Minoritní skupiny hmyzu jako opylovači a návštěvníci květin
Minor groups of insects as a pollinators and flower visitors

Bakalářská práce

František Jůna

Kolitelka: Mgr. Zuzana Varadínová
Konzultantka: Mgr. Blanka Vlasáková Ph.D.
Praha, 2013
Prohlášení:

Prohlašuji, že jsem bakalářskou práci zpracoval samostatně a jsem uvedl všechny použité informační zdroje a literaturu. Tato práce ani její podstatná část nebyla předložena k získání jiného nebo stejného akademického titulu.

V Praze, 17. 5. 2013

Podpis
Poděkování

Abstrakt

Má bakalářská práce je o vztazích mezi hmyzem (vyjma majoritních Šíd, tedy blanokřídlých, brouků, dvoukřídlých a motýlů) a květy rostlin. V práci je kladen důraz na opylování, ale jsou zmíněny i další interakce mezi květem a hmyzem, jako je herbivorie květu, nektarivorie, palynivorie, ale také situace, kdy je květ stanovištěm. Největší část práce je věnována Šídům třásnokřídlým (Thysanoptera), protože u tohoto Šíd je velké množství opyloval, na druhou stranu existují i opylovali z Šíd Blattodea, Mecoptera, Neuroptera i Hemiptera. U těchto Šíd hmyzu bylo opylování objeveno relativně nedávno a lze tedy pěkně pokládat, že množství nám známých opylojících druhů se bude ještě zvětšovat. Mnohé Šídy hmyzu jsou v práci pouze zmíněny anebo úplně chybí, u těchto Šíd je interakce s květem minimální, nebo není známa. V práci je také krátká zmínka o fosilním záznamu minoritních skupin opylovačů.

Klíčová slova

Opyslování, třásnokřídlí, švábi, stříbrikřídlí, srpice, polokřídlí, škvoše, rovnokřídlí, chrostíci

Abstract

The aim of my bachelor thesis is to review flower-insect interactions in those insect orders which are traditionally recognized as minor groups of insect pollinators. This means Coleoptera, Diptera, Hymenoptera and Lepidoptera orders are excluded. The emphasis is on the occurrence of pollination relationship, but palynivory, nectarivory, flower herbivory and flowers as hunting-site are discussed too. Much of the research is just listing the species which were found on flowers without any deeper study of their relationship with the flower. These non-specified interactions are recognised as flower visitors. Most of this bachelor thesis is about the order of Thrips (Thysanoptera), because of the large number of pollinators in this order. On the other hand many other orders are only mentioned or they even are missing. There is little interaction by some orders, or the interactions are missing or they are unknown. Also fossil flower-insect interactions are mentioned too.

Key words

Pollination, Thrips, Cockroaches, Lacewings, True bugs, Scorpionflies, Earwigs, Orthoptera, Caddisflies
1. Obsah

1. OBSAH .. 4
2. ÚVOD ... 5
3. VZTAHY KE KVÍŠM ... 6
 3.1. HERBIVORIE KVÍŠ ... 6
 3.2. NEKTARIVORIE ... 7
 3.3. PALYNIVORIE ... 7
 3.4. OPYLOVÁNÍ ... 8
 3.5. KVÍŠ JAKO STANOVIŠTĚ ... 9
 3.6. NÁVÍHNÍCI ... 10
4. INTERAKCE VE FOSILNÍM ZÁZNAMU .. 12
5. OPYLOVAČI ... 15
 5.1. BLATTODEA ... 15
 5.2. COLLEMBOLA ... 16
 5.3. DERMAPTERA ... 17
 5.4. HEMIPTERA ... 17
 5.5. MECOPTERA ... 18
 5.6. NEUROPTERA ... 19
 5.7. ORTHOPTERA ... 20
 5.8. PSOCOPTERA ... 20
 5.9. THYSANOPTERA .. 21
 5.10. TRICHOPTERA ... 23
6. DISKUSE .. 25
7. ZÁVĚR ... 28
8. LITERATURA ... 29
9. PŘÍLOHA .. 35
2. Úvod

Opylování je důležité proces, při kterém je pyl posázen z prachníků na bliznu (Gullan & Cranston, 2005). Tento proces bývá nejčastěji prováděn ptáky (Brown et al., 2011), savci (Christianini et al., 2013), plazy (Whitaker, 1987) i hmyzem. K opylovačím místům patří mnoho druhol hmyzu, jako jsou vlévy, meláci, motýli, mouchy, brouci (lesknáři) a třásník (Pelikán, 1994). Opylování hmyzem je nejčastěji pro opylovací květy názýváme entomofílní nebo entomogamické.

Nejpočetnější skupinou ptáků jsou u hmyzu brouci (Coleoptera), motýli (Lepidoptera), blanokřídlí (Hymenoptera) a dvoukřídlí (Diptera). Tyto skupiny tvoří téměř 80% známých druhů hmyzu (Grimaldi & Engel, 2006). Dospělí těchto skupin mají opylovací roli i ve své práci. Ostatní skupiny hmyzu proto lze považovat za minoritní, nejen co se ptáky týká, ale co se týká i množství opylovačí. V tomto smyslu jsou u hmyzu nazývány minoritními skupiny (Kevan & Baker, 1983), tohoto pojmenování se budu držet i ve své práci. Jako minoritní jsou tedy tyto skupiny, které se věnovaly opylování květů. Je potřeba neplést minoritní skupinu opylovačí s minoritním opylovačem, tj. takovým, který hraje méně významnou roli v opylování. Majoritním opylovačem (pro rostlinu nejdůležitější) může být i zástupce minoritní skupiny hmyzu.

Předpokládá se, že ptáci posázení pyl při otvírání květů přinesou hmyzu, který se oliví na jejich částech. Teprve později vznikl mutualistický vztah mezi opylovači a opylovanou rostlinou (Daly et al., 1998). Z tohoto předpokladu vychází, že se snadno zjistit nejen druhy, které prokazatelně opylovají, ale také ty, které mají jakoukoliv interakci s květem rostlin, která by náhodně mohla vést k opylení. Cílem práce je sumarizovat současné znalosti o vztazích mezi minoritními skupinami hmyzu a květy rostlin.
3. Vztahy ke květům

3.1. Herbivorie květů

Některé druhy hmyzu se čiví celými květy, nebo jejich lůstmi. Tím mohou bránit rostlinám v rozmnážování, proto by se tyto druhy hmyzu daly nazvat destruktory květů. Tento vztah s rostlinami není působlivý jen na zeměpříkoné květy, nebo jejich části. Tím mohou bránit rostlinám v rozmnožování, proto by se tyto druhy hmyzu daly nazvat destruktory květů. Tento vztah s rostlinami není působlivý jen na zeměpříkoné květy, nebo jejich části.

Jedním z možných poškození je požírání andreace, okvětních lístků i celých lístků rozvitých květů, takto poškozují rostlinu například zástupci eledí kovití (Gryllidae). Podobné je i chování u čivby andreace Epilampra sodalis, který se krmí pouze na samčích květech, kde požírá pražníky, oba tyto pšady jsou známy díky pozorování opylovačů (Vlasakova et al., 2008). Podobné je i chování u šváby druhy Epilampra sodalis, který se krmí pouze na samčích květech, kde požírá pražníky, oba tyto pšady jsou známy díky pozorování opylovačů (Vlasakova et al., 2008).

Jeden zástupce čeledi sarančovití (Acrididae: Orthoptera) má například na svědomí zničení 13% květů bromélie druhu Encholirium heloisae (Bromeliaceae) (Christianini et al., 2013). Na květenstvích zmijovce druhu Amorphophallus commutatus byli zaznamenáni čiváři (Blaberidae, Panesthiinae), kteří se čivili na sterilních lůstech květenství, ale nebylo pozorováno poškození fertilitních lůstí. Je zajímavé, že na dalších zkušených druzích rostlin rodu Amorphophallus se tito čiváři nevyskytovali (Punekar & Kumaran, 2010).

Poškozením květů může být i jejich narůstání, kdy vznikají na květech široké skvrny. Takto poškozují tříšnokřídlé květy rostlin | eledí Fabaceae zkušené v práci Zamara a de Romana (2012). Toto poškození vznikalo pšady pším potravy, bohužel nebylo specifikováno, jím se tříšnokřídlé čivily.

V některých pšadech není úplně jasná úloha, kterou hmyz pro rostlinu vykonává. Například zástupci šíří rovnokřídlé (Orthoptera: Tettigoniidae; Gryllidae; Tridactylidae; Acrididae) byli pozorováni v květech některých rostlin z třího | eledí: Commelinaceae, Compositaceae, Euphorbiaceae a Gramineae. Rovnokřídlé šíří se zde čiví pražníky, jím poškozují květy a mohou i znemožnit pšenos pylu včelami. Byl ale také pozorován jejich pohyb mezi jednotlivými květy, proto by se mohlo jednat i o opylovači (Schuster, 1974).
3.2. Nektarivorie

3.3. Palynivorie
Palynivorie, nebo pořízení pylu, mTře být alternativním potravním chováním, stejně jako nektarivorie, nTřterých predátorů. Toto chování bylo zaznamenáno například u kudlanky Tenodera aridifolia sinensis. Z prováděných experimentů vyplývá, ře tyto kudlanky jsou

Palynivorie také můžete být potravní specializací. Např. stuholetka jižní (Nemoptera sinuata) je zástupcem Šídu středního jezera (Neuroptera), jehož imaga se živí pouze pyltem a mají k tomu pěstovat kousací ústní ústrojí. Stejně se na tom celá řada stuholetků (Nemopteridae). Hlavní úlohu pěstování potravy hrají maxily a labium. Dospělí preferují žluté, zbarvené květy a hroznovitá květenství. Palynivorie stuholetky byla pozorována na Šídu Šílu juhu druhu Achillea coarctata (Asteraceae) (Popov, 2002).

Palynivorie je dosti spojena s nektarivorií. Obligátním nektarivorem a palynivorem je druh Zaprochilus australis (Orthoptera: Tettigoniidae: Zaprochilinae), který je endemitem Austrálie a živí se pyltem a nektarem říznych rostlin (např. trávy a eukalypty). Nejvíce je tento druh pěstován rostlinami rodu žlutokap (Xanthorrhoea), jejichž květenství silně voní a květy jsou bílé. Podobně se chová druh Anthophiloptera dryas (Orthoptera: Tettigoniidae: Zaprochilinae), který se pěstoucí vyskytuje na rostlinách Angophora floribunda, na jejichž květech se také živí (Rentz & Clyne, 1983).

Palynivorie byla pozorována také u řab, konkrétně u druhu Latiblattella lucifrons, který se na juce druhu Yucca elata (Asparagaceae) krmil nejen pylem, ale i mrtvými živočichy (Ball et al., 1942).

3.4. Opylování

Opylování je mutualistický vztah opylovače a opylované rostliny, tento vztah je poměrně obecně pro úspěšnou reprodukci.
Vzhledem k této důležitosti a specifitě je tomuto vztahu věnována samostatná kapitola 5. Opyloval i. Tento vztah je také hlavním tématem v diskusi.

Za opylovaly jsou obvykle povážovány druhy, které se v květech vyskytují |asto, jsou schopny pohybu mezi jednotlivými květy i rostlinami a dostávají se do kontaktu s prašníky a bliznou. Autoři jednotlivých výzkumů se poměrně rozcházejí v tom, kdy je povážají hmyz za opylovaly a kdy již ne. Například Kato et al. (Kato et al., 1990) nazval ve své práci některé druhy jako povážlivé rostliny jako je například květena jako palynivory, tak i nektarivory a možné opylovaly, nikoli herbivy květena i predátory. Z takovéto práce pak nejsem schopen zaštitit hmyz do správné kategorie vztahu ke květena.

3.5. Květena jako stanovíčka

Vzhledem k tomu, že je rostliny s některými květyvelkou barvou květena také dochází k potencionálnímu kontaktu s hmyzí fauna, která se často uchovává v blízkosti květena. V případě, že květena vyplývá, že zde existuje přítomnost hmyzí fauna, tak může být květena jako stanovíčka pro predátory, které některé druhy květena slouží jako potrava. Například kudlanka loví zástupce skupiny Hymenopus bicornis, která má na ventrální straně azurovou skvrnu, s jiným středem a podobnou květenu. Tato kudlanka loví zavazující se na rostliny taky aby skvrna lákala opylovaly, tedy kořen. Tato kudlanka však opakuje některé druhy s jinou barvou květena.

Květena také slouží jako stanovíčka pro predátory, které se často uchovává v blízkosti květena. V případě, že květena vyplývá, že zde existuje přítomnost hmyzí fauna, tak může být květena jako stanovíčka pro predátory, které některé druhy květena slouží jako potrava. Například kudlanka loví zástupce skupiny Hymenopus bicornis, která má na ventrální straně azurovou skvrnu, s jiným středem a podobnou květenu. Tato kudlanka loví zavazující se na rostliny taky aby skvrna lákala opylovaly, tedy kořen. Tato kudlanka však opakuje některé druhy s jinou barvou květena.

Květena také slouží jako stanovíčka pro predátory, které se často uchovává v blízkosti květena. V případě, že květena vyplývá, že zde existuje přítomnost hmyzí fauna, tak může být květena jako stanovíčka pro predátory, které některé druhy květena slouží jako potrava. Například kudlanka loví zástupce skupiny Hymenopus bicornis, která má na ventrální straně azurovou skvrnu, s jiným středem a podobnou květenu. Tato kudlanka loví zavazující se na rostliny taky aby skvrna lákala opylovaly, tedy kořen. Tato kudlanka však opakuje některé druhy s jinou barvou květena.

Květena také slouží jako stanovíčka pro predátory, které se často uchovává v blízkosti květena. V případě, že květena vyplývá, že zde existuje přítomnost hmyzí fauna, tak může být květena jako stanovíčka pro predátory, které některé druhy květena slouží jako potrava. Například kudlanka loví zástupce skupiny Hymenopus bicornis, která má na ventrální straně azurovou skvrnu, s jiným středem a podobnou květenu. Tato kudlanka loví zavazující se na rostliny taky aby skvrna lákala opylovaly, tedy kořen. Tato kudlanka však opakuje některé druhy s jinou barvou květena.

Květena také slouží jako stanovíčka pro predátory, které se často uchovává v blízkosti květena. V případě, že květena vyplývá, že zde existuje přítomnost hmyzí fauna, tak může být květena jako stanovíčka pro predátory, které některé druhy květena slouží jako potrava. Například kudlanka loví zástupce skupiny Hymenopus bicornis, která má na ventrální straně azurovou skvrnu, s jiným středem a podobnou květenu. Tato kudlanka loví zavazující se na rostliny taky aby skvrna lákala opylovaly, tedy kořen. Tato kudlanka však opakuje některé druhy s jinou barvou květena.
Pongamia glabra, Crotalaria sp.) je leedi bobovité (Fabaceae) a to Megalurothrips distalis a Frankliniella schultzei. Třísnokdé se pěstují mezi rostlinami podle období kvetení a množí se v nich. Jsou to také opylovači třísnoho rostlin (Annadurai & Velayudhan, 1986).

3.6. Návštěvníci
V této skupině se bohužel mohou mimo náhodných návštěvníků květení, palynívory, nektarivory, herbivory nebo i predátory. Mnoho šťastí bylo v jednotlivých studiích pouze zmíněno, ale nebyla zjištěna interakce s květy. Jako návštěvníci květenství byly zaznamenány šťastí Blattodea, Collembola, Dermaptera, Hemiptera, Isoptera, Mantodea, Neuroptera, Orthoptera, Phasmatodea, Psocoptera, Thysanoptera (Anderson et al., 1988; Boulter et al., 2005; Carrington et al., 2003; Consiglio & Bourne, 2001; Cornara et al., 2005; Lach, 2008; Listabarth, 1996; Mawdsley & Sithole, 2010).

Náhodnými návštěvníky květenství jsou například u rostliny Angraecum cadetii zástupci čeledi cvrčkovití (Gryllidae) a šťastí švábi (Blattodea), kteří ale rostlinu nijak nepozorují (Micheneau et al., 2010). Podobně se chovají i zástupci šťastí polokřídlých (Hemiptera) na rostlině Uvaria elmeri (Nagamitsu & Inoue, 1997). Polyalthia coffeoides a P. korinti (Annonaceae) jsou dva sympatrické druhy rostlin, rostoucích na Srí Lance. Na druhu P. coffeoides byly nalezeny pouze 4 druhy návštěvníků květenství, z nichž 2 byli z šťastí švábi (Blattodea). Pouze jeden z třísnoho dvou blízkého neurčených druhů švábů se vyskytoval na P. korinti. Tito švábi se nejeví jako opylovači třísnoho rostlin, protože u nich nebyl pozorován pohyb mezi květy a navíc byli v květech mimo jejich receptivní fázi (Ratnayake et al., 2006).

na nich vyskytují vzácně proto o jejich vztahu ke květněství autoš neudávají bližší informace (Ervik & Feil, 1997).

Zajímavý názor na návštěvu květů druhu *Onychostyus notulatus* mají autoš Kawakita a Kato (2002), kteří udávají jako důvod této návštěvy atraktant, kterým mělo pro řáby být ervené světlo, kterým si rostlinu osvětlovali.

4. Interakce ve fosilním záznamu

V této kapitole se zmíním o vztazích hmyzu a rostlin ve fosilním záznamu. Nejsou zde zmíněny pouze opylovači, nýbrž i další vztahy k rostlinám. Vzhledem k tomu, že u recentních druhů rostlin lze, v některých případech, jen těžko určit, zda se jedná o opylovači, nebo nikoli (viz podkapitola Dermaptera), je určení vztahu již vyhynulých rostlin a opylovačí obtížně.

Například o palynivorií existují pět důkazů, pyl byl nalezen jak v koprolitech, tak ve střevech hmyzu, ale o nektarivorií pět důkazů neexistují, protože trus nektarivorů nezachovává jako koprolit a ve střevech fosilií není možné nektar rozpoznat (Labandeira, 1998).

Hmyz pravděpodobně mohl pětáčit spory rostlin již v paleozoiku (570-245 milionů let). Je však známo, že vztah s krytosemennými rostlinami začal až v mezozoiku (245-65 milionů let), protože nejstarší nalezené zbytky takovýchhoto druhů rostlin pocházejí až z období křídy (124 milionů let).

Vývoj krytosemenných rostlin byl v tomto období velmi rychlý a do konce křídy se vyvinulo 67 řádů těchto rostlin (Daly et al., 1998).

Nejstarší vztahy s generativními částmi rostlin pochází pravděpodobně z období permu. Z tohoto období je tato potravní strategie známa u skupin Hypoperlida (Rasnitsyn & Krassilov, 1996; podle Krassilova et al., 2007), Psocida (Krassilova et al., 1999), Grylloblattida (Afonin, 2000; podle Krassilova et al., 2007) a Miomoptera (Palaeomanteida) (Krassilova et al., 2007). Některá zástupci těchto skupin byli dokonce monofágní, zatímco další druhy byly polyfágní. Mezi polyfágní druhy patří například Parapsocidium uralicum (Psocida) (Krassilov et al., 1999), Sojanidelia floralis (Grylloblattida) a Idelopsocus diradiatus (Hypoperlida). Monofágním byl druh Selarsiopsis conspicula (Miomoptera) (Krassilov et al., 2007).

Palynivorií dokládá fosilní záznam již z období permu. Z tohoto období je tato potravní strategie známa u skupin Hypoperlida (Rasnitsyn & Krassilov, 1996; podle Krassilova et al., 2007), Psocida (Krassilova et al., 1999), Grylloblattida (Afonin, 2000; podle Krassilova et al., 2007) a Miomoptera (Palaeomanteida) (Krassilova et al., 2007). Některá zástupci těchto skupin byli dokonce monofágní, zatímco další druhy byly polyfágní. Mezi polyfágní druhy patří například Parapsocidium uralicum (Psocida) (Krassilov et al., 1999), Sojanidelia floralis (Grylloblattida) a Idelopsocus diradiatus (Hypoperlida). Monofágním byl druh Selarsiopsis conspicula (Miomoptera) (Krassilov et al., 2007).

Nektarivorie společně s palynivorií byla pětáčena od triasu až do období křídy u osmi hlavních skupin mezozoického fosilního záznamu. Z minoritních skupin hmyzu to jsou tyto skupiny: Orthoptera (Krassilov et al., 1997), Phasmatodea (Krassilov & Rasnitsyn, 1999; podle Labandeiry et al., 2007), Embioptera (Rasnitsyn & Krassilov, 2000; podle Labandeiry et al., 2007).
et al. 2007), Mecopteroidea (Ren et al., 2010). Příkladem palynivorie z tohoto období jsou dva druhy rodů *Abouilus* (Orthoptera), v jejichž střech v období pozdní jury a jejich fosilie byly nalezeny v jižním Kazachstáně (Krasilov et al., 1997). Tento záznam o palynivorii také podporuje Grinfeldovu myšlenku, že nejstaršími nespecializovanými opylovali i nejsou brouci, nýbrž zástupci podšedu kobylky (Orthoptera: Ensifera). Také pšedpokládá, že palynivorie je u *A. amplus* a *A. cf. dilutus* z první záznamu o palynivorii z tohoto období jsou dva druhy *Abouilus* (Orthoptera) žily v období pozdní jury a jejich fosilie byly nalezeny v jižním Kazachstáně (Krasilov et al., 1997). Tento záznam o palynivorii také podporuje Grinfeldovu myšlenku, že nejstaršími nespecializovanými opylovali i nejsou brouci, nýbrž zástupci podšedu kobylky (Orthoptera: Ensifera). Také pšedpokládá, že palynivorie je u *A. amplus* a *A. cf. dilutus* žily v období pozdní jury a jejich fosilie byly nalezeny v jižním Kazachstáně (Krasilov et al., 1997).

Pravděpodobné opylovní jeznáno ze skupiny Mecopteroidea u několika fosilních druhů jako například *Jeholopsyche liaoningensis* (Aneuretopsychidae), který můžeme ústní ústrojí pšedpokládá k pšejímání tekuté stravy. Pravděpodobně se ďávil exudáty a sekrety z reprodukčních částí nahosemenných rostlin. Jde o fosilní druhy rané jury (Shih et al., 2011) a druhy *Lichnomesopsyche gloriae* (Mesopsychidae), *L. daohugouensis*, které žily ve stejném období. Druh *Vitimopsyche kozlovi* žil v období rané jury a byl pravděpodobně také opyloval *Emphalogen* (Ren et al., 2010).

První záznamy o řádu Thysanoptera pocházejí z pozdního triasu (rody *Triassothrips* a *Kazachothrips*). Z jury existuje záznam o druhu (*Cretothrips antiquus*, Aeolothripidae), který patří do skupiny pšebuzných dnešního rodu *Cycadothrips*. U tohoto fosilního druhy korelují některé rysy s recentními třístovými rody (*Cycadothrips*). Záznam o specializovaných opylovalích řádu Thysanoptera pochází z rané jury. Oplyovali byly druhy *Gymnopollisthrips maior* a *G. minor*. Pyl pozorovaný na fosilních jedincích patří do rodu *Cycadopites* (Penalver et al., 2012).

0,3 až 1,4 cm. Živili se relativně nepřístupnými látkami generativních orgánů (sekrety, pylové kapky). Také patřili k očesalým rostlin. Nálezy jedinců tohoto skupin jsou z období triasu až kříd (Labandeira et al., 2007).
5. Opylovači

V této kapitole budou probrány prokazatelní opylovači. Pokud není některá skupina hmyzu uvedena, nebylo u ní doposud popsáno i pozorováno opylování. Ve jmenovaných skupinách jsou zmíněni prokazatelní opylovači, ale existují i další záznamy o druzích z těchto skupin, které byli nalezeny v květech. Tyto záznamy jsou zmíněny v kapitolách působících k danému chování v květech. U Šíd Collembola, Dermaptera, Pscoptera a Trichoptera nebylo sice opylování stoprocentně prokázáno, ale v těchto případech lze o opylování uvažovat. Jednotlivé podkapitoly jsou seřazeny abecedně, podle vědeckého názvu řádu opylovačů.

Souhrnná tabulka je uvedena v příloze (Tabulka 1).

5.1. Blattodea

Další pěspad opylování řády je znám z jižního Japonska, kde opylují rostliny Balanopora tobiracola (Balanophoraceae). Na řádovému druhu Margatea satsumana byla nelezena pylová zrna, proto je tento řád považován za opylovač této rostliny (Kawakita & Kato, 2002). Prozatím poslední doposud známý záznam, o prokazatelném opylování řády, je z Francouzské Guyany, kde řády druhu Amazonina platystylata opylují rostlinu Clusia aff. sellowiana (Clusiaceae) (Vlasakova et al., 2008), která byla v roce 2011 pojmenována jako Clusia blattophila (Vlasakova & Gustafsson, 2011), dále bude rostlina zmiňována jako C. blattophila. Tento vztah probíhá na inselberzích, což jsou místa s extrémním mikroklimatem (Vlasakova & Gustafsson, 2011). Druh Amazonina platystylata, byl pozorován jak na samčích, tak i na samčích květech. Na několika řádech byla pozorována i pylová zrna. Jak se ukázalo, řády A. platystylata je majoritním opylovačem rostliny C. blattophila (Vlasakova et al., 2008). Jelikož se řády A. platystylata vyskytuje na podstatnějším areálu (Brazílie, Guyana, Francouzská Guyana) (Hebard, 1921) než C. blattophila, která je známa pouze z jednoho inselbergu a jeho okolí ve Francouzské Guyaně (Vlasakova & Gustafsson, 2011), nelze u tohoto druhu řádu pěspodkládat specializaci na rostlinu C. blattophila.

Květy rostlin, které opylují švábi, jsou jehlou, stejně jako celá nadzemní část rostliny (Kawakita & Kato, 2002), juto-zelené (Vlasakova et al., 2008) nebo krémově bílé a hnědé (Nagamitsu & Inoue, 1997). Květy švábů ovlivňují těžko opylovaných druhů rostlin také voní (Kawakita & Kato, 2002; Nagamitsu & Inoue, 1997; Vlasakova et al., 2008). Je zajímavé, že tyto záznamy o opylování pocházejí z ostrovů (Kawakita & Kato, 2002; Nagamitsu & Inoue, 1997) nebo z extrémního stanoviště, jakým je inselberg (Vlasakova et al., 2008). Předpokládám, že švábi nedisponují morfologickými adaptacemi pro opylování. A ani nejsou na opylovaných rostlinách potravně závislí, což mohu potvrdit u druhu *Amazonina platystylata* (osobní pozorování). Domnívám se, že švábi slouží jako opylovači v místech kde je nedostatek jiných potencionálních opylovačů.

5.2. Collembola

Jedním z Šíd, jehož zástupci byli prokazatelně na květech, jsou chvostoskoci. Zástupci tohoto Šídu byli pozorováni například na rostlině *Arisaema triphyllum* (Araceae), chvostoskoci na sobě měli dokonce pyl této rostliny, ale autoři výzkumu je za opylovače nepovažovali (Barriault et al., 2010). Na tomtéž druhu rostliny pozorovali chvostoskoky také Rust (1980), proto si myslel, že nebyli nalezeni jen náhodou a v květech této rostliny se vyskytují pravidelně. Rust dokonce určil druhu chvostoskoků, který byl na květech, jednalo se o druhy *Sminthurinus henshawi*, *Lepidocutus paradoxum* a *Tomocerus elongatus*. Chvostoskoci byli také na květech cibule kuchyněské (*Allium cepa*: Amaryllidaceae), bohužel v této práci byli většinou lenovci pod 3 mm zahrnuti do jedné skupiny, která hrála roli minoritních opylovačů cibule, proto není možné určit, zda chvostoskoci cibuli opylují i nikoli (Walker et al., 2011), chvostoskoci v tomto případě byli blízkí určování.
5.3. Dermaptera

Jakoby sice již byly nalezeny v květenstvích některých rostlin, např. *Orbignya phalerata* (Anderson et al., 1988), ale opylování zatím nebylo úplně prokázáno. Nejpravděpodobně záznam o opylování *g*kvor pochází z ostrova Espíritu Santo (Vanuatu), kde byla zkoumána termogeneze květen *Alocasia macrorrhizos* a také její opylovali. Jedním z možných opylovalí je *g*kvor *Labidura truncata*. Autoři výzkumu uváděli nekompatibilitu vajíček s vlastním pylom, tím je znemožnělo samoopylení (Ivancic et al., 2005). Myslí se, že *g*kvor je v tomto *p*štípylovali, nebo *š*byl by na jeho *t*řej zaznamenán pyl a byl také pozorován pohyb mezi jednotlivými květenstvím. Největší problém ve stanovení jeho schopnosti opylovat spolivá v tom, že není známo, je-li pyl rostliny nekompatibilní pouze v rámci jednoho jedince nebo v rámci celých trsů vegetativní zvlnělých jedinců, tedy klonu. Pokud by se *g*kvor p*T*ští velký na *k*řeňství nep*T*bu znělo rostliny, mohl by jí i opylit. Tento druh *g*kvorale se na květenstvích *A. macrorrhizos* nejen krmí pylem, ale také se na nich vyhšívá.

5.4. Hemiptera

Hemiptera jsou poměrně nápadní a *j*asté návštěvníci nejen rostlin, ale i jejích květen. Jsou to opylovali některých rostlin rodu *Macaranga* (Fiala et al., 2011; Ishida et al., 2009), druhu *Dysoxylum spectabile* (Anderson, 2003), dvou druhů rodu *Mallotus* (Yamasaki & Sakai, 2013), pravděpodobně také tykvice stísky *Ecballium elaterium* (Fahn & Shimony, 2001) a druhu *Stachytarpheta maximiliana* (Barbola et al., 2006). Nymfy polokšdlých byly nalezeny také na rostlinách *Arisaema triphyllum*, ale nebyly na jejich květenstvích břešné. Ovšem na pozorovaných jedincích byl pyl této rostliny (Barriault et al., 2010).

Na Novém Zélandu byli zjištění opylovali i několika druhů rostlin a mezi návštěvníky květen patřili i blízké nespecifikované zástupci *š*íd polokšdlé (Hemiptera). Byli nalezeni na květenech rostlin *Vitex lucens*, *Sophora microphylla* a *Dysoxylum spectabile*. Na jejich trsích byl zaznamenán pyl poslední jmenované rostliny, proto je možné, že se podílejí na jejím opylování. Důležitým roli nej polokšdlí hráli *p*ští opylování východních *š*T jmenovaných rostlin tamní ptáci (medosavci, tučni, oba druhy patří do [eleky kryšťalovité]) a další *š*idy hmyzu (Anderson, 2003).

Další *p*ští opylovační polokšdlími pochází z malajského dečného lesa, kde byl provázdán výzkum opyloval *T* rostlin rodu *Macaranga* (Euphorbiaceae). U druhu *M. pruinosa* byly z 20% návštěvníků tvorců zástupci Heteroptera (Miridae a Anthocoridae), zatímco u druhů *M. hosei* a *M. pearsonii* to bylo pouze 6%. Na druhu *M. heynei* (skupina Javonica) dominovali dospělíci a nymfy zástupce *š*id polokšdlí. Na tomto druhu byli pozorováni jiní zástupci...
polokčlých (Hemiptera), také blíže neurčení, než na dříve jmenovaných druzích rodu Macaranga, ale stejně jako na druzích M. trichocarpa a M. tanarius (skupina Tanarius). Polokčlů na M. heynei a M. tanarius na sobě měli pyl, dokonce i když byli odchyceni na samičích květenstvích (Fiala et al., 2011).

Polokčlů jsou také možná opylovali druh Mallotus japonicus a M. wrayi (Euphorbiaceae), které jsou opylovány větším množstvím a hmyzem. Oba druhy rostlin nemají okvětní, což je pěstíně bohužel není rostoucí. Polokčlům jsou u toho druhů minoritními opylovali, a to díky jejich nízkému pokusu. Druhy rostliny provází jen okvětní druhové jmenované rostliny (skupina Tanarius). Role druhu M. wrayi (Anthocoridae) a M. tanarius (skupina Tanarius) je také blíže neurčené druhy Šidu polokčlů. Krmili se na rostliny Stachytarpha maximiliani nektarem, z pobytu v květech jim na pěstních nohou ulpívával pyl (Barbola et al., 2006), takže by se opylovali nebo opylovali.

5.5. Mecoptera

Z pozorování prováděních na kruhových olivách (Frangula alnus: Rhamnaceae), je možné usuzovat, že společně s dalšími 4 druhy hmyzu, jedinými
návý hynky obou zkoumaných populací rostlin. Krom toho srpice Panorpa cf. meridionalis byly pozorovány na rostlinách ve třech různých dnech na dvou různých lokalitách, což vyvrací možnost náhodné návý y. Tato rostlina má zelenobílé květy tvoří tkvějství a jako odměnu opylovala na nektaru. (Medan, 1994). Vzhledem k tomu, že rostlinu opylovává vs. mnohoštěvité druhy, není možné povedomí, že tato rostlina je pšad působená pro opylování srpiciemi a navíc srpice tvoří pouze 1% návý y, proto nelze pšad působení specializací ani u nich.

5.6. Neuroptera
U středních (Neuroptera) je nejpravidelně podobný opylování dospělci, květy jejich lepší pohyblivosti. Dospělci tohoto druhu byli pozorováni například na květech rostliny Gaura villosa (Onagraceae). Květy této rostliny navývaly dokonce 6 druhů středních a mnohoštěvité květy touto skupinou | nilo té měst | tvrtinu z celkového počtu květů květového druhu Scotoleon minusculus byl druhým nejstěženým květem návý některým, a v květech se říjnilo na nektar. Tento druh, který je na tento druh pravidelně opyloval velmi dědictvý, proto se dospělci riskovali říjení na květech i pšiš hrozící predaci pavouků. Z mnohoštěvitého pylu, který byl na ochycených jedincích řízen byli na ochycených květech, jsou opylovali tohoto druhu rostliny. Střední totiž pšnážili více než polovinu z mnohoštěvitého pylu, který byl na ochyceném hmyzu. Nejvíce pylu bylo na jedincích druhu S. minusculus, proto je tento druh pravidelně podobný majoritním opylovám u této rostliny. Další zástupcem nalezlým na této rostlině byl dravý druh Vella fallax, který se zde pravidelně podobným říjnil mřízí, ale také na něm byla nalezena pylová zrna a dokonce byl i v kontaktu s | někou. Tento jedinec byl ověřením jediným zástupcem svého druhu pozorovaným v květech, proto je jeho efektivita jako opylovač velmi diskutabilní.

Další druhy středních, které navýovaly rostlinu G. villosa a byly na nich nalezen pyl, byly Brachynemurus hubbardi a Paranthaclisis hageni, tyto druhy však neříznuly takově mnohoštěvité pylu jako S. minusculus. Pšiš sledování rostliny druhu G. coccinea nebyly střední nalezeny, ale autoři udávali, že nepřízniví požadované mezi pšiši nocí a svitáním, proto nemuseli některé opylovači pozorovat (Clinebell et al., 2004).

Další záznamy o možném opylování blízkých neurých zástupců řízení Neuroptera pocházejí z Nového Zélandu, kde byla prováděna pozorování na několika druzích pšadních rostlin. Zástupci tohoto řídili pozorování na rostlině Sophora microphylla, na pozorovaných jedincích byl i pyl této rostliny (Anderson, 2003). Dravý druh Climaciella brunnea var. instabilis (Neuroptera) z | ledli pakudlankovití (Mantispidae), který sedí v květech a | říj tam na kořasti, byl pozorován, jak loví na spodní

5.7. Orthoptera

Prvním a doposud jediným spolehlivým opylovačem je z rovnokřídlých (Orthoptera) druh *Glomeremus orchidophilus*, patřící do podrodu kobylky (Ensifera) a žijící na ostrově Réunion. Opylovanou rostlinou je *Angraecum cadetii*, která je z čeledi Orchideaceae, jak ostatně napovídá druhové jméno jejího opylovače. *G. orchidophilus* se ďáví na opylované rostlině nektarem, také nebylo pozorováno ničení prašníku i celých květů tímto druhem, na druhou stranu byl pozorován pěnos pylu. Reprodukční úspěch rostliny se na Réunionu zdá být závislý na opylování druhem *G. orchidophilus*. Na druhou stranu *G. orchidophilus* není potravinou závislý na orchideji *A. cadetii*, protože slůdky nalezencích zvířat obsahovaly semena, pyl, ale i části života jejich vůčí. Orchidej *A. cadetii* se vyskytuje na ostrovech Réunion a Mauricius, zatímco *G. orchidophilus* se vyskytuje pouze na Réunionu, proto ztvárnila domněnka, že na Mauriciu by mohl být opylovačem druh *G. paraorchidophilus*. Tento předpoklad se zatím nepodařilo potvrdit (Hugel et al., 2010). Orchideje *A. cadetii* a *A. leonis* (opylovaná manželami) produkují v noci světlo, které je v brylkách. Tato rostlina má větší úspěšnost opylení než pěnové druhy opylované ptaky. *G. orchidophilus* se ke květu dostává buď plháním po rostlině, nebo skokem z okolí vegetace (Micheneau et al., 2010).

5.8. Psocoptera

5.9. Thysanoptera

Třísnonkůdlí patří mezi výjimečné opylavače z minoritních skupin hmyzu. Opysování tímto řádem bylo prokázáno u mnohých druhů rostlin z jedlých Amaryllidaceae (Walker et al., 2011), Annonaceae (Momose et al., 1998a; Webber & Gottsberger, 1996), Araceae (Rust, 1980), Dioscoreaceae (Mizuki et al., 2005; Segnou et al., 1992), Dipterocarpaceae (Sakai et al., 1999), Ericaceae (Garcia-Fayos & Goldarazena, 2008; Hagerup & Hagerup, 1953), Euphorbiaceae (Fiala et al., 2011; Moog et al., 2002), Fabaceae (Annadurai & Velayudhan, 1986), Chloranthaceae (Luo & Li, 1999), Lauraceae (Danieli-Silva & Varassin, 2013), Lecythidaceae (Fram & Durou, 2001), Meliaceae (Howard et al., 1995), Monimiaceae (Williams et al., 2001), Moraceae (Sakai, 2001; Zerega et al., 2004), Moringaceae (Bhattacharya & Mandal, 2004), Myristicaceae (Momose et al., 1998b; Sharma & Shivanna, 2011), Myrtaceae (Boulter et al., 2005), Primulaceae (Schwartz-Tzachor et al., 2006), Ranunculaceae, Rosaceae (Baker & Cruden, 1991), Sapindaceae (Tal, 2009), Solanaceae (Veluydhan & Annadurai, 1986), Thymelaeaceae (Cornara et al., 2005), Winteraceae (Pellmyr et al., 1990) a Zamiaceae (Mound & Terry, 2001; Terry, 2001). Třísnonkůdlí jsou tedy poměrně častými opylováči, a hrají roli jak majoritních (Danieli-Silva & Varassin, 2013; Mound & Terry, 2001; Sakai, 2001), tak i minoritními opylováči (Boulter et al., 2005; Sakai et al., 1999).

Rostliny opysované třísnonkůdlými asto voní (Frame & Durou, 2001; Momose et al., 1998b; Mound & Terry, 2001; Pellmyr et al., 1990; Webber & Gottsberger, 1996), jejich květy...

Jiným spadem je omylování rostliny Dioscorea japonica na Japonském ostrově Kjóto, kde je omylována druhem Erothrips lobatus. Věnovány specializací obou druhů toto jítlivého působí pokládat, protože areály jejich výskytu nejsou shodné na celém území. Navíc nebyly nalezeny larvy
třísnsokšdlých v květech této rostliny, proto je pšedpoklad, že se vyvíjejí na jiném druhu rostlin (Mizuki et al., 2005). Třísnsokšdlí mohou být pomŋŋnŋ efektivními opylovaři. Nejdřív již vytvořili návštevníky rostliny Castilla elastica (Moraceae) byly dva druhy třísnsokšdlých a to Frankliniella diversa a F. insularis, oba druhy se vyskytovaly na sámečích i samičích květenstvích. Na květenstvích se vyskytovalo víc samic než samců třísnsokšdlých. Ti se na sámečích květenstvích žávali s pylem, také se zde pravděpodobně rozmnožovali. Vzhledem k tomu, že nebyl rozpoznán žádný další možný opylovař a vzhledem k provádětím pokusů se zdá, že třísnsokšdlí hrají u tohoto druhu majoritní roli během opylování. Pravděpodobně díky vysoké hustotě rostlin bylo opylování na zkoumané lokalitě v Panamě úspěšné (Sakai, 2001). Podobný původ úspěšnosti opylování třísnsokšdlými je znám z Brazílie, kde byla zkoumána chráněná rostlina druhu Ocotea porosa (Lauraceae). Jedníným pozorovaným návštevníkem květenství je druh Frankliniella gardeniae (Thysanoptera), který se na této rostlině krmí pylem. Obvykle se druh F. gardeniae po nakrmnení v jednom květu pšedsunul do jiného, tasto se stejněm květenstvím. Podle polští plodů je ale zřejmé, že F. gardeniae je efektivním a ve zkoumané lokalitě i u jediným opylovařem (Danieli-Silva & Varassiu, 2013).

5.10. Trichoptera

Podobná situace jako u kvarčů je i u chrostíků, u nichž zatím není opylování taktéž prokazatelné. Je známo, že chrostíci pšenáčci na svých tříčech pyl rostlin rodu narcis (Narcissus). Nebylo u nich sice opylování prokázáno, ale vzhledem k tomu, že byli odchyceni dospělíci s pylem na jejich tříčech i mimo květenství, není možné vyloučit, že by v tomto původě mohli chrostíci sloužit jako opylovaři. Druh domácí N. marvieri byl navýšován v Maroku jedním druhem chrostíka a narcis N. cuatrecasasi byl navýšován ve španělsku
6. Diskuse

Z dosud známých informací je jisté, že opylovali jsou zastoupeni nejen ve 4 majoritních Šidech, ale i v minoritních Šidech hmyzu. Nejbohrajími opylovali z minoritních hmyzích skupin jsou zástupci Šidu TšisnokŠdlí. Nezdá se však, že by tito opylovali disponovali nějakými, ani zdánlivými, morfologickými adaptacemi pro opylení, jako tomu bylo u jejich fosilních pšebuzných, kteši můži se zadech ku chlupy, na něž se zachytával pyl (Penalver et al., 2012). TšisnokŠdlí mají asymetrické bodavý savé ústní ústrojí (Gullan & Cranston, 2005). Druhou nejast Ni opylovací skupinou jsou polokŠdlí, tato skupina má taktéž bodavý savé ústní ústrojí (Gullan & Cranston, 2005) a proto mTKe dobŠe pšímat nektar. Bodavý savé ústní ústrojí mTKe bývají oproti kousacímu, protože minoritní Šidy s kousacím ústním ústrojím jsou v poltu opylovala T až za polokŠdlími. PoŠdlí v dalších opylovacích Šidech, podle poltu druhTe, je stěšňokŠdlí, čiabí a rovnokŠdlí. U dalších ŠidT není opylování jisté, jde o Šidy či koš, chrostící, chvostoskoci a píšivky. Ostatní minoritní hmyzí Šidy mají jen minimální interakci s kvěny rostlin, ale nelze vyloučit, že bude v budoucnu objeven opyloval i z některého dalšího Šidu hmyzu.

Podle kvěných charakteristik rostlin, zmíněných v literatuře, pšdpokládám, že rostliny opylované minoritními skupinami hmyzu budou mít kvěny vonící, zabarvené bílé až hnědé, bez jeně voněných barvír a budou menší nebo hříšné pššústupné. Tyto charakteristiky platí pšdevím pro TšisnokŠdlé, pro ostatní Šidy by kvěny měly být lépe pšústupné, zbarvení by mělo být podobné a tyto kvěny by také měly vonící. Odhlásená bude hmyzu nabízena proti kousacímu, protože minoritní Šidy se sacím ústním ústrojím, jako jsou polokŠdlí. V některých pšpadech se mTKe jedná o velmi starý mutualistický vztah (pšdevím TšisnokŠdlí (Penalver et al., 2012)), ale také mTKe jít o nový, vzniklý vztah mezi rostlinou a hmyzem. Nový vzniklý opylovalá lze pšdpokládat spíše na ostrovech, i extrémních stanovišťích. Dále mohou minoritní skupiny hmyzu hrát roli minoritních opyloval T na rostlinách, které mají ýroké spektrum opyloval T, a tudiž nejsou specializovány.

U dělního hmyzu z minoritních ŠidT u recentních zástupců nebyla prokázána tak silná adaptace pro opylování, jako mají například mnozí blanokŠdlí. Určitá pšzpTsojení mohla vzniknout spíše u rostlin a to pšdevím na ostrovech a extrémních stanovištích, kde mTKe být nedostatek obvyklých opyloval T. Například na ostrově Réunion se pravděpodobně rostlina Angraecum cadetii pšzpTsoila opylování rovnokŠdlími druhu Glomeremus orchidophilus.

Tato rostlina, na rozdíl od nejblížích pšbuzných druhů (opylovány ptáky), voní, aby lákala
opýlovalo (Micheneau et al., 2010), stejně jako méně buzné druhy, které jsou opýlovány mřížami.

U minoritních šídlo hmyzu lze pšedpokládat opýlování spíš u dospělých, kteří jsou díky letu pohybliví, toto platí opět pšedevěm pro třesnokšídlé, ale i střískokšídlé a chrostíky. Pohyblivost třesnokšídlých a jejích schopnost opýlovat byla zkoumána v několika studiích (Rhainds & Shipp, 2004; Rhainds et al., 2005), podle kterých nejsou ani dospělé pšetličky pohyblivé. Z pozorování ve volné pšerodně (McLeish et al., 2003; Moog et al., 2002) se zase třesnokšídlí jeví jako celkem pohybliví. Z ostatních šídlo hmyzu opýlují i nelétavé druhy jako je Glomeremus orchidophilus (Hugel et al., 2010) jiným, například u ničibá Amazonina platystylata (Vlasakova et al., 2008), jedinci třetího druha šídlových jsou ověřeni velmi pohybliví.

Opýlování u třetího minoritních šídlo je v mnoha pšapedech známé až z poledních let, jako je tomu například u opýlování rovnokšídlými (Micheneau et al., 2010), nebo gráby (Nagamitsu & Inoue, 1997). U některých šídlo doposud nebylo prokazatelně doloženo, jako je tomu u například u ničévorcí a chrostíků. Mnohé šidy byly zkoumány (jí spíš brány v potaz) pšzerováno opýlovala šídlo většina, nebo jen minimálně jako je tomu u píseviček a chvostosoků. Lze tedy pšedpokládat, že mnoho druha šídlová šídlo z minoritních hmyzích skupin je řízeno jak na své objevení. Tuto možnost někdy také lze podložit některým řízkami, v roce 1983 vyšlo review (Kevan & Baker) o opýlování, ve kterém je 26 citací o minoritních hmyzích skupinách, zatímco jen v samotné kapitole o třesnokšídlých cituje pšas 30 zdrojů a celkem jich používá v kapitolě opýlováni pšas 50, viz také Tabulka 1. Jelikož došlo v posledních třetích letech k obrovskému nárůstu prací o opýlování, v nichž jsou zmíněny minoritní skupiny hmyzu, lze si položit otázku, proč nebyly tyto skupiny objeveny dříve? Jednou z pšetlí in mohlo být neúmyslné pšedhlinění zástupců třetího šídlových, kteří mohli být považováni za parazity rostlin, nebo predátory, kteří jsou na květech jen omylem (obě) situace mohou nastat například u polokšídlých, kteří jsou známí predátoři rostlin a nikoliv za opýlové. U skupin, které opýlují rostliny, známe poměrně jeně údaje o něměch taxonomických jednotek než je druhy (jíte jsou zminěny pouze šidy). Tato nevlaromost je pravděpodobně doložena tím, že výzkum opýlování řízků vjženou primárně botanicky zamýšlěným výzkumníkům, pro niž je identifikace hmyzu obtížná, ne-li nemožná. Intenzivní jen spolupráci mezi botaniky a entomology se zdá do budoucna nevyhnutelná.

Jedním z problémů je těmito jsem se potýkal, bylo malé množství uvedených informací, například v díle The biotic associations of cockroaches (Roth & Willis, 1960), je mnoho různých druhů ničí, kteří byli na mnoha rostlinách. Bohužel velmi jasto byly informace zjednodušeny jen na druh ničí a druhy rostliny, na které byl. Takto strohou informaci pak
samozřejmě není možné použít, pokud nás zajímá přesný vztah hmyzu s květy rostlin. Dalším problémem je, že poměrně jevy nejsou příliš publikovány a pokud publikovány jsou, jedná se o velmi staré lánky. Takto jsem nalezl jeden o kudlance rodu *Hymenopus* z roku 1902 (Shelford), ale nové lánky o chování této kudlanky jsem jenom nenalezl.

Vzhledem k obsáhlosti tohoto tématu si jsem domnívám, že mnoho opylovačů z minoritních skupin hmyzu mohlo uniknout mé pozornosti a proto nejsou v práci zmíněni, pravděpodobně budou také někdy dobrodružství objevení nových opylovačů z minoritních rodů hmyzu, proto jejich výlet nemůže být nikdy úplný.
7. Závěr

Jak vyplývá z informací z vědeckých lánků, jsou opylovači i i v dalších šlechticích hmyzu, nejen v šlechticích broucí, blanokřídlé, dvoukřídlé a motýli. Nejastěji se opylovači i i z minoritních šlechticích hmyzu jsou bezesporu těsníky, které jsou velmi iasto zmiňovány nejen jako opylovači, ale také jako návštěvníci květin. U dalších šlechticích hmyzu je opylovačů výrazně méně než je tomu u těsníků. Pravděpodobně jsou nejastěji opylovači šlechticích hmyzu jsou bezklínky, které jsou velmi iasto zmiňovány nejen jako opylovači, ale také jako návštěvníci květin. Nejčastěji se opylovači i i z minoritních šlechticích hmyzu jsou bezesporu těsníky, které jsou velmi iasto zmiňovány nejen jako opylovači, ale také jako návštěvníci květin. Prokazatelně bylo opylování doloženo i u šlechticích hmyzu, u kterých je doposud znám pouze jediný opylovač. U šlechticích hmyzu je opylování velmi pravděpodobné, nebylo ovšem pravděpodobně doloženo. Existují i šlechticích hmyzu, které jsou velmi iasto zmiňovány, a pravděpodobně by jejich zástupci mohli být opylovači, ale také o šlechticích hmyzu, které jsou velmi iasto zmiňovány. Příkladem opylovačích druhů je v píše (Tabulka 1), také jsou v této píse v míněny druhy, u kterých je možnost, že jsou opylovači, ale jejich úloha není momentálně plně zjevná.

Další vztahy jako je palynivorie a nektarivorie jsou u minoritních šlechticích hmyzu také poměrně běžné, ale rozhodně se nejedná o dominantní potravní strategii těchto šlechticích hmyzu. Poměrně zajímavou informací je nektarivorie u šlechticích hmyzu (De Siqueira et al., 2008), u kterých bych tuto potravní strategii neočekával.

Vzhledem k tomu je nejaktuálně citované lánky jsou z letošního roku, lze tedy pětdpokládat, informací je nejen o minoritních skupinách hmyzu jako opylovačích a opylovačích celkově bude i nadále pětbyvat.
8. Literatura

Ball ED, Tinkham ER, Flock R & Vorhies CT (1942) The Grasshoppers and Other Orthoptera of Arizona.

Grinfeld E (1962) Origin of Anthophyly in Insects. Leningrad University, Leningrad, USSR.*

*sekundární citace
9. Příloha

Tabulka 1: Seznam minoritních skupin hmyzu, které opylují, nebo je u nich opylování velmi pravděpodobné. Kategorie opylování (typ) jsou stanoveny takto: autor lánku považuje hmyz za opylovač - ano, pravděpodobně (prav) by mohl opylovat (autor si není jistý, ale na té hmyzu byl pyl, nebo byli v květech jisté), pokud vztah s rostlinou nebyl zkouman, ale je domněnka (jisté názory, přibuznost s jiným opylovačem), je v kategorii nezkoumáno (nz). V kategorii nejisté, jsou druhy, které byly v květech, ale byly například málo poctivá, nebo na nich nebyl pozorován pyl. Řády hmyzu jsou řazeny abecedně podle vědeckého názvu, jsou v pořadí: lyrábi - Blattodea (B), chvostoskoci - Collembola (C), řečkové - Dermaptera (D), polokřídle - Hemiptera (H), srpice - Mecoptera (M), štítkokřídle - Neuroptera (N), rovnokřídle - Orthoptera (O), pisivky - Psocoptera (P), třásnikokřídle - Thysanoptera (Th), chrostíci - Trichoptera (Tri).
<table>
<thead>
<tr>
<th>oříznutí</th>
<th>typ</th>
<th>Šídlo</th>
<th>oříznutá rostlina</th>
<th>Jelena</th>
<th>autor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemithyrsocera sp.</td>
<td>nejisté</td>
<td>B</td>
<td>Uvaria elmeri</td>
<td>Annonaceae</td>
<td>(Nagamitsu & Inoue, 1997)</td>
</tr>
<tr>
<td>ssp.</td>
<td>ano</td>
<td>B</td>
<td>Uvaria elmeri</td>
<td>Annonaceae</td>
<td>(Nagamitsu & Inoue, 1997)</td>
</tr>
<tr>
<td>Parathropes bilunata</td>
<td>prav</td>
<td>B</td>
<td>Dendropanax arboreus</td>
<td>Araliaceae</td>
<td>(Perry, 1978)</td>
</tr>
<tr>
<td>Margattea satsamana</td>
<td>ano</td>
<td>B</td>
<td>Balanophora tobricola</td>
<td>Balanophoraceae</td>
<td>(Kawakita & Kato, 2002)</td>
</tr>
<tr>
<td>Amazonina platystylata</td>
<td>nejisté</td>
<td>B</td>
<td>Syzygium corniflorum</td>
<td>Myrtaceae</td>
<td>(Crome & Irvine, 1986)</td>
</tr>
<tr>
<td>sp.</td>
<td>C</td>
<td>Allium cepa</td>
<td>Ammaryllidaceae</td>
<td>(Walker et al., 2011)</td>
<td></td>
</tr>
<tr>
<td>Lepidocutus paradoxxum</td>
<td>nejisté</td>
<td>C</td>
<td>Arisaema triphyllum</td>
<td>Araceae</td>
<td>(Rust, 1980)</td>
</tr>
<tr>
<td>Smithurinus henshawi</td>
<td>nejisté</td>
<td>C</td>
<td>Arisaema triphyllum</td>
<td>Araceae</td>
<td>(Rust, 1980)</td>
</tr>
<tr>
<td>sp.</td>
<td>prav</td>
<td>C</td>
<td>Arisaema triphyllum</td>
<td>Araceae</td>
<td>(Barriault et al., 2010)</td>
</tr>
<tr>
<td>Tomocerus elongatus</td>
<td>nejisté</td>
<td>C</td>
<td>Arisaema triphyllum</td>
<td>Araceae</td>
<td>(Rust, 1980)</td>
</tr>
<tr>
<td>Labiduridae truncata</td>
<td>prav</td>
<td>D</td>
<td>Alocasia macrorrhizos</td>
<td>Araceae</td>
<td>(Ivancic et al., 2005)</td>
</tr>
<tr>
<td>Aphididae</td>
<td>nejisté</td>
<td>H</td>
<td>Allium cepa</td>
<td>Ammaryllidaceae</td>
<td>(Walker et al., 2011)</td>
</tr>
<tr>
<td>sp.</td>
<td>prav</td>
<td>H</td>
<td>Arisaema triphyllum</td>
<td>Araceae</td>
<td>(Barriault et al., 2010)</td>
</tr>
<tr>
<td>Geocoridae</td>
<td>ano</td>
<td>H</td>
<td>Ecballium elaterium</td>
<td>Cucurbitaceae</td>
<td>(Fahn & Shimony, 2001)</td>
</tr>
<tr>
<td>Dysdercus superstitiosis</td>
<td>ano</td>
<td>H</td>
<td>Dioscorea rotundata</td>
<td>Dioscoreaceae</td>
<td>(Segnou et al., 1992)</td>
</tr>
<tr>
<td>black</td>
<td>prav</td>
<td>H</td>
<td>Macaranga trichocarpa</td>
<td>Euphorbiaceae</td>
<td>(Fiala et al., 2011)</td>
</tr>
<tr>
<td>brown</td>
<td>prav</td>
<td>H</td>
<td>Macaranga heynei</td>
<td>Euphorbiaceae</td>
<td>(Fiala et al., 2011)</td>
</tr>
<tr>
<td>Decomoides schnerlai</td>
<td>nejisté</td>
<td>H</td>
<td>Macaranga tanarius</td>
<td>Euphorbiaceae</td>
<td>(Ishida et al., 2009)</td>
</tr>
<tr>
<td>green</td>
<td>prav</td>
<td>H</td>
<td>Macaranga tanarius</td>
<td>Euphorbiaceae</td>
<td>(Fiala et al., 2011)</td>
</tr>
<tr>
<td>Orius atratus</td>
<td>ano</td>
<td>H</td>
<td>Macaranga tanarius</td>
<td>Euphorbiaceae</td>
<td>(Fiala et al., 2011)</td>
</tr>
<tr>
<td>sp.</td>
<td>prav</td>
<td>H</td>
<td>Mallotus japonicus</td>
<td>Euphorbiaceae</td>
<td>(Ishida et al., 2009)</td>
</tr>
<tr>
<td>sp.</td>
<td>prav</td>
<td>H</td>
<td>Mallotus wrayi</td>
<td>Euphorbiaceae</td>
<td>(Yamasaki & Sakai, 2013)</td>
</tr>
<tr>
<td>sp.</td>
<td>prav</td>
<td>H</td>
<td>Dyssoxylum spectabile</td>
<td>Meliaceae</td>
<td>(Anderson, 2003)</td>
</tr>
<tr>
<td>sp. 1</td>
<td>prav</td>
<td>H</td>
<td>Stachytarpheta maximiliani</td>
<td>Verbenaceae</td>
<td>(Barbola et al., 2006)</td>
</tr>
<tr>
<td>sp. 2</td>
<td>prav</td>
<td>H</td>
<td>Stachytarpheta maximiliani</td>
<td>Verbenaceae</td>
<td>(Barbola et al., 2006)</td>
</tr>
<tr>
<td>sp. 3</td>
<td>nejisté</td>
<td>H</td>
<td>Stachytarpheta maximiliani</td>
<td>Verbenaceae</td>
<td>(Barbola et al., 2006)</td>
</tr>
<tr>
<td>Panorpa cf. meridionalis</td>
<td>ano</td>
<td>M</td>
<td>Frangula alnus</td>
<td>Rhamnaceae</td>
<td>(Medan, 1994)</td>
</tr>
<tr>
<td>Climaciella brunnea var. instabilis</td>
<td>prav</td>
<td>N</td>
<td>Asclepias syriaca</td>
<td>Asclepiaceae</td>
<td>(Boyden, 1983)</td>
</tr>
<tr>
<td>sp.</td>
<td>prav</td>
<td>N</td>
<td>Sophora microphylla</td>
<td>Fabaceae</td>
<td>(Anderson, 2003)</td>
</tr>
<tr>
<td>Brachynemurus hubardi</td>
<td>prav</td>
<td>N</td>
<td>Gaura villosa villosa</td>
<td>Onagraceae</td>
<td>(Clinebell et al., 2004)</td>
</tr>
<tr>
<td>Chrysopidae sp.</td>
<td>prav</td>
<td>N</td>
<td>Gaura v. villosa</td>
<td>Onagraceae</td>
<td>(Clinebell et al., 2004)</td>
</tr>
<tr>
<td>Paranthaclisis hageni</td>
<td>prav</td>
<td>N</td>
<td>Gaura v. villosa</td>
<td>Onagraceae</td>
<td>(Clinebell et al., 2004)</td>
</tr>
<tr>
<td>Scotoleon minusculus</td>
<td>ano</td>
<td>N</td>
<td>Gaura v. villosa</td>
<td>Onagraceae</td>
<td>(Clinebell et al., 2004)</td>
</tr>
<tr>
<td>Vella fallax</td>
<td>nejisté</td>
<td>N</td>
<td>Gaura v. villosa</td>
<td>Onagraceae</td>
<td>(Clinebell et al., 2004)</td>
</tr>
<tr>
<td>Glomeremus orchidophilus</td>
<td>ano</td>
<td>O</td>
<td>Angraecum cadetii</td>
<td>Orchideaceae</td>
<td>(Clinebell et al., 2004)</td>
</tr>
<tr>
<td>Glomeremus paraorchidophilus</td>
<td>nz</td>
<td>O</td>
<td>Angraecum cadetii</td>
<td>Orchideaceae</td>
<td>(Clinebell et al., 2004)</td>
</tr>
<tr>
<td>sp.</td>
<td>nejisté</td>
<td>P</td>
<td>Allium cepa</td>
<td>Ammaryllidaceae</td>
<td>(Hugel et al., 2010; Micheneau et al., 2010)</td>
</tr>
<tr>
<td>sp.</td>
<td>nejisté</td>
<td>Th</td>
<td>Allium cepa</td>
<td>Ammaryllidaceae</td>
<td>(Hugel et al., 2010; Micheneau et al., 2010)</td>
</tr>
<tr>
<td>sp.</td>
<td>ano</td>
<td>Th</td>
<td>Bocageopsis</td>
<td>Annonaceae</td>
<td>(Webber & Gottsberger, 2010)</td>
</tr>
<tr>
<td>sp.</td>
<td>ano</td>
<td>Th</td>
<td>multiflora</td>
<td>Annonaceae</td>
<td>1996)</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----</td>
<td>---------</td>
<td>---------------------</td>
<td>------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Thrips brevistylus</td>
<td>ano</td>
<td>Th</td>
<td>Popowia pisocarpa</td>
<td>Annonaceae</td>
<td>(Momose et al., 1998a)</td>
</tr>
<tr>
<td>Thrips cf. pectiniprivus</td>
<td>ano</td>
<td>Th</td>
<td>Popowia pisocarpa</td>
<td>Annonaceae</td>
<td>(Momose et al., 1998a)</td>
</tr>
<tr>
<td>Thrips florum</td>
<td>ano</td>
<td>Th</td>
<td>Popowia pisocarpa</td>
<td>Annonaceae</td>
<td>(Momose et al., 1998a)</td>
</tr>
<tr>
<td>Thrips sp.</td>
<td>ano</td>
<td>Th</td>
<td>Popowia pisocarpa</td>
<td>Annonaceae</td>
<td>(Momose et al., 1998a)</td>
</tr>
<tr>
<td>Heterothrips</td>
<td>ano</td>
<td>Th</td>
<td>Arisaema triphyllum</td>
<td>Araceae</td>
<td>(Rust, 1980)</td>
</tr>
<tr>
<td>Linnnophilus sp.</td>
<td>nejsté</td>
<td>Th</td>
<td>Diapensia laponica</td>
<td>Diapensiaceae</td>
<td>(Elberling & Olesen, 1999)</td>
</tr>
<tr>
<td>Ernothrips lobatus</td>
<td>ano</td>
<td>Th</td>
<td>Dioscorea japonica</td>
<td>Dioscoreaceae</td>
<td>(Mizuki et al., 2005)</td>
</tr>
<tr>
<td>Haplothrips Gowdeyi</td>
<td>ano</td>
<td>Th</td>
<td>Dioscorea japonica</td>
<td>Dioscoreaceae</td>
<td>(Mizuki et al., 2005)</td>
</tr>
<tr>
<td>Larothrips dentipes</td>
<td>ano</td>
<td>Th</td>
<td>Dioscorea rotundata</td>
<td>Dioscoreaceae</td>
<td>(Segnoun et al., 1992)</td>
</tr>
<tr>
<td>Scirtothrips dorsalis</td>
<td>nejsté</td>
<td>Th</td>
<td>Dioscorea japonica</td>
<td>Dioscoreaceae</td>
<td>(Mizuki et al., 2005)</td>
</tr>
<tr>
<td>Thrips corolatus</td>
<td>ano</td>
<td>Th</td>
<td>Dioscorea japonica</td>
<td>Dioscoreaceae</td>
<td>(Mizuki et al., 2005)</td>
</tr>
<tr>
<td>Thrips hawaiiensis</td>
<td>ano</td>
<td>Th</td>
<td>Dioscorea japonica</td>
<td>Dioscoreaceae</td>
<td>(Mizuki et al., 2005)</td>
</tr>
<tr>
<td>Thrips corolatus</td>
<td>ano</td>
<td>Th</td>
<td>Shorea parviflora</td>
<td>Dipterocapaceae</td>
<td>(Sakai et al., 1999)</td>
</tr>
<tr>
<td>Thrips hawaiiensis</td>
<td>nejsté</td>
<td>Th</td>
<td>Shorea parviflora</td>
<td>Dipterocapaceae</td>
<td>(Sakai et al., 1999)</td>
</tr>
<tr>
<td>Cetatothrips</td>
<td>ano</td>
<td>Th</td>
<td>Arctostaphylos iva-</td>
<td>Ericaceae</td>
<td>(Garcia-Fayos & Goldarazena, 2008)</td>
</tr>
<tr>
<td>ericaeae</td>
<td></td>
<td></td>
<td>usri</td>
<td></td>
<td>(Hagerup & Hagerup, 1953)</td>
</tr>
<tr>
<td>Frankliniella intosa</td>
<td>ano</td>
<td>Th</td>
<td>Erica tetralix</td>
<td>Ericaceae</td>
<td>(Garcia-Fayos & Goldarazena, 2008)</td>
</tr>
<tr>
<td>Haplothrips setiger</td>
<td>prav</td>
<td>Th</td>
<td>Arctostaphylos iva-</td>
<td>Ericaceae</td>
<td>(Garcia-Fayos & Goldarazena, 2008)</td>
</tr>
<tr>
<td>erusri</td>
<td></td>
<td></td>
<td>usri</td>
<td></td>
<td>(Hagerup & Hagerup, 1953)</td>
</tr>
<tr>
<td>Linnnophilus sp.</td>
<td>nejsté</td>
<td>Th</td>
<td>Rhododendron lappo-</td>
<td>Ericaceae</td>
<td>(Garcia-Fayos & Goldarazena, 2008)</td>
</tr>
<tr>
<td>Orothrips priesneri</td>
<td>nejsté</td>
<td>Th</td>
<td>Arctostaphylos iva-</td>
<td>Ericaceae</td>
<td>(Garcia-Fayos & Goldarazena, 2008)</td>
</tr>
<tr>
<td>erusri</td>
<td></td>
<td></td>
<td>usri</td>
<td></td>
<td>(Hagerup & Hagerup, 1953)</td>
</tr>
<tr>
<td>Taeniothrips ericae</td>
<td>ano</td>
<td>Th</td>
<td>Erica tetralix</td>
<td>Ericaceae</td>
<td>(Fiala et al., 2011)</td>
</tr>
<tr>
<td>Dolichothrips sp. 1</td>
<td>ano</td>
<td>Th</td>
<td>Macaranga molleyana,</td>
<td>Euphorbiaceae</td>
<td>(Fiala et al., 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M. beccariana, M.</td>
<td></td>
<td>(Fiala et al., 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hypoleuca, M. pachyphylla, M.</td>
<td></td>
<td>(Fiala et al., 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>conifera, M. diepenhorstii, M.</td>
<td></td>
<td>(Fiala et al., 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>winkleri, M. angulata, M.</td>
<td></td>
<td>(Fiala et al., 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hulletii, M. depressa, M. triloba, M.</td>
<td></td>
<td>(Fiala et al., 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>indisticta, M. trachyphylla, M.</td>
<td></td>
<td>(Fiala et al., 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>glandibracteolata, M. bancana, M.</td>
<td></td>
<td>(Fiala et al., 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>petanostylata</td>
<td></td>
<td>(Fiala et al., 2011)</td>
</tr>
<tr>
<td>Dolichothrips sp. 2</td>
<td>ano</td>
<td>Th</td>
<td>Macaranga hoisei, M.</td>
<td>Euphorbiaceae</td>
<td>(Fiala et al., 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pearsonii, M. pruinosa, M. gigantea, M.</td>
<td></td>
<td>(Fiala et al., 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>heynei</td>
<td></td>
<td>(Fiala et al., 2011)</td>
</tr>
<tr>
<td>Dolichothrips ssp.</td>
<td>ano</td>
<td>Th</td>
<td>Macaranga tanarius, M. trichocarpa</td>
<td>Euphorbiaceae</td>
<td>(Fiala et al., 2011)</td>
</tr>
<tr>
<td>Neoheegeria sp.</td>
<td>ano</td>
<td>Th</td>
<td>Macaranga hulletii</td>
<td>Euphorbiaceae</td>
<td>(Moog et al., 2002)</td>
</tr>
<tr>
<td>Thripidae</td>
<td>ano</td>
<td>Th</td>
<td>Macaranga griffithiana</td>
<td>Euphorbiaceae</td>
<td>(Fiala et al., 2011)</td>
</tr>
<tr>
<td>Thrips sp.</td>
<td>nejsté</td>
<td>Th</td>
<td>Macaranga hulletti</td>
<td>Euphorbiaceae</td>
<td>(Moog et al., 2002)</td>
</tr>
<tr>
<td>Species</td>
<td>Hosts</td>
<td>Family</td>
<td>Reference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>-----------------</td>
<td>------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sp. Haplothrips sp.</td>
<td>Astragalus alpinus, Ch. fortunei, Ch. serratus</td>
<td>Galegeae</td>
<td>(Elberling & Olesen, 1999)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thaeniothrips eucarhii</td>
<td>Ch. fortunei</td>
<td>Chloranthaceae</td>
<td>(Luo & Li, 1999)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frankliniella gardeniae</td>
<td>Ocotea porosa</td>
<td>Lauraceae</td>
<td>(Danieli-Silva & Varassin, 2013)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceratothripoides bruneus</td>
<td>Napoleonaea vogelii</td>
<td>Lecythidaceae</td>
<td>(Frame & Durou, 2001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frankliniella bispinosa</td>
<td>Swietenia mahagoni</td>
<td>Meliaceae</td>
<td>(Howard et al., 1995)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frankliniella sp.</td>
<td>Swietenia mahagoni, Wilkiea huelgelliana</td>
<td>Meliaceae</td>
<td>(Howard et al., 1995)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frankliniella diversa</td>
<td>Castilla elastica</td>
<td>Moraceae</td>
<td>(Williams et al., 2001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frankliniella insularis</td>
<td>Castilla elastica</td>
<td>Moraceae</td>
<td>(Sakai, 2001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrips antiaropsidis</td>
<td>Antiaropsis decipiens</td>
<td>Moraceae</td>
<td>(Zerega et al., 2004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phlaeothripidae</td>
<td>Myristica dactyloides</td>
<td>Myristicaceae</td>
<td>(Sharma & Shivanna, 2011)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thripidae</td>
<td>Myristica dactyloides</td>
<td>Myristicaceae</td>
<td>(Sharma & Shivanna, 2011)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sp.</td>
<td>Syzygium sayeri</td>
<td>Myrtaceae</td>
<td>(Boulter et al., 2005)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vice druh†</td>
<td>Cyclamen persicum</td>
<td>Primulaceae</td>
<td>(Schwartz-Tzachor et al., 2006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sp.</td>
<td>Ranunculus sceleratus</td>
<td>Ranunculaceae</td>
<td>(Baker & Cruden, 1991)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sp.</td>
<td>Potentilla rivalis</td>
<td>Rosaceae</td>
<td>(Baker & Cruden, 1991)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sp.</td>
<td>Drys octopetala</td>
<td>Rosaceae</td>
<td>(Elberling & Olesen, 1999)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sp.</td>
<td>Potentilla crantzii</td>
<td>Rosaceae</td>
<td>(Elberling & Olesen, 1999)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limnophilus sp.</td>
<td>Salix reticulata</td>
<td>Salicaceae</td>
<td>(Elberling & Olesen, 1999)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taeniothrips inconsequens</td>
<td>Acer pseudoplatanus</td>
<td>Sapindaceae</td>
<td>(Tal, 2009)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sp.</td>
<td>Saxifraga aizoides</td>
<td>Saxifragaceae</td>
<td>(Elberling & Olesen, 1999)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taeniothrips major</td>
<td>Solanum melongela, S. xanthocarpum, S. trilobatun, S. nigrum</td>
<td>Solanaceae</td>
<td>(Velayudhan & Annadurai, 1986)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thripidae</td>
<td>Thymelaea hirsuta</td>
<td>Thymelaeaceae</td>
<td>(Cornara et al., 2005)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Host Family</td>
<td>Host Species</td>
<td>Family</td>
<td>Source</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------</td>
<td>---------------------------------------</td>
<td>----------</td>
<td>---------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Taeniothrips novocaledonensis</td>
<td>Th</td>
<td>Belliolum pancheri, B. rivulare, B. sp.</td>
<td>Winteraceae</td>
<td>(Pellmyr et al., 1990)</td>
<td></td>
</tr>
<tr>
<td>Cycadothrips adalbrechti</td>
<td>Th</td>
<td>Macrozamia mcdonnelli</td>
<td>Zamiaceae</td>
<td>(Mound & Terry, 2001)</td>
<td></td>
</tr>
<tr>
<td>Cycadothrips chadwicki sp. 1</td>
<td>Th</td>
<td>Macrozamia communis</td>
<td>Zamiaceae</td>
<td>(Terry, 2001)</td>
<td></td>
</tr>
<tr>
<td>sp. 2</td>
<td>Tri</td>
<td>Narcissus cuatrecasasi</td>
<td>Ammaryllidaceae</td>
<td>(Perez-Barrales et al., 2006)</td>
<td></td>
</tr>
<tr>
<td>Tinodes waeneri</td>
<td>Tri</td>
<td>Narcissus marvieri</td>
<td>Ammaryllidaceae</td>
<td>(Perez-Barrales et al., 2006)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tri</td>
<td>vře druhotný</td>
<td>Apiaceae</td>
<td>(Petersson & Hasselrot, 1994)</td>
<td></td>
</tr>
</tbody>
</table>