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Chapter 1 

General introduction 

 

Interactions between plants and soil biota 

Soil organisms are closely linked to the plant community whereas aboveground plant 

biomass provide carbon and other nutrients to the decomposer community but plant roots also 

play important role as host for many soil organisms, such as herbivores, pathogens, and 

symbionts (Wardle et al. 2004). The soil biota strongly influence plant communities indirectly 

by recycling of dead organic matter and thus making nutrients available for plant use, and 

directly due the interactions of the root-associated organisms which selectively influence the 

growth of plant species (Wardle et al. 2004). Plant-soil interactions also affect plant 

productivity and community structure both plant species and soil biota. 

Plants may affect soil biota due two types of feedbacks. Positive feedbacks is realized 

when plant species accumulate soil organisms (mycorrhizal fungi, earthworms, nitrogen fixers 

etc.) that have positive effects on the plants that cultivate them. Positive feedbacks promote 

species dominance and lead to a loss of local community diversity (Bever 2002; Bever et al. 

1997).  Negative feedbacks occur when plant species accumulate pathogenic organisms in 

their rhizospheres (pathogenic fungi, bacteria, insect herbivores etc.) and these interactions 

outweigh the benefits received from mutualistic interactions. Negative feedbacks create 

conditions that are increasingly hostile to the plants that cultivate the pathogens and are 

thought to promote community diversity (Bever 1994; Eppinga et al. 2006; Klironomos 2002; 

Vanderputten et al. 1993). 

Interaction mediated by litter  

Aboveground plant biomass affects soil biota via their litter input. Chemical 

composition of litter mainly C:N ratio as well as lignin-cellulose content play significant role 

in biomass and community structure of decomposers community (Bardgett 2005; Eppinga et 

al. 2011; Hattenschwiler et al. 2005; Wardle et al. 2006). Easily decomposable plant material 

supports bacterial community while heavily decomposable plant material supports fungal 
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community (Boddy 1999; Caldwell 2005; Coleman et al. 1983). Aboveground plant biomass 

also affects community of soil fauna. Kaneda et al., (2012) showed significant increased 

density of soil mesofauna on field sites mulched by sweet corn residues than non-mulched 

field sites. Here is important factor besides litter quality also aboveground diversity of plant 

species (Wardle et al. 2006). Different litter species promote various habitat types for diverse 

groups of soil fauna. Kaneko and Salamanca (1999) found significant greater diversity of soil 

micro-arthropods in three litter mixtures than in litter monocultures. This results that 

dominant vegetation also strongly alters density and composition of decomposers community.  

 This alternation of soil community may in contrary affect soil condition. Observation 

of earthworm colonization on the sites where they absent previously such as boreal forest in 

USA or post mining heaps  indicate that they may substantially alter soil conditions (Bohlen 

et al. 2004; Frouz et al. 2008). By mixing litter in mineral soil they remove litter and 

fermentation (Oe) soil layer, alter water holding capacity of soil, organic matter content, pH 

and many other soil properties (Bohlen et al. 2004; Frouz et al. 2009; Frouz et al. 2008; Frouz 

et al. 2006). These alternations in soil properties may alter plant community (Bohlen et al. 

2004; Frouz et al. 2008). Effect of earthworms on the composition of aboveground biomass is 

well documented (Hopp and Slater, 1948). Scheu (2003) showed that in pot experiments 

where the Lolium perenne benefited more from the presence of earthworms than Trifolium 

repens. Roubickova et al. (2009) also showed that earthworms significantly altered the spoil 

substrate by producing of excrements and vertical transport of organic matter and thus 

increased the capacity of spoil to support plant species typical of latter successional stages in 

the Sokolov mining area. This fact may be explained  due patchy distribution of organic 

matter in soil with earthworms (Scheu 2003) or different rate of  uptake ability of released 

nutrient by plant species (Roubickova et al. 2009). 

Very important factor which play significant role in plant-soil interaction is fertility of 

soil. Fast-growing plant species that growing in fertile soils allocates most of their assimilates 

to rapid growth and producing easily decomposable litter that is rich in nutrients (Wardle et 

al., 2004). In contrary, slow-growing plants that dominate in soil with low nutrient availability 

allocate less assimilates to their growth, producing nutrient-poor litter that contain heavily 

decomposable compounds such as lignin and phenolics (Hussain et al. 2011; Tang et al. 

1995). Fast-growing plants promote bacterial-dominated food webs associated with fast 
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cycling of nutrients, whereas slow-growing plants promote a fungal-dominated food web 

(Cornwell et al. 2008; Wardle et al. 2004) and slow cycling of nutrients (Coleman et al. 1983; 

Moore and Hunt 1988). 

Very important role in plant-soil interaction play secondary metabolites. Phenolic 

compounds provide benefits for  plants such as UV protection, herbivore and pathogen 

defense, and contribution to plant colouration (Bardgett 2005). Polyphenols are divided into 

two main groups: firstly, low molecular weight compounds, including simple phenols, 

phenolic acids, and flavonoids; and secondly, oligomers and polymers of relatively high 

molecular weight such as tannins (McKey et al. 1978; Bardgett 2005; Singleton et al. 1999).  

Phenolic compounds  enter to the soil due two main pathways: firstly as leachates from stem, 

leaf, and root material; and secondly within leaf, stem, and root litter input (McKey et al. 

1978; Muller 1982; Bardgett 2005; Singleton et al. 1999).  

Phenolic compounds can alters others co-occurring plant species as well as soil 

microbial community (Blanco, 2007; Muller, 1982; Tang et al., 1995). Phenolic compounds 

decreasing population of co-occuring plant species and thereby affect soil biota via litter input 

of phenols producing plants (Mudrak and Frouz 2012; Muller 1982; Singleton et al. 1999; 

Williamson and Richardson 1988). Changing of plant community caused by producing of 

phenolic compounds suppress early successional species and thus play important role in plant 

succession (Chapin et al. 1994; Mudrak and Frouz, 2012). Polyphenols also strongly reduce 

microbial community in rhizosphere namely root pathogens (Becker et al. 1997).  

For example Zhang et al (2011) found that allelopathical compounds produced by 

invasive plant Solidago canadensis strongly affected activity of fungal plant pathogen 

Pythium ultimum but impact on whole fungal community remains unclear. Secondary 

metabolites produced by wide range of plant species may be required by some fungal strains. 

Soil microorganisms are responsible for half of the degradation of secondary metabolites such 

as m-tyrosine, catechin, ferulic acid, juglone and some flavones in soil and thereby increasing 

microbial activity in soil (Arunachalam et al. 2003; Kaur et al. 2009; Willis 2000). Producing 

of allelopathic compounds play also important role in invasion success of introduced plant 

species (Callaway and Ridenour 2004). 
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Interaction of plant roots and soil biota 

Roots play important role in biological activity of soil via producing of exudates to the 

rhizosphere. The rhizosphere is the region of soil that surrounds and is influenced by plant 

roots (Doornbos et al. 2012). A major influence in the rhizosphere is producing of complex 

organic exudates into the soil from roots (Doornbos et al. 2012; Jackson et al. 2012). The 

composition of root exudates depends on plant species and cultivars, developmental stage, 

plant growth substrate as well as stress factors (Doornbos et al. 2012). Microorganisms can 

utilize these exudates as substrates, and thereby increasing microbial biomass and activity in 

rhizosphere (Doornbos et al. 2012). Variability in the composition and quantity of root 

exudates play significant role in composition and density of microbial community in 

rhizosphere (Jackson et al. 2012; Sanaullah et al. 2011). 

Bardgett et al. (1999) showed that individual grassland plant species differ markedly 

in their impact on compositions and abundances of microbial communities in rhizosphere. 

Important factor in microbial activity in rhizosphere is also fertility of soil. Innes et al. (2004) 

found that plant species of grassland showed different effects on the abundance and structure 

of rhizosphere microbial communities in different soils. Innes et al. (2004) showed that 

bacteria were positively affected by the growth of various grasses and herbs in fertile 

grassland soil, but the same plants negatively affected these microbes when grown in non-

fertile grassland soil.  

Interactions of root exudates and microbial community strongly affect population 

density of microbial feeders.  Wardle et al. (1999) showed that the community composition 

and population density of soil microbes, microbe-feeding nematodes, and herbivorous 

nematodes and arthropods were differ in treatment with various plant community structure. 

These factors play important role in structure of soil community and biological activity of 

soil. 
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Interaction of plant, root associated organisms and other soil biota 

Interaction of root associated organisms such as mycorhizal interaction and N fixers 

significantly affect plant community and interactions of plants and soil biota (Bardgett 2005; 

Wardle et al. 2004). Generally, mycorrhizal interaction is closely related relationship between 

mycorrhizal fungi (e. g. genus Glomus) and roots or stem of vascular plants. Fungi obtain 

carbon from plants while fungi providing minerals from soil (Harrison 2005).  

Mycorrhizal interactions may affect soil biota directly via interactions between root 

and fungal feeders or indirectly via changing of plant community (Bardgett 2005). Grime et 

al. (1987) found that presence of mycorrhizal fungi alter plant community composition. 

Grime et al. (1987) showed that reducing the dominance of Festuca ovina based on presence 

of arbuscular-mycorrhizal fungi in several subordinate herbs led to shift in plant species 

community due competitive release interactions.  

Direct impact of mycorrhizas is realized due interaction between mycorhizal fungi and 

root and fungal feeders. For example Hata et al. (2010) showed that arbuscular-mycorrhizal 

fungi caused large changes in secondary metabolites in roots. Root feeding caused by insect 

larvae also increased micorrhizal-fungal vesicles and arbusculas in root tissue (Currie et al. 

2011; Gange 2001) and thus influence transport of minerals to the leaves as well as producing 

of secondary metabolites (Hata et al. 2010). Effect of presence of mycorrhizal fungi in roots 

of several plant species on decreasing diet and development of insect species larvae is well 

documented (Gange and Ayres 1999; Gange 2001; Gange et al. 1994). Generally, mycorrhizal 

associated fungi strongly decreasing diet and development of food generalist while effect on 

food specialist is not so strong (Currie et al. 2011).  

Mycorrhizal fungi strongly affect also soil mesofauna. Kaneda and Kaneko (2004) 

showed negative effect of mycorhizal fungus Pisolithus tinctorius associated in root on food 

preference of Folsomia candida while separately cultivated P. tinctorius was strongly 

preferred by F. candida. In contrary, Thimm and Larink (1995) showed positive effect of 

mycorrhizal fungi on population density and development of collembolan species.  

Nitrogen fixers are bacteria (e. g. Rhizobium) characterized due forming of nodes in 

roots. Nitrogen fixers exchange fixed nitrogen for carbon synthetized by photosynthesis 

(Vanrhijn and Vanderleyden, 1995). Vascular plants with N-fixing symbionts are most 
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widespread as early colonists in primary succession. Moral (2003) showed beneficial effect of 

plants with nitrogen fixers in glacial forelands where they are major facilitators of plant 

succession since. Nitrogen fixers contribute most of the N to developing communities, raising 

soil N to levels needed to support later successional species (Moral 2003).  

The mechanism by which N-fixers increase the availability of soil is realized both by 

build-up and decomposition of litter of high N content (Chapin et al. 1994; Moral 2003; 

Bardgett 2005). Elhottova et al. (2009) showed that roots of Tussilago farfara with nitrogen 

fixers cultivated in pots with spoil substrate increased microbial diversity and biomass than 

control pots. Nitrogen fixers can affect also soil microfauna in rhizosphere. For example 

Viketoft et al. (2005) showed that legumes supported large populations of certain bacterial-

feeders, especially Rhabditis and Panagrolaimus. Bacterial feeders reduce microbial biomass 

of bacteria and thus alter decomposer system in soil. 

Interaction of plant, herbivores and pathogens and other soil biota 

Both herbivores as well as plant pathogens strongly influence soil biota mainly due 

allocation of carbon from aboveground biomass to the plant rhizosphere or via changing of 

aboveground plant community. Van der Putten et al. (1993) showed that both root pathogens 

and root-feeding nematodes in the rhizosphere of Ammophila arenaria caused complete 

degradation of this plant and its replacement by Festuca rubra. 

 Klironomos (2002) showed that the rate of pathogen accumulation in the soil affect 

the distribution and invasibility of plant species in grassland communities. Klironomos 

suggest (2002) that native species tend to accumulate pathogens that limit their growth, while 

invasive species accumulate pathogens more slowly. Reinhart et al. (2003) showed that 

invasibility of Prunus serotina in north-western Europe was facilitated by the soil community. 

In the native areal in USA, soil pathogens near P. serotina inhibited the establishment of 

conspecifics plant species and reduced seedling performance of this tree, whereas in the 

invaded areal, black cherry established in close proximity to conspecifics plant species, and 

the soil community enhanced the growth of its seedlings.  

There is a wide range of root-feeding fauna in soil, including nematodes, insects, and 

mites. These organisms are differs in effect on various plant species within communities due 
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various palatability of root material. Root-feeding fauna strongly influence the dynamics of 

vegetation cover. According Schadler et al. (2004) insect root herbivores promote succession 

by reducing the success of early successional plant species in early successional plant 

communities due facilitated colonization by late successional species. Roubickova et al. 

(2012) also showed that wireworms negatively affect Calamagrostis epigejos and therefore 

can speed up succession and help establishment of a more diverse plant community on spoil 

heaps. 

Similar effect as root-feeders promotes aboveground plant herbivores. Livestock 

grazers can strongly change composition of plant community as well as soil properties. For 

example Yang et al. (2013) showed that livestock grazing changed functional groups of soil 

microbial community mainly N fixing bacteria in Tibetian alpine grassland soils.  Grazers can 

basically affect soil properties due three factors such as vegetation removal, manure 

deposition, and trampling (Cingolani et al. 2003; Kohler et al. 2005).  

Vegetation removal changes the allocation of carbon and nitrogen between plants and 

roots, and increase soil extractable carbon in the rhizosphere (Guitian and Bardgett 2000). 

Manure deposition increase nitrogen cycling by efficiently recycling nutrients through the 

animal excreta pathway (Kohler et al. 2005). Grazers trampling cause compacts soil and 

hence decreases air permeability and hydraulic conductivity (Yang et al. 2013). 

 

Effect of alien plant species on soil biota 

Plant species can be introduced into new ecosystem by human transport, tourism trade 

or stowaway (Pysek et al. 2012b; Seastedt and Pysek 2011). These plant species may in some 

cases strongly affect whole ecosystem including also soil physical, chemical and biological 

properties respectively (Novoa et al. 2012; Pysek et al. 2012b; Reinhart et al. 2003; Yeates 

and Williams 2001; Zavaleta 2000). The initial phase of invader establishment is often 

influenced by stochastic processes and propagule pressure (Eppstein and Molofsky 2007; 

Pysek et al. 2012b; Tilman 2004). Resource-based niche theory predicts that subsequent 

growth depends on the amount of limiting resources, such as nutrients and light, that remains 
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unconsumed by the native plant species (Tilman 2004), this concept is also known as vacant 

niche theory (Kawata 2002). 

Very important trait of new introduced plant species is also producing of phenolic 

compounds that suppress both other co-occuring species as well as plant pathogens (Jefferson 

and Pennacchio 2003; Ridenour and Callaway 2001; Weidenhamer and Romeo 2004) also 

known as a novel weapon hypothesis (Callaway and Ridenour 2004). Exotic plant species 

alters soil biota indirectly due litter feedback (Eppinga and Molofsky, 2013; Eppinga et al., 

2011; Meisner et al., 2012) and directly due producing of allelopathic compounds, shading of 

other vegetation or competition for nutrients (Callaway and Ridenour 2004; Inderjit et al. 

2006; Kawata 2002; Pysek et al. 2012; Quinn et al., 2012; Tilman 2004; Zavaleta 2000). 

Differences in initial litter chemistry between exotic and native plant species are important 

agent for soil processes involved in litter decomposition (Meier and Bowman 2008) and are 

mediated indirectly by the soil decomposer system (Hobbie 1992; Wardle et al., 2004). Effect 

of plant litter chemistry on soil decomposition and nutrient availability is known also as 

legacy effect (Eppinga et al. 2011; Eppinga and Molofsky 2013; Meisner et al. 2012). 

Lignin contained in plant litter can slow down the phased processes of litter 

decomposition (Cornwell et al. 2008). This lignin component needs specialized lignolytic 

fungi for its degradation and can shield the more easily available components such as 

cellulose from decomposers system during the earliest phases of litter breakdown (Baldrian et 

al. 2008; Valaskova et al. 2007). High quality litter from exotic plant species may increase 

soil nutrient mineralization and thereby support growth of itself and native congeneric species 

(Meisner et al. 2012).  

 Evolutionary development of exotic plant species introduced in new area may also 

contribute to the invasion success. As early mentioned litter chemistry strongly influence of 

soil decomposers (Cornwell et al. 2008; Meier and Bowman 2008) and nutrient availability 

(Hobbie 1992; Meisner et al. 2012). Changing of genotypes of plants species in both native 

and invasive range with nutrient rich soils toward C:N rich genotypes in alien range as well as 

plant-soil feedbacks play important role in invasibility of plant species. Eppinga et al. (2011) 

presented that evolutionary change of Phalaris arudinacea in invasive range in north America 

showed higher C:N ratios in plant tissue. High C:N ratio in plant tissue may slow down 
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decomposition (Cornwell et al. 2008) and thus stimulate accumulation of litter. This effect 

may change the outcome of competition between native and invasive species. Plant-soil 

feedback and evolutionary change toward more competitive genotypes increase invasive 

success of exotic plant species (Eppinga et al. 2011; Eppinga and Molofsky 2013). However 

Meisner et al., (2012) showed that legacy effect of plant litter support both exotic plant 

species as well as their congeneric species but interaction of exotic plant species and their 

congenerics remains unclear. 

Energy crops 

Energy crops are considered as fast growing annual or perennial plants (including 

body parts e.g., leaves, fruits, seeds etc.) used as addition for biofuels, production of biodiesel 

or direct combustion (Cozier 2012; Don et al. 2012). Most widespread energy crops on the 

world are maize, sugarcane, soya been, sweet sorghum, switchgrass, jatropha etc. (Cozier 

2012; Youngs and Somerville 2012). In Europe is most widespread energy crop oilseed rape 

but new introduced energy crops such hybrid sorrel, Miscanthus or hybrid poplar comes to 

fore (Brant et al. 2011; Lewandowski et al. 2006).  

Characteristics of energy crops 

There is a separation of biofuels based on their origin into biofuels first, second and 

third generation (Searchinger et al. 2008). The term first-generation biofuels refers biofuels 

produced from agricultural crops grown for food and feed (e. g. maize, sugarcane or soya 

bean), and from new oilseed crops such as jatropha or pongamia. The technologies producing 

these fuels are well developed and widely used. However these extensive cropping of these 

biofuel crops may have negative effects on food markets and ecosystem benefits (Cozier 

2012; Searchinger et al. 2008).  

Biofuels from non-food sources, especially grown as energy crops, are commonly 

known as second-generation (also referred as cellulosic) biofuels. Technologies for cellulose 

processing utilize the vast amount of woody biomass including agricultural and forest waste 

and residues or municipal solid waste. The promise of harvesting these energy crops is 

attractive since current production pathways cannot utilize the most of plant biomass, which 

includes cellulose, hemi-cellulose, and lignin (Buckeridge et al. 2012). Lignocellulose can 
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also be obtained from short-rotation trees and shrubs (e.g., willow, eucalyptus) and short-

rotation grasses (e.g., switchgrass and Miscanthus, also known as elephantgrass) (Smith et al. 

2013b). Some of these plants produce allelopathic compounds which contribute to the 

decreasing of soil biota, but  generally, effect of large scale cropping of these plants on soil 

biota and soil functioning is still not well known. 

Third-generation biofuels are obtained from algae with better sustainability properties than 

second generation biofuels. Currently, the most hopeful third generation biofuels comes from 

microalgae, photosynthetic microorganisms of less than 0.4 mm in diameter that use sunlight, 

water, and carbon dioxide to produce algal biomass (Chisti 2008; Chisti 2007). Algae can be 

cultivated in ponds or special photo bioreactors, or in hybrid systems that combine these two 

approaches, thus avoiding the need to use arable land.  

 

Recent use of energy crops 

Biofuels have been at the center of intense interest, discussion, and debate in recent 

years. The global biofuels boom began in 2004-2005 due the announcement by the United 

States goverment (US) and the European Union commission (EU) of policies and incentives 

to support increased use of biofuels (Brant et al. 2011; Lewandowski et al. 2006). Little is 

known about impact of large scale cultivation of energy crops on functioning of soil 

ecosystems. There are two views on energy crops cultivation. First allows ecosystem benefits 

of large scale production of these crops such as carbon sequestration, decreasing of 

greenhouse gasses, phytoremediation and increasing of water retention capacity etc., 

(Börjesson 1999; Lewandowski et al. 2006; Makeschin 1994) Second considers large scale 

production of energy crops as serious threat for diversity of soil fauna which provide 

important benefits for soil (Blanco-Canqui 2010; Börjesson 1999; Buddenhagen et al. 2009). 
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Energy crops and their ecosystem benefits 

Ecosystem services provided by whole worlds ecosystems were summarized and 

expressed as 33x1012 USD per year (Costanza et al. 1997). Although ecosystems also 

contribute to this amount their role is not yet sufficiently appreciated. Second generation 

biofuels, like cellulosic ethanol, have potential as important energy sources that can decrease 

fossil fuel carbon emissions without affecting global food commodity prices.  

 Perennial short rotation grasses such as switchgrass Panicum virgatum belonging to 

second generation bioenergy crops could provide ligno-cellulosic material for ethanol while 

increasing belowground carbon storage, sequestering carbon in extensive root structures  and 

accumulating soil organic carbon (Fornara and Tilman 2008; McLaughlin and Kszos 2005). 

Zeri et al. (2011) also showed perennial grasses promote more carbon sequestration based on 

eddycovariance measurements of ecosystem-atmosphere CO2 exchange than annual plants 

whereas Anderson-Teixeira et al., (2013) showed that perennials also allocated substantially 

more carbon belowground, resulting in much higher belowground biomass. Crops species and 

agriculture management contribute to the benefical effect of energy crops (Börjesson 1999; 

Don et al. 2012). Anderson-Teixeira et al. (2013) found that belowground carbon cycling 

dynamics were differ between establishing perennial vegetation and the annually tilled corn-

soy agroecosystem.  

Perennial biofuel crops also strongly influence nitrogen fluxes and cycling. Smith et 

al., (2013a) demonstrate that environmental nitrogen fluxes from row crop agriculture can be 

strongly reduced after establishment of perennial biofuel crops. Smith et al. (2013a) showed 

decreasing of nitrate leaching and N2O emissions in field sites planted by miscanthus, 

switchgrass and prairie in comparison to corn and soya-bean. Perennial biofuel crops tend 

allocate nutrients from aboveground biomass to the root and thereby increased sequestration 

of carbon a nd nitrogen to the soil (Anderson-Teixeira et al. 2013; Buckeridge et al. 2012;  

Smith et al. 2013). 

 



20 
 
 

 

Potential effect of energy crops on soil ecosystem 

Biofuel crops may have economic benefits, however studies of concomitant 

environmental risks come to the fore (Buddenhagen et al. 2009; Raghu et al. 2006). The 

Invasive species belong among the most important direct drivers of biodiversity loss and 

degradation of ecosystem services (Zavaleta 2000). Effect of invasive plant species is 

important on islands, where they represent the leading cause of species extinctions (Denslow 

2003). Estimation of impact of alien species annually in United States, United Kingdom, 

Australia, South Africa, India and Brazil has been calculated at over 100 billion USD 

(Zavaleta 2000) due to reduced productivity of agriculture, forestry and other production 

systems (McCormick and Howard 2013). 

As earlier mentioned shift of genotype of introduced plants in new areas with higher 

nutrition inputs towards from less C:N content to higher C:N content (Eppinga et al. 2011; 

Eppinga and Molofsky 2013) may strongly influenced soil decomposers (Meier and Bowman 

2008) nutrition cycling (Cornwell et al. 2008) and affect other co-occurring plants as well as 

soil ecosystem via so called legacy effect of litter (Meisner et al. 2012). Impacts of these 

invasive plant species on ecosystem are well documented (Murrell et al. 2011; Pritekel et al. 

2006; Yeates and Williams 2001; Zavaleta 2000). 

For example, Sorghum halepense is an introduced plant species that became an alien 

plant species in 16 of the 48 U.S. states in which it occurs (Raghu et al. 2006). Even the most 

conservative estimate of competitive losses for cotton and soybean crop production is in 

excess of 30 million USD annually (Raghu et al. 2006; Wilsey et al. 2011). Several grasses 

and woody species have been evaluated for biofuel production but these plants are often non-

native and they became invasive plants with serious impacts on whole ecosystem 

(Buddenhagen et al. 2009; Flory et al. 2012). Arundo donax introduced from Asia and 

Phalaris arundinacea introduced from temperate Europe and Asia are typical short rotation 

grasses considered as biofuel species that are invasive in some US regions (Gifford et al. 

2002; Raghu et al. 2006).  
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Soil biota 

Soil environment contains a diverse population of edaphic organisms. General 

discussion of soil organisms commonly considers body size, habitat preference and food web 

associations (Kampichler 2000; Lavelle 2000; Lavelle et al. 1997). The most widespread 

categories are based on body size (microflora, microfauna, mesofauna, macrofauna and 

megafauna) and feeding strategy (microphytophagous, saprophagous, mycophagous, 

zoophagous) (Faber 1991; Lavelle 2000; Wolters 2000). Microflora, microfauna, mesofauna, 

macrofauna and megafauna consist of organisms with body size about μm scale, <0.2 mm, 

0.2-2 mm, 2 mm-2 cm, >2 cm respectively. Each size and trophic class has its own niche and 

functions in the ecosystem (Kampichler 2000; Wolters 2000).  

 There are three main groups of soil biota based on their position in food web 

(Brussaard et al., 2007; Lavelle et al., 1997; Morris and Blackwood, 2007; Bardgett, 2005; 

Verstraete and Mertens, 2004). Primary producers are mainly represented by cyanobacteria 

and green algae. Primary consumers are represented by soil microbes mainly soil bacteria, 

actinomycetes and fungi (Verstraete and Mertens 2004). Secondary and higher-level 

consumers are represented by soil microfauna, mesofauna and macrofauna (Brussaard et al. 

2007; Faber 1991; Lavelle, 2000; Schroöder 2008).  
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ABSTRACT: 

Soil fungi are important food resources for soil fauna. Here we ask whether the 

collembolan Folsomia candida shows selectivity in grazing between four saprophytic fungi 

(Penicillium chrysogenum, Penicillium expansum, Absidia glauca, and Cladosporium 

herbarum), whether grazing preference corresponds to effects on collembolan reproduction, 

and whether the effects of fungi on grazing and reproduction depends on the fungal substrate, 

which included three kinds of litter (Alnus glutinosa, Salix caprea, and Quercus robur) and 

one kind of agar (yeast extract). On agar, Cladosporium herbarum and Absidia glauca were 

the most preferred fungi and supported the highest collembolan reproduction. On fungal-

colonized litter, grazing preference was more affected by litter type than by fungal species 

whereas collembolan reproduction was affected by both litter type and fungal species. On 

fungal-colonized litter, the litter type that was most preferred for grazing did not support the 

highest reproduction, i.e., there was an inconsistency between food preference and suitability. 

Alder and willow were preferred over oak for grazing, but alder supported the least 

reproduction.   

 

Key words: Food preference test, Soil microscopic fungi, Reproductive test 
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Introduction 

The study of food biology in soil ecosystems is difficult because the soil fauna ingest 

and utilize various components of soil organic matter usually associated with soil microflora  

(Crowther and A’Bear 2012; Jorgensen et al. 2008; Jorgensen et al. 2003). Both springtails 

(collembolans) and fungi are important members of soil decomposer food webs (Lavelle et al. 

1997; Moore et al. 1987; Newell 1984; Nieminen 2008), and soil fungi represent a significant 

food resource for collembolans and certain other soil invertebrates (Bardgett and Cook 1998; 

Faber 1991; Frouz and Makarova 2001; Goto 1972; Hanlon 1981). 

Fungal grazing by collembolans can alter the composition of the fungal community 

and thereby alter effects of fungi on litter decomposition and responses of fungi to other stress 

factors (Berg et al. 2004; Booth and Anderson 1979; Butterfield 1999; Crowther and A’Bear 

2012; Dowd 1989; Hanlon 1981; Chen et al. 1995; Kaneda and Kaneko 2004; Kaneda and 

Kaneko 2002; Shaw 1988). On the other hand, the composition of the fungal community and 

the interaction between fungi and the substrate affect collembolan food choice and 

reproductive success (Jorgensen et al. 2008; Jorgensen et al. 2003; VISSER and Whittaker 

1977). Soil fauna often prefer some species of fungi over others as food (Butterfield 1999; 

Hogervorst et al. 2003; Hubert et al. 2004; Kaneko et al. 1998; Klironomos et al. 1999; 

Lavelle et al. 1997; Lee and Widden 1996; Leonard 1984; Schneider et al. 2004). Fungi 

preferred by fungivorous fauna often include Cladosporium cladosporoides, Cladosporium 

herbarum, Alternaria alternata, and Ulocladium sp. (Hurlbert 1984; Klironomos et al. 1999; 

Klironomos and Hart 2001).  

 Several authors concluded that the most preferred fungi are also the most suitable for 

growth and development of fungivorous fauna (Frouz and Makarova 2001; Hubert et al. 2004; 

Koukol et al. 2009) but Frouz and Nováková (2001) found that some highly preferred fungi 

did not support fungivore development. In addition, the substrate on which the fungi grown 

can strongly affect their attractiveness as a food source for fungivores and their suitability for 

fungivores growth and development (Frouz and Makarova 2001; Hubert et al. 2004). We 

expect that substrate used for growing fungi used as a food for Folsomia candida may 

substantially affect fungal preference and suitability. In the current paper, we determined the 

preference of the collembolan F. candida for several species of fungi, whether this preference 
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corresponds with food suitability, and how both preference and food suitability are affected 

by the substrate supporting fungal growth. 

 

Materials and Methods 

Collembolans, fungi, and litter  

Folsomia candida (Isotomidae: Colembolla) was obtained from the Institute of Soil 

Biology, České Budějovice, and was reared according to a standard protocol (Tordoff et al. 

2008; VanStraalen and Verhoef 1997). The following fungi were obtained from the 

Collection of Micromycete Strain in the Institute of Soil Biology, České Budějovice: 

Penicillium expansum, Absidia glauca, Cladosporium herbarum, and Penicillium 

chrysogenum. The fungi were cultivated by transferring spores to Petri dishes containing 

8%yeast extract agar and incubating the cultures at 20–25°C. Litter was collected from alder 

(Alnus glutinosa) and oak (Quercus robur) plantations and from willow (Salix caprea) trees 

(spontaneous regrowth) on a post-mining heap near Sokolov (Frouz and Novakova 2005)[13]. 

Litter was collected by placing nylon bags under these trees; the bag openings (0.5 x 0.5 m) 

were parallel with the soil surface and about 0.5 m above the soil surface, and the bags were 

deployed for 14 days during leaf drop in November. The litter was air dried, placed in sealed 

zip-lock bags, and sterilized with gamma radiation (2.5 MG) before use.   

 

Grazing preference experiments 

For the first grazing preference experiment, the four fungi were grown on yeast extract 

agar for 5 days as described above before fungal-colonized agar disc (1 cm diameter) were cut 

from the colony. One agar disc of each of the four fungal species was placed in random order 

around the periphery of an empty, sterile 9-cm-diameter Petri dish (Tordoff et al. 2008). 

Thirty F. candida were then placed in the middle of the Petri dish, which was then covered 

and kept at 20°C in the dark.  The F. candida individuals on each agar disc were counted at 

the same time of day (14.00 h) during 8 days. The experiment included four replicate Petri 
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dishes. Cumulative occurrence used to comparison of multiple reading done in one dish was 

assumed as one event (Hurlbert 1984; Tordoff et al. 2008). 

A similar experiment was conducted with pieces of litter that were about 1 cm2 in 

surface area and that had been colonized by one of the three fungi. Each of litter pieces (A. 

glutinosa, Q. robur, S. caprea) were colonized by one of three stem of fungi (A.glauca, C. 

herbarum, P. chrysogenum).  Nine fungal-colonized pieces of litter (one piece for each 

combination of fungal species and litter type) were placed on the periphery of an empty 9-cm 

diameter Petri dish, and 30 F. candida were added. The Petri dish was covered and kept at 

20°C in the dark. After the F. candida on each piece of litter were counted. The experiment 

with litter was shorter than that with agar disc because the small litter pieces deteriorated after 

only a few days. This second experiment also included three replicate Petri dishes. 

 

Reproduction experiments 

For the first reproduction experiment, Petri dishes containing yeast extract agar were 

inoculated with one of the four species of fungi. After the fungus had completely colonized 

the dish, 10 F. candida from a synchronized culture (Tordoff et al. 2008) were added to each 

dish. There were three replicate dishes, and temperature and light were as described in the 

grazing experiments. After 30 days, 70% ethanol was added to each dish, and the F. candida 

individuals in each dish were counted. The second reproductive experiment was similar to the 

first except that each dish contained 2 g of litter (one of three kinds of litter) that had been 

colonized by one of three species of fungi. In the second reproductive experiment, there were 

three replicate plates for each combination of litter type (A. glutinosa, Q. robur, S. caprea) 

and fungal species (A.glauca, C. herbarum, P. chrysogenum).   
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Statistical analysis 

Data were subjected to a one-way ANOVA (for the first grazing preference 

experiment and the first reproduction experiment) or a two-way ANOVA (for the second 

grazing preference experiment and the second reproduction experiment). In case preference 

tests when several observations were done in one dish, all observations made in one dish was 

pooled and assumed as one observation for future statistical analysis (R 2005). If an ANOVA 

was significant, means were compared with the Tukey-Kramer Multiple Comparison Test. 

The R programme was used for statistical analyses (R 2005).  

 

Results 

Grazing preference experiments 

In the experiment concerning collembolan preference among fungi growing on discs 

of yeast extract agar, F. candida preferred C. herbarum and A. glauca over P. chrysogenum 

and P. expansum-see Fig. 1 (F3,12=28.530, p=0.0004). In the experiment concerning 

collembolan preference among fungi growing on pieces of litter, the number of F. candida on 

the litter pieces was significantly affected by litter type (F. candida preferred alder and willow 

litter over oak) but was not significantly affected by which fungus had colonized the litter 

(Fig. 2). According to a two-way ANOVA, the effect of litter was significant (F2,6=6.3, 

p<0.005) but the effects of fungal species (F2,6 1.1, p=0.346) and the interaction between litter 

type and fungal species (F8,24=1.1, p=0.349) were not significant. 

 

Reproduction experiments 

In the first reproduction experiment, in which the fungal-colonized agar discs were 

offered to the collembolans, F. candida numbers were significant higher (F3,9=6.269, p=0.017) 

with A. glauca and C. herbarum than with P. chrysogenum or P. expansum (Fig. 3). In the 

second reproduction experiment, in which the fungi were grown on different types of litter, F. 

candida numbers were significantly affected by fungal species and litter type but not by their 

interaction (Fig. 4). As in the second grazing preference experiment, more of the variation 
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was explained by litter type than by fungal species. F. candida numbers were largest on 

willow litter, intermediate on oak litter, and smallest on alder litter, which differs from the 

order obtained in the second grazing preference experiment (Fig. 3).  According to a two-way 

ANOVA, the effects of both litter and fungal species were significant (F2,6=57.3, p<0.001 and 

F2,6=7.1 and p=0.005 respectively) but the interaction was not significant (F8,24=1.9, p=0.150). 

With respect to fungi in the second reproductive experiment, F. candida numbers were larger 

with A. glauca and Penicillium chrysogenum than with Cladosporium herbarum (Fig. 4). 

Discussion 

When offered fungi growing on agar disc in the current study, Folsomia candida 

preferred some fungal species and also increased to higher number on some species than on 

others. When offered fungi grown on different litter types (alder, willow, and oak), however, 

grazing preference and reproduction were more affected by litter type than by fungal species. 

In agreement with other authors, this indicates that the substrate on which fungi grow is 

largely responsible for fungal attractiveness and nutritional quality for fungivores (Frouz et al. 

2002; Frouz and Novakova 2001; Kaneda and Kaneko 2002). None of previous studies deal 

with litter which is more field realistic that any growing media, basic novelty of our study is 

that litter is more important than fungal species itself. This finding also supports the 

conclusion of Jørgensen et al. (2008) that natural substrates should be used in studies of 

fungivore–fungus interactions.  

In the grazing preference experiment with fungal-colonized agar disks, the two species 

of Penicillium were the least preferred. In this case, food preference may have been affected 

by the production of patulin, citrinin, or other mycotoxins. Dowd (1989) reported that patulin 

and ochratoxin caused arthropod mortality. According to Staaden et al. (2011), olfactory cues 

affect the food preference of collembolans because volatiles indicate which secondary 

metabolites are in the food source. 

In the reproduction experiment on agar, F. candida population growth was greater 

with A. glauca and C. herbarum than P. chrysogenum and P. expansum. These results 

correspond with those of Hubert et al. (2004), who reported that, when the substrate 

supporting fungal growth was agar, those oribatid mites that preferred C. cladosporoides also 

had the greatest reproduction on C. cladosporoides. Tordoff et al. (2008), who studied the 
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reproduction of several species of collembolans (Folsomia candida, Proisotoma minuta, 

Protaphorura armata) on four species of Basidiomycetes (Phanerochaete velutina, 

Hypholoma fasciculare, Resinicium bicolor, and Phallus impudicus), reported that P. minuta 

survived only on P. velutina mycelia. In contrast, F. candida was found to be a dietary 

generalist that was able to increase its abundance on the mycelium of all fourpecies of 

Basidiomycetes. P. armata could survive but not reproduce well on P. velutina mycelium. 

Frouz and Nováková (2001) showed that the fungi most preferred by the dipteran Lycoriella 

ingenua are most suitable for the growth and development of its larvae. Folsomia candida is 

able to survive and reproduce on more food resources than other collembolans on various 

substrates (Tordoff et al. 2008).   

As noted earlier, collembolan food preference in the current study was more affected 

by the substrate on which the fungi grew than on the identity of the fungi. Jørgensen et al.  

(2003) documented significant differences in food preference when collembolans were 

offered eight species of soil fungi growing on a natural soil substrate. In agreement with 

Kaneko et al. (1995), we found that which fungi were preferred by collembolans differed 

depending on the substrate on which the fungi were growing.   

 

Conclusions 

Litter type had an inconsistent effect on F. candida grazing preference and F. candida 

reproduction. Thus, alder was preferred to oak in the grazing preference experiment but oak 

supported greater numbers than alder in the reproduction experiment. The reason for this 

inconsistency is not clear but perhaps can be explained by the short duration of the preference 

test (data were collected after 12 days) in which sterile alder supported better fungal growth 

than sterile oak litter. In the reproduction test, which lasted for 30 days, addition of 

collembola undoubtedly resulted in bacterial contamination of the litter, and the bacteria may 

have reduced fungal growth to a greater degree on alder than on oak, resulting in greater 

collembolan reproduction on oak than on alder. This result, which is to some extent contrary 

to that of Jørgensen et al. (2008), indicates that discrepancies between food choice and food 

suitability may occur even on natural substrates.  
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Appendices 

 

Fig. 1 Numbers of F. candida on fungal-colonized agar disks as affected by fungal species; the collembolans 

were counted 12 days at same time 30 individuals were added per dish. Values are means + SD of all sampling 

dates. Means with the same letter are not significantly different according to an Tukey-Kramer Multiple 

Comparison Test (p>0.05). Absidia (Absidia glauca), Cladospor, (Cladosporium herbarum), Penicilium1 

(Penicillium chrysogenum), Penicilium2 (Penicillium expansum). 
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Fig. 2 Numbers of F. candida on fungal-colonized litter pieces as affected by species of fungi and litter source; 

the collembolans were counted 1 and 2 days after 30 were added per dish. Values are means + SD of both 

sampling dates. Data for litter type were averaged across fungi, and data for fungi were averaged across litter 

types.  Means with the same letter are not significantly different according to an Tukey-Kramer Multiple 

Comparison Test (p>0.05). Absidia (Absidia glauca), Cladospor. (Cladosporium herbarum), Penicilium 

(Penicillium chrysogenum) 
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Fig. 3 Numbers of F. candida in Petri dishes containing fungi growing on yeast extract agar; the collembolans 

were counted 30 days after 10 were added per dish. Values are means + SD, and means with the same letter are 

not significantly different based on an Tukey-Kramer Multiple Comparison Test (p>0.05). Cladospor. 

(Cladosporium herbarum), Penicilium1 (Penicillium chrysogenum), Penicilium2 (Penicillium expansum). 
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Fig. 4 Numbers of F. candida in Petri dishes containing fungal-colonized litter; the collembolans were counted 

30 days after 10 were added per dish. Values are means + SD. Data for litter type were averaged across fungi, 

and data for fungi were averaged across fungal species. Means followed by the same letter are not significantly 

different based on an Tukey-Kramer Multiple Comparison Test (p>0.05). Absidia (Absidia glauca), Cladospor. 

(Cladosporium herbarum), Penicilium (Penicillium chrysogenum). 
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ABSTRACT: 

Energy crops represent an alternative to fossil fuel. Because energy crops are often 

introduced species, little is known about how their long-term production affects soil and soil 

biota. The most important introduced energy crop in the Czech Republic is hybrid sorrel 

(Rumex patientia x Rumex tianschaniacus). The current study investigated the effects of long-

term production of hybrid sorrel on basal soil respiration, specific microbial respiration, 

microbial biomass carbon, the composition of the cultivable soil fungal community, and the 

composition of soil meso- and macrofauna communities. In a split-plot field experiment in 

Chotýšany near Vlašim (Central Bohemia, Czech Republic), fields with hybrid sorrel (2 and 

10 years old), oilseed rape (> 10 years old), and cultural meadow (> 10 years old) were 

compared. The composition of soil meso- and macrofauna communities differed among 

fields. Soil meso- and macrofauna diversity and abundance were lowest in oilseed rape fields, 

and abundance was highest in cultural meadows. Hybrid sorrel fields contained more 

pathogenic fungi than oilseed rape fields or cultural meadows but the difference was only 

marginally significant. Basal soil respiration and specific microbial respiration (qCO2) were 

highest in oilseed rape fields, and microbial biomass was highest in cultural meadows.  

 

Key words: Composition of soil biota, Basal soil respiration, Specific microbial respiration 

(qCO2), Microbial biomass. 
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Introduction 

Energy crops are used to produce biofuels or an additive for biofuels. They grow 

rapidly, and their biomass is currently an important component of the energy mix in many 

countries (Blanco-Canqui 2010; Don et al. 2012). According Brant et al. (2011), energy crops 

will be grown on 500 000 ha-1 of arable land in the Czech Republic until 2030. In the Czech 

Republic, the most common energy crops are oilseed rape (Brassica napus spp. napus), 

hybrid sorrel (Rumex patientia x Rumex tianshanicus), and Miscanthus (Miscanthus sinensis) 

(Lewandowski et al. 2006). While oilseed rape is well established, hybrid sorrel has only 

recently been cultivated as an energy crop in the Czech Republic, and little is known about 

the environmental impact of its long-term cultivation.  

If fields with energy crops are appropriately located, designed, and managed, they may 

reduce nutrient leaching and soil erosion and generate additional environmental services such 

as soil carbon accumulation, improved soil fertility, and the removal of cadmium and other 

heavy metals from soils or wastes (Börjesson and Berndes 2006; Buckeridge et al. 2012). 

However, energy crops can have positive or negative effects on biodiversity and soil biota 

(Börjesson 1999; Buckeridge et al. 2012; Buddenhagen et al. 2009; Hansson and Fogelfors 

2000), depending on the intensiveness of the biofuel production, the design of the planting in 

the landscape, crop management, and land use before conversion (Buckeridge et al. 2012; 

Makeschin 1994). Some recently introduced energy plants may enhance soil degradation and 

biological invasion (Buddenhagen et al. 2009; Raghu et al. 2006). 

Hybrid sorrel is a perennial plant that can be harvested dry and that can continuously 

produce high yields for more than 10 years (Ustak and Vana, 1998). In addition, sorrel 

tolerates a broad range of soils, fertilization regimes, and climates (Ustak and Vana, 1998). 

Sorrel is harvested in August; the flower stalk with secateurs is cut first, and then the 

remaining leaves are harvested with a motor scythe (Ustak and Vana 1998).  

 In the current research, we compared the impact of the long-term production of hybrid 

sorrel (non-tilled, 2 and 10 years old), oilseed rape (tilled, > 10 years old), and a cultural 

meadow (non-tilled, > 10 years old) on the biological activity of the soil community. We 

measured the composition and abundance of various groups of soil fauna, the composition of 

the cultivable fraction of the fungal community, basal soil respiration, and specific microbial 

respiration (qCO2). 
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Material and Methods: 

 

 Study area and sampling 

Samples were taken from four kinds of fields located in Chotýšany near Vlašim 

(°44'38.763 N, 14°48'52.48 E) at 450 m a.s.l. The fields (50x50m) contained hybrid sorrel (2 

years old or 10 years old), oilseed rape (>10 years old), or cultural meadow dominated by Poa 

annua, Dactilis glomerata, Alopecurus pratense, Trifolium repens, and Plantago major. Each 

kind of crop was represented by three replicate fields. The distance between replicates of the 

same treatments was about the same as distance to replicates of other treatments. The 

maximal distance between the most distant fields was 300 m. For all fields, the mean annual 

temperature is 7.8°C, and the mean annual precipitation is 550 mm. The soil was a cambisol 

with a pH of about 5.8. For determination of soil faunal and soil microbial characteristics, soil 

cores were collected, and each was 12 cm in diameter and 10 cm deep for soil fauna and 6 cm 

in diameter and 10 cm deep for microorganisms. Three of each kind of core were collected 

from each of the three replicate fields in the summer and autumn of 2010 and in the spring of 

2011.  

 

Measurement of basal soil respiration and microbial biomass  

For estimation of basal soil respiration, soil samples (10 g) were closed in 200-mL air-

tight vials and incubated at 20 °C in the laboratory. The carbon dioxide that evolved from the 

soil was trapped in 3 mL of 0.5 M NaOH during a 7-day incubation and was then quantified 

by titration with 0.05 M HCl after addition of BaCl2. Respiration was expressed as C-CO2 m
−2 

· h−1. Blanks were used to assess the CO2 trapped during handling and incubation (Jenkinson 

and Powlson 1976; Vance et al. 1987). Microbial biomass (Cmic) was determined by the 

chloroform fumigation–respiration method and expressed as g C g−1 DW or mg C m−2 · h−1.  

After soil samples (10 g) had been fumigated with chloroform vapor for 48 h, respiration was 

measured as above (Shan-Min et al. 1987). Specific microbial respiration was evaluated as the 

rate of basal soil respiration per unit of microbial biomass.  
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 Isolation of soil fungi 

Soil fungi were isolated by a dilution–plating method (Chesters and Thornton 1956). 

Samples of soil suspension were placed on Petri dishes containing soil extract agar with rose 

Bengal, and the cultures were kept at 25 °C. Fungi were identified based on micro- and 

macro-morphological, physiological, and biochemical features (Frankland et al. 1990).  

 

Extraction and determination of soil meso- and macrofauna 

Soil samples (200 g) were placed on a Tullgren extractor for 5 days (Lavelle 2000). 

Extracted soil invertebrates were fixed in a 0.2% formaldehyde solution and identified to 

order and family based on their morphological characters.  

 

 Statistical analyses 

Because the soils and climatic conditions were similar for the fields, we assumed that 

differences the soil biota resulted from differences in the cropping of hybrid sorrel, oilseed 

rape, and cultural meadow. Programme R (Simecek and Simeckova 2013) was used for 

multiple comparisons, and Canoco (Leps and Hadincova 1992) was used for multivariate 

analysis (CCA, PCA). For comparison of microbial activity among the fields, an ANOVA and 

the Tukey HSD post hoc test were used. CCA analyses were used to evaluate the multivariate 

data concerning soil meso- and macrofauna and the data concerning cultivable fungi. 

Significance was determined at p < 0.05. 
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Results  

 

Microbial activity of soil 

Basal soil respiration did not significantly differ between the 10-year-old and 2-year-

old hybrid sorrel fields but was significantly higher in oilseed rape fields than in hybrid sorrel 

fields or in cultural meadows (Fig. 1). Microbial biomass was greater in the cultural meadows 

than in the hybrid sorrel and oilseed rape fields (Fig. 2). Like basal soil respiration, specific 

microbial respiration (qCO2) was higher in the oilseed rape fields than in the hybrid sorrel 

fields or in the cultural meadows (Fig. 3).  

Density and diversity of soil meso- and macrofauna 

The total number of soil meso- and macrofauna individuals extracted was highest in 

the cultural meadows, lowest in the oilseed rape fields, and intermediate in the hybrid sorrel 

fields (Fig. 4). The composition and abundance of soil meso- and macrofauna differed 

between the 10- and 2-year-old hybrid sorrel fields. Oilseed rape showed declining abundance 

of soil meso-and macro-fauna and showed different composition of soil community (Table 1). 

CCA of the soil meso- and macrofauna community composition divided the data into two 

groups: one group contained data for the 10-year-old hybrid sorrel fields and cultural 

meadows and the other group contained data for the 2-year-old hybrid sorrel fields and the 

oilseed rape fields (Fig. 4). When the identity of the treatments was used as the only 

environmental variables in CCA model (Monte Carlo permutation test: F-ratio=4.901, p = 

0.002) explained significantly 67.4% of data variability, in fauna community composition and 

all the treatments significantly (p<0.05) contribute to this pattern. 

 

Soil fungi 

A total of 36 fungal species were detected on the soil extract agar plates (Table 2). 

PCA indicated that 10-year-old hybrid sorrel fields tended to be dominated by plant-

pathogenic species of Fusarium and Trichoderma while meadows tended to be dominated by 

saprophytic species of Penicillium and Clonostachys but these trends were not statistically 

significant (Fig. 5). These results indicated that the cultivable part of the soil fungal 

community was not greatly influenced by crop species and agriculture practices. 
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Environmental variables used as treatments identity in CCA model (Monte Carlo permutation 

test: F-ratio=3.305, p = 0.074) explained 21.6% of data variability, in cultivable fraction of 

soil fungal community. 

 

Discussion 

 Long-term production of hybrid sorrel affected several soil properties. For 

example, the soils with 10-year-old hybrid sorrel tended to contain more plant-pathogenic 

fungi than soils with oilseed rape or cultural meadows. That result is consistent with the 

finding that invasive plants tend to enhance soil pathogens (Mangla et al. 2008; Mitchell et al. 

2010). Some introduced plants, however, produce allelopathic compounds that suppress soil-

borne plant-pathogenic fungi (Zhang et al. 2011; Zhang et al. 2009b). Although plant-

pathogenic fungi tended to be abundant in the 10-year-old hybrid sorrel fields, the differences 

in cultivable fungi the hybrid sorrel fields, the oilseed rape fields, and the cultural meadows 

were not statistically significant. 

Soil meso- and macrofauna were most abundant in the cultural meadows and 10-

years-old hybrid sorrel fields and were least abundant in the oilseed rape fields. This 

difference can be explained in part by differences in tillage. Hybrid sorrel is not tilled because 

it is a perennial crop while oilseed rape is an annual crop that is tilled; cultural meadows are 

similar to hybrid sorrel fields in that they are not tilled. Tillage typically reduces the 

abundance and diversity of soil fauna (Bedano et al. 2006; Domínguez et al. 2010; Errouissi 

et al. 2011; Hulsmann and Wolters 1998).   

Tillage, however, cannot explain all the differences because soil fauna were more 

abundant in the cultural meadows than in the 10-year-old hybrid sorrel fields. Plant species  

can affect the soil biota by influencing the quantity and quality of food resources that reach 

the soil (Viketoft et al. 2005; Wardle et al. 1999b). Some introduced plants produce chemicals 

that are associated with reduced numbers of some groups of soil meso- and macrofauna 

(Bardgett and Walker 2004; Barrios 2007; Blanco-Canqui 2010; Kappes et al. 2007).  

Basal soil respiration and specific microbial respiration were similar among 10-year-

old hybrid sorrel fields, 2-year-old hybrid sorrel fields, and cultural meadows. Basal soil 

respiration and specific microbial respiration was highest in oilseed rape. This can be 

explained by the tillage of oilseed rape fields, which by disturbing soil aggregates and 
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increasing soil aeration increases the mineralization of soil organic matter (Kladivko 2001). In 

contrast, Haney et al. (2010) reported that C mineralization was greater with perennial crops 

than with annual crops. These contradictory finding might be explained by differences in litter 

quality and quantity, which greatly affect the rate at which soil organic matter is mineralized 

(Barrios, 2007; Fioretto et al., 2000; Wedin and Tilman, 1990;Yan et al., 2003).  

Perennial biofuel crops tend to generate large quantities of litter that increase 

microbial biomass C and N (Haney et al. 2010). Cao et al. (2010) reported that microbial 

biomass and soil organic carbon were greater in older than in younger Eucalyptus plantings.  

Ma et al. (2000) reported that microbial biomass was greater in soil cultivated with switch 

grass for 10 years than for 2–3 years. In our study, however, microbial respiration was lower 

for soil planted with the perennial hybrid sorrel than for soil planted with the annual oilseed 

rape.  

Important role in soil microbial activity could play the production of chemical 

compounds (Blum et al. 2000; Weidenhamer et al. 1989; Zhang et al. 2009a; Zhang et al. 

2011; Zhang et al. 2009b) but in this case we did not focused on allelopathic effect and 

producing of secondary metabolites. Other important factor which can affect microbial 

community are agriculture practices and soil quality (Donnison et al. 2000; Frey et al. 1999; 

Hagn et al. 2003; Kladivko 2001). Fungal community compositions in hay meadows seem to 

differ from those of arable soils (Donnison et al. 2000). In contrary our results showed fairly 

stable composition of cultivable fraction of fungal community in soils planted by different 

energy crops. 

 

Conclusions 

Large-scale production of hybrid sorrel may affect the species composition and 

abundance of soil meso- and macrofauna, i.e., the diversity and abundance of soil fauna in 

hybrid sorrel fields were less than in cultural meadows but greater than in oilseed rape fields. 

Although the effect was not statistically significant, the hybrid sorrel soils tended to contain 

more plant-pathogenic fungi than the cultural meadow or oilseed rape soils. Microbial activity 

did not significantly differ between young and old hybrid sorrel plantings. That microbial 

respiration was higher in oilseed rape fields than in hybrid sorrel fields can probably be 
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explained by the fact that, unlike hybrid sorrel fields and cultural meadows, oilseed rape fields 

are tilled.   
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Appendices 

 

Table 1 Abundance of soil meso- and macrofauna (by taxonomic group) in fields with hybrid sorrel (10 or 2 

years old, indicated by Sorrel 10 and Sorrel 2 respectively), oilseed rape, or cultural meadow (indicated by 

Oilseed and Meadow, respectively). Values are mean numbers of individuals + SD per m2. 

 Taxon Sorrel 10  ± SD Sorrel 2 ± SD Oilseed ± SD    Meadow ± SD 

Collembola 1900 ±930 1367 ±518 1633 ±769 933 ±579 
Acari 100 ±188 200 ±141 433 ±480 467 ±141 
Diplura 0 ±0 0 ±0 33 ±11 33 ±47 
Enchytreidae 67 ±47 167 ±170 0 ±0 0 ±0 
Lumbricidae 133 ±47 67 ±94 33 ±13 333 ±235 
Aranea 0 ±0 33 ±14 33 ±13 133 ±47 
Diplopoda 0 ±0 0 ±0 67 ±94 333 ±188 
Chilopoda 67 ±90 0 ±0 33 ±13 733 ±546 
Isopoda 0 ±0 0 ±0 0 ±0 133 ±249 
Diptera 1967 ±1602 1667 ±1744 233 ±170 467 ±171 
Coleoptera 0 ±0 267 ±141 133 ±124 233 ±188 
Hymenoptera 0 ±0 233 ±330 100 ±141 4300 ±4859 
Sternoryncha 0 ±0 0 ±0 0 ±0 367 ±286 
Lepidoptera 100 ±47 0 ±0 67 ±47 0 ±0 
Total fauna 4333 ±2953 4000 ±3153 2800 ±1877 8466 ±7541 
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Table 2 List of soil fungi isolated in fields with hybrid sorrel (10 or 2 years old, indicated by Sorrel 10 and Sorrel 

2, respectively), oilseed rape, or cultural meadow (indicated by Oilseed and Meadow, respectively). 

Sorrel 10 Sorrel 2 Oilseed Meadow 
Cladosporium 
cladosporoides 

Cladosporium 
cladosporoides Cladosporium herbarum Cladosporium herbarum 

Cladosporium herbarum Cladosporium herbarum 
Clonostachys rosea f. 
catenulata 

Clonostachys rosea f. 
catenulata 

Clonostachys rosea Clonostachys rosea Humicola grisea 
Clonostachys rosea f. 
catenulata 

Clonostachys rosea f. 
catenulata 

Clonostachys rosea f. 
catenulata mycelium sterilium Fusarium dimerum 

Fusarium dimerum Fusarium culmarium Paecylomyces sp. Humicola grisea 

Fusarium equiseti Fusarium ventricosum Penicillium daleae mycelium sterilium 

Fusarium graminareum Mucor cincinelloides Penicillium glabrum Paecylomyces sp. 

Fusarium sambucinum 
Mucor circinelloides f. 
circinelloides Penicillium vulpium Penicillium daleae 

Glyocladium viridae 
Mucor circinelloides f. 
griseogamum Rhizomucor sp. Penicillium glabrum 

Mucor hiemalis f. corticola Mucor hiemalis f. hiemalis Rhizopus pusillus Penicillium vulpium 

Mucor hiemalis f. hiemalis mycelium sterilium Rhizopus stolonifer Rhizomucor sp. 

mycelium sterilium Paecylomyces variety Trichoderma sp. Rhizopus pusillus 

Paecylomyces crustacea Penicillium spinulosum Rhizopus stolonifer 

Phoma sp. Phoma sp. Trichoderma sp. 

Tricoderma koningii Trichoderma viridae 

Trichoderma aureoviridae 

Trichoderma harzianum 
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Fig. 1 Basal soil respiration in fields planted with energy crops and in cultural meadows. Sorrel fields were 10 or 

2 years old (indicated by Sorrel 10 and Sorrel 2, respectively), and the oilseed rape fields and cultural meadows 

were > 10 years old (indicated by Oilseed and Meadow, respectively). Values are means + SD. Means with 

different letters are significantly different (ANOVA HSD post hoc test, F=34.19, p <0.001). Same letters 

indicates statistical homogenous groups (p <0.05). 
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Fig. 2 Microbial biomass carbon in fields planted with energy crops and in cultural meadows. Sorrel fields were 

10 or 2 years old (indicated by Sorrel 10 and Sorrel 2, respectively), and the oilseed rape fields and cultural 

meadows were > 10 years old (indicated by Oilseed and Meadow, respectively). Values are means + SD. Means 

with different letters are significantly different (ANOVA HSD post hoc test, F=5.404, p =0.003). Same letters 

indicates statistical homogenous groups (p <0.05). 
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Fig. 3 Specific microbial respiration (qCO2) in fields planted with energy crops and in cultural meadows. Sorrel 

fields were 10 or 2 years old (indicated by Sorrel 10 and Sorrel 2, respectively), and the oilseed rape fields and 

cultural meadows were > 10 years old (indicated by Oilseed and Meadow, respectively). Values are means + SD. 

Means with different letters are significantly different (ANOVA HSD post hoc test, F=6.868, p <0.001). Same 

letters indicates statistical homogenous groups (p <0.05).  
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Fig. 4 CCA of data for soil meso- and macrofauna abundance (by taxonomic group) in fields with 10-year-old 

hybrid sorrel (Sorrel 10, 2-year-old hybrid sorrel (Sorrel 2), oilseed rape (Oilseed), and cultural meadow 

(Meadow).  Monte Carlo permutation test: F ratio=4.901, p = 0.002, explain 67.4% of data variability.  
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Fig. 5 PCA of data for cultivable fungus abundance (by taxonomic group) in fields with 10-year-old hybrid 

sorrel (Sorrel 10), 2-year-old hybrid sorrel (Sorrel 2), oilseed rape (Oilseed), and cultural meadow (Meadow). 

The first and second PCA axis explained 16.7% and 31.1%, respectively, of data variability.  
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ABSTRACT 

Energy crops are an accepted alternative to fossil fuels, but little is known about the 

ecological impact of their production. The aim of this contribution is to study the effect of 

native (Salix viminialis and Phalaris arudinacea) and introduced (Helianthus tuberosus, 

Reynoutria sachalinensis and Silphium perfoliatum) energy crop plantations on the soil biota 

in comparison with cultural meadow vegetation. The study was performed as part of a split 

plot field experiment of the Crop Research Institute in the town of Chomutov (Czech 

Republic). The composition of the soil meso- and macrofauna community, composition of the 

cultivable fraction of the soil fungal community, cellulose decomposition (using litter bags), 

microbial biomass, basal soil respiration and PLFA composition (incl. F/B ratio) were studied 

in each site. Some of the introduced energy crops tended to have a high phenol content and 

high C:N ratio, but are no clear distinctions between native and introduced energy crops. The 

C:N ratio and content of allelopathic compounds differed among plant species, but these 

results could not be considered significant between introduced and native plant species. 

Abundance of the soil meso- and macrofauna was higher in field sites planted with native 

energy crops than those planted with introduced energy crops. RDA and Monte Carlo 

Permutation Test showed that the composition of the faunal community differed significantly 

between native and introduced plants. Significantly different basal soil respiration was found 

in sites planted with various energy crops; however, this difference was not significant 

between native and introduced species. Microbial biomass carbon and cellulose 

decomposition did not exhibit any statistical differences among the energy crops. The largest 

statistically significant difference we found was in the content of actinobacterial and bacterial 

(bacteria, G+ bacteria and G- bacteria) PLFA in sites overgrown by native energy crops 

compared to introduced energy crops. In conclusion, certain parameters significantly differ 

between native and introduced species of energy crops; however, the functional importance of 

these differences requires further research. 

 

Keywords: Soil fauna, Energy crops, Composition of soil fungi, Microbial biomass, Basal soil 

respiration. 
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Introduction 

Energy crops are plants grown for heating or production of biofuels. Their ecological 

benefits include reduced emissions of greenhouse gasses, carbon sequestration and 

phytoremediation (Anderson-Teixeira et al. 2013; Buckeridge et al. 2012; Smith et al. 2013a), 

but their impact on complex soil ecosystems still requires extensive research. The main 

disadvantage of energy crops is their low economic competitiveness against fossil fuels (Brant 

et al. 2011; Hellebrand et al. 2008). Growing of energy crops can also cause competition over 

land with the need to grow food and forage, which may, consequently, compromise 

ecosystem services which soil provides (Costanza et al. 1997; Lavelle et al. 1997). The 

supposed economic benefit of these ecosystem services, including ecosystem services 

provided by soil organisms, for the human society is 33x1012 USD per year although this is 

generally not appreciated (Costanza et al. 1997; Lavelle et al. 1997). 

Growing of energy crops may also affect the soil biota (Blanco-Canqui 2010). Soil 

organisms play an important role in soil ecosystems (Barrios 2007; Lavelle 2000; Lavelle et 

al. 1997). Soil organisms are very important for decomposition of soil organic matter, humus 

formation and formation of soil microaggregates (Lavelle 2000; Lavelle et al. 1997; Wolters 

2000). Increased production of energy crops causes loss of areas available for agricultural 

crops. Energy crops are often introduced into new environments, which may potentially lead 

to changes to soil properties in these environments (Buddenhagen et al. 2009; Zavaleta 2000). 

Gifford et al., (Gifford et al. 2002) and Raghu et al., (Raghu et al. 2006), for example, showed 

that certain biofuel crops such as Arundo donax and Phalaris arundinacea imported from 

temperate Europe and Asia to the USA are typical short-rotation grasses that become invasive 

in some US states. 

Soil biota communities on arable land become depleted and host fewer species and 

functional groups of the soil biota (Bardgett and Cook 1998; López-Fando and Bello 1995; 

Wardle et al. 1999b). Compared to the effect of cultural crops, which has been studied 

intensively (Blanco-Canqui 2010; Searchinger et al. 2008), scant data are available on the 

impacts of energetic plants. Many energetic plants are perennials, which may be an advantage 

because, as already mentioned, tillage is the most important disturbance factor in agricultural 

soils (Errouissi et al. 2011; Kladivko 2001). On the other hand, many energetic plant species 

are aliens, and some of them have been found to be invasive (Buddenhagen et al. 2009; Pysek 

et al. 2012a; Raghu et al. 2006). Many invasive plant species may negatively affect entire 
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ecosystems (Ehrenfeld 2001; Pritekel et al. 2006; Pysek et al. 2012b; Zavaleta 2000). Long-

term monocropping cultivation of introduced crops may enhance this effect (Buddenhagen et 

al. 2009). In this study, we explore the effects of growing various energy crops on the activity 

and composition of the soil biota. We in particular focus on the question whether there are 

any differences among native and introduced plant species. 

The aim of this study was to test for differences in soil biological characteristics 

among introduced (Helianthus tuberosus, Silphium perfoliatum and Reynoutria sachalinensis) 

and native (Salix viminialis and Phalaris arudinacea) energy crops in comparison with 

cultural meadow species. We used the following characteristics: production of phenolic 

compounds, C:N ratio of plant litter, composition and abundance of various groups of soil 

fauna, composition and microbial biomass of soil microorganisms, biological activity of soil 

microbial biomass, basal soil respiration, and microbial biomass of carbon. 

 

Material and methods 

Sampling was performed in October 2009 in a split plot field experiment of the Crop 

Research Institute in the town Chomutov in the Czech Republic (50° 27′ 46'' N, 13° 24′ 40'' E, 

7.86°C mean annual temperature and 550 mm of annual rainfall). Soil samples were collected 

from field sites planted with five energy crops (Salix viminialis, Phalaris arudinaceae, 

Helianthus tuberosus, Reynoutria sachalinensis and w) and a cultural meadow (dominated by 

Poa annua, Poa pratensis, Trifolium repens and Plantago major). Field sites planted with S. 

viminialis, P. arudinaceae and the cultural meadow represented native plant species. Other 

field sites were overgrown by introduced species (H. tuberosus R. sachalinensis and S. 

perfoliatum). For each species, three patches were chosen, and in each one a composite 

sample was taken consisting of three particular samples. A soil corer 12 cm in diameter was 

used to sample the soil fauna and 3 cm in diameter to sample the soil microflora, both down 

to the depth of 5 cm. 
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Chemical analyses of plant litter 

Plant material was dried and then homogenized into small particles smaller than 2 mm. 

Samples were packed in pewter capsules and then weighed on microscales (Mettler Toledo). 

The content of carbon and nitrogen was determined in samples of dry crushed soil and leaves 

using an EA 1108 elemental analyser (Carlo Erba Instruments). Total soluble phenols were 

extracted by methanol and determined spectrophotometrically using the Folin-Ciocalteu 

reagent (Singleton et al. 1999). 

 

Analysis of soil meso- and macrofauna 

Soil samples were extracted in a Tullgren funnel for 5 days (Lavelle 2000). Extracted 

soil invertebrates were fixed with a 0.2% formaldehyde solution and determined using 

morphological characters. Soil invertebrates were classified into orders and families. 

 

Analysis of soil microbial activity 

Basal soil respiration of the soil was estimated by the incubation method. Soil (10 g) 

was enclosed in airtight bottles each equipped with a small container with NaOH and 

cultivated at 20oC for one week. Carbon dioxide released from the soil was trapped in 3mL of 

0.5M NaOH and then quantified by titration with 0.05M HCl after addition of BaCl2 

(Jenkinson and Powlson 1976). Its amount was expressed as C-CO2 m−2 x h−1. The same 

bottles without soil were used to assess CO2 trapping during incubation (from air closed in 

vials) and during handling. Microbial biomass (Cmic) was determined by the chloroform 

fumigation–extraction method (Jenkinson and Powlson 1976; Vance et al. 1987) and 

expressed as mg C g−1. Cellulose decomposition was measured with litterbags (three litterbags 

per field), which were buried 3 cm under the surface of the soil (October 2009-April 2010). 

The litter in each litterbag was represented by two sheets of filter paper (2g). The filter paper 

sheets were weighed and burned at 550 °C for 5 hours. Mass loss of filter paper after burning 

was used and cellulose weight after decomposition. 
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Analysis of PLFA 

Samples for phospholipid fatty acid (PLFA) analysis were extracted by a chloroform–

methanol–phosphate buffer (1:2:0.8; v/v/v). LiChrolut Si-60 solid-phase extraction cartridges 

(Merck, Whitehouse Station, NJ) were used to separate the extracts, and phospholipid 

fractions were subjected to mild alkaline methanolysis (Šnajdr et al. 2008). Gas 

chromatography–mass spectrometry (GC-MS) was used for the analysis of free methyl esters 

of phospholipid fatty acids (450-GC, 240-MS ion trap detector, Varian, Walnut Creek, CA, 

USA). The GC instrument was equipped with a split/splitless injector and a DB-5MS column 

(J&W Scientific, Folstom, CA, 60 m, 0.25 mm i.d., 0.25 μm film thickness) was used for 

separation. 

The temperature programme started at 60 °C and was held for 1 min in splitless mode. 

Then the splitter was opened and the oven heated to 160 °C at a rate of 25 °C min-1. The 

second temperature ramp was up to 280 °C at a rate of 2.5 °C min-1, this temperature being 

maintained for 10 min. The solvent delay time was set to 8 min. The transfer line temperature 

was set to 280 °C. Mass spectra were recorded under electron impact at 70 eV, mass range 

50–350 amu. Methylated fatty acids were identified according to their mass spectra and 

quantified using their individual chemical standards obtained from Sigma–Aldrich, Prague, 

Czech Republic and Matreya LLC, Pleasant Gap, PA, USA. 

Fungal (eukaryotic) biomass was quantified based on 18:2ω6,9 content; bacterial 

biomass was quantified as the sum of i14:0, i15:0, a15:0, 15:0, i16:0, 16:1ω7, 16:1ω9, 16:1 

ω5, 10Me-16:0, i17:0, a17:0, cy17:0, 17:0, 10Me-17:0, 18:1ω7, 18:1ω9, 10Me-18:0 and 

cy19:0. Biomass of Gram+ and Gram – bacteria was estimated using concentrations of i14:0, 

i15:0, a15:0, 15:0, i16:0 and 16:1ω7, 18:1ω7, 16:1 ω5, cy19:0 cy17:0, respectively (Oravecz 

et al. 2004; Šnajdr et al. 2008). The fungal-bacterial ratio was estimated as the sum of fungal 

PLFA divided by the sum of bacterial PLFA (Šnajdr et al. 2008). 

 

 

 

 



59 
 
 

 

Isolation of cultivable soil fungi  

From each soil sample, one gram of soil was added to a plastic tube with 10 ml of 

sterile distilled water. The plastic tubes, each inoculated with a soil solution of each soil 

sample planted with a different energy crop, were diluted to 1-4ml-1. Isolations of fungi were 

performed following the suspension-plating method (Chesters and Thornton 1956). Samples 

of the soil suspension were plated onto Petri dishes with soil extract agar and incubated at a 

constant temperature of 25 °C. Fungi were determined on the basis of micro- and 

macromorphological, physiological and biochemical features (Frankland et al. 1990). 

 

Statistical analysis 

Soil respiration, soil microbial biomass and cellulose decomposition, and results of 

PLFAs among different groups of soil microbes were compared by a one-way ANOVA 

followed by a Tukey-Kramer Multiple Comparison Test (ANOVA HSD post hoc test) in R (R 

2005; Simecek and Simeckova 2013). The effects of energy crops on the composition of the 

soil fauna, PLFA assay and composition of the cultivable fungal community were visualized 

by a PCA analysis. The significance of the effect of native and introduced plants on the fauna, 

and microbial (PLFA) and microfungal community structure was tested by a redundancy 

analysis (RDA) and a Monte Carlo Permutation Test (with 499 permutation) where “native” 

or “introduced” was used as the sole explanatory variable in Canoco application (Leps and 

Hadincova 1992). 

 

 

 

 

 

 

 



60 
 
 

 

Results 

Chemical composition of litter 

The C:N ratio was differed significantly among litter collected from individual crops 

(ANOVA HSD post hoc test, F5,15=33.388, p<0.0001) (Table 1). The highest C:N ratio was 

recorded in litter from S. perfoliatum and P. arudinacea. Helianthus tuberosus, R. 

sachalinensis and the cultural meadow exhibited an intermediate C:N ratio, and S. viminialis 

had the lowest C:N ratio. The content of phenols isolated from litter collected from individual 

plants significantly differed as well (ANOVA HSD post hoc test, F5,15=47.873, p<0.0001) 

(Table 1). The highest content of phenols was found in litter collected from R. sachalinensis, 

while the other litter types showed a significantly lower content of phenols. Neither the C:N 

ratio nor the content of phenols revealed  any clear distinction between native and introduced 

energy crops although some of the introduced crops contained more phenols and showed a 

higher C:N ratio. 

 

Soil meso- and macrofauna 

The soil fauna in all sites was dominated by collembolan species (Table 2). The 

density of all fauna groups combined was higher in sites planted with native energetic crops 

than those planted with introduced energetic crops. The highest number of soil animals  was 

recorded in field sites planted with S. viminialis and P. arudinaceae, and in the cultural 

meadow. The least individuals of soil fauna was observed in field sites planted by R. 

sachalinensis, S. perfoliatum and H. tuberosus (Tab. 2). 

The PCA ordination diagram (Fig. 1) shows that the field sites with native energy 

crops hosted a higher abundance and taxonomic diversity of soil organisms than field sites 

planted with introduced energy crops. Native crops were also more similar to the meadow 

than introduced crops. According to the RDA and Monte Carlo Permutation Test, this 

difference between native and introduced plants appears to be highly significant (p=0.002) 

and explains 28.6% of data variability. 
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 Soil microbial activity 

Significantly different basal soil respiration (HSD ANOVA post hoc test, F5,15=8.701, 

p =0.001) was found in sites planted by various energy crops; however, there was no clear 

difference between native and introduced plants. The highest rate of microbial respiration was 

recorded in sites planted with S. viminialis, S. perfoliatum and R. sachalinensis (Fig. 2), while 

the lowest soil respiration was measured in sites planted with H. tuberosus and the cultural 

meadow. The highest microbial biomass was measured in the meadow. The lowest microbial 

biomass was recorded in sites planted with H. tuberosum, but the difference was not 

statistically significant (HSD ANOVA post hoc test, F5,15=0.714, p =0.624) (Fig. 3). The 

highest rate of cellulose decomposition was recorded in the field site planted with S. 

perfoliatum and the meadow (Fig. 4), but differences among the sites were not significant 

(HSD ANOVA post hoc test, F5,15=0.743, p =0.667) among the crops. 

 

Composition of soil microbial community recorded by PLFA 

 The concentration of whole PLFA in soil samples did not show a clear pattern between 

native and introduced plants and not even among all plant species (Fig. 5). The highest 

concentration of PLFA was recorded in field sites planted with P. arudinaceae, but 

differences between sites were not statistically significant (HSD ANOVA post hoc test, 

F5,15=0.719, p =0.621) (Table 3). PCA ordination (Fig. 6) based on the concentration of PLFA 

of specific taxonomical groups of microorganisms showed significant effects of native and 

introduced crops (RDA, Monte-Carlo Permutation Test, p=0.002 explaining 58.6% data 

variability). 

Concentrations of fungal PLFA (Table 3) were not significantly different among 

treatments (HSD ANOVA post hoc test, F5,15=0.719, p=0.621). Concentrations of bacterial 

PLFA (Tab. 2) were statistically significantly affected by different crops (HSD ANOVA post 

hoc test, F5,15=4.28, p=0.01). The highest concentration of bacterial PLFA was measured for 

the site planted with P. arudinaceae. Sites planted with R. sachalinensis, S. perfoliatum, 

meadow species, H. tuberosum and S. viminialis showed significantly lower of bacterial 

PLFA. 

The concentration of actinobacterial PLFA (Table 3) reached the significantly highest 

level in sites planted with P. arudinaceae. The other field sites showed lower actinobacterial 
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PLFA concentrations. Concentrations of G+bacterial PLFA (Table 3) were statistically 

significantly affected by different crops (HSD ANOVA post hoc test, F5,15= 6.606, p = 0.004). 

Concentration of bacterial PLFA was highest on sites planted with P. arudinaceae. 

Other sites (R. sachalinensis, S. perfoliatum, meadow species, H. tuberosum and S. 

viminialis) showed a statistically significantly lower concentration of G+bacterial PLFA. The 

highest G-bacterial biomass PLFAs were recorded in sites planted with P. arudinaceae 

whereas R. sachalinensis, S. perfoliatum, meadow species, H. tuberosum and S. viminialis 

showed a lower concentration of G-bacterial PLFA. The concentration of total microbial 

biomass PLFA as well as the F/B ratio did not differ significantly among the various energy 

crops (Table 3). 

 

Cultivable soil microscopic fungi in soil planted with introduced energy crops 

A total of 22 species of soil microscopic fungi were found at the sites investigated 

(Table 4). PCA based on the presence of fungal species (Fig. 7) indicated that different energy 

crops affected the presence of different species of soil fungi, but this difference was only 

marginally significant (RDA, Monte Carlo Permutation Test, p=0.07 explain 11.3% of data 

variability). Native energy crops showed a higher number of fungal strains than introduced 

energy crops. All sites were dominated by the genera Cladosporium and Penicillium. 
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Discussion 

The results of our study revealed significant differences between native and introduced 

energy crops in the community structure of the soil fauna, the microbial community recorded 

by PLFA and marginally also in the cultivable fraction of the community of soil microscopic 

fungi. Introduced energy crops more reduced the abundance and number of groups of soil 

animals. The reduction in the density and diversity of the soil fauna observed in our study was 

similar to the influence of extensive crop production (Crossley Jr. et al. 1992; Edwards 1989; 

Chan 2001; Wardle et al. 1999b) or consequences of tillage when comparing tillage and non-

tillage management (Reynolds et al. 2007), which has received a lot of attention in the 

literature (Blanchart et al. 2006; House and Parmelee 1985; Kladivko 2001; Marasas et al. 

2001; Stinner et al. 1988). Similar differences between native and introduced crops have also 

been reported in the literature (Raghu et al. 2006; Yeates and Williams 2001). Gremmen et al. 

(1998) showed a statistically significant impact of the introduced grass Agrostis stolonifera on 

vegetation and soil fauna communities at Marion Island (sub-Antarctic) but a negative impact 

of A. stolonifera on the density of the soil fauna. Pritekel et al. (2006) recorded higher 

numbers of soil microarthropods in soil from non-invasive sites compared to soil from the 

invasive range in the Rocky Mountain National Park, USA. 

The changes in the soil biota community observed in our study may have several 

reasons. The lower number of microarthropods in invasive plots could have resulted from the 

increase in bare ground between plants and lower plant cover found in plots withinvasive 

plants, causinga decrease in food availability (Eisenhauer and Reich 2012) In our study, 

plants reached a high cover in all treatments, but there was a substantial difference between 

native and introduced species, as introduced species did not produce much litter, so there was 

mostly bare soil between plants. Under native plants, by contrast, the soil was covered with 

litter. Bare soil in non-native energy crops in our case was likely caused by the fact that our 

species are tall herbs with limited litter fall between harvests, which may not apply to all 

introduced plant. 

Impact of allelopathic compounds of invasive and introduced plants in the host 

environment has been discussed in the literature (Jefferson and Pennacchio 2003; Novoa et al. 

2012; Sera 2012; Vrchotova and Sera 2008). Although allelopathy was not considered in this 

study, it could have contributed to the reduction of soil fauna as well. Some of the introduced 

energy crops showed a higher content of phenols, but there was no clear trend that would 
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differentiate between native and introduced energy crops. Plant polyphenols may contribute to 

plant defense against herbivores and pathogens (Tang et al. 1995; Zhang et al. 2009b) and, in 

some cases, may partly enhance differences caused by the structure of the litter layer 

(Bardgett et al. 1998; Wardle et al. 2006) described above and thus contribute to differences 

observed in this study. 

Although the mechanisms of how introduced energetic plant influence the soil biota 

will probably become subject of future research, we expect that this effect is at least partly 

caused by a combination of litter chemistry (Bardgett et al. 1998) and the way that litter 

reaches  the soil (Bardgett et al. 1999). Litter not only represents a food source but also a 

habitat for soil organisms (Kaneda et al. 2012; Kaneko and Salamanca 1999). It therefore 

strongly affect the formation of the soil biota community (Tian et al. 1992). If the litter input 

regime continues over longer periods, which is the case in perennial plants, litter substantially 

affects the conditions in the soil surface horizon (so-called humus forms), which affects the 

soil biota community and its functioning even further (Ponge 2013). 

Our results show that microbial biomass based on PLFA differed significantly 

between native and introduced crops in some groups of the microbial community such as 

bacteria, G+ bacteria, G- bacteria and actinobacteria although there were no differences for 

total PLFA. Litter quality may be an important factor here, as mentioned earlier. Short 

rotation plants which produce easily decomposable litter promote bacterial-dominated food 

webs associated with fast cycling of nutrients, whereas slow-growing plants promote a 

fungal-dominated food web and slow cycling of nutrients (Coleman et al. 1983; Moore and 

Hunt 1988). Evolution change in genotype composition towards high C:N ratio genotypes 

may explain the invasive success of some introduced plant species in their invaded range 

(Eppinga et al. 2011). Eppinga et al. (2011) showed increased an C:N ratio in Phalaris 

arudinace in newly invaded habitats compared to its native range. This hypothesis is partly 

consistent with our results because we recorded the highest C:N ratio in plant biomass from S. 

perfoliatum, which is an introduced energy crop in the Czech Republic (Pysek et al. 2012b). 

Higher fungal biomass based on PLFA was recorded in plants with higher C:N ratios (S. 

perfoliatium and P. arurinacea), but our results were only marginally significant. This is in 

agreement with literature data, which associated higher fungal biomass with higher C:N ratios 

(Bardgett et al. 1998; Meier and Bowman 2008; Wardle et al. 2004; Yang and Chen 2009). 

We also found distinct differences in the composition of the cultivable fraction of the fungal 
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community between native and introduced energy crops, but our results were, again, only 

marginally significant. Similar changes have already been described in the literature, however 

(Culman et al. 2010; Liang et al. 2012; Wang et al. 2010). Changes in litter quality may 

combine with the amount of litter on the soil surface, as the litter layer also affects the habitat 

for the soil microflora. Moreover, in natural systems, litter with a high C:N ratio usually 

decomposes on soil surface (Ponge 2013). 

Microbial respiration differed among crops, but no consistent difference was found 

between native and introduced crops. This fact may be explained by a complex combination 

of biotic and abiotic factors such as temperature and soil water content, chemical composition 

of litter and nutrition conditions in the soil, and production of root exudates (Bardgett 2005; 

Bardgett et al. 1998; Wardle et al. 2006). We did not record any statistically significant 

difference in cellulose decomposition in field sites planted with native and introduced energy 

crops. This may be caused by the fact that cellulose decomposition is a very complex factor. 

Decomposition is realized by a wide spectrum of microorganisms and affected by many 

environmental factors (Valaskova et al. 2007). 

 

Conclusion 

 We found significant differences among individual plant species in several 

parameters. A significant difference between native species and exotic energetic crops 

indicates that introduced crops support a less diverse soil biota community than native ones. 

Our results, however, do not show any clear pattern in some of the parameters such as 

microbial respiration, microbial biomass and cellulose decomposition, which is possibly 

attributable to the high degree of redundancy in these parameters. More research is needed to 

explore the question whether changes in the soil community may contribute to the 

competitive advantage of exotic plants in local floras. Various exotic plants apparently take 

different strategies. 
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Appendices 

Table 1 Chemical analyses of litter collected from native and introduced energy crops. Cultural meadow was 

used as a control. The C:N ratio and content of phenols are expressed as means ± SD of three replicates (mg/g). 

Same letters indicate statistically homogenous groups (p<0.05). 

  C:N ratio ±SD Phenols ±SD 

HEL 37.423 ±1.527a 2.526 ±0.281a  

SIL 57.375 ±5.964b 2.220 ±1.397a 

RE 35.633 ±1.875a 29.223 ±5.163b 

PHA 41.474 ±5.650a 11.230 ±1.605c 

SAV 21.256 ±0.890c 5.052 ±3.321ac 

MEA 30.204 ±2.159a 9.251 ±1.329c 
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Fig. 1 Effect of energy crops on the composition of the soil fauna (PCA) based on abundance of different groups 

of soil animals. PHA-Phalaris arudinaceae, RE-Reynoutria sachalinensis, SIL-Silphium perfoliatum, MEA-

Meadow, HEL-Helianthus tuberosum, SAV-Salix viminialis. The first and second PCA axes explain 22.2% and 

38.4% of data variability, respectively.  
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Fig. 2 Effect of energy crops on basal soil respiration. Error bars represent SD. Different letters indicate 

statistically homogenous groups (p<0.05). Tukey-Kramer Multiple Comparison Test (ANOVA HSD post hoc 

test, F5,15=8,701, p =0.001). 

 

 

Fig. 3 Effect of energy crops on microbial biomass. Error bars represent SD. Tukey-Kramer Multiple 

Comparison Test (ANOVA HSD post hoc test, F5,15=0.714, p =0.624). 
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Fig. 4 Effect of energy crops on decomposition of cellulose. Error bars represent SD. Tukey-Kramer Multiple 

Comparison Test (ANOVA HSD post hoc test, F5,15=0.743, p=0.667). 
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Fig. 5 PCA of PLFA assay based on FAME concentrations (ng/g) of soil samples. PHA-Phalaris arudinaceae, 

RE-Reynoutria sachalinensis, SIL-Silphium perfoliatum, MEA-Meadow, HEL-Helianthus tuberosum, SAV-

Salix viminialis. The first and second PCA axes explain 14.7% and 37.4% of the variability in the data, 

respectively. 
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Fig. 6 PCA of PLFA assay based on PLFA concentrations of taxonomical groups of the soil microbial 

community (ng/g) of soil samples. PHA-Phalaris arudinaceae, RE-Reynoutria sachalinensis, SIL-Silphium 

perfoliatum, MEA-Meadow, HEL-Helianthus tuberosum, SAV-Salix viminialis. The first and second PCA axes 

explain 87.5% and of 98.2% of the variability in the data, respectively. 
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Table 4 List of fungi isolated from all field sites (PHA-Phalaris arudinaceae, RE-Reynoutria sachalinensis, SIL-

Silphium perfoliatum, MEA-Meadow, HEL-Helianthus tuberosum, SAV-Salix viminialis. 

Fungi Abbreviation Field sites 
Absidia cylindrospora Abs.cyl SIL 
Absidia glauca  Abs.gla HEL, MEA 
Cladosporium cladosporoides  Cla PHA, HEL, MEA, SAV, SIL 
Cladosporium herbarum  Cla.her PHA, HEL, MEA 
Clonostachys rosea Clo.ros RE 
Fusarium cf. dimerum  Fus.dim HEL 
Gongronella butleri Gon.but MEA, SIL 
Mucor hiemalis Muc.hye SIL 
Oidiodendron sp  Oid.sp SIL 
Paecilomyces cf. byssochlamydoides  Pae.byss PHA 
Penicillium arenicola  Pen.are SIL 
Penicillium citrinum Pen.citr HEL 
Penicillium crustaceum  Pen.cru SAV 
Penicillium commune  Pen.com RE 
Penicillium chrysogenum  Pen.chry PHA, MEA, SAV 
Penicillium griseofulvum Pen.gri SIL 
Penicillium janczewskii  Pen.jan PHA 
Penicillium miczynskii Pen.micz MEA 
Penicillium purpurogenum Pen.pur HEL, SIL, RE 
Trichoderma harzianum  Tri.har PHA, HEL, MEA 
Trichoderma minutisporum Tri.min PHA 
Trichoderma viride Tri.vir PHA, HEL, MEA 
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Fig. 7 PCA based on the presence of fungi species on Petri dishes enriched by soil samples. PHA-Phalaris 

arudinaceae, RE-Reynoutria sachalinensis, SIL-Silphium perfoliatum, MEA-Meadow, HEL-Helianthus 

tuberosum, SAV-Salix viminialis. The first and second PCA axes explain 19.3% and 36.3% of the variability in 

the data, respectively. 
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ABSTRACT 

Energy crops as an alternative to fossil fuels are a component of the energy mix in 

many countries. Many of them are introduced plants, so they pose a serious threat of 

biological invasions. Production of allelopathic compounds can increase invasion success by 

limiting co-occurring species in the invaded environment (novel weapons hypothesis). In this 

study, we focused on plant chemistry and production of allelopathic compounds by energy 

crops (hybrid sorrel Rumex tianschanicus x Rumex patientia and miscanthus Miscanthus 

sinensis) in comparison with invasive knotweed (Fallopia sachalinensis). First, we tested the 

impact of leachates isolated from hybrid sorrel, miscanthus and knotweed compared to 

deionized water, used as a control, on seed germination of mustard (Sinapis arvensis) and 

wheat (Triticum aestivum) cultivated on sand and soil. Secondly, we studied the effect of 

leachates on the growth of soil fungal pathogens Fusarium culmorum, Rhizoctonia solani, 

Sclerotonia solani and Cochliobolus sativus. Finally, we tested the effect of litter of hybrid 

sorrel, miscanthus, knotweed and cultural meadow litter (as a control) mixed with soil on 

population growth of Enchytraeus crypticus and Folsomia candida. Miscanthus and knotweed 

litter had a higher C:N ratio than the control meadow and hybrid sorrel litter. Miscanthus and 

hybrid sorrel litter had a higher content of phenols than knotweed and cultural meadow litter. 

Leachates from hybrid sorrel, miscanthus and knotweed litter significantly decreased seed 

germination of wheat and mustard in both substrates. Soil fungal pathogens grew less 

vigorously on agar enriched by leachates from both energy crops  than on agar enriched by 

knotweed and control leachates. Litter from hybrid sorrel, miscanthus and knotweed 

significantly altered (both ways) the population growth of the soil mesofauna. 

 

Key words: Energy crops, Invasive plant species, Plant biomass chemistry, Seedling 

germination, Allelopathic effect, Soil fungal pathogens, Soil mesofauna 
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Introduction 

Energy crops are plants cultivated for their fast production of biomass and used for 

heating, generation electricity or production of bioethanol (Brant et al. 2011; Buckeridge et al. 

2012; Lewandowski et al. 2006). They have become part of the energetic mix in many 

countries despite their low economic competitiveness against fossil fuels (Brant et al. 2011; 

Cozier 2012; Don et al. 2012; Lewandowski et al. 2006). Extensive cultivation of energy 

crops can also cause competition over land with the need to produce food and forage, which 

may consequently compromise ecosystem services that soil provides (Costanza et al. 1997; 

Lavelle et al. 1997). 

If energy crop plantations are well situated, designed and managed, they may reduce 

nutrient leaching, soil erosion and provide additional environmental services such as soil 

carbon sequestration, improved soil fertility or the removal of pollutants from contaminated 

soils (Anderson-Teixeira et al. 2013; Buckeridge et al. 2012; Smith et al. 2013a; Ust’ak and 

Vana 1998). But there are also risks. Besides competition over land with the need to produce 

food, the risk of biological invasions is among the most important threats posed by newly 

introduced energy crops (Buddenhagen et al. 2009; Raghu et al. 2006). The most widespread 

energy crop in the Czech Republic is oilseed rape, which is grown to produce biofuel or 

additives to bio-ethanol fuel. The most widespread newly introduced energy crops are hybrid 

sorrel (R. tianschanicus x R. patientia), miscanthus (M. sinesnsis) and hybrid poplar (Populus 

nigra x Populus maximowiczii) (Brant et al. 2011; Lewandowski et al. 2006; Ust’ak and Vana 

1998). 

Hybrid sorrel was bred from a hybrid of R. tianschanicus x R. patientia in the 1980s in 

the former Soviet Union  (Ust’ak and Vana 1998). It is a fast growing. herbaceous perennial 

producing vast amounts of seeds and large volumes of biomass. Hybrid sorrel is an 

established energy crop in the Ukraine and other countries of the former Soviet Union. There 

are well known case studies of biological invasions focused on the negative effect on the host 

environment caused by other sorrel species, e.g. Rumex obtusifolius  (Pysek et al. 2012a). 

Hybrids of the genus Fallopia are significant invaders, too (Bailey 2013). Miscanthus sinensis 

is native to eastern Asia(most of China, Japan, Taiwan and Korea) and has newly been 

introduced as an energy crop to the Czech Republic (Pysek et al. 2012a; Quinn et al. 2012). It 

is a perennial grass growing up to 0.8–2 m tall (modern cultivars up to 4 m), which forms 
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dense clumps from an underground rhizome. Miscanthus escapes from ornamental plantings 

and forms extensive growths in disturbed areas, displacing native vegetation (Quinn et al. 

2012). 

Some newly introduced energy crops have turned invasive and have had serious 

economic and environmental impacts by strongly suppressing biodiversity in natural habitats 

(Buddenhagen et al. 2009; Kalusova et al. 2013; Pysek et al. 2012a; Pysek et al. 2012b; 

Raghu et al. 2006; Seastedt and Pysek 2011; Zavaleta 2000). Plants produce certain chemical 

compounds to suppress co-occurring plant species. According to the novel weapons 

hyphothesis, invasive plants excrete substances which are new to invaded communities and 

therefore have a stronger allelopathic effect on native competitors and the microbial 

community (Callaway and Ridenour 2004; Inderjit et al. 2006). Knotweed (F. sachalinensis) 

is a well known invasive species with a strong allelopathic effect in the Central European 

region (Bailey 2013; Kappes et al. 2007; Murrell et al. 2011; Pysek et al. 2012a; Vrchotova 

and Sera 2008). The aim of this contribution is to explore the allelopathic effect of newly 

introduced energy crops on seed germination, the microbial community and the soil fauna. 

We also examine whether plant chemistry corresponds with the effect of allelopathy. 
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Material and methods 

 

Plant biomass sampling and chemical analysis 

We studied two introduced energy crops, miscanthus (M. sinensis) and hybrid sorrel 

(R. tianschanicus x R, patientia), and one invasive plant, knotweed (F. sachalinensis). 

Senescent plant biomass was harvested at the end of August at experimental field sites of the 

Crop Research Institute in Chomutov (50° 27′ 46'' N, 13° 24′ 40'' E, 7.86°C mean annual 

temperature and 550 mm of annual rainfall). For control we used senescent aboveground 

biomass collected in a cultural meadow (dominated by Poa annua, Poa pratensis, Trifolium 

repens and Plantago major) in the same location. Soil from the meadow was also used in a 

germination experiment. For chemical analysis, plant material was dried and homogenized 

into particles smaller than 0.2 mm. The content of carbon and nitrogen was determined using 

an EA 1108 elemental analyser (Carlo Erba Instruments). Total soluble phenols were 

extracted by methanol and determined spectrophotometrically using the Folin-Ciocalteu 

reagent (Singleton et al. 1999). 

 

Design of seedlings experiment 

Senescent aboveground plant material (R. tianschanicus x R. patientia, M. sinensis and 

F. sachalinensis) was dried and then leached into deionized water for 48 hour (10 g of dried 

biomass per 100mL of deionized water) (Mudrak and Frouz 2012), the pH of all leachate 

types was about 6.3. Two types of non-sterile substrates were used: sand and soil (distric 

chernozem, loam, pH 6.9, C content 4.2%). Both soil types were sieved through a sieve with a 

mesh size of 2 mm before use. Ten grams of both substrates were separately added to 6 cm 

diameter Petri dishes. Into each Petri dish, 25 seeds of wheat (T. aestivum) or mustard (S. 

arvensis) were sown. The seeds were obtained from the Crop Research Institute in Prague. 

The Petri dishes containing the substrate and seeds were kept in a climatic chamber at 21°C 

with 12 hours light and 12 hours dark (Mudrak and Frouz 2012) and watered by 6 mL of a 

leachate every second day. Each leachate treatment comprised four replicates. Distilled and 
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deionized water was used as a control. The number of seedlings in each Petri dish treated with 

a different leachate type was counted after 2 weeks. 

 

Design of fungal cultivation and growth measurement 

Four fungal strains (Fusarium culmorum, Rhizoctonia solani, Sclerotonia solani and 

Cochliobolus sativus) were obtained from the Department of Mycology of the Crop Research 

Institute in Prague. Malt extract agar (Frankland et al. 1990; Chesters and Thornton 1956) was 

prepared on Petri dishes and enriched by leachates isolated from senescent aboveground 

biomass (10g of dried plant biomass per 100 mL distilled and deionized water; pH adjusted at 

6.3) of two energy crops (R tianschanicus x R. patientia, M. sinensis) and one invasive 

species (F. sachalinensis). Petri dishes with pure malt extract agar were used for control. Each 

Petri dish was inoculated by one of four fungal strains in one spot in the middle of the dish. 

Each plant extract agar and control had six replicates of each strain. After one week, we 

measured the diameter of the colony of each fungal strain (F. culmorum, R. solani, S. solani 

and C. sativus). 

 

Design of microcosm experiment 

Two soil mesofauna species, springtails F. candida and pot-worms E. crypticus, were 

used in a microcosm experiment. Soil animals (F. candida and E. crypticus) were obtained 

from a culture collection of the Institute of Soil Biology in České Budějovice. For this 

experiment, we used synchronized cultures of animals (Franchini and Ottaviani 2008; Tordoff 

et al. 2008). The animals were kept in plastic pots 4 cm in diameter and 5 cm high. To the 

each pot, 20 g of deep-frozen soil (-70°C, distric chernozem) was added to kill all other soil 

fauna supplemented with 10 g of autochtonous senescent plant biomass (R. tianschanicus x R. 

patientia, M. sinensis, F. sachalinensis) separately as above mentioned. As a control, we used 

a mixture of autochtonous plant biomass collected from a cultural meadow of the Crop 

Research institute in Chomutov. Into each microcosm with the given litter type, we placed 10 

individuals of F. candida or E. crypticus. Each litter and fauna combination had four 
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replicates. All microcosms were placed into a dark climatic chamber at 21°C. After 30 days, 

we fixed the microcosms with 70% ethanol and counted all animals. 

 

Statistical analysis 

Differences between individual treatments in all collected data were analysed by a one-way 

ANOVA followed by a Tukey´s-Kramer Multiple comparison test (ANOVA HSD post hoc 

test) in R (R 2005; Simecek and Simeckova 2013). 
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Results 

 

Chemical analysis of litter 

Miscanthus (M. sinensis) exhibited the highest C:N ratio whereas hybrid sorrel (R. 

tianschanicus x R. patientia) showed the lowest. Knotweed (F. sachalinensis) and the control 

(cultural meadow) showed a similar C:N ratio. These differences were statistically significant 

(ANOVA HSD post hoc test, F=68.260, p<0.0001) (Table 1). The content of phenols differed 

significantly among the various kinds of plant biomass (ANOVA HSD post hoc test, 

F=25.361, p=0.0002). Miscanthus (M. sisensis) had the highest content of phenols followed 

by hybrid sorrel (R. tianschanicus x R. patientia),while knotweed (F. sachalinensis) had an 

intermediate phenol content, the lowest being in the control (cultural meadow) (Table 1). 

 

Impact of leachate of energy crops on seed germination 

Germination of wheat (T. aestivum) seeds was most suppressed by leachates isolated 

from hybrid sorrel (R. tianschanicus x R. patientia), miscanthus (M. sinensis) and knotweed 

(F. sachalinensis) (Fig. 1) on the sand substrate. On the soil substrate, a strongly negative 

effect on germination was recorded in knotweed (Fig. 1). This negative effect was recorded 

for leachates extracted from both energy crops (hybrid sorrel and miscanthus; Fig. 1). 

Germination of mustard (S. arvensis) seeds was suppressed most by all three types of 

leachates (hybrid sorrel, miscanthus and knotweed) on the soil substrate (Fig. 2). On the sand 

substrate, hybrid sorrel and knotweed significantly decreased germination, but miscanthus did 

not show any significant effect on seed germination (Fig. 2). 

 

Impact of leachates of energy crops on the growth of certain strains of pathogenic fungi 

Our results show that three out of four strains of fungal pathogens were sensitive to the 

different leachates isolated from the energy crops (R. tianschanicus x R. patientia, M. siensis) 

as well as the invasive species (F. sachalinensis). The growth of F. culmorum was strongly 

suppressed by the extract of miscanthus (M. sinensis), but the extract isolated from hybrid 
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sorrel (R. tianschanicus x R. patientia) and knotweed (F. sachalinensis) did not show any 

significant difference (Table 2). Growth of R. solani was strongly suppressed by the leachate 

extracted from hybrid sorrel, but the other leachates did not show any suppressive effect on 

the growth of R. solani. The leachate of hybrid sorrel as well as the control malt extract 

showed a strong inhibitory effect on the growth of C. sativus, while leachates isolated from 

miscanthus and knotweed did not show any significant impact on the growth of C. sativus 

colonies (Table 2). We found that S. solani did not respond by inhibited growth to different 

leachates of any of the plants included in the study (Table 2). 

 

Impact of different litter types of energy crops on population of soil fauna 

We found a significant effect of different types of litter on population growth and size 

of both mesofauna species F. candida and E. crypticus (Fig. 3–4). Enchytraeus crypticus was 

more sensitive to knotweed and meadow litter than litter of hybrid sorrel and miscanthus. 

Miscanthus showed the most positive effect on population growth and development of E. 

crypticus (Fig. 3.). We found that population density of F. candida was most suppressed by 

knotweed and miscanthus litter whereas hybrid sorrel and cultural meadow litter allowed 

significantly higher population growth of F. candida (Fig. 4). 
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Discussion 

Both the energy crops as well as the invasive plant tested had a significant allelopathic 

effect on the other plant species. A similar phytotoxic effect has repeatedly been found for 

plants growing in agricultural ecosystems (Muller 1982; Weidenhamer et al. 1989; Weih et al. 

2008; Williamson and Richardson 1988). Moreover, certain invasive plants producing 

allelopathic compounds are known to strongly reduce the density of native plants (Inderjit et 

al. 2006; Kalusova et al. 2013; Novoa et al. 2012; Pritekel et al. 2006; Pysek et al. 2012b; 

Ridenour and Callaway 2001; Zhang et al. 2009a). Our results show that both wheat and 

mustard differ in their sensitivity to different leachates in the substrate. We used seeds from 

plants growing in an agricultural field, which could be more sensitive to allelopathic 

compounds than seeds from plants growing in a natural ecosystem (Weih et al. 2008). This 

may be caused by monocropping cultivation, which can strongly reduce interspecific 

competition of agricultural crops. Petri dishes with soil substrates usually showed a stronger 

reduction of seed germination than sand substrates. This may be caused by higher water 

retention of soil compared to sand (An et al. 2002). The reduction in the number of seedlings  

may have been caused by different chemical compounds produced by various plant species 

(Williamson and Richardson 1988), as mentioned previously, although substrate type may 

play a significant role in the effect of allelopathy (Tang et al. 1995). Many exotic species tend 

to produce allelopathic compounds (Inderjit et al. 2006; Mangla et al. 2008; Ridenour and 

Callaway 2001), but the relationship between native and introduced species remains unclear. 

In the present study, we used only leachates, but direct contact with litter can cause a 

stronger allelopathic effect during continual leaching than the mere presence of leachates 

from plants (Mudrak and Frouz 2012). We used a semi-sterilized substrate, which may 

including fungal and bacterial strains that can decompose allelopathic substances and thus 

provide facilitation for co-occurring plants (Arunachalam et al. 2003; Kaur et al. 2009; Willis 

2000). The success of an alien plant species also depends on other factors such as plant 

height, growth strategy, propagule pressure, residence time, growth rate, plant-pathogen 

interaction, plant-herbivore interaction, plant-pollinator interaction etc. (Eppinga et al. 2006; 

Kalusova et al. 2013; Mitchell et al. 2010; Murrell et al. 2011; Pysek et al. 2012a; Pysek et al. 

2012b; Seastedt and Pysek 2011). 
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Miscanthus sinensis showed a higher content of phenols than our invasive plant (F. 

sachalinensis), hybrid sorrel (R. tianschanicus x R. patientia) and cultural meadow biomass. 

This fact may contribute to the allelopathic effect and, consequently, also to the invasive 

success of this energy crop (Callaway and Ridenour 2004). Production of polyphenols is 

caused mainly by stress factors such as lack of nutrients in soil, herbivores or pathogens 

(Tang et al. 1995). Callaway and Ridenour (2004) found increased production of allelopathic 

compounds in invaded ranges compared to native ranges. Although the effect of allelopathic 

compounds such as polyphenols on invasion success is well documented (Inderjit et al. 2006; 

Inderjit and Weiner 2001), they are clearly not the only factor causing the allelopathic effect. 

The highest C:N ratio was found in M. sinensis and F. sachalinensis whereas control 

sites and hybrid sorrel R. tianschanicus x R. patientia showed a lower C:N ratio. This fact 

may be explained both by fertility of the soil and evolutionary traits in the genome related to 

C:N content (Bardgett 2005; Eppinga et al. 2011; Eppinga and Molofsky 2013; Wardle et al. 

2004). Miscanthus, hybrid sorrel and knotweed showed a higher content of phenolic 

compounds than plant material collected from a cultural meadow. High nutrient input 

contributes to the allocation of assimilates towards rapid growth and production of easily 

decomposable litter (Bardgett 2005; Wardle et al. 2004). By contrast, slow-growing plants 

that dominate in soil with low nutrient availability allocate less assimilates to their growth, 

producing nutrient-poor litter that contains heavily decomposable compounds such as lignin 

and phenolics (Hussain et al. 2011; Tang et al. 1995). This is inconsistent with our results 

because short rotation plants contained more phenolic compounds and lignin, whose decay 

requires specialized decomposers such as lignolytic fungi (Valaskova et al. 2007). This fact 

may be explained by evolutionary genotype changes. Evolutionary trends in exotic plant 

species introduced to new areas contribute to their invasion success due to a shift towards 

genotypes thriving in nutrient-rich soils with a high C:N ratio in the invaded range (Eppinga 

et al. 2011; Eppinga and Molofsky 2013). 

We found that some introduced or invasive plants may reduce the growth rate of 

certain fungal pathogens. Complex allelopathic compounds produced by plants may strongly 

affect the growth and development of fungal strains in the soil (Becker et al. 1997). We 

studied four strains of common fungal plant and soil pathogens occurring in Central Europe. 

According the novel weapons hypothesis (Callaway and Ridenour 2004), local pathogens are 
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strongly suppressed by chemical compounds excreted by newly introduced invasive plants 

(Inderjit et al. 2006). Our results support this hypothesis because our introduced and invasive 

plants showed a significant effect on colony growth almost in all cases. 

Consistently with our results, invasive plants are known to produce a wide range of 

chemical compounds that can affect soil pathogens (Jefferson and Pennacchio 2003; Zhang et 

al. 2009a; Zhang et al. 2011). Zhang et al (2011), for example, found that allelopathic 

compounds produced by the invasive plant Solidago canadensis strongly decreased the 

activity of the fungal soil and plant pathogen Pythium ultimum. The impact on the whole 

fungal community is little known, however. Secondary metabolites in the soil are often 

influenced by abiotic factors (e.g., soil texture, soil pH, soil moisture, plant litter and soil 

organic matter) (Blanco 2007; Inderjit et al. 2006; Inderjit and Weiner 2001; Meiners and 

Kong 2012) and biotic factors (e.g. activity of  the soil microbial community and soil fauna) 

(Arunachalam et al. 2003; Glinwood et al. 2011; Kaur et al. 2009; Palmer et al. 2004). 

Secondary metabolites produced by a wide range of native as well as introduced plants 

may be decomposed by certain fungal strains. Soil microorganisms are responsible for half of 

the degradation of secondary metabolites such as m-tyrosine, catechin, ferulic acid, juglone 

and some flavones in soil (Arunachalam et al. 2003; Kaur et al. 2009; Willis 2000). We 

recorded a positive effect of leachates from F. sachalinensis and M. sinensis present in agar 

on certain soil and plant fungal pathogens. These results correspond with other studies 

showing that invasive plants can accumulate local generalist pathogens that have a more 

negative effect on native plant species than the invasive species themselves, thus potentially 

resulting in exclusion of native plant species (Eppinga et al. 2006; Mangla et al. 2008; 

Seastedt and Pysek 2011). 

We found a negative effect of knotweed on the abundance of E. crypticus. Miscantus 

and hybrid sorrel, on the other hand, support higher population growth than control meadow 

biomass. The abundance of F. candida was most reduced in the microcosm containing litter 

from knotweed and miscanthus. Very important is direct contact with litter, as mentioned 

above (Mudrak and Frouz 2012). Light decomposable litter supports growth of the microbial 

community, which might be required by the soil fauna or at least support its development and 

reproduction (Heděnec et al. 2013; Kaneda and Kaneko 2002). The diversity of plant biomass 
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is an important factor affecting population density and diversity of the soil fauna. Kaneko and 

Salamanca (Kaneko and Salamanca 1999) showed significant greater diversity of soil 

microarthropods in three litter mixtures than in litter monocultures. This is partly consistent 

with our results although our results suggest that the population of F. candida significantly 

increased in the control microcosms with mixed litter, more so than in the microcosm with M. 

sinensis and F. sachalinensis. 

We found a strong effect of knotweed on population growth of the soil fauna. It is 

known that the invasion of knotweed profoundly alters ecosystem structure and functioning, 

with negative effects cascading up through the food chain (Kappes et al. 2007). This may 

explain the reduced abundance of certain species of the soil mesofauna, mainly soil 

fungivores, but our study gave us the opportunity to study a microcosm with one species only. 

In general, long-term cultivation of introduced plants may affect other soil organisms 

depending on soil microbes in the food web (Bardgett and Walker 2004; Barrios 2007; 

Blanco-Canqui 2010). Pritekel et al. (2006) showed that the invasive plants Euphorbia esula 

and Cirsium arvense strongly reduce the density of soil micro-arthropods in mountain 

meadows. Declining microarthropod density may affect the density of the soil macrofauna, 

which depends on microarthropods in the food web (Barrios 2007; Kappes et al. 2007). 

Conclusions 

Our experiments show that both tested energy crops as well as the tested invasive plant have a 

strong allelopathic effect on a wide spectrum of organisms. This indicates that these plants 

may potentially alter ecosystem functioning in places where they are introduced or which they 

invade, which may substantially increase their invasive potential. Still, more research is 

needed to explore what changes in the soil community may contribute to the competitive 

advantage of exotic plant species and what strategies different exotic plants take to establish 

in local floras. 
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Appendices 

Table 1 Chemical analysis of litter collected from two energy crops and invasive plant species. Cultural meadow 

biomass was used as a control. The C:N ratio and content of phenols is the mean of three replicates (mg/g) ± SD. 

Same letters indicate statistically homogenous groups (p<0.05). Hybrid sorrel (R. tianschanicus x R. patientia), 

miscanthus (M. sinensis), knotweed (F. sachalinensis), control (Cultural meadow). 

 

Treatment C:N ratio ± SD Polyphenols ± SD 

Hybrid sorrel 16.3 ± 1.4a 39.3 ± 4.2a 

Miscanthus 57.1 ± 6.3b 44.9 ± 8.4a 

Knotweed 35.6 ± 1.9c 29.2 ± 5.2b 

Control 30.2 ± 2.2c 9.2 ± 1.3c 
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Fig.1 Impact of energy crop leachates on germination of wheat (Triticum spp.) seedlings on sand (A) and soil (B) 

substrates. Error bars represent SD. Same letters indicate statistically homogenous groups (p<0.05). Tukey´s test 

(post hoc HSD ANOVA, F=11.169, p=0.0009). Hybrid sorrel (R. tianschanicus x R. patientia), miscanthus (M. 

sinensis), knotweed (F. sachalinensis), control (deionized water). 
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Fig. 2 Impact of energy crop leachates on germination of mustard (S. arvensis) seedlings on sand (A) and soil 

(B) substrates. Error bars represent SD. Same letters indicate statistically homogenous groups (p<0.05). Tukey´s 

test (post hoc HSD ANOVA, F=22.792, p<0.0001). Hybrid sorrel (R. tianschanicus x R. patientia), miscanthus 

(M. sinensis), knotweed (F. sachalinensis), control (Deionized water). 
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Table 2 Impact of energy crop leachates on growth of several strains of soil fungal pathogens (F. culmorum, R. 

solani, S. solani and C. sativus). Values represent the diameter of fungal colonies on Petri dishes. The ± symbol 

indicates SD. Same letters indicate statistically homogenous groups.  Hybrid sorrel (R. tianschanicus x R. 

patientia), miscanthus (M. sinensis), Knotweed (F. sachalinensis), Control (Pure malt extract). 

Plant extract Fusarium culmorum ± SD Rhizoctonia solani ± SD Sclerotonia solani ± SD Cochliobolus sativus ± SD 

Hybrid sorrel 8.50 ± 0.0a 4.47 ± 1.3a 7.08 ± 3.4 3.12 ± 1.4a 

Miscanthus 7.70 ± 0.4b 8.50 ± 0.0b 8.5 ± 0.0 7.17 ± 0.5b 
Knotweed 8.50 ± 0.0a 7.17 ± 2.0b 8.5 ± 0.0 7.52 ± 1.3b 
Control 8.50 ± 0.0a 8.50 ± 0.0b 7.75 ± 1.8 5.22 ± 1.7a 

                  
                  

Tukey´s test               
F-value 22.326    14.286   0.724    14.604   
P-value <0.0001   <0.0001   0.549   <0.0001   
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Fig. 3 Impact of different litter of energy crops on the population of Enchytraeus crypticus. Error bars represents 

SD. Same letters indicate statistically homogenous groups. Tukey´s test (post hoc HSD ANOVA, F=87.714, 

p<0.0001). Hybrid sorrel (R. tianschanicus x R. patientia), miscanthus (M. sinensis), knotweed (F. 

sachalinensis), control (cultural meadow). 
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Fig. 4 Impact of different litter types of energy crops on the population of Folsomia candida. Error bars 

represent SD. Same letters indicate statistically homogenous groups. Tukey´s test (post hoc HSD ANOVA, 

F=14.099, p=0.0003). Hybrid sorrel (R. tianschanicus x R. patientia), miscanthus (M. sinensis), knotweed (F. 

sachalinensis), control (cultural meadow). 
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