positive correlation between both activities of PON1 (r = 0.742, p < 0.01) was found in the AP group (AP1). The activity of PON1-A correlated positively with Apo-A1(r = 0.657, p < 0.05) and with concentration of Ca (r = 0.669, p < 0.05). The activity of PON1-L correlated positively with HDL-C (r = 0.664, p < 0.05) and also with concentration of Ca (r = 0.711, p < 0.05). No significant correlation was found between activity of CuZnSOD and concentrations of Cu or Zn and between CAT and concentration of Fe. More results could be found in the article of Vavrova et al. 2012b (Supplement 5). # 4.5. Pancreatic cancer and chronic pancreatitis The study population consisted of three groups: 50 patients with pancreatic cancer (PC), 50 patients with chronic pancreatitis (CP) and 50 healthy controls (CON). All groups are age and sex matched. Among our 50 patients with PC there were following stage distribution: 9 patients - grade II, 24 patients - grade III, 17 patients - grade IV. Among 50 patients with CP there were 30 patients with severe grade, 17 with moderate, and 3 with mild grade changes in pancreatic morphology. Alcoholic CP was diagnosed in 38 patients, obstructive CP in 5 subjects, and 7 patients experienced idiopathic CP. The activities of CuZnSOD, CAT, PON1 – A and PON1 – L were assessed. As marker of oxidative stress, levels of CD-LDL, Ox-LDL and NT were determined. Furthermore levels of CuZnSOD cofactors – copper and zinc, PON1 cofactor Ca as well as levels of apo-A1, HDL-C and SAA were determined; the concentrations of Fe were also established. Elevated levels of oxidative stress markers ox-LDL/LDL and CD/LDL were observed in CP and PC compared to CON. The concentrations of NT were found to be increased only in CP in comparison with CON. Increased activities of CuZnSOD and decreased activities of CAT, PON1-A and PON1-L were found in PC compared to CP and CON. The activities of PON1 were depressed also in CP in comparison with CON. In activities of CAT and CuZnSOD no differences between CP and CON were observed. Increased levels of Cu, Zn and SAA and decreased levels of Fe, HDL-C and Apo-A1 were observed in PC relative to CON. In the whole group (CP + PC + CON, N = 150) negative correlation between activity of CuZnSOD and concentration of Zn (r = -0.196, p < 0.05) was found. Strong positive correlation between both activities of PON1 (r = 0.806; p < 0.001) was observed. Both activities of PON1 correlated positively with HDL-C (r = 0.453, p < 0.001; r = 0.474, p < 0.001; respectively) and Apo A1 (r = 0.538, p < 0.001; r = 0.515, p < 0.001; respectively) and negatively with SAA (r = -0.278, p < 0.01; r = -0.384, p < 0.001; respectively). The levels of ox-LDL/LDL correlated positively with concentration of SAA (r = -0.414, p < 0.001) and negatively with both activities of PON1 (r = -0.309, p < 0.001; r = -0.358, p < 0.001; respectively). More results could be found in the publication of Kodydková et al. 2013 (Supplement 2) ### 5. Discussion Activities of three different antioxidant enzymes in erythrocytes: CuZnSOD, CAT and PON1 together with markers of oxidative stress in serum – CD-LDL, ox-LDL and NT were established in six different pathophysiological states. Furthermore serum concentrations of enzymatic cofactors such as Cu, Zn, Fe and Ca and levels of some lipid parameters – HDL-C and apo-A1 and in some studies concentrations of SAA were determined. Patients with metabolic syndrome, depressive disorder, sepsis or septic shock, pancreatic carcinoma, chronic and acute pancreatitis were included into the studies dealing with oxidative stress and status of antioxidant defence system. In all these above mentioned diseases increased levels of oxidative stress markers were observed compared to CON. In all studies concentrations of CD-LDL were measured. The levels of ox-LDL were determined in patients with CP, PC, AP and sepsis. Although in all studies increased oxidative stress was observed, the activities of measured antioxidant enzymes were not affected in all these diseases. #### 5.1. Catalase Decreased activities of catalase were observed in patients with sepsis or septic shock, MetS and PC in comparison with CON, while in patients with DD, CP and AP no differences in CAT activity were detected. The results of MetS studies previously published are inconsistent. In accordance with our results Koziróg et al. (2010) found decreased CAT activity in erythrocytes of MetS compared to CON. However no difference in erythrocyte CAT activity between MetS and CON were observed in two other studies (Broncel et al., 2010; Pizent et al. 2010). Cardona et al. (2008a, 2008b) found increased activities of serum CAT in MetS. Furthermore decreased activities of CAT were described in patients bearing only individual components of MetS – obesity (Viroonudomphol, 2000), hypertension (Rodrigo, 2007) or insulin resistance (Shin, 2006). Activities of CAT in erythrocytes were not altered in our set of DD women, in accordance with Bilici et al. (2001). However, Galecki et al. (2009) observed increased activity of CAT in erythrocytes in depressive patients compared to CON, Szuster- Ciesielska et al. (2008) found raised activities of CAT in serum of patients with major depression. In the study of patients with multiple sclerosis Miller et al. (2011) found elevated erythrocyte CAT activity in comparison with controls, regardless of the depression. Ozcan et al. (2004) described decreased CAT activities in erythrocytes of patients with affective disorders. In the studies dealing with activities of CAT in SP the results are contradictory to our ones. Increased CAT activity was found in both erythrocytes and plasma (Warner et al., 1995) and also in serum (Leff et al., 1992 and Leff et al., 1993) of adult SP. Increased serum CAT activity was observed also in neonatal sepsis (Kapoor et al., 2006). Leff et al. (1993) had reported that SP suffering from acute respiratory distress syndrome (ARDS) had higher activities of serum CAT than those SP without ARDS. However Metnitz et al. (1999) did not find any alterations in the erythrocyte CAT activity in patients with ARDS. To the best of my knowledge, there is only one study dealing with the CAT activity in PC and in the contrast to our study, no changes in CAT activity were found (Fukui 2004). No significant difference in CAT activities of CP patients observed in our study, were consistent with results of Fukui et al. (2004). In the contrast, other authors described increased (Szuster-Ciesielska, 2001a, Szuster-Ciesielska, 2001b) and also decreased (Quillot, 2005) CAT activities in patients with CP. In accordance with our results no difference in erythrocyte CAT activity between AP and CON were found in study of Chmiel et al. (2002). It was shown, that serum CAT activity was higher in AP than in CON (Goth, 1989; Góth, 1982; Szuster-Czielska, 2001a; Fukui, 2004). As mentioned above we found either decreased or unchanged activities of erythocyte CAT in observed disaeses. All these diseases were conected with increased oxidative stress as shown with elavated levels of CD-LDL and ox-LDL. Oxidative stress is caused by the imbalance between RONS production and degradation. It could be supposed, that in higher concentration of hydrogen peroxide, also the activity of CAT will be increased. It is known that CAT belongs to the most effective enzymes, the catalactic rate of catalase is among highest of known enzymatic rates (Kirkman et al., 2006). However it was previously shown that long-term exposure of CAT to H_2O_2 leads to the oxidation of the catalase bound NADPH to NADP⁺ and to a decrease in the initial activity of CAT about
to 30 % of the initial activity (Kirkman et al., 1987). # 5.2. Superoxide dismutase Increased activities of CuZnSOD were observed in MetS, DD, PC and SP, while no difference in CuZnSOD activities were found between CP or AP and CON. The raised CuZnSOD activities in the erythrocytes of patients with MetS found in our study may be compared with the results of Dimitrijevic-Sreckovic et al. (2007), who described slightly increased CuZnSOD activities in children with MetS in comparison with obese children without MetS. However the previously described results are not consistent, then in some studies decreased CuZnSOD activity in MetS patients were observed (Koziróg et al., 2010; Broncel et al., 2010) and in study of Pizent et al. (2010) no difference were found between MetS patients and CON. No difference between MetS and CON were also observed in EC-SOD activity (Cardona et al., 2008a). We have found increased CuZnSOD activities in erythrocytes of DD compared with CON, similarly to Sarandol et al. (2007), Bilici et al. (2001), Gałecki et al. (2009) and Kotan et al. (2011). Inconsistent results were published for serum EC-SOD activities. Herken et al. (2007) and Selek et al. (2008) have found decreased, whereas Khanzode et al. (2003) and Szuster-Ciesielska et al. (2008) elevated EC-SOD activities in patients with major depression. In line with our results of the study with patients with sepsis, Warner et al. (1995) found the increased activity of CuZnSOD at the onset of sepsis. On the other hand no differences in CuZnSOD activity between septic and healthy children (Cherian et al., 2007) as well as in patients with ARDS were detected (Metnitz et al., 1999). Also the activities of EC-SOD were found to be elevated in septic neonates compared to CON (Batra et al., 2000; Kapoor et al., 2006). Mühl et al. (2011) did not find any difference in EC-SOD activity between adult septic patients and CON. No significant difference in the activities of CuZnSOD in CP patients and controls, found in our study, were consistent with the study of Quillot et.al. (2005). On the other hand, decreased CuZnSOD activity in CP patients was found in the study of Girish et al. (2011). Inconsistent results concerning serum SOD activities in hereditary and alcohol- related pancreatitis have been published. Some reports have described increased (Mathew et al., 1996) or decreased (Szuster-Ciesielska et al., 2001a) SOD activity and in some studies no difference in SOD activities were found (Quillot et al., 2005, Quilliot et al., 2001). In the study with AP patients we didn't find any difference between CuZnSOD activity in AP and CON. Furthermore the levels of CuZnSOD were stable in the course of AP. The published results about CuZnSOD activity in AP are inconsistent. Some studies observed increased (Chmiel et al., 2002) and some decreased (Abu-Hilal et al., 2006; Park et al., 2003) CuZnSOD activity in patients with mild and/or severe AP. For ECSOD, increased levels in AP were described (Góth et al., 1982; Góth, 1989; Szuster-Czielska et al., 2001a; Thareja et al., 2009). #### 5.3. Paraoxonase The arylesterase activity of PON1 was measured in all observed pathophysiological states and was found to be decreased in all these situations (with the exception of DD) in comparison with CON. In patients with PC, CP and AP also the lactonase activity of PON1 was determined. In PC, CP and AP patients also PON1-L activity was found to be depressed compared with CON. As for paraoxonase activity of PON1, it was established only in the pilot study with septic patients. In septic patients lower activity of PON1-P then in CON was found. The PON1-P activity was not determined more because paraoxon which is used as substrate belongs to carcinogens. The finding of decreased PON1-A in our subjects with MetS is in accordance with other studies (Hashemi et al., 2011; Kappelle et al., 2011; Martinelli et al., 2012). In patients with MetS were also found decreased PON1-P activities (Sentí et al., 2003; Garin et al., 2005; Rizos et al., 2005; Park et al., 2010; Hashemi et al., 2011; Akçay et al., 2011; Martinelli et al., 2012). However in studies of Tabur et al. (2010) and Lagos et al. (2009) equivalent levels of PON1-P and PON1-A in MetS patients and in CON were found. Also in study of Yilmaz et al. (2010) no difference in PON1-P activities between MetS and CON were observed, however MetS patients with coronary artery disease (CAD) had significantly lower activity of PON1-P then MetS patients without CAD (p < 0.008). No difference in PON1-L activities between MetS and CON were observed (Martinelli et al., 2012). No difference in PON1-A activities between DD and CON were found in our study in accordance with study of Sarandol et al. (2006). The published results are not consistent then also decreased levels of PON1-A activities in DD subjects were already described (Barim et al., 2009; Kotan et al., 2011). In all studies dealing with PON1-P activity equal levels of PON1-P were observed in DD subjects and CON (Sarandol et al., 2006; Barim et al., 2009; Kotan et al., 2011). In both our studies, deeling with critically ill SP, we found lower PON1-A activity in in comparison with CON in accordance with the study of Draganov et al. (2010). Also PON1-P activities were found to be decreased in SP compared to CON in our pilot study. Similarly Kedage et al. (2010) observed decreased activity of serum PON1-P in septic patients. We found decreased PON1-A and PON1-L activities in PC patients compared to CON. At the present time, the decreased PON1 activity in PC patients was described only in one study (Akçay et al., 2003a). However decreased PON1-A and/or PON1-P activities were observed in other malignancies such as in breast cancer (Samra et al., 2011), prostate cancer (Samra et al., 2011), lung cancer (Elkiran et al., 2007; Samra et al., 2011), laryngeal cancer (Karaman et al., 2010), endometrial cancer (Arioz et al., 2009), gastroesophageal cancer (Krzystek-Korpacka et al., 2008), gastric cancer (Akçay et al., 2003b) ovarian cancer (Camuzcuoglu et al., 2009), cervix carcinoma (Samra et al., 2011), lymphoma (Samra et al., 2011), high grade gliomas (Kafadar et al., 2006) or meningiomas (Kafadar et al., 2006). There is no study dealing with PON1-L activities in patients with any type of cancer. The activity of PON1-A was established in experimental AP on animal model (36 male Wistar rats). The pancreatitis was induced by retrograde infusion into the biliopancreatic duct of 5% sodium taurocholate (severe AP) or of 1% sodium taurocholate (mild AP). Control animals received an intraductal infusion of saline solution (0.9% NaCl). In this study they found no changes in PON1-A activity 3 hours after AP induction, by contrast after 18 hours after AP induction they observed significant decrease in PON1-A activity in severe AP compared to controls (Franco-Pons et al., 2008). In all studies, where two different activities of PON1 were established, both PON1 activities correlated with each other. PON1-A activities correlated positively with PON1-P activities in septic patients and with PON1-L activities in patients with PC, CP and AP in our studies. Positive correlations between PON1-P and PON1-A were previously described in patients with MetS (Tabur et al., 2010; Hashemi et al., 2011) or with ovarian cancer (Camuzcuoglu et al., 2009). Because PON1 is carried in plasma/serum bound to HDL through Apo-A1, the concentrations of HDL and Apo-A1 in serum and correlations between PON1 activities and concentrations of HDL and Apo-A1 were also established. In accordance with the results of PON1-A activity in patients with MetS, sepsis or septic shock, PC and AP decreased concentrations of both HDL and Apo-A1 were found. Positive correlation between PON1-A activity and HDL concentration was found in patients with DD, MetS and sepsis or septic shock. Positive correlation between PON1-A activity and Apo-A1 concentration was observed in patients with DD, MetS, sepsis or septic shock, CP and AP. It could be hypothesize, that changes in composition of HDL influence the activity and function of PON1. Previously was shown that during the acute phase response, HDL structure is modified. It loses esterified cholesterol, apo-A1, and most of the HDL-associated enzymes including PON1 and that afterwards PON1 is replaced by SAA. These changes lead to the loss of HDL antioxidative properties (Van Leeuwen, 2003). The relationship between SAA concentrations and PON1 activities was also demonstrated in patients with MetS (Kappelle et al., 2011). The levels of SAA were investigated in our studies with CP, PC and SP. Patients with PC and SP had higher concentrations of SAA than CON, while the SAA levels in CP were equal to those of CON. In these studied groups no correlations between PON1 activities and levels of SAA were observed. The finding of increased SAA levels in PC patients in our study is consistent with results of other studies (Yokoi et al., 2005; Firpo et al., 2009). SAA was associated with tumour progression and its metastasizing (Malle et al., 2009). Some authors considered SAA as a tumour marker for PC, however, SAA did not reach appropriate specificity and sensitivity for PC diagnostics (Yokoi et al., 2005; Firpo et al., 2009). Elevated levels of SAA in sepsis were also demonstrated previously (Eras et al., 2011; Cetinkaya et al., 2009; Arnon et al., 2007). Severeal mechanisms are supposed to decrease PON1 activity. It was shown, that increased oxidative stress connected with elevated levels of oxidized LDL cause inactivation of PON1. Oxidized LDL appears to inactivate PON1 through interactions between the enzyme's free sulfhydryl group and oxidized lipids, which are formed during LDL oxidation (Aviram et al., 1999). Hydroperoxides of LA inhibit the PON1 activity through the reaction with sulfhydryl group of its cystein 284 (Tavori et al., 2011). Other reason for the decrease in PON1 activity could be the
glycation of the enzyme, which takes place as was shown in diabetes mellitus (Hedrick et al., 2000). The acute phase response could also lead to the decreased activities of PON1 which are caused by the down-regulation of liver PON1 mRNA (Deakin & James, 2004). In the model of experimental acute pancreatitis was shown that the decrease of PON1 activities is connected with its inhibition by oxidized lipids and higher proteolytic degradation (Franco-Pons et al., 2008). # 6. Conclusions This doctoral thesis was focused on the behaviour of the antioxidant enzymes – catalase, superoxide dismutase and paraoxonase in different pathophysiological states. Activities of these enzymes were investigated in patients with metabolic syndrome, depressive disorder, sepsis, pancreatic cancer, chronic, and acute pancreatitis. In patients with metabolic syndrome activities of all three enzymes were altered in comparison with healthy controls. The erythrocyte activities of CuZnSOD were elevated and activities of CAT in erythrocytes and PON1-A in serum were decreased in the MetS patients. In women with depressive disorders only erythrocyte activities of CuZnSOD were increased compared to controls. Activities of CAT and PON1-A were not altered in DD women. Patients with sepsis had elevated levels of CuZnSOD activities and decreased activities of CAT and PON1-A and PON1-P compared to controls. Patients with pancreatic carcinoma had elevated erythrocyte activities of CuZnSOD and decreased activities of CAT, PON1-A and PON1-L in comparison with controls. In patients with acute and chronic pancreatitis only activities of PON1 were depressed compared to controls. In activities of CAT and CuZnSOD no difference between AP or CP and CON were observed. It was also shown that the different types of paraoxonase activities correlate with each other. Our studies show that in pathophysiological states the activity of CuZnSOD is elevated and activities of catalase and paraoxonase are depressed when changed. ### 7. References - Abu-Hilal M, McPhail MJ, Marchand L, Johnson CD.Malondialdehyde and superoxide dismutase as potential markers of severity in acute pancreatitis. *JOP* 2006; 7(2): 185-92. - Aebi H.: Catalase. In: *Methods of enzymatic analysis*, edited by Bergmeyer HU; Weinheim: Verlag Chemie, 1974; 673-684. - Ahotupa M, Ruutu M, Mantyla E.: Simple methods of quantifying oxidation products and antioxidant potential of low density lipoproteins. *Clin Biochem* 1996; 29: 139-144. - Akçay MN, Polat MF, Yilmaz I, Akçay G.: Serum paraoxonase levels in pancreatic cancer. *Hepatogastroenterology* 2003a; 50 Suppl 2: ccxxv-ccxxvii. - Akçay MN, Yilmaz I, Polat MF, Akçay G.: Serum paraoxonase levels in gastric cancer. Hepatogastroenterology 2003b; 50(Suppl 2): cclxxiii-cclxxv. - Akçay AB, Camsarı A, Ozcan T, Ciçek D, Akkuş N, Seyis S, Cimen B, Celebi B, Döven O, Cin G.: The relationship between paraoxonase-1 activity and coronary artery disease in patients with metabolic syndrome. *Turk Kardiyol Dern Ars* 2011; 39(5): 371-7. - Alberti KG, Zimmet P, Shaw J.: The metabolic syndrome-a new worldwide definition. *Lancet* 2005; 366: 1059-1062. - Almarsson Ö, Sinha A, Gopinath E, Bruice TC.: Mechanism of One-Electron Oxidation of NADPH and Friction of NADPH Bound Catalase. *J Am Chem Soc* 1993; 115: 7093-7102. - American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders, fourth edition. Washington, D.C. 1994. - Arioz DT, Camuzcuoglu H, Toy H, Kurt S, Celik H, Erel O.:_Assessment of serum paraoxonase and arylesterase activity in patients with endometrial cancer. *Eur J Gynaecol Oncol* 2009; 30(6): 679-82. - Arnon S, Litmanovitz I, Regev RH, Bauer S, Shainkin-Kestenbaum R, Dolfin T.: Serum amyloid A: an early and accurate marker of neonatal early-onset sepsis. *J Perinatol* 2007; 27(5): 297-302. - Aviram M, Billecke S, Sorenson R, Bisgaier C, Newton R, Rosenblat M, Erogul J, Hsu C, Dunlop C, La Du B.: Paraoxonase active site required for protection against LDL oxidation involves its free sulfhydryl group and is different from that required for its arylesterase/paraoxonase activities: selective action of human paraoxonase allozymes Q and R. *Arterioscler Thromb Vasc Biol* 1998a; 18(10): 1617-24. - Aviram M, Rosenblat M, Bisgaier CL, Newton RS, Primo-Parmo SL, La Du BN.: Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase. *J Clin Invest* 1998b; 101: 1581–90. - Aviram M, Rosenblat M, Billecke S, et al.: Human serum paraoxonase (PON 1) is inactivated by oxidized low density lipoprotein and preserved by antioxidants. *Free Radic Biol Med* 1999; 26: 892–904. - Banci L, Bertini I, Del Conte R, Fadin R, Mangani S, Viezzoli MS.: The solution structure of a monomeric, reduced form of human copper,zinc superoxide dismutase bearing the same charge as the native protein. *J Biol Inorg Chem* 1999; 4(6): 795-803. - Barim AO, Aydin S, Colak R, Dag E, Deniz O, Sahin I.: Ghrelin, paraoxonase and arylesterase levels in depressive patients before and after citalopram treatment. *Clin Biochem* 2009; 42(10-11): 1076-81. - Batra S, Kumar R: Alterations in antioxidant status during neonatal sepsis. *Annals of Tropical Pediatrics* 2000; 20: 27-33. - Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to polyacrylamide gels. *Anal Biochem* 1971; 44: 276–87. - Billecke S, Draganov D, Counsell R, Stetson P, Watson C, Hsu C, La Du BN.: Human serum paraoxonase (PON1) isozymes Q and R hydrolyze lactones and cyclic carbonate esters. *Drug Metab Dispos* 2000; 28, 1335–1342. - Bilici M, Efe H, Koroglu MA, Uydu HA, Bekaroglu M, Deger O.: Antioxidative enzyme activities and lipid peroxidation in major depression: alterations by antidepressant treatments. *J Affect Disord* 2001; 64: 43-51. - Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ.: Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. *Chest* 1992; 101: 1644–1655 - Broncel M, Kozirog M, Duchnowicz P, Koter-Michalak M, Sikora J, Chojnowska-Jezierska J.: Aronia melanocarpa extract reduces blood pressure, serum endothelin, lipid, and oxidative stress marker levels in patients with metabolic syndrome. *Med Sci Monit* 2010; 16(1): CR28-34. - Camuzcuoglu H, Arioz DT, Toy H, Kurt S, Celik H, Erel O.: Serum paraoxonase and arylesterase activities in patients with epithelial ovarian cancer. *Gynecol Oncol* 2009; 112(3): 481-5. - Cardona F, Túnez I, Tasset I, Montilla P, Collantes E, Tinahones FJ.: Fat overload aggravates oxidative stress in patients with the metabolic syndrome. *Eur J Clin Invest* 2008a; 38: 510-515. - Cardona F, Tunez I, Tasset I, Murri M, Tinahones FJ.: Similar increase in oxidative stress after fat overload in persons with baseline hypertriglyceridaemiawith or without the metabolic syndrome. *Clin Biochem* 2008b; 41: 701–705. - Cetinkaya M, Ozkan H, Köksal N, Celebi S, Hacimustafaoğlu M.: Comparison of serum amyloid A concentrations with those of C-reactive protein and procalcitonin in diagnosis and follow-up of neonatal sepsis in premature infants. *J Perinatol* 2009; 29(3): 225-31. - Chelikani P, Fita I, Loewen PC.: Diversity of structures and properties among catalases. *Cellular and Molecular Life Sciences* 2004; 61: 192-208. - Cherian S, Jameson S, Rajarajeswari Ch: Oxidative stress in sepsis in children. *Indian Journal Med Res* 2007, 125, S: 143-148. - Chmiel B, Grabowska-Bochenek R, Piskorska D, Skorupa A, Cierpka L, Kuśmierski S.: Red blood cells deformability and oxidative stress in acute pancreatitis. *Clin Hemorheol Microcirc* 2002; 27(3-4): 155-62. - Cohen G, Kim M, Ogwu V.: A modified catalase assay suitable for a plate reader and for the analysis of brain cell cultures. *J Neurosci Methods* 1996; 67(1): 53-6. - Crapo JD, Oury T, Rabouille C, Slot JW, Chang LY.: Copper, zinc superoxide dismutase is primarily a cytosolic protein in human cells. *Proc. Natl. Acad. Sci. USA* 1992; 89: 10405–10409. - Davies, H. G., Richter, R. J., Keifer, M., Broomfield, C. A., Sowalla, J. and Furlong, C. E.: The effect of the human serum paraoxonase polymorphism is reversed with diazoxon, soman and sarin. *Nat Genet* 1996; 14: 334–336. - Deakin SP, James RW.: Genetic and environmental factors modulating serum concentrations and activities of the antioxidant enzyme paraoxonase-1. *Clin Sci* (*Lond*) 2004; 107(5): 435-47. - Deisseroth A, Dounce AL.: Catalase: Physical and Chemical Properties, Mechanism of Catalysis, and Physiological Role. *Physiological Reviews* 1970; 50(3): 319-375. - Dimitrijevic-Sreckovic V, Colak E, Djordjevic P, Gostiljac D, Sreckovic B, Popovic S, Canovic F, Ilic M, Obrenovic R, Vukcevic V, Nikolic D, Nisic T, Milic G, Pejcic G: Prothrombogenic factors and reduced antioxidative defense in children and adolescents with pre-metabolic and metabolic syndrome. *Clin Chem Lab Med* 2007; 45: 1140-1144. - Dobkin GB, Glantz MD.: Colorimetric method for the quantitative determination of plasma catalase activity. *Clin Chem* 1958; 4(4): 316-322. - Draganov DI, Stetson PL, Watson CE, Billecke SS, La Du BN.: Rabbit serum paraoxonase 3 (PON3) is a highdensity lipoprotein-associated actionase and protects low density lipoprotein against oxidation. *J Biol Chem* 2000; 275(43): 33435-42. - Draganov DI, Teiber JF, Speelman A, Osawa Y, Sunahara R, La Du BN. Human paraoxonases (PONÍ, P0N2, and P0N3) are lactonases with overlapping and distinct substrate specificities. *J Lipid Res* 2005; 46: 1239-47. - Draganov D, Teiber J, Watson C, Bisgaier C, Nemzek J, Remick D, Standiford T, La Du B.: PON1 and oxidative stress in human sepsis and an animal model of sepsis. *Adv Exp Med Biol* 2010; 660: 89-97. - Eckerson HW, Wyte CM, La Du BN.: The human serum paraoxonase/arylesterase polymorphism. *Am J
Hum Genet* 1983; 35: 1126-1138. - Elkiran ET, Mar N, Aygen B, Gursu F, Karaoglu A, Koca S.: Serum paraoxonase and arylesterase activities in patients with lung cancer in a Turkish population. *BMC Cancer* 2007; 7: 48. - Eras Z, Oğuz S, Dizdar EA, Sari FN, Dilmen U.: Serum amyloid-A levels in neonatal necrotizing enterocolitis. *J Clin Lab Anal* 2011; 25(4): 233-7. - Estin ML, Stoltz DA, Zabner J.: Paraoxonase 1, quorum sensing, and P. aeruginosa infection: a novel model. *Adv Exp Med Biol*. 2010; 660: 183-93. - Ferré N, Camps J, Prats E, Vilella E, Paul A, Figuera L.: Serum paraoxonase activity: a new additional test for the improved evaluation of chronic liver damage. *Clin Chem* 2002; 48: 261 - Firpo MA, Gay DZ, Granger SR, Scaife CL, DiSario JA, Boucher KM, Mulvihill SJ.: Improved diagnosis of pancreatic adenocarcinoma using haptoglobin and serum amyloid A in a panel screen. *World J Surg* 2009; 33(4): 716-22. - Fielden EM, Roberts PB, Bray RC, Lowe DJ, Mautner GN, Rotilio G, Calabrese L.: Mechanism of action of superoxide dismutase from pulse radiolysis and electron paramagnetic resonance. Evidence that only half the active sites function in catalysis. *Biochem J* 1974; 139(1): 49-60. - Flohè L, Otting F.: Superoxide dismutase assays. *Methods Enzymol* 1984; 105: 93–104. - Forman HJ, Fridovich I. On the stability of bovine superoxide dismutase. The effects of metals. *J Biol Chem* 1973;248: 2645-2649. - Franco-Pons N, Marsillach J, Joven J, Camps J, Closa D.: Serum paraoxonase undergoes inhibition and proteolysis during experimental acute pancreatitis. *J Gastrointest Surg* 2008; 12(5): 891-9. - Fukui M, Kanoh M, Takamatsu Y, Arakawa Y.: Analysis of serum catalase activities in pancreatic diseases. *J Gastroenterol* 2004; 39: 469-74. - Gagnon M, Hunting WM, Esselen WB.: New method for catalase Determination. *Anal Chem* 1959; 31(1): 144-146. - Gaidukov L, Tawfik D.: The development of human sera tests for HDL-bound serum PON1 and its lipolactonase activity. *J Lipid Res* 2007; 48: 1637–46. - Gałecki P, Szemraj J, Bieńkiewicz M, Florkowski A, Gałecka E.: Lipid peroxidation and antioxidant protection in patients during acute depressive episodes and in remission after fluoxetine treatment. *Pharmacol Rep* 2009; 61(3): 436-47. - Garin MC, Kalix B, Morabia A, James RW.: Small, dense lipoprotein particles and reduced paraoxonase-1 in patients with the metabolic syndrome. *J Clin Endocrinol Metab* 2005; 90: 2264-2269. - Girish BN, Rajesh G, Vaidyanathan K, Balakrishnan V. Assessment of oxidative status in chronic pancreatitis and its relation with zinc status. *Indian J Gastroenterol* 2011; 30(2): 84-8. - Goldblith SA, Proctor BE.: Photometric determination of catalase activity. *J Biol Chem* 1950; 705-709. - Góth L, Mészáros I.: Polarographic determination of serum catalase activity. *Hung Sci Instr* 1975; 32: 13–16. - Góth L, Mészáros I, Németh H.: Serum catalase enzyme activity in acute pancreatitis. *Clin Chem* 1982; 28(9): 1999-2000. - Góth L.: Origin of serum catalase activity in acute pancreatitis. *Clin Chim Acta* 1989; 186(1): 39-44. - Halliwell B, Gutteridge JMC.: Free radicals in biology and medicine. Fourth edition, New York: Oxford University Press Inc. 2007; P.: 123-124 and 347-348. - Harel M, Aharoni A, Gaidukov L, Brumshtein B, Khersonsky O, Meged R, *et al.* Structure and evolution of the serum paraoxonase family of detoxifying and antiatherosclerotic enzymes. *Nat Struet Mol Biol* 2004; 11: 412-9. - Harel M, Brumshtein B, Meged R, Dvir H, Ravelli RB, McCarthy A, e/a/. 3-D structure of serum paraoxonase I sheds light on its activity, stability, solubility and crystallizability. *Arh Hig Rada Toksikol* 2007; 55: 347-53. - Hart PJ, Liu H, Pellegrini M, Nersissian AM, Gralla EB, Valentine JS, Eisenberg D.: Subunit asymmetry in the three-dimensional structure of a human CuZnSOD mutant found in familial amyotrophic lateral sclerosis. *Protein Sci* 1998; 7(3): 545-55. - Hashemi M, Kordi-Tamandani DM, Sharifi N, Moazeni-Roodi A, Kaykhaei MA, Narouie B, Torkmanzehi A.: Serum paraoxonase and arylesterase activities in - metabolic syndrome in Zahedan, southeast Iran. Eur J Endocrinol 2011; 164(2): 219-22. - Hasselwander O, McNaster D, Fogarty DG, Peter Maxwell A, Paul Nicholls D, Young IS.: Serum paraoxonase and platelet-activating factor acetylhydrolase in chronic renal failure. *Clin Chem* 1998; 44: 179–81. - Heck DE, Vetrano AM, Mariano TM, Laskin JD.: UVB Light Stimulates Production of Reactive Oxygen species. *The Journal of biological chemistry* 2003; 278(25): 22432-22436. - Hedrick CC, Thorpe SR, Fu MX, Harper CM, Yoo J, Kim SM, Wong H, Peters AL.: Glycation impairs high-density lipoprotein function. *Diabetologia* 2000, 43: 312–320. - Herken H, Gurel A, Selek S, Armutcu F, Ozen ME, Bulut M, Kap O, Yumru M, Savas HA, Akyol O.: Adenosine deaminase, nitric oxide, superoxide dismutase, and xanthine oxidase in patients with major depression: impact of antidepressant treatment. *Arch Med Res* 2007; 38: 247-252. - Higashi T, Yagi M, Hirai H.: Immunochemical studies on catalase. I. Assay of catalase in erythrocytes and liver. *J Biochem* 1961; 49: 707-12. - Hillar A, Nicholls P.: A mechanism for NADPH inhibition of catalase compound II formation. *FEBS* 1992; 314(2): 179-182. - Jakubowski H.: Calcium-dependent human serum homocysteine thiolactone hydrolase. A protective mechanism against protein N-homocysteinylation. *J Biol Chem* 2000; 275: 3957–3962. - James RW, Deakin SP.: The importance of high-density lipoproteins for paraoxonase-1 secretion, stability, and activity. *Free Radic Biol Med* 2004, 37: 1986-1994. - Johansson LH, Borg LAH.: A spectrophotometric method for determination of catalase activity in small tissue samples. *Anal biochem* 1988; 174(1): 331-336. - Josse D, Xie W, Renault F, Rochu D, Schopfer LM, Masson P, Lockridge O.: Identification of residues essential for human paraoxonase (PON1) arylesterase/organophosphatase activities. *Biochemistry* 1999; 38, 2816–2825. - Josse D, Lockridge O, Xie W, Bartels CF, Schopfer LM, Masson P.: The active site of human paraoxonase (PON1). *J Appl Toxicol* 2001; 21, S7–S11. - Kafadar AM, Ergen A, Zeybek U, Agachan B, Kuday C, Isbir T.: Paraoxonase 192 gene polymorphism and serum paraoxonase activity in high grade gliomas and meningiomas. *Cell Biochem Funct* 2006; 24(5): 455-60. - Kapoor K, Basu S, Das BK, Bhatia BD.: Lipid peroxidation and antioxidants in neonatal septicaemia. *J Trop Pediatr* 2006; 52(5): 372-5. - Kappelle PJ, Bijzet J, Hazenberg BP, Dullaart RP.: Lower serum paraoxonase-1 activity is related to higher serum amyloid a levels in metabolic syndrome. *Arch Med Res* 2011; 42(3): 219-25. - Karaman E, Uzun H, Papila I, Balci H, Ozdilek A, Genc H, Yanardag H, Papila C.: Serum paraoxonase activity and oxidative DNA damage in patients with laryngeal squamous cell carcinoma. *J Craniofac Surg* 2010; 21(6): 1745-9. - Kedage V, Muttigi MS, Shetty MS, Suvarna R, Rao SS, Joshi C, Prakash M.: Serum paraoxonase 1 activity status in patients with liver disorders. *Saudi J Gastroenterol* 2010; 16(2): 79-83. - Khanzode SD, Dakhale GN, Khanzode SS, Saoji A, Palasodkar R. Oxidative damage and major depression: the potential antioxidant action of selective serotonin reuptake inhibitors. *Redox Rep* 2003; 8: 365-370. - Kirkman HN, Gaetani GF.: Catalase a tetrameric enzyme with four tightly bound molecules of NADPH. *Proc Natl Acad Sci* 1984; 81: 4343-4347. - Kirkman HN, Galiano S, Gaetani GF.: The function of Catalase-bound NADPH. *The journal of biological Chemistry* 1987; 262(2): 660-666. - Kirkman HN, Rolfo M, Ferraris AM, Gaetani GF.: Mechanisms of Protection of Catalase by NADPH. *The journal of biological Chemistry* 1999; 274(20): 13908-13914. - Kirkman HN, Gaetani GF.: Mammalian catalase: venerable enzyme with new mysteries. *TRENDS in Biochemical Sciences* 2006; 32(1): 44-50. - Klug-Roth D, Fridovich I, Rabani J.: Pulse radiolytic investigations of superoxide catalyzed disproportionation. Mechanism for bovine superoxide dismutase. *J Am Chem Soc.* 1973; 95(9): 2786-90. - Knaus WA, Draper EA, Wagner DP, Zimmerman JE.: APACHE II: a severity of disease classification system. *Crit Care Med* 1985; 13: 818–829. - Ko TP, Safo MK, Musayev FN, Di Salvo ML, Wang C, Wu SH, Abraham DJ.: Structure of human erythrocyte catalase. *Acta Crystallogr D Biol Crystallogr* 2000; 56(2): 241-5. - Kodydková J, Vávrová L, Zeman M, Jirák R, Macásek J, Stanková B, Tvrzická E, Zák A.: Antioxidative enzymes and increased oxidative stress in depressive women. *Clin Biochem* 2009; 42: 1368-74. - Kodydkova J, Vavrova L, Stankova B, Macasek J, Krechler T, Zak A.: Changes in antioxidants and oxidative stress markers in pancreatic diseases. *Pancreas* 2013; 42(4):614-21. - Kotan VO, Sarandol E, Kirhan E, Ozkaya G, Kirli S.: Effects of long-term antidepressant treatment on oxidative status in major depressive disorder: a 24-week follow-up study. *Prog Neuropsychopharmacol Biol Psychiatry* 2011; 35(5): 1284-90. - Koziróg M, Poliwczak AR, Duchnowicz P, Koter-Michalak M, Sikora J, Broncel M.: Melatonin treatment improves blood pressure, lipid profile, and parameters of oxidative stress in patients with metabolic syndrome. *J Pineal Res* 2011; 50(3): 261-6. - Krzystek-Korpacka M, Boehm D, Matusiewicz M, Diakowska D, Grabowski K, Gamian A.: Paraoxonase 1 (PON1) status in gastroesophageal malignancies and associated paraneoplastic syndromes connection with inflammation. *Clin Biochem* 2008; 41(10-11): 804-11. - Kuo CL, La Du BN.: Comparison of purified human and rabbit serum paraoxonases. *Drug Metab Dispos* 1995; 23: 935–944. - Kuo CL, La Du BN.: Calcium binding by human and rabbit serum paraoxonases. Structural stability and enzymatic activity. *Drug Metab. Dispos.* 1998; 26, 653–60. - Lagos KG, Filippatos TD, Tsimihodimos V, Gazi IF, Rizos C, Tselepis AD, Mikhailidis DP, Elisaf MS.: Alterations in the high density lipoprotein phenotype and HDL-associated enzymes in subjects with
metabolic syndrome. *Lipids* 2009; 44(1): 9-16. - Lamoureux G., Bourdeau S., Dubois G., Charbonneau R, Gagnon M, Grad BR.: A rapid method for determining catalase in human blood. *Clin chim acta* 1987; 167: 105-111. - Leff JA, Parsons PE, Day CE, Moore EE, Moore FA, Oppegard MA, Repine JE.: Increased serum catalase activity in septic patients with the adult respiratory distress syndrome. *Am Rev Respir Dis* 1992, 146: 985-989. - Leff JA, Parsons PE, Day CE, Taniguchi N, Jochum M, Fritz H, Moore FA, Moore EE, McCord JM, Repine JE.: Serum antioxidants as predictors of adult respiratory distress syndrome in patients with sepsis. *Lancet* 1993, 341: 777-780. - Loew O.: A new enzyme of general occurrence in organisms. A preliminary note. *Science* 1900; 11: 701-702. - Macásek J, Zeman M, Vecka M, Vávrová L, Kodydková J, Tvrzická E, Zák A.: Reactive oxygen and nitrogen species in the clinical medicine. *Cas Lek Cesk* 2011; 150(8): 423-32. - Macharia M, Hassan MS, Blackhurst D, Erasmus RT, Matsha TE.: The growing importance of PON1 in cardiovascular health: a review. *J Cardiovasc Med* (Hagerstown). 2012; 13(7): 443-53. - Mackness MI, Arrol S, Durrington PN.: Paraoxonase prevents accumulation of lipoperoxides in low-density lipoprotein. *FEBS Lett* 1991; 286, 152–154. - Mackness MI, Arrol S, Abbot C, Durrington PN.: Protection of low-density lipoprotein against oxidative modification by high-density lipoprotein associated paraoxonase. *Atherosclerosis* 1993; 104: 129–135. - Malle E, Sodin-Semrl S, Kovacevic A.: Serum amyloid A: an acute-phase protein involved in tumour pathogenesis. *Cell Mol Life Sci* 2009; 66(1): 9-26. - Marklund S, Marklund G.: Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. *Eur J Biochem* 1974; 47(3): 469-74. - Marklund S.: Spectrophotometric study of spontaneous disproportionation of superoxide anion radical and sensitive direct assay for superoxide dismutase. *J Biol Chem* 1976; 251(23): 7504-7. - Martinelli N, Micaglio R, Consoli L, Guarini P, Grison E, Pizzolo F, Friso S, Trabetti E, Pignatti PF, Corrocher R, Olivieri O, Girelli D.: Low levels of serum paraoxonase activities are characteristic of metabolic syndrome and may influence the metabolic-syndrome-related risk of coronary artery disease. *Exp Diabetes Res* 2012; Epub 2011 Sep 22. - Maté MJ, Ortíz-Lombardía M, Marina A, Fita I.: Crystallization and preliminary structural results of catalase from human erythrocytes. *Acta Crystallographica Section D* 1999; D55: 1066-1068. - Mathew P, Wyllie R, Van Lente F, Steffen RM, Kay MH. Antioxidants in hereditary pancreatitis. *Am J Gastroenterol* 1996; 91(8): 1558-62. - McCord JM, Fridovich I.: Superoxide dismutase: an enzymatic function for erythrocuprein (hemocuprein). *J Biol Chem* 1969; 244(22): 6049-6055. - Metnitz PG, Bartens C, Fischer M, Fridrich P, Steltzer H, Druml W.: Antioxidant status in patients with acute respiratory distress syndrome. *Intensive Care Med* 1999, 25: 180-185. - Misra HP, Fridovich I.: The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. *J Biol Chem* 1972; 247(10): 3170-5. - Mueller S, Riedel HD, Stremmel W.: Determination of catalase activity at physiological hydrogen peroxide concentrations. *Anal Biochem* 1997; 245(1): 55-60. - Mühl D, Woth G, Drenkovics L, Varga A, Ghosh S, Csontos C, Bogár L, Wéber G, Lantos J.: Comparison of oxidative stress & leukocyte activation in patients with severe sepsis & burn injury. *Indian J Med Res* 2011; 134: 69-78. - Nguyen SD, Hung ND, Cheon-Ho P Ree KM, Dai-Eun S.: Oxidative inactivation of lactonase activity of purified human paraoxonase 1 (PON1). *Biochim Biophys Acta* 2009; 790: 155-60. - Novak F, Vavrova L, Kodydkova J, Novak F Sr, Hynkova M, Zak A, Novakova O.: Decreased paraoxonase activity in critically ill patients with sepsis. *Clin Exp Med* 2010; 10: 21-25. - Olson LP, Bruice TC.: Electron Tunneling and ab Initio Calculations Related to One-Electron Oxidation of NADPH Bound to Catalase. *Biochemistry* 1995; 34: 7335-7347. - Ou P, Wolff SP.: A discontinuous method for catalase determination at 'near physiological' concentrations of H2O2 and its application to the study of H2O2 fluxes within cells. *J Biochem Biophys Methods* 1996; 31(1-2): 59-67. - Ozcan ME, Gulec M, Ozerol E, Polat R, Akyol O.: Antioxidant enzyme activities and oxidative stress in affective disorders. *Int Clin Psychopharmacol* 2004; 19: 89-95. - Park BK, Chung JB, Lee JH, Suh JH, Park SW, Song SY, Kim H, Kim KH, Kang JK.: Role of oxygen free radicals in patients with acute pancreatitis. *World J Gastroenterol* 2003; 9(10): 2266-9. - Park KH, Shin DG, Kim JR, Hong JH, Cho KH.: The functional and compositional properties of lipoproteins are altered in patients with metabolic syndrome with increased cholesteryl ester transfer protein activity. *Int J Mol Med* 2010; 25(1): 129-36. - Perla-Kaján J, Jakubowski H. Paraoxonase 1 protects against protein N-homocysteinylation in humans. *FASEB J* 2010; 24: 31-6. - Pizent A, Pavlovic M, Jurasovic J, Dodig S, Pasalic D, Mujagic R.: Antioxidants, trace elements and metabolic syndrome in elderly subjects. *J Nutr Health Aging* 2010; 14(10): 866-71. - Potter SZ, Zhu H, Shaw BF, Rodriguez JA, Doucette PA, Sohn SH, Durazo A, Faull KF, Gralla EB, Nersissian AM, Valentine JS.: Binding of a Single Zinc Ion to One Subunit of Copper-Zinc Superoxide Dismutase Apoprotein Substantially Influences the Structure and Stability of the Entire Homodimeric Protein. *J Am Chem Soc* 2007; 129: 4575-4583. - Précourt LP, Amre D, Denis MC, Lavoie JC, Delvin E, Seidman E, Levy E.: The three-gene paraoxonase family: physiologic roles, actions and regulation. *Atherosclerosis* 2011; 214(1): 20-36. - Putnam ChD, Arvai AS, Bourne Y, Tainer JA.: Active and inhibited Human Catalase Structures: Ligand and NADPH Binding and Catalytic Mechanism. *Journal of Molecular Biology* 2000; 296: 295-309. - Rai N, Rajat A, Ramkumar K, Sreenivasan V, Dabholkar S, Venkatesh KV, Thattai M.: Prediction by promoter logic in bacterial quorum sensing. *Plos Comput Biol* 2012; 8(1): EPUB:e1002361. - Quan F, Korneluk RG, Tropak MB, Gravel RA.: Isolation and characterization of human catalase gene. *Nucleic Acid Research* 1986; 14(13): 5321-5335. - Quilliot D, Dousset B, Guerci B, Dubois F, Drouin P, Ziegler O. Evidence that diabetes mellitus favors impaired metabolism of zinc, copper, and selenium in chronic pancreatitis. *Pancreas* 2001; 22(3): 299-306. - Quillot D, Walters E, Bontze JP, Fruchart JC, Duriez P, Ziegler O.: Diabetes mellitus worsens antioxidant status in pateints with chronic pancreatitis. *Am J Clin Nutr* 2005; 81: 1117-25. - Rainwater DL, Rutherford S, Dyer TD, Rainwater ED, Cole SA, Vandeberg JL, Almasy L, Blangero J, Maccluer JW, Mahaney MC.: Determinants of variation in human serum paraoxonase activity. *Heredity* (Edinb) 2009; 102(2): 147-54. - Rajkovic MG, Rumora L, Barisic K.: The paraoxonase 1, 2 and 3 in humans. *Biochem Med (Zagreb)* 2011; 21(2): 122-30. - Rigo A, Rotilio G.: Simultaneous Determination of Superoxide Dismutase and Catalase in biological Materials by Polarography. *Analytical biochemistry* 1977; 81: 157-166. - Rizos E, Tambaki AP, Gazi I, Tselepis AD, Elisaf M.: Lipoprotein-associated PAF-acetylhydrolase activity in subjects with the metabolic syndrome. *Prostagland Leuk Essent Fatty* 2005; 72: 203-209. - Rodrigo R, Prat H, Passalacqua W, Araya J, Guichard C, Bächler JP.: Relationship between oxidative stress and essential hypertension. *Hypertens Res* 2007; 30: 1159-1167. - Rotilio G, Calabrese L, Bossa F, Barra D, Agrò AF, Mondovì B.: Properties of the apoprotein and role of copper and zinc in protein conformation and enzyme activity of bovine superoxide dismutase. *Biochemistry* 1972a; 11(11): 2182-7. - Rotilio G, Morpurgo L, Giovagnoli C, Calabrese L, Mondovì B.: Studies of the metal sites of copper proteins. Symmetry of copper in bovine superoxide dismutase and its functional significance. *Biochemistry* 1972b; 11(11): 2187-92. - Rovira C.: Structure, Protonation State and Dynamics of Catalase Compound II. *Chem Phys Chem* 2005; 6: 1820-1826. - Safo MK, Musayev FN, Wu SH, Abraham DJ, Ko TP.: Structure of tetragonal crystals of human erythrocyte catalase. *Acta Crystallographica Section D* 2001; D57: 1-7. - Samra ZQ, Pervaiz S, Shaheen S, Dar N, Athar MA.: Determination of oxygen derived free radicals producer (xanthine oxidase) and scavenger (paraoxonase1) enzymes and lipid parameters in different cancer patients. *Clin Lab* 2011; 57(9-10): 741-7. - Sarandol A, Sarandol E, Eker SS, Karaagac EU, Hizli BZ, Dirican M, Kirli S.: Oxidation of apolipoprotein **B**-containing lipoproteins and serum paraoxonase/arylesterase activities in depressive disorder. major Prog Neuropsychopharmacol Biol Psychiatry 2006; 30(6): 1103-8. - Sarandol A, Sarandol E, Eker SS, Erdinc S, Vatansever E, Kirli S. Major depressive disorder is accompanied with oxidative stress: short-term antidepressant treatment does not alter oxidative-antioxidative systems. *Hum Psychopharmacol* 2007; 22: 67-73. - Selek S, Savas HA, Gergerlioglu HS, Bulbul F, Uz E, Yumru M.: The course of nitric oxide and superoxide dismutase during treatment of bipolar depressive episode. *J Affect Disord* 2008; 107(1-3): 89-94. - Sentí M, Tomás M, Fitó M, Weinbrenner T, Covas MI, Sala J, Masiá R, Marrugat J.: Antioxidant paraoxonase 1 activity in the metabolic syndrome. *Journal of Clinical Endocrinology and Metabolism* 2003; 88(11): 5422–5426. - Shin MJ, Park E.: Contribution of insulin resistance to reduced antioxidant enzymes and vitamins in nonobese Korean children. *Clin Chim Acta* 2006; 365: 200-205. - Siqueira AJ, Remião JO, Azevedo AM, Azambuja CR.: A gasometric method to determine erythrocyte catalase activity. *Braz J Med Biol Res* 1999; 32(9): 1089-94. - Sorenson RC, Bisgaier CL, Aviram M, Hsu C, Billecke S, La Du BN.: Human serum
araoxonase/arylesterase's retained hydrophobic N-terminal leader sequence associates with HDLs by binding phospholipids: apolipoprotein A-I stabilizes activity. *Arterioscler Thromb Vase Biol* 1999; 19: 2214-25. - Switala J, Loewen PC.: Diversity of properties among catalases. *Archives of Biochemistry and Biophysics* 2002; 401: 145-154. - Szuster-Ciesielska A, Daniluk J, Kandefer-Szerszeń M.: Oxidative stress in blood of patients with alcohol-related pancreatitis. *Pancreas* 2001a; 22: 261-6. - Szuster-Ciesielska A, Daniluk J, Kandefer-Szerszeń M.: Alcohol-related cirrhosis with pancreatitis. The role ofoxidative stress in the progression of the disease. *Arch Immunol Ther Exp* 2001b; 49(2): 139-46. - Szuster-Ciesielska A, Slotwinska M, Stachura A, Marmurowska-Michałowska H, Dubas-Slemp H, Bojarska-Junak A, Kandefer-Szerszeń M.: Accelerated apoptosis of blood leukocytes and oxidative stress in blood of patients with major depression. Prog.Neuropsychopharmacol. *Biol Psychiatry* 2008; 32: 686-694. - Štípek S, Crkovská J, Dvořák V.: Spectrophotometric assay for superoxide dismutase controlled by PC programme developed in LabWindows system. *Klin Biochem Metab* 1995; 93-97. - Tabur S, Torun AN, Sabuncu T, Turan MN, Celik H, Ocak AR, Aksoy N.: Non-diabetic metabolic syndrome and obesity do not affect serum paraoxonase and arylesterase activities but do affect oxidative stress and inflammation. *European Journal of Endocrinology* 2010; 162: 535–541. - Tavori H, Aviram M, Khatib S, Musa R, Mannheim D, Karmeli R, Vaya J.: Human carotid lesion linoleic acid hydroperoxide inhibits paraoxonase 1 (PON1) activity via reaction with PON1 free sulfhydryl cystein 284. *Free Radical Biology & Medicine* 2011; 50: 148-156. - Thareja S, Bhardwaj P, Sateesh J, Saraya A. Variations in the levels of oxidative stress and antioxidants during early acute pancreatitis. *Trop Gastroenterol* 2009; 30(1): 26-31. - Valentine JS, Doucette PA, Potter SZ.: Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. *Annu Rev Biochem* 2005; 74: 563–93. - Van Leeuwen HJ, Heezius EC, Dallinga GM, van Strijp JA, Verhoef J, van Kessel KP.: Lipoprotein metabolism in patients with severe sepsis. *Crit Care Med* 2003; 31: 1359-1366. - Vavrova L, Kodydkova J, Zeman M, Dusejovska M, Macasek J, Stankova B, Tvrzicka E, Zak A.: Altered Activities of Antioxidant Enzymes in Patients with Metabolic Syndrome. *Obesity Facts* 2013;6(1):39-47. - Vávrová L, Kodydková J, Macášek J, Ulrych J, Žák A.: Oxidační stres v průběhu akutní pankreatitidy. *Klin biochem metab* 2012; 20(41): 188-193. - Viroonudomphol D, Pongpaew P, Tungtrongchitr R, Phonrat B, Supawan V, Vudhivai N, Schelp FP.: Erythrocyte antioxidant enzymes and blood pressure in relation to overweight and obese Thai in Bangkok. *Southeast Asian J Trop Med Public Health* 2000; 31: 325-334. - von Euler H, Josephson K.: Über Katalase I. *Justus Liebigs Annalen der Chemie* 1927; 452: 158-181. - Warner A, Bencosme A, Healy D, Verme C.: Prognostic role of antioxidant enzymes in sepsis: preliminary assessment. *Clin Chem* 1995; 41(6): 867-71. - Watson AD, Berliner JA, Hama SY, La Du BN, Faull KF, Fogelman AM, Navab M.: Protective effect of high density lipoprotein associated paraoxonase. Inhibition of the biological activity of minimally oxidised low density lipoprotein. *J Clin Invest* 1995; 96, 2882–2891. - Wheeler CR, Salzman JA, Elsayed NM, Omaye ST, Korte DW.: Automated assays for superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity. *Anal Biochem.* 1990; 184(2): 193-9. - Wieland H, Seidel D.: A simple specific method for precipitation of low density lipoproteins. *J Lipid Res* 1983; 24: 904-909. - Wu M, Lin Z, Wolfbeis OS.: Determination of the activity of catalase using a europium(III)-tetracycline-derived fluorescent substrate. *Anal Biochem* 2003; 320(1): 129-35. - Yamagata S, Seino S, Nakao T.: Studies on blood and plasma catalase. I A new micromethod of estimation of blood and plasma catalase. *Tohoku J Exp Med* 1952; 57(1): 85-92. - Yilmaz H, Sayar N, Yilmaz M, Gurkan U, Sesal C, Tosu R, Cakmak N, Erer B, Oz D, Ciloglu F, Bolca O.: Serum paraoxonase 1 activity in women with metabolic syndrome. *Kardiol Pol* 2010; 68(11): 1219-24. - Yilmaz N.: Relationship between paraoxonase and homocysteine: crossroads of oxidative diseases. *Arch Med Sci* 2012; 8(1): 138-53. - Yokoi K, Shih LC, Kobayashi R, Koomen J, Hawke D, Li D, Hamilton SR, Abbruzzese JL, Coombes KR, Fidler IJ.: Serum amyloid A as a tumor marker in sera of nude mice with orthotopic human pancreatic cancer and in plasma of patients with pancreatic cancer. *Int J Oncol* 2005; 27(5): 1361-9. - Zámocký M, Koller F.: Underdstanding the structure and function of catalases: clues from molecular evolution and in vitro mutagenesis. *Progress in Biophysics and Molecular Biology* 1999; 72: 19-66. - Zelko IN, Mariani TJ, Folz RJ.: Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. *Free Radic Biol Med* 2002; 33(3): 337-49. ## 8. Publications ## A. With IF - 1) **Vávrová L**, Kodydková J, Zeman M, Dušejovská M, Macášek J, Staňková B, Tvrzická E, Žák A.: *Altered Activities of Antioxidant Enzymes in Patients with Metabolic Syndrome*. Obesity Facts. 2013;6(1):39-47. (**IF: 1.856**, 2011) - 2) Kodydková J, **Vávrová L**, Staňková B, Macášek J, Krechler T, Žák A.: *Changes in antioxidants and oxidative stress markers in pancreatic diseases*. Pancreas. 2013; 42(4):614-21. (**IF: 2.386**, 2011). - 3) Vecka M, Dušejovská M, Staňková B, Zeman M, Vávrová L, Kodydková J, Slabý A, Žák A.: N-3 polyunsaturated fatty acids in the treatment of atherogenic dyslipidemia. Neuro Endocrinol Lett. 2012;33 Suppl 2:87-92. (**IF: 1.296**, 2011) - 4) Vecka M, Jáchymová M, **Vávrová L**, Kodydková J, Macášek J, Urbánek M, Krechler T, Slabý A, , Dušková J, Muravská A, Žák A.: Paraoxonase-1 (PON1) status in pancreatic cancer: relation to clinical parameters. Folia Biologica. 2012; 58(6):231-7. (**IF: 0.924**) - 5) Novák F, **Vávrová L**, Kodydková J, Novák F Sr, Hynková M, Žák A, Nováková O.: *Decreased paraoxonase activity in critically ill patients with sepsis*. Clin Exp Med. 2010; 10(1):21-5. (**IF: 1.6**) - 6) Kodydková J, **Vávrová L**, Zeman M, Jirák R, Macášek J, Staňková B, Tvrzická E, Žák A.: *Antioxidative enzymes and increased oxidative stress in depressive women*. Clin Biochem. 2009; 42(13-14):1368-74. (**IF: 2.019**) - 7) Zeman M, Stopka P, Vecka M, Žák A, Písaříková A, Jirák R, Staňková B, Vávrová L, Kodydková J, Krizová J, Macášek J: *Electron Spin Resonance Determination of Hydroxyl and Nitroxide Radicals in Depressions and Hyperlipidemia*. Chemické listy, 2009; 103(8):667-671. (**IF: 0.717**) - 8) Žák A, Tvrzická E, Vecka M, Jáchymová M, Duffková L, Staňková B, Vávrová L, Kodydková J, Zeman M.: Severity of metabolic syndrome unfavorably influences oxidative stress and fatty acid metabolism in men. Tohoku J Exp Med. 2007; 212(4):359-71. (IF: 1.133) #### **B.** Without IF - 1) **Vávrová** L, Kodydková J, Macášek J, Ulrych J, Žák A.: *Oxidační stres v průběhu akutní pankreatitidy*. Klin biochem metab. 2012; 20(41): 188-193. - 2) Kocík M, Zimovjanová M, Petruželka L, Kodydková J, Vávrová L, Žák A.: Oxidative stress after anthracycline therapy in patients with solid tumors. Cas Lek Cesk. 2012;151(10):463-7. - 3) Macášek J, Zeman M, Vecka M, **Vávrová L**, Kodydková J, Tvrzická E, Žák A: *Reaktivní kyslíkové a dusíkové sloučeniny v klinické medicíně*. Cas Lek Cesk. 2011; 150:423-432. - 4) Novák F, Borovská J, Vecka M, **Vávrová L**, Kodydková J, Mráčková M, Novák F Sr, Nováková O, Žák A.: *Alterations in fatty acid composition of plasma and erythrocyte lipids in critically ill patients during sepsis*. Cas Lek Cesk. 2010; 149(7):324-31. Czech. - 5) Zeman M, Jirák R, Žák A, Jáchymová M, Vecka M, Tvrzická E, **Vávrová L**, Kodydková J, Staňková B.: *Features of metabolic syndrome in patients with depressive disorder*. Cas Lek Cesk. 2009; 148(7):309-14. Czech. - 6) Žák A, Vecka M, Tvrzická E, Jáchymová M, Dušejovská M, Janíková L, Staňková B, Vávrová L, Kodydková J, Zeman M.: Composition of the nonesterified fatty acids and lipid peroxidation in metabolic syndrome. Cas Lek Cesk. 2007; 146(5):484-91. Czech. #### C. Under review Vávrová L, Kodydková J, Mráčkova M, Novák F, sr., Nováková O, Žák A, Novák F.: Changes in antioxidant status and inflammatory response markers persist long after clinical recovery from severe sepsis. 2012 # 9. Abstracts on the topics of the doctoral thesis - Kodydková J., Vávrová L., Staňková B., Macášek J., Krechler T., Žák A.: Změny aktivit antioxidačních enzymů a markerů oxiadčního stresu u pacientů s karcinomem pankreatu a chronickou pankreatitidou. Konference Šobrův den, 6. 6. 2012 - 2) Žák A, Vecka M, Kodydková J, Vávrová L, Macášek J, Krechler T, Muravská A, Jáchymová M.: Polymorfismy a aktivity paraoxonasy u karcinomu pankreatu. Konference Šobrův den, 6. 6. 2012 - 3) Kodydková J, **Vávrová L**, Macášek J, Krechler T, Žák A.: *Antioxidační enzymy a karcinom pankreatu*. Cas Lek Cesk, 2012; 151(1). - 4) Staňková B, Kodydková J, **Vávrová L**, Macášek J, Krechler T, Žák A.: *Aktivita antioxidačních enzymů u pacientů s karcinomem pankreatu*. Sborník abstrakt XV. Kongres o Aterosleróze. 2011; S.: 34/35. - 5) Kodydková J, **Vávrová L**, Macášek J, Krechler T, Žák A.: *Antioxidační enzymy a karcinom pankreatu*. Sborník Atherosklerosa 2011, ISBN: 978-80-254-8809-6, S.: 58-61. - 6) Kodydková J, **Vávrová L**, Krechler T, Žák A.: *Changes in antioxidant enzymes activities in patients with carcinoma of pancreas*. European Journal of Internal Medicine, 2011, 22 (S1): S48-S49. (IF = 1.657) - 7) **Vávrová L**, Kodydková J, Macášek J, Krechler T, Žák A.: *Antioxidant enzymes activities in pancretic carcinoma and the influence of diabetes mellitus*. European Journal of Internal Medicine, 2011, 22(S1): S98. (IF =
1.657) - 8) **Vávrová L**, Kodydková J, Zeman M, Tvrzická E, Žák A: *Aktivity* antioxidačních enzymů u pacientů s metabolickým syndromem. Sborník abstraktů přednášek Diagnostika, léčba a prevence závažných civilizačních onemocnění. 2010, ISBN: 978-80-7177-034-3, S.: 58. - 9) Novák F, **Vávrová L**, Kodydková J, Nováková O, Novák F. sr., Žák A: Decreased paraoxonase activity and increased lipid peroxidation in critically ill patients with sepsis and systemic inflammation. Intensive Care Medicine 2010 36(Suppl. 2):430. - 10) Kodydková J, **Vávrová L**, Krechler T, Tvrzická E, Žák A: *Onemocnění* pankreatu a změny aktivit antioxidačních enzymů. Sborník abstraktů přednášek – - Diagnostika, léčba a prevence závažných civilizačních onemocnění. 2010, ISBN: 978-80-7177-034-3, S.: 56 - 11) Trávníčková J, Kodydková J, **Vávrová L**, Zeman M, Tvrzická E, Žák A: *Aktivita antioxidačních enzymů u pacientů s metabolickým syndromem.* Klin biochem metab 2010;18(2):119 - 12) **Vávrová L**, Kodydková J, Krechler T., Tvrzická E, Žák A.: *Aktivita* antioxidačních enzymů u pacientů s pankreatopatií. Cas Lek Cesk 2009; 148(11):569. - 13) **Vávrová L**, Kodydková J, Krechler T., Tvrzická E, Žák A.: *Aktivita antioxidačních enzymů u pacientů s pankreatopatií*. Sborník Atherosklerosa 2009; ISBN: 978-80-254-5389-6, S.:86-88. - 14) Kodydková J, **Vávrová L**, Tvrzická E, Zeman M, Krechler T, Žák A.: *Aktivita* antioxidačních enzymů u pacientů s diabetes mellitus a metabolickým syndromem. Vnitř Lék 2009; 55(12):P5-6. - 15) **Vávrová L**, Kodydková J, Zeman M, Tvrzická E, Žák A.: *Aktivita antioxidačních enzymů u pacientů s depresí*. Sborník Atherosklerosa 2008, ISBN: 978-80-254-2834-4, S.:78-80. - 16) **Vávrová L**, Kodydková J, Tvrzická E., Zeman M, Žák A.: *Metabolický syndrom* a některé parametry oxidačního stresu. Vnitř Lék 2008; 54(12): 1236-1237. - 17) Kodydková J, **Vávrová L**, Zeman M, Tvrzická E, Žák A.: *Aktivity* antioxidačních enzymů u metabolického syndromu. Vnitř Lék 2008; 54(7&8):791. Šobrův den, Praha: 19. 6. 2008 - 18) Kodydková J, **Vávrová L**, Zeman M, Tvrzická E, Žák A.: *Aktivita antioxidačních enzymů u pacientů s metabolickým syndromem*. Sborník Atherosklerosa 2008, ISBN: 978-80-254-2834-4, S.:30-33. - 19) Novák F, Kodydková J, **Vávrová L**, Novák F sr.: *Aktivita antioxidačních enzymů u kriticky nemocných pacientů v sepsi*. Sborník 9. studentské vědecké konference 21. 5. 2008, 40-41. - 20) Kodydková J, **Vávrová L**, Tvrzická E, Zeman M, Novák F. jr., Žák A.: Paraoxonasa *Patofysiologické a klinické aspekty*. Sborník Atherosklerosa 2007, ISBN: 978-80-254-0238-2, S.: S19-S27. - 21) **Vávrová L**, Kodydková J, Novák F, Novák F. jr., Žák A.: *Snížená aktivita katalasy u pacientů v sepsi*. Sborník 8. studentská konference 1. LF UK, Praha 2007:49. 22) **Vávrová** L, Kodydková J, Novák F jr., Nováková O, Novák F.: *Decreased Catalase Activity in Septic Patients*. Sborník abstrakt, Second Central & Eastern Europe Conference on Health and the Environment, SR, Bratislava, Oct 22-25, 2006, 47. # 10. Supplements ## Supplement 1: Vávrová L, Kodydková J, Zeman M, Dušejovská M, Macášek J, Staňková B, Tvrzická E, Žák A.: *Altered Activities of Antioxidant Enzymes in Patients with Metabolic Syndrome*. Obesity Facts. 2013;6(1):39-47. (**IF: 1.856**, 2011) #### Supplement 2: Kodydková J, **Vávrová L**, Staňková B, Macášek J, Krechler T, Žák A.: *Changes in antioxidants and oxidative stress markers in pancreatic diseases*. Pancreas. 2013; 42(4):614-21. (**IF: 2.386**, 2011) ## Supplement 3: Kodydková J, Vávrová L, Zeman M, Jirák R, Macášek J, Staňková B, Tvrzická E, Žák A.: *Antioxidative enzymes and increased oxidative stress in depressive women*. Clinical Biochemistry 2009; 42: 1368-74. (**IF: 2.019**) ## Supplement 4: Novák F, Vávrová L, Kodydková J, Novák F Sr, Hynková M, Žák A, Nováková O.: Decreased paraoxonase activity in critically ill patients with sepsis. Clin Exp Med 2010; 10: 21-25. (**IF: 1.6**) #### Supplement 5: Vávrová L, Kodydková J, Macášek J, Ulrych J, Žák A.: *Oxidační stres v průběhu akutní pankreatitidy*. Klin biochem metab 2012; 20(41): 188-193. (**IF: 0.0**) #### Supplement 6: Macášek J, Zeman M, Vecka M, Vávrová L, Kodydková J, Tvrzická E, Žák A.: Reactive oxygen and nitrogen species in the clinical medicine. Cas Lek Cesk 2011; 150(8): 423-32. (**IF: 0.0**) ### Supplement 7: Vávrová L, Kodydková J, Mráčkova M, Novák F, sr., Nováková O, Žák A, Novák F.: Increased inflammatory cytokines together with impaired antioxidant status persist long after clinical recovery from severe sepsis: correlation with HDL-cholesterol and albumin. 2013 (under review). # Supplement 1 Vávrová L, Kodydková J, Zeman M, Dušejovská M, Macášek J, Staňková B, Tvrzická E, Žák A.: *Altered Activities of Antioxidant Enzymes in Patients with Metabolic Syndrome*. Obesity Facts. 2013;6(1):39-47. (**IF: 1.856**, 2011) Obes Facts 2013;6:39-47 DOI: 10.1159/000348569 Received: October 12, 2011 Accepted: April 8, 2012 Published online: February 21, 2013 © 2013 S. Karger GmbH, Freiburg 1662–4033/13/0061–0039\$38.00/0 www.karger.com/ofa This is an Open Access article licensed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License (www.karger.com/OA-license), applicable to the online version of the article only. Distribution for non-commercial purposes only. ### **Original Article** # Altered Activities of Antioxidant Enzymes in Patients with Metabolic Syndrome Lucie Vávrová Jana Kodydková Miroslav Zeman Magdaléna Dušejovská Jaroslav Macášek Barbora Staňková Eva Tvrzická Aleš Žák 4th Department of Internal Medicine, First Faculty of Medicine, Charles University, and General Teaching Hospital, Prague, Czech Republic ### © Free Author Copy – for personal use only ANY DISTRIBUTION OF THIS ARTICLE WITHOUT WRITTEN CONSENT FROM S. KARGER AG, BASEL IS A VIOLATION OF THE COPYRIGHT. Written permission to distribute the PDF will be granted against payment of a permission fee, which is based on the number of accesses required. Please contact permission@karger.ch #### **Key Words** Metabolic syndrome · Antioxidant enzymes · Reduced glutathione · Conjugated dienes #### **Abstract** **Objective:** In the pathogenesis of the metabolic syndrome (MetS), an increase of oxidative stress could play an important role which is closely linked with insulin resistance, endothelial dysfunction, and chronic inflammation. The aim of our study was to assess several parameters of the antioxidant status in MetS. **Methods:** 40 subjects with MetS and 40 age- and sexmatched volunteers without MetS were examined for activities of superoxide dismutase (CuZnSOD), catalase (CAT), glutathione peroxidase 1 (GPX1), glutathione reductase (GR), paraoxonase1 (PON1), concentrations of reduced glutathione (GSH), and conjugated dienes in low-density lipoprotein (CD-LDL). **Results:** Subjects with MetS had higher activities of CuZn-SOD (p < 0.05) and GR (p < 0.001), higher concentrations of CD-LDL (p < 0.001), lower activities of CAT (p < 0.05) and PON1 (p < 0.05), and lower concentrations of GSH (p < 0.05), as compared with controls. Activity of GPX1 was not significantly changed. **Conclusions:** Our results implicated an increased oxidative stress in MetS and a decreased antioxidative defense that correlated with some laboratory (triglycerides, high-density lipoprotein cholesterol (HDL-C)) and clinical (waist circumference, blood pressure) components of MetS. Copyright © 2013 S. Karger GmbH, Freiburg Obes Facts 2013;6:39-47 DOI: 10.1159/000348569 © 2013 S. Karger GmbH, Freiburg www.karger.com/ofa Vávrová et al.: Altered Activities of Antioxidant Enzymes in Patients with Metabolic Syndrome #### Introduction Currently, the prevailing notion of the metabolic syndrome (MetS) is that it is characterized by a cluster of risk factors for atherosclerosis and type 2 diabetes mellitus and can be regarded as a physiological and clinical entity [1]. The main components of MetS are accumulation of intra-abdominal fat, impaired metabolism of glucose, atherogenic dyslipidemia (low high-density lipoprotein cholesterol (HDL-C), hypertriglyceridemia), and arterial hypertension. In pathogenesis, several mechanisms were shown to take part, namely insulin resistance, chronic low-grade inflammation, endothelial dysfunction, and oxidative stress; their interactions have not been fully elucidated at present. Elevated levels of oxidative stress in subjects with MetS were demonstrated in many experimental and clinical studies [2]. Oxidative stress is defined as an imbalance between the production of reactive oxygen and nitrogen species (RONS) and their insufficient decomposition by the antioxidant system which results in macromolecular damage and disruption of redox signaling and control [3]. Free radicals and non-radical oxidants belong to RONS. Free radicals could induce DNA mutations, structural disorders in proteins, and peroxidative damage of cell membrane and plasma lipids [4]. RONS play an important role in the pathogenesis of many cardiovascular and neurodegenerative diseases as well as in type 2 diabetes mellitus and its complications [5]. The defense mechanisms of the human body against oxidative stress are complex and involve cellular and extracellular antioxidant systems which are regulated at multiple levels [6]. Various enzymes, e.g. superoxide dismutase (CuZnSOD), glutathione peroxidase 1 (GPX1), catalase (CAT), paraoxonase 1 (PON1), glutathione reductase (GR), as well as nonenzymatic antioxidant compounds (e.g. metal chelators, low-molecular-weight antioxidants) take part in the antioxidant defense. In the first step of the defense mechanism against superoxide anions (O_2^-) , the enzyme CuZnSOD catalyzes their dismutation into oxygen and H_2O_2 . In the second step, CAT and GPX1 independently convert H_2O_2 to water. Any increase in the CuZnSOD catalytic activity produces an excess of H_2O_2 that must be efficiently neutralized by either CAT or GPX1;
otherwise, H_2O_2 reacts with O_2^- producing in a two-step reaction (the Haber-Weiss reaction) hydroxyl radicals OH which are even more dangerous [5]. Cytosolic GPX1 detoxifies H_2O_2 in the presence of reduced glutathione (GSH), which is oxidized to oxidized glutathione (GSSG) and subsequently recycled by GR. GPX1 with the aid of GSH protects lipids against peroxidation. The pool of GSH has to be replenished by de novo synthesis that is catalyzed by the enzyme glutamate-cystein ligase. The PON1 enzyme as HDL-associated enzyme is implicated in the anti-inflammatory and antioxidant activities of HDL and impedes oxidative modification of low-density lipoprotein (LDL) thus protecting cell membranes from the damage caused by products of lipoperoxidation [7]. This study is focused on the state of the antioxidant defense system in patients with MetS. We intend to investigate the wide variety of known antioxidants in association with MetS. The activities of several antioxidant enzymes as well as the concentration of GSH were determined in the erythrocytes. It has been noted that these cells maintain fairly constant concentrations of enzymes throughout the life span which had been synthesized during the maturation of erythroid precursors [8]. Furthermore, levels of albumin, bilirubin, and calculated total peroxyl radical trapping (cTRAP) were assessed in serum. As a global marker of systemic oxidative stress, conjugated dienes in precipitated low-density lipoproteins (CD-LDL) were determined. Obes Facts 2013;6:39–47 DOI: 10.1159/000348569 © 2013 S. Karger GmbH, Freiburg www.karger.com/ofa Vávrová et al.: Altered Activities of Antioxidant Enzymes in Patients with Metabolic Syndrome #### **Participants and Methods** #### **Participants** 40 Caucasian subjects with MetS (20 male / 20 female) were recruited from outpatients who had been subsequently examined (from January 2008 until August 2010) at the Lipid Clinic of the 4th Department of Medicine, First Faculty of Medicine, Charles University in Prague. This study group was compared with a control group constituted from 40 volunteers without MetS matched for sex and age (20 male / 20 female), all Caucasian. MetS was diagnosed according to the International Diabetes Federation criteria [9]. To be included, patients had to have central obesity (waist circumference \geq 94 cm for men and \geq 80 cm for women) and fulfill any two of the following four criteria: i) raised TG level (\geq 1.7 mmol/l), ii) reduced HDL-C (<1.03 mmol/l in males and <1.29 mmol/l in females) or specific treatment for these abnormalities, iii) raised blood pressure (BP) with systolic BP \geq 130 or diastolic BP \geq 85 mm Hg or treatment of previously diagnosed hypertension, and iv) raised fasting plasma glucose (\geq 5.6 mmol/l) or previously diagnosed type 2 diabetes mellitus. All samples were marked with unique anonymized identification numbers, and the data was merged only after the assays had been completed. In the MetS group, 21 patients (52.5%) had three, 13 patients (32.5%) four, and 6 patients (15.0%) had all five of the above mentioned components of MetS. In the control group, only three subjects (7.5%) met two components of MetS, 15 (37.5%) controls met one, and the 22 (55.0%) volunteers showed no components of MetS. In the MetS group, 35 patients suffered from hypertension, and of these patients, 21 were under antihypertensive treatment. Among them, 12 were treated with an angiotensin converting enzyme (ACE) inhibitor or angiotensin receptor type 1 blockers, and the 9 remaining subjects were on a combination of ACE inhibitor with calcium channel blockers. Exclusion criteria for both groups were the following: current antioxidant therapy, excessive alcohol consumption (>30 g/day), hormonal replacement therapy, supplementation with polyunsaturated fatty acids, manifestation of cardiovascular and/or cerebrovascular diseases, type 1 diabetes mellitus, liver (with exception of nonalcoholic fatty liver disease) and kidney diseases (creatinine >130 μ mol/l), microalbuminuria (urinary albumine 30–300 mg/day), hypothyroidism as well as recent infections and malignancies. Informed consent was obtained from all participants. The study protocol was approved by the Ethical Committee of the First Faculty of Medicine, Charles University in Prague. #### **Blood Samples** Blood samples were collected after a 12-hour overnight fast. Activities of antioxidant enzymes (with exception of PON1) and concentrations of GSH were measured in hemolysed erythrocytes which had been separated from the EDTA plasma and washed three times with saline. Serum was used for all other parameters. Samples were stored at $-80\,^{\circ}\text{C}$ until the assay. #### Methods Activities of antioxidant enzymes were measured spectrophotometrically using kinetic methods previously described [10]. Briefly, the activity of GPX1 was measured using tert-butyl hydroperoxide as a substrate, and the rate of NADPH degradation was monitored. The molar extinction coefficient of NADPH (6,220 mol/l/cm) was used for calculation of activity which was then expressed as U/g hemoglobin. The activity of GR was measured by monitoring the rate of NADPH degradation. Activity was calculated using the molar extinction coefficient of NADPH and expressed as U/g hemoglobin. The CAT activity was calculated using the molar extinction coefficient of H_2O_2 (43.6 mol/l/cm), whose degradation rate was monitored at 240 nm. Activity is expressed as kU/g hemoglobin. The method of CuZnSOD activity assessment is based on the monitoring of the rate of NBT-formazan generation. Superoxide dismutase activity was calculated by means of a calibrating curve; superoxide dismutase standard (Cat. No. S9636-1kU) was purchased from Sigma Aldrich (St. Louis, MO, USA). Activity was expressed as U/g hemoglobin. The arylesterase activity of PON1 was measured using phenylacetate as a substrate. Arylesterase activity of PON1 was calculated using the molar extinction coefficient of the produced phenol (1,310 mol/l/cm) and expressed as U/ml serum. GSH was assessed by the modified spectrophotometric method according to Griffith [11]; this method is based on the determination of the relatively stable product of the reduction of 5,5′ dithiobis-2-nitrobenzoic acid (DTNB). The concentration of CD-LDL was assessed by the modified method of Wieland and Seidel at 234 nm [12]; both methods have been fully described in the previously mentioned paper [10]. Obes Facts 2013;6:39-47 DOI: 10.1159/000348569 © 2013 S. Karger GmbH, Freiburg www.karger.com/ofa Vávrová et al.: Altered Activities of Antioxidant Enzymes in Patients with Metabolic Syndrome All routine clinical tests were performed at the Institute for Clinical Biochemistry and Laboratory Diagnostics of General University Hospital in Prague: C-reactive protein (CRP) was determined by an immunoturbidimetric method using a K-ASSAY CRP kit (Kamiya Biomedical Company, Seattle, WA, USA; cv = max. 7.6%) on a Hitachi Modular analyzer (Tokyo, Japan). Copper and zinc were measured using atomic absorption spectrometry, uric acid by an enzymatic colorimetric method with the uricase-peroxidase system, and bilirubin by the 2,5-dichlorophenyldiazonium method with a Hitachi Modular analyzer. Plasma albumin was assessed by a colorimetric method using bromocresol green. Plasma concentrations of total cholesterol (TC) and triglycerides (TG) were measured by enzymatic-colorimetric methods (Boehringer, Mannheim, Germany). HDL-C was determined in the supernatant after precipitation of lipoproteins B by PTA/Mg²⁺, using the kit from the same manufacturer; LDL-C was calculated according to Friedewald's formula. Concentrations of apolipoproteins apo B and apo A1 were measured by the Laurell rocket electroimmunoassay using standard and specific antibodies (Behringwerke, Marburg, Germany). The concentrations of insulin and C-peptide were determined with an electrochemiluminescence immunoassay (Roche, Basel, Switzerland). The homeostasis model assessment of insulin resistance (HOMA-IR) index was calculated as HOMA-IR = (fasting serum glucose (mmol/l) × fasting serum insulin (μU/ml)) / 22.5 [13]. The TRAP was calculated according to the formula: (0.63 (albumin) + 1.02 (uric acid) + 1.50 (bilirubin)) [14]. #### Statistical Analysis Data was expressed as mean and standard deviation or median (25th-75th percentile) for data different from normal distribution. Normality of the distribution was tested by the Shapiro-Wilks W test. Comparisons between the groups were carried out by the independent t-test. Mann-Whitney U test was used for nonparametric comparisons and Spearman correlation coefficients for correlation analyses. All analyses were performed using version 8.0 of StatSoft Statistica software (2007, Czech version). The p value < 0.05 was considered statistically significant. #### **Results** Clinical and biochemical characteristics of the group of subjects with MetS and that of healthy controls are shown in table 1. The groups did not differ in age. In both groups there were no subjects with either type 1 or type 2 diabetes mellitus. The subjects included in the MetS group suffer from insulin resistance when the metabolism of glucose was impaired. As expected, subjects with MetS had significantly higher values of body mass index and waist circumference. They also had higher values of systolic BP and diastolic BP, glucose, TC, TG, apolipoprotein B (apo B), and uric acid as well as a higher level of insulin and insulin resistance, as assessed by the homeostatic model HOMA-IR. Decreased values were observed for plasma concentrations of HDL-C and apo A1. The difference in CRP did not reach statistical significance. As expected, men have decreased levels of HDL-C and Cu and increased values of waist circumference compared to women. Activities of antioxidant enzymes and concentrations of GSH and CD-LDL together with levels of cTRAP are presented
in table 2. In the group of subjects with MetS, activities of CuZnSOD and GR as well as concentrations of CD-LDL and levels of cTRAP were significantly elevated. On the other hand, activities of CAT and PON1 as well as concentrations of GSH were found to be decreased. Spearmen correlations (after Bonferroni adjustment) between selected variables are shown in table 3. All risk factors of MetS correlated significantly with the number of components of MetS, namely abnormal levels of glucose, waist circumference, TG, HDL-C, and SBP. Concentrations of CD-LDL significantly correlated with concentrations of TG and HDL-C. Activities of CuZnSOD correlated positively with those of GR (r = 0.341, p < 0.01) and GPX1 (r = 0.260, p < 0.05), and with concentrations of Zn (r = 0.363, p < 0.01) as well as negatively with the ratio Cu/Zn (r = -0.278, p < 0.05). Activities of PON1 correlated positively with Obes Facts 2013;6:39–47 DOI: 10.1159/000348569 © 2013 S. Karger GmbH, Freiburg www.karger.com/ofa Vávrová et al.: Altered Activities of Antioxidant Enzymes in Patients with Metabolic Syndrome Table 1. Clinical and biochemical characteristics of subjects with the metabolic syndrome and of healthy controls^a | | Metabolic syndrome | | | Controls | | | |------------------------------|-----------------------------------|------------------------------------|------------------------------------|------------------------------------|-----------------------------------|------------------------------------| | | all | M | F | all | M | F | | N | 40 | 20 | 20 | 40 | 20 | 20 | | Age, years | 58.4 | 57.0 | 58.7 | 58.5 | 57.8 | 59.5 | | | (53.4–62.2) | (50.1-63.1) | (55.9-61.6) | (52.6-64.5) | (50.1-64.0) | (54.0-65.0) | | Waist, cm | 101.4 ± 9.1*** | $104.4 \pm 6.4^{****}$ | 98.3 ± 10.5*** | 82.5 ± 11.0 | 86.9 ± 13.2+ | 78.3 ± 6.6 | | BMI, kg/m ² | 29.4 | 29.0 | 30.6 | 23.9 | 25.0 | 23.8 | | | (27.4-31.7)*** | (27.7-30.3)** | (25.9-32.4)*** | (21.9-25.5) | (21.8-26.3) | (21.9-25.4) | | Smoking, N (%) | 10 (25.0) | 6 (30.0) | 4 (20.0) | 4 (10.0) | 0 (0.0) | 4 (20.0) | | Hypertension, N (%) | 35 (87.5) | 18 (90.0) | 17 (85.0) | 8 (20.0) | 5 (25.0) | 3 (15.0) | | Systolic BP, mm Hg | 140 | 140 | 140 | 130 | 128 | 130 | | | (130–143)** | (130-140)*** | (130–145) | (120-130) | (120-130) | (120-140) | | Diastolic BP, mm Hg | 90 (88-95)*** | 90 (90-95)*** | 90 (83-95)*** | 80 (80-80) | 80 (80–85) | 80 (80-85) | | Glucose, mmol/l | 5.4 (4.8–6.1)*** | 5.0 (4.7–5.8) | 5.6 (5.1–6.3)** | 4.7 (4.5–5.1) | 4.9 (4.5–5.4) | 4.7 (4.3–5.0) | | Insulin, mU/l | | * 11.4 (8.6–15.1)* | 11.3 (9.4–14.3)* | 7.8 (4.6–9.5) | | | | C-peptid, nmol/l | 0.97 | 0.99 | 0.93 | 0.64 | 0.59 | 0.68 | | HOMA ID | (0.84-1.19)*** | (0.86-1.14)*** | (0.81-1.28)*** | (0.51-0.75) | (0.46-0.75) | (0.55-0.73) | | HOMA-IR | 3.0 (1.9-3.8)*** | 3.0 (1.8-3.7)* | 3.0 (2.1-4.5)** | 1.6 (1.0-2.1) | 1.8 (1.0-2.2) | 1.6 (1.0-1.9) | | TC, mmol/l | 6.3 (5.2-7.3)* | 6.2 (5.2-7.1)* | 6.5 (5.2–7.4) | 5.7 (5.0-6.2) | 5.7 (4.8–6.1) | 5.8 (5.0-6.6) | | TG, mmol/l | 2.6 (1.9-3.7)*** | 2.3 (1.9–3.6)** | 2.7 (1.7-3.9)*** | 1.1 (0.9–1.4) | | 1.0 (0.9–1.3) | | HDL-C, mmol/l | 1.2 (1.1-1.3)***
3.6 (3.1-4.3) | 1.1 (1.0-1.2)***+
3.5 (3.2-4.2) | 1.2 (1.1–1.3)***
3.6 (3.0–4.3) | 3.5 (2.8–4.3) | 1.5 (1.3–1.8)
3.4 (2.9–3.8) | 1.6 (1.5–1.9)
3.6 (2.8–4.3) | | LDL-C, mmol/l
Apo A1, g/l | 3.6 (3.1-4.3)
1.26 ± 0.25** | 1.24 ± 0.25 | 1.28 ± 0.26** | 3.3 (2.8-4.3)
1.43 ± 0.21 | 3.4 (2.9-3.8)
1.36 ± 0.20+ | 1.50 ± 0.20 | | Apo B, g/l | $1.34 \pm 0.32***$ | $1.39 \pm 0.26***$ | 1.28 ± 0.20
1.28 ± 0.37 | 1.43 ± 0.21
1.09 ± 0.25 | $1.30 \pm 0.20 \pm 0.20 \pm 0.22$ | 1.30 ± 0.20
1.13 ± 0.28 | | NEFA, mmol/l | 0.50 | 0.43 | 0.51 | 0.55 | 0.59 | 0.55 | | 11 Li 11, Illillol/1 | (0.39-0.72) | (0.35-0.68) | (0.43-0.75) | (0.43-0.71) | (0.435-0.83) | (0.40-0.61) | | CRP, mg/l | 2.7 (2.0-6.3) | 2.8 (2.0–4.3) | 2.7 (2.0–7.4) | 2.3 (2.0–6.5) | | 4.6 (2.1–7.3) | | Cu, μmol/l | 17.7 | 17.0 | 19.6 | 18.5 | 16.3 | 19.9 | | σα, μπτοτ <i>γ</i> τ | (16.0–20.5) | (15.5–18.4) | (16.3-21.7) | (16.3–21.5) | (14.3–18.6)++ | | | Zn, μmol/l | 16.0 | 15.8 | 16.3 | 15.4 | 16.0 | 15.2 | | , F******/ * | (13.4–17.7) | (13.4–17.8) | (13.8–17.1) | (14.6–19.9) | (14.5–18.3) | (14.7–20.8) | | Bilirubin, µmol/l | 9.1 | 10.9 | 7.2 | 10.6 | 13.9 | 9.0 | | 2 4011, p.11101, 1 | (6.8–12.9) | (7.9–13.8)+ | (6.1-9.6) | (8.0-15.2) | (9.8–18.2)++ | (7.5–12.3) | | Uric acid, µmol/l | 346 | 355 | 329 | 293 | 320 | 251 | | one actor, printing i | (290–390)** | (312-420)* | (275-352)** | (236-346) | (291-370)+++ | | | | (270 370) | (012 120) | (270 002) | (200 010) | (2)1 3/0) | (170 270) | BP = Blood pressure; TC = total cholesterol; TG = triglycerides; HDL-C = high density lipoprotein; LDL-C = low density lipoprotein; Apo = apolipoprotein; HOMA-IR = homeostasis model assessment of insulin resistance; QUICKI = quantitative insulin sensitivity check index; NEFA = non-esterified fatty acids; CRP = C-reactive protein; Met = metabolic syndrome. ^aData presented as mean \pm standard deviation (SD) for parametric and median (IQR) for non-parametric variables; MetS versus controls: *p < 0.05, ** p < 0.01, ***p < 0.001. Female versus male: *p < 0.05, **p < 0.01, ***p < 0.001. apo A1 (r = 0.479, p < 0.001). Concentrations of CD-LDL correlated positively with TC (r = 0.565, p < 0.001), apo B (r = 0.597, p < 0.001), and LDL-C (r = 0.384, p < 0.001), and negatively with CAT (r = -0.233, p < 0.05). #### **Discussion** In this study, comparing MetS patients with an age- and sex-matched control group, increased activities of CuZnSOD (+15%, p < 0.05) and GR (+19%; p < 0.001) and increased levels of CD-LDL (+14.4%; p < 0.001) and cTRAP (+6.5%; p < 0.01) were found in MetS | Obes Facts 2013;6:39–47 | | |-------------------------|-------| | DOI: 10.1159/000348569 | © 201 | © 2013 S. Karger GmbH, Freiburg www.karger.com/ofa Vávrová et al.: Altered Activities of Antioxidant Enzymes in Patients with Metabolic Syndrome Table 2. Parameters of oxidative stress of studied groups | | Metabolic syndrome | | | Controls | | | | |------------------|--------------------|------------------|-----------------|---------------|---------------|-----------------|--| | | all | M | F | all | M | F | | | GPX1, U/g Hb | 59.4 ± 15.8 | 57.6 ± 18.1 | 61.1 ± 13.4 | 59.1 ± 17.7 | 55.4 ± 19.2 | 62.8 ± 15.7 | | | GR, U/g Hb | 8.19 ± 1.54*** | 8.74 ± 1.21**** | 7.63 ± 1.67 | 6.88 ± 1.66 | 6.92 ± 1.76 | 6.83 ± 1.60 | | | GSH, mg/g Hb | 0.57 | 0.56 | 1.51 | 1.46 | 1.22 | 1.70 | | | | (0.38-2.73)* | (0.40 - 0.70) | (0.38-5.01) | (0.41-5.22) | (0.43 - 5.40) | (0.40-5.05) | | | CAT, kU/g Hb | 189.6 ± 31.8* | 192.5 ± 27.8 | 186.7 ± 35.8 | 204.6 ± 33.0 | 206.1 ± 32.5 | 203.1 ± 34.4 | | | CuZnSOD, kU/g Hb | 2.3 (1.9-2.5)** | 2.3 (2.2-2.5)* | 2.0 (1.7-2.5)+ | 2.0 (1.2-2.5) | 2.2 (1.1-2.6) | 2.0(1.3-2.4) | | | PON1, kU/l | 158.9 ± 41.9* | 152.0 ± 47.4 | 165.7 ± 35.4 | 179.9 ± 42.3 | 170.2 ± 36.1 | 189.5 ± 46.5 | | | CD, mmol/l | 61.9 | 57.3 | 63.8 | 54.1 | 53.3 | 57.5 | | | | (54.1-84.3)*** | (53.4-68.7)* | (55.3-94.2)* | (41.3-63.6) | (33.8 - 63.6) | (42.9 - 68.1) | | | cTRAP, µmol/l | 823 | 875 | 785 | 773 | 809 | 701 | | | . , | (766-877)** | (816-909)*++ | (732-835)** | (691-820) | (768-865)+++ | (655-776) | | GPX1 = glutathione peroxidase 1; GR = glutathione reductase; GSH = reduced glutathione; CAT = catalase; CuZnSOD = CuZn-superoxide dismutase; PON1 = paraoxonase1 – arylesterase activity; CD = conjugated dienes in precipitated LDL; cTRAP = calculated total peroxyl radical trapping – calculation: [0.63 (albumin) + 1.02 (uric acid) + 1.50 (bilirubin)]; Met = metabolic syndrome; Data presented as mean \pm standard deviation (S.D.) for parametric and median (IQR) for non-parametric variables. MetS versus controls: *p < 0.05, *** p < 0.01, **** p < 0.001. Female versus male: *p < 0.05, *** p < 0.001. **Table 3.** Spearman correlation coefficients for components of the metabolic syndrome and parameters of oxidative stress in the combined group (metabolic syndrome plus controls) (N = 80) | | SBP | TG | HDL-C | Glucose | HOMA-IR | MetSC | CD | PON1 | GR | GPX1 | CAT | CuZnSOD | |---------|-------|----------|-----------|---------|----------|-----------|----------|--------|--------|--------|--------|---------| | Waist | 0.313 | 0.533+++ | -0.602+++ | 0.402++ | 0.570+++ | 0.717*** | 0.336 | -0.103 | 0.377+ | -0.160 | -0.115 | 0.049 | | SBP | - | 0.270 | -0.147 | 0.141 | 0.103 | 0.405++ | 0.338 | -0.039 | 0.129 | 0.076 | -0.108 | -0.097 | | TG | - | - | -0.631+++ | 0.396+ | 0.453++ | 0.736+++ | 0.571+++ | -0.170 | 0.219 | -0.067 | -0.182 | 0.017 | | HDL-C | - | - | - | -0.357+ | -0.405+ | -0.681+++ | -0.374+ | 0.321 | -0.148 | 0.086 | 0.133 | -0.015 | | Glucose | - | - | - | - | 0.555+++ | 0.540+++ | 0.019 | -0.103 | 0.127 | -0.286 | -0.081 | -0.118 | | HOMA-IR | - | - | - | - | - | 0.493+++ | 0.099 | -0.088 | 0.216 | 0.025 | -0.066 | -0.073 | | MetSC | - | - | - | - | - | _ | 0.442++ | -0.193 | 0.261 | -0.097 | -0.249 | -0.115 | SBP = Systolic blood pressure; TG = triglycerides; HDL-C = high density lipoprotein; HOMA-IR = homeostasis model assessment of insulin resistance; Met = metabolic syndrome; MetSC = number of components of the MetS (N = 1-5; waist circumference, glucose, triglycerides, HDL-C, SBP); GPX1 = glutathione peroxidase 1; GR = glutathione reductase; CAT = catalase; CuZnSOD = CuZn-superoxide dismutase; PON1 = paraoxonase-1-arylesterase activity; CD = conjugated dienes in precipitated LDL. $^+$ p < 0.05; $^{++}$ p < 0.01; $^{+++}$ p < 0.001; after Bonferroni adjustment. patients. In contrast, activities of CAT (-7.3%; p < 0.05) and PON1 (-11.7%; p < 0.05) as well as serum concentration of GSH (-61%; p < 0.05) were significantly decreased. The HOMA-IR demonstrated evidence of a significantly increased insulin resistance in subjects with MetS. Under resting physiological conditions, biologic systems generate only small
amounts of the superoxide anion. Its overproduction can result from mitochondrial electron leakage in hyperglycemia [15]. Other causes of superoxide overproduction are increased activities of NAD(P)H oxidases [16], xanthine oxidase, lipoxygenase, and cyclooxygenase as well as an imbalance in the thioredoxin system [17]. Large amounts of superoxide and other RONS arise in the accumulated fat, mainly due to increased activities of NAD(P)H oxidases and a decreased expression of antioxidant enzymes [18]. Adipose tissue is an important generator of oxidative stress and inflammation, contributing to the production of pro-inflammatory cytokines Obes Facts 2013;6:39-47 DOI: 10.1159/000348569 © 2013 S. Karger GmbH, Freiburg www.karger.com/ofa Vávrová et al.: Altered Activities of Antioxidant Enzymes in Patients with Metabolic Syndrome (TNF α , IL-1, IL-6 etc.). Oxidative stress is supposed to worsen the inflammatory state in MetS via activation of redox-sensitive transcription factors (particularly NF κ B) by RONS, inducing the expression of TNF α and IL-6. These cytokines increased CRP synthesis. However, in our study, we did not find a statistically significant difference in CRP levels between MetS patients and controls. This could be caused by the method used for CRP measurement. The method used in our study lacks the sensitivity to differ between low-grade inflammation in MetS (CRP between 1.0 and 3 mg/l) and subjects without MetS (CRP < 1.0 mg/l). The raised CuZnSOD activities in the erythrocytes of patients with MetS found in our study may be compared with the results of Mitrijevic-Sreckovic et al. [19], who described slightly increased CuZnSOD activities in children with MetS in comparison with obese children without MetS. Studies on serum CuZnSOD activities did not show consistent results [20, 21]. Increased CuZnSOD activity results in raised amounts of H_2O_2 which becomes toxic when activity of CAT is normal or decreased. Induction of one enzyme (CAT or CuZnSOD) does not necessarily lead to the induction of the other one [22]. Another source of H_2O_2 is its passage through the erythrocyte membrane [23]. The elevated production of ROS in the endothelium could thus lead to increased levels of ROS also in erythrocytes. In our study, we have found a significantly decreased activity of CAT. Because of the increased activity of CuZnSOD in our study, elevated levels of H_2O_2 have to be expected. According to study of Kirkman et al. [24], during lengthy exposure of CAT to H_2O_2 , the CAT-bound NADPH became oxidized to NADP+ and activity of CAT fell to about one third of the initial activity. Consequently, the cause of the decrease of CAT activity could be the damage of erythrocyte CAT by H_2O_2 . Contrary to our study, Cardona et al. [20, 21] found increased activities of CAT in patients with hypertriglyceridemia (concentration of TG > 1.7 mmol/l) apart from the presence of MetS, and these activities were further increased after fat overload. Decreased activities of CAT were described in patients bearing only individual components of MetS – obesity [25], hypertension [26], or insulin resistance [27]. Decreased activity of CAT implies stressed condition of erythrocytes when complete removal of H_2O_2 is not possible [28]. Low activities of CAT were associated with an increased risk of diabetes mellitus and its complications [5, 29]. The GPX1 activity in our study was not altered in MetS patients. This result is in accordance with the study of Mitrijevic-Sreckovic [19]. On the contrary, Cardona et al. [20, 21] found lower activities of GPX1 in a group of subjects with hypertriglyceridemia, a part of MetS presence, and the drop of its activity was almost to 75% of that of the control group. Bougoulia et al. [30] showed decreased activity of GPX1 in obese subjects as well as an increase after weight reduction. As expected, concentrations of GSH were significantly decreased and activities of GR increased in our group of subjects with MetS. Decreased concentrations of GSH with opposite changes in GSSG levels were also found in MetS subjects in the study of Cardona et al. [20]. On the other hand, Cardona et al. [21] registered a significant drop in GR activity in MetS subjects. Increased activity of GR could be attributed to a compensatory protective mechanism of the cells against ROS. Furthermore, our expected increase in the GSSG/GSH ratio due to lower levels of GSH may stimulate compensatory increase in GR activity in blood to reduce higher levels of GSSG into GSH [31]. The finding of decreased arylesterase activities of PON1 in our subjects with MetS is in accordance with other studies [32, 33]. Because it was shown [34] that there is a strong positive correlation between arylesterase and paraoxonase activity of PON1, we could therefore discuss arylesterase and paraoxonase activity of PON1 together. Low activities of PON1 have been shown to be associated with oxidative stress, hypercholesterolemia, diabetes mellitus, cardiovascular diseases, and sepsis [34, 35]. In the present study, we found significantly higher concentrations of CD-LDL in subjects with MetS. This test was shown to be the most sensitive indicator of lipid peroxidation and can be regarded as a global marker of systemic oxidative stress [36]. In this study, several Obes Facts 2013;6:39–47 DOI: 10.1159/000348569 © 2013 S. Karger GmbH, Freiburg www.karger.com/ofa Vávrová et al.: Altered Activities of Antioxidant Enzymes in Patients with Metabolic Syndrome anthropometric and biochemical characteristics of MetS correlated significantly with increased concentrations of CD-LDL, which reflect oxidation of the lipid component of LDL. This finding is in agreement with the results of our studies concerning the severity of MetS, oxidative stress, hypertriglyceridemia, and fatty acid metabolism [37, 38]. The important role of lipid peroxidation in the pathogenesis of MetS has been proven in many experimental and clinical studies [39]. #### **Conclusion** In the present study, we estimated a wide variety of antioxidant enzymes, and activities of several enzymes were changed in subjects with MetS. Enzyme activities were assessed in the erythrocytes where the concentration of enzymes remain stable throughout the life span and reflect adaptive changes in their expression in erythroid precursors. According to our results, alterations of antioxidant enzymes related to MetS are not uniform. While activities of CuZnSOD and GR were higher in the MetS group than in healthy subjects, a decrease in CAT and PON1 as well as the absence of the expected increase in GPX1 indicate a disorder in antioxidant defense mechanisms. Our results could be interpreted that the erythrocytes and their GSH levels and activities of GR and GPX1 protect against oxidative stress in MetS. The severity of MetS, as assessed by the number of its components, significantly correlated with the concentrations of CD-LDL. #### **Acknowledgments** This work was supported by by the Research Project of Charles University in Prague, First Faculty of Medicine – PRVOUK-P25/LF1/2, and by the grant IGA NS9769-4 of the Ministry of Health of the Czech Republic. #### **Disclosure Statement** We hereby state that there is no conflict of interest. ## References © Free Author Copy — for personal use only ANY DISTRIBUTION OF THIS ARTICLE WITHOUT WRITTEN CONSENT FROM S. KARGER AG, BASEL IS A VIOLATION OF THE COPYRIGHT. Written permission to distribute the PDF will be granted against payment of a permission fee, which is based on the number of accesses required. Please contact permission® larger. - Grundy SM: Metabolic syndrome: a multiplex cardiovascular risk factor. J Clin Endocrinol Metabol 2007;92: 399-404. - 2 Roberts CK, Sindhu KK: Oxidative stress and metabolic syndrome. Life Sci 2009;84:705–712. - 3 Duracková Z: Some current insights into oxidative stress. Physiol Res 2010;59:459-469. - 4 Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J: Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007;39:44–84. - 5 Halliwell B, Gutteridge JMC: Free Radicals in Biology and Medicine, 4th ed. Oxford, Oxford University Press, 2008. - 6 Surh YJ: Transcriptional regulation of cellular antioxidant defense mechanism; in Surh YJ, Packer L (eds): Oxidative Stress, Inflammation and Health. Boca Raton, CRC Press, 2005, pp21–40. - 7 Soran H, Younis NN, Charlton-Menys V, Durrington P: Variation in paraoxonase-1 activity and atherosclerosis. Curr Opin Lipidol 2009;20:265–274. - 8 Harris ED: Regulation of antioxidant enzymes. FASEB J 1992;6:2675–2683. - 9 Alberti KG, Zimmet P, Shaw J: The metabolic syndrome a new worldwide definition. Lancet 2005;366:1059–1062. - 10 Kodydková J, Vávrová L, Zeman M, Jirák R, Macásek J, Stanková B, Tvrzická E, Zák A: Antioxidative enzymes and increased oxidative stress in depressive women. Clin Biochem 2009;42:1368-1374. - 11 Griffith OW: Glutathione and glutathione disulphide; in Bergemeyer HU (ed): Methods of Enzymatic Analysis, Weinheim, VCH 1985, pp 521–529. Obes Facts 2013;6:39–47 DOI: 10.1159/000348569 © 2013 S. Karger GmbH, Freiburg www.karger.com/ofa Vávrová et al.: Altered Activities of Antioxidant Enzymes in Patients with Metabolic Syndrome - Wieland H, Seidel D: A simple specific method for precipitation of low density lipoproteins. J Lipid Res 1983; 24:904–909. - 13 Vogeser M, König D, Frey I, Predel HG, Parhofer KG, Berg A: Fasting serum insulin and the homeostasis model of insulin resistance (HOMA-IR) in the monitoring of lifestyle interventions in obese persons. Clin Biochem 2007;40:964–968. - 14 Roth E, Manhart N, Wessner B: Assessing the antioxidative status in critically ill patients. Curr Opin Clin Nutr Metab Care 2004;7:161–168. - 15 Yamagishi SI, Edelstein D, Du XL, Brownlee M: Hyperglycemia potentiates collagen-induced platelet activation through mitochondrial superoxide
overproduction. Diabetes 2001;50:1491–1494. - Paravicini TM, Touyz RM: NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. Diabetes Care 2008;31:S170–S180. - 17 Nordberg J, Arnér ES: Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 2001;31:1287-1312. - Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I: Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 2004;114:1752–1761. - 19 Dimitrijevic-Sreckovic V, Colak E, Djordjevic P, Gostiljac D, Sreckovic B, Popovic S, Canovic F, Ilic M, Obrenovic R, Vukcevic V, Nikolic D, Nisic T, Milic G, Pejcic G: Prothrombogenic factors and reduced antioxidative defense in children and adolescents with pre-metabolic and metabolic syndrome. Clin Chem Lab Med 2007;45:1140–1144. - 20 Cardona F, Túnez I, Tasset I, Montilla P, Collantes E, Tinahones FJ: Fat overload aggravates oxidative stress in patients with the metabolic syndrome. Eur J Clin Invest 2008;38:510–515. - 21 Cardona F, Tunez I, Tasset I, Murri M, Tinahones FJ: Similar increase in oxidative stress after fat overload in persons with baseline hypertriglyceridaemia with or without the metabolic syndrome. Clin Biochem 2008;41: 701–705. - 22 Amstad P, Peskin A, Shah G, Mirault ME, Moret R, Zbinden I, Cerutti P: The balance between Cu, Zn-superoxide dismutase and catalase affects the sensitivity of mouse epidermal cells to oxidative stress. Biochemistry 1991; 30:9305–9313. - Low FM, Hampton MB, Winterbourn CC: Peroxiredoxin 2 and peroxide metabolism in the erythrocyte. Antioxid Redox Signal 2008;10:1621–30. - 24 Kirkman HN, Galiano S, Gaetani GF: The function of catalase-bound NADPH. J Biol Chem 1987;262:660-666. - Viroonudomphol D, Pongpaew P, Tungtrongchitr R, Phonrat B, Supawan V, Vudhivai N, Schelp FP: Erythrocyte antioxidant enzymes and blood pressure in relation to overweight and obese Thai in Bangkok. Southeast Asian J Trop Med Public Health 2000;31:325–334. - Rodrigo R, Prat H, Passalacqua W, Araya J, Guichard C, Bächler JP: Relationship between oxidative stress and essential hypertension. Hypertens Res 2007;30:1159–1167. - 27 Shin MJ, Park E: Contribution of insulin resistance to reduced antioxidant enzymes and vitamins in nonobese Korean children. Clin Chim Acta 2006;365:200–205. - 28 Nandeesha H, Sathiyapriya V, Bobby Z, Pavithran P, Agrawal A, Selvaraj N: Altered oxidant-antioxidant status in non-obese men with moderate essential hypertension. Indian J Med Sci 2007;61:326–331. - 29 Chistiakov DA, Zotova EV, Savost'anov KV, Bursa TR, Galeev IV, Strokov IA, Nosikov VV: The 262T>C promoter polymorphism of the catalase gene is associated with diabetic neuropathy in type 1 diabetic Russian patients. Diabetes Metab 2006;32:63–68. - 30 Bougoulia M, Triantos A, Kolioakos G: Plasma interleukin-6 levels, glutathione peroxidase and isoprostane in obese women before and after weight loss. Association with cardiovascular risk factors. Hormones (Athens) 2006;5:192–199. - Paşaoğlu H, Muhtaroğlu S, Güneş M, Utaş C. The role of the oxidative state of glutathione and glutathionerelated enzymes in anemia of hemodialysis patients. Clin Biochem1996:29:567–72. - 32 Garin MC, Kalix B, Morabia A, James RW: Small, dense lipoprotein particles and reduced paraoxonase-1 in patients with the metabolic syndrome. J Clin Endocrinol Metab 2005;90:2264–2269. - Rizos E, Tambaki AP, Gazi I, Tselepis AD, Elisaf M: Lipoprotein-associated PAF-acetylhydrolase activity in subjects with the metabolic syndrome. Prostaglandins Leukot Essent Fatty Acids 2005;72:203–209. - 34 Novak F, Vavrova L, Kodydkova J, Novak F Sr, Hynkova M, Zak A, Novakova O: Decreased paraoxonase activity in critically ill patients with sepsis. Clin Exp Med 2010;10:21–25. - Rosenblat M, Aviram M: Paraoxonases role in the prevention of cardiovascular diseases. Biofactors 2009;35: 98–104. - 36 Güzel S, Seven A, Satman I, Burçak G: Comparison of oxidative stress indicators in plasma of recent-onset and long-term type 1 diabetic patients. J Toxicol Environ Health A 2000;59:7–14. - 37 Zák A, Tvrzická E, Vecka M, Jáchymová M, Duffková L, Stanková B, Vávrová L, Kodydková J, Zeman M: Severity of metabolic syndrome unfavorably influences oxidative stress and fatty acid metabolism in men. Tohoku J Exp Med 2007;212:359–371. - 38 Zeman M, Zák A, Vecka M, Tvrzická E, Romaniv S, Konárková M: Treatment of hypertriglyceridaemia with fenofibrate, fatty acid composition of plasma and LDL, and their relations to parameters of lipoperoxidation of LDL. Ann N Y Acad Sci 2002;967:336–341. - 39 Holvoet P, Lee DH, Steffes M, Gross M, Jacobs DR Jr: Association between circulating oxidized low-density lipoprotein and incidence of the metabolic syndrome. JAMA 2008;299:2287–2293. # Supplement 2 Kodydková J, Vávrová L, Staňková B, Macášek J, Krechler T, Žák A.: *Changes in antioxidants and oxidative stress markers in pancreatic diseases*. Pancreas. 2013; 42(4):614-21. (**IF: 2.386**, 2011) # Antioxidant Status and Oxidative Stress Markers in Pancreatic Cancer and Chronic Pancreatitis Jana Kodydkova, MSc, Lucie Vavrova, MSc, Barbora Stankova, MSc, Jaroslav Macasek, MD, Tomas Krechler, MD, PhD, and Ales Zak, MD, PhD **Objectives:** Oxidative stress has been implicated in the pathogenesis of chronic pancreatitis (CP) and pancreatic cancer (PC). The study aim was to assess the oxidative stress markers and antioxidant defense system in patients with CP and those with PC. Methods: Activities of superoxide dismutase 1 (SOD1), catalase (CAT), glutathione peroxidase 1 (GPX1), glutathione reductase (GR), arylesterase (PONI-A) and lactonase (PONI-L) activities of paraoxonase 1 (PONI) and concentrations of reduced glutathione, conjugated dienes in lowdensity lipoprotein (CD/LDL) and oxidized LDL (ox-LDL/LDL) were assessed in 50 PC and 50 CP patients and 50 age and sex-matched controls. Results: Comparison of PC and CP groups to controls found the following changes: glutathione peroxidase 1 (GPX1) (-20.2%, -25.5%; P < 0.001), glutathione reductase (GR) (-9.5%, -11.9%; P < 0.05), SOD1 (+22.9%; P < 0.01), CAT (-10.6%; P < 0.05), PON1-A (-34.3%, -16.0%; P < 0.001), PON1-L (-44.2%; -17.0%; P < 0.01), conjugated dienes in LDL (CD/LDL) (+20%, +33.3%; P < 0.05) and ox-LDL/ LDL (+42.2%, +14.4%; P < 0.05). The patients with PC had changed activities and levels of SOD1 (+24.2%), CAT (-10.4); P < 0.01), PON1-A (-21.7%), PON1-L (-32.9%), and ox-LDL/LDL (+24.3%); (all P < 0.01) compared with the patients with CP. Conclusions: Reduced antioxidant defense system capacity and increased markers of oxidative stress were found in PC and CP. PONI-L and CAT activities, along with ox-LDL/LDL levels, were the independent factors differentiating the patients with PC from the patients with CP. Key Words: oxidative stress, oxidative stress markers, antioxidant enzymes, chronic pancreatitis, pancreatic cancer, discriminant analysis Abbreviations: CAT – catalase, CD - conjugated dienes, CP - chronic pancreatitis, CT - computed tomography, EUS – endoscopic ultrasonography, GPX1 - glutathione peroxidase 1, GR - glutathione reductase, GSH - reduced glutathione, HDL - high-density lipoprotein, HOMA-IR - homeostasis model assessment of insulin resistance, LDL - low-density lipoprotein, MDA - multivariate discriminant analysis, MRCP - magnetic resonance cholangiopancreatography, NRI - Nutritional Risk Index, NT - nitrotyrosine, ox-LDL - oxidized LDL, PC - pancreatic carcinoma, PON1 - paraoxonase 1, PON1-A - PON1 arylesterase, PON1-L - PON1 lactonase, RONS - reactive oxygen and nitrogen species, ROS - reactive oxygen species, SAA - serum amyloid A, SOD1 - Cu-Zn superoxide dismutase (Pancreas 2013;42: 614-621) (RONS) and oxidative stress have been implicated in the pathogenesis of pancreatitis, both in its acute and chronic form, as well as in the pathogenesis of pancreatic cancer (PC).1 Chronic pancreatitis (CP) shares risks with PC such as smoking and alcohol abuse as well as being a risk factor per se for PC.¹⁻³ Among them, cigarette smoking, alcohol abuse, diabetes mellitus, and other insulin resistance (IR) states are connected with increased RONS formation and oxidative stress.1 Chronic pancreatitis is a progressive inflammatory disease with irreversible damage to the pancreas and the destruction of exocrine and endocrine tissue.4 The underlying causes of CP seem to be multifaceted, including environmental as well as genetic factors, but its pathogenesis to date has not been completely understood. Although most cases of CP have been attributed to alcohol abuse and/or genetic predisposition, other etiologic risk factors such as enhanced oxidative stress could play an important role.5,6 verproduction of reactive oxygen and nitrogen species Reactive oxygen and nitrogen species are generated during endogenous oxidative stress that is linked to the pancreatic renin-angiotensin system⁷ or exogenous oxidative stress caused by environmental or lifestyle-related xenobiotics, which is connected with the detoxification system.3 It has been proposed that local oxidative stress and reactive oxygen species (ROS) generation, caused by overexpression of membrane nonmitochondrial nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase, is connected with pancreatic (patho)biology such as cell growth regulation and apoptosis, acinar cell inflammation, fibrosis, and disturbed islet microcirculation. 7,8 The inflammatory process is associated with increased production of RONS resulting in local or systemic oxidative stress. 9,10 A number of experimental and clinical studies have demonstrated impaired antioxidant status that may be a contributing factor for increasing oxidative stress in CP. The involvement of oxidative stress in CP has been described both in experimental and clinical studies. 1,3 Oxidative stress could not only be the cause of CP (and PC) but also
a consequence of the underlying disease (CP or PC, respectively). Moreover, increased RONS production and oxidative stress seem to be independent from the etiology of CP.^{1,11} In patients with CP, decreased levels of antioxidant thiols (cysteine, glutathione, and cysteinylglycine), decreased total antioxidant capacity, along with increased carbonylated proteins, thiobarbituric acid—reactive substances, malondialdehyde and 4-hydroxynonenal levels were found. 10,12-14 Similarly, in patients with CP (both alcoholic and tropical), decreased concentrations of glutathione, vitamin C, and zinc in erythrocytes were connected with elevated thiobarbituric acid—reactive substances. 15 Levels of conjugated dienes (CD) are the most sensitive indicator of lipid peroxidation and can be regarded as a global marker of systemic oxidative stress¹⁶ and also are a marker of minimally oxidatively modified low-density lipoprotein (LDL). On the contrary, oxidized LDL (ox-LDL) reflects concentration of malondialdehyde and 4-hydroxynonenal, the highly reactive From the Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital Prague, Czech Republic. Received for publication April 25, 2012; accepted September 28, 2012. Reprints: Jana Kodydkova, MSc, Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital Prague, U Nemocnice 2, 128 08, Prague 2, Czech Republic (e-mail: Jana.Kodydkova@seznam.cz). This study was supported by the research project RVO-VFN 64165/2012 of the Ministry of Health of the Czech Republic. It was not supported by any of the following organizations: National Institutes of Health (NIH), Wellcome Trust, or Howard Hughes Medical Institute (HHMI). The authors declare no conflict of interest. Copyright © 2013 by Lippincott Williams & Wilkins end products of lipid peroxidation that are bound, as adducts, to ε-amino group of lysine in molecule of apolipoprotein B.17 Increased susceptibility of LDL to oxidation (LDL oxidability) was observed in CP.18 Concentration of ox-LDL has not yet been studied in human PC. Among enzymes that regulate RONS, glutathione peroxidase (GPX) and catalase (CAT) play an important role by the reduction of hydrogen peroxide, which is generated by superoxide dismutase (SOD) in the dismutation of superoxide. The main ROS scavenger in the pancreas is supposed to be reduced glutathione (GSH), which is recycled back to its reduced form by glutathione reductase (GR). 1,19 The enzyme paraoxonase 1 (PON1) as high-density lipoprotein (HDL)-associated enzyme is implicated in the anti-inflammatory and antioxidant activities of HDL and impedes oxidative modification of LDL, protects cell membranes from the damage caused by products of lipoperoxidation, and eliminates carcinogenic lipid-soluble radicals.20-22 The activities of some antioxidant enzymes in CP were already studied: SOD activity in the studies by Girish et al,15 Quillot et al, ¹⁸ and Szuster-Ciesielska et al²³ and GPX1 activity in the studies by Quillot et al¹⁸ and Szuster-Ciesielska et al. ^{18,23} These studies show lowered antioxidant capacity in CP. The aim of the study was to ascertain the importance of lipoperoxidation markers (CD and ox-LDL) in relation to the group of main antioxidant enzymes, such as SOD, CAT, GPX1, GR, and PON1 in patients with CP and PC. Because there are intercorrelations between oxidative stress markers and antioxidant enzymes activities, both in CP and PC groups, we used the multivariate discriminant analysis to differentiate PC from CP as well as to evaluate the discriminative power of different oxidative stress markers and antioxidant enzymes. #### MATERIALS AND METHODS This prospective study was carried out at the Fourth Department of Internal Medicine of General University Hospital from January 2009 to September 2011. The study protocol was approved by the institutional review board and the Ethics Committee of the General University Hospital in Prague. Written informed consent was obtained from all participants. The study population consisted of 3 groups: 50 patients with PC, 50 patients with CP, and 50 healthy controls. All groups are age and sex matched. Diagnosis of PC was confirmed in all of the patients (based on histological examination of pancreatic resection or endoscopic ultrasonography-guided aspiration cytology). The tumor staging was evaluated by the combination of criteria issued by the Union Internationale Contre le Cancer and the American Joint Committee on Cancer (UICC/AJCC 2002).24 The clinical diagnosis of CP was based on clinical features (abdominal pain, nausea and/or vomiting, anorexia and/or malnutrition, and steatorrhea) confirmed by 2 or more imaging methods (abdominal ultrasonography [USG], contrast-enhanced computed tomography [CT]), endoscopic retrograde cholangiopancreatography, magnetic resonance cholangiopancreatography (MRCP), and endoscopic ultrasonography (EUS). Only patients with definite CP were included. The grade of CP (mild, moderate, or severe) was assessed according to the M-ANNHEIM pancreatic imaging criteria25 (M-ANNHEIM stands for M, multiple risk factor classification; A, alcohol consumption; N, nicotine consumption; N, nutritional factors; H, hereditary factors; E, efferent pancreatic duct factors; I, Immunological factors; M, miscellaneous and metabolic factors). All the patients were assessed by the combination of EUS and other imaging methods (CT, or USG, or MRCP) because EUS does not differentiate between the moderate and severe grades, and other methods (CT, or USG, or MRCP) cannot differentiate between mild and moderate changes.25 Exclusion criteria for all the 3 groups were the following: current antioxidant therapy (eg, vitamin C, vitamin E, allopurinol, N-acetylcysteine, supplementation with n-3 polyunsaturated fatty acids), kidney disease (creatinine >150 \(\mu\text{mol/L}\), clinically manifest proteinuria (urinary protein >500 mg/L), and liver cirrhosis, decompensate diabetes mellitus, concomitant malignancies, chronic, immunosuppressive, and anti-inflammatory therapy, as well as chemotherapy. Further criteria for exclusion were the following: endocrine disease, acute pancreatitis, or acute relapse of CP; unstable angina pectoris, stage within 1 year after acute myocardial infarction; coronary aortic bypass grafting, or percutaneous coronary intervention, and stroke. Persons who were operated on in the upper gastrointestinal tract (in the previous year) and subjects after systemic inflammation in the previous 6 months were also excluded. Patients with CP enrolled into the study were reexamined after 2 years to exclude the development of PC and thus to avoid enrollment of patients with initial stages of PC into the study. Among our 50 patients with PC, there were 22 patients with diabetes. In this group were the following stage distributions: 9 patients with stage II (2 patients with stage IIA and 7 patients with stage IIB) disease, 24 patients with stage III disease, and 17 patients with stage IV disease. Alcoholic CP was diagnosed in 38 patients, obstructive CP in 5 subjects, and idiopathic CP in 7 patients. Among the 50 patients with CP, there were 30 patients with severe grade, 17 patients with moderate, and 3 patients with mild grade changes in pancreatic morphology. Severe exocrine dysfunction (concentration of pancreatic stool elastase 1 <200 ng/g) was found in 29 patients with CP. Complications (ascites, bleeding, obstruction/or stricture ductus choledochus, pancreatic fistula, duodenal stenosis, splenic and/or portal vein thrombosis, and segmental portal hypertension) were found in 28 patients with CP. #### Data Collection Samples from all participants were obtained after overnight fast (at least 10 hours). All study participants' medical history and intake of any medications were documented at study entry. Blood was taken by puncturing a peripheral vein. Concentrations of C-reactive protein (CRP), conjugated dienes (CD/LDL) in precipitated LDL, serum amyloid A (SAA), 3-nitrotyrosine (NT), tumor markers (CA 19-9, CA 72-4, and CEA), albumin, bilirubin, uric acid, calcium, copper, zinc, iron, selenium, vitamins A and E, and lipid parameters, as well as activity of routine biochemical tests (pancreatic amylase, alanine transaminase, aspartate aminotransferase, γ-glutamyltransferase, cholinesterase alkaline phosphatase [data not shown]), PON1 arylesterase (PON1-A), PON1 lactonase (PON1-L), and oxidized-LDL (ox-LDL) were measured in serum. Serum was prepared after coagulation in vacutainer tubes by centrifugation at 3500 rpm at 4°C for 10 minutes. Activities of antioxidant enzymes CAT, GPX1, GR, and Cu-Zn superoxide dismutase (SOD1), as well as the concentration of GSH were measured in hemolyzed erythrocytes. The samples were stored at -80°C until assay. All samples were marked with unique identification numbers made anonymous, and the data were merged only after the assays had been completed. #### Laboratory Measurements Activities of antioxidant enzymes were determined by spectrophotometric kinetic methods, and the concentration of GSH were assessed spectrophotometrically as previously described by Kodydková et al. 26 The lactonase activity of PON1 was measured according to the modified method described earlier using dihydrocoumarin (final concentration, 1 mmol/L) as a substrate. The increase in absorbance at 270 nm was monitored for 2 minutes. The enzyme activity was calculated from the molar extinct coefficient of the reaction product [3-(2-hydroxyphenyl)-propionate ($\varepsilon = 1295~\text{dm}^3~\text{mol}^{-1}~\text{cm}^{-1}$)] estimated during the linear phase of reaction. The concentration of CD in precipitated LDL was determined by the Wieland modified spectrophotometric method at 234 nm. 29,30 The levels of SAA, 3-NT, and ox-LDL were established using sandwich enzyme-linked immunosorbent assay kits
(Invitrogen, Camarillo, Calif; Biovendor, Brno, Czech Republic, Czech Republic; and Mercodia, Upsala, Sweden; respectively). All routine clinical tests were measured at the Institute for Clinical Biochemistry and Laboratory Diagnostics of General University Hospital in Prague. Concentration of CRP was measured by the immunoturbidimetric method using a K-ASSAY CRP kit (Kamiya Biomedical Company, Seattle, Wash) on a Hitachi Modular analyzer (Tokyo, Japan). Tumor markers (CEA, CA 19-9, and CA 72-4) were measured by chemiluminescence assay on ADVIA Centaur analyzer, Siemens (Tarrytown, NY). Selenium, copper, and zinc were measured using atomic absorption spectrometry. Concentrations of total cholesterol and triglycerides were measured by enzymaticcolorimetric methods. High-density lipoprotein cholesterol was determined in the supernatant after precipitation of lipoproteins B by phosphotungstic acid/Mg2+ (Boehringer Mannheim, Germany); LDL cholesterol was calculated according to the Friedewald formula. Apolipoprotein B and apolipoprotein Al were measured by the Laurell rocket electroimmunoassay using standards and specific antibodies (Behringwerke Marburg, Germany). The homeostasis model assessment of insulin resistance (HOMA-IR) index was calculated as HOMA-IR = [fasting serum glucose (mmol/L) × fasting serum insulin (µU/mL)] / 22.5.31 Malnutrition was categorized into the mild, moderate, and severe forms according to the Nutritional Risk Index (NRI).32 The NRI was calculated according to the following formula: NRI = (1.519 × albumin + 41.7 × current body weight/usual body weight), and the classification was as follows: normal nutrition, NRI > 100; mild malnutrition, NRI = 97.5-100; moderate malnutrition, NRI = 83.0-97.4; severe malnutrition, NRI < 83.0. #### Statistical Analysis Data are expressed as mean \pm SD for parametric and as median and interquartile range (25th-75th percentiles) for nonparametric data. Normality of data distribution was tested with the Shapiro-Wilks W test. Differences between the compared groups (PC, CP, and controls) were tested with the one-way analysis of variance with Scheffé and Newman-Keuls posttests. For nonparametric analysis, the Kruskal-Wallis analysis of variance was used. For correlation analysis, the Spearmen coefficient was used. All previously described statistical analyses were performed using StatSoft Statistica version 9.0 software (2007, Czech Republic). P < 0.05 was considered statistically significant. The multivariate discriminant analysis (MDA) was carried out by using Statistical Analysis System (SAS, Cary, NC), JMP version 9 software. The process of MDA is carried out in a stepwise manner using the minimum Wilks λ (within-groups sum of squares—total sum of squares ratio) as a measure of group discrimination. At each step in the process, the variable, which contains the most discriminating power, is identified and its coefficient is determined. The relative importance of each variable is indicating by so-called approximate F statistic. This is a transformation of Wilks λ , which can be compared with F distribution. The process is stopped when the remaining variables are determined to lack significant discriminating power (P > 0.05). We used discriminant models for classification into the groups of PC and CP. Only variables with an appropriate final F statistic (P < 0.05) were included in our discriminant functions. The oxidative stress and inflammatory markers (CD/LDL, ox-LDL/LDL, and SAA), the antioxidant enzymes (SOD1, CAT, GPX1, GR, PON1-A, PON1-L), and their combinations as variables were subjected into the discriminant functions. #### RESULTS This study was focused on the antioxidant status in patients with PC and CP. Fifty patients with PC and 50 patients with CP were enrolled in the study. The basic clinical and biochemical data of the studied groups are summarized in Table 1. As markers of oxidative stress, the levels of CD/LDL, ox-LDL/LDL, and NT were determined. The levels of CD/LDL and ox-LDL/LDL were significantly increased in both the patients with PC and those with CP compared with the controls (Figs. 1A, B). Furthermore, the patients with PC had higher levels of ox-LDL/LDL than the patients with CP (P < 0.001). There was an increase in the concentration of 3-NT only in the patients with CP (P < 0.01) in comparison with the controls (Fig. 1C). Erythrocyte activity of SOD1 was increased and CAT activity was decreased in the patients with PC compared with the patients with CP and the controls (Figs. 2A, B). In addition, the serum concentration of SOD1 cofactor Cu was observed as elevated; and the serum concentration of Fe, the CAT cofactor, was decreased in the patients with PC in comparison with the controls (Table 2). The concentration of Zn was increased in the patients with CP compared with the controls. Conversely, decreased erythrocyte activities of GPX1 and GR were found in patients with PC and those with CP as compared with the controls (Figs. 2C, D). The decreased GPX1 activities in both the PC and CP groups were accompanied with lower serum selenium levels compared with the controls (Table 2). The concentration of GSH in erythrocytes in the patients with PC differed from that of the subjects with CP and controls, respectively (Fig. 1D). We have found that serum concentrations of Zn negatively correlate with activity of SOD1 in the entire group (r = -0.312; P < 0.001), in the patients with PC (r = -0.357; P < 0.05) and also in the patients with CP (r = -0.458; P < 0.001). There was a significant correlation between Se and GPX1 in the entire group (r = 0.319; P < 0.01)and also in the patients with CP (r = 0.470; P < 0.01). The PON1-A and PON1-L activities in serum were decreased in the patients with PC and those with CP in comparison with the controls (Figs. 2E, F). Furthermore, decreased activities of these enzymes in the patients with PC compared with the patients with CP (both P < 0.001) were observed. Both PON1 activities were significantly correlated in the PC (r=0.711; P<0.001) and CP (r=0.811; P<0.001) groups and in the controls (r=0.687; P<0.001) as well as in all the studied groups (r=0.806; P<0.001). The levels of both PON1 activities correlated negatively with ox-LDL/LDL (r=-0.309; P<0.001; and r=-0.358; P<0.001; respectively) in the entire group. Serum amyloid A concentrations were higher in the patients with PC than in the patients with CP and in the controls (both P < 0.001; Table 1). The studied groups did not differ in concentrations of PON1 cofactor—calcium. Additionally, we TABLE 1. Basal Clinical and Biochemical Characteristics | | PC | CP | CON | |-------------------------------|---------------------------|---------------------|------------------| | No. patients (M/F) | 50 (40/10) | 50 (40/10) | 50 (40/10) | | Age (range), yrs | 63 (56–68) | 59 (53–65) | | | Smokers, n (%) | 34 (68) | 15 (30) | 60 (55–65) | | DM, no. patients (M/F) | 28 (24/4) | 30 (23/7) | 13 (26) | | NRI, kg/m ² | 96.4 ± 12.3* | 109.1 ± 7.3 | _ | | CRP, mg/L | 10.9 (5.8–54.8)***; +++ | | - | | SAA, µg/mL | 49.0 (21.7–134.2)***; *** | 4.5 (2.0–10.3)* | 2.1 (1.0-4.9) | | CEA, µg/L | 2.75 (1.65–6.45) *** | 14.5 (7.2–49.8) | 12.7 (4.6–25.6) | | CA 19-9, kU/L | | 2.37 (1.44–3.42)*** | 0.71 (0.5–1.45) | | CA 72-4, kU/L | 105.2 (24–2301.3)***; +++ | 14.6 (8.5–26.5)* | 8.7 (6.1–10.7) | | Glucose, mmol/L | 2.32 (1.31–9.70)*; ++ | 1.45 (0.97–2.23) | 1.44 (1.02-3.86) | | Glycated hemoglobin, mmol/mol | 6.5 (5.2–8.9) *** | 6.6 (5.8–7.6)*** | 5.1 (4.9-5.3) | | | 5.46 ± 1.85*** | 5.11 ± 1.49*** | 3.91 ± 0.34 | | TC, mmol/L | 4.7 (3.7–6.6)* | 4.9 (4.4-6.0) | 5.4 (4.6-5.9) | | TG, mmol/L | 1.67 (1.26–2.12) *** | 1.48 (1.10-2.01)*** | 1.06 (0.79-1.34) | | HDL-C, mmol/L | 0.92 (0.73-1.05)***; *** | 1.42 (1.21-1.59) | 1.5 (1.27-1.73) | | LDL-C, mmol/L | 2.76 (2.12-3.24)* | 2.73 (2.34-3.17)* | 3.33 (2.72-3.73) | | Apo A1, g/L | $0.88 \pm 0.32***; +++$ | 1.61 ± 0.44 | 1.53 ± 0.30 | | NEFA, mmol/L | 0.71 ± 0.35** | $0.62 \pm 0.40*$ | 0.48 ± 0.24 | Data are expressed as mean ± SD for parametric variables, and as median and interquartile range (IQR, 25th-75th percentile) for nonparametric variables; PC or CP versus CON: ***P < 0.001, **P < 0.01, and *P < 0.05; PC versus CP: ***P < 0.001, *P < 0.05 (one-way analysis of variance (ANOVA) with Newman-Keuls posttest), and **P < 0.01. Apo-A1, apolipoprotein A1; CA, carbohydrate antigen; CEA, carcinoembryonic antigen; CON, control subjects; NEFA, nonesterified fatty acids; TC, total cholesterol; TG, triglycerides. have observed statistically decreased concentrations of vitamin A, albumin, and uric acid and higher levels of bilirubin in the patients with PC compared with the patients with CP and the controls (Table 2). Discriminant models for classification into the groups of PC and CP are shown in Table 3. The concentrations of ox-LDL and CD/LDL were the best discriminators (model A) when only oxidative stress and inflammatory markers were entered into the FIGURE 1. Serum concentration of oxidative stress markers and reduced glutathione. Data are expressed as mean \pm SD for parametric variables and as median and IQR (25th–75th percentile) for nonparametric variables. PC or CP versus CON: ***P < 0.001, **P < 0.01, and *P < 0.05; PC versus CP: ****P < 0.001 and *P < 0.05 (one-way ANOVA with Newman-Keuls posttest or Kruskal-Wallis ANOVA). FIGURE 2. Activities of antioxidant enzymes. Data are expressed as mean \pm SD; PC or CP versus CON: ***P< 0.001, **P< 0.05; PC versus CP: **P< 0.01 (one way ANOVA, Newman-Keuls posttest) and ***P< 0.001P< 0.001. MDA. Using only antioxidant enzymes as discriminating variables resulted in 73% of the final correct classification. Variables subjected into the analysis were PON1-L, SOD1, and CAT (model B). A combination of both models resulted in 83% of the final correct classification. The activity of PON1-L, the levels of ox-LDL/LDL, and the activity of CAT, in
that order, were found to be the best set of independent factors discriminating PC and CP, with higher values for PC (model C). Table 2 presents data of nonenzymatic antioxidants and of cofactors of antioxidant enzymes. #### DISCUSSION The present study demonstrates contemporary changes in the levels of selected inflammatory and oxidative stress markers as well as a set of the antioxidant defense system (both enzymatic and nonenzymatic) in the patients with PC and those with CP in comparison with age- and sex-matched controls. The reduced capacity of the antioxidant defense system and an increased oxidative stress in patients with PC and those with CP was confirmed in our study. The antioxidant system seems to be more affected in the patients with PC compared with the patients with CP. The groups of CP and PC differed statistically significantly in many oxidative stress and antioxidant variables using univariate analysis. Moreover, there were intercorrelations between oxidative stress markers and activities of antioxidant enzymes. Therefore, multivariate discriminant analysis was performed to determine the set of independent oxidative stress TABLE 2. Nonenzymatic Antioxidants, Cofactors of Antioxidant Enzymes, and Other Parameters of Antioxidant Capacity | | PC | СР | CON | |---|--|---|--| | Vitamin A, mg/L Vitamin E, mg/L Fe, µmol/L Ca, mmol/L Cu, µmol/L Zn, µmol/L Zn/Cu Se, µg/L Albumin, g/L Bilirubin, µmol/L | 0.51 ± 0.24*; † 16.0 ± 7.7 13.5 ± 8.3*** 2.26 ± 0.16 21.9 ± 6.3***; *** 19.2 ± 4.7 0.86 ± 0.34***; *** 31.3 ± 10.9*** 41.4 (37.7-45.5)***; *** 18.7 (11.0-64.1)***; *** | 0.80 ± 0.41
12.3 ± 5.0
16.4 ± 7.2
2.24 ± 0.13
18.8 ± 4.5
19.9 ± 3.9*
1.13 ± 0.38
43.1 ± 21.5*
45.7 (42.5–46.9)
10.2 (7.2–14.2) | 0.83 ± 0.35
14.4 ± 6.1
19.2 ± 7.9
2.27 ± 0.13
15.6 ± 3.1
17.8 ± 2.6
1.15 ± 0.40
58.9 ± 26.0
47.2 (44.9–48.6) | | Uric acid, µmol/L | 257 ± 108**; ++ | 324 ± 90 | 11.0 (8.0–15.3)
310 ± 76 | Data are expressed as mean \pm SD for parametric variables and as median and IQR (25th -75th percentile) for nonparametric variables; PC or CP versus CON: ***P < 0.001, **P < 0.01, and *P < 0.05; PC versus CP: ***P < 0.001, and *P < 0.05 (one-way ANOVA with Newman-Keuls posttest). TABLE 3. Discriminant Models for Classification of CP and PC | | F-Statistic (df) | Final Correct Classification | Percent | |---------------------------|------------------|------------------------------|---------| | Model A | | | | | ox-LDL/LDL | 13.80 (1, 98) | CP | 74.0 | | ox-LDL/LDL + CD/LDL | 11.32 (2, 97) | PC | 72.0 | | | , | Total | 73.0 | | Model B | | | | | PON1-L | 31.77 (1, 98) | CP | 68.0 | | PON1-L + SOD1 | 19.33 (2, 97) | PC | 74.0 | | PONI-L + SOD1 + CAT | 14.83 (3, 96) | Total | 71.0 | | Model C | | | | | PON1-L | 31.77 (1, 98) | CP | 80.0 | | PONI-L + ox-LDL/LDL | 27.72 (2, 97) | PC | 86.0 | | PON1-L + ox-LDL/LDL + CAT | 21.32 (3, 96) | Total | 83.0 | Model A: Only oxidative stress and inflammatory markers included in the analysis (CD/LDL, Ox-LDL/LDL, and SAA). Model B: Only activities of antioxidant enzymes included in the analysis (SOD1, CAT, GPX1, GR, PON1-A, and PON1-L). Model C: combination of the model A and the model B. F statistic (so-called an approximate F statistic), transformation of Wilks λ. and antioxidant variables giving the most discrimination power to separate CP and PC. Multivariate discriminant analysis indicated that the activities of PON1-L and CAT, along with ox-LDL/LDL levels (in the order of PON1-L, ox-LDL/LDL, and CAT), are the independent factors discriminating the patients with PC and those with CP. Antioxidant enzymes play an important role in the defense of cells against RONS and thus may protect the pancreas against development of CP, which is a risk factor of PC. The first scavenger of ROS is SOD, which converts superoxide radical to H₂O₂, which should be later removed by GPX1 and CAT. Our study found increased SOD1 activity in erythrocytes of the patients with PC in comparison with the patients with CP and the controls. Some experimental studies have described relationships between the expression of SOD, its activity, and PC cell growth in vitro, on the one hand, and tumor growth and survival in nude mice, on the other.8 The insignificant differences in the erythrocyte activities of SOD1 in the patients with CP and controls found in our study were consistent with the study of Quillot et al. 18 On the other hand, decreased SOD1 activity in the patients with CP was found in the study of Girish et al. 15 Inconsistent results concerning serum SOD activities in hereditary and alcohol-related pancreatitis have been published. Some reports have described increased^{23,33} serum SOD activity, and in some studies, no differences in serum SOD activities were found. 18,34 It could be supposed that discordance in elevated activity of SOD1 without an appropriate change in the GPX1 and/or CAT activities in the patients with PC resulted in the increased production of H2O2, which cannot be detoxified by the action of GPX1 and CAT. Accumulation of H2O2 can thus participate in a Haber-Weiss reaction and generate hydroxyl radicals. 35,36 Catalase and glutathione peroxidase are both able to detoxify H_2O_2 . Under physiologic conditions, H_2O_2 is mainly removed by GPX1. The activity of CAT is involved in the degradation of H2O2 in severe oxidative stress connected with higher H2O2 concentrations.37 It was previously shown that long-term exposure of CAT to H_2O_2 leads to the oxidation of the catalase-bound NADPH to NADP+ and to a decrease in the activity of CAT to approximately 30% of the initial activity. Because our patients with PC had the highest level of oxidative stress markers associated with decreased erythrocyte CAT activity, our results implicated that under stressed conditions, erythrocyte CAT is unable to detoxify H_2O_2 . In contrast, no changes in serum CAT activity in the patients with PC were found. The insignificant differences in CAT activities in erythrocytes of the patients with CP observed in our study were consistent with the results of Fukui et al, dealing with serum CAT activities in patients with CP. In the contrast, other authors described increased serum CAT^{23,40} or decreased serum and erythrocyte CAT¹⁸ activities in patients with CP. Glutathione peroxidases use GSH to metabolize H₂O₂ and lipid hydroperoxides to water/related alcohols.\(^1\) We have found decreased activity of erythrocyte GPX1 in the patients with PC and those with CP compared with the controls. The decreased erythrocyte GPX1 in CP was also found in the study of Girish\(^1\) but also no differences in erythrocyte GPX1 activity in patients with CP and the controls were observed.\(^{18,33}\) Published results in serum and plasma GPX activities are inconsistent.\(^{18,23,33,34,40}\) Decreased GPX1 activity may be explained by the lowered serum levels of selenium in both groups and/or decreased concentrations of reduced glutathione in erythrocytes found in the patients with PC. Selenium is bound as the selenocysteine at the active site of GPX1, and it is essential for its activity. Moreover, selenium deficiency leads to decreased GPX1 activities.\(^{35}\) Glutathione reductase is a NADPH-dependent enzyme that catalyzes the regeneration of GSH from oxidized glutathione (GSSG) and thus maintains a constant supply of GSH for GPX. In the present study, a decrease in GR erythrocyte activity was observed in the patients with PC and those with CP and decreased erythrocyte levels of GSH in PC but not in the patients with CP in comparison with the controls. It is supposed that depletion in GSH concentration may be caused by accumulation of GSSG as a result of impaired GR (pentose-phosphate pathway may limit NADPH supply). Formed GSSG could react with the sulfhydryl group, via mixed disulphide reactions, or could be secreted out of the cell. It is supposed that the abovementioned processes may lead to GSH depletion. It is df, degrees of freedom; contrast to our study, decreased levels of reduced glutathione were observed in the patients with CP.⁴³ We found a decrease in serum activities of arylesterase as well as lactonase activity of PON1 in the patients with PC and those with CP. The lowest PON1 activities were observed in the patients with PC. At present, the decreased PON1 activity in patients with PC has been described only in one study,⁴⁴ and there is no study dealing with PON1 activities in CP. A number of studies have shown decreased serum arylesterase and/or paraoxonase activities of PON1 in different malignancies.⁴⁵ Under conditions of systemic inflammation and/or oxidative stress, several mechanisms are implicated in a drop of PON1 activities. Among them, displacement of PON1 from its linkage to apolipoprotein A1 in HDL by SAA, ⁴⁶ down-regulation of liver PON1 lipopolysaccharides and cytokines (tumor necrosis factor α and interleukin-1) via IL-6, ²⁰ and inhibition of PON1 activity by oxidized phospholipids ⁴⁷ are the most important. All the abovementioned mechanisms can be related to cancer-related decrease in PON1 activities. Using MDA, the PON1-L activity had the most discriminating power to differentiate PC from PC. The finding of increased SAA levels in the patients with PC in our study is consistent with the results of other studies. 48,49 Serum amyloid A is implicated in
carcinogenesis, and it was associated with tumor progression and its metastasizing. 50 Some authors considered SAA as a tumor marker for PC. However, SAA did not reach appropriate specificity and sensitivity as tumor marker for PC diagnostics, 48,49 Human serum PON1 should contribute to the detoxification of organophosphorus compounds and carcinogenic lipid-soluble radicals from lipid peroxidation and, moreover, should impede oxidative modification of LDLs.²² In this study, we found a negative correlation between PON1 activities and ox-LDL/LDL levels. The reduced PON1 activities in the patients with PC and those with CP could lead to the increase in ox-LDL/LDL levels. Oxidatively modified LDL represents heavily oxidized LDL characterized by oxidative altered both the lipid and the apolipoprotein B, moiety of particle. Low-density lipoprotein is supposed to be oxidize not only within the artery wall (by endothelial cells, smooth muscle cells, and monocyte/macrophages) but also at peripheral tissues altered by inflammation (by neutrophils and fibroblasts).⁵¹ In our study, increased concentrations of CD/LDL in the patients with PC and those with CP compared with the controls were found. Concentrations of CD/LDL are partly considered as a marker of systemic oxidative stress and partly reflect minimally modified LDL, in which only the lipid component is oxidatively modified.^{29,52} Currently, serum concentration of CD in CP patients was described only in the study of Santini et al,53 where the levels of CD and lipid hydroperoxides did not differ between patients with CP and controls. However, the patients with CP, in comparison with the controls, had increased levels of CD and lipid hydroperoxides in pancreatic juice after secretin stimulation. These results indicated local enhanced oxidative stress in pancreas without systemic oxidative stress response. An increase of lipid peroxidation connected with PC and CP were observed in many studies using products of lipid peroxidation (such as thiobarbiturate-reactive substances, malondialdehyde, 4-hydroxynonenal, lipid hydroperoxides). 1.3 The importance of ox-LDL/LDL and CD/LDL was pointed out in discriminating PC from CP using MDA. In conclusion, our study demonstrates the persisting oxidative stress in patients with CP and those with PC, which is associated with the reduced capacity of the antioxidant defense system. The oxidative stress defense system seems to be more affected in patients with PC compared with those with CP. Multivariate discriminant analysis indicates the importance of PON1-L and CAT activities, along with ox-LDL/LDL levels, as the independent factors discriminating patients with PC and those with CP. Further studies concerning antioxidant defense systems and oxidative stress are warranted, especially with respect to potential diagnostic and therapeutic implications. #### **ACKNOWLEDGMENT** The authors thank Dr Vera Lanska, PhD, for her statistical assistance. #### REFERENCES - Leung PS, Chan XC. Role of oxidative stress in pancreatic inflammation. Antioxid Redox Signal. 2009;11:135-165. - Stevens T, Conwell DL, Zuccaro G. Pathogenesis of chronic pancreatitis: an evidence-base review of past theories and recent developments. Am J Gastroenterol. 2004;99:2256-2270. - Tandon RK, Garg PK. Oxidative stress in chronic pancreatitis: pathophysiological relevance and management. Antioxid Redox Signal. 2011:15:2757-2766. - Witt H, Apte MV, Keim V, et al. Chronic pancreatitis: challenges and advances in pathogenesis, genetics, diagnosis, and therapy. Gastroenterology. 2007;132:1557-1573. - Etemad B, Whitcomp DC. Chronic pancreatitis. Diagnosis, classifications and new genetic developments. Gastroenterology. 2001;120:682-707. - Grigsby B, Rodriguez-Rilo H, Khan K. Antioxidants and chronic pancreatitis: theory of oxidative stress and trials of antioxidant therapy. *Dig Dis Sci.* 2012;57:835–841. - Skipworth JRA, Szabadkai G, Olde Damink SWM, et al. Review article: pancreatic renin-angiotensin systems in health and disease. Aliment Pharmacol Ther. 2011;34:840-852. - Teoh ML, Sun W, Smith BJ, et al Modulation of reactive oxygen species in pancreatic cancer. Clin Cancer Res. 2007;13:7441-7450. - Schoenberg MH, Birk D, Beger HG. Oxidative stress in acute and chronic pancreatitis. Am J Clin Nutr. 1995b;62:1306S-1314S. - Verlaan M, Roelofs HM, van-Schaik A, et al. Assessment of oxidative stress in chronic pancreatitis patients. World J Gastroenterol. 2006;12:5705-5710. - Petrov M, Therapeutic implications of oxidative stress in acute and chronic pancreatitis. Curr Opin Clin Nutr Metab Care. 2010;13:562-568. - Podborska M, Sevcikova A, Trna J, et al. Increased markers of oxidative stress in plasma of patients with chronic pancreatitis. *Neuroendocrinol Lett.* 2009;30(suppl 1):116–120. - Sajewicz W, Milnerowicz S, Nabzdyk S. Blood plasma defense in patients with pancreatitis. *Pancreas*, 2006;32:139-144. - Vinokurova LV, Berezina OI, Drozdov VN, et al. Nitric oxide and indicators of oxidative stress in patients with exacerbation of chronic pancreatitis. Eksp Klin Gastroenterol. 2011;2:57-81. - Girish BN, Rajesh G, Vaidyanathan K, et al. Assessment of oxidative status in chronic pancreatitis and its relation with zinc status. *Indian J Gastroenterol*. 2011;30:84–88. - Güzel S, Seven A, Satman I, et al. Comparison of oxidative stress indicators in plasma of recent-onset and long-term type 1 diabetic patients. J Toxicol Environ Health A. 2000;59:7-14. - Miller YI, Tsimikas S. Lipoprotein oxidation and modification. In: Ballantyne CM, ed. Clinical Lipidology: A Companion to Braunwalds's Heart Disease. Philadelphia, PA: Elsevier, 2009:93–110. - Quillot D, Walters E, Bontze JP, et al. Diabetes mellitus worsens antioxidant status in patients with chronic pancreatitis. Am J Clin Nutr. 2005;81:1117-1125. - Halliwell B. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet. 1994;344:721-724. - 20. Deakin SP, James RW. Genetic and environmental factors modulating serum concentrations and activities of the antioxidant enzyme paraoxonase-1, Clin Sci. 2004;107:435-447. - 21. Précourt LP, Amre D, Denis MC, et al. The three-gene paraoxonase family: physiologic roles, action and regulation. Atherosclerosis. 2011;214;20-36. - 22. Soran H, Younis NN, Charlton-Menys V, et al. Variation in paraoxonase-1 activity and atherosclerosis. Curr Opin Lipidol. 2009:20:265-274. - 23. Szuster-Ciesielska A, Daniluk J, Kandefer-Szerszeń M. Oxidative stress in blood of patients with alcohol-related pancreatitis. Pancreas. 2001a;22:261-266. - 24. Greene FL, Page DL, Fleming ID, et al, eds. AJCC Cancer Staging Manual. 6th ed. New York, NY: Springer-Verlag; 2002. - 25. Schneider A., Löhr JM, Winter MV. The M-ANNHEIM classification of chronic pancreatitis: introduction of a unifying classification system based on a review of previous classification of the disease. J Gastroenterol. 2007;42:101-119. - 26. Kodydková J, Vávrová L, Zeman M, et al. Antioxidative enzymes and increased oxidative stress in depressive women, Clin Biochem, 2009;42:1368-1374. - 27. Draganov Dl, Stetson PL, Watson CE, et al. Rabbit serum paraoxonase 3 (PON3) is a high density lipoprotein-associated lactonase and protect slow density lipoprotein against oxidation. J Biol Chem. 2000;275:33435-33442. - 28. Rainwater DL, Rutherford S, Dyer TD, et al. Determinants of variation in human serum paraoxonase activity. Heredity (Edinb). 2009;102:147-154. - 29. Ahotupa M, Ruutu M, Mantyla E. Simple methods of quantifying oxidation products and antioxidant potential of low density lipoproteins. Clin Biochem, 1996;29:139-144. - 30. Wieland H, Seidel D. A simple specific method for precipitation of low-density lipoproteins. J Lipid Res. 1983;24:904-909. - 31. Vogeser M, König D, Frey I, et al. Fasting serum insulin and the homeostasis model of insulin resistance (HOMA-IR) in the monitoring of life style interventions in obese persons. Clin Biochem. 2007;40:964-968. - 32. McMillan DC. Systemic inflammation, nutritional status and in patients with cancer. Curr Opin Clin Nutr Metab Care, 2009;12:223-226. - 33. Mathew P, Wyllie R, Van Lente F, et al. Antioxidants in hereditary pancreatitis. Am J Gastroenterol. 1996;91:1558-1562. - 34. Quilliot D, Dousset B, Guerci B, et al. Evidence that diabetes mellitus favors impaired metabolism of zinc, copper, and selenium in chronic pancreatitis. Pancreas. 2001;22:299-306. - 35. Michiels C, Raes M, Toussaint O, et al. Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Rad Biol Med. 1994;17:235-248. - 36. Li S, Yan T, Yang JQ, et al. The role of cellular glutathione peroxidase redox regulation in the suppression of tumor cell growth by manganese superoxide dismutase. Cancer Res. 2000;60:3927-3939. - 37. Halliwell B, Gutteridge J. Free Radicals in Biology and Medicine. 4th Ed. New York, NY: Oxford University Press; 2007. - 38. Kirkman HN, Galiano S, Gaetani GF. The function of catalase-bound NADPH. J Biol Chem. 1987;262:660-666. - 39. Fukui M, Kanoh M, Takamatsu Y, et al. Analysis of serum catalase activities in pancreatic diseases. J Gastroenterol. 2004;39:469-474. - 40. Szuster-Ciesielska A, Daniluk J, Kandefer-Szerszeń M. Alcohol-related cirrhosis with pancreatitis. The role of oxidative stress in the progression of the disease. Arch Immunol Ther Exp. 2001b;49:139-146. - 41. Arthur JR. The glutathione peroxidases. Cell Mol Life Sci. 2000;57:1825-1835. - 42. Deneke SM, Fanburg BL. Regulation of cellular glutathione. Am J Physiol, 1989;257:L163-L173. - Schoenberg MH, Büchler M, Pietrzyk C, et al. Lipid peroxidation and glutathione metabolism in chronic pancreatitis. Pancreas. 1995a:10:36-43 - 44. Akçay MN, Polat MF, Yilmaz I, et al. Serum paraoxonase levels in pancreatic cancer. Hepatogastroenterology. 2003;50(suppl 2): ccxxv-ccxxvii. - 45. Goswami B, Tayal D, Gusta N, et al. Paraoxonase: a multifaceted biomolecule.
Clin Chim Acta. 2009;410:1-12. - 46. James RW, Deakin SP. The importance of high-density lipoproteins for paraoxonase-I secretion, stability, and activity. Free Radic Biol Med. 2004;37:1986-1994. - 47. Tavori H, Aviram M, Khatib S, et al. Human carotid lesion linoleic acid hydroperoxide inhibits paraoxonase 1 (PON1) activity via reaction with PON1 free sulfhydryl cysteine 284. Free Radic Biol Med. 2011;50:148-156. - 48. Yokoi K, Shih LC, Kobayashi R, et al. Serum amyloid A as a tumor marker in sera of nude mice with orthotopic human pancreatic cancer and in plasma of patients with pancreatic cancer. Int J Oncol. 2005:27:1361-1369. - 49. Firpo MA, Gay DZ, Granger SR, et al. Improved diagnosis of pancreatic adenocarcinoma using haptoglobin and serum amyloid A in a panel screen. World J Surg. 2009;33:716-722. - 50. Malle E, Sodin-Semrl S, Kovacevic A. Serum amyloid A: an acute-phase protein involved in tumour pathogenesis. Cell Mol Life Sci. 2009;66:9-26. - 51. Liao F, Andalibi A, Qiao JH, et al. Genetic evidence for a common pathway mediating oxidative stress, inflammatory gene induction, and aortic fatty streak formation in mice. J Clin Invest, 1994;94:877-884. - 52. Esterbauer H, Gebicki J, Puh H, et al. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med. 1992:13:341-390. - 53. Santini SA, Spada C, Bononi F, et al. Liver, pancreas and biliary tract enhanced lipoperoxidation products in pure pancreatic juice: evidence for organ-specific oxidative stress in chronic pancreatitis. Dig Liver Dis. 2003;35:888-892. # Supplement 3 Kodydková J, Vávrová L, Zeman M, Jirák R, Macášek J, Staňková B, Tvrzická E, Žák A.: *Antioxidative enzymes and increased oxidative stress in depressive women.* Clinical Biochemistry 2009; 42: 1368-74. (**IF: 2.019**) ## Author's personal copy Available online at www.sciencedirect.com Clinical Biochemistry 42 (2009) 1368-1374 CLINICAL BIOCHEMISTRY # Antioxidative enzymes and increased oxidative stress in depressive women Jana Kodydková ^{a,*}, Lucie Vávrová ^a, Miroslav Zeman ^a, Roman Jirák ^b, Jaroslav Macášek ^a, Barbora Staňková ^a, Eva Tvrzická ^a, Aleš Žák ^a ^a IV. Department of Internal Medicine, 1st Faculty of Medicine, Charles University and General Teaching Hospital, Prague, Czech Republic ^b Department of Psychiatry, 1st Faculty of Medicine, Charles University, Prague, Czech Republic Received 13 February 2009; received in revised form 18 May 2009; accepted 1 June 2009 Available online 13 June 2009 #### Abstract Objectives: To investigate the activities of the main antioxidative enzymes and oxidative stress in women with depressive disorder (DD). Methods: In 35 drug-naive women with DD and 35 age matched healthy women enzymes superoxide dismutase (CuZnSOD), catalase (CAT), glutathione peroxidase (GPX1), glutathione reductase (GR) and paraoxonase (PON1), concentrations of conjugated dienes (CD), reduced glutathione (GSH) and anthropometric and clinical data were investigated. **Results:** Women with DD were found to have decreased activities of GPX1 (p < 0.05), decreased concentrations of GSH (p < 0.05), and increased activities of GR (p < 0.05), CuZnSOD (p < 0.001), and concentrations of CD (p < 0.05). Activity of GPX1 was positively correlated with concentration of GSH (p < 0.05). Concentrations of CD were positively correlated with TG (p < 0.01). Conclusion: Our set of depressive women was characterized by changes indicating an increased oxidative stress, as well as by certain features of metabolic syndrome. © 2009 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved. Keywords: Depressive disorder; Oxidative stress; Antioxidative enzymes; Conjugated dienes #### Introduction Depressive disorder (DD) belongs to diseases, incidence of which is now increasing all around the world. In the USA, it was established, that about 16% of the population fall ill with major depressive disorder during the lifetime [1]. In Finland, 5% prevalence of the depression was described [2]. In 2006, 168 new cases of affective disorders per 100,000 inhabitants were noticed in the Czech Republic, the incidence being 2 times higher in women than in men [3]. The dysfunction of serotoninergic, noradrenergic and dopaminergic neurotransmission [4,5], abnormal regulation in the hypothalamic–pituitary–adrenal axis (HPA) [6], disturbance of cellular plasticity including reduced neurogenesis [7], or chronic inflammation, E-mail address: jana.kodydkova@seznam.cz (J. Kodydková). connected with higher oxidative stress [8] could play a role in the pathogenesis of DD. Large consumption of oxygen (up to 20% of the total requirement of organism), high amount of polyunsaturated fatty acids, which are prone to oxidation, high amount of iron and low activities of antioxidant enzymes contribute to higher sensitivity of brain to oxidative stress [9]. Oxidative stress is defined as the imbalance between production of reactive oxygen and nitrogen species (RONS) and their insufficient decomposition by the antioxidative system [10]. This defence system involves enzymatic antioxidants — superoxide dismutase (EC 1.15.1.1.; SOD), glutathione peroxidase (EC 1.11.1.9; GPX), glutathione reductase (EC 1.6.4.2; GR), catalase (EC 1.11.1.6; CAT) and paraoxonase (EC 3.1.8.1; PON) as well as nonenzymatic antioxidants — reduced glutathione (GSH), provitamin A, vitamin C and E, coenzyme Q10, carotenoids and trace elements like copper, zinc or selenium. Increased production of RONS has been observed in patients with neurodegenerative and psychiatric diseases such as Alzheimer's and Parkinson's ^{*} Corresponding author. U Nemocnice 2, Praha 2, 128 01, Czech Republic. Fax: +420224 92 35 24. disease or schizophrenia [11–13]. Neurodegenerative changes, which are augmented by inflammation and oxidative stress, play an important role also in the pathogenesis of the DD [14,15]. The raised level of oxidative stress is supposed to be one of the factors, standing behind higher incidence of type 2 diabetes mellitus (DM2) and cardiovascular diseases (CVD), which were observed in patients with depression [16,17]. However, only few studies have studied an oxidative stress in DD and the results have been inconsistent. The aim of this study was to determine the activities of main antioxidative enzymes, concentrations of reduced glutathione and conjugated dienes (CD) as marker of lipoperoxidation, and their relations to anthropometric and selected metabolic parameters in women with DD in comparison with healthy controls. #### Methods #### Subjects Thirty five women with DD, recruited from the consecutive outpatients of the Psychiatric Department of 1st Faculty of Medicine of Charles University in Prague from May 2006 to May 2008, and 35 age-matched healthy controls were included in the study. Depressive disorder was diagnosed according to Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, DSM-IV (American Psychiatric Association, 1994) [18]. All patients were evaluated using Hamilton Depression Rating Scale (HAM-D). Exclusion criteria of the study were: history of cardiovascular and cerebrovascular disease, DM, hepatic and/or renal diseases, hypothyroidism, malignancies, macroalbuminuria (proteinuria higher than 300 mg/day), excessive alcohol consumption (>30 g/day), treatment with hypolipidemic medications, supplementation by vitamins, polyunsaturated fatty acids and/or antioxidants. Patients have completed the 7 days dietary questionnaire. Food intake was processed by the software NutriMaster. We have evaluated intake of total energy, protein, fat, carbohydrate, vitamins and minerals. The study protocol was approved by the Joint Ethical Committee of the General Teaching Hospital and the 1st Faculty of Medicine of Charles University in Prague. Written informed consent was obtained from all participants. #### Blood samples Blood samples were obtained after overnight fasting. Activities of CAT, GR, GPX1 and CuZnSOD were measured in haemolysed erythrocytes. The blood samples were collected into the tubes with K_2 EDTA, erythrocytes were washed three times with a NaCl isotonic solution (9 g/L). Serum was used for the determination of all other parameters. The samples were stored at $-80~^{\circ}$ C until assay. The haemotological parameters were measured by routine laboratory techniques using an autoanalyzer (Coulter LH750 — haematological analyzer, Beckman Coulter). Measurement of enzyme activities #### Glutathione peroxidase 1 The activity was measured by the modified method of Paglia and Valentine using tert-butyl hydroperoxide as a substrate [19]. Briefly, 580 μL of 172.4 mM tris–HCl buffer containing 0.86 mM EDTA, pH=8.0; 100 μL of 20 mM GSH, 100 μL of 10 U/mL GR, 100 μL of 2 mM NADPH and 100 μL of diluted sample were pipetted into the cuvettes. The reaction was started after 10 min of incubation at 37 °C by the addition of 20 μL of 9.99 mM tert-butyl hydroperoxide. The rate of NADPH degradation was monitored spectrophotometrically at 340 nm. Blank was run for each sample. Activity of GPX1 was calculated using the molar extinction coefficient of NADPH 6220 M^{-1} cm $^{-1}$ and expressed as U/g haemoglobin. One unit of GPX1 (U) is defined as 1 μ mol of NADPH oxidized to NADP per minute. #### Glutathione reductase The activity was measured according to the method of Goldberg et al. [20]. Briefly, 700 μ L of 0.127 M potassium phosphate buffer containing 0.633 mM Na₂EDTA·2H₂O, pH=7.2 was added to cuvettes followed by 100 μ L of 22 mM oxidized glutathione (GSSG) and 100 μ L of diluted sample. The reaction was started after 10 min of incubation at 37 °C by addition of 100 μ L of 1.7 mM NADPH. The rate of NADPH degradation was monitored spectrophotometrically at 340 nm. Blank was run for each sample. Activity of GR was calculated using the molar extinction coefficient of NADPH 6220 M⁻¹ cm⁻¹ and
expressed as U/g haemoglobin. One unit of GR (U) is defined as the amount of enzyme catalyzing the reduction of 1 μ mol of GSSG per minute. #### Catalase The activity was determined by the modified method of Aebi [21]. The reaction mixture in cuvettes contained 876 μL of 50 mM potassium phosphate buffer, pH=7.2 and 25 μL of diluted sample. The reaction was started after 10 min of incubation at 30 °C by addition of 99 μL of 10 mM H_2O_2 . The rate of H_2O_2 degradation was monitored spectrophotometrically at 240 nm. Blank was run for each sample. Catalase activity was calculated using the molar extinction coefficient of H_2O_2 43.6 M^{-1} cm $^{-1}$ and expressed as kU/g haemoglobin. One unit of CAT (U) is defined as 1 μ mol of H_2O_2 decomposition per minute. #### CuZn-Superoxide dismutase The activity was determined according to the modified method of Štípek et al. [22]. The reaction mixture in cuvettes contained 700 μ L of 50 mM potassium phosphate buffer, pH=7.2; 50 μ L of xanthine oxidase; 100 μ L of NBT and 50 μ L of diluted sample. The reaction was started after 10 min of incubation at 25 °C by addition of 100 μ L of 1 mM xanthine. The rate of NBT-formazan generation was monitored spectrophotometrically at 540 nm. Blank was run for each sample. Superoxide dismutase activity was calculated by means of calibration curve and expressed as U/g haemoglobin. One unit of SOD (U) is defined as the amount of enzyme needed to exhibit 50% dismutation of the superoxide radical. Superoxide dismutase standard (Cat. No. S9636-1kU) was purchased from Sigma Aldrich (St. Louis, MO USA). #### Paraoxonase 1 The arylesterase activity of PON1 was measured according to the method of Eckerson et al. using phenylacetate as a substrate [23]. Briefly, 900 μL of 20 mM Tris–HCl buffer containing 1 mM CaCl2, pH=8.0 was added to cuvettes followed by 50 μL of diluted serum sample. The reaction was started by addition of 50 μL of 100 mM phenylacetate. The rate of phenol generation was monitored spectrophotometrically at 270 nm. Blank was run for each sample. Arylesterase activity of PON1 was calculated using the molar extinction coefficient of the produced phenol, 1310 M^{-1} cm $^{-1}$ and expressed as U/mL serum. One unit of PON1 (U) is defined as 1 μ mol of phenylacetate degradation to phenol per minute. #### Measurement of concentration of reduced glutathione Reduced glutathione was measured by the modified spectrophotometric method according to Griffith [24]. Suspension of washed erythrocytes (500 µL) was mixed with 100 µL of diluted acetic acid in water (6%, v/v), haemolysate was vortexed and 400 μL of 5-sulphosalicylic acid 10% (w/v) was immediately added. After centrifugation at 10 000 g for 2 min, supernatant solution was collected for analysis. This method is based on the determination of relatively stable product of reduction of 5.5' dithiobis-2-nitrobenzoic acid (DTNB) reduction by sulfhydryl compounds to yellow product. Briefly, 50 µL of 0.125 M potassium phosphate buffer containing 6.3 mmol/L Na₂EDTA·2H₂O, pH=7.5 was added to micro-cuvettes followed by 37.5 µL of the sample and 12.5 µL of 6 mmol/L DTNB. The absorbance of the yellow product (reduced chromogen) was measured at 412 nm. Concentration was calculated by means of calibration curve and was expressed as µg/g haemoglobin. #### Measurement of concentration of conjugated dienes Serum low density lipoproteins were isolated by precipitation method of Ahotupa et al. [25]. Concentrations of CD in precipitated LDL were measured by the modified method of Wieland et al. [26]. Serum samples were stabilized with EDTA (10:1 v/v) and analyzed within 2 weeks. The precipitation buffer consisted of 0.064 M trisodium citrate adjusted to pH 5.05 with 5 M HCl, and contained 50,000 IU/L heparin. Sample (110 μ L) of serum with EDTA (10:1 v/v) was added to 1 mL of the heparin-citrate buffer. After mixing, the suspension was incubated for 10 min at room temperature. The precipitated lipoproteins were then separated by centrifugation at 2800 rpm for 10 min. Supernatant was removed and the pellet was resuspended in 100 µL of NaCl isotonic solution (9g/L); this process, individual for each sample, did not exceed 3 s to prevent LDL oxidation. Lipids were extracted by chloroform-methanol (2:1), the mixture was incubated for 10 min with intermittent mixing, 250 μ L redistilled water was used for phase separation. The mixture was centrifuged at 3000 rpm for 5 min. The 800 μ L of lower layer (infranatant) was dried under nitrogen, redissolved in 300 μ L of cyclohexane, and analyzed spectrophotometrically at 234 nm. The concentration of CD was calculated using the molar extinction coefficient 2.95×10^4 M⁻¹ cm⁻¹ and expressed as mmol/L serum. #### Statistical analysis All data were expressed as median (25th–75th percentiles). Normality of distribution of data was tested with Shapiro–Wilks W test. Differences between compared groups were tested with one-way ANOVA. Mann–Whitney U test was used for non-parametric comparison of groups. The Spearman correlation coefficients were used for correlation analysis. All statistical analyses were performed using version 8.0 of StatSoft software Statistica (2007, CZ). #### Results The basic characteristics and essential biochemical parameters observed in the studied groups are shown in Table 1, parameters of oxidative stress are presented in Table 2. Patients with DD had significantly raised values of waist circumference, TG, glucose and index of insulin resistance (HOMA-IR) in comparison with control group. The mean systolic and diastolic blood pressure (SBP and DBP) did not differ significantly. There were also no significant differences in concentrations of HDL-C, LDL-C, CRP, apo A-I and apo B, as well as those of calcium, zinc and copper. We have found no statistical Table 1 Subject characteristics. | | Depression | Controls | |--------------------------|-------------------------|---------------------| | N (female) | 35 | 35 | | Age (years) | 64.5 (50.0-75.1) | 65.0 (53.2-77.0) | | BMI (kg/m ²) | $26.1 (24.1-29.4)^{+}$ | 24.7 (22.7–25.9) | | Waist (cm) | 87.0 (77.0–96.0)+ | 80.5 (77.0-85.5) | | Systolic BP (mm Hg) | 120.0 (120.0-135.0) | 127.5 (120.0-130.0) | | Diastolic BP (mm Hg) | 80.0 (70.0-80.0) | 80.0 (75.0-80.0) | | TC (mmol/L) | 5.42 (4.55-6.57) | 5.92 (4.99-6.48) | | TG (mmol/L) | $1.32 (0.95-1.8)^{+}$ | 1.06 (0.87-1.46) | | HDL-C (mmol/L) | 1.42 (1.24-1.71) | 1.68 (1.49-1.94) | | LDL-C (mmol/L) | 3.14 (2.54-4.05) | 3.56 (2.73-4.27) | | Apo A-I (g/L) | 1.41 (1.26-1.56) | 1.45 (1.33-1.61) | | Apo B (g/L) | 1.02 (0.86-1.34) | 1.04 (0.90-1.25) | | Glucose (mmol/L) | $5.0 (4.6-5.9)^{++}$ | 4.70 (4.6-4.9) | | HOMA-IR | $2.32 (1.19-4.35)^{++}$ | 1.65 (1.19-1.95) | | CRP (mmol/L) | 3.3 (2.0-7.9) | 2.2 (2.0-5.5) | | Ca (mmol/L) | 2.35 (2.29-2.47) | 2.35 (2.28-2.42) | | Cu (mmol/L) | 21.3 (17.8-23.5) | 19.5 (18.3-21.8) | | Zn (mmol/L) | 15.2 (13.8–16.7) | 14.8 (13.7–16.8) | | Cu/Zn | 1.33 (1.15–1.64) | 1.26 (1.11–1.53) | Abbreviations used: BMI: body mass index, BP: blood pressure, TC: total cholesterol, TG: triglycerides, HDL-C: high density lipoprotein, LDL-C: low density lipoprotein, CRP: C-reactive protein; Data were expressed as median (25th–75th percentiles). Statistical analysis: ^+p <0.05; ^{++}p <0.01. Table 2 Parameters of oxidative stress. | | Depression | Controls | |---|--|--| | GPX1 (U/g Hb) GR (U/g Hb) GSH (μg/g Hb) | 53.7 (42.7–65.7) ⁺
7.95 (6.84–8.62) ⁺
568.75 (387.93–3484.01) ⁺ | 64.0 (52.9–70.7)
7.00 (6.19–8.30)
2374.93 (515.16–5668.35) | | CuZnSOD
(U/g Hb) | 2356.2 (2080.75–2586.5)*** | 1930.5 (1309.2–2249.7) | | CAT (kU/g Hb) | 174.0 (155.2–217.9) | 189.0 (166.6-215.4) | | PON1 (kU/L)
CD (mmol/L) | 161.3 (140.8–196.2)
55.7 (47.7–80.8) ⁺ | 175.9 (146.2–207.3)
53.3 (43.8–62.1) | Abbreviations used: GPX1: glutathione peroxidase1, GR: glutathione reductase, GSH: reduced glutathione, CuZnSOD: CuZn-superoxide dismutase, CAT: catalase, PON1: paraoxonase1, CD: conjugated dienes, Hb: haemoglobin; Data were expressed as median (25th–75th percentiles). Statistical analysis: $^+$ p<0.05; $^{++}$ p<0.01; $^{+++}$ p<0.001. significant differences in nutritional habits between women with DD and control group (data not shown). Erythrocyte activities of GR and CuZnSOD and concentrations of CD in precipitated LDL were increased in depressive women; however, activities of GPX1 were decreased. Reduced glutathione was significantly lower in depressive women than in the control group. Activities of CAT and PON1 were not altered in patients with DD. In women with DD, activities of PON1 were positively correlated with concentrations of HDL-C (r=0.457, p<0.01), apo A-I (r=0.379, p<0.05) and calcium (r=0.371, p<0.05), but in control group we have found only positive correlation with apoA-I (r=0.492; p<0.05). Furthermore, activities of CuZnSOD were positively correlated with concentrations of zinc in DD (Fig. 1) and also in control group (r=0.393, p<0.05; r=0.477, p<0.05, respectively). There was no significant correlation of CuZnSOD with copper in both groups. Activities of GPX1 were positively correlated with concentrations of GSH (r=0.284, p<0.05) in DD, but not in control group. There were no correlations observed between activities of individual antioxidant enzymes. Concentrations of serum TG were positively correlated with concentrations of CD in precipitated LDL in the DD group (Fig. 2) and in the control one (r=0.480, p<0.01; r=0.391; p<0.05, respectively). We did not find any Fig. 2. Correlation of concentrations of conjugated dienes and concentration s of triglycerides. Abbreviation used: CD: conjugated dienes, TG:
triglycerides; Statistical analysis: Spearman's rank correlation coefficient. correlation between HAM-D score and any of observed parameters. #### Discussion The most important findings of this study were significantly increased concentrations of CD in precipitated LDL, indicating increased lipid peroxidation, accompanied by the decrease in activity of GPX1 and increase in activities of both CuZnSOD and GR in women with DD. The presence of IR and certain features of metabolic syndrome (MetS) in our set of women with DD were further important findings. Oxidative stress was accepted to participate in the pathophysiology of neurodegenerative conditions such as Alzheimer's disease [27,28], HIV-associated dementia [29], Parkinson's disease [30]. Neurodegenerative changes of brain have been demonstrated in patients with DD, in which also markers of oxidative stress were previously described, such as altered activities of antioxidative enzymes and increased lipid peroxidation products [31–34]. Glutathione peroxidase is ubiquitous enzyme responsible for the degradation of lipid hydroperoxides and of H_2O_2 to hydroxyderivates and water. Decreased activities of GPX1 in erythrocytes were found in our depressive patients, similarly as in the study of Ozcan et al. [35], who described lower activities of GPX1 in patients with affective disorders in comparison with healthy controls. However, Bilici et al. [33] found increased Fig. 1. Activity of CuZnSOD and its correlation with zinc in patients with depression. Abbreviation used: SOD: superoxide dismutase, Hb: haemoglobin; Statistical analysis: Spearman's rank correlation coefficient; $^{+++}p < 0.001$ (Mann–Whitney U test). activities of GPX1 in erythrocytes of patients with major depression, whereas Andrezza et al. [36] did not find any significant changes in patients with bipolar disorder. Activity of GPX1 could be decreased due to lower concentration of its substrate — GSH that we have found in women with DD. Reduced glutathione is one of the most important intracellular antioxidants in the cell and is enzymatically oxidized to GSSG in a number of biochemical pathways. In the present study we have observed significantly decreased concentrations of GSH in depressive women compared to control. To our knowledge, there has been no clinical study regarding data on GSH concentrations in patients with depressive disorders. The observed decrease of GSH were also described in patients with autism [37,38], schizophrenia [39] and Down syndrome [40] have reduced levels of total GSH. Reduced glutathione reacts also nonenzymatically with RONS leading to the glutathiol radical that reacts with further GSH to GSSG radical anion formation. Oxidized glutathione radical anion is involved in the conversion of oxygen to superoxide. The conversion of GSSG back to GSH is catalyzed by GR. In our study, we have found increased activities of GR in erythrocytes. Bilici et al. [33] described raised activities of GR in plasma, but no significant differences in erythrocytes in patients with major depression. Studies have described a variety of intracellular sources of superoxide that include nitric oxide synthase, xanthine oxidase, cyclooxygenase and NADPH oxidase [41-44]. The most important source of superoxide in vascular cells is NADPH oxidase [45]. Decomposition of superoxide into H₂O₂ is catalyzed by SOD. We have found increased CuZnSOD activities in erythrocytes of depressive patients compared with healthy persons, similarly to Sarandol et al. [32]. They suggested that CuZnSOD activity is increased in response to increased ROS production. Bilici et al. [33] have also observed increased CuZnSOD activity in erythrocytes of depressive patients. Inconsistent results were published for serum CuZn-SOD activities. Herken et al. [34] have found decreased, whereas Khanzode et al. [46] elevated CuZnSOD activities in patients with major depression. We have found positive correlation between CuZnSOD activity and concentration of zinc, which is responsible for the stability of CuZnSOD structure as its cofactor [47]. Activities of CAT in erythrocytes were not altered in our set of women with DD, in accordance with Bilici et al. [33]. However, Szuster-Ciesielska et al. [48] found raised activities of CAT in serum of patients with major depression and Ozcan et al. [35] described decreased CAT activities in erythrocytes of patients with affective disorders. Induction of CAT or SOD does not necessarily lead to the induction of the other one [49]. The increased activity of SOD leads to increased amounts of hydrogen peroxide that is then degraded by GPX in its low concentrations and by CAT in its high concentrations [50]. It could be supposed that the concentration of hydrogen peroxide wasn't enough high to increase activity of CAT, and that the task of H₂O₂ degradation remains on GPX. But GPX activity is dependent on GSH, as its substrate. This antioxidant is rapidly consumed in oxidative stress. It is problematic whether GPX could function appropriately in low GSH concentrations. The activities of PON1 were not altered in women with DD, as well as levels of apo A-I, HDL-C and calcium. Apolipoprotein A-I plays a key role for PON1 because of the connection of PON1 to HDL is through apo A-I. We have found positive correlation between PON1 activity and both apo A-I and HDL-C concentrations. Paraoxonase is calcium dependent enzyme; calcium is located in the active site of enzyme. It is consistent with our finding of a positive correlation between the PON1 activity and calcium concentrations in patients with DD. Increased concentrations of CD in LDL indicate an elevation of minimally modified (oxidized) LDL in vivo. Raised concentrations of CD in LDL were found in insulin-resistant states such as MetS and DM2 [51–53], however, different results were published by Gavella et al. [54]. Observed hypertriglyceridemia (HTG) and higher glycaemia, the accumulation of visceral fat and IR could play a role in changes of oxidant/antioxidant balance in our set of depressive women. In nondiabetic human subjects, both BMI and waist circumference were closely correlated with the markers of systemic oxidative stress (plasma TBARS, urinary 8-epi-PGF2α) [55]. Hypertriglyceridemia was associated with an increased oxidative stress in experimental rats [56] and also in humans [57]. Inconsistent results were obtained with regard to the activities of antioxidant enzymes in insulin-resistant states. In one study, increased activity of CAT, decreased of GPX and non-changed of SOD was found in type 2 diabetic patients [58] while in another study [59] the activities of GPX, SOD and CAT in red blood cells were significantly decreased in diabetic subjects when compared with healthy controls. Some authors suggest decreased GPX1 activity as cardiovascular risk factor that was in the prospective study associated with increased extent of atherosclerotic lesions [60]. In summary, we have found significant increase in CuZnSOD and GR activity and simultaneous decrease of GPX1 activity as well as elevated concentrations of CD in precipitated LDL, which positively correlated with TG in our set of depressive women. These findings are in accordance with hypothesis that oxidative stress may play an important role in the pathogenesis of depression. Metabolic changes and markers of IR in women with DD suggest the relationships between MetS and DD. Increased oxidative stress could be a possible connection between depression, IR and increased incidence of both DM2 and CVD. #### Acknowledgments This study was supported by the grant IGA NR/8806-3, Ministry of Health, and research project MSM0021620820, Ministry of Education, Youth and Sports, Czech Republic. #### References [1] Kessler RC, Berglund P, Demler O, et al. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 2003;289:3095-105. - [2] Pirkola SP, Isometsa E, Suvisaari J, et al. DSM-IV mood-, anxiety- and alcohol use disorders and their comorbidity in the Finnish general population—results from the Health 2000 Study. Soc Psychiatry Psychiatr Epidemiol 2005;40:1–10. - [3] Czech Health Statistics Yearbook 2006 (2007), ÚZIS, Praha. - [4] Hindmarch I. Beyond the monoamine hypothesis: mechanisms, molecules and methods. Eur Psychiatry 2002;17(Suppl 3):294–9. - [5] Malhi GS, Parker GB, Greenwood J. Structural and functional models of depression: from sub-types to substrates. Acta Psychiatr Scand 2005;111: 94–105. - [6] Brown ES, Varghese FP, McEwen BS. Association of depression with medical illness: does cortisol play a role? Biol Psychiatry 2004;55:1–9. - [7] Kempermann G, Kronenberg G. Depressed new neurons—adult hippocampal neurogenesis and a cellular plasticity hypothesis of major depression. Biol Psychiatry 2003;54:499–503. - [8] Smith RS. The macrophage theory of depression. Med Hypotheses 1991;35:298–306. - [9] Evans PH. Free radicals in brain metabolism and pathology. Br Med Bull 1993;49:577–87. - [10] Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol 1997;82: 291-5. - [11] Aslan M, Ozben T. Reactive oxygen and nitrogen species in Alzheimer's disease. Curr Alzheimer Res 2004;1:111–9. - [12] Jenner P, Olanow CW. Oxidative stress and the pathogenesis of Parkinson's disease. Neurology 1996;47:161–70. - [13] Mahadik SP, Mukherjee S. Free radical pathology and antioxidant defense in schizophrenia: a review. Schizophr Res 1996;19:1–17. - [14] Licinio J, Wong ML. The role of inflammatory mediators in the biology of major depression: central nervous system cytokines modulate the biological substrate of depressive symptoms, regulate stress-responsive systems, and contribute to neurotoxicity and neuroprotection. Mol Psychiatr 1999;4:317–27. - [15] Moretti A, Gorini A, Villa RF. Affective disorders, antidepressant drugs and brain metabolism. Mol Psychiatr 2003;8:773–85. - [16] Mezuk B, Eaton WW, Albrecht S, Golden SH. Depression
and type 2 diabetes over the lifespan: a meta-analysis. Diabetes Care 2008;31: - [17] Rugulies R. Depression as a predictor for coronary heart disease. A review and meta-analysis. Am J Prev Med 2002;23:51–61. - [18] American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 4th edition. Washington, D.C; 1994. - [19] Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 1967;70:158–69. - [20] Goldberg DM, SRJ. Assay of glutathione reductase. In: Bergmeyer HU, Bergmeyer J, Grassl M, editors. In Methods of Enzymatic Analysis. Verlag Chemie: Weinheim; 1983. p. 258–64. - [21] Aebi H. Catalase. In: Bergmeyer HU, editor. Methods of Enzymatic Analysis. Verlag Chemie: Weinheim; 1974. p. 673–84. - [22] Štípek S, Crkovská J, Dvořák V. Spectrophotometric assay for superoxide dismutase controlled by PC programme developed in LabWindows system Klin Biochem Metab 1995;3:93–7 - [23] Eckerson HW, Wyte CM, La Du BN. The human serum paraoxonase/ arylesterase polymorphism. Am J Hum Genet 1983;35:1126–38. - [24] Griffith OW. Glutathione and glutathione disulphide. In: Bergemeyer HU, editor. Methods of Enzymatic Analysis. Verlag Chemie: Weinheim; 1985. p. 521–9. - [25] Ahotupa M, Ruutu M, Mantyla E. Simple methods of quantifying oxidation products and antioxidant potential of low density lipoproteins. Clin Biochem 1996;29:139–44. - [26] Wieland H, Seidel D. A simple specific method for precipitation of low density lipoproteins. J Lipid Res 1983;24:904–9. - [27] Mattson MP. Pathways towards and away from Alzheimer's disease. Nature 2004;430:631–9. - [28] Smith MA, Rottkamp CA, Nunomura A, Raina AK, Perry G. Oxidative stress in Alzheimer's disease. Biochim Biophys Acta 2000;1502:139–44. - [29] Koutsilieri E, ter MV, Riederer P. Neurotransmission in HIV associated dementia: a short review. J Neural Transm 2001;108:767–75. - [30] Jenner P, Olanow CW. Oxidative stress and the pathogenesis of Parkinson's disease. Neurology 1996;47:161–70. - [31] Maes M, De VN, Pioli R, et al. Lower serum vitamin E concentrations in major depression. Another marker of lowered antioxidant defenses in that illness. J Affect Disord 2000:58:241–6 - [32] Sarandol A, Sarandol E, Eker SS, Erdinc S, Vatansever E, Kirli S. Major depressive disorder is accompanied with oxidative stress: short-term antidepressant treatment does not alter oxidative-antioxidative systems. Hum Psychopharmacol 2007;22:67–73. - [33] Bilici M, Efe H, Koroglu MA, Uydu HA, Bekaroglu M, Deger O. Antioxidative enzyme activities and lipid peroxidation in major depression: alterations by antidepressant treatments. J Affect Disord 2001;64: 43–51. - [34] Herken H, Gurel A, Selek S, et al. Adenosine deaminase, nitric oxide, superoxide dismutase, and xanthine oxidase in patients with major depression: impact of antidepressant treatment. Arch Med Res 2007;38: 247–52 - [35] Ozcan ME, Gulec M, Ozerol E, Polat R, Akyol O. Antioxidant enzyme activities and oxidative stress in affective disorders. Int Clin Psychopharmacol 2004;19:89–95. - [36] Andreazza AC, Cassini C, Rosa AR, et al. Serum S100B and antioxidant enzymes in bipolar patients. J Psychiatr Res 2007;41:523–9. - [37] Geier DA, Kern JK, Garver CR, et al. Biomarkers of environmental toxicity and susceptibility in autism. J Neurol Sci 2009;280:101–8. - [38] Vojdani A, Mumper E, Granpeesheh D, et al. Low natural killer cell cytotoxic activity in autism: the role of glutathione, IL-2 and IL-15. J Neuroimmunol 2008;205:148–54. - [39] Altuntas I, Aksoy H, Coskun I, Cayköylü A, Akçay F. Erythrocyte superoxide dismutase and glutathione peroxidase activities, and malondialdehyde and reduced glutathione levels in schizophrenic patients. Clin Chem Lab Med 2000;38:1277–81. - [40] Muchova J, Garaiova I, Sustrova M. The redox state of glutathione in erythrocytes of individuals with Down syndrome. Bratisl Lek Listy 2007:108:70-4. - [41] Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Cirk Res 2000;86:494–501. - [42] Kojda G, Harrison D. Interactions between NO and reactive oxygen species: pathophysiological importance in atherosclerosis, hypertension, diabetes and heart failure. Cardiovasc Res 1999;43:562-71. - [43] Harrison R. Physiological roles of xanthine oxidoreductase. Drug Metab Rev 2004;36:363–75. - [44] Armstead WM. Vasopressin induced cyclooxygenase dependent superoxide generation contributes to K⁺ channel function impairment after brain injury. Brain Res 2001;910:19–28. - [45] Babior BM. NADPH oxidase: an update. Blood 1999;93:1464-76. - [46] Khanzode SD, Dakhale GN, Khanzode SS, Saoji A, Palasodkar R. Oxidative damage and major depression: the potential antioxidant action of selective serotonin re-uptake inhibitors. Redox Rep 2003;8: 365-70. - [47] Forman HJ, Fridovich I. On the stability of bovine superoxide dismutase. The effects of metals. J Biol Chem 1973;248:2645–9. - [48] Szuster-Ciesielska A, Slotwinska M, Stachura A, et al. Accelerated apoptosis of blood leukocytes and oxidative stress in blood of patients with major depression. Prog. Neuropsychopharmacol. Biol Psychiatry 2008;32: 686–94. - [49] Amstad P, Peskin A, Shah G, et al. The balance between Cu,Zn-superoxide dismutase and catalase affects the sensitivity of mouse epidermal cells to oxidative stress. Biochemistry 1991;30:9305–13. - [50] Halliwell B, Gutteridge JMC. Free Radical in Biology and Medicine. 4th ed. New York: Oxford University Press; 2007. p. 123. - [51] Rabini RA, Tesei M, Galeazzi T, Dousset N, Ferretti G, Mazzanti L. Increased susceptibility to peroxidation of VLDL from non-insulindependent diabetic patients: a possible correlation with fatty acid composition. Mol Cell Biochem 1999;199:63-7. - [52] Zak A, Tvrzicka E, Vecka M, et al. Severity of metabolic syndrome unfavorably influences oxidative stress and fatty acid metabolism in men. Tohoku J Exp Med 2007;212:359–71. - [53] Zeman M, Zak A, Vecka M, Tvrzicka E, Pisarikova A, Stankova B. N-3 - fatty acid supplementation decreases plasma homocysteine in diabetic dyslipidemia treated with statin-fibrate combination. J Nutr Biochem 2006;17:379–84. - [54] Gavella M, Lipovac V, Car A, Vucic M. Baseline diene conjugation in LDL lipids from newly diagnosed type 2 diabetic patients. Diabetes Metab 2002;28:391–6. - [55] Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 2004;114: 1752–61. - [56] Kazdová L, Zák A, Vrána A. Increased lipoprotein oxidability and aortic lipid peroxidation in an experimental model of insulin resistance syndrome. Ann NY Acad Sci 1997;827:521–5. - [57] Zeman M, Zak A, Vecka M, Tvrzicka E, Romaniv S, Konarkova M. Treatment of hypertriglyceridemia with fenofibrate, fatty acid composition of plasma and LDL, and their relations to parameters of lipoperoxidation of LDL. Ann NY Acad Sci 2002;967:336–41. - [58] Kesavulu MM, Giri R, Kameswara Rao B, Apparao C. Lipid peroxidation and antioxidant enzyme levels in type 2 diabetics with microvascular complications. Diabetes Metab 2000;26:387–92. - [59] Ramakrishna V, Jailkhani R. Oxidative stress in non-insulin-dependent diabetes mellitus (NIDDM) patients. Acta Diabetol 2008;45:41-6. - [60] Espinola-Klein C, Rupprecht HJ, Bickel C, et al. Glutathione peroxidase-1 activity, atherosclerotic burden, and cardiovascular prognosis. Am J Cardiol 2007;99:808–12. # Supplement 4 Novák F, Vávrová L, Kodydková J, Novák F Sr, Hynková M, Žák A, Nováková O.: Decreased paraoxonase activity in critically ill patients with sepsis. Clin Exp Med 2010; 10: 21-25. (IF: 1.6) #### ORIGINAL ARTICLE # Decreased paraoxonase activity in critically ill patients with sepsis Frantisek Novak · Lucie Vavrova · Jana Kodydkova · Frantisek Novak Sr. · Magdalena Hynkova · Ales Zak · Olga Novakova Received: 27 April 2009/Accepted: 27 July 2009/Published online: 4 September 2009 © Springer-Verlag 2009 **Abstract** Paraoxonase 1 is believed to play a role in preventing lipid oxidation and, thus, limiting production of proinflammatory mediators. Systemic inflammatory response in sepsis increases oxidative stress and decreases highdensity lipoprotein (HDL) concentrations. The objective of this study was to investigate serum paraoxonase 1 activities in critically ill patients with sepsis and after recovery. Serum paraoxonase 1 arylesterase/paraoxonase activities, concentration of total cholesterol, HDL cholesterol (HDL-C) and serum C-reactive protein (CRP) in septic patients of a medical intensive care unit (n = 30) and age/sex-matched outpatient controls without sepsis (n = 30) were analyzed. Paired convalescent samples were also taken 1 week after recovery (n = 11). In septic patients, both arylesterase $(88.3 \pm 36.5 \text{ vs. } 162.1 \pm 44.8 \text{ kU/l}, P < 0.001)$ and paraoxonase (75.2 \pm 50.0 vs. 125.2 \pm 69.4 U/l, P < 0.01) paraoxonase 1 activities decreased as compared to controls. Both activities normalized after recovery. Negative correlation was found between CRP and both arylesterase $(r=-0.676,\ P<0.001)$ and paraoxonase $(r=-0.401,\ P<0.01)$ as well as positive correlation between HDL-C and both arylesterase $(r=0.585,\ P<0.001)$ and paraoxonase $(r=0.405,\ P<0.01)$ paraoxonase 1 activities. The decreased activity of paraoxonase 1 in negative correlation with CRP offers a potentially useful marker of sepsis progress and recovery in critically ill patients. **Keywords** Paraoxonase 1 · Sepsis · Critical care · High-density lipoprotein · C-reactive protein #### Introduction Despite intensive research and attempts to improve treatment strategies for sepsis and septic shock, infection remains a major cause of mortality in the intensive care unit [1]. Immune response in sepsis as well as in other causes of systemic inflammatory response syndrome increases reactive oxygen and nitrogen species [2] and decreases high-density lipoprotein
(HDL) concentrations [3, 4]. Paraoxonase 1 (PON1), the HDL-associated enzyme [5], is believed to function as an enzyme that protects low-density lipoproteins (LDL) and HDL from peroxidation and possesses anti-inflammatory properties limiting production of proinflammatory mediators [6]. PON1 stands among the family of HDL anti-inflammatory factors such as platelet-activating factor acetylhydrolase, phospholipase A2 and lipopolysaccharide (LPS) binding capacity [7]. To date, PON1 has been studied in relation to health issues involving oxidative stress predominantly of noninfectious causes, including cardiovascular disease [8, 9], diabetes mellitus [10], chronic renal failure [11], F. Novak $(\boxtimes)\cdot L.$ Vavrova \cdot J. Kodydkova \cdot M. Hynkova \cdot A. Zak ⁴th Department of Internal Medicine, 1st Faculty of Medicine, General Teaching Hospital, Charles University in Prague, U Nemocnice 2, CZ-12808 Prague, Czech Republic e-mail: fnova@lf1.cuni.cz F. Novak Sr. · M. Hynkova Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague, Czech Republic O. Novakova Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic F. Novak Sr. Centre for Cardiovascular Research, Prague, Czech Republic inflammatory bowel disease [12], and elective surgery [13]. PON1 activity has also been measured in patients with chronic infection caused by human immunodeficiency virus [14] or *Helicobacter pylori* [15]. PON1 activity decreased in all of these disease states. As for sepsis, a drop in PON1 activity has been observed in an animal model following LPS application [16]. To our knowledge, there has been no clinical study providing data on PON1 activity in septic patients. The objective of this study was to investigate serum PON1 activities in critically ill patients with sepsis and after recovery in relation to serum C-reactive protein (CRP) and HDL cholesterol (HDL-C) concentrations. #### Patients and methods #### Subjects This was a prospective case control study in a medical adult intensive care unit. Thirty septic patients and 30 age/ sex-matched outpatient controls without clinical and laboratory signs of sepsis were included into the study. Patients fulfilled the criteria of sepsis according to the Society of Critical Care Medicine/American College of Chest Physicians (SCCM/ACCP) definitions [17] not longer than 24 h together with the following criteria for inclusion: APACHE II score > 10 [18] and C-reactive protein in serum > 20 mg/l. Exclusion criteria were antioxidant and hypolipidemic therapy, chronic dialysis, history of diabetes, generalized tumors, immunosuppressive therapy, and chemotherapy. Lungs were the primary source of sepsis in 14 cases. Other sources of sepsis were related to central venous catheter infection (six cases), abdominal infection (six cases), urinary tract infection (three cases) and sepsis of unknown origin (one case). Routine serum samples were taken two times: during the first 24 h after onset of sepsis and 1 week after recovery. Recovery was defined as clinical and laboratory cessation of sepsis symptoms for at least 1 week. Paired convalescent samples, taken after recovery, were available in 11 patients. Another 13 patients were not available as they never fully recovered from infection prior to discharge from the hospital (five patients) or were transferred to another healthcare facility (eight patients), while six patients never recovered and died of sepsis. Approval of the study protocol by the locally appointed ethical committee was obtained, as was informed consent from all subjects. #### Methods Blood was obtained for paraoxonase 1 (PON1) activities, total cholesterol (TC) and HDL-C concentrations, CRP and other routine biochemical parameters for APACHE II score. Serum was prepared following coagulation in vacutainer tubes by centrifugation at 1600g for 10 min at 4°C. CRP was measured in serum by immunoturbidimetric method using a K-ASSAY CRP kit (Kamiya Biomedical Company, USA) on a Hitachi Modular (Japan) analyzer. Arylesterase and paraoxonase activities of PON1 (EC 3.1.8.1) were determined spectrophotometrically in serum according to the method of Eckerson et al. [19]. Arylesterase activity was measured with phenylacetate as a substrate in tubes containing 945 µl of 20 mM Tris-HCl (pH 8.0) with 1 mM CaCl₂ and 50 μl of serum. These tubes were incubated at 25°C for 5 min. The reaction was started by 50 µl of 100 mM phenylacetate. The rate of phenol generation was monitored at 270 nm. Paraoxonase activity was measured using paraoxon (O,O-Diethyl O-(4-nitrophenyl) phosphate) as a substrate in tubes containing 940 µl of 90 mM Tris-HCl buffer (pH 8.5) with 2 mM CaCl₂ and 50 µl of 100 mM paraoxon. The reaction was started by addition of 10 µl of serum and measured at 405 nm at 25°C. Both PON1 activities were expressed in U/l of serum. TC was analyzed in serum using a commercially purchased enzymatic Biola-test cholesterol 2500 kit (Pliva-Lachema, Czech Republic). HDL-C measurement was performed in the supernatant of serum samples, after selective precipitation of LDL-cholesterol, using a BIO-LA-TEST HDL-Cholesterol kit (Pliva-Lachema) on a Cobas Mira analyzer (Roche, Switzerland). All of the chemicals were purchased from Sigma (USA), unless otherwise indicated. #### Statistical analysis Data are expressed as mean \pm standard deviation. Normality of data distribution was tested using the Shapiro-Wilk W test. Differences between controls and patients were tested by one-way ANOVA. Differences between the onset of sepsis and 1 week after recovery in patients who recovered were tested as dependent variables using Wilcoxon signed-rank test. Spearman's correlation coefficient was used for correlation analysis. All statistical analyses were performed using version 8.0 of StatSoft software Statistica (2007, Czech Republic). P < 0.05 was considered to be statistically significant. ### Results Table 1 presents the basic clinical and biochemical characteristics of 30 septic patients enrolled within 24 h after the onset of sepsis (Sepsis1) and 30 age/sex-matched outpatient controls (Control1), as well as a subgroup of 11 septic patients enrolled within 24 h after the onset of sepsis and attaining recovery (Sepsis2), the same subgroup 1 week after the clinical and laboratory cessation of sepsis symptoms (Recovery), and appropriate outpatient controls (Control2). There was no sex difference in any parameter observed (not shown). APACHE II and CRP were significantly increased in Sepsis1 as well as in Sepsis2 as compared to the corresponding control. On the other hand, the decrease in concentrations of TC and HDL-C in Sepsis1 as well as in Sepsis2 was found. We observed no difference between Recovery and Control2 in any of the monitored parameters. Figure 1 shows decreased arylesterase and paraoxonase activities of PON1 in sepsis relative to controls. Seven days after recovery, a significant increase only in arylesterase activity of PON1 compared to the onset of sepsis was observed. Both activities of PON1 reached nearly the control levels after recovery. In the present study, 6 from 30 patients died because of sepsis. We found no significant difference between survivors and non-survivors, but there was a trend toward lower arylesterase PON1 activity in non-survivors as compared to survivors (64.94 ± 29.83 vs. 94.13 ± 36.14 ; P = 0.07). Regardless of the source of sepsis, there were no differences in PON1 activities or concentrations of HDL-C and TC among septic patients (data not shown). Decrease of both PON1 activities, as well as of TC and HDL-C concentrations, was negatively correlated with increased CRP concentration. Positive correlations in both PON1 activities with TC and HDL-C concentrations were found. Furthermore, arylesterase activity of PON1 was positively correlated with the paraoxonase activity (Table 2). We found no correlation between both PON1 activities and APACHE II score in septic patients (arylesterase, r = -0.203, ns; paraoxonase r = 0.026, ns). #### Discussion In this study, we found lower PON1 activity in critically ill septic patients in good correlation with decreased HDL-C and increased CRP in comparison with healthy controls. Decreased PON1 activity, low level of circulating HDL, and modest increase in CRP have drawn considerable interest, and especially through this combination's relation to atherosclerosis that exemplifies a low-grade chronic inflammatory process [9]. Mackness et al. [10] supposed that there to be a link between atherosclerosis development and combination of higher CRP level with low PON1 activity. A similar pattern characterized by very low HDL and high CRP concentrations has been found in sepsis representing a high-grade acute inflammatory state caused by infection [3]. In patients with severe sepsis, an early rapid decrease in HDL lipoproteins and increase in CRP concentration have been observed. There was significant correlation between increased CRP and serum amyloid A, both positive acute phase reactants [4]. Therefore, our finding of decreased PON1 activity in septic patients is consistent with the aforementioned parallels. PON1 is predominantly expressed in the liver and is carried in plasma bound to HDL, which provides the optimal acceptor complex in terms of both stimulating PON1 secretion and/or stabilizing the secreted PON1 protein. Therefore, changes in lipid and protein composition of HDL caused by inflammation influence PON1 activity and function [5]. During the acute phase response, HDL is losing apolipoprotein A1, esterified cholesterol, and most of the HDL-associated enzymes (including PON1). PON1 is replaced mainly by serum amyloid A with the concomitant loss of HDL antioxidative properties [20]. A recent study suggests that HDL-associated PON1 Table 1 Basic demographic and biochemical characteristics | Group | Sepsis1 | Control1 | Sepsis2 | Recovery
| Control2 | |--------------------------------|----------------------|-----------------|---------------------|----------------------|-----------------| | N | 30 | 30 | 11 | 11 | 11 | | Gender (male/female) | 16/14 | 16/14 | 4/7 | 4/7 | 4/7 | | Age (years) | 57.7 ± 15.3 | 57.7 ± 15.5 | 63.7 ± 14.6 | 63.7 ± 4.6 | 64.0 ± 13.5 | | Source of sepsis (lungs/other) | 15/15 | _ | 7/4 | 7/4 | _ | | APACHE II | 20.1 ± 6.8 | _ | 20.7 ± 7.8 | _ | _ | | CRP (mg/l) | $124.4 \pm 80.6****$ | 6.2 ± 8.0 | $156.3 \pm 95.5***$ | $27.0 \pm 19.9^{++}$ | 7.9 ± 12.1 | | TC (mmol/l) | $3.3 \pm 1.7****$ | 5.6 ± 1.5 | $3.3 \pm 1.5**$ | $4.7 \pm 1.3^{++}$ | 5.7 ± 1.4 | | HDL-C (mmol/l) | $0.6 \pm 0.4****$ | 1.1 ± 0.4 | 0.6 ± 0.4 | $1.0 \pm 0.6^{+}$ | 1.1 ± 0.6 | Data are expressed as mean \pm SD Sepsis1 all septic patients at the onset of sepsis, Sepsis2 septic patients at the onset of sepsis who later recovered and were evaluated, Recovery sepsis2 1 week after the cessation of sepsis, Control1, Control2 age/sex matched healthy outpatient controls, APACHE II acute physiology and chronic health evaluation score, CRP C-reactive protein, TC total cholesterol, HDL-C high-density lipoprotein cholesterol ^{*} Sepsis1, Sepsis2 versus Control1, Control2, respectively: ** P < 0.01, *** P < 0.001, **** P < 0.0001; * Recovery versus Sepsis2: * P < 0.005, ** P < 0.001 **Fig. 1** Paraoxonase1 activities measured in age-matched healthy outpatient controls (Control), in patients at the onset of sepsis (Sepsis) and patients 1 week after recovery (Recovery). PON1 (enzyme Table 2 Spearman's correlation coefficients within the whole group | | CRP | TC | HDL-C | Paraoxonase-
PON1 | |-------------------|-----------|----------|----------|----------------------| | TC | -0.556*** | _ | | | | HDL-C | -0.599*** | 0.485*** | - | | | Paraoxonase-PON1 | -0.401** | 0.405** | 0.352** | _ | | Arylesterase-PON1 | -0.676*** | 0.585*** | 0.684*** | 0.725*** | N = 60 (Control1 + Sepsis1) CRP C-reactive protein, TC total cholesterol, HDL-C high-density lipoprotein cholesterol, PON1 paraoxonase 1, Sepsis1 all septic patients at the onset of sepsis, Control1 age-matched healthy outpatient controls ** $$P < 0.01$$, *** $P < 0.001$ promotes an apoprotein-dependent lactonase activity [21] that protects lipoproteins, probably via degradation of proinflammatory oxidized fatty acids [6]. The decrease in PON1 activity during sepsis has been demonstrated in the serum of Syrian hamsters, a model of Gram-negative bacterial infection, within 24 h following LPS treatment. A marked decrease in the liver PON1 mRNA as early as 4 h after a single LPS treatment also has been observed. Moreover, independent tumor necrosis factor- α and interleukin-1 cytokines administration without LPS treatment moderately decreased serum PON1 activity and PON1 mRNA levels in the liver, indicating a partial direct effect of these cytokines on PON1 expression [16]. PON1 that decreases during the inflammatory response is classified among the negative acute phase proteins. We found significant negative correlation between PON1 activity and CRP concentration. CRP is one of the positive acute phase proteins induced by increased production of interleukin-1 and interleukin-6 in the liver [22]. In conclusion, the present study has identified lower serum PON1 activity in critically ill septic patients. It is likely that the oxidizing environment induced by sepsis could result in an increased binding of free radicals to the paraoxonase1). Data are expressed as mean \pm SD. *Sepsis (n=30) versus Control (n=30): **P<0.01, ***P<0.001; *Recovery (n=11) versus Sepsis (n=11): *P<0.05 PON1 leading to the decrease of PON1 activity in the circulation. Monitoring of PON1 activity during infection in critically ill patients offers a potentially useful marker of sepsis progress and recovery. **Acknowledgments** This study was supported by a research grant from the Czech Ministry of Health (Project No. IGANR/8943-4). **Conflict of interest statement** The authors declare that they have no conflict of interest related to the publication of this manuscript. #### References - Balk RA (2000) Severe sepsis and septic shock. Definitions, epidemiology, and clinical manifestations. Crit Care Clin 16:179–192 - Martins PS, Kallas EG, Neto MC, Dalboni MA, Blecher S, Salomao R (2003) Upregulation of reactive oxygen species generation and phagocytosis, and increased apoptosis in human neutrophils during severe sepsis and septic shock. Shock 20:208–212 - 3. Alvarez C, Ramos A (1986) Lipids, lipoproteins, and apoproteins in serum during infection. Clin Chem 32:142–145 - van Leeuwen HJ, Heezius EC, Dallinga GM, van Strijp JA, Verhoef J, van Kessel KP (2003) Lipoprotein metabolism in patients with severe sepsis. Crit Care Med 31:1359–1366 - James RW, Deakin SP (2004) The importance of high-density lipoproteins for paraoxonase-1 secretion, stability, and activity. Free Radic Biol Med 37:1986–1994 - Watson AD, Berliner JA, Hama SY, La Du BN, Faull KF, Fogelman AM, Navab M (1995) Protective effect of high density lipoprotein associated paraoxonase. Inhibition of the biological activity of minimally oxidized low density lipoprotein. J Clin Invest 96:2882–2891 - Wu A, Hinds CJ, Thiemermann C (2004) High-density lipoproteins in sepsis and septic shock: metabolism, actions, and therapeutic applications. Shock 21:210–221 - McElveen J, Mackness MI, Colley CM, Peard T, Warner S, Walker CH (1986) Distribution of paraoxon hydrolytic activity in the serum of patients after myocardial infarction. Clin Chem 32:671–673 - Chait A, Han CY, Oram JF, Heinecke JW (2005) Thematic review series: the immune system and atherogenesis. Lipoprotein-associated inflammatory proteins: markers or mediators of cardiovascular disease? J Lipid Res 46:389–403 - Mackness B, Hine D, McElduff P, Mackness M (2006) High Creactive protein and low paraoxonase1 in diabetes as risk factors for coronary heart disease. Atherosclerosis 186:396–401 - Dirican M, Akca R, Sarandol E, Dilek K (2004) Serum paraoxonase activity in uremic predialysis and hemodialysis patients. J Nephrol 17:813–818 - Boehm D, Krzystek-Korpacka M, Neubauer K, Matusiewicz M, Berdowska I, Zielinski B, Paradowski L, Gamian A (2009) Paraoxonase-1 status in Crohn's disease and ulcerative colitis. Inflamm Bowel Dis 15:93–99 - 13. Kumon Y, Nakauchi Y, Kidawara K, Fukushima M, Kobayashi S, Ikeda Y, Suehiro T, Hashimoto K, Sipe JD (1998) A longitudinal analysis of alteration in lecithin-cholesterol acyltransferase and paraoxonase activities following laparoscopic cholecystectomy relative to other parameters of HDL function and the acute phase response. Scand J Immunol 48:419–424 - Parra S, Alonso-Villaverde C, Coll B, Ferre N, Marsillach J, Aragones G, Mackness M, Mackness B, Masana L, Joven J, Camps J (2007) Serum paraoxonase-1 activity and concentration are influenced by human immunodeficiency virus infection. Atherosclerosis 194:175–181 - Aslan M, Nazligul Y, Horoz M, Bolukbas C, Bolukbas FF, Gur M, Celik H, Erel O (2008) Serum paraoxonase-1 activity in *Helico-bacter pylori* infected subjects. Atherosclerosis 196:270–274 - Feingold KR, Memon RA, Moser AH, Grunfeld C (1998) Paraoxonase activity in the serum and hepatic mRNA levels - decrease during the acute phase response. Atherosclerosis 139:307–315 - 17. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 101:1644–1655 - Knaus WA, Draper EA, Wagner DP, Zimmerman JE (1985) APACHE II: a severity of disease classification system. Crit Care Med 13:818–829 - Eckerson HW, Wyte CM, La Du BN (1983) The human serum paraoxonase/arylesterase polymorphism. Am J Hum Genet 35:1126–1138 - 20. Van Lenten BJ, Hama SY, de Beer FC, Stafforini DM, McIntyre TM, Prescott SM, La Du BN, Fogelman AM, Navab M (1995) Anti-inflammatory HDL becomes pro-inflammatory during the acute phase response. Loss of protective effect of HDL against LDL oxidation in aortic wall cell cocultures. J Clin Invest 96:2758–2767 - Gaidukov L, Tawfik DS (2005) High affinity, stability, and lactonase activity of serum paraoxonase PON1 anchored on HDL with ApoA-I. Biochemistry 44:11843–11854 - Ganter U, Arcone R, Toniatti C, Morrone G, Ciliberto G (1989) Dual control of C-reactive protein gene expression by interleukin-1 and interleukin-6. EMBO J 8:3773–3779 # Supplement 5 Vávrová L, Kodydková J, Macášek J, Ulrych J, Žák A.: *Oxidační stres v průběhu akutní pankreatitidy*. Klin biochem metab. 2012; 20(41): 188-193. (**IF: 0.0**) # Oxidační stres v průběhu akutní pankreatitidy ### Vávrová L.1, Kodydková J.1, Macášek J.1, Ulrych J.2, Žák A1 ¹ IV. Interní klinika, 1. LF UK a VFN v Praze, U Nemocnice 2, Praha 2, 128 01 #### **SOUHRN** Cíl studie: stanovení parametrů oxidačního stresu a statutu antioxidačního systému v průběhu akutní pankreatitidy Typ studie: observační, strukturálně vyvážená studie případů a kontrol Materiál a metody: Do studie bylo zařazeno 13 pacientů s akutní pankreatitidou (AP) a dále na základě věku a pohlaví spárované dvě kontrolní skupiny, a to skupina zdravých osob (KON) a osob, které prodělaly v minulých 2-3 letech akutní pankreatitidu (PAP). Pacientům s AP byly odebírány vzorky celkem 4, nejprve během prvních 24 hodin od objevení příznaků, poté po 72 hodinách, třetí odběr byl prováděn 5. den a poslední odběr 10. den onemocnění. U všech pacientů byly stanovovány kromě základních klinických a biochemických parametrů aktivity antioxidačních enzymů, koncentrace některých antioxidantů (redukovaný glutation (GSH), vitamin A a E) a parametry oxidačního stresu (konjugované dieny v precipitovaných LDL (CD/LDL) a oxidované LDL(ox-LDL)). Ke statistickému zpracování výsledků byl použit
program STATISTICA (Stat Soft, CZ). Výsledky: Výsledky naší studie potvrzují zvýšený oxidační stres u pacientů s AP, a to zvýšenými hladinami CD/LDL u všech odběrů AP ve srovnání s CON (p < 0,05) a vzrůstajícími hladinami ox-LDL v průběhu AP s maximem 5. den AP. Pozorovali jsme rovněž změny v antioxidačním systému u AP pacientů; u těchto pacientů jsme zjistili snížené aktivity glutationperoxidázy a arylesterázové i laktonázové paraoxonázy během všech odběrů a dále pak snížené hladiny sérových antioxidantů – albuminu, vitaminu A a vitaminu E při porovnání s kontrolní skupinou. Závěr: Ve studii byl pozorován zvýšený oxidační stres a porušený antioxidační systém v časné fázi AP s gradací mezi třetím a pátým dnem AP. Klíčová slova: akutní pankreatitida, oxidační stres, antioxidační enzymy #### **SUMMARY** Vávrová L., Kodydková J., Macášek J., Ulrych J., Žák A.: Oxidative stress in the course of acute pancreatitis Objective: to assess oxidative stress and antioxidant status in acute pancreatitis and their natural course over the 10-day period. Design: observation, matched case-control study Material and methods: Into our study 13 patients with acute pancreatitis (AP) were included together with 13 sex- and agehealthy controls (CON) and 13 sex- and age-matched controls enrolled from persons that suffered from AP 2 – 3 years ago (PAP). We observed the antioxidant status of AP patients during the disease and the samplings were taken four times – on the first 24 hours of disease (AP1), after 72 hours from disease onset (AP3), on the 5th (AP5) and on the 10th day (AP10). In all studied groups markers of oxidative stress (level of conjugated dienes in precipitated LDL, oxidized LDL) and levels of antioxidants were assessed. We measured activities of superoxide dismutase (CuZnSOD), catalase (CAT), glutathione peroxidase 1 (GPX1) and glutathione reductase (GR) in erythrocytes and arylesterase (PON1-A) and lactonase (PON1-L) activities of paraoxonase in serum and concentrations of reduced glutathione (GSH) in erythrocytes and concentrations of vitamins E and A in serum. Results: In our study we confirmed increased oxidative stress in AP, with higher levels of CD/LDL in all AP samplings compared to CON (p < 0.05) and with increasing levels of ox-LDL during the AP with the maximum on the 5^{th} day. We have shown altered status of antioxidant system; the activities of both PON1 activities as well as activity of GPX1 were depressed in all AP samplings in comparison to CON. We have also observed decreased levels of serum antioxidants – albumin, vitamin A and vitamin E in AP Conclusion: High oxidative stress and impaired antioxidant status was observed during early phase of AP with the gradation between 3^{rd} and 5^{th} day of AP. Key words: acute pancreatitis, oxidative stress, antioxidant enzymes #### Úvod V patogenezi všech akutních zánětlivých procesů hrají důležitou roli reaktivní formy kyslíku (ROS), které se uplatňují v časné fázi zánětu, jako vysoce aktivní metabolity vedoucí k poruše buněčné homeostázy, k poškození DNA a k peroxidaci membránových lipidů s následným zvýšením permeability a k buněčné smrti [1]. Udržení oxidační rovnováhy organismů zajišťuje antioxidační systém, tvořený antioxidačními enzymy – su- peroxiddismutáza (SOD), kataláza (CAT), glutationperoxidáza (GPX), glutationreduktáza GR) a paraoxonáza (PON) – a neenzymovými antioxidanty, kde nejdůležitějším je redukovaný glutation (GSH) [2]. Cílem naší práce bylo sledovat změny antioxidačního systému v průběhu akutní pankreatitidy (AP), která představuje rychle se rozvíjející zánětlivý proces spojený s významnými metabolickými změnami a významnou klinickou odezvou. Klíčovými patogenetickými pochody, které probíhají během rozvoje AP, jsou autodiges- ²I. Chirurgická klinika hrudní, břišní a úrazové chirurgie, 1. LF UK a VFN v Praze, U Nemocnice 2, Praha 2 ce, patologická stimulace zánětlivých buněk, ischemie, reperfuze a hemoragie. Významným faktorem, který se uplatňuje v patogenezi AP je oxidační stres (OS), [1]. Mezi nejčastější etiologické faktory vedoucí k rozvoji AP se řadí alkohol a cholelitiáza [3]. ### Materiál a metody Do pilotní observační studie bylo celkem zařazeno 13 pacientů s AP a dále pak na základě věku a pohlaví spárované dvě kontrolní skupiny – skupina 13 zdravých osob (CON) a skupina 13 osob, jež během 2-3 let před odběrem prodělaly akutní pankreatitidu a v době studie byly bez obtíží (PAP). U pacientů s AP byly prováděny celkem 4 náběry krevních vzorků: první náběr byl proveden během prvních 24 hodin od objevení prvních příznaků (AP1), druhý odběr po 72 hodinách (AP3), třetí náběr byl uskutečněn 5. den (AP5) a poslední náběr pak 10. den onemocnění (AP10). Pacienti s AP byli vybíráni na JIP IV. Interní kliniky a JIP I. chirurgické kliniky hrudní, břišní a úrazové chirurgie 1. LF UK a VFN v Praze. U těchto pacientů probíhala diagnostika a zařazení do studie na základě následujících kritérií: aktivita AMS, APACHE II skóre, Ransonova kriteria, koncentrace C-reaktivního proteinu (CRP), CTSI skóre, kontrastního CT vyšetření. Na základě nové klasifikace závažnosti AP dle Petrova et al. (2010) [4] se v jednom případě jednalo o kritickou AP (pacient v průběhu studie zemřel), ve 4 případech o středně těžkou a v 8 případech o lehkou formu AP. U 8 pacientů byla AP biliárního původu, u 2 pacientů se jednalo o etylickou AP a u 2 o idiopatickou AP, v jednom případě byla AP vyvolána endoskopickou retrográdní cholangio-pankreatografií (ERCP). Do kontrolní skupiny CON byli zařazeni zdraví dobrovolníci, do druhé kontrolní skupiny PAP byli zařazeni dobrovolníci vybíraní z pacientů, kteří byli před 2-3 roky hospitalizováni na IV. Interní klinice s diagnózou akutní pankreatitidy a v době studie netrpěli žádným chronickým onemocněním pankreatu. Z těchto 13 osob, 6 prodělalo v minulosti těžkou formu AP a 7 lehkou formu AP, v 5 případech se jednalo o biliární, ve 4 případech o etylickou a ve 3 případech o idiopatickou pankreatitidu, v jednom případě byla AP vyvolána vyšetřením ERCP. Pro všechny osoby platila stejná vylučovací kritéria: zavedená terapie antioxidanty (farmakologické dávky vitaminu C a E, allopurinol, N-acetylcystein), chronická dialýza, imunosuprese, manifestní diabetes mellitus, generalizace tumoru a chemoterapie. Studie byla schválena Etickou komisí VFN Praha. Všechny osoby zařazené do studie podepsaly informovaný sou- U všech osob zařazených do studie byly prováděny odběry krevních vzorků po celonočním lačnění (min. 10 hodin). Odebrané krevní vzorky byly zpracovány do 1 hodiny od náběru a materiál pro další analýzy byl uchováván při -80°C. U pacientů byly sledovány základní klinické, antropometrické a biochemické parametry, dále pak byly stanovovány aktivity antioxidačních enzymů CAT, GPX1, GR, CuZnSOD v erythrocytech a arylesterázové a laktonázové aktivity PON1 v séru, koncen- trace antioxidantů jako je redukovaný glutation (GSH) v erythrocytech, či vitaminy E a A, albumin a bilirubin v séru. Jako parametr oxidačního stresu byla měřena koncentrace konjugovaných dienů v precipitovaných LDL (CD/LDL) a hladina oxidovaných LDL (ox-LDL) v séru. Speciální vyšetření (hladiny antioxidantů, markery oxidačního stresu) byla prováděna v laboratořích IV. Interní kliniky, rutinní biochemické parametry a stanovení hladin vitaminů bylo provedeno v Ústavu lékařské biochemie a laboratorní diagnostiky VFN Praha. Metody ke stanovení aktivity antioxidačních enzymů a koncentrací GSH a CD/LDL byly podrobně popsány v publikaci Kodydkové et al. (2009) [5], ke stanovení ox-LDL byl využit komerčně dodávaný ELISA kit od firmy Mercodia. Ke stanovení hladin selenu byla využita atomová absorpční spektrometrie s elektrotermickou atomizací (ETAAS) na Varian Spectra A220 FS. Koncentrace vitaminů A a E byla stanovena pomocí diagnostických kitů (Radanal s. r. o., ČR) a metody vysokoúčinné kapalinové chromatografie (HPLC) s UV detektorem (Ecom). Výsledky jsou vyjádřeny jako průměr ± S. D. pro parametrické veličiny a jako medián (0,25-0,75 percentil) pro neparametrické veličiny. Normalita byla testována prostřednictvím Shapiro-Wilkova W testu. Rozdíly mezi jednotlivými skupinami AP vs. kontrolní soubory byly zkoumány pomocí jedno-faktorové ANOVY s Neuman-Keulsovým post-testem. Pro neparametrickou analýzu byla použita Kruskal-Wallisova ANOVA. Při testování rozdílů mezi jednotlivými odběry pacientů s AP byla použita ANOVA pro závislé vzorky. Pro všechny statistické analýzy byl používán program STATISTICA 10.0 (Stat Soft, CZ). Za statisticky signifikantní byly považovány výsledky s p < 0,05. #### Výsledky Do studie bylo zařazeno celkem 13 pacientů s diagnostikovanou AP s průměrným APACHE II skóre (APACHE II = 5.7 ± 3.8) při vstupu do studie. Základní biochemické charakteristiky jednotlivých skupin jsou shrnuty v Tabulce 1. Hlavními sledovanými parametry byly antioxidanty a markery OS. Jako markery OS byly měřeny hladiny CD/LDL a ox-LDL. V koncentraci CD/LDL nebyly zjištěny žádné signifikantní rozdíly mezi jednotlivými odběry AP, ale vyšší hladiny CD/LDL byly pozorovány u pacientů s AP během všech odběrů ve srovnání s CON (p < 0,05). Hladina ox-LDL se v průběhu AP zvyšovala a svého maxima dosáhla 5. den onemocnění (obr. 1). Ze sledovaných antioxidačních enzymů docházelo k největším změnám aktivit v průběhu AP u obou sledovaných aktivit PON1. Obě PON1 aktivity byly ve všech odběrech AP signifikantně snížené při srovnání s CON. Nejnižší aktivita u PON1-A byla pozorována 5. den AP (obr. 2). V aktivitách GPX1, GR a CuZnSOD nebyly pozorovány žádné rozdíly mezi jednotlivými odběry u AP. Aktivita CAT byla signifikantně zvýšená v AP1 oproti AP10 (231,7 ± 21,2 vs. 219,8 ± 26,0; p < 0,05). Při srovnání aktivit těchto enzymů u AP s kontrolními skupinami, byla pozorována snížená aktivita Table 1: Basic biochemical characteristics of the studied groups | | AP1 | PAP | CON | | |---------------------------|-------------------------|---------------------|--------------------|--| | N (M/F)
| M/F) 13 (9/4) | | 13 (9/4) | | | Age (years) | 56.1 ± 21.5 | 54.8 ± 20.8 | 55.8 ± 19.4 | | | Glucose (mmol/l) | 6.6 ± 2.9** | 6.1 ± 1.4** | 5.2 ± 0.4 | | | TC (mM) | 4.9 ± 3.3 | 4.9 ± 1.3 | 5.2 ± 1.2 | | | α-AMS (μkat/l) | 10.5 (7.0 – 19.4)***** | 0.4 (0.3 - 0.4) | 0.5 (0.3 - 0.6) | | | ALT (µkat/l) | 1.7 (0.7 – 4.6)*** | 0.4 (0.3 - 0.6) | 0.5 (0.4 - 0.6) | | | AST (µkat/l) | 1.8 (0.7 – 3.9)*** | 0.5 (0.4 - 0.6) | 0.4 (0.4 - 0.5) | | | GGT (µkat/l) | 4.3 (1.9 – 8.5)***++ | 0.6 (0.4 - 0.7) | 0.4 (0.3 - 0.5) | | | WBC (*10 ⁹ /l) | $13,2 \pm 5,5^{******}$ | 6.6 ± 1.0 | 6.6 ± 1.5 | | | PCT (μg/l) | 0.16 (0.13 – 0.84)**** | 0.05 (0.05 - 0.05)* | 0.03 (0.02 - 0.03) | | | Albumin (g/l) | 36.5 ± 7.8****++ | 48.4 ± 4.1 | 47.1 ± 3.1 | | AP1: acute pankreatitis- first sampling, CON: healthy controls, PAP: controls 2-3 years after AP; M: male, F: female, TC: total cholesterol, TG: triacylglycerols, α -AMS: panceatic α -amylase, ALT: alanin-amino-transferase, AST: Aspartat-amino-transferase, GGT: γ -glutamyl-transferase, PCT: procalcitonin, WBC: white blood cells; * AP or PAP vs. CON, * p < 0.05, ** p < 0.01, *** p < 0.001; + AP vs. PAP, + p < 0.05; ++ p < 0.01, +++ p < 0.001 **Fig. 1.** Parameters of oxidative stress and antioxidant status in course of acute pancreatitis ox-LDL: oxidized LDL, CRP: C-reactive protein, GSH: reduced glutathione; AP: patients with acute pancreatitis (1, 3, 5, 10: days of sampling), CON: healthy controls; *AP group vs. CON, *p < 0.05, **p < 0.01; *AP1 or AP3 or AP5 vs. AP10, *p < 0.05; ***p < 0.01; *AP1 vs. AP3, *p < 0.05; ***p < 0.01; *AP1 vs. AP3, *p < 0.01; *AP1 vs. AP3, *p < 0.01; *AP2 vs. AP3, *p < 0.01; *AP3 vs. AP3 A GPX1 během všech AP odběrů v porovnání s CON, a dále pak snížená hodnota GPX1 u PAP ku CON (obr. 3). U CAT byla pozorována zvýšená aktivita u pacientů s AP během 1., 3. a 5. dne při srovnání s PAP (p < 0,05). Aktivita CAT při AP10 se již signifikantně nelišila od PAP, ale zato byl pozorován trend ke sníženým hodnotám vůči CON (p = 0,06). Při ostatních odběrech byla CAT u AP srovnatelná s hodnotami CON. Pro aktivity GR a CuZnSOD nebyly zjištěny žádné rozdíly mezi kontrolními skupinami a AP. Z neenzymatických antioxidantů byla sledována koncentrace GSH, která byla signifikantně nejvyšší 3. den AP (obr. 1) a hladiny sérového albuminu (Tabulka 1) a bilirubinu. Hladiny albuminu byly u všech AP odběrů signifikantně snížené oproti oběma kontrolním skupinám a mezi sebou se nelišily. Koncentrace bilirubinu byly nejvyšší při záchytu AP a postupně docházelo k jejich poklesu (obr. 1). Dále pak byla stanovována koncentrace vitaminů E a A při AP1 a srovnávána s oběma kontrolními skupinami (obr. 3), koncentrace obou vitaminů byla snížená u AP1 ve srovnání s CON. Fig. 2. Paraoxonase and its associate parameters in course of acute pancreatitis PON1-A: arylesterase activity of paraoxonase 1, PON1-L: lactonase activity of paraoxonase 1, HDL-C: high density lipoprotein, Apo-A1: apolipoprotein A1; AP: patients with acute pancreatitis (1, 3, 5, 10: days of sampling), CON: healthy controls; * AP group vs. CON, * p < 0.05, ** p < 0.01; * AP1 or AP3 or AP5 vs. AP10, * p < 0.05; ** p < 0.01 * AP1 or AP3 vs. AP5, * p < 0.05, * p < 0.01; * AP1 vs. AP3, * p < 0.05, Fig. 3. Antioxidants in acute pancreatitis GPX1: glutathione peroxidase 1, AP1: patients with acute pancreatitis, CON: healthy controls, PAP controls 2-3 years after AP; * AP or PAP vs. CON, * p < 0.05, ** p < 0.01, *** p < 0.001; * AP or R vs. CON, ** p < 0.01 #### **Diskuse** V naší studii jsme se zaměřili na sledování jednotlivých komponent antioxidačního systému a měření markerů peroxidace v průběhu AP. Naše výsledky ukazují na zvýšený oxidační stres u tohoto onemocnění, který je doprovázen změnou ve fungování některých složek antioxidačního systému. Největší změny je možno pozorovat v arylesterázové a laktonázové aktivitě PON1 a v aktivitě GPX1, dále pak v koncentraci vitaminů A a E. U některých antioxidačních enzymů jsme však nepozorovali žádné změny spojené s onemocněním AP. K těmto enzymům se řadí CuZnSOD, u které byly hodnoty aktivit téměř konstantní v průběhu AP. Nepozorovali isme ani rozdíl mezi aktivitou CuZnSOD u AP a u kontrolních skupin. Dosud publikované výsledky aktivit CuZnSOD v erytrocytech u pacientů s AP jsou nejednotné. Byly publikovány jak snížené [6, 7], tak zvýšené [8] aktivity CuZnSOD u pacientů s těžkou i lehkou formou AP. Zvýšená aktivita extracelulární SOD (EC-SOD) byla pozorována v průběhu AP (1., 3., 7.den) v porovnání s kontrolami [9], kdy 1. den byla signifikantně výšší než 3. a 7. den. Zvýšenou EC-SOD u AP při srovnání s kontrolami pozorovali ve svých studiích i Góth (1982, 1989) [10, 11] a Szuster-Czielska (2001a) [12]. CuZnSOD má v organismu za úkol odbourávat superoxidový radikál, ze kterého při této reakci vzniká peroxid vodíku, za jehož degradaci jsou zodpovědné CAT, GPX1 a peroxiredoxiny. Při nízkých – fyziologických – koncentracích je H₂O₂ odbouráván GPX1 a peroxiredoxiny, naopak při zvýšeném oxidačním stresu a vyšších koncentracích je za odbourávání odpovědná CAT [13]. V naší studii byly aktivity CAT 1., 3. a 5. den srovnatelné s hodnotami zdravých kontrol, ale signifikantně se lišily od hodnot získaných u skupiny osob, které AP prodělaly před 2-3 lety. Při odběru prováděném desátý den (AP10) byl pozorován signifikantní pokles v aktivitách CAT ve srovnání s AP1 a i se zdravými kontrolami, i když zde je možno mluvit pouze o trendu. Tyto výsledky ukazují, že při dlouhodobém vystavení CAT působení oxidačního stresu, může dojít k poklesu její aktivity. Kirkman a Gaetani (1987) ve své studii ukázali, že dlouhodobé vystavení CAT působení H₂O₂ může vést k oxidaci NADPH na NADP+ a následnému snížení aktivity CAT až na 1/3 její původní aktivity [14]. Ve studii, která se zabývala erythrocytární aktivitou CAT nebyly pozorovány žádné významné rozdíly mezi pacienty s AP a kontrolami [8]. Doposud získané výsledky aktivity CAT v séru ukazují zvýšené aktivity u pacientů s AP ve srovnání s kontrolní skupinou [10 – 12, 15]. Degradace H₂O₂ není jedinou funkcí GPX1, dále je také zodpovědná za odbourávání lipidových peroxidů. Glutationperoxidáza 1 je selenoprotein, jehož aktivita je závislá nejen na dostatku selenu, ale ke své funkci potřebuje GSH jako druhý substrát. U pacientů s AP jsme pozorovali snížené koncentrace selenu a snížené aktivity GPX1 ve srovnání s CON. Aktivita GPX1 byla snížená u všech odběrů AP a také u skupiny PAP. Ve studii, kde se zabývali aktivitou GPX1 v erythrocytech v průběhu AP, pozorovali sníženou hladinu GPX1 u AP až při odběru 9. den AP [16]. V séru byly pozorovány snížené hladiny GPX1 u pacientů s AP vzhledem ke kontrolám již v několika dřívějších studiích [17 – 19], i když existuje i studie, kde nenašli žádný rozdíl mezi pacienty a kontrolami [12]. U koncentrací GPX1 v séru nebyl nalezen rozdíl mezi AP a ambulantními kontrolami [20]. Také snížené koncentrace Se v séru u pacientů s AP byly již dříve publikovány [16, 19], i když opět ne ve všech pracech [21]. Koncentrace GSH byla u našich pacientů s AP srovnatelná s koncentracemi u CON, pouze při odběru 3. den nemoci (AP3) bylo pozorováno zvýšení koncetrace GSH oproti ostatním odběrům AP i oproti CON. Na rozdíl od naší studie Rahman et al. (2004, 2009) [22, 23] ve svých studiích pozoroval snížené hladniny GSH v erytrocytech u lehké i těžké formy AP ve srovnání s kontrolní skupinou, stejně tak pro GSH v séru byly pozorovány signifikantně snížené koncentrace u AP v porovnání s CON [17]. Možným vysvětlením zvýšených hladin GSH u AP3 je obranná reakce organismu na aktuálně vzniklý oxidační stres, ale i možná desynchronizace aktivit GPX1 a GR v období 2. odběru (AP3). S GPX1 spolupracuje v organismu GR, která udržuje hladinu GSH zpětnou redukcí oxidovaného glutationu vzniklého působením GPX1. V naší studii jsme nepozorovali žádné signifikantní změny v aktivitě GR v průběhu akutní pankreatitidy a nezjistili jsme ani žádný rozdíl při srovnání pacientů s AP s kontrolními skupinami, tento výsledek je ve shodě s již dříve publikovanou studií [17]. Dalšími sledovanými antioxidanty byly vitaminy A a E. Koncentrace obou vitaminů byla signifikantně snížená u pacientů s AP ve srovnání s CON. Snížené hladiny vitaminu A byly pozorovány též ve studii Musil et al. (2005) [12], zatímco u koncentrace vitaminu E nebyl nalezen žádný rozdíl [12, 21]. Posledním sledovaným antioxidačním enzymem byla s HDL asociovaná paraoxonáza, u níž byly měřeny dvě její různé aktivity, a to arylesterázová a laktonázová. Obě tyto aktivity byly v celém průběhu AP signifikantně snížené oproti zdravým kontrolám. U obou aktivit též došlo k dalšímu snížení v rámci odběrů AP3 a AP5, kdy arylesterázová aktivita dosáhla svého minima u odběru 5. den AP. V tento den byly naměřeny též nejvyšší koncentrace oxidovaných-LDL, jako markeru lipidové peroxidace. Kinetika změn aktivit PON v průněhu AP odpovídá změnám aktivit PON1, které byly pozorovány v průběhu sepse a během jejího zotavování, a které mají zřejmě obecnější zákonitosti [24]. ## Literatura - 1. **Špičák, J.,** Kyslíkové radikály v patogenezi akutní a chronické pankreatitidy. In Štípek, S. a kol., *Antioxidanty a volné radikály ve zdraví a v nemoci.* Grada, Praha, 2000; p. 159-163. - Racek, J., Holeček, V., Vznik volných radikálů a enzymy. Klin. Biochem. Metab., 1999, 7, p. 158-163. - Špičák, J., Akutní pankreatitida. Grada, Praha, 2005, 216S, ISBN: 80-247-0942-2. - Petrov, M. S., Windsor, J. A., Classification of the severity of acute pancreatitis: how many categories make sense? *Am. J. Gastroenterol.*, 2010, 105, p. 74–76. - Kodydková, J., Vávrová, L., Zeman, M. et al., Antioxidative enzymes and increased oxidative stress in depressive women. Clin. Biochem. 2009, 42, p. 1368-1374. - Abu-Hilal, M., McPhail, M. J., Marchand, L., Johnson, C. D., Malondialdehyde and superoxide dismutase as potential markers of severity in acute pancreatitis. *JOP*, 2006, 7(2), p. 185-192. - Park, B. K., Chung, J.
B., Lee, J. H. et al., Role of oxygen free radicals in patients with acute pancreatitis. World J. Gastroenterol, 2003, 9(10), p. 2266-2269. - Chmiel, B., Grabowska-Bochenek, R. et al., Red blood cells deformability and oxidative stress in acute pancreatitis. Clin. Hemorheol. Microcirc., 2002, 27(3-4), p. 155-62. - Thareja, S., Bhardwaj, P., Sateesh, J., Saraya, A., Variations in the levels of oxidative stress and antioxidants during early acute pancreatitis. *Trop. Gastroen*terol., 2009, 30(1), p. 26-31. - Góth, L., Mészáros, I., Németh, H., Serum catalase enzyme activity in acute pancreatitis. *Clin. Chem.*, 1982, 28(9), p. 1999-2000. - 11. **Góth, L.,** Origin of serum catalase activity in acute pancreatitis. *Clin. Chim. Acta*, 1989, 186(1), p. 39-44. - Szuster-Ciesielska, A., Daniluk, J., Kandefer-Szerszeń, M., Oxidative stress in bloodofpatientswithal-cohol-relatedpancreatitis. *Pancreas*, 2001a; 22, p. 261-266 - 13. **Halliwell, B., Gutteridge, J. M. C.,** Free radicals in biology and medicine. 4th ed. *Oxford University Press*, 2008. - 14. **Kirkman, H. N., Galiano, S., Gaetani, G. F.,** The function of Catalase-bound NADPH. *J. biol. Chem.*, 1987, 262(2), p. 660-666. - Fukui, M., Kanoh, M., Takamatsu, Y., Arakawa, Y., Analysis of serum catalase activities in pancreatic diseases. J. Gastroenterol. 2004, 39, p. 469-474. - Musil, F., Zadák, Z., Solichová, D., Hyspler, R., Kaska, M., Sobotka, L., Manák, J., Dynamics ofantioxidants in patientswithacutepancreatitis and in patients operated for colorectal cancer: a clinical study. *Nutrition*, 2005, 21(2), p. 118-124. - 17. Czeczot, H., Majewska, M., Skrzycki, M. et al., Activity of GSH-dependent enzymes in blood serum of patients with acute and chronic pancreatitis. *Wiad. Lek.*, 2009, 62, p. 87-92. - Modzelewski, B., Serum anti-oxidative barrier in acute pancreatitis. *Pol. Merkur Lekarski*. 2005, 18(106), p. 418-420. - Wereszczynska-Siemiatkowska, U., Mroczko, B., Siemiatkowski, A., Szmitkowski, M., Borawska, M., Kosel, J., The importance of interleukin 18, glutathione peroxidase, and selenium concentration changes in acute pancreatitis. *Dig. Dis. Sci.*, 2004, 49, p. 642-650. - 20. Szuster-Ciesielska, A., Daniluk, J., Kandefer-Szerszeń, M., Alcohol-related cirrhosis with pancreatitis. The role of oxidative stress in the progression of the disease. *Arch. Immunol. Ther. Exp.*, 2001b, 49(2), p. 139-146. - Morris-Stiff, G. J., Bowrey, D. J., Oleesky, D., Davies, M., Clark, G. W., Puntis, M.C., The antioxidant profiles of patients with recurrentacute and chronic pancreatitis. *Am. J. Gastroenterol.*, 1999, 94(8), p. 2135-2140. - 22. Rahman, S. H., Ibrahim, K., Larvin, M., Kingsnorth, A., McMahon, M. J., Association of antioxidant enzyme gene polymorphisms and glutathione status with severe acute pancreatitis. *Gastroenterology*, 2004, 126(5), p. 1312-1322. - 23. **Rahman, S. H., Srinivasan, A. R., Nicolaou, A.,** Trans sulfuration pathway defects and increased glutathione degradation in severe acute pancreatitis. *Dig. Dis. Sci.*, 2009, 54(3), p. 675-682. - 24. **Novak, F., Vavrova, L., Kodydkova, J. et al.,** Decreased paraoxonase activity in critically ill patients with sepsis. *Clin. Exp. Med.*, 2010, 10(1), p. 21-25. Studie byla podpořena grantem IGA MZ ČR: NS 9769-4. Do redakce došlo 22. 2. 2012 Adresa pro korespondenci: Mgr. Lucie Vávrová IV. interní klinika, 1. LF UK a VFN U Nemocnice 2 128 01 Praha 2 e-mail: vavrova3@seznam.cz # Supplement 6 Macášek J, Zeman M, Vecka M, Vávrová L, Kodydková J, Tvrzická E, Žák A.: Reactive oxygen and nitrogen species in the clinical medicine. Cas Lek Cesk 2011; 150(8): 423-32. (IF: 0.0) # Reaktivní kyslíkové a dusíkové sloučeniny v klinické medicíně Jaroslav Macášek, Miroslav Zeman, Marek Vecka, Lucie Vávrová, Jana Kodydková, Eva Tvrzická, Aleš Žák Univerzita Karlova v Praze, 1. lékařská fakulta, IV. interní klinika VFN #### SOUHRN V poslední době dochází k rychlému růstu poznatků o reaktivních kyslíkových a dusíkových sloučeninách (RONS, reactive oxygen and nitrogen species) v klinické medicíně. Jejich významná úloha byla popsána v patogenezi mnoha chorob včetně těch, které značně zatěžují zdravotnické systémy vyspělých států. Výzkumu reaktivních kyslíkových a dusíkových radikálů je proto věnováno velké úsilí. Jedná se o nestabilní částice ochotně reagující s biomolekulami v organismech. Tyto reakce se řetězově propagují a vedou k mnohočetnému poškození buněčných systémů, což se uplatňuje v patogenezi mnoha chorob. Chemickou podstatou těchto částic je přítomnost nespárovaného elektronu v zevním orbitalu. Patří sem také sloučeniny snadno oxidující jiné molekuly. Volné kyslíkové radikály vznikají během fyziologických procesů, jako jsou oxidativní fosforylace v mitochondriích, fagocytóza či při metabolismu purinů. Při nadměrné tvorbě ROS během těchto procesů může dojít k poškození tkáně. Dusíkaté radikály vznikají především při metabolismu oxidu dusnatého, který reguluje mnoho procesů v organismu, rozpřažením jeho syntézy působením např. asymetrického dimetylargininu. Při vzniku radikálů či oxidačně působících látek hrají roli mnohé enzymy jako peroxizomální oxidázy, NAD(P)H oxidáza, xanthinoxidáza, syntáza NO, myeloperoxidáza, lipooxygenáza a mnoho dalších. RONS svůj negativní účinek zprostředkovávají chemickou modifikací DNA, proteinů a lipidů, čímž zasahují do základních biochemických a molekulárně biologických dějů buněk. Proti působení RONS zasahují antioxidační systémy, které se dělí na enzymatické a neenzymatické. RONS se uplatňují v rozvoji mnoha chorobných stavů, z nichž jmenujme aterosklerózu a její kardiovaskulární komplikace, diabetes mellitus, hyperlipidémii, neurodegenerativní či psychiatrická onemocnění. Klíčová šlova: RONS, radikály, superoxidový anion, radikál oxidu dusnatého, antioxidanty, ateroskleróza, diabetes mellitus, neurodegenerativní a psychiatrická onemocnění. #### SUMMARY Macášek J, Zeman M, Vecka M, Vávrová L, Kodydková J, Tvrzická E, Žák A. Reactive oxygen and nitrogen species in the clinical medicine Vast knowledge has accumulated recently on the role of reactive oxygen and nitrogen species (RONS) in clinical medicine. Strong evidence was disclosed on their important role in the pathogenesis of several diseases. Free radicals have unpaired electron and this is the reason for extreme reactivity causing propagation reactions that lead to the multiple damage to cells. Oxidizing agents belong to the family of reactive species. Reactive oxygen species are produced during biochemical processes such as oxidative phosphorylation, phagocytosis and metabolism of purins. Overproduction of reactive oxygen species can cause the tissue damage. Reactive nitrogen species are produced by inhibition of nitric oxide synthase by the action of asymmetric dimethylarginine. Peroxisomal oxidases, NAD(P) oxidase, xanthinoxidase, nitric oxide synthase, myeloperoxidase and lipooxygenase catalyze biochemical reactions producing reactive oxygen and nitrogen species. Biochemical and molecular processes in cells are negatively influenced by chemical modification of DNA, proteins and lipids caused by the action of reactive oxygen and nitrogen species. Antioxidant metabolites and enzymes work together to stop and to prevent oxidative modification of biomolecules. Reactive oxygen and nitrogen species play an important role in the pathogenesis of many diseases such as atherosclerosis, diabetes, hyperlipidaemia and neurodegenerative diseases. Key words: RONS, radicals, superoxide anion, nitric oxide radical, antioxidants, atherosclerosis, diabetes mellitus, neurodegenerative and psychiatric diseases. Ma. Čas Lék čes 2011; 150: 423-432 ## ÚVOD V klinické medicíně je dnes věnována velká pozornost pochodům spojeným s oxidačním stresem a působením reaktivních sloučenin kyslíku a dusíku (RONS – reactive oxygen ADRESA PRO KORESPONDENCI: MUDr. Jaroslav Macášek IV. interní klinika 1. LF UK a VFN U Nemocnice 2, 128 08 Praha 2 e-mail: jmacasek@seznam.cz and nitrogen species). Mezi tyto látky patří nejen volné radikály, ale i sloučeniny, které nejsou v chemickém slova smyslu radikály, ale snadno oxidují jiné látky, nebo se na radikály mění. Většina chemických sloučenin obsahuje v zevních orbitalech spárované elektrony. Tzv. volné radikály obsahují v zevním orbitalu jeden nepárový elektron, což je pro ně energeticky nevýhodné, a tudíž se snaží spárovat elektron vazbou s jiným atomem či molekulou. Získáním elektronu od jiného atomu či molekuly (redukce) nebo jeho odevzdáním na jiný atom či molekulu (oxidace) přejde atom či molekula do energeticky stabilnějšího stavu s nižší reaktivitou. Mezi radikály v organismu patří například superoxidový anion O_2 -, oxid dusnatý NO, nebo hydroxylový radikál OH. Mezi neradikálové reaktivní substance patří například peroxid vodíku (H_2O_2), ky- Tab. 1. Přehled reaktivní sloučenin kyslíku a dusíku | Reaktivní formy kyslíku | | tripletový kyslík 3O2a) | | |-------------------------|---|--|--| | | | superoxidový anion O2- | | | | | hydroxylový radikál HO | | | | volné radikály | alkoxyl RO | | | | | hydroperoxyl HO ₂ | | | | | peroxyl ROO | | | | | peroxid vodíku H ₂ O ₂ | | | | látky, které nejsou
volnými radikály | kyselina chlorná HClO | | | | | ozon O ₃ | | | | | singletový kyslík 1O2 | | | | | oxid dusnatý NO | | | | volné radikály | oxid dusičitý NO ₂ | | | | | nitroxylový anion NO | | | | | nitrosonium NO+ | | | | | dimer oxidu dusičitého N ₂ O ₄ | | | Reaktivní formy dusíku | látky, které nejsou
volnými radikály | kyselina dusitá HNO ₂ | | | | | oxid dusitý N ₂ O ₃ | | | | | nitronium NO ₂ + | | | | | peroxynitrit ONOO - | | | | | alkylperoxynitrit ROONO | | ^a Kyslík v základním energetickém stavu (³S_g-) je vlastně biradikál; jeho reaktivita je díky tomu, že reakce tripletové molekuly se singletovou (většina molekul) je spinově zakázána, relativně nízká. Protože je ale molekula kyslíku hojně
rozšířena, v přehledu ji uvádíme. selina chlorná (HCIO) a peroxynitrit (ONOO-). Příklady nejdůležitějších reaktivních látek jsou uvedeny v tabulce 1. Reaktivní formy kyslíku i dusíku vznikají v průběhu metabolických pochodů u všech aerobních organismů. Na jejich vzniku se podílejí i vnější vlivy, jako je ionizační záření, xenobiotika, toxiny či léky. Buňky a tkáně živých organismů jsou před poškozením těmito látkami chráněny antioxidačními ochrannými systémy (enzymatickými i neenzymatickými). V organismu však RONS nepůsobí pouze jako patogeny, ale podílejí se také na obraně vůči infekčním agens a v přiměřených koncentracích ovlivňují signální transdukci a genovou transkripci, přičemž oxid dusnatý (NO') je jednou z nejvýznamnějších signálních molekul v lidském organismu (1). Nadměrná tvorba a/nebo nedostatečné odstraňování RONS, resp. zvýšený poměr prooxidační k antioxidační aktivitě je označována pojmem oxidační stres (OS) (2). V důsledku OS může dojít k: 1. adaptaci buňky nebo organismu se zvýšením aktivity obranných systémů, 2. poškození buňky s oxidativní modifikací lipidů, DNA, proteinů, sacharidů atd., 3. buněčné smrti (3). Oxidační stres podle současných názorů hraje roli zejména u onemocnění, v jejichž patogenezi se uplatňuje zánět, který je s OS spojen. Jde o řadu rozšířených chorob, jako je ateroskleróza a její komplikace (ischemická choroba srdeční - ICHS), ischemická kolitida, ischemické cévní mozkové příhody, arteriální hypertenze, diabetes mellitus, neurodegenerativní neurologická onemocnění (Alzheimerova nemoc, roztroušená skleróza, Parkinsonova nemoc), psychiatrická onemocnění (schizofrenie, deprese) i zhoubné nádory (4). ## ZDROJE A VZNIK RONS V LIDSKÉM ORGANISMU ## Reaktivní sloučeniny kyslíku (ROS) K nejvýznamnějším ROS se počítají superoxidový anion O₂-, hydroxylový radikál OH a látka neradikálové povahy peroxid vodíku H₂O₂. K hlavním zdrojům O₂- patří v lidském organismu reakce provázející oxidativní fosforylaci v mitochond- riích, reakce katalyzované peoxidázami, roxizomálními NAD(P)H oxidázami, xantinoxidázou nebo jednoelektronová redukce kyslíku syntázami NO v případě deficitu argininu nebo tetrahydrobiopterinu (obr. 1). Při oxidativní fosforylaci probíhá v dýchacím řetězci v mitochondriích redukce molekuly atmosférického kyslíku na dvě molekuly vody, spojená s tvorbou ATP (4). Redukce molekulárního kyslíku na vodu vyžaduje celkem čtyři elektrony, pokud se uskuteční transfer pouze jednoho elektronu, vzniká superoxidový anion (4). $$O_2 + e^- \rightarrow O_2^-$$ [1] Na superoxidový anion je převedeno až 3 % molekul mitochondriálního kyslíku (5). NAD(P)H oxidáza je enzym vázaný na buněčnou membránu, který používá elektrony pocházející z NADPH k redukci molekulárního kyslíku na O2~: $$NAD(P)H + 2 O_2 \rightarrow NAD(P)^+ + H^+ + 2 O_2^-$$ Enzym se nachází v neutrofilních leukocytech, monocytech či makrofázích, kde je zdrojem velkého množství 'O2', který má baktericidní účinky. Strukturálně poněkud odlišná je NAD(P)H oxidáza obsažena v endotelu cév. Její produkce O2je ve srovnání s formou obsaženou ve fagocytech o několik řádů nižší. Aktivita cévní NAD(P)H oxidázy a následná tvorba O₂ je zvyšována působením řady faktorů účastnících se v patogenezi aterosklerózy, jako jsou angiotenzin II působící vazokonstrikci, PDGF (platelet derived growth factor) působící hyperplazii hladkých svalových buněk nebo trombin (6). Superoxid vzniká také působením enzymu xantinoxidoreduktázy. Tento flavoproteinový enzym obsahující molybden existuje ve dvou formách: xanthin oxidáza (XO) a xantin dehydrogenáza (XD). Enzym katalyzuje postupnou oxidativní hydroxylaci hypoxanthinu na xanthin a dále na kyselinu močovou (ve formě XD), ale může také redukovat kyslík na 'O2' (forma XO). Je zajímavé, že je lokalizován hlavně v endoteliálních a epiteliálních buňkách, což dobře nekoresponduje s jeho funkcí v metabolismu purinů, ale spíše naznačuje význam v systému antimikrobiální ochrany (7). Xantinoxidáza hraje významnou úlohu v patofyziologii reperfuzního syndromu. Při hypoxii způsobené nedostatečným přívodem kyslíku krví (nízká perfuze tkání např. při infarktu myokardu) dochází k vzestupu hladiny ADP, který je za fyziologických okolností přeměňován působením XO na hypoxantin, xantin a močovou kyselinu. Při hypoxii je enzym inhibován; poté, co dojde k reperfuzi a opětovnému obnovení dodávky kyslíku, zvýší XO svoji aktivitu s cílem odstranit nahromaděné ADP a jako vedlejší produkt jsou ve zvýšeném množství produkovány enzymem XO i ROS s následným paradoxním prohloubením poškození po obnově dodávky kyslíku. Vznikající O₂ je působením enzymu superoxid dismutázy (SOD) přeměňován na H₂O₂, ze kterého pak účinkem lyzozomální katalázy nebo mitochondriální glutathion peroxidázy (GPx) vzniká voda a kyslík (obr. 2). Glutathion, používaný GPx jako donor vodíku během eliminace H₂O₂, je regenerován glutathion reduktázou (GR). Součástí obranných mechanismů lidského organismu proti infekčním agens je také enzym myeloperoxidáza (MPO), nacházející se v azurofilních granulech Obr. 1. Vznik reaktivních forem kyslíku v lidském organismu a jejich další osud (dle 6, 19) vit – vitamin, GSH – glutathion, GSSG – glutathion disulfid, GPx – glutahion peroxidáza, GRed – glutathion reduktáza, GST – glutathion S-transferáza, TRRed – thioredoxin reduktáza, CAT – kataláza, LH – mastná kyselina, SOD – superoxid dismutáza neutrofilů a lyzozomech monocytů. Enzym, který hraje roli ve fagocytóze, vytváří kyselinu chlornou (HClO) z peroxidu vodíku (H₂O₂) a chloridů. Reakce HClO se superoxidem může vést ke vzniku mimořádně reaktivního hydroxylového radikálu (8). $$\begin{array}{c} HOCI + O_2 \rightarrow OH + Cl + O_2 \\ HOCI + Fe^{2+} \rightarrow OH + Cl + Fe^{3+} \end{array} \tag{3}$$ Chlornanové anionty reagují také s nízkomolekulárními aminy za vzniku chloraminů, které stejně jako chlornany mají silný baktericidní účinek (4). Hemo-peroxidázy, jako je MPO i eozinofilní peroxidázy, katalyzují také v přítomnosti H_2O_2 a nitritu NO_2 - nitraci tyrozinu v proteinech, a mohou tak nepříznivě modifikovat jejich funkci, jako např. v případě apolipoproteinu A-1 a apolipoproteinu B. ## Reaktivní sloučeniny dusíku Mezi nejvýznamnější reaktivní formy dusíku patří radikál oxidu dusnatého NO a peroxynitrit ONOO. Radikál oxidu dusnatého NO je tvořen oxidací L-argininu působením syntázy oxidu dusnatého (NOS) za vzniku citrulinu a NO. U člověka lze rozlišit tři hlavní izoformy NOS: endoteliální NOS (eNOS), inducibilní (iNOS) a neuronální (nNOS). nNOS a eNOS jsou konstitutivně exprimované enzymy, aktivované vzestupem hladiny intracelulárního kalcia (Ca²+). Ca²+ se váže na kalmodulin a komplex Ca²+/kalmodulin aktivuje nNOS nebo eNOS. iNOS obsahuje pevně vázaný kalmodulin s kalciem a její syntéza je indukována zánětlivými cytokiny, jako je interleukin-1 (IL-1), tumor nekrotizující faktor alfa (TNF-α), interferon gamma (IFN-γ), ale i antigeny bakterií a nádorových buněk. Za fyziologických okolností se 'NO významně podílí na tzv. endotel-dependentní vazodilataci a regulaci cévního tonu, má protizánětlivé účinky, inhibuje agregaci krevních destiček a adhezi leukocytů i destiček na endotel a reguluje proliferaci a diferenciaci buněk cévní stěny. V buňce hladkého svalu cévy aktivuje 'NO enzym guanylát cyklázu. Aktivace guanylát cyklázy vede k syntéze cyklického GMP a k vazorelaxaci. Ke správné funkci vyžadují NOS pět kofaktorů: flavinadenindinukleotid (FAD), flavinmononukleotid (FMN), hem, tetrahydrobiopterin (BH₄) a Ca²⁺-kalmodulin. Jestliže chybí L-arginin – substrát pro NOS nebo jeden z jeho kofaktorů, může NOS produkovat 'O₂- místo 'NO, což je označováno jako rozpřažený (uncoupled) stav NOS (9). K rozpřažení reakce vede též zvýšení hladiny inhibitoru NOS, asymetrického dimetylargininu (ADMA), jehož zvýšené koncentrace jsou spojeny s endoteliální dysfunkcí u hypercholesterolémie, inzulínové rezistence či hyperhomocysteinémie. Rozpřažení eNOS v cévní stěně působí oxidační stres jednak poklesem tvorby NO, jednak zvýšenou tvorbou O2. Pokud jsou tvořeny současně NO a O2, vzniká toxický peroxynitrit ONOO. Peroxynitrit reaguje s CO2, který je v tělesných tekutinách obsažen ve vysokých koncentracích, a vytváří jednoelektronové oxidanty NO2 a CO3, které oxidací aminokyseliny tyrozinu vedou ke vzniku tyrozinového radikálu Tyr a následně 3-nitrotyrozinu, 3-NO2-Tyr. Z ONOO může také vzniknout OH, působící peroxidaci lipidů, mutace DNA, jejich fragmentaci nebo modifikace proteinů (obr. 2). Peroxynitrit vedle přímého toxického působení oxiduje BH4, což rovněž přispívá k rozpřažení #### Lipoxygenáza Lipoxygenázy jsou dioxygenázy obsahující železo, které katalyzují stereospecifickou inzerci molekulárního kyslíku do molekuly vícenenasycené mastné kyseliny. Aktivní forma enzymu obsahuje v katalytickém centru trojmocné železo, forma lipoxygenázy s dvojmocným železem není aktivní. Působení lipoxygenáz na kyselinu arachidonovou vede k tvorbě 5-, 11- a 15- hydroperoxyeikosatetraenových mastných kyselin (HPETE), které jsou v tkáních rychle redukovány na od- povídající hydroxyeikosatetraenové kyseliny (HETE), jako jsou 5*S*-hydroxy-6t,8c,11c,14c-, 12*S*-hydroxy-5c,8c,10t,14c- a 15*S*-hydroxy-5c,8c,11c,13t-eikosatetraenové mastné kyseliny (10). Z těchto derivátů jsou 5-hydroxy izomery předchůdci biologicky aktivních leukotrienů a lipoxinů (obr. 3), které hrají významnou roli v patofyziologii zánětu. 5-HETE má chemotaktický účinek na neutrofily, leukotrien B₄ (LTB₄) působí chemotakticky na fagocyty, LTC₄, LTD₄ a LTA₄ působí vazokonstrikci, bronchokonstrikci a zvyšují permeabilitu cév. Lipoxiny mají naopak účinky protizánětlivé. ## Myeloperoxidáza Myeloperoxidáza (MPO) je enzym, obsahující hem, který se nachází v azurofilních granulech neutrofilů a lyzozomech monocytů. Enzym vytváří kyselinu chlornou (HClO) z peroxidu vodíku (H₂O₂) a chloridů. MPO hraje roli při fagocytóze a produkty jejího působení se podílejí na destrukci bakterií, intracelulárních parazitů i nádorových buněk. Reakce kyseliny
chlorné se superoxidem může vést ke vzniku mimořádně reaktivního hydroxylového radikálu (8). Chlornanové anionty reagují také s nízkomolekulárními aminy za vzniku chloraminů, které stejně jako chlornany mají silný baktericidní účinek (4). Hemo-peroxidázy, jako je MPO i eozinofilní peroxidázy, katalyzují také v přítomnosti H₂O₂ a nitritu NO₂- nitraci tyrozinu v proteinech, a mohou tak nepříznivě modifikovat jejich funkci, jako např. v případě apolipoproteinu A-1 a apolipoproteinu B. Oxidované produkty působení MPO jsou ve vysokých Obr. 2. Vznik a působení reaktivních forem dusíku (dle 6, 11, 16, 17) BH₄ – tetrahydrobiopterin, eNOS – endoteliální syntháza NO, sGC – solubilní guanylát cykláza, cGMP – cyklický guanylmonofosfát Obr. 3. Metabolizmus eikosanoidů HETE – hydroperoxyeikosatetraenová kyselina, LO-x – lipoxygenáza, COX – cyklooxygenáza, LX – lipoxiny, LT – leukotrieny, cysLT – cysteinylleukotrieny koncentracích prokazovány v částicích LDL lokalizovaných v aterosklerotických plátech. Předpokládá se, že aktivita MPO souvisí s vulnerabilitou ateromových plátů (11). MPO může také modifikovat lipoprotein HDL, což vede k poruše reverzního transportu cholesterolu. Nejvyšší kvartily MPO v krvi a leukocytech významně korelovaly s přítomností koronární aterosklerózy. Ve studii u nemocných s AKS předpovídaly hladiny MPO rozvoj IM nezávisle na jiných rizikových faktorech, jako např. CRP (12). Zdá se, že MPO je významným činitelem, podílejícím se na destabilizaci ateromového plátu a stanovení MPO by mohlo sloužit jako nezávislý prognostický ukazatel u nemocných přijatých k observaci pro bolest na hrudi. ## MECHANISMY PŮSOBENÍ REAKTIVNÍCH ČÁSTIC Nukleové kyseliny, lipidy a proteiny mohou být poškozeny působením RONS, což může vést až k buněčné smrti (5). Jejich působení není však jen nepříznivé, aktivují také různé buněčné signální kaskády, které regulují proliferaci, detoxifikaci, reparaci DNA nebo apoptózu. V případě snížené tvorby RONS může dojít k poruše imunitní odpovědi na cizorodou noxu nebo k poruše proliferace. V závislosti na koncentraci a typu RONS mohou být aktivovány buď signální cesty protektivní (např. reparace DNA) anebo buněčná apoptóza. #### Poškození lipidů Působením radikálové látky, nejčastěji OH, na lipidy, zejména na vícenenasycené mastné kyseliny (polyunsaturated fatty acids, PUFA), vede k lipoperoxidaci (viz obr. 2). Oxidující látka vytrhne elektron z metylenové skupiny uhlovodíkového řetězce PUFA (-CH₂) za vzniku lipidového radikálu (L'). Po vytržení vodíku dojde ke změně elektronového uspořádání v uhlovodíkovém řetězci PUFA tak, že mezi dvěma dvojnými vazbami je jedna vazba jednoduchá (konjugovaný dien) (4). Konjugované dieny se snadno spojují s molekulárním kyslíkem za vzniku peroxylového radikálu LOO: Peroxylový radi- kál může vytrhnout elektron ze sousední mastné kyseliny, která se stává radikálem, zatímco peroxyl se mění na hydroperoxid LOOH. Radikálová reakce se pak řetězovitě šíří dál (propagace), dokud není ukončena (terminace) setkáním radikálu mastné kyseliny s jiným radikálem nebo vitaminem E (4). Lipoperoxidačními pochody vznikají hydroperoxidy a cyklické peroxidy mastných kyselin, které v přítomnosti přechodných kovů (jako Ca²+, Fe²+) podléhají tzv. Fentonově reakci za vzniku alkoxylového radikálu LO a hydroxidového aniontu OH. $$LOOH + Fe^{2+} \{Cu^{+}\} \rightarrow LO + Fe^{3+} \{Cu^{2+}\} + OH - [5]$$ Lipoperoxidace nakonec vede ke vzniku stabilních látek, které lze laboratorně stanovit, jako je např. MDA (malondialdehyd) a nebo 4-hydroxynonenal (4-HNE). Malondialdehyd velmi ochotně reaguje s nukleofilními skupinami (aminoskupiny), a způsobuje tak modifikaci struktury a následně funkce proteinů (zesíťování kolagenu). Další produkt oxidace vícenenasycených mastných kyselin 4-hydroxynonenal, elektrofilní α,β-nenasycený aldehyd, způsobuje kovalentní modifikaci DNA, což způsobuje vznik mutací, a proteinů signálních drah, a ovlivňuje tak genovou expresi zodpovědnou za produkci složek antioxidačního systému, heat shock proteinů a proteinů účastnících se reparace poškozené DNA. 4-hydroxynonenal je též užíván jako biomarker oxidativního poškození buněk. Jinými významnými produkty působení oxidačního stresu na lipidy jsou F₂-izoprostany (13). Izoprostany jsou látky podobné F2-prostaglandinu vznikající neenzymatickou peroxidací kyseliny arachidonové působením radikálů. F2-izoprostany však in vivo prodělávají další přeměnu v E2-, D2-, A2-, J2-izoprostany, izotromboxany a vysoce reaktivní ketoaldehydy zvané izoketaly. Podobné sloučeniny vznikají též z kyseliny dokosahexaenové, která je hojná v neuronech, a proto se sloučeniny vzniklé její radikálovou neenzymatickou peroxidací nazývají neuroprostany či neuroketaly. F2-izoprostany jsou nejenom markery lipoperoxidace, ale jako ligandy specifických receptorů způsobují i vazokonstrikci. U různých onemocnění (např. diabetu) dochází ke vzniku oxidativně modifikovaných LDL částic tzv. oxLDL, jejichž hlavními komponentami jsou 9-hydroxy-10,12-oktadekadienová (9-HODE) a 13-hydroxy-9,11-oktadekadienová (13-HODE) kyselina. Vznikají působením ROS na linolovou kyselinu. Bylo zjištěno, že 9-HODE i 13-HODE jsou endogenními aktivátory PPAR-y (peroxisome proliferator-activated receptor gamma) a hrají významnou úlohu například při rozvoji diabetické nefropatie tím, že stimulují mezangiální proliferaci. #### Poškození DNA Podobně jako lipidy jsou nukleové kyseliny poškozovány především OH. Hydroxylový radikál reaguje se všemi složkami DNA a poškozuje jak purinové, tak pyrimidinové báze i strukturu deoxyribózy. Dochází k vyjmutí vodíkového atomu z deoxyribózy s následnou destrukcí sacharidu a přerušení řetězce. Hydroxylový radikál vytváří addukty s purinovými i pyrimidinovými bázemi a modifikované báze pak slouží jako marker poškození DNA, např. 8-hydroxydeoxyguanozin (8-OH-dG), 8-hydroxy-guanin a 8-hydroxy-guanozin (4). Modifikace nukleových kyselin pak vede k chybným párováním bázi při replikaci DNA a k následným změnám genetické informace. #### Poškození bílkovin Oxidativní modifikace poškozuje strukturu bílkovin. Oxidace aminokyselin v proteinech vede k nevratným změnám. Dochází k fragmentaci a agregaci bílkovin. V důsledku konformačních změn se zvyšuje citlivost k proteolytickému štěpení. Citlivost proteinů vůči oxidaci dehyd je velice reaktivní sloučenina vytvářející vazby především s amino-skupinami aminokyselin, což zapříčiňuje zesíťování proteinů a ztrátu jejich funkce. U diabetiků se zvyšuje glykace kolagenu, jenž se působením malondialdehydu zesíťuje a tento děj sekundárně urychluje rozvoj aterosklerózy. ## ANTIOXIDAČNÍ SYSTÉM V LIDSKÉM ORGANISMU Složité biochemické děje neustále probíhající v živých organismech vytvářejí RONS, které mohou mít jak nepříznivé, tak i příznivé účinky. Pro správné fungování metabolických procesů je tak nutné stále ustavovat rovnovážný stav mezi vznikem a odbouráváním RONS. K udržení homeostázy v situaci, kdy jsou neustále vytvářeny RONS, slouží systém antioxidantů (tab. 2). Dříve se pomýšlelo, že RONS mají pouze negativní účinky, ukázalo se však, že mají i příznivé účinky. V leukocytech slouží k likvidaci infekčních částic cestou respiračního vzplanutí za účasti NADPH oxidázy, hrají důležitou úlohu v signálních dráhách (ovlivňují nukleární taktor κΒ, mitogen- activated proteinkinázu atd.), proliferaci, přežívání, migraci a adhezi buněk. #### Enzymatické antioxidanty Mezi enzymatické antioxidanty patří např. superoxid dismutáza (SOD), kataláza (CAT), glutathion peroxidáza, glu- Tab 2 Důležité komponenty antioxidačního systému (dle 30, 31, 36) | The second secon | Lokalizace | Company the state of the company | |--|---------------------
---| | Intracelulární Antioxidanty | buněčná membrána | extracelulární antioxidanty | | DESCRIPTION OF THE ASSESSMENT | enzymové složky | | | superoxiddismutáza
kataláza
glutathionperoxidáza
peroxidáza
DT-diaforáza
proteolytické enzymy
hem oxygenáza l | fosfolipázy | SOD-3
EC-CAT
GPx-3
paraoxonáza
selenoprotein P?
peroxiredoxiny | | CONTRACTOR OF THE PROPERTY. | neenzymové složky | A TOMOR DE LA COMPANION | | Intracelulární Antioxidanty | buněčná membrána | extracelulární antioxidanty | | Glutathion kyselina askorbová kyselina lipoová vazebné proteiny kovů – feritin (Fe²+ġFe³+), metallothioneiny (Cu+) opravné systémy DNA – excize basí glykosylázami, homologní rekombinace, spojování nehomologních konců | vitamín E ß-karoten | glutathion kyselina askorbová vitamin E * proteiny vázající přechodné kovy – transferir (Fe³+), laktoferin (Fe³+), ceruloplasmin (Cu²+) haptoglobiny (hemoglobin) a hemopexin (hem) albumin, bilirubin, kyselina močová, thioredoxin | ^{*} Vítamin E je nejsilnějším antioxidantem v membránách, mimo ně vykazuje pouze slabé antioxidační schopnosti. je ovlivňována také přítomností iontů kovů schopných katalyzovat reakci Fentonova typu (14). Modifikovány jsou zejména aminokyseliny postranních řetězců, zejména cystein a methionin, přičemž oxidací cysteinových zbytků vznikají smíšené disulfidy mezi thiolovými skupinami bílkovin (-SH) a nízkomolekulárními thioly, zejména GSH (15). Oxidace proteinů vede také k fragmentaci polypeptidových řetězců a k intra- i intermolekulárnímu sítování (cross-linking). Takto modifikované proteiny snáze podléhají degradaci. Je známo, že glykovaný kolagen zvyšuje tvorbu malondialdehydu a 4-hydroxynonenalu, produktů oxidace vícenenasycených mastných kyselin. Malondial- tathion reduktáza. Enzymy glutathion peroxidáza a glutathion reduktáza se nacházejí v cytoplazmě, mitochondriích i v jádře. Glutathion peroxidáza mění H_2O_2 na vodu za spoluúčasti glutathionu (GSH) jako dárce vodíku. Vznikající glutathion disulfid (GSSG) je přeměňován zpět na GSH působením GR, jejímž kofaktorem je NADPH. Působením SOD dochází k přeměně ${}^5\!O_2$ na H_2O_2 , který je detoxikován buď katalázou, která v lyzozomech rozkládá H_2O_2 na vodu a kyslík, nebo účinkem GPx v mitochondriích (viz obr. 1). Glutathion reduktáza regeneruje GSH, který je používán jako donor vodíku glutathion peroxidázou během eliminace H_2O_2 . ## Neenzymatické antioxidanty Mezi neenzymatické antioxidanty patří vitaminy A. C a E. glutathion, kyselina alfa-lipoová, dále karotenoidy, stopové prvky jako měď, zinek a selen, koenzym Q₁₀ (Co Q₁₀) a kofaktory jako kyselina listová, vitaminy B₁, B₂, B₆ a B₁₂, ďále též mo-čovina, albumin či bilirubin. Hlavním intracelulárním antioxidantem je GSH, který působí jako přímý scavenger a současně jako kosubstrát pro GPx. Vitamin E je označení pro skupinu osmi příbuzných tokoferolů a tokotrienolů, které zabraňují peroxidaci lipidů. U lidí je nejaktivnější forma α-tokoferolu. Hydroxylový radikál reaguje s tokoferolem za vzniku stabilního fenolického radikálu, který je redukován zpět na fenol askorbátem a NAD(P)H dependentními reduktázami (16). Koenzym Q₁₀ působí jako elektronový nosič v komplexu Il mitochondriálního elektronového transportního řetězce. Je to v tucích rozpustný antioxidant, který ve vyšších koncentracích působí jako scavenger ${}^{\Sigma}O_{2}^{-}$ (17). Vitamin C (kyselina askorbová) stabilizuje kofaktor NOS, tetrahydrobiopterin (BH₄), což podporuje tvorbu NO (18). Kyselina α-lipoová je hydrofilní antioxidant, působící jak ve vodném, tak v lipidovém prostředí. Její redukovaná forma, dihydrolipoát, je schopna regenerovat jiné antioxidanty, jako jsou vitamin C nebo vitamin E (18). Bilirubin je v poslední době intenzivně studován jako neenzymatický antioxidant. Kromě toho působí antiaterogenně tím, že inhibuje oxidaci LDL částic a lipidů obecně a pohlcuje kyslíkové radikály. Mnohé studie prokázaly inverzní vztah hladin bilirubinu k výskytu kardiovaskulárních chorob. Lidé s Gilbertovým syndromem (nekonjugovaná hyperbilirubinémie) mají nižší incidenci koronární choroby (19). ## UPLATNĚNÍ RONS V KLINICKÉ MEDICÍNĚ Volné radikály i ostatní RONS plní v organismu významné funkce. Jsou součástmi obranného systému organismu proti bakteriální infekci, intracelulárním parazitům, cizorodým látkám i nádorovým buňkám. V případě bakteriální infekce se v neutrofilních leukocytech a makrofázích aktivuje enzym NAD(P)H oxidáza, vzniká superoxidový anion. Takto aktivované buňky zvýší spotřebu O2 (tzv. oxidační nebo respirační vzplanutí, respiratory burst). Vznikající ΣO2 se přeměňuje na H₂O₂. Enzym myeloperoxidáza zase v polymorfonukleárních leukocytech katalyzuje tvorbu kyseliny chlorné z H2O2 a chloridového iontu. Významnou součástí obrany organismu proti různým mikrobům, intracelulárním parazitům i nádorovým buňkám, je aktivita iNOS. Exprese enzymu je indukována působením mikrobů a různých cytokinů a vede k produkci NO mnohem vyšší, než ke které dochází v důsledku aktivity, eNOS. Současně vytvářený ΣO_2^- však působí zvýšení koncentrací peroxynitritu ONOO, který má baktericidní účinky (4). V nízkých koncentracích se RONS podílejí na nitrobuněčných signálních pochodech. V tzv. signální transdukci je zprostředkován přenos informace přicházející zvenčí prostřednictvím hormonů, cytokinů, růstových faktorů či neurotransmiterů až do buněčného jádra. Transkripční faktory po vazbě na specifické sekvence DNA regulují aktivitu RNA polymerázy II. Některé signální cesty v buňce jsou zprostředkovány RONS, které v tomto případě hrají roli "druhotných poslů" (second messengers). Pravděpodobně nejvýrazněji se RONS uplatňují při ovlivnění systému MAP kináz (mitogen associated protein kinase), který představuje kaskádu fosforylačních reakcí, ve kterých se postupně aktivují enzymy a další proteiny s výsledným ovlivněním jaderných transkripčních faktorů, regulujících buněčný růst, diferenciaci i apoptózu. Patří sem faktory NF-κB (nuclear factor kappa B), významný u zánětlivých procesů, AP-1 (activated protein-1), ovlivňující růst a diferenciaci buněk a p53, což je protein, který pomáhá udržovat stabilitu genomu (zásahem do reparačních mechanismů DNA a také do regulace proliferace a diferenciace buňky) (20). ## VYBRANÁ ONEMOCNĚNÍ, V JEJICHŽ ETIOPATOGENEZI JSOU VÝZNAMNÉ VOLNÉ RADIKÁLY ## Ateroskleróza a její komplikace Aterosklerózu je možno charakterizovat jako chronické zánětlivé fibroproliferativní onemocnění, ve kterém hraje podstatnou roli proliferace hladkých svalových buněk (SMC) a makrofágů, tvorba pojivové tkáně buňkami hladké svaloviny a hromadění lipidů, zejména volného (FC) a esterifikovaného cholesterolu (CE), v buňkách a mezibuněčné hmotě. V aterogenezi hraje oxidační stres významnou roli. Uplatňuje se zejména O2, H2O2 a NO. Nadměrná tvorba RONS vede k aterogenním a trombogenním změnám ve smyslu zvýšené adheze monocytů, agregace krevních destiček a porušené vazodilatace. Působením RONS jsou ve stěně cévy modifikovány LDL částice a vznikají tzv. minimálně modifikované a oxidované LDL (mmLDL - minimally modified and oxLDL-oxidized), mmLDL mají zoxidovanou pouze lipidovou složku a u oxLDL dochází k oxidační modifikaci i proteinové složky. Tyto částice následně inhibují vazodilataci a působí proaterogenně tím, že aktivují zánětlivou odpověď, proliferaci buněk, ale i jejich apoptózu. Syntéza proaterogenních adhezních molekul je zvyšována cytokiny (interleukiny, tumor necrosis factor alfa, angiotenzin II, endoteliální růstový faktor VEGF) mechanismy zahrnujícími RONS. Inaktivace NO působením O2 a zvýšená tvorba H2O2 inhibuje vazodilataci. Oxidační stres působí také zvýšenou apoptózu endoteliálních buněk cestou aktivace signální cesty proteinkinázy C (21). H2O2 i O, významně ovlivňují migraci hladkých svalových buněk do cévní stěny indukcí MCP-1 (monocyte chemotactic protein-1) i proliferaci hladkých svalových buněk. Zvýšením sekrece i aktivity
metaloproteinázy 9 se RONS podílejí i na zvýšeném odbourávání extracelulární matrix (22), což má význam při vývoji nestabilního ateromového plátu a následné trombózy. #### Diabetes mellitus U diabetes mellitus zvýšený oxidační stres pochází z několika zdrojů: 1. neenzymatické zdroje, tj. zejména hyperglykémie, 2. zdroje enzymatické, kde vznikají RONS v důsledku aktivity enzymů, hlavně NAD(P)H oxidázy, xanthinoxidázy, cyklooxygenázy a 3. mitochondriální elektronový řetězec v průběhu oxidativní fosforylace (23). Hyperglykémie zvyšuje tvorbu volných radikálů několika způsoby (24). Během tzv. autooxidace glukózy, katalyzované přechodnými kovy, dochází ke vzniku redukovaných kyslíkových derivátů, jako jsou ΣO2, ^ΣΟΗ a H₂O₂ ale i reaktivních ketoaldehydů. Glukóza je dále schopna vázat se neenzymaticky adicí k aminoskupině proteinu (glykace), tímto vznikají přes meziprodukt (Schiffovy báze) tzv. Amadoriho produkty. Důsledkem intramolekulárních přesmyků v Amadoriho produktech je vznik vysoce reaktivních dikarbonylových látek, glyoxalu, methylglyoxalu a 3-deoxyglukosonu. Řádově během týdnů jsou Amadoriho produkty po intra- a intermolekulárních přestavbách přeměňovány na novou třídu molekul, tzv. Maillardovy sloučeniny, neboli AGE (advanced glycation end products). U hyperglykémie se metabolismus glukózy ubírá i polyolovou cestou, která také vede ke zvýšené tvorbě ${}^{\Sigma}O_2$. Glukóza je nejprve redukována aldozoreduktázou za účasti NADPH na sorbitol, ten je oxidován NAD+ s následným zvýšením poměru NADH/NAD+ v cytosolu (hyperglykemická pseudohypoxie). Zdrojem zvýšené tvorby superoxidu $^{\Sigma}O_2^{-}$ jsou u diabetu vedle hyperglykémie také enzymatické aktivity NAD(P)H oxidázy, xanthinoxidázy i cyklooxygenázy, jejichž působením vzniká $^{\Sigma}O_2^{-}$ jednoelektronovou redukcí kyslíku. Se vzestupem hladiny $^{\Sigma}O_2^{-}$, možná v důsledku poklesu BH₄ jsou spojeny stavy spojené s inzulinovou rezistencí jako obezita, arteriální hypertenze a diabetes mellitus (25). Superoxid, tvořený v mitochondriálním systému za hyperglykemických podmínek, Obr. 4. Oxidační stres a hyperglykémie v patofyziologii diabetu (dle 26) COX-2 – izoforma 2 cyklooxygenázy, SOD – superoxid dismutáza, PKC – proteinkináza C, F-3-P – fruktóa 3-fosfatáza, GFAT – glutamin: fruktóza 6-fosfát aminotransferáza, Gln – glutamin, Glu – glutamát, PGs – prostaglandiny aktivuje enzym poly (ADP-ribóza) polymerázu (PARP). To působí inhibici glyceraldehydfosfát dehydrogenázy (GAPDH) s následným zvýšením koncentrace glyceraldehyd-3-fosfátu a aktivací 4 patologických mechanismů: 1. polyolové cesty, 2. glukozaminové cesty, 3. zvýšené tvorby methylglyoxalu a AGE, 4. vzniku diacylglycerolu (DAG), který aktivuje PKC (proteinkinázu C) (26). Aktivací PKC je možné vysvětlit některé cévní abnormality pozorované u diabetu (změny funkcí buněk endoteliálních, mezangiálních, buněk hladkého svalstva cév s výslednými změnami permeability, kontraktility a syntézy bazální membrány). PKC může také modulovat působení hormonů, růstových faktorů a iontových kanálů. Nástin působení oxidačního stresu v patofyziologii komplikací diabetu je podán na obrázku 4. ## Hyperlipidémie Hypercholesterolémie i hypertriglyceridémie (HTG) jsou zdrojem zvýšeného oxidačního stresu. Je u nich zjišťována zvýšená tvorba $^\Sigma O_2$, zřejmě v důsledku zvýšené aktivity xantin oxidázy (27) a NAD(P)H oxidázy (28). Léčiva užívaná k léčbě těchto dvou stavů, statiny a fibráty, nesnižují pouze hladinu lipidů, ale mají tzv. pleiotropní účinky, mezi které patří i příznivé účinky na oxidační stres. U nemocných s HTG léčených fibráty byl popsán pokles hladiny konjugovaných dienů, prodloužení lag fáze lipoproteinových částic VLDL a LDL i vzestup aktivity SOD a GPx (29). ### Neurodegenerativní onemocnění Mozek je vůči oxidačnímu stresu vysoce citlivý, protože využívá 20 % kyslíku spotřebovávaného organismem (30). Mozek také obsahuje velké množství vícenenasycených mastných kyselin a železa a nízkou koncentraci antioxidačních enzymů. Parkinsonova nemoc. U Parkinsonovy nemoci dochází k degeneraci neuronů v substantia nigra, secernujících dopamin, které se podílí na kontrole a plánování pohybu. Před- pokládá se, že v patofyziologii choroby se uplatňuje tvorba RONS a oxidace dopaminu (31). U pacientů s Parkinsonovou nemocí jsou silné důkazy o působení oxidačního stresu. V mozku pacientů s Parkinsonovou nemocí byla zjištěna zvýšená množství oxidovaných forem proteinů, lipidů a nukleových kyselin, jako jsou karbonyly proteinů, 4-hydroxy-2-nonenol a 8-hydroxy-2-deoxyguanozin (2, 3, 5, 9–11). Alzheimerova nemoc. Podobně se oxidační stres podle současných názorů uplatňuje také v patogenezi Alzheimerovy nemoci. Alzheimerova nemoc (AD) je heterogenní onemocnění, za jejíž hlavní rys je považováno ukládání amyloidu beta (Aβ) v mozku. Beta-amyloid je ukládán extracelulárně v tzv. senilních placích a je tvořen z těla vlastního amyloidového prekurzorového proteinu (APP). Dalším patologickým proteinem u AD je degenerovaný protein tau, uložený intracelulárně (32). Tvorba RONS, jako např. H₂O₂ provázející redukci kovových iontů, vedla k oxidačnímu poškození neuronů a vzniku Aβ. Aβ sám je zdrojem oxidačního stresu. Během progrese AD byla prokázána lipoperoxidace, oxidační poškození proteinů i DNA. V mozkové tkáni jsou u pacientů s AD prokazovány markery oxidačního stresu, jako je zvýšená aktivita hem-oxygenázy 1 (HO-1) a koncentrace 8-hydroxyguaninu (8-OHG). Senilní plaky nesou známky oxidativního poškození jako modifikace Maillardovými sloučeninami (AGE), karbonylace, "sítování" (cross-linking) proteinů. V mozkové tkáni nemocných s AD jsou také prokazovány zvýšené koncentrace železa a mědi. Přesné mechanismy spojení mezi oxidačním stresem a smrtí neuronů, vedoucí k poruchám poznávacích procesů, však zatím nebyly objasněny (33). ## Psychiatrická onemocnění V poslední době je úloha oxidačního stresu sledována i u některých psychiatrických onemocnění, zejména schizofrenie, ale i depresivních poruch, obsedantní kompulzivní poruchy (OKP) a autismu. Schizofrenie. U pacientů se schizofrenií je většinou prokazována dysfunkce antioxidačního systému spojená s vystupňovanou lipoperoxidací. Mechanismy vzniku a působení oxidačního stresu u schizofrenie nejsou jasné, někteří autoři ukazují na význam zvýšeného obratu katecholaminů u nemocných se schizofrenií (34). Depresivní poruchy. V etiopatogenezi deprese se předpokládá účast oxidačního stresu, a protože mozek obsahuje velké množství vícenenasycených mastných kyselin, železa a nízkou koncentraci antioxidačních enzymů je k jeho působení náchylný. Deprese je často spojena i se subklinickým zánětem provázeným zvýšenými hladinami zánětlivých cytokinů, zvyšujících tvorbu reaktivních částic (35). Byla popsána korelace závažnosti symptomů deprese s hladinou lipoperoxidů v séru. ## ZÁVĚR RONS i antioxidační systémy hrají v organismu důležitou úlohu. Jejich vývoj šel ruku v ruce s vývojem aerobního metabolismu a ochrany před toxicitou kyslíku. Role RONS není pouze negativní účastí v patofyziologických mechanismech různých chorob, ale RONS mají též řadu příznivých účinků a jsou součástí přirozených buněčných signálních drah. Jejich patologické působení závisí hlavně na nerovnováze prooxidačních a antioxidačních systémů. V současné době je jejich studiu věnována zvýšená pozornost a lze doufat v brzké uplatnění poznatků pro léčbu chorob, v jejichž rozvoji se RONS uplatňují. Zkratky 13-HODE - a 13-hydroxy-9,11-oktadekadienová kyselina 4-HNE 4-hydroxynonenal 8-OH-dG - 8-hydroxydeoxyguanozin 8-OHG 8-hydroxyguanin 9-HODE - 9-hydroxy-10,12-oktadekadienová kyselina - Alzheimerova nemoc AD **ADMA** asymetrický dimetylarginin AGE - advanced glycation end products AP-1 - activated protein-1 APP - amyloidový prekurzorový protein AB - amyloid beta BH₄ Ca²⁴ - tetrahydrobiopterin - intracelulární kalcium CAT - kataláza CE - esterifikovaný cholesterol cGMP cyklický guanylmonofosfát Co Q₁₀ -koenzym Q₁₀ COX - cyklooxygenáza COX-2 - izoforma 2 cyklooxygenázy CRP - C-reaktivní protein cysLT - cysteinylleukotrieny DAG - diacylglycerol **eNOS** - endotheliální syntáza NO F-3-P - fruktóza 3-fosfatáza FAD - flavinadenindinukleotid FC - volný cholesterol FMN - flavinmononukleotid **GAPDH** glyceraldehydfosfát dehydrogenázy **GFAT** glutamin: fruktóza 6-fosfát aminotransferáza GIn - glutamin Glu - glutamát **GPx** glutahion peroxidáza GR glutathion reduktáza **GSH** glutathion GSSG - glutathion disulfid GST - glutathion S-transferáza H2O2 - peroxid vodíku HclO - kyselina chlorná - hydroxyeikosatetraenová kyselina HETE HO-1 hem-oxygenáza **HPETE** - hydroperoxyeikosatetraenová mastná kyselina HTG hypertriglyceridémie IFN-Y - interferon gamma ICHS - ischemická choroba srdeční - interleukin iNOS - inducibilní NOS IDI - lipoproteiny o nízké hustotě LH - mastná kyselina LO-x - lipoxygenáza - leukotrieny LT LX lipoxiny MCP-1 - monocyte chemotactic protein-1 - malondialdehyd MDA - minimálně modifikované a oxidované LDL (minimally modified and oxLDL-oxidized) MPO myeloperoxidáza NF-KB - nuclear factor kappa B nNOS - neuronální NOS NO - oxid dusnatý NOS - syntáza oxidu dusnatého OKP - obsedantní kompulzivní porucha ONOO-- peroxynitrit OS - oxidační stres mmLDL **PDGF** - platelet derived growth factor PGs - prostaglandin PKC - proteinkináza C PPAR-Y - peroxisome proliferator-activated receptor gamma - polyunsaturated fatty acids **PUFA** RONS - reactive oxygen and nitrogen species ROS - reaktivní sloučeniny kyslíku sGC - solubilní guanylát cykláza SMC - proliferace hladkých svalových buněk - superoxid dismutáza SOD TNF-a - tumor nekrotizující faktor alfa **TRRed** thioredoxin reduktáza XD - xanthin dehydrogenáza XO - xanthaxanthin oxidáza #### LITERATURA - 1. Ignarro LJ, Cirino G, Casini A, Napoli C. Nitric oxide as a signalling molecule in the vascular system: an overview. J Cardiovasc Pharmacol 1999; 34: 879-886. - 2. Sies H. Role of reactive oxygen species in biological processes. Klin Wochenschr 1991; 69(21-23): 965-968. -
3. Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 2004; 142: 231-255 - 4. Štípek S. (ed.) Antioxidanty a volné radikály ve zdraví a nemoci. Praha: Grada Publishing 2000. - 5. Valko M, Leibfritz D, Moncola J, Cronin MTD, Mazura M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem & Cell Biol 2007, 39: 44-84 - 6. Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 2005: 25: - 7. Harrison R. Physiological Roles of Xanthine Oxidoreductase Drug Metab Rev 2004; 36(2): 363-375. - Racek J, Holeček V. Enzymy a volné radikály. Chem Listy 1999: 93: 11A-780. - Maritim AC, Sanders RA, Watkins JB, 3rd. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 2003; 17: 24-38 - 10. Smith WL. The eicosanoids and their biochemical mechanisms of action. Biochem. J 1989; 259: 315-324. - 11. Hazen SL, Heinecke JW. 3-chlorotyrosine, a specific marker of myeloperoxidase- catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin Invest 1997; 99(9): 2075-2081. - 12. Brennan ML, Hazen SL. Emerging role of myeloperoxidase and oxidant stress markers in cardiovascular risk assessment. Curr Opin Lipidol 2003; 14: 353-359. - 13. Lawson JA, Rokach J, Fitzgerald GA. Isoprostanes: formation, analysis and use as indices of lipid peroxidation in vivo. J Biol Chem 1999; 274 (35): 24441-24444. - Stadtman ER. Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Free Radical Biol Med 1990; 9: 315-325. - Grune T, Reinheckel T, Davies Kja. Degradation of oxidized proteins in mammalian cells. FASEB J 1997; 11: 526–534. - Hensley K, Robinson KA, Gabbita SP, et al. Reactive oxygen species, cell signaling, and cell injury. Free Radic Biol Med 2000; 28(10): 1456–1462. - Hodgson JM, Wats GF. Can koenzyme Q10 improve vascular fiction and blood pressure? Potential for effective therapeutic reduction in vascular oxidative stress. Biofactors 2003; 18 (1-4): 129–136. - Heller R, Unbehaun A, Schellenberg B, et al. L-ascorbic acid potentiates endothelial nitric oxide synthesis via a chemical stabilization of tetrahydrobiopterin. J Biol Chem 2001; 276(1): 40–47 - Vítek L, et al. Gilbert syndrome and ischemic heart disease: a protective effect of elevated bilirubin levels. Atherosclerosis 2002; 160(2): 449–456. - Piette J, Piret B, Bonini G, Schoonbroodt S, Merville MP, Legrand-Poels S, Bours V. Multiple redox regulativ in NF-kappa B transcription factor activation. Biol Chem 1997; 378 (11): 1237–1245. - Brunt KR, Fenrich KK, Kiani G, et al. Protection of human vascular smooth cells from H₂O₂-induced apoptosis through functional codependence between HO-1 and Akt. Arterioscler. Thromb. Vasc Biol 2006; 26: 2027–2034. - Libby P, Ridker PM, Maseri A. Inflammation and Atherosclerosis. Circulation 2002; 105: 1135–1143. - Griendling KK., FitzGerald GA. Oxidative stress and cardiovascular injury: Part I: Basic mechanisms and in vivo monitoring of ROS. Circulation 2003; 108: 1912–1916. - Giugliano D, Ceriello A, Paolisso G. Oxidative stress and diabetic vascular complications. Diabetes Care 1996; 19: 257–267. - Das UN. Folic acid says NO to vascular diseases. Nutrition 2003: 19: 686–692. - Brownlee M. The Pathobiology of diabetic complications. A unifying mechanism. Banteng Lemure 2004. Diabetes 2005; 54: 1615–1625. - Ohara Y, Peterson TE, Harrison DG. Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 1993; 6: 2546–2551. - 28. **GuzikTJ, Mussa S, Gastaldi D, et al.** Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxid synthese. Circulation 2002; 105: 1656–1662. - 29. Zeman M, Žák A, Vecka M, Tvrzická E, Romaniv S, Konárková M. Treatment of hypertriglyceridemia with fenofibrate, fatty acid composition of plasma and LDL, and their relations to parameters of lipoperoxidation of LDL. Ann NY Acad Sci 2002; 967: 336–341. - Juurlink BH, Patison PG. Review of oxidative stress in brain and spinal cord Indry: suggestions for pharmacological and nutritional management strategies. J Spinal Cord Med 21 1998; 309–334. - Zhang J, Perry G, Smith MA, et al. Parkinsones dinase is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am J Pathol 1999; 154: 1423–1429. - 32. Jirák R, Koukolík F. Demence. Praha: Galén 2004. - Perry G, Cash AD, Smith MA. Alzheimer disease and oxidative stress. J Biomed Biotechnol 2002; 23: 120–123. - Mahadik SP, Mukherjee S. Free radical pathology and antioxidant defense in schizophrenia: A review. Schizophrenia Research 1996; 19(1): 1–17. - 35. Maziere C, Auclair M, Maziere JC. Tumor necrosis factor enhances low density lipoprotein oxidative modification by monocytes and endothelial cells. FEBS Lett 1994; 338: 43–46. - Tkáč Í, Molčányiová A, Javorský M, Kozárová M. Fenofibrate treatment reduces circulating conjugated diene level and increases glutathione peroxidase activity. Pharmacol Res 2006; 53: 261–264. Práce byla podpořena výzkumným záměrem MŠMT ČR, MSM 0021620820. ## ONEMOCNĚNÍ VISCERÁLNÍCH CÉV Diagnostika, chirurgická a endovaskulární léčba MUDr. Tomáš Vidim a kol. Maxdorf 2011, 168 str., edice Jessenius ISBN: 978-80-7345-248-3 Cena: 495 Kč Formát: B5, vázaná Postižení viscerálních cév je provázeno vysokou morbiditou a ve svých akutních projevech také vysokou mortalitou. Chronická ischemie splanchnických tepen je však dobře léčitelná a při včasné diagnostice lze snížit fatální riziko nepoznaného onemocnění. Viscerální ischemie vyžaduje mezioborovou spolupráci. Týká se to jak diagnostiky, na níž se podílejí gastroenterologové, angiologové i další interní a chirurgické obory, tak zejména léčby. Endovaskulární léčba je již samostatným oborem a kapitola byla zpracována předním specialistou v oboru. Cévně chirurgická léčba je v kompetenci cévního chirurga. Kniha uvádí popis operačních přístupů spolu s obrazovou dokumentací, která by měla být instruktivní pro všechny, kteří v daných oblastech neoperují příliš často. Objednávky zasílejte e-mailem nebo poštou: Nakladatelské a tiskové středisko ČLS JEP, Sokolská 31, 120 26 Praha 2, fax: 224 266 226, e-mail: nts@cls.cz. Na objednávce laskavě uveďte i název časopisu, v němž jste se o knize dozvěděli. # Supplement 7 Vávrová L, Kodydková J, Mráčkova M, Novák F, sr., Nováková O, Žák A, Novák F.: *Increased inflammatory cytokines together with impaired antioxidant status persist long after clinical recovery from severe sepsis: correlation with HDL-cholesterol and albumin.* 2013 (under review). Increased inflammatory cytokines together with impaired antioxidant status persist long after clinical recovery from severe sepsis: correlation with HDL-cholesterol and albumin Vávrová L.¹, Kodydková J.¹,
Mráčkova M.¹, Novák F. sr², Nováková O.², Žák A.¹, *Novák F.¹ Charles University in Prague, ¹1st Faculty of Medicine and General Hospital, 4th Department of Internal Medicine; ²Faculty of Science, Department of Cell Biology; Prague, Czech Republic *Correspondence to: František Novák, M.D., Ph.D. 4th Department of Internal Medicine, GeneralUniversityHospital in Prague U Nemocnice 2, 12808, Prague, Czech Republic Tel.: 420-224-962-506; Fax: 420-224-923-524 E-mail: fnova@lf1.cuni.cz **ABSTRACT** Objective: To observe markers of oxidative stress and antioxidant status in relation to inflammatory mediators in septic patients at onset of systemic inflammatory response syndrome (SIRS), one week later and one week after the clinical recovery from sepsis. **Design:** The prospective study. **Setting**: Multidisciplinary adult intensive care unit (11 beds). Patients: 30 adult patients in severe sepsis and septic shock (SP); 19 SP completed 3 samplings (S1: enrolled within 24 hours after the onset of sepsis, S7: 7 days after S1, R7: 7 days after the recovery). Interventions: None Measurements: C-reactive protein, procalcitonin, interleukins (IL-1β, IL-6, IL-10), tumor a,oxidized-LDL (ox-LDL, conjugated (CD), necrosis factor dienes nitrites. nitrotyrosine,paraoxonase 1activity, HDL cholesterol, apoprotein A1, serum amyloid, cofactors of antioxidant enzymes, non-enzymatic antioxidants and antioxidant enzyme activities(CuZn-superoxide dismutase, catalase, glutathione peroxidase 1, glutathione reductase). Main Results: Comparing SP with healthy controls (HC), the enhanced concentrations of C- reactive protein, procalcitonin and bilirubin in serum as well CuZnSODactivity in erythrocytes were found in S1only. The serum levels of ox-LDL, CD, nitrites and nitrotyrosine were increased in S1, culminated in S7 and reverted nearly to the HC level in R7. The reduction in CAT activity and increased concentration of SAA observed in S1 endured till S7. The increase in IL-6, IL-10 and TNFαaccompanied bythe decrease in the PON1, GPX1, apo-A1, HDL-C, Se, Zn and albumin appeared in S1 and persisted until R7. The increased TNF α in R7 was in the close negative correlation with HDL-C and albumin concentrations. *Conclusions*: Increased level of cytokines, lasting after cessation of clinical signs of severe sepsis, was accompanied by significant depletion of antioxidant capacity and persistence of inflammatory activity. At this critical period of recovery, the patients should be dealt as high risk population thus carefully followed up and considered for special antioxidant, nutritional and physiotherapeutic interventions. *Key words:* sepsis, oxidative stress, antioxidant enzymes, cytokines, reactants of acute phase, paraoxonase 1 ## **INTRODUCTION** Sepsis is defined as a systemic inflammatory response syndrome (SIRS) in the presence of infection progressing with different degree of severity (1; 2). Patients with severe sepsis and septic shock show
deregulation of inflammatory process that corresponds to extensive exhaustion of individual functional reserves and development of organ dysfunction. These patients require intensive care in order to improve survival (3). Nevertheless, many of them who survive beyond intensive care and are clinically recovered still possess subclinical impairments and thus remain susceptible to secondary complications with negative impact for their long-term prognosis. With this respect, using appropriate markers for the identification of these patients at risk would enable the follow up care to concentrate the effort and resources on sufficient functional recovery. Sepsis arises through the activation of an innate immune response, with changes in the expression and activity of many endogenous mediators of pro- and anti-inflammatory processes (4 - 6) interplaying in order to eliminate the insult and establish new homeostasis (7; 8). SIRS, typically present in early sepsis and lasting 3-5 days, is characterized by tachycardia, tachypnoe and abnormal body temperature or white blood count. This predominately pro-inflammatory period is usually followed by the development of so called Compensatory Anti-inflammatory Response Syndrome (CARS), a complex but incompletely defined pattern of immunologic responses to attenuate pro-inflammatory reaction of host that when unbalanced under severe infection can result in anergy and immunosuppression with increased susceptibility to the development of a new infection (9 - 11). From this point of view, pro- and anti-inflammatory cytokines facilitating and modulating the response to the inflammatory stimulus seem to serve as an important prognostic marker of the subsequent patient outcome (12; 13). Moreover recent clinical studies have shown that the increased levels of IL-6, TNF-α and IL-10 persisting after clinical recovery from sepsis, rather than their initial peak, are more characteristic of those patients who ultimately have further complications or die (14; 15). The activation of leukocytes and release of mediators in sepsis is indispensably accompanied by an increased production of reactive oxygen and nitrogen species (RONS) (16). RONS are well recognised for playing a dual role as both deleterious and/or beneficial species. Beneficial effects occur at low/moderate concentrations of RONS and involve physiological role in cellular responses as for example in defence against infectious agents and in the function of a number of cellular signalling pathways. Under physiological conditions, the balance is established between RONS production and antioxidant defence capacity. This balance can be disturbed through variable extent of increased RONS production and/or impaired antioxidant defence. The pro-anti-oxidant imbalance, in favour of the former, is known as oxidative stress (17). Overproduction of RONS is a deleterious process that can be an important mediator of damage to cell structures under pathological conditions (18). The oxidative modification of molecules occurring in adult and paediatric sepsis is probably an important promoter of sepsis progression toward shock and organ dysfunction (16; 19). The idea of the study was to describe inflammatory processof severe sepsis/septic shock in SIRS, CARS and 7 days after the clinical recovery in carefully selected group of ICU patients. The analysis of inflammatory mediators together with oxidative stress markers and antioxidant status would help to confirm clinical stages of sepsis emphasizing the persistence of risk after the recovery (usually after discharge from ICU or hospital) that should be addressed in standard follow up measures to determine the patient status and prognosis as well the choice of appropriate interventions. To our knowledge, studies of this completeness have not been published so far. ## **PATIENTS AND METHODS** This prospective study was carried out in medical adult intensive care unit (ICU) of the University Teaching Hospital. The study protocol was approved by the institutional review board and the Ethics Committee of the General Teaching Hospital in Prague. Written informed consent was obtained from all participants. Patients: The population under study consisted of two groups: 30 septic patients (SP) and 30 age and sex matched healthy controls (HC). The sepsis was defined according to the Society of Critical Care Medicine/American College of Chest Physicians (SCCM/ACCP) definitions (2). SP had to fulfil the following inclusion criteria: APACHE II score > 10 and C-reactive protein in serum > 20 mg/l. Exclusion criteria for SP were: antioxidant therapy, chronic dialysis, history of diabetes, generalized tumours, immunosupressive therapy and chemotheraphy. Sepsis was treated according to guidelines (5). HC were defined as individuals without known major disease. Data collection: Samples from SP were collected three times: during the first 24 hours after ICU admission (S1), 7 days after S1 (S7) and recovery (R7), e. g. 7 days after the cessation of septic clinical sings, CRP < 20 mg/l and temperature < 37°C. Samples from HC group were obtained once. From the group of 30 SP 8 patients died because of sepsis and 3 SP were lost from follow up because they never fully recovered from sepsis thus all three samplings were available from 19 patients. These SP were compared with group of 19 sex and age matched HC. The main source of sepsis was lung, in 13 cases. In all study participants the medical history and the intake of any medicaments were documented at the study entry. The first seven days after ICU admission, the SOFA score (20; 21) was calculated from laboratory and clinical parameters in SP. Blood was taken after overnight fasting from an arterial line (SP) or by puncturing a peripheral vein (HC). The concentration of C-reactive protein (CRP), procalcitonin (PCT), interleukin 6 (IL-6), interleukin 10 (IL-10), tumor necrosis factor α (TNFα), serum amyloid A (SAA), oxidized LDL (ox-LDL), albumin, bilirubine, uric acid, Cu, Zn, Fe, Se, vitamins A and E and lipid parameters, as well as PON1 activity were measured in serum. Serum was prepared (after coagulation in vacutainer tubes) by centrifugation at 3500 rpm at 4 °C for 10 min. Conjugated dienes (CD) were measured in precipitated LDL. Activities of antioxidant enzymes were measured in haemolysed erythrocytes. The samples were stored at -80 °C until assay. All samples were marked with unique identification numbers, merging data only after assays had been completed. Laboratory measurements: The routine biochemical tests were measured in Central Biochemical Laboratory of General Teaching Hospital in Prague. Concentration of CRP was measured with immunoturbidimetric method using K-ASSAY CRP kit (Kamiya Biomedical Company, USA) on analyzer Hitachi Modular (Japan). Concentration of PCT was measured with immunoluminometric assay (ILMA) using BRAHMS PCT LIA-Kit (Brahms Diagnostica GmbH; catalogue number 54.1, Berlin, Deutschland). Cytokines: IL6, IL10 and TNFα were analyzed using Fluorokine MAP kits (R&D Systems, USA) and Luminex[®]100 analyzer. Fluorokine MAP kits are composed of a Base kit and a panel of Analyte kits. Each kit contains antibody-coated microparticles and biotinylated detection antibodies. SAA concentration was analysed by a solid phase sandwich ELISA kit (Invitrogen Corporation, USA). The arylesterase activity of PON1 was measured according to the method as previously described by Eckerson et al. using phenylacetate as a substrate (22). The rate of phenol generation was monitored spectrophotometrically at 270 nm. Arylesterase activity of PON1 was calculated using the molar extinction coefficient of the produced phenol (1310 M⁻¹cm⁻¹) and expressed as U/ml of serum. Oxidized-LDL measurement was performed by Oxidized LDL ELISA kit (Mercodia, Sweden). Activities of antioxidant enzymes were determined by spectrofotometric kinetic methods and concentration of CD/LDLwas measured as previously described by Kodydková et al. (23). Concentration of nitrotyrosine was measured by a solid phase sandwich ELISA kit (Biovendor, Czech Republic). The concentration of nitrites and nitrates in serum was assessed by the Griess reaction according to method of Guevara et al. (24). The total peroxyl radical trapping was calculated according to the formula: [0.63 (albumin) + 1.02 (uric acid) + 1.50 (bilirubin)] (25). Statistical analysis: Data are expressed as mean \pm S.D. for parametric and median as median (25th-75th percentiles) for nonparametric variables. Normality of data distribution was tested with Shapiro-Wilks W test. Differences between SP and HC were tested with one-way ANOVA with Dunnettpost test. For nonparametric analysis Kruskal-Wallis ANOVA was used. Friedman ANOVA was used for dependent analysis. All statistical analyses were performed using version 8.0 of StatSoft software Statistica (2007, CZ). P < 0.05 was considered to be statistically significant. ## **RESULTS** Basic characteristics: Table 1 summarizes the demographic and clinical characteristics of 19 SP in all three samplings and 19 sex and age matched HC. *Acute-phase response markers:* The serum PCT and CRP concentrations increased in S1 but no significant difference was observed, in S7 compared to HC. The increased concentrations of interleukins (IL-6, IL-10, TNF-α) persisted from S1 till R7 and SOFA gradually decreased from S1 till S7 (Figure 1). Serum markers of oxidative stress: The levels of ox-LDL, CD and nitrotyrosine increased in S1, culminated in S7 and returned to the HC values in R7. Enhanced serum concentration of nitrites/nitrates was observed only in S7 (Figure 2). Antioxidant capacity: CuZnSOD activity was increased in S1 and returned to the HC value already in S7. The decline in CAT activity found in S1 and S7, returned to the HC level in R7 while the decrease in GPX1 activity persisted in all three samplings. No significant difference in GR activity between HC and individual SP
samplings was found (Figure 3). Table 2 presents non-enzymatic antioxidants and cofactors of antioxidant enzymes. The decrease in concentrations of vitamin A, vitamin E and bilirubin was found in S1 only, however, the decrease in Zn was observed in both S1 and S7. The significant decline of uric acid and the rise in Cu was observed only in S7 compared to HC. Nevertheless all these changes returned nearly to the HC values in R7. On the other hand, the substantial decrease in transferrin, Fe, Se and albumin as well the increase in the ferritin concentrations and Calculated TRAP observed already in S1, persisted still 7 days after recovery (R7) and never reached the HC levels. Marked fall in PON1 activity appeared at the onset (S1) and persisted until recovery (R7). The decline in the PON1 activity was closely followed by decreased HDL-C and ApoA1 concentrations. SAA concentration was significantly increased in S1 and in S7 reaching nearly HC level in R7 (Figure 4). We also measured TC (mmol/l): S1 = 3.3 (2.5-3.5), S7 = 3.7 (2.8-4.3, R7 = 4.4 (4.0-5.2), HC = 5.7 (4.8-6.7), LDL-C (mmol/l): S1 = 1.8 (1.2-2.2), S7 = 2.2 (1.1-2.4), R7 = 2.9 (2.2-3.2), HC = 3.7 (3.0-4.3) and TAG (mmol/l): S1 = 1.3 (0.8-1.9), S7 = 1.8 (1.1-2.4), R7 = 1.5 (1.1-2.1), HC = 1.5 (1.0-1.7). ## **DISCUSSION** The design of this study emerged from the recent clinical trials monitoring the basic pro-inflammatory (IL-6, TNF- α) and anti-inflammatory (IL-10) cytokines as innate immunity markers on greater population of patients with severe sepsis together with their clinical outcomes (14). These studies have concluded that despite clinical recovery, the patients leaving hospital with increased level of cytokines are exposed to increased risk of death during next year (15). Our relatively small but carefully selected group of patients in early severe sepsis/septic shock diagnostic category, allowed us to analyse broader set of parameters characteristic for different stages and aspects of inflammatory process in the similar clinical setting and corresponding (similar) mortality rate (14). Nineteen patients were available for three samplings. The first sampling was done within 24 hours after onset of sepsis, the time for second sampling was chosen 7 days later when the signs of SIRS are usually over and organ function is restored. In accordance, we present that the SOFA score was improved by day 7 in this study. The third sampling, 7 days after cessation of all clinical sings of inflammation, reflected the time difference of illness progress in individual subjects. This timing enabled us to catch patients in the similar stage of recovery regardless of the sepsis duration and subsequent inflammatory complications occurrence. The hospital discharge as the time for last sampling, used in the study cited above (26), we considered as inappropriate due to bias caused by organisational aspects of health care system such as accessibility of follow up care. Despite of this difference in timing, we confirmed the persistence of increased levels of cytokines after the cessation of sepsis in R7. Many studies have evidenced a significant correlation between the level of individual cytokines and other markers of SIRS/sepsis together with its severity and patient outcome. TNF-α and IL-6 are known to mediate mainly pro-inflammatory SIRS while IL-10 is the most important in CARS response. In our group of patients a significant decrease in IL-10/TNF-á ratio was caused mainly by the decrease of serum IL-10 level, whereas TNF- α level declined between S1 and S7 and remained practically unchanged after. As for the main acute-phase response markers (CRP, PCT), the enhanced concentrations were observed only in S1 that corresponds with other studies showing particularly PCT as a typical marker of early sepsis (27 - 29). We hypothesized that increased levels of cytokines inmonitored times would be reflected by the concomitant rearrangement of redox status that inspired us to analyse the markers of oxidative damage together with the levels of enzymatic and non-enzymatic antioxidants. As for lipid peroxidation markers, ox-LDL and CD were elevated in S1, persisted till S7 and both returned nearly to the values of HC range in R7. In line, the study of Behnes et al. also presented the increased concentration of ox-LDL in patients with severe sepsis during the first week of illness (30). Similarly, the endotoxin administration caused a sharp rise in plasma levels of CD in the porcine model of burn and sepsis (31). Another study showed increased TBARS and protein carbonyls as markers of lipid peroxidation and protein oxidation, respectively. While TBARS normalized during 7 days of sepsis, increased protein carbonyls persisted still three months after the onsetof sepsis, probably due to the slow protein turnover (32). In accordance with other studies (33 - 35), we present decreased serum concentrations of vitamins E and A in S1. These vitamins are lipid phase antioxidants, crucial for prevention of lipid peroxidation (36). The increased level of the nitrotyrosine appeared already in S1, persisted till S7 while the nitrites/nitrates were increased just in S7 however both parameters were normalized after recovery in R7. The rise in these nitrogen compounds is in accordance with previous studies on septic shock patients indicating enhanced NO and RNS formation during the generalized inflammatory response (32). The observed shift between starting of growth in nitrotyrosine and nitrites/nitrates is in line with results of Strand et al. who showed that peak of nitrotyrosine need not coincide with the peak of nitrites/nitrates concentration in septic shock (37). The important findings of our study reveal that whereas increased concentrations of peroxidation products are accompanied by diminished antioxidant capacity in the course of sepsis (SIRS and CARS), lowered antioxidant capacity is still persisting after the recovery (R7) while peroxidation products are nearly normalized with the close negative correlation of ox-LDL to GPX1 and albumin (R = -0.528 and -0.519 respectively). Normal levels of lipid markers of peroxidation in R7 are accompanied with low level of antioxidant capacity. We confirmed reducedantioxidant defencecapacity in septic critically ill patients (16) and we have found that reduction of some its components even lasted in R7. In our study, increased CuZnSOD and decreased CAT and GPX1 activities in erythrocytes were found in S1. While CuZnSOD normalization was observed already in S7, the decrease in GPX1 and the trend to the decline in CAT activities persisted still in R7. In line, Warner et al. (38)also found the increased activity of CuZnSOD in erythrocytes at the onset of sepsis. Similarly in paediatric sepsis there was also observed apparent trend towards the increase of CuZnSOD activity in erythrocytes (39). CuZnSOD is one of the most important antioxidant enzymes responsible for the decomposition of superoxide radical while producing H₂O₂ that is further transformed to H₂O by the CAT and GPX1 action. It is necessary to note that the increase in CuZnSOD activity observed in the early stage of sepsis cannot be, by principle, the result of the rise in protein amount because mature erythrocytes do not possess any transcriptional apparatus but it is the result of the activity stimulation (40). We propose that the increase of CuZnSODin combination with simultaneous decrease in CAT and GPX1 activities may intensify the H₂O₂ accumulation withsubsequent spontaneous formation of highly reactive hydroxyl radicals causing escalation of oxidative damage. Therefore, the increased CuZnSOD activity in S1 may act predominantly as a pro-oxidant (41). Published results on erythrocyte CAT in sepsis are rather controversial to our study. Warner et al. (38) and Leff et al. (42) published increased activity of CAT in both erythrocytes and plasma of SP. The decrease in CAT activity observed in our group of SP could possibly be explained by the results of the *in* vitro study published by Kirkman et al. (43) where human erythrocyte CAT was exposed (for 12-24 hr) to H₂O₂. The catalase-bound NADPH, important for its activity, became oxidized to NADP⁺ causing subsequent CAT activity fell down to about one-third of the initial value (43). We have found decreased activity of GPX1 during the sepsis and after recovery. The main reason could be low level of GSH as well decline in Se concentration observed in sepsis (35; 44; 45). Reduced glutathione (GSH) acts as a reducing substrate of GPX and Se bound in the active site of the enzyme in the form of one SeCys residue, is essential for its activity (46). In accordance suppressed activity of GPX1 was accompanied by the decrease in the Se concentration till R7. Supplementation with Se has been shown to improve antioxidant capacity as demonstrated by increased GPX activity (47). As for the decrease of GPX1 activity in R7, we have also to consider relatively long regeneration of the enzyme due to the slow turnover of mature erythrocytes. The enzyme was shown to protect red blood cells against haemoglobin oxidation and haemolysis (48) that is why the diminished antioxidant capacity of erythrocytes could impact on the patient outcome in the case of secondary insult. Serum PON1 is considered as further antioxidant enzyme playing important role in defence against oxidative stress (49; 50). We confirmed our pilot study presenting the decline of PON1 activity in sepsis (51) and on larger set of patients we have shown that this decrease persisted till R7. Simultaneously another authors published the decrease of PON1 activity in patients at the onset of sepsis compared to HC (52; 53). It was found that antioxidative effect of HDL on LDL oxidative modifications is mediated by HDL-bound PON1. The inactivation of PON1 by ox-LDL involves the interaction of oxidized lipids with its free sulfhydryl group. Thus the ability of PON1 to protect LDL
against oxidation is together accompanied by inactivation of the enzyme (54). In this study, the decrease in PON1, HDL-C and apo-A1concentrations was closely followed by a marked increase of SAA persisting until R7. It is known that during inflammation SAA replaces Apo-A1 and displaces PON1 from the association with HDL, accompanied by the decrease in its activity (55). Our finding of decreased PON1 activity in SP is consistent with the aforementioned parallels and therefore this enzyme activity should be classified among the negative acute phase parameters. Together with the PON1 decrease and in accordance with others, we observed the fall down of total cholesterol (TC) which just as PON1 and HDL-C did not normalized in R7. Similar decrease of HDL-C, in the course of severe sepsis, was also observed in the study of Leeuwen et al. (56). The fall in HDL-C negatively correlated with persisting increase in TNF- α . We have measured decreased values of TC, LDL-C and HDL-C in SP in all three samplings. Similarly to serum lipids, the decrease in serum albumin, Apo-A1, transferrin and Fe in all three samplings was also observed. In line with our results Gordon et al. showed that in critically ill patients, the mean high-density lipoprotein cholesterol (HDL-C) concentration was significantly lower in patients with an infection compared to patients without infection (57). We have seen a good positive correlation of HDL-C with albumin and to a lesser extent with CRP (58) and the correlation with HDL-C found in this study points towards HDL-C as an acute phase reactant. Changes in acute-phase protein synthesis are mediated by cytokines produced in response to a variety of stimuli in multiple cell types that include macrophages, monocytes, T lymphocytes, endothelial and parenchymal cells (59). Several clinical and experimental studies suggest that high circulating levels of different cytokines may be responsible for the cholesterol decrease in acute illness (60). We have seen a good correlation of HDL-C with albumin and, to a lesser extent, with CRP. Albumin and CRP are well known as acute phase proteins (49) and the correlation with HDL-C found in this study points towards HDL-C as an acute phase reactant. Changes in acute-phase proteinsynthesis are mediated by cytokines produced in response to a variety of stimuli in multiple cell types that include macrophages, monocytes, T lymphocytes, endothelial and parenchymal cells (49). Several clinical and experimental studies suggest that high circulating levels of different cytokines may be responsible for the cholesterol decrease in acute illness (60 - 62). The correlation of HDL-C and IL-6 found in this study strengthens the association of HDL-C with the acute phase response. We observed also a correlation between HDL-C and procalcitonin. Clinical and laboratory parallels with low grade inflammatory process in atherosclerosis – the higher markers of inflammation the higher probability of complications (ischemia, infections etc.). Moreover in the well-functioning elderly subjects, preinfection systemic levels of TNF and IL-6 were associated with higher risk of subsequent infection (15). ## **ACKNOWLEDGEMENTS** The study was supported by the research grant from the Czech Ministry of Health (project No. IGA NR/8943-4). ## REFERENCE LIST - (1) Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med 2003; 31(4):1250-1256. - (2) American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 1992; 20(6):864-874. - (3) Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 2001; 29(7):1303-1310. - (4) Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ et al. A network-based analysis of systemic inflammation in humans. Nature 2005; 437(7061):1032-1037. - (5) Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 2008; 36(1):296-327. - (6) Pierrakos C, Vincent JL. Sepsis biomarkers: a review. Crit Care 2010; 14(1):R15. - (7) Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med 2003; 348(2):138-150. - (8) Gullo A, Bianco N, Berlot G. Management of severe sepsis and septic shock: challenges and recommendations. Crit Care Clin 2006; 22(3):489-501, ix. - (9) Bone RC. Immunologic dissonance: a continuing evolution in our understanding of the systemic inflammatory response syndrome (SIRS) and the multiple organ dysfunction syndrome (MODS). Ann Intern Med 1996; 125(8):680-687. - (10) Adib-Conquy M, Cavaillon JM. Compensatory anti-inflammatory response syndrome. Thromb Haemost 2009; 101(1):36-47. - (11) Ward NS, Casserly B, Ayala A. The compensatory anti-inflammatory response syndrome (CARS) in critically ill patients. Clin Chest Med 2008; 29(4):617-25, viii. - (12) Rodriguez-Gaspar M, Santolaria F, Jarque-Lopez A, Gonzalez-Reimers E, Milena A, de la Vega MJ et al. Prognostic value of cytokines in SIRS general medical patients. Cytokine 2001; 15(4):232-236. - (13) Bozza FA, Salluh JI, Japiassu AM, Soares M, Assis EF, Gomes RN et al. Cytokine profiles as markers of disease severity in sepsis: a multiplex analysis. Crit Care 2007; 11(2):R49. - (14) Kellum JA, Kong L, Fink MP, Weissfeld LA, Yealy DM, Pinsky MR et al. Understanding the inflammatory cytokine response in pneumonia and sepsis: results of the Genetic and Inflammatory Markers of Sepsis (GenIMS) Study. Arch Intern Med 2007; 167(15):1655-1663. - (15) Yende S, D'Angelo G, Kellum JA, Weissfeld L, Fine J, Welch RD et al. Inflammatory markers at hospital discharge predict subsequent mortality after pneumonia and sepsis. Am J Respir Crit Care Med 2008; 177(11):1242-1247. - (16) Crimi E, Sica V, Williams-Ignarro S, Zhang H, Slutsky AS, Ignarro LJ et al. The role of oxidative stress in adult critical care. Free Radic Biol Med 2006; 40(3):398-406. - (17) Droge W. Free radicals in the physiological control of cell function. Physiol Rev 2002; 82(1):47-95. - (18) Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007; 39(1):44-84. - (19) von DB, Bongain J, Molina V, Quilodran J, Castillo R, Rodrigo R. Oxidative stress as a novel target in pediatric sepsis management. J Crit Care 2011; 26(1):103-107. - (20) Ferreira FL, Bota DP, Bross A, Melot C, Vincent JL. Serial evaluation of the SOFA score to predict outcome in critically ill patients. JAMA 2001; 286(14):1754-1758. - (21) Vincent JL, de MA, Cantraine F, Moreno R, Takala J, Suter PM et al. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Working group on "sepsis-related - problems" of the European Society of Intensive Care Medicine. Crit Care Med 1998; 26(11):1793-1800. - (22) Eckerson HW, Wyte CM, La Du BN. The human serum paraoxonase/arylesterase polymorphism. Am J Hum Genet 1983; 35(6):1126-1138. - (23) Kodydkova J, Vavrova L, Zeman M, Jirak R, Macasek J, Stankova B et al. Antioxidative enzymes and increased oxidative stress in depressive women. Clin Biochem 2009; 42(13-14):1368-1374. - (24) Guevara I, Iwanejko J, Dembinska-Kiec A, Pankiewicz J, Wanat A, Anna P et al. Determination of nitrite/nitrate in human biological material by the simple Griess reaction. Clin Chim Acta 1998; 274(2):177-188. - (25) Roth E, Manhart N, Wessner B. Assessing the antioxidative status in critically ill patients. Curr Opin Clin Nutr Metab Care 2004; 7(2):161-168. - (26) Friedman G, Silva E, Vincent JL. Has the mortality of septic shock changed with time. Crit Care Med 1998; 26(12):2078-2086. - (27) Kibe S, Adams K, Barlow G. Diagnostic and prognostic biomarkers of sepsis in critical care. J Antimicrob Chemother 2011; 66 Suppl 2:ii33-ii40. - (28) Luzzani A, Polati E, Dorizzi R, Rungatscher A, Pavan R, Merlini A. Comparison of procalcitonin and C-reactive protein as markers of sepsis. Crit Care Med 2003; 31(6):1737-1741. - (29) Uzzan B, Cohen R, Nicolas P, Cucherat M, Perret GY. Procalcitonin as a diagnostic test for sepsis in critically ill adults and after surgery or trauma: a systematic review and meta-analysis. Crit Care Med 2006; 34(7):1996-2003. - (30) Behnes M, Brueckmann M, Liebe V, Liebetrau C, Lang S, Putensen C et al. Levels of oxidized low-density lipoproteins are increased in patients with severe sepsis. J Crit Care 2008; 23(4):537-541. - (31) Baron P, Traber LD, Traber DL, Nguyen T, Hollyoak M, Heggers JP et al. Gut failure and translocation following burn and sepsis. J Surg Res 1994; 57(1):197-204. - (32) Andresen M, Regueira T, Bruhn A, Perez D, Strobel P, Dougnac A et al. Lipoperoxidation and protein oxidative damage exhibit different kinetics during septic shock. Mediators Inflamm 2008; 2008:168652. - (33) Ogilvie AC, Groeneveld AB, Straub JP, Thijs LG. Plasma lipid peroxides and antioxidants in human septic shock. Intensive Care Med 1991; 17(1):40-44. - (34) Goode HF, Cowley HC, Walker BE, Howdle PD, Webster NR. Decreased antioxidant status and increased lipid peroxidation in patients with septic shock and secondary organ dysfunction. Crit Care Med 1995; 23(4):646-651. - (35) Weber SU, Lehmann LE, Schewe JC, Thiele JT, Schroder S, Book M et al. Low serum alpha-tocopherol and selenium are associated with accelerated apoptosis in severe sepsis. Biofactors 2008; 33(2):107-119. - (36) Young IS, Woodside JV. Antioxidants in health and disease. J Clin Pathol 2001; 54(3):176-186. - (37) Strand OA, Leone A, Giercksky KE,
Kirkeboen KA. Nitric oxide indices in human septic shock. Crit Care Med 2000; 28(8):2779-2785. - (38) Warner A, Bencosme A, Healy D, Verme C. Prognostic role of antioxidant enzymes in sepsis: preliminary assessment. Clin Chem 1995; 41(6 Pt 1):867-871. - (39) Cherian S, Jameson S, Rajarajeswari C, Helena V, Latha L, Anu Rekha MR et al. Oxidative stress in sepsis in children. Indian J Med Res 2007; 125(2):143-148. - (40) Taylor DE, Piantadosi CA. Oxidative metabolism in sepsis and sepsis syndrome. J Crit Care 1995; 10(3):122-135. - (41) Bulger EM, Maier RV. Antioxidants in critical illness. Arch Surg 2001; 136(10):1201-1207. - (42) Leff JA, Parsons PE, Day CE, Moore EE, Moore FA, Oppegard MA et al. Increased serum catalase activity in septic patients with the adult respiratory distress syndrome. Am Rev Respir Dis 1992; 146(4):985-989. - (43) Kirkman HN, Galiano S, Gaetani GF. The function of catalase-bound NADPH. J Biol Chem 1987; 262(2):660-666. - (44) Forceville X, Vitoux D, Gauzit R, Combes A, Lahilaire P, Chappuis P. Selenium, systemic immune response syndrome, sepsis, and outcome in critically ill patients. Crit Care Med 1998; 26(9):1536-1544. - (45) Sakr Y, Reinhart K, Bloos F, Marx G, Russwurm S, Bauer M et al. Time course and relationship between plasma selenium concentrations, systemic inflammatory response, sepsis, and multiorgan failure. Br J Anaesth 2007; 98(6):775-784. - (46) Ding L, Liu Z, Zhu Z, Luo G, Zhao D, Ni J. Biochemical characterization of selenium-containing catalytic antibody as a cytosolic glutathione peroxidase mimic. Biochem J 1998; 332 (Pt 1):251-255. - (47) Mishra V, Baines M, Perry SE, McLaughlin PJ, Carson J, Wenstone R et al. Effect of selenium supplementation on biochemical markers and outcome in critically ill patients. Clin Nutr 2007; 26(1):41-50. - (48) Mills GC. Hemoglobin catabolism. I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown. J Biol Chem 1957; 229(1):189-197. - (49) Mackness B, Hine D, McElduff P, Mackness M. High C-reactive protein and low paraoxonase1 in diabetes as risk factors for coronary heart disease. Atherosclerosis 2006; 186(2):396-401. - (50) Precourt LP, Amre D, Denis MC, Lavoie JC, Delvin E, Seidman E et al. The three-gene paraoxonase family: physiologic roles, actions and regulation. Atherosclerosis 2011; 214(1):20-36. - (51) Novak F, Vavrova L, Kodydkova J, Novak F, Sr., Hynkova M, Zak A et al. Decreased paraoxonase activity in critically ill patients with sepsis. Clin Exp Med 2010; 10(1):21-25. - (52) Kedage V, Muttigi MS, Shetty MS, Suvarna R, Rao SS, Joshi C et al. Serum paraoxonase 1 activity status in patients with liver disorders. Saudi J Gastroenterol 2010; 16(2):79-83. - (53) Draganov D, Teiber J, Watson C, Bisgaier C, Nemzek J, Remick D et al. PON1 and oxidative stress in human sepsis and an animal model of sepsis. Adv Exp Med Biol 2010; 660:89-97. - (54) Aviram M, Rosenblat M, Billecke S, Erogul J, Sorenson R, Bisgaier CL et al. Human serum paraoxonase (PON 1) is inactivated by oxidized low density lipoprotein and preserved by antioxidants. Free Radic Biol Med 1999; 26(7-8):892-904. - (55) James RW, Deakin SP. The importance of high-density lipoproteins for paraoxonase-1 secretion, stability, and activity. Free Radic Biol Med 2004; 37(12):1986-1994. - (56) van Leeuwen HJ, Heezius EC, Dallinga GM, van Strijp JA, Verhoef J, van Kessel KP. Lipoprotein metabolism in patients with severe sepsis. Crit Care Med 2003; 31(5):1359-1366. - (57) Gordon BR, Parker TS, Levine DM, Saal SD, Wang JC, Sloan BJ et al. Low lipid concentrations in critical illness: implications for preventing and treating endotoxemia. Crit Care Med 1996; 24(4):584-589. - (58) Luthold S, Berneis K, Bady P, Muller B. Effects of infectious disease on plasma lipids and their diagnostic significance in critical illness. Eur J Clin Invest 2007; 37(7):573-579. - (59) Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 1999; 340(6):448-454. - (60) Gordon BR, Parker TS, Levine DM, Saal SD, Wang JC, Sloan BJ et al. Relationship of hypolipidemia to cytokine concentrations and outcomes in critically ill surgical patients. Crit Care Med 2001; 29(8):1563-1568. - (61) Akgun S, Ertel NH, Mosenthal A, Oser W. Postsurgical reduction of serum lipoproteins: interleukin-6 and the acute-phase response. J Lab Clin Med 1998; 131(1):103-108. - (62) Fraunberger P, Schaefer S, Werdan K, Walli AK, Seidel D. Reduction of circulating cholesterol and apolipoprotein levels during sepsis. Clin Chem Lab Med 1999; 37(3):357-362. **Table 1.** Clinical characteristics of studied groups | | | НС | | | | |------------------------------------|------------------|---------------|----------------|------------|--| | | S1 | S7 | R7 | HC . | | | N (M/F) | | 10/9 | | 10/9 | | | AGE (years) | | 74 (56-79) | | 71 (56-78) | | | APACHE II | 16.0 (13.0-23.0) | - | - | - | | | Diagnosis
(medical/surgical) | | - | | | | | Source of sepsis
(lungs/others) | 12/7 | | | - | | | Day of sampling | 1 | 7 | 22.0 (14.0-34) | - | | | ICU hospitalization (days) | 20.0 (9-53) | | | - | | | Hospitalization (days) | 24.0 (16.0-61) | | | - | | | Duration of sepsis
(days) | 14.0 (6.0-26) | | | - | | | SOFA | 7.0 (2.5-10.0) | 3.0 (1.5-9.0) | - | - | | | APV (number/percent) | 7 (36.8 %) | 7 (36.8 %) | 1 (5.3 %) | - | | | CRRT (number/percent) | 0 | 3 (15.8 %) | - | - | | SP: septic patients; S1: SP enrolled within 24 hours after the onset of sepsis, S7: septic patients 7 days after S1 and R7: septic patient one week after the recovery from sepsis, HC: healthy controls; SOFA: Sequential Organ Failure Assessment, APV: Artificial Pulmonary Respiration, CRRT: Continuous Renal Replacement Therapy; data presented as median and interquartile range (25th-75th percentile). **Table 2.** Non-enzymatic antioxidants, cofactors of antioxidant enzymes and other parameters of antioxidant capacity | | SP | | | ИС | |---------------------|-----------------------------------|---------------------------------|-------------------------------|------------------| | | S1 | S 7 | R7 | НС | | | (n = 19) | (n = 19) | (n = 19) | (n=19) | | Vitamin E (mg/l) | $12.2 \pm 4.6^{a,c}$ | 14.5 ± 4.55 | 16.4 ± 5.0 | 18.2 ± 8.6 | | Vitamin A (mg/l) | $0.52 \pm 0.20^{a,b,c}$ | 0.81 ± 0.28 | 0.96 ± 0.44 | 0.97 ± 0.27 | | Fe (µmol/l) | 2.8 (2.0-3.3) ^{a,b,c} | 7.1 (4.8-10.0) ^{a,c} | 11.6 (7.5-13.6) ^a | 20.0 (15.6-27.3) | | Ferritin (µg/l) | 452 (240-1436) ^a | 356 (222-1347) ^a | 278 (194-646) ^a | 84 (67-161.3) | | Transferin (g/l) | 1.58 (1.13-1.91) ^{a,b,c} | 1.86 (1.55-2.18) ^{a,c} | 2.19 (2.05-2.35) ^a | 2.65 (2.45-3.09) | | Ceruloplasmin (g/l) | 0.43 ± 0.08 | 0.47 ± 0.12 | 0.45 ± 0.10 | 0.40 ± 0.07 | | Cu (µmol/l) | 20.3 ± 3.7 | 22.5 ± 5.1^a | 21.6 ± 4.7 | 18.5 ± 3.2 | | Zn (µmol/l) | $8.9\pm2.9^{a,b,c}$ | $11.8 \pm 2.6^{a,c}$ | 14.1 ± 3.6 | 15.1 ± 1.7 | | Se (µg/l) | $33.3 \pm 13.3^{a,c}$ | 46.5 ± 28.4^a | 53.7 ± 24.3^a | 72.5 ± 13.8 | | Albumin (µmol /l) | $437 \pm 95^{a,c}$ | $438\pm118^{a,c}$ | 548 ± 944^a | 707 ± 63 | | Bilirubin (µmol/l) | 14.8 (9.4-25.9) ^c | 12.5 (6.1-21.4) | 7.7 (6.7-17.0) | 10.3 (7.3-14.5) | | Uric acid (µmol/l) | 270 ± 103 | $224\pm106^{a,c}$ | 293 ± 122 | 331 ± 90 | | cTRAP (µmol/l) | $585\pm143^{a,c}$ | $535 \pm 157^{a,c}$ | 669 ± 143^a | 781 ± 132 | S1: patients enrolled within 24 hours after the onset of sepsis, S7: patients 7 days after S1 and R7: one week after the recovery, HC: healthy controls; cTRAP: calculated total peroxyl radical trapping - calculation: [0.63 (albumin) + 1.02 (uric acid) + 1.50 (bilirubin)]; data presented as mean \pm S.D. for parametric and median $(25^{th}-75^{th} \text{ percentile})$ for nonparametric variables; ^a septic patients (all samplings) vs. healthy controls, ^b S1 vs. S7, ^c S1 or S7 vs. R7; p < 0.05. **Table 3.** Correlations of inflammatory markers, albumin, HDL-C and ox-LDL | | | Albumin | HDL-C | Ox-LDL/LDL-C | |-------|-----------|-----------|-----------|--------------| | CRP | S1 | -0,556** | -0,384 | 0,398 | | | S7 | -0,743*** | -0,546*** | 0,464* | | | R7 | -0.306 | -0.018 | -0.070 | | | НС | -0.512* | -0,242 | 0,117 | | | S1 | -0,324 | -0,472* | 0,405 | | PCT | S7 | -0,563* | -0,680** | 0,548* | | | R7 | -0.341 | -0.140 | 0.511* | | | НС | -0,173 | 0,051 | 0,075 | | | S1 | -0,448 | -0,123 | -0,116 | | IL-6 | S7 | -0,641** | -0,351 | 0,465* | | | R7 | -0.120 | -0.169 | 0.049 | | | НС | -0,637** | -0,247 | -0,009 | | | S1 | 0,172 | -0,052 | -0,093 | | IL-10 | S7 | -0,456* | -0,387 | 0,349 | | | R7 | -0.712*** | -0.302 | 0.144 | | | НС | -0,380 | 0,026 | -0,043 | | | S1 | 0,060 | -0,299 | 0,116 | | TNF | S7 | -0,503* | -0,523* | 0,552* | | | R7 | -0.775*** | -0.456* | 0.464* | | | НС | 0,234 | 0,669** | 0,526* | S1: patients enrolled within 24 hours after the onset of sepsis, S7: patients 7 days after S1 and R7: one week after the recovery, HC: healthy controls; *** p < 0.001, ** p < 0.01, * p < 0.05 Figure 1. Changes in inflammation markers and SOFA in the course of sepsis. S1: septic patients enrolled within 24 hours after the onset of sepsis, S7: septic patients 7 days after S1 and R7: septic patients one week after the recovery, HC: healthy controls; PCT: procalcitonin, TNF- α : tumor necrosis factor α , IL-6: interleukin-6, IL-10: interleukin-10; Data presented as median (quartile, range), * S1 or S7 or SR7 vs. HC; $^+$ S1 or S7 vs. R7; b S1 vs. S7; *** p < 0.001, ** p < 0.01, * p < 0.05 Figure 2. Changes in PON1 activity and associated parameters in the course of sepsis S1: septic patients enrolled within 24 hours after the onset of sepsis (n = 19), S7: septic patients 7 days after S1 (n = 19) and R7: septic patients one week after the recovery (n = 19), HC: healthy controls (n = 19); PON1: enzyme paraoxonase1 – arylesterase activity, SAA: serum
amyloid A, Apo-A1: apolipoprotein A1, HDL-C: high density lipoprotein cholesterol, data presented as mean \pm S.D., * S1or S7 or R7 vs. HC; * S1 or S7 vs. R7; * S1 vs. S7; *** p < 0.001, ** p < 0.01, * p < 0.05 Figure 3. Changes in activities of oxidative stress parameters in the course of sepsis S1: septic patients enrolled within 24 hours after the onset of sepsis (n = 19), S7: septic patients 7 days after S1 (n = 19) and R7: septic patients one week after the recovery (n = 19), HC: healthy controls (n = 19); Ox-LDL: oxidized low density lipoproteins, CD: conjugated dienes in precipitated LDL, LDL-C: low density lipoprotein cholesterol, NT: 3-nitrotyrosine; data presented as mean \pm S.D., * S1or S7 or R7 vs. HC; * S1 or S7 vs. R7; * S1 vs. S7; *** p < 0.001, ** p < 0.01, * p < 0.05 Figure 4. Changes in activities of antioxidant enzymes in the course of sepsis S1: patients enrolled within 24 hours after the onset of sepsis (n = 19), S7: patients 7 days after S1 (n = 19) and R7: one week after the recovery (n = 19), HC: healthy controls (n = 19); CuZnSOD: superoxide dismutase, CAT: catalase, GPX1: glutathione peroxidase1, GR: glutathione reductase; data presented as mean \pm S.D., * S1or S7 or R7 vs. HC; * S1 or S7 vs. R7; * S1 vs. S7; *** p < 0.001, ** p < 0.01, * p < 0.05 ## Univerzita Karlova v Praze, 1. lékařská fakulta Kateřinská 32, Praha 2 ## Prohlášení zájemce o nahlédnutí do závěrečné práce absolventa studijního programu uskutečňovaného na 1. lékařské fakultě Univerzity Karlovy v Praze Jsem si vědom/a, že závěrečná práce je autorským dílem a že informace získané nahlédnutím do zpřístupněné závěrečné práce nemohou být použity k výdělečným účelům, ani nemohou být vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. Byl/a jsem seznámen/a se skutečností, že si mohu pořizovat výpisy, opisy nebo kopie závěrečné práce, jsem však povinen/a s nimi nakládat jako s autorským dílem a zachovávat pravidla uvedená v předchozím odstavci. | Příjmení,
jméno
(hůlkovým
písmem) | Číslo dokladu
totožnosti
vypůjčitele
(např. OP,
cestovní pas) | Signatura
závěrečné
práce | Datum | Podpis | |--|---|---------------------------------|-------|--------| |