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DIPLOMOVÁ PRÁCE
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Abstracts

Název práce: Anti-gaussovské kvadraturńı formule
Autor: Stanislava Kucková
Katedra (ústav): Katedra numerické matematiky
Vedoućı diplomové práce: Doc. RNDr. Josef Kofroň, CSc.
E-mail vedoućıho: Kofron@karlin.mff.cuni.cz
Abstrakt: Anti-gaussovská kvadraturńı formule je (n + 1)-bodová formule, jejiž alge-
braický stupeň přesnosti je 2n − 1 a pro polynomy až do stupně 2n + 1 je jej́ı zbytek
v absolutńı hodnotě roven zbytku n-bodové Gaussovy kvadraturńı formule, ale má opačné
znaménko. V práci podáme zevrubné d̊ukazy významných vlastnost́ı anti-gaussovské
kvadratury uvedených v [7] (zejména kladnost vah a postačuj́ıci podmı́nky uzavřenosti pro
speciálńı typy váhových funkćı), poṕı̌seme algoritmus pro konstrukci anti-gaussovské for-
mule, který využ́ıvá znalost ortogonalńıch polynomů potřebných pro konstrukci Gaussovy
formule a předvedeme jeho implementaci v Maple. Dále dokážeme konvergenci anti-
gaussovské kvadratury pro spojité funkce a odvod́ıme odhady chyb nejprve klasickou
metodou využ́ıvaj́ıćı derivace vyšš́ıch řád̊u integrované funkce a následně pro analytické
funkce spočteme odhad bez už́ıt́ı derivaćı. Pro př́ıpad uzavřených anti-gaussovských for-
muĺı uvedeme tento odhad v zakončeném tvaru. V zǎvěru srovnáme přesnost jednotlivých
odhad̊u pro r̊uzné váhy a integrované funkce a porovnáme praktickou přesnost (n + 1)-
bodové Gaussovy formule a formule vzniké jako pr̊uměr anti-gaussovske formule a n-bodové
Gaussovy formule.
Kĺıčová slova: anti-gaussovská kvadraturńı formule, numerická integrace, odhady chyb

Title: Anti-Gaussian quadrature formulas
Author: Stanislava Kucková
Department: Department of Numerical Mathematics
Supervisor: Doc. RNDr. Josef Kofroň, CSc.
Supervisor’s e-mail address: Kofron@karlin.mff.cuni.cz
Abstract: Anti-Gaussian quadrature formula is a (n + 1)-point formula of degree 2n− 1
which integrates the polynomials of degree up to 2n + 1 with an error of the same mag-
nitude as the the one of the n-point Gaussian formula but of the opposite sign. In this
thesis we present detailed proofs of significant properties of the anti-Gaussian quadrature
listed in [7] (in particular the positiveness of the weights and for certain weight functions
sufficient conditions for the formula to be internal), we describe the algorithm for the con-
struction of the anti-Gaussian formula using the knowledge of the orthogonal polynomials
needed to construct Gaussian formula and we demonstrate its implementation in Maple.
Next we prove the convergence of the the formula for continuous functions and derive the
error estimates at first by the classical method involving the higher order derivatives of
the integrated function and secondly an error estimate for analytic functions without use
of the derivatives. For the case of internal anti-Gaussian formulas we present a finite form
of this estimate. Finally we compare the accuracy of the estimates for different weight
and integrated functions and confront the practical accuracy of the (n+1)-point Gaussian
formula and a formula obtained as an average of the anti-Gaussian formula and the n-point
Gaussian formula.
Keywords: anti-Gaussian quadrature formula, numerical integration, error estimates
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1. Introduction

In this section we shall recall some basic notions in the theory of quadrature formulas
and introduce the anti-Gaussian quadrature formula.

Definition 1.1. Let us consider a quadrature formula K for a functional F . If

Kf = Ff ∀f ∈ Pm(1.1)

where Pm denotes the space of all polynomials of degree less or equal m, we shall say that
the algebraic degree of precision of the formula K is m.

Definition 1.2. Let w be a given function defined and nonnegative almost everywhere in
the interval 〈a, b〉 for which the integral

∫ b

a

w(x)dx

is finite. Let G
(n)
w be a quadrature formula

(1.2) G(n)
w f :=

n∑
i=1

w
(n)
i f(x

(n)
i )

then G
(n)
w is n-point Gaussian quadrature formula for the integral

(1.3) If :=

∫ b

a

w(x)f(x)dx

if and only if

(1.4) G(n)
w p = Ip ∀p ∈ P2n−1.

In other words the algebraic degree of precision of the n-point Gaussian quadrature
formula has to be the maximal possible which is 2n− 1.

Remark 1.3. In the definition 1.2 we shall say w is a weight function and w
(n)
i and x

(n)
i are

weights and nodes of the quadrature formula G
(n)
w .

There are various questions of interest regarding the existence and other properties of
quadrature formulas defined by a set of equations (e.g. (1.3)). To make the terminology
precise we introduce the following definition.

Definition 1.4. We shall say

• the formula exists, if the set of the defining equations has a (possibly complex)
solution.

• the formula is real if the points and weights are all real.
• a real formula is internal if all the nodes belong to the (closed) interval of inte-

gration. A node not belonging to the interval of integration is called an exterior
node.

• the formula is positive if all the weights are positive.
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It is known [10] that Gaussian formulas are internal and positive.

Often we need to estimate the error If −G
(n)
w f where f is a function that has not been

subjected to much analysis. The usual method is to use another quadrature formula A of

degree greater than 2n− 1 and to estimate the error as Af −G
(n)
w f . Any such quadrature

rule requires at least n+1 additional points. Imagine we want to keep the original Gaussian
nodes xi, i = 1, . . . , n and add n-arbitrary nodes yi, i = 1, . . . , n so that it will be possible
to find such weights Ai and Bi that the obtained formula will have the degree at least
2n− 1.

In other words we are looking for Ai, Bi and yi, i = 1, . . . , n for which

n∑
i=1

Aix
k
i +

n∑
i=1

Biy
k
i =

∫ b

a

w(x)xkdx =: Ik ∀k ∈ [0, 2n− 1].

Or equivalently in the matrix form



1 . . . 1 1 . . . 1
x1 . . . xn y1 . . . yn

x2
1 . . . x2

n y2
1 . . . x2

n
...

...
...

...
x2n−2

1 . . . x2n−2
n y2n−2

1 . . . y2n−2
n

x2n−1
1 . . . x2n−1

n y2n−1
1 . . . y2n−1

n







A1
...

An

B1
...

Bn




=




I0

I1
...

I2n−1


 .

One solution of this problem is to choose the weights Ai to be equal to the original weights
of the Gaussian formula and Bi = 0 ∀ i = 1, . . . , n. But for any choice of yi different to
xi the matrix above is regular, which implies that the solution is unique. Therefore we
need to add at least n+1 additional points to the ones of the Gaussian formula to achieve
a better degree of precision than 2n− 1.

In fact any additional n + 1 points can be used to construct a formula of the degree at
least 2n. Determining the weights would lead to a similar matrix as the one above. And
for any choice of yi there will be a unique solution of the problem




1 . . . 1 1 . . . 1
x1 . . . xn y1 . . . yn

x2
1 . . . x2

n y2
1 . . . x2

n
...

...
...

...
x2n−1

1 . . . x2n−1
n y2n−1

1 . . . y2n−1
n

x2n
1 . . . x2n

n y2n
1 . . . y2n

n







A1
...

An

B1
...

Bn+1




=




I0

I1
...

I2n


 .

However the degree 2n is not the best we can get. For example if we choose yi to be
equal to the nodes of the (n + 1)-point Gaussian formula we get the degree 2n + 1. Of
course in this case the weights of the nodes of the n-point Gaussian formula will turn to
be zeros. It has been shown by Kronrod [5] that for certain weight functions (including
w(x) = 1) it is possible to find a (2n+1)-point quadrature formula containing the original
n-points, with the degree at least 3n + 1. Unfortunately there are weight functions for
which the Kronrod extension is not real.
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Let us return back to the choices of yi providing that there will exist a (2n + 1)-point
formula with the nodes xi, ı = 1, . . . , n and yi, i = 1, . . . , n + 1 of degree at least 2n + 1.
The concept of choosing the nodes of the (n + 1)-point Gaussian formula is not the only
option. In this work we are going to deal with a different possibility. Again we are looking
for a (2n+1)-point formula with the degree at least 2n+1 containing the n original nodes,
but we shall add the condition that the weights of these ”old” nodes are precisely the halves
of the original ones. Equivalently we are looking for a (n + 1)-point quadrature formula
which integrates polynomials up to degree 2n + 1 with an error equal in magnitude to the
one of the Gaussian formula, but with the opposite sign.

Let us denote such formula by H
(n+1)
w . As mentioned above the formula H

(n+1)
w is precise

for polynomials up to the degree 2n− 1 and the averaged formula

(1.5) L(2n+1)
w :=

1

2
(H(n+1)

w + G(n)
w )

has degree at least 2n + 1 since the errors of G
(n)
w and H

(n+1)
w cancel each other.

The existence of H
(n+1)
w is guaranteed by the fact that

(H(n+1)
w − I)f = −(G(n)

w − I)f ∀f ∈ P2n+1

or

H(n+1)
w f = (2I −G(n)

w )f ∀f ∈ P2n+1.

Hence H
(n+1)
w is actually a Gaussian quadrature rule for the linear functional 2I −G

(n)
w .

The existence of H
(n+1)
w can now be easily deduced from the theorem for existence of

Gaussian quadrature formulas.

The above mentioned rule H
(n+1)
w is called the anti-Gaussian quadrature formula. After

we have explained the existence we can step up to the definition.

Definition 1.5. Let G
(n)
w be the Gaussian quadrature formula 1.2 for the integral 1.3. Let

H
(n+1)
w be (n + 1)-point quadrature formula

(1.6) H(n+1)
w :=

n+1∑
i=1

λ
(n+1)
i f(ξ

(n+1)
i )

such that

(1.7) (H(n+1)
w − I)f = −(G(n)

w − I)f ∀f ∈ P2n+1.

Then H
(n+1)
w is the anti-Gaussian quadrature formula for integral I and λ

(n+1)
i and ξ

(n+1)
i

are its nodes and weights.

As we will see later anti-Gaussian formula has many advantageous practical and theoret-
ical properties. In particular it can be constructed with only minimal additional costs from
the data needed for the construction of the corresponding Gaussian formula, its weights
are positive, nodes are always real and at most two of them may lie outside the interval of
integration.
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2. Construction of the Anti-Gaussian Formulas

An effective algorithm for generating anti-Gaussian formulas will be demonstrated in
this chapter. We present a common procedure of constructing Gaussian quadrature rules
described in [3] and show how this process has to be modified if we wish to get the anti-
Gaussian rule. The reader is expected to be familiarized with the basic results of the theory
of the orthogonal polynomials, particularly the definition, existence of 3-term recurrence
relationship, Stieltjes formulas for the recurrence coefficients (e.g. [10]), the interlacing
property and Christoffel-Darboux identity [1, p. 785].

2.1. Algorithm.

As we have already mention in section 1 from 1.7 we see that

(2.1) H(n+1)
w f = (2I −G(n)

w )f ∀f ∈ P2n+1.

By comparing 2.1 with the definition 1.2 we see that H
(n+1)
w is in fact an (n + 1)-point

Gaussian formula for the linear functional 2I − G
(n)
w . Therefore the weights and nodes of

H
(n+1)
w can be enumerated with use of the following theorem for the Gaussian formulas.

Theorem 2.1. Denote F := 2I−G
(n)
w and {pi}∞i=1 be a sequence of polynomials orthogonal

with respect to F , let ki be the leading coefficient of pi ∀i and {tk}n+1
k=1 ⊂ 〈a, b〉 be the zeros

of pn+1, then

(2.2) Ff :=
n+1∑
i=1

w
(n+1)
i f(ti) ∀f ∈ P2n+1

where

(2.3) w
(n+1)
i = −kn+2

kn+1

1

pn+2(ti)p′n+1(ti)
, i = 1, 2 . . . , n + 1.

Unfortunately to apply the above theorem we would need to know the orthogonal poly-
nomials of high degree and even their roots. One way of course is to determine the whole
sequence of polynomials and then to find the desired zeros, but we shall present here
a simpler way how to get the weights and nodes. To be precise we show that the nodes
are the eigenvalues and weights are proportional to the squares of the first components of
the orthonormal eigenvectors of a certain 3-diagonal matrix.

We know that every set {pi}n+1
i=1 of the polynomials orthogonal with respect to the linear

functional F satisfies the 3-term recurrence relationship:

(2.4) pj(x) = (ajx + bj)pj−1(x)− cjpj−2(x) j = 1, 2 . . . , n + 1

where

(2.5) aj, cj > 0, p−1(x) ≡ 0, p0(x) ≡ 1.

Later we will see how the recurrence coefficients can be obtained but now let us believe
we know them.
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Writing the formula 2.4 in the matrix form we get

x




p0(x)
p1(x)

...
pn(x)


 =




−b1
a1

1
a1

· · · 0

c2
a2

−b2
a2

1
a2

...
. . . . . . . . .

... cn

an

−bn

an

1
an

0 · · · cn+1

an+1

−bn+1

an+1







p0(x)
p1(x)

...
pn(x)


 +(2.6)

+




0
...
0

pn+1(x)
an+1


 .

Let us denote the matrix above by T, the vector (p0(x), p1(x), . . . , pn(x))T by p(x) and
en+1 = (0, . . . , 0, 1)T . Now we can rewrite 2.6 in the form

(2.7) xp(x) = Tp(x) +
1

an+1

pn+1(x)en+1

Thus pn+1(tj) = 0 if and only if

(2.8) tjp(tj) = Tp(tj),

so the eigenvalues of T correspond to the zeros of pn+1.

If we multiply the formula 2.4 by pj−2(x) and apply the functional F on the both sides
we get

(2.9) F (pj−2(x)pj(x)) = ajF (xpj−1(x)pj−2(x)) + bjF (pj−1(x)pj−2(x))− cjF (p2
j−2(x)).

As the polynomials pi are orthogonal, the terms F (pj−2(x)pj(x)) and F (pj−1(x)pj−2(x))
are equal to zero. And hence

cj =
ajF (xpj−1(x)pj−2(x))

F (p2
j−2(x))

.

Shifting the index j to j − 1 in the formula 2.4 gives

(2.10) pj−1(x) = (aj−1x + bj−)pj−2(x)− cj−1pj−3(x),

and if we multiply it with pj−1, apply the functional F and consider the orthogonality
of the polynomials we arrive to

F (p2
j−1(x)) = aj−1F (xpj−1(x)pj−2(x))

which implies

F (xpj−1(x)pj−2(x)) =
F (p2

j−1(x))

aj−1

9



and hence

(2.11) cj =
aj

aj−1

F (p2
j−1)

F (p2
j−2)

.

Thus
cj

aj
= 1

aj−1
∀j (which means T is symmetric) if and only if there exists a positive

constant K such that for every i = 0, 1, . . . , n+1 pi = Kp∗i where the polynomials {p∗i }n+1
i=0

are orhonormal, in other words if and only if the sequence {pi}n+1
i=0 is an uniform multiple

of the set {p∗i }n+1
i=0 . Soon we will see that this is precisely the property we need to get

the weights. Obviously there exist such constants di that if we use the orthogonal system
{dipi}n+1

i=0 instead of {pi}n+1
i=0 in 2.4 we would get a symmetric matrix at the place of T in

the formula 2.8. It is easy to show that the (symmetric) matrix on the place of T will be
J = DTD−1 where

(2.12) D =




d0 · · · 0

d1
...

...
. . .

0 · · · dn




and hence

(2.13) J =




−b1
a1

d0

d1

1
a1

· · · 0

d1

d0

c2
a2

−b2
a2

d1

d2

1
a2

...
. . . . . . . . .

... dn−1

dn−2

cn

an

−bn

an

dn−1

dn

1
an

0 · · · dn

dn−1

cn+1

an+1

−bn+1

an+1




.

Now we shall show how to find the constants di. The requirement of the symmetry leads
to the following conditions for di:

(2.14)
di−1

di

1

ai

=
di

di−1

ci+1

ai+1

, ∀i = 1, . . . , n.

Having these n conditions for n + 1 constants di we can choose the first constant d0

arbitrarily and compute the rest recurrently from the following relationship obtained by
simple formatting of the equation 2.14:

(2.15) di =
di−1

( ci+1ai

ai+1
)

1
2

.

As multiplying by a constant does not change the zeros of the (n + 1)th polynomial, we
can without the loss of generality consider the symmetric matrix J instead of T.

To proceed further we will need the following lemma:

Lemma 2.2. Let p(tj) be the eigenvector of the matrix J corresponding with the eigenvalue
tj. Let wj be of the same form as in the theorem 2.1. Then

(2.16) wj[p(tj)]
T [p(tj)] = 1 ∀j = 1, 2, . . . , n + 1.
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Proof. From the Christoffel-Darboux identity we have
n+1∑
m=0

pm(x)pm(x0)

F (p2
m(x))

=
kn+1

kn+2

pn+2(x)pn+1(x0)− pn+2(x0)pn+1(x)

F (p2
n+1(x))(x− x0)

.

We make a limit passage for x tending to x0 on the both sides and add and subtract
pn+2(x0)pn+1(x0) in the numerator on the right hand side. We get

n+1∑
m=0

p2
m(x0)

F (p2
m(x0))

=
kn+1

kn+2F (p2
n+1(x0))

lim
x→x0

[
pn+2(x)pn+1(x0)− pn+2(x0)pn+1(x0)

(x− x0)
−

− pn+2(x0)pn+1(x)− pn+2(x0)pn+1(x0)

(x− x0)

]
.

We notice that the terms in the square brackets correspond to p′n+2(x0)pn+1(x0) and
pn+2(x0)p

′
n+1(x0) respectively. This observation allows us to continue this way:

n+1∑
m=0

p2
m(x0)

F (p2
m(x0))

=
kn+1

kn+2F (p2
n+1(x0))

[p′n+2(x0)pn+1(x0)− pn+2(x0)p
′
n+1(x0)]

We remind the fact that the polynomials pi are the uniform multiples of the orthonormal
polynomials and so

F (p2
m) = F (p2

n) ∀m, n ∈ N,

which lets us to reduce these terms on the both sides.
Since x0 was chosen arbitrarily, we can put x0 := tj (note that pn+1(tj) = 0), which

implies

(2.17)
n+1∑
m=0

p2
m(tj) = [p(tj)]

T [p(tj)] = −kn+1

kn+2

pn+2(tj)p
′
n+1(tj) =

1

wj

¤
From the formula 2.8 we can see that if qj is an orthonormal (with respect to the standard

scalar product on Rn+1) eigenvector of J corresponding to the eigenvalue tj i.e.

Jqj = tjqj

and

gT
j gj = 1

then the eigenvectors qj are necessarily multiples of p(tj) and hence

(2.18) ∀j ∃b ∈ R that gj = (q0
j , . . . , q

n
j ) = b(p0(tj), . . . , pn(tj))

which together with 2.17 implies

(2.19) 1 = gT
j gj = b2[p(tj)]

T [p(tj)] =
b2

wj

especially b = wj.
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This yields

(2.20) q2
j = wjp

2
0(tj)

and as p0 ≡ k0 and 1
k2
0

=
∫ b

a
w(x)dx, we get

(2.21) wj = (q0
j )

2 1

k2
0

= (q0
j )

2

∫ b

a

w(x)dx.

So the weights are proportional to the squares of the first components of the orthonormal
eigenvectors of the symmetric matrix J. Moreover the weights are positive, which will plays
an important role in the convergence of these quadrature formulas.

2.2. Development of the Coefficients of the Recurrence Relationship.

Obviously the weak point of the above construction is in the proposed knowledge of
the recurrence coefficients in the 3-term recurrence for the polynomials orthogonal with

respect to the functional 2I −G
(n)
w . Without the loss of generality we can assume that the

coefficients aj ≡ 1 ∀. The coefficients bj and cj are given by the Stieltjes formulas:

bj =
(2I −G

(n)
w )(xp2

j−1)

(2I −G
(n)
w )(p2

j−1)
, j = 1, 2, . . . , n + 1(2.22)

cj =
(2I −G

(n)
w )(p2

j−1)

(2I −G
(n)
w )(p2

j−2)
, j = 2, . . . , n + 1.(2.23)

The coefficient c1 can be any finite number, soon we will see that a convenient choice is

c1 = (2I−G
(n)
w )(p0). Now we shall show how the required coefficients can be obtained from

the corresponding coefficients for the original linear functional I. In many classical cases the
coefficients for the functional I are known explicitly and tabulated (e.g. in [1]); in others
software packages used to compute the Gaussian formulas compute them as a preliminary
step.

Let {ϕj} be the sequence of polynomials orthogonal with respect to the integral I, which
satisfies the recurrence relation:

ϕj(x) = (x− αj)ϕj−1(x)− βjϕj−2(x) j = 1, 2, . . .(2.24)

ϕ−1(x) ≡ 0, ϕ0(x) ≡ 1.

Same as before we choose β1 = I(p0) and for the other coefficients holds:

αj =
I(xϕ2

j−1)

I(ϕ2
j−1)

j = 1, 2, . . .(2.25)

βj =
I(ϕ2

j−1)

I(ϕ2
j−2)

j = 2, 3, . . .(2.26)

For p ∈ P2n−1 is (2I −G
(n)
w )p = Ip, therefore

bj = αj j = 1, 2, . . . , n(2.27)

cj = βj j = 1, 2, . . . , n(2.28)

pj = ϕj j = 1, 2, . . . , n.(2.29)
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We only need to compute bn+1 and cn+1. As the nodes of G
(n)
w are the zeros of pn, the

result of applying G
(n)
w to any product containing pn is 0. So

(2.30) bn+1 =
(2I −G

(n)
w )(xp2

n)

(2I −G
(n)
w )(p2

n)
=

2I(xp2
n)

2I(p2
n)

= αn+1.

Using the above argument as well as the fact that the degree of p2
n−1 is less then 2n− 1

we find that

(2.31) cn+1 =
(2I −G

(n)
w )(p2

n)

(2I −G
(n)
w )(p2

n−1)
=

2I(p2
n)

I(p2
n)

= 2βn+1.

In other words we take precisely the same set of recurrence coefficients as when computing
the Gaussian formula, except that the last coefficient cn+1 is doubled.

3. Implementation of the Algorithm for the
Construction

In section 2 we have seen the algorithm for generating the nodes and weights for the
anti-Gaussian formulas of the prescribed degree. In this section we show an example of the
implementation of the algorithm in Maple programming language and give explicit values
of the nodes and weights generated by the program for common weight functions. The
source code of the programme is attached in section 9.

At the first line of the programm we initialize the linear algebra package by typing
with(linalg) and set the number of digits Maple will use when performing the floating
point operations by Digits:=20:. The program itself is divided into 7 sections. As I have
mentioned above it is able to determine the anti-Gaussian rule of a given degree for a given
weight function. The aim of the first part (Definition of the weight function, recurrence re-
lations and degree) is therefore to define the weight function, the degree and the recurrence
relationship.

Taking Legendre weight function as an example we would first describe the weight func-
tion and the interval of integration by

> w:= x->1: #Legendre weight function is w(x)=1

> a:=-1:b:=1: #interval of integration is (a,b)=(-1,1)

then we enter the desired number of nodes (The program computes the (N + 1)-point
anti-Gaussian formula and the degree of precision is therefore 2N − 1.)

> N:=2: #number of nodes for the Gaussian formula

and finally we put the formula for the leading coefficient k(n) of the n-th orthogonal
polynomial

> k := n-> 1./2^n*binomial(2*n,n):

and the recurrence coefficients a1(n), . . . , a4(n)

13



> a1:= n-> (n+1);

> a2:= n-> 0;

> a3:= n-> (2*n+1);

> a4:= n-> n;

obtained from the recurrence relationship for the orthogonal polynomials pi(x) of the form

(3.1) a1(n)pn+1(x) = (a2(n) + a3(n)x)pn(x)− a4(n)pn−1(x).

Obviously this recurrence relationship is not compatible with the notation in the section
2. However in the classical cases the leading coefficients are tabulated (see section 9 or [1])
precisely in the form given above.

Deriving the recurrence relationships in the form used in the section 2 is the point of
the second part of the program (Derivation of the recurrence relationships for ”Gaussian”
and ”anti-Gaussian” orthogonal polynomials).

We need the recurrence of the form

Pn(x) = (x + bn)Pn−1(x)− cnPn−2(x)

where Pi are polynomials orthogonal with respect to the weight function w(x) with the
leading coefficient equal to 1. Assuming a1(n) 6= 0 and shifting the index n to n − 1 we
can write the formula 3.1 as

pn(x) =

(
a2(n− 1)

a1(n− 1)
+

a3(n− 1)

a1(n− 1)
x

)
pn−1(x)− a4(n− 1)

a1(n− 1)
pn−2(x).

So for the polynomials

Pn(x) =
pn(x)

k(n)

with the leading coefficients equal to 1 holds

Pn(x) =

(
a2(n− 1)

a1(n− 1)
+

a3(n− 1)

a1(n− 1)
x

)
Pn−1(x)

k(n− 1)

k(n)
− a4(n− 1)

a1(n− 1)
Pn−2(x)

k(n− 2)

k(n)
.

To simplify this expression we introduce the following notations:

(3.2) ga(n) = −k(n− 1)a2(n− 1)

k(n)a1(n− 1)
and gb(n) =

k(n− 2)a4(n− 1)

k(n)a1(n− 1)
.

Which in Maple would be represented by:

> ga:= n-> -(k(n-1)/k(n))*(a2(n-1)/a1(n-1)):

> gb:= n-> (k(n-2)/k(n))*(a4(n-1)/a1(n-1)):

14



Now the recurrence can be written in the form

(3.3) Pn(x) = (x− ga(n))Pn−1(x)− gb(n)Pn−2(x),

which finally corresponds to the section 2.
We know that if the recurrence for the anti-Gaussian formula should be

(3.4) Qn(x) = (x− aga(n))Qn−1(x)− agb(n)Qn−2(x),

then the corresponding coefficients are equal except for the last one where agb(N +1) =
2gb(N + 1).

Hence

> aga:= n-> ga(n):#aga(n)=ga(n) for all n

> agb:= proc(n)

> if N+1>n then return(gb(n))fi: #agb(n)=gb(n) for n < N+1

> if N+1=n then return(2*gb(n)) fi: #agb(N+1)=2gb(N+1)

> end proc:

In the third section of the program (Symmetric matrix J for the ”anti-Gaussian” case)
the factors di (formula 2.15) are computed by

> d[0]:= 1:

> for i from 1 to N do d[i]:=d[i-1]/sqrt(agb(i+1)) od:

and the symmetrized matrix J (see formula 2.13) is built up as follows:

>matrixJ:= proc(i,j)

> if i=j then return aga(i)

> elif i=j-1 then return (d[i-1]/d[i]+d[j-1]/d[j-2]*agb(j))/2

> elif i=j+1 then return (d[j-1]/d[j]+d[i-1]/d[i-2]*agb(i))/2

> else return(0)

> fi

> end proc:

> J:=matrix(N+1,N+1,matrixJ):

Here I have replaced the explicit expressions for Ji,i−1 and Ji−1,i by their average since
otherwise the rounding error would destroy the symmetry of J.

The fourth and perhaps the most important part (Weights and nodes for the anti-
Gaussian formula) finally determines the nodes and weights of the desired anti-Gaussian
formula.

In section 2 I have shown that nodes are the eigenvalues and weights can be gained
by multiplying the squares of the first components of the orthonormal eigenvectors of the

matrix J by
∫ b

a
w(x)dx. To obtain the eigenvalues and eigenvector of J I use the Maple

function ”eigenvectors”
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>eigen_all:=eigenvectors(J):

which returns a sequence of lists of the form [λi, mi, {v[1, i], . . . , v[ni, i]}], where the λi is
the eigenvalue, mi its algebraic multiplicity, and {v[1, i], . . . , v[ni, i]} is a set of orthonormal
eigenvectors of J corresponding to λi.

The purpose of the next few commands is now to extract the important values from this
structure.

> nodes:=vector(N+1,i->eigen_all[i][1]);

#i-th node is the first component of i-th list

> orthovects:= vector(N+1,i->eigen_all[i][3][1]):

#i-th orthogonal eigenvector is the first component of the third item of

the i-th list.

The line

>intw:=int(w(x),x=a..b);

is responsible for computing the value of
∫ b

a
w(x)dx which allows us to define the weights

by

>weights:=vector(N+1,j->(orthovects[j][1])^2.*intw):,

hence j-th weight is the square if the first component of the j-th orthogonal eigenvector

multiplied by
∫ b

a
w(x)dx.

In this point the anti-Gaussian formula is ready. Its nodes and weights are stored in
the arrays of the corresponding names. The rest of the program computes the according
Gaussian formula and evaluate the integral for a given function.

In sections 5 (Symmetric matrix JG for the ”Gaussian” case) and 6 (Weights and nodes
for the Gaussian formula) of the programme the Gaussian formula is derived using the
same tools as in the third and fourth part for the anti-Gaussian formula. As the result
of this we get nodes and weights for the N -point Gaussian formula stored in the arrays
nodesG and weightG.

In the last part (Integration of given function) we first enter the function to be integrated

and compute the ”exact” value of the integral
∫ b

a
w(x)f(x)dx using the implicit Maple

facility for integration,

> f:=x->sin(x):

> exact:=int(w(x)*f(x),x=a..b);

and then we evaluate the integral, absolute error and relative error by using the anti-
Gaussian formula:

> resultA:=sum(weights[s]*f(nodes[s]),s=1..N+1);

> abserrA:=simplify(abs(resultA-exact));

> relerrA:=abs(abserrA/resultA);
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the Gaussian formula:

> resultG:=sum(weightsG[s]*f(nodesG[s]),s=1..N);

> abserrG:=simplify(abs(resultG-exact));

> relerrG:=abs(abserrG/resultG);

and the averaged formula (H
(N+1)
w + G

(N)
w )/2.

> result_average:=(resultA+resultG)/2.;

> abserr_average:=abs(result_average-exact);

> relerr_average:=abs(abserr_average/result_average);

All together the program uses the weight function, the interval of integration, the re-
currence relationship and the expected number of nodes as the inputs and gives the nodes
and weights for both the Gaussian and anti-Gaussian quadratures. Finally it computes the
integral of a given function with use of the formulas just derived and the averaged formula

(H
(N+1)
w + G

(N)
w )/2 each accompanied with the relative and absolute errors.

Some examples of the gained nodes and weights for various weight functions can be
found in section 9.

4. Theoretical Properties

In this section we will formulate and prove some assertions concerning theoretical pro-
perties of the anti-Gaussian formulas. First we (among other facts) derive a necessary
and sufficient condition for the anti-Gaussian for being internal and after that we show its
applications in several classical cases.

Theorem 4.1. The anti-Gaussian quadrature formula H
(n+1)
w =

∑n+1
i=1 λif(ξi) has the

following properties:
a) The weights λi ≥ 0 ∀i = 1, 2, . . . , n + 1.
b) The nodes ξi, i = 1, 2, . . . , n + 1 are real and are interlaced by the nodes of the

Gaussian formula G
(n)
w , i.e.

(4.1) ξ1 < x1 < ξ2 < · · · < xn < ξn+1.

c) The nodes ξ2, . . . , ξn belong to the integration interval.

d) ξ1 ∈ 〈a, b〉 ⇔ ϕn+1(a)
ϕn−1(a)

≥ βn+1 and ξn+1 ∈ 〈a, b〉 ⇔ ϕn+1(b)
ϕn−1(b)

≥ βn+1 where ϕj,

j = 0, 1, . . . , n + 1 and βn+1 are the same as in the formulas 2.24 and 2.26.

Proof. The proposition a) follows immediately from the construction (see the formula 2.21).

In b) the nodes are the eigenvalues of the real symmetric matrix thus real. From the
theory of orthogonal polynomials we know that the zeros of an i-th orthogonal polynomial
are interlaced by the zeros of the (i + 1)-th one. As the polynomials are orthogonal with

respect to the original integral I and 2I − G
(n)
w are equal up to the degree n we see that

the roots of pn(= ϕn) are interlaced by the zeros of pn+1. Finally the zeros of ϕn are the

nodes of G
(n)
w and zeros of pn+1 are the nodes of H

(n+1)
w which proves the statement.

c) follows trivially from b) and the fact that the Gaussian formula is internal.
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d) We derive a condition for ξn+1 to belong to 〈a, b〉. ξ1 would be treated similarly. As
all the zeros of ϕi ∀i belong to (a, b) and the limit of a polynomial with a positive leading
coefficient is ∞ when n →∞ holds that ϕn−1(b) > 0, ϕn+1(b) > 0 and pn+1(b) > 0 ⇔ pn+1

does not have any zeros greater or equal to b (which means ξn+1 ∈ (a, b)). Using the
relationships 2.27, 2.28 and 2.29 we get

pn+1(x) = (x− αn+1)ϕn(x)− 2βn+1ϕn−1(x)(4.2)

ϕn+1(x) = (x− αn+1)ϕn(x)− βn+1ϕn−1(x).(4.3)

Subtracting 4.2 - 4.3 gives:

(4.4) pn+1(x) = ϕn+1(x)− βn+1ϕn−1(x)

and if we substitute x := b then

ξn+1 ≤ b ⇔ pn+1(b) ≥ 0 ⇔ ϕn+1(x)− βn+1ϕn−1(x) ≥ 0 ⇔ ϕn+1(b)

ϕn−1(b)
≥ βn+1.

¤
Remark 4.2. An alternative proof of the proposition b) could be held with help of the
Cauchy interlace theorem [9], which says that if we delete i-th row and i-th column from
a real symmetric matrix, then the eigenvalues of the ”new” matrix interlace those of the

original one. The recurrence coefficients for G
(n)
w and H

(n+1)
w are equal up to the index

n so the nodes of G
(n)
w are the eigenvalues of a matrix which we get by deleting the last

row and column from the matrix in T in the formula 2.7. Concerning the fact that the

nodes of H
(n+1)
w are the eigenvalues of T and that T can be without the loss of generality

considered to be symmetric and we can apply the Cauchy interlace theorem to obtain the
desired result.

Theorem 4.3. The anti-Gaussian formulas corresponding to the following weight functions
are internal

1) w(x) = xαe−x in 〈0,∞) where α > −1 (Generalized Laguere)

2) w(x) = |x|αe−x2
in (−∞,∞) where α > −1 (Generalized Hermite)

3) w(x) = (1− x2)α in 〈−1, 1〉 where α ≥ −1
2

(Gegenbauer),
including special cases α = 0 (Legendre), α = −1

2
(Chebyshev) and α = 1

2
(Chebyshev,

second kind).

Proof. For this proof and also later in this work we will work with the data in the tables
22.2 (Orthogonality Relations), 22.3 (Explicit Expressions), 22.4 (Special Values) and 22.7
(Recurrence Relations) in [1]. For more convenience a copy of the data, which we will need
more than once can be found in section 9.

1) We need to verify the assumption of the theorem 4.1 d) at the point 0. In line with

[1] let us denote the corresponding set of the orthogonal polynomials by L
(α)
i (x). From the

table 22.3 in [1] we can see that the polynomials L
(α)
i (x) are considered to have the leading

coefficient (−1)i

i!
so the values L

(α)
i (0) =

(
i+α

i

)
read from the table 22.4 in [1] need to be

divided by (−1)i

i!
for our purpose. In the following we shall write

(4.5) l
(α)
i (x) = L

(α)
i (x)

i!

(−1)i
.
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Now

(4.6)
l
(α)
n+1(0)

l
(α)
n−1(0)

=
(n+1+α

n+1 ) (n+1)!

(−1)n+1

(n−1+α
n−1 ) (n−1)!

(−1)n−1

=
(n+1+α)!
(n+1)!α!

(n+1)n

(n−1+α)!
(n−1)!α!

= (n+1+α)!
(n−1+α)!

= (n + 1 + α)(n + α).

From the table 22.7 in [1] we can deduce the recurrence relationship

(4.7) (n + 1)L
(α)
n+1(x) = [(2n + α + 1)− x]L(α)

n (x)− (n + α)L
(α)
n−1(x).

However we need the recurrence for l
(α)
n+1(x). Using 4.5 we can proceed as follows:

(n + 1)
(−1)n+1

(n + 1)!
l
(α)
n+1(x) = [(2n + α + 1)− x]

(−1)n

n!
l(α)
n (x)− (n + α)

(−1)n−1

(n− 1)!
l
(α)
n−1(x)

dividing both sides by (−1)n+1

n!
we get

l
(α)
n+1(x) = [(2n + α + 1)− x]

(−1)n

n!

n!

(−1)n+1
l(α)
n (x)− (n + α)

(−1)n−1

(n− 1)!

n!

(−1)n+1
l
(α)
n−1(x)

or

l
(α)
n+1(x) = [x− (2n + α + 1)]l(α)

n (x)− n(n + α)l
(α)
n−1(x),

which is the recurrence we wanted and hence βn+1 from the theorem 4.1 b) is n(n + α).
It remains to prove that

(4.8) (n + l + α)(n + α) ≥ n(n + α),

but this is trivial since we assumed that α > −1.

The case of the generalized Hermite weight is obvious since the interval of integration
is whole real axis and the Gegenbauer’s weight will be subsumed as a special case in the
next theorem. ¤

Theorem 4.4. The anti-Gaussian formula H
(n+1)
w where n ≥ 1 corresponding to the weight

function w(x) = (1− x)α(1 + x)β where α, β > −1 in 〈−1, 1〉 is internal if and only if

(4.9) (2α + 1)n2 + (2α + 1)(α + β + 1)n +
1

2
(α + 1)(α + β)(α + β + 1) ≥ 0

(4.10) (2β + 1)n2 + (2β + 1)(α + β + 1)n +
1

2
(β + 1)(α + β)(α + β + 1) ≥ 0

Proof. Let us denote the appropriate set of the orthogonal polynomials according to the

[1] by P
(α,β)
i . Again from the table 22.3 in [1] we see that the leading coefficient is chosen

as 1
2i

(
2i+α+β

i

)
therefore be

(4.11) p
(α,β)
i =

2i

(
2i+α+β

i

)P
(α,β)
i

set of the orthogonal polynomials with the leading coefficient 1. Let us for example show

that there are no nodes of H
(n+1)
w exceeding 1 (the proof for -1 would be analogous). The

table 22.4 gives us that P
(α,β)
i (1) =

(
n+α

n

)
and hence
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p
(α,β)
n+1 (1)

p
(α,β)
n−1 (1)

=

(
n+1+α

n+1

)
2n+1

(
2n−2+α+β

n−1

)
(

n−1+α
n−1

)
2n−1

(
2n+2+α+β

n+1

) = 4

(n+1+α)!
(n+1)!α!

· (2n−2+α+β)!
(n−1)!(n−1+α+β)

(n−1+α)!
(n−1)!α!

· (2n+2+α+β)!
(n+1)!(n+1+α+β)

=(4.12)

= 4
(n + 1 + α)!(2n− 2 + α + β)!(n + 1 + α + β)!

(n− 1 + α)!(2n + 2 + α + β)!(n− 1 + α + β)
=

= 4
(n + α)(n + 1 + α)(n + α + β)(n + 1 + α + β)

(2n− 1 + α + β)(2n + α + β)(2n + 1 + α + β)(2n + 2 + α + β)
.

During our search for an appropriate recurrence relationship the following notation will
be useful:

(4.13) ab =
b−1∏
i=0

(a + i) where a, b ∈ Z.

Let us start with the recurrence from the table 22.7:

2(n + 1)(n + α + β + 1)(2n + α + β)P
(α,β)
n+1 (x) =

= [(2n+α+β)3x+(2n+α+β +1)]P (α,β)
n (x)−2(n+α)(n+β)(2n+2+α+β)P

(α,β)
n−1 (x).

If we substitute P
(α,β)
i (x) by p

(α,β)
i (x) 1

2i

(
2i+2+α+β

n+1

)
, divide the equality by the coefficient

at the left hand side and reduce the factorials a bit, we arrive to

p
(α,β)
n+1 (x) =

(2n + α + β)!

(2n + 2 + α + β)!(2n + α + β)
[(2n + α + β)3x + (2n + 1 + α + β)]p(α,β)

n (x)−

− 4.
n(n + α + β)(n + α)(n + β)(2n + 2 + α + β)(2n− 2 + α + β)!

(2n + α + β)(2n + 2 + α + β)!
p

(α,β)
n−1 (x)

and after some more reducing we finally get

p
(α,β)
n+1 (x) =

[
x +

1

(2n + 2 + α + β)(2n + α + β)

]
p(α,β)

n (x)−

− 4
n(n + α + β)(n + α)(n + β)

(2n + α + β)2(2n + 1 + α + β)(2n− 1 + α + β)
p

(α,β)
n−1 (x).

Hence the recurrence coefficient βn+1 from the theorem 4.1 b) is

4
n(n + α + β)(n + α)(n + β)

(2n + α + β)2(2n + 1 + α + β)(2n− 1 + α + β)
.
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Now it remains to find when
p
(α,β)
n+1 (1)

βn+1p
(α,β)
n−1 (1)

≥ 1. Reminding the formula 4.12 we see that

p
(α,β)
n+1 (1)

βn+1p
(α,β)
n−1 (1)

=

(n+α)(n+1+α)(n+α+β)(n+1+α+β)
(2n−1+α+β)(2n+α+β)(2n+1+α+β)(2n+2+α+β)

n(n+α+β)(n+α)(n+β)
(2n+α+β)2(2n+1+α+β)(2n−1+α+β)

=

=

(n+1+α)(n+1+α+β)
(2n+2+α+β)

n(n+β)
(2n+α+β)

=

=
(n + 1 + α)(n + 1 + α + β)(2n + α + β)

(2n + 2 + α + β)n(n + β)
=

=
(n + 1 + α)(n + 1 + α + β)2(n + α+β

2
)

2(n + 1 + α+β
2

)n(n + β)
=

= 1 +
(n + 1 + α)(n + 1 + α + β)(n + α+β

2
)− (n + 1 + α+β

2
)n(n + β)

(n + 1 + α+β
2

)n(n + β)
.

As the denominator of the last fraction is positive, the condition of the theorem 4.1 b)
holds if and only if the numerator is positive.

This can be shown as follows

(n + α + 1)(n + α + β + 1)(n +
α + β

2
)− n(n + β)(n + 1 +

α + β

2
) =

= (n + α + 1)(n + α + β + 1)n + (n + α + 1)(n + α + β + 1)
α + β

2
−

−n(n + β)(n + 1)− n(n + β)
α + β

2
=

=
α + β

2
[(n + α + 1)(n + α + β + 1)− n(n + β)] +

+αn(n + 1 + α + β) + (n + 1)n(n + 1 + α + β)− n(n + β)(n + 1) =

=
α + β

2
[(n + α + 1)(n + α + β + 1)− n(n + β)] +

+αn(n + 1 + α + β) +

+(n + 1)n(n + β) + (n + 1)n(α + 1)− (n + 1)n(n + β) =

=
α + β

2
[n(n + α + β + 1) + (α + 1)(n + α + β + 1)− n(n + β)] +

+αn(n + 1 + α + β) + (n + 1)n(α + 1) =

=
α + β

2
[n(n + α + β + 1) +

+(α + 1)n + (α + 1)(α + β + 1)− n(n + β)] +

+αn(n + 1 + α + β) + (n + 1)n(α + 1) =
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=
α + β

2
[n(n + α + β + 1) + (α + 1)n− n(n + β)] +

+
α + β

2
(α + 1)(α + β + 1) +

+αn(n + 1 + α + β) + (n + 1)n(α + 1) =

=
α + β

2
(2n + 2nα) +

+
α + β

2
(α + 1)(α + β + 1) +

+αn(n + 1 + α + β) + (n + 1)n(α + 1) =

= n[(α + β)(α + 1) + α(n + 1 + α + β) + (n + 1)(α + 1)] +

+
α + β

2
(α + 1)(α + β + 1) =

= n[(n + 1 + α + β)(α + 1) + α(n + 1 + α + β)] +

+
α + β

2
(α + 1)(α + β + 1) =

= n(n + 1 + α + β)(2α + 1) +
α + β

2
(α + 1)(α + β + 1) =

= (2α + 1)n2 + (2α + 1)n(α + β + 1) +
α + β

2
(α + 1)(α + β + 1).

Hence all the nodes are smaller or equal 1 if and only if the last formula is positive,
which is exactly what we wanted to prove. When proving the fact that there are no nodes
smaller than -1 we get to the assumption 4.10.

¤
Now some sufficient conditions for the anti-Gaussian formula for the Jacobi weight func-

tion to require an exterior node can be deduced. For example if α < −1
2
, then the formula

needs an exterior node if n is large enough, because the coefficient in front of n2 in 4.9 is
negative. If α = −1

2
and β ∈ (−1

2
, 1

2
) then the formula requires an exterior node for every

n since then the left hand side of 4.9 is independent of n and negative. If β ∈ (−1
2
, 1

2
) then

we can find α close enough to −1
2

such that the coefficients in front of n and n2 will be small
and the last term on left hand side of 4.9 will be negative and therefore for n sufficiently
small an exterior node will be required.

Although the result stated in the previous theorem is precise we shall now show a (weaker)
proposition for the anti-Gaussian formula for the Jacobi weight to be internal this time
without the dependence on n.

Theorem 4.5. The anti-Gaussian formula H
(n+1)
w for the Jacobi weight function w(x) =

(1 − x)α(1 + x)β in 〈−1, 1〉 is internal for every n ≥ 1 if α and β satisfies the following
conditions:

α ≥ −1

2
, β ≥ −1

2

(2α + 1)(α + β + 2) +
1

2
(α + 1)(α + β)(α + β + 1) ≥ 0(4.14)

(2β + 1)(α + β + 2) +
1

2
(β + 1)(α + β)(α + β + 1) ≥ 0.(4.15)
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Figure 1. The anti-Gaussian formulas for the Jacobi weight function are
internal for all n if α and β lie in the region to the north-east of the heavy
lines.

Proof. If α and β are greater or equal to −1
2

then the coefficients in front of n and n2 in
the conditions 4.9 and 4.10 are nonnegative. Therefore the polynomials on their left hand
sides are nondecreasing functions of n and it is enough to show that they are nonnegative
for n = 1. As the conditions 4.14 and 4.15 were gained by substituting n = 1 in 4.9 and
4.10, the proof is finished. ¤

Now let us remind the Gegenbauer’s weight function from the theorem 4.3. When
α = β ≥ −1

2
the conditions 4.14 and 4.15 reduce to (2α + 1)(α + 1)(α + 2) ≥ 0, which

holds.
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5. Convergence of the Anti-Gaussian Formulas
So far we have been considering the anti-Gaussian formulas only as a tool for integrating

polynomials. In this section we shall show that with increasing n the formula H
(n+1)
w f

converges to
∫ b

a
w(x)f(x)dx for any continuous function f .

First let us consider internal anti-Gaussian formulas. Probably the simplest way is
to start with the Weierstrass approximation theorem (see e.g.[11]) claiming that every
continuous function can be arbitrarily well approximated by a polynomial. To be precise
that ∀ε > 0 and for any function f continuous in the interval of integration there exists
a polynomial p such that

(5.1) ‖f − p‖ < ε

where the norm is the maximum norm defined as follows:

‖f‖ = max
x∈〈a,b〉

|f(x)| ∀f ∈ C(〈a, b〉)

Our task is now to show that ∀ε positive and every continuous function f(x) there exists
n0 ∈ N such that for every n > n0

(5.2)

∣∣∣∣
∫ b

a

w(x)f(x)dx−H(n+1)
w

∣∣∣∣ < ε.

Let us have a given function f and a positive constant ε. By the Weierstrass theorem
there exists a polynomial p such that

‖f − p‖ <
ε

2
∫ b

a
w(x)dx

.

The purpose of this complicated choice of the bound will be seen later.

From now on let n > n0 where n0 is so large that the formula H
(n0+1)
w integrates the

polynomial p exactly. Now if we write H
(n+1)
w in the form

n+1∑
i=1

λ
(n)
i f(ξn

i ) and add and

subtract
∫ b

a
w(x)p(x)dx and

∑n+1
i=1 λ

(n)
i p(ξn

i ) inside the absolute value, we can write 5.2 as

∣∣∣∣
∫ b

a

w(x)f(x)dx−H(n+1)
w

∣∣∣∣ =

∣∣∣∣
∫ b

a

w(x)f(x)dx−
∫ b

a

w(x)p(x)dx +

∫ b

a

w(x)p(x)dx−

−
n+1∑
i=1

λ
(n)
i p(ξn

i ) +
n+1∑
i=1

λ
(n)
i p(ξn

i )−
n+1∑
i=1

λ
(n)
i f(ξn

i )

∣∣∣∣

and using the triangle inequality
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∣∣∣∣
∫ b

a

w(x)f(x)dx−H(n+1)
w

∣∣∣∣ ≤
∣∣∣∣
∫ b

a

w(x)f(x)dx−
∫ b

a

w(x)p(x)dx

∣∣∣∣ +

+

∣∣∣∣
∫ b

a

w(x)p(x)dx−
n+1∑
i=1

λ
(n)
i p(ξn

i )

∣∣∣∣ +(5.3)

+

∣∣∣∣
n+1∑
i=1

λ
(n)
i p(ξn

i )−
n+1∑
i=1

λ
(n)
i f(ξn

i )

∣∣∣∣

furthermore thanks to 5.1 the first and third absolute value on the right can be estimated
by

ε

2
∫ b

a
w(x)dx

∫ b

a

w(x)dx =
ε

2

and

ε

2
∫ b

a
w(x)dx

n+1∑
i=1

λ
(n)
i =

ε

2

since
n+1∑
i=1

λ
(n)
i =

∫ b

a

w(x)dx (The formula is exact for constants).

The second absolute value on the left hand side of 5.3 is equal to zero as for n large
enough the anti-Gaussian formula for p is exact. So finally

∣∣∣∣
∫ b

a

w(x)f(x)dx−H(n+1)
w

∣∣∣∣ ≤ ε.

and the convergence is proved.

An alternative way to achieve our goal is to use the well known Banach-Steinhaus
theorem (sometimes also called Uniform boundedness theorem):

Theorem 5.1. Let X be a Banach space, Y be a normed linear space. Let T and {Tn}∞n=1

belong to L(X, Y ), which is the space of continuous linear operators from X to Y . Then
Tnx → Tx ⇔ the sequence {‖ Tn ‖}∞n=1 is bounded AND Tnx → Tx for all x ∈ D ⊂ X
where D is dense in X.

For the proof of this theorem please refer to any textbook of the functional analysis e.g.
[8].

Proof of the convergence of the anti-Gaussian formulas can be now performed by a direct
application of the Banach-Steinhaus theorem. The space X is considered to be the space
C(〈a, b〉) of the functions continuous in the (closed) interval of integration equipped with
the maximum norm. It is known that the space C(〈a, b〉) is complete in the maximum norm
and therefore it is a Banach space. Obviously the space Y will be the set of real numbers.
If we put Tn = Hn+1

w we have to prove that there exists a real constant M independent of
n such that
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‖ H(n+1)
w ‖≤ M ∀n ∈ N

.
Using the definition of the operator norm we can write

‖ H(n+1)
w ‖= sup

‖f‖=1

‖ H(n+1)
w f ‖= sup

‖f‖=1

|
n+1∑
i=1

λ
(n+1)
i f(ξ

(n+1)
i ) | .

The sum (and therefore the whole expression) can be estimated by using the above facts
as follows:

sup
‖f‖=1

|
n+1∑
i=1

λ
(n+1)
i f(ξ

(n+1)
i ) |≤ sup

‖f‖=1

n+1∑
i=1

| λ(n+1)
i | . | f(ξ

(n+1)
i ) | .

As the norm of f is considered to be 1 then | f(ξ
(n+1)
i ) |≤ 1 ∀ i = 1, . . . , n+1. Therefore

sup
‖f‖=1

n+1∑
i=1

| λ(n+1)
i | . | f(ξ

(n+1)
i ) |≤

n+1∑
i=1

| λ(n+1)
i |

and as the weights λ
(n+1)
i are nonnegative

n+1∑
i=1

| λ(n+1)
i |=

n+1∑
i=1

λ
(n+1)
i =

∫ b

a

w(x)dx =: M < ∞.

Not to forget the second assumption of the theorem we remind the fact that the space
of polynomials is a dense subset of X and can therefore serve as the set D. Obviously for
any polynomial p there exists n0 ∈ N such that for every n > n0 holds

H(n+1)
w p =

∫ b

a

w(x)p(x)dx,

hence as all the assumptions of the Banach-Steinhaus theorem are fulfilled, we have
proved the convergence of the anti-Gaussian formulas for any function continuous in the
appropriate interval.

In case that the formula requires an exterior node, both proofs can be held in exactly
the same way with the only difference that we will need to change the definition of norm
and the interval where the function f is supposed to be continuous. In particular the
continuousness will have to be assumed in a larger interval containing all the nodes and
the maximum in the definition of the norm will have to be taken over the larger interval
as well.

Finally let me mention one more interesting tool which can be used when examining the
convergence of the linear functionals, even if it can not be use for our problem.

Theorem 5.2 (Korovkin). Let {Ln} be a sequence of positive linear functionals on C[0, 1]
satisfying Ln(1) → 1, Ln(x) → c and Ln(x2) → c2 for some c ∈ [0, 1]. Then Ln(f(x)) →
f(c) for every f ∈ C[0, 1].
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Proof of this theorem can be found e.g. in [6].

Remark 5.3. Positiveness of the linear functional L defined on C[a, b] means that L(f) > 0
for all f ∈ C[a, b] where f(x) > 0 ∀x ∈ [a, b].

Remark 5.4. In case we are working on an interval [a, b] different to [0, 1] we can use
following linear transform:

y = y(x) =
x− a

b− a
∀x ∈ [a, b],

mapping the interval [a, b] to [0, 1].

Conversely

x = y(b− a) + a,

which yields

f(x) = f(y(b− a) + a) = g(y),

where g(y) ∈ C[0, 1].

Finally if Ln(1) → k 6= 1 we can use the sequence {Ln

k
} instead.

Unfortunately in our case there is no use for the theorem since the functionals H
(n+1)
w

do not fulfill the assumptions of the theorem at all (and even the claim of the theorem is
not what we want to prove). This can be easily seen from the following considerations:

As for any n ≥ 2 the anti-Gaussian formula is precise for x and x2, it holds that

c := lim
n→∞

H(n+1)
w (x) = H(3)

w (x)

and
d := lim

n→∞
H(n+1)

w (x2) = H(3)
w (x2).

To satisfy the assumptions of the theorem it would have to be valid that c2 = d which
means

(H(3)
w (x))2 = H(3)

w (x2)

hence (
2∑

i=0

λixi

)2

=
2∑

i=0

λix
2
i

which is obviously not true.

We shall end this section with the remark that the same methods can be used (and
analogous results achieved) when examining the convergence of the sequence of averaged

formulas 1
2
(G

(n)
w + H

(n+1)
w ) since their weights are positive and they integrate constants

exactly.
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6. Error Estimates
In this section we derive error estimates for the anti-Gaussian and ”averaged” formulas.

First we present the classical estimate containing a higher order derivative f (n)(ξ) evaluated
at some intermediate point of the interval of integration I. Since this point will usually be
unknown, we shall employ the estimate maxx∈I

∣∣f (n)(x)
∣∣ instead. Such an estimate is valid

for every function which is smooth enough which guarantees wide applicability of it but
has several disadvantages as well. In the first place, the higher order derivatives might be
difficult to obtain or not available at all (e.g. if the values of the integrated function are
given by some measurements in a few points only) and estimating their maximum can be
even more serious problem. Secondly, different rules can lead to estimates involving the
derivatives of different order so it becomes impossible to compare the accuracy of the rules.

That is why we introduce an alternative error estimate based on the idea in [2]. Since
in [2] the description of the process of deriving the estimate is not to detailed, we shall
add all the missing details. The resulting estimate will consist of a multiplicative constant
depending only on the used rule and a certain the norm of the integrated function. The
clear advantages of this concept are that we do not need to know the derivatives of the
function operated upon and in some cases even the norm can be estimated without the
knowledge of the values in all points of the interval of integration. The price one has
to pay for this is that the estimate only holds for analytic functions and we have to be
able to estimate the values of the corresponding holomorphic function on the unit complex
circumference. Finally we show, that for certain weight functions the infinite sum included
in the estimate can be replaced by a ”finite” expression, on the contrary to [4] we stress
that this trick can not be used for any quadrature rule.

6.1. Classical Approach. Let Qk be a quadrature rule with algebraic degree of precision
equal to k and f be a function with k+1 continuous derivatives in the interval of integration
I = 〈a; b〉. Then for any x ∈ I we can write the function f(x) in the terms of its Taylor

polynomial in the point c = (a+b)
2

as:

(6.1) f(x) = f(c)+f ′(c)(x−c)+
f ′′(c)

2
(x−c)2+· · ·+ f (k)(c)

k!
(x−c)k+

f (k+1)(ξx)

(k + 1)!
(ξx−c)k+1,

where ξx ∈ I depends on x.

To make everything more transparent we introduce the notations

f1(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2
(x− c)2 + · · ·+ f (k)(c)

k!
(x− c)k

and

(6.2) f2(x) =
f (k+1)(ξx)

(k + 1)!
(ξx − c)k+1.

Denoting the error by Ekf we can write:

Ekf =

∣∣∣∣
∫ b

a

w(x)f(x)dx−Qkf

∣∣∣∣ =

∣∣∣∣
∫ b

a

w(x)f1(x)dx−Qkf1 +

∫ b

a

w(x)f2(x)dx−Qkf2

∣∣∣∣ .
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The degree of f1 is k so the quadrature Qk is precise for f1 and the above formula
simplifies to

Ekf =

∣∣∣∣
∫ b

a

w(x)f2(x)dx−Qkf2

∣∣∣∣ ≤
∣∣∣∣
∫ b

a

w(x)f2(x)dx

∣∣∣∣ + |Qkf2| .

If we substitute from 6.2 we get:

∣∣∣∣
∫ b

a

w(x)f2(x)dx

∣∣∣∣+|Qkf2| =
∣∣∣∣
∫ b

a

w(x)
f (k+1)(ξx)

(k + 1)!
(ξx − c)k+1dx

∣∣∣∣+
∣∣∣∣Qk

f (k+1)(ξx)

(k + 1)!
(ξx − c)k+1

∣∣∣∣ .

Since ξx belongs to I we can estimate
∣∣(ξx − c)k+1

∣∣ from above by
(

b−a
2

)k+1
and

∣∣f (k+1)(ξx)
∣∣

by maxx∈I

∣∣f (k+1)(x)
∣∣.

This gives

(6.3) Ekf ≤ 2
maxx∈I

∣∣f (k+1)(x)
∣∣

(k + 1)!

(
b− a

2

)k+1 ∫ b

a

w(x)dx

because Qk1 =
∫ b

a
w(x)dx.

This means, that the estimate only depends on the degree of the quadrature rule in

question and not explicitly on its nodes and weights. Since the Gaussian formula G
(n+1)
(w)

and the averaged formula (G
(n)
w + H

(n+1)
w )/2 are both of the degree 2n + 1 the theoretical

estimate above is the same for both of them.

6.2. Alternative approach. In the alternative estimate we will assume, that the interval
of integration is [−1, 1]. Otherwise we can use the linear transform

y = y(x) =
2x− b− a

b− a
∀x ∈ [a, b],

which maps the interval [a,b] to [-1,1].

Then

x =
y(b− a) + b + a

2
and hence

g(y) := f

(
y(b− a) + b + a

2

)
= f(x)

is the transform of the function f to the interval [-1,1]. The analogous transform needs
to be performed with the weight function and the nodes of the quadrature formula and
one has to keep in mind that the result will be proportional to the original one with the
factor b−a

2
. Formally we are just using the substitution

∫ b

a

w(x)f(x)dx =

∫ 1

−1

w

(
y(b− a) + b + a

2

)
f

(
y(b− a) + b + a

2

)
b− a

2
dy.
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To avoid handling these complicated expressions, we will simply assume that the interval
of integration [a, b] is equal to [−1, 1] in the following.

For any function f analytic in [-1,1] there exists the Taylor series

f(x) =
∞∑
i=0

aix
i ∀x ∈ [−1, 1].

Any such function can be extended to a function holomorphic for all complex z in the
unit circle |z| ≤ 1 as

f(z) =
∞∑
i=0

aiz
i ∀z ∈ C such that |z| ≤ 1.

Let us denote the boundary of the unit circle by C. By the Cauchy formula the function
f possesses the representation

(6.4) f(z) =
1

2πi

∫

C

f(ξ)

ξ − z
dξ.

In the following we will already work with the anti Gaussian formula H
(n+1)
w =

∑n+1
j=1 λjf(xj).

However the process of deriving the formula estimating the error does not anyhow depend
on the used quadrature rule.

We shall try to estimate the error Ef defined as

(6.5) Ef =

∫ b

a

w(x)f(x)dx−H(n+1)
w f

where f is analytic in the interval [−1, 1].
In the formula 6.5 we can write f in the form given by 6.4, which gives

(6.6) Ef =

∫ b

a

w(x)
1

2πi

∫

C

f(ξ)

ξ − x
dξdx−

n+1∑
j=0

λj
1

2πi

∫

C

f(ξ)

ξ − xj

dξ.

The right hand side can be rewritten as

1

2πi

(∫ b

a

∫

C

w(x)
f(ξ)

ξ − x
dξdx−

n+1∑
j=0

∫

C

λj
f(ξ)

ξ − xj

dξ

)
.

Using the Fubini theorem we can interchange the order of integration in the first term
and the second term can be replaced by the integral of the sum. Hence

Ef =
1

2πi

(∫

C

∫ b

a

w(x)
f(ξ)

ξ − x
dxdξ −

∫

C

n+1∑
j=0

λj
f(ξ)

ξ − xj

dξ

)

or
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Ef =
1

2πi

∫

C

∫ b

a

w(x)
f(ξ)

ξ − x
dx−

n+1∑
j=0

λj
f(ξ)

ξ − xj

dξ.

f(ξ) can be moved behind the first integration sign, which implies

Ef =
1

2πi

∫

C

f(ξ)

(∫ b

a

w(x)
1

ξ − x
dx−

n+1∑
j=0

λj
1

ξ − xj

)
dξ.

If we compare the term in the round brackets with the formula 6.5, we see that it is
exactly E( 1

ξ−x
), where 1

ξ−x
is considered as a function of x with the parameter ξ.

Therefore we can write

(6.7) Ef =
1

2πi

∫

C

f(ξ)E

(
1

ξ − x

)
dξ.

The error can be now estimated as follows:

(6.8) |Ef |2 ≤ 1

4π2

∣∣∣∣
∫

C

f(ξ)E

(
1

ξ − x

)
dξ

∣∣∣∣
2

If we use the parametrization ϕ(t) = eit, t ∈ [0, 2π] of the circumference C we get

|Ef |2 ≤ 1

4π2

∣∣∣∣
∫ 2π

0

f(ϕ(t))E

(
1

ϕ(t)− x

)
ϕ′(t)dt

∣∣∣∣
2

.

The Hölder inequality allows us to estimate the right hand side from above by

|Ef |2 ≤ 1

4π2

∣∣∣∣∣∣

(∫ 2π

0

|f(ϕ(t))|2 dt

) 1
2

(∫ 2π

0

∣∣∣∣E
(

1

ϕ(t)− x

)
ϕ′(t)

∣∣∣∣
2

dt

) 1
2

∣∣∣∣∣∣

2

.

The linear (see 6.5) functional E ”looks” at the function 1
ϕ(t)−x

as at the function of x,

where t is just a parameter. As the expression ϕ′(t) does not depend on x we can use the
linearity of E to get

(6.9) |Ef |2 ≤ 1

2π
‖f(ϕ)‖2

∣∣∣∣∣∣

(∫ 2π

0

∣∣∣∣E
(

ϕ′(t)
ϕ(t)− x

)∣∣∣∣
2

dt

) 1
2

∣∣∣∣∣∣

2

where the norm ‖.‖ corresponds to the inner product

(6.10) 〈u, v〉 =
1

2π

∫ 2π

0

u(t)v(t)dt,

where z denotes the complex conjugate of z. Hence

‖f(ϕ)‖ =

(
1

2π

∫ 2π

0

|f(ϕ(t))|2 dt

) 1
2

.
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Since ϕ(t) = eit and ϕ′(t) = ieit it holds that

∫ 2π

0

∣∣∣∣E
(

ϕ′(t)
ϕ(t)− x

)∣∣∣∣
2

dt =

∫ 2π

0

∣∣∣∣E
(

ieit

eit − x

)∣∣∣∣
2

dt

=

∫ 2π

0

∣∣∣∣E
(

1

1− xe−it

)
i

∣∣∣∣
2

dt

=

∫ 2π

0

∣∣∣∣E
(

1

1− xe−it

)∣∣∣∣
2

dt

hence

(6.11) |Ef |2 ≤ 1

2π
‖f(ϕ)‖2

∫ 2π

0

∣∣∣∣E
(

1

1− xe−it

)∣∣∣∣
2

dt

The function 1
1−xe−it (please note that the independent variable is x, not t) can be

represented in the form of the sum of the following quadratic sequence:

1

1− xe−it
=

∞∑
j=0

xje−itj.

As the functional E is linear it holds that

E

(
1

1− xe−it

)
= E

( ∞∑
j=0

xje−itj

)
=

∞∑
j=0

E(xj)e−itj.

The set {e−itj} is orthonormal with respect to the inner product 6.10, because

(6.12)
1

2π

∫ 2π

0

e−itme−itndt =
1

2π

∫ 2π

0

e−it(m−n)dt =

{
0 when m 6= n

1 when m = n
,

which allows us to use the Parseval equality
∥∥∥∥E

(
1

1− xe−it

)∥∥∥∥
2

=
1

2π

∫ 2π

0

∣∣∣∣E
(

1

1− xe−it

)∣∣∣∣
2

dt =
∞∑

j=0

∣∣E(xj)
∣∣2 .

Hence ∫ 2π

0

∣∣∣∣E
(

1

ϕ(t)− x

)∣∣∣∣
2

dt = 2π
∞∑

j=0

∣∣E(xj)
∣∣2 .

Substituting this into the formula 6.11 yields

|Ef |2 ≤ ‖f(ϕ)‖2
∞∑

j=0

∣∣E(xj)
∣∣2 =

1

2π

∫ 2π

0

|f(ϕ(t))|2 dt

∞∑
j=0

∣∣E(xj)
∣∣2
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hence

(6.13) |Ef | ≤ 1√
2π

[∫ 2π

0

∣∣f(eit)
∣∣2 dt

] 1
2

[ ∞∑
j=0

∣∣E(xj)
∣∣2

] 1
2

.

If we introduce the notation

(6.14) σ :=
1√
2π

[ ∞∑
j=0

∣∣E(xj)
∣∣2

] 1
2

,

we can rewrite the estimate 6.13 in the form

(6.15) |Ef | ≤ σ

[∫ 2π

0

∣∣f(eit)
∣∣2 dt

] 1
2

.

Remark 6.1. In the beginning of this subsection we have assumed the function f to be
analytic. In fact this requirement is not to restrictive since the quadrature formula only
uses the values of the function in a finite number of points which can always be interpolated
by an analytic function.

We will assume that we are able to estimate the expression
[∫ 2π

0
|f(eit)|2 dt

] 1
2

by 2π max
t∈[0,2π]

|f(eit)|
and we shall turn our attention to σ.

If all the nodes of the quadrature formula lie inside the interval (-1,1), which for the
anti-Gaussian formula does not have to be true (see section 4), it is possible to write σ in
the ”finite” form.

Let us denote

τj =

∫ 1

−1

w(x)xjdx.

Then

E(xj) = τj −
n∑

i=0

λ
(n)
i (x

(n)
i )j
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and we can write

2πσ2 =
∞∑

j=0

[
τj −H(n+1)

w (xj)
]2

=
∞∑

j=0

[
τj −

n∑

k=0

λk(xk)
j

]2

=
∞∑

j=0


τ 2

j − 2τj

n∑

k=0

λk(xk)
j +

(
n∑

k=0

λk(xk)
j

)2



=
∞∑

j=0

τ 2
j − 2

∞∑
j=0

τj

n∑

k=0

λk(xk)
j +

∞∑
j=0

(
n∑

k=0

λk(xk)
j

)2

=
∞∑

j=0

τ 2
j − 2

n∑

k=0

λk

∞∑
j=0

τj(xk)
j +

∞∑
j=0

(
n∑

k=0

λk

n∑

l=0

λl(xk)
j(xl)

j

)

Now we use the assumption that all the nodes xi belong to (−1, 1), which allows us to
sum the quadratic sequence in the last term. After this we have

2πσ2 =
∞∑

j=0

τ 2
j − 2

n∑

k=0

λk

∞∑
j=0

τj(xk)
j +

n∑

k=0

λk

n∑

l=0

λl

∞∑
j=0

(xk)
j(xl)

j

=
∞∑

j=0

τ 2
j − 2

n∑

k=0

λk

∞∑
j=0

τj(xk)
j +

n∑

k=0

λk

n∑

l=0

λl
1

1− xkxl

.

From the definition of τj we can easily sum the infinite sums in the first and second
term. We get

∞∑
j=0

τ 2
j =

∞∑
j=0

∫ 1

−1

w(y)yjdy

∫ 1

−1

w(x)xjdx

=

∫ 1

−1

∫ 1

−1

w(y)w(x)
∞∑

j=0

yjxjdx dy

=

∫ 1

−1

∫ 1

−1

w(y)w(x)

1− xy
dx dy

and
∞∑

j=0

τj(xk)
j =

∞∑
j=0

∫ 1

−1

w(x)xj(xk)
jdx

=

∫ 1

−1

w(x)
∞∑

j=0

xj(xk)
jdx

=

∫ 1

−1

w(x)

1− xxk

dx.
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This finally gives

2πσ2 =

∫ 1

−1

∫ 1

−1

w(y)w(x)

1− xy
dx dy − 2

n∑

k=0

λk

∫ 1

−1

w(x)

1− xxk

dx +(6.16)

+
n∑

k=0

λk

n∑

l=0

λl
1

1− xkxl

,

so the estimate 6.15 can be rewritten as

|Ef | ≤ 1√
2π

(∫ 1

−1

∫ 1

−1

w(y)w(x)

1− xy
dx dy − 2

n∑

k=0

λk

∫ 1

−1

w(x)

1− xxk

dx+(6.17)

+
n∑

k=0

λk

n∑

l=0

λl
1

1− xkxl

) 1
2 [∫ 2π

0

∣∣f(eit)
∣∣2 dt

] 1
2

.

If there exists one or more nodes not belonging to (-1,1) then the process we have
just presented cannot be used. The logical idea is to perform another linear transform
which would ”compress” the nodes into (-1,1) by dividing them by an appropriate constant
a. Unfortunately it crashes on the fact that the integrated function f(x) = xj will be
transformed to f(ax) = (ax)j so finally in the quadrature formula we will have (axi

a
)j

again.

7. Practical results
In this section we first give the particular forms of the classical error estimate 6.3 for

several weight functions and demonstrate its useability for different integrated functions.
Next we compare the values of σ in the estimate 6.15 for different quadrature rules. Finally
suggest how the estimate 6.15 could be improved.

After substituting a, b and
∫ b

a
w(x)dx into 6.3 we get these particular forms of the

estimate for the chosen weight functions:
For Legendre and Jacobi (with α = 1, β = 0) weight functions holds

E2n+1f ≤ 4

(2n + 2)!
max

x∈[−1,1]

∣∣f (2n+2)(x)
∣∣ ,

(In both cases
∫ b

a
w(x)dx = 2, therefore the estimates are the same)

for Chebyshev weight function of the first kind (or Jacobi weight function with α = β =
−1

2
)

E2n+1f ≤ π

(2n + 2)!
max

x∈[−1,1]

∣∣f (2n+2)(x)
∣∣

and for Chebyshev weight function of the second kind (or Jacobi weight function with
α = β = 1

2
)

E2n+1f ≤ 2π

(2n + 2)!
max

x∈[−1,1]

∣∣f (2n+2)(x)
∣∣ .

In the following tables one can see how (in)accurate the estimates are in practice. In each
case we compare the error estimate with the actual errors of the (n + 1)-point Gaussian
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formula and the averaged formula L
(2n+1)
w = 1

2
(G

(n)
w +H

(n+1)
w ). The number of nodes n will

be set to 5 and 6 each time. Presented results were obtained from the data generated
by the programme discussed in section 3. To prevent confusing the decimal point and
multiplication, we shall use the notation Ek instead of 10k.

Legendre weight function (w(x) = 1),
n=5

f(x) error estimate error of G
(n+1)
w error of L

(2n+1)
w

sin(6x) 18.17 2.4E−19 4.8E−19
sin

(
x
6

)
6E−19 8E−21 2E−19

e6x 7333.39 6.2E−3 2.3E−5
e

x
6 1E−17 1E−19 1E−19

n=6

f(x) error estimate error of G
(n+1)
w error of L

(2n+1)
w

sin(6x) 3.6 3.4E−19 1.5E − 19
sin

(
x
6

)
9E−23 1.1E−20 1E−20

e6x 1450.56 2.8E−4 6.2E−7
e

x
6 6.9E−22 1E−19 1E−19

Jacobi weight function (w(x) = (1− x)α(1 + x)β) with α = 1, β = 0,
n=5

f(x) error estimate error of G
(n+1)
w error of L

(2n+1)
w

sin(6x) 18.17 4E−4 3E−6
sin

(
x
6

)
6E−19 5E−19 4.8E−19

e6x 7333.39 2E−3 1E−5
e

x
6 1E−17 1.3E−18 1.2E−18

n=6

f(x) error estimate error of G
(n+1)
w error of L

(2n+1)
w

sin(6x) 3.6 1.9E−5 3E − 8
sin

(
x
6

)
9E−23 4.8E−19 4.8E−19

e6x 1450.56 1E−4 3.2E−7
e

x
6 6.9E−22 1.3E−18 1.1E−18

Chebyshev weight function of the first kind (w(x) = (1− x2)−
1
2 )

n=5

f(x) error estimate error of G
(n+1)
w error of L

(2n+1)
w

sin(6x) 28.50 5.1E−19 2.3E−19
sin

(
x
6

)
9.9E−19 3.3E−20 2.8E−20

e6x 11519.26 1.3E−2 1.3−8
e

x
6 7E−18 2E−19 2E−19
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n=6

f(x) error estimate error of G
(n+1)
w error of L

(2n+1)
w

sin(6x) 5.6 9.4E−19 1.6E − 19
sin

(
x
6

)
1.5E−22 5.9E−20 1.5E−20

e6x 2278.53 6.2E−4 4E−12
e

x
6 1E−21 6E−19 3E−19

Chebyshev weight function of the second kind (w(x) = (1− x2)
1
2 )

n=5

f(x) error estimate error of G
(n+1)
w error of L

(2n+1)
w

sin(6x) 14.27 3E−19 2.1E−19
sin

(
x
6

)
4.9E−19 9.1E−21 9.4E−21

e6x 5759.63 3E−3 6.2−11
e

x
6 3.56E−18 0 7E−18

n=6

f(x) error estimate error of G
(n+1)
w error of L

(2n+1)
w

sin(6x) 2.82 9.8E−20 1.8E − 19
sin

(
x
6

)
7.6E−23 1.7E−21 1.7E−20

e6x 1139.273 1.4E−4 1.34E−14
e

x
6 5.4E−22 1E−19 0

We can see that for the functions where the differentiation causes multiplying by a con-
stant grater than 1, the estimate is very pessimistic. On the other hand if the differentiation
generates a constant smaller than 1 the estimate is quite accurate. An explanation of this
phenomenon is this: We are taking the maximum of the n-th derivative instead of the
derivative in some point ξ ∈ [a, b] which we do not know. If there are a big differences
among the values of the appropriate order derivative is different points of (a,b), the error
committed by estimating the value of the derivative in ξ by the maximum over the whole
interval can be huge. On the other hand if the graph of the high order derivative is ”flat”
(i.e. the difference between its minimum and maximum over (a,b) is small), we would not
be far from the truth by taking the value at any point (or the maximum).

The reason why in some of the tables above the actual errors are greater than their
estimates is that in those cases the values are on the edge of the accuracy used by the
software (which was set to 20 digits) and these anomalies are the consequence of the
computational error.

Comparing the accuracy of the Gaussian and anti-Gaussian formulas of the correspon-
ding degree we can observe that in some cases (mostly for the function e6x) the results
obtained by the anti-Gaussian formula are a bit better.

Let us investigate whether there is any theoretical reason for this.
As we have shown in section 4. The nodes of the anti-Gaussian formulas for Legendre,

Jacobi (with α = 1, β = 0) and Chebyshev (second kind) weight functions are internal.
Moreover their nodes lie inside (-1,1) and hence in these cases we can apply the estimate
6.17.
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The formula 6.16 lets us to compute following values of σ (see 6.14 for the definition):

Legendre weight function:

n σ for G
(n+1)
w σ for L

(2n+1)
w

4 0.6098 0.4721
5 0.0835 0.0375
6 0.0724 0.0317
7 0.0638 0.0275

Jacobi weight function (α = 1, β = 0):

n σ for G
(n+1)
w σ for L

(2n+1)
w

4 0.1286 0.0590
5 0.1100 0.0490
6 0.0961 0.0419
7 0.0854 0.0366

We can see that even if the degree of precision if always the same for both formulas in
each row of the above tables, the theoretical error estimate from the subsection 6.2 gives
much better results for the anti-Gaussian formulas. Although there is no analytic reason
why they should be more accurate, this can be a good reason to believe, that they actually
are better.

Even if we have not included the term
[∫ 2π

0
|f(eit)|2 dt

] 1
2

in the tables above, we can see

that for the functions where the classical error estimate were to pessimistic the alternative
one can lead to satisfactory results.

Turning back to the estimate 6.15 we can see, that the estimate would not be zero if we
apply it to a polynomial of a degree which the quadrature rule integrates accurately. An
idea how to remove or at least reduce this imperfection can be replacing f by a function
g such that the difference between f and g is a polynomial which is integrated exactly

and the value of
[∫ 2π

0
|g(eit)|2 dt

] 1
2

is less than
[∫ 2π

0
|f(eit)|2 dt

] 1
2
. The best result would be

achieved if f − g is in some sense the best approximation of f by a polynomial of a given
degree. However we would not go to the details in thesis.
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8. Conclusion
In this thesis we have proved that the weights of the anti-Gaussian formulas are posi-

tive and that at most two nodes can lie outside the interval of integration. In section 4
conditions for the formulas to be internal are stated. Concerning the construction of the
(n + 1)-point anti-Gaussian formulas we have shown that it is the question of determining
the eigenvalues and eigenvectors of certain (n + 1)× (n + 1) matrix. This means that the

costs of constructing the (n + 1)-point anti-Gaussian formula H
(n+1)
w is the same as the

cost of constructing the (n + 1)-point Gaussian formula G
(n+1)
w .

Practical testing has shown that the averaged formula L
(2n+1)
w = (G

(n)
w + H

(n+1)
w )/2 gives

in many cases better results than the (n+1)-point Gaussian formula G
(n+1)
w even if the

theoretical degree of precision is 2n+ 1 in both cases. Moreover the error estimate derived
in section 6.2 appears to be much better for the anti-Gaussian formula. In section 1 we

have suggested the difference G
(n+1)
w f − Af (where A is a quadrature formula of a higher

degree) as a numerical approximation of the error G
(n+1)
w applied to the function f .

The results presented in this thesis show that using the averaged formula L
(2n+1)
w as

the formula A would give more accurate estimate than using the formula G
(n+1)
w . Since

deriving both formulas requires the same amount of operations (assuming we already have
the n-point Gaussian formula) and the number of points where the integrated function
f has to be evaluated are the same in both cases as well we can recommend using the
averaged formula instead of the Gaussian formula in the above numerical estimate.
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9. Appendices
Table 9.1 Orthogonal Polynomials
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Table 9.2 Recurrence Relations
a1(n)pn+1(x) = (a2(n) + a3(n)x)pn(x)− a4(n)fn−1(x)

p n
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Table 9.3
Nodes and weights of H

(n+1)
w where w(x) ≡ 1 (Legendre)

n nodes weights n nodes weights

1 .816496580927726 1.000000000000000 8 .893581190017803 .164411441988856
-.816496580927726 1.000000000000000 -.000000000000000 .368957072484166

-.993888391435683 .034415599386995
2 -.930949336251263 .384615384615385 -.893581190017803 .164411441988856

.930949336251263 .384615384615385 -.360613635820053 .344040703534754
-.000000000000000 1.230769230769231 .993888391435683 .034415599386995

-.672520467240063 .272653718847312
3 .964335275879562 .199826014447922 .360613635820053 .344040703534754

.429352058315787 .800173985552078 .672520467240063 .272653718847312
-.964335275879562 .199826014447922
-.429352058315787 .800173985552078 9 -.734696655470703 .223654050135981

.995105205867138 .027569114782485
4 -.000000000000000 .693766937669377 -.995105205867138 .027569114782485

.978315678013417 .121787277062268 .475285190219825 .290430742781218
-.638731398345590 .531329254103044 -.475285190219825 .290430742781218
.638731398345590 .531329254103044 .164365837601352 .325730290621930
-.978315678013417 .121787277062268 -.914477642987090 .132615801678385

.914477642987090 .132615801678385
5 -.280556681820821 .545769074217690 .734696655470703 .223654050135981

.280556681820821 .545769074217690 -.164365837601352 .325730290621930
-.752558388054789 .372395751222672
.752558388054789 .372395751222672 10 -.929795638911367 .109154362380246
.985446820998315 .081835174559638 -.562678595062891 .246927255598589
-.985446820998315 .081835174559638 -.780937965408210 .186329092356386

-.294419959277147 .285581325610890
6 -.989564901331163 .058719277436163 .995991885381824 .022578391655128

.820496210793208 .273663854856191 .780937965408210 .186329092356386
-.820496210793208 .273663854856191 .000000000000000 .298859144797520
.463335883847022 .426675691237058 -.995991885381824 .022578391655128
.989564901331163 .058719277436163 .294419959277147 .285581325610890
-.463335883847022 .426675691237058 .929795638911367 .109154362380246
.000000000000000 .481882352941176 .562678595062891 .246927255598589

7 -.586467949432683 .338113373846498
-.864059339845500 .208912408709088
.992154829409481 .044164752444346
.586467949432683 .338113373846498
-.992154829409481 .044164752444346
-.207447135295099 .408809465000068
.207447135295099 .408809465000068
.864059339845500 .208912408709088
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Table 9.4
Nodes and weights of H

(n+1)
w where w(x) = (1− x)−

1
2 (Chebyshev, first kind)

n nodes weights n nodes weights

1 -1.000000000000000 1.570796326794897 8 -.707106781186548 .392699081698724
1.000000000000000 1.570796326794897 -.000000000000000 .392699081698724

.923879532511287 .392699081698724
2 -.000000000000000 1.570796326794897 1.000000000000000 .196349540849362

-1.000000000000000 .785398163397448 -.382683432365090 .392699081698724
1.000000000000000 .785398163397448 -1.000000000000000 .196349540849362

.707106781186548 .392699081698724
3 -.500000000000000 1.047197551196598 -.923879532511287 .392699081698724

-1.000000000000000 .523598775598299 .382683432365090 .392699081698724
.500000000000000 1.047197551196598

1.000000000000000 .523598775598299 9 -.500000000000000 .349065850398866
1.000000000000000 .174532925199433

4 -1.000000000000000 .392699081698724 .939692620785908 .349065850398866
.707106781186548 .785398163397448 .173648177666930 .349065850398866

1.000000000000000 .392699081698724 .766044443118978 .349065850398866
-.707106781186548 .785398163397448 -1.000000000000000 .174532925199433
-.000000000000000 .785398163397448 -.173648177666930 .349065850398866

.500000000000000 .349065850398866
5 -.809016994374947 .628318530717959 -.766044443118978 .349065850398866

.809016994374947 .628318530717959 -.939692620785908 .349065850398866
-1.000000000000000 .314159265358979
-.309016994374947 .628318530717959 10 .000000000000000 .314159265358979
.309016994374947 .628318530717959 .809016994374947 .314159265358979

1.000000000000000 .314159265358979 .951056516295154 .314159265358979
1.000000000000000 .157079632679490

6 .866025403784439 .523598775598299 -.951056516295154 .314159265358979
-.500000000000000 .523598775598299 -.309016994374947 .314159265358979

-1.000000000000000 .261799387799149 -1.000000000000000 .157079632679490
.000000000000000 .523598775598299 -.809016994374947 .314159265358979
.500000000000000 .523598775598299 .309016994374947 .314159265358979

-.866025403784439 .523598775598299 .587785252292473 .314159265358979
1.000000000000000 .261799387799149 -.587785252292473 .314159265358979

7 -.900968867902419 .448798950512828
-.623489801858734 .448798950512828
1.000000000000000 .224399475256414
.900968867902419 .448798950512828
.222520933956314 .448798950512828
.623489801858734 .448798950512828

-.222520933956314 .448798950512828
-1.000000000000000 .224399475256414
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Table 9.5
Nodes and weights of H

(n+1)
w where w(x) = (1− x)

1
2 (Chebyshev, second kind)

n nodes weights n nodes weights

1 .707106781186548 .785398163397448 8 -.642787609686539 .204840249603193
-.707106781186548 .785398163397448 .642787609686539 .204840249603193

.342020143325669 .308232902689759
2 .000000000000000 1.047197551196598 -.866025403784439 .087266462599716

.866025403784439 .261799387799149 .866025403784439 .087266462599716
-.866025403784439 .261799387799149 -.984807753012208 .010525623305347

-.342020143325669 .308232902689759
3 -.382683432365090 .670379265333622 .984807753012208 .010525623305347

.923879532511287 .115018898063826 -.000000000000000 .349065850398866

.382683432365090 .670379265333622
-.923879532511287 .115018898063826 9 .987688340595138 .007688024442412

-.156434465040231 .306471240916567
4 .587785252292473 .411239817295253 -.987688340595138 .007688024442412

-.951056516295154 .059999080743216 .891006524188368 .064750541154967
.951056516295154 .059999080743216 .707106781186548 .157079632679490
.000000000000000 .628318530717959 -.891006524188368 .064750541154967
-.587785252292473 .411239817295253 -.707106781186548 .157079632679490

.156434465040231 .306471240916567
5 .707106781186548 .261799387799149 .453990499739547 .249408724204012

-.707106781186548 .261799387799149 -.453990499739547 .249408724204012
-.258819045102521 .488524308328427
.965925826289068 .035074467269872 10 .281732556841430 .262930389642668
-.965925826289068 .035074467269872 -.281732556841430 .262930389642668
.258819045102521 .488524308328427 -.000000000000000 .285599332144527

.909631995354518 .049285771941039
6 .433883739117558 .364310259621239 .540640817455598 .202120791210338

-.433883739117558 .364310259621239 -.540640817455598 .202120791210338
.000000000000000 .448798950512828 .989821441880933 .005784389841430
.974927912181824 .022222534076746 -.909631995354518 .049285771941039
.781831482468030 .174465894443050 .755749574354258 .122477154689710
-.974927912181824 .022222534076746 -.755749574354258 .122477154689710
-.781831482468030 .174465894443050 -.989821441880933 .005784389841430

7 -.555570233019602 .271489257084905
.831469612302545 .121209824613819
-.831469612302545 .121209824613819
-.980785280403230 .014946218840648
.555570233019602 .271489257084905
-.195090322016128 .377752862858077
.980785280403230 .014946218840648
.195090322016128 .377752862858077
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Table 9.6
Nodes and weights of H

(n+1)
w where w(x) = e−x (Laguere)

n nodes weights n nodes weights

1 5.236067977499790 .276393202250021 8 20.690763117090409 .000000157277689
.763932022500210 .723606797749979 .161050277991333 .056746980623896

2.124444015263906 .399056077613122
2 .493358053613672 .386975717692728 30.959318414600767 .000000000019281

8.716021885347972 .016600486503632 6.610606785813053 .026527254145573
2.790620061038356 .596423795803641 14.544920817084766 .000036372342705

10.037434401792262 .001716820826204
3 12.309046017390413 .000718795204851 .854083129890533 .354904800060654

2.000000000000000 .642857142857143 4.017379040472970 .161011537090875
5.324782088068325 .115944898786902
.366171894541262 .240479163151104 9 8.834079630283873 .004307619099761

.144875507219649 .046656228710126
4 4.035899241536990 .225707562416030 5.868902519022967 .043218857278315

.291555083447512 .163789573089150 12.623231607779934 .000177643855176
1.570446368284971 .597954531467579 1.904135355837561 .397956067866459
8.132847536700815 .012522283363778 17.492955936005562 .000002456317432

15.969251770029712 .000026049663464 3.587124014598416 .195733688390548
24.018668013446837 .000000006905056

5 19.674659672659734 .000000843349820 .767343192609217 .311947431576624
11.116040824928635 .000972233216916 34.758684223195985 .000000000000503

.242345652236039 .118690314809966
3.279645965112819 .308670750659650 10 20.519795103187287 .000000148084787
6.391127476449262 .040647934398461 38.571560706765761 .000000000000013
1.296180408613512 .531017923565187 7.908255249718729 .008554779048588

5.283983470112122 .062209886834183
6 .207408536677957 .089943926027562 11.204969516479362 .000560285535228

2.771738036768087 .360932400305636 .131658172571087 .039035841257194
5.317741941298702 .079398971149898 1.725827648907708 .389566770803746

23.412876446490799 .000000025246690 .696695160544573 .275658401559781
14.222348454865667 .000060902740029 27.394286810766428 .000000000282141
1.104762626924511 .464703732319837 3.242430062765930 .224398248149325
8.963123956974277 .004960042210348 15.320538098181012 .000015638445015

7 .963192868381727 .405616564458865
.181303717030789 .070503768824035

2.404059915514005 .388658800369186
4.571665521898387 .121290949042948
7.589603084182166 .013460003015817

27.176159939067557 .000000000713378
17.420666094980109 .000003276693310
11.693348858945259 .000466636882461
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Table 9.7
Nodes and weights of H

(n+1)
w where w(x) = e−xx (Generalized Laguere with α = 1)

n nodes weights n nodes weights

1 5.236067977499790 .276393202250021 8 20.690763117090409 .000000157277689
.763932022500210 .723606797749979 .161050277991333 .056746980623896

2.124444015263906 .399056077613122
2 .493358053613672 .386975717692728 30.959318414600767 .000000000019281

8.716021885347972 .016600486503632 6.610606785813053 .026527254145573
2.790620061038356 .596423795803641 14.544920817084766 .000036372342705

10.037434401792262 .001716820826204
3 12.309046017390413 .000718795204851 .854083129890533 .354904800060654

2.000000000000000 .642857142857143 4.017379040472970 .161011537090875
5.324782088068325 .115944898786902
.366171894541262 .240479163151104 9 8.834079630283873 .004307619099761

.144875507219649 .046656228710126
4 4.035899241536990 .225707562416030 5.868902519022967 .043218857278315

.291555083447512 .163789573089150 12.623231607779934 .000177643855176
1.570446368284971 .597954531467579 1.904135355837561 .397956067866459
8.132847536700815 .012522283363778 17.492955936005562 .000002456317432

15.969251770029712 .000026049663464 3.587124014598416 .195733688390548
24.018668013446837 .000000006905056

5 19.674659672659734 .000000843349820 .767343192609217 .311947431576624
11.116040824928635 .000972233216916 34.758684223195985 .000000000000503

.242345652236039 .118690314809966
3.279645965112819 .308670750659650 10 20.519795103187287 .000000148084787
6.391127476449262 .040647934398461 38.571560706765761 .000000000000013
1.296180408613512 .531017923565187 7.908255249718729 .008554779048588

5.283983470112122 .062209886834183
6 .207408536677957 .089943926027562 11.204969516479362 .000560285535228

2.771738036768087 .360932400305636 .131658172571087 .039035841257194
5.317741941298702 .079398971149898 1.725827648907708 .389566770803746

23.412876446490799 .000000025246690 .696695160544573 .275658401559781
14.222348454865667 .000060902740029 27.394286810766428 .000000000282141
1.104762626924511 .464703732319837 3.242430062765930 .224398248149325
8.963123956974277 .004960042210348 15.320538098181012 .000015638445015

7 .963192868381727 .405616564458865
.181303717030789 .070503768824035

2.404059915514005 .388658800369186
4.571665521898387 .121290949042948
7.589603084182166 .013460003015817

27.176159939067557 .000000000713378
17.420666094980109 .000003276693310
11.693348858945259 .000466636882461
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Table 9.8
Nodes and weights of H

(n+1)
w where w(x) = e−x2

(Hermite)

n nodes weights n nodes weights

1 1.000000000000000 .886226925452758 8 -.767093261812311 .430993129420261
-1.000000000000000 .886226925452758 -2.441238396489535 .002453565951945

-3.606368819529907 .000003860692187
2 -.000000000000000 1.417963080724413 1.563977927181141 .071475372891044

1.581138830084190 .177245385090552 .767093261812311 .430993129420261
-1.581138830084190 .177245385090552 -1.563977927181141 .071475372891044

3.606368819529907 .000003860692187
3 -.602114101464426 .853956146188936 .000000000000000 .762601992994642

-2.034074386254762 .032270779263822 2.441238396489535 .002453565951945
.602114101464426 .853956146188936

2.034074386254762 .032270779263822 9 -3.852560035693396 .000000603397903
.361029660612894 .635288343749770

4 .000000000000000 1.050343022758824 -1.861875888092628 .024933296378120
1.074612544170356 .355476054592375 -.361029660612894 .635288343749770
-2.417686472624545 .005579359480971 -2.713869218294079 .000586187968298
-1.074612544170356 .355476054592375 3.852560035693396 .000000603397903
2.417686472624545 .005579359480971 1.093513053818293 .225418493958667

2.713869218294079 .000586187968298
5 1.475240917716105 .120659834409163 -1.093513053818293 .225418493958667

-1.475240917716105 .120659834409163 1.861875888092628 .024933296378120
-2.756238231186230 .000932833322973
2.756238231186230 .000932833322973 10 -.000000000000000 .685938300577191
.476251034270315 .764634257720621 2.138862006542903 .008005478131748

-.476251034270315 .764634257720621 -2.969558895028934 .000133954051144
-2.138862006542903 .008005478131748

6 -1.828611210013403 .035886351703077 2.969558895028934 .000133954051144
-.881604323971558 .413891949277428 .688554304791181 .431890198057097
1.828611210013403 .035886351703077 -1.393823156221992 .103228051512604
3.062507936082447 .000152291941665 4.085356687543293 .000000093411569
-3.062507936082447 .000152291941665 -4.085356687543293 .000000093411569

.881604323971558 .413891949277428 -.688554304791181 .431890198057097
-.000000000000000 .872592665061177 1.393823156221992 .103228051512604

7 1.239870481811766 .184403570904643
-3.344197200038493 .000024419812028

.406782010086496 .692079585307343
-.406782010086496 .692079585307343
2.147927995035343 .009719349428744
-1.239870481811766 .184403570904643
-2.147927995035343 .009719349428744
3.344197200038493 .000024419812028
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Table 9.9

Nodes and weights of H
(n+1)
w where w(x) = e−

x2

2 (Hermite)

n nodes weights n nodes weights

1 1.414213562373095 1.253314137315500 8 -3.452432449301447 .003469866245417
-1.414213562373095 1.253314137315500 5.100175695498644 .000005459843251

1.084833694459986 .609516328915756
2 2.236067977499790 .250662827463100 -.000000000000000 1.078482081185775

-2.236067977499790 .250662827463100 2.211798795871730 .101081441718188
.000000000000000 2.005302619704800 -2.211798795871730 .101081441718188

3.452432449301447 .003469866245417
3 .851517928387080 1.207676363612255 -1.084833694459986 .609516328915756

2.876615583917214 .045637773703246 -5.100175695498644 .000005459843251
-.851517928387080 1.207676363612255

-2.876615583917214 .045637773703246 9 3.837990655018357 .000828994974867
1.546460991341850 .318789891366064

4 .000000000000000 1.485409347929482 -1.546460991341850 .318789891366064
-3.419124999151600 .007890405847344 -2.633090132396046 .035261005892605
1.519731634261974 .502719057503415 .510573042457711 .898433391748466
3.419124999151600 .007890405847344 -3.837990655018357 .000828994974867
-1.519731634261974 .502719057503415 -5.448342652334175 .000000853333498

2.633090132396046 .035261005892605
5 3.897909487674797 .001319225536783 5.448342652334175 .000000853333498

-3.897909487674797 .001319225536783 -.510573042457711 .898433391748466
-.673520671759293 1.081356137523587
.673520671759293 1.081356137523587 10 -4.199590463615580 .000189439635863

2.086305713601847 .170638774255131 -.000000000000000 .970063247627417
-2.086305713601847 .170638774255131 4.199590463615580 .000189439635863

5.777566834655347 .000000132103908
6 4.331040258083033 .000215373329343 3.024807657697504 .011321455747199

1.246776791607341 .585331608025175 -3.024807657697504 .011321455747199
.000000000000000 1.234032381356800 -1.971163611078814 .145986510466473

-1.246776791607341 .585331608025175 -.973762836266066 .610784975548349
-4.331040258083033 .000215373329343 -5.777566834655347 .000000132103908
2.586046773508430 .050750965282582 1.971163611078814 .145986510466473
-2.586046773508430 .050750965282582 .973762836266066 .610784975548349

7 -3.037628901579833 .013745235779573
-.575276635593711 .978748335783191
.575276635593711 .978748335783191

4.729409035544568 .000034534829361
-4.729409035544568 .000034534829361
1.753441650964263 .260786030923375
-1.753441650964263 .260786030923375
3.037628901579833 .013745235779573
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Appendix 9.10
Programme for deriving the anti-Gaussian formulas

> reset:with(linalg):Digits:=20:

1. Definition of the weight function, recurrence relations and degree

> w:= x->1: #Legendre
a:=-1:b:=1: #interval of integration
N:=5: #number of nodes for the Gaussian formula
> k := n-> 1./2^n*binomial(2*n,n): #leading coefficient of the n-th
orthogonal polynomial
a1:= n-> (n+1):#coefficients of the recurrence relationship
a2:= n-> 0:
a3:= n-> (2*n+1):
a4:= n-> n:

2. Derivation of the recurrence relationships for ”Gaussian” and ”anti-
Gaussian” orthogonal polynomials

> ga:= n-> -(k(n-1)/k(n))*(a2(n-1)/a1(n-1)):
> gb:= n-> (k(n-2)/k(n))*(a4(n-1)/a1(n-1)):

> aga:= n-> ga(n):
> agb:= proc(n)
> if N+1>n then return(gb(n))fi:
> if N+1=n then return(2*gb(n)) fi:
> end proc:

3. Symmetric matrix J for the ”anti-Gaussian” case

> d[0]:= 1:
> for i from 1 to N do d[i]:=d[i-1]/sqrt(agb(i+1)) od:

> matrixJ:= proc(i,j)
> if i=j then return aga(i)
> elif i=j-1 then return (d[i-1]/d[i]+d[j-1]/d[j-2]*agb(j))/2
> elif i=j+1 then return (d[j-1]/d[j]+d[i-1]/d[i-2]*agb(i))/2
> else return(0)
> fi
> end proc:
> J:=matrix(N+1,N+1,matrixJ):

4. Weights and nodes for the anti-Gaussian formula

> eigen_all:=eigenvectors(J):

> nodes:=vector(N+1,i->eigen_all[i][1]):
> orthovects:= vector(N+1,i->eigen_all[i][3][1]):

> intw:=int(w(x),x=a..b):

> weights:=vector(N+1,j->(orthovects[j][1])^2.*intw):

> weights=weights():
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5. Symmetric matrix JG for the ”Gaussian” case

> e[0]:= 1:
> for i from 1 to N-1 do e[i]:=e[i-1]/sqrt(gb(i+1)) od:
> matrixJG:= proc(i,j)
> if i=j then return ga(i)
> elif i=j-1 then return (e[i-1]/e[i]+e[j-1]/e[j-2]*gb(j))/2
> elif i=j+1 then return (e[j-1]/e[j]+e[i-1]/e[i-2]*gb(i))/2
> else return(0)
> fi
> end proc:
> JG:=matrix(N,N,matrixJG):

6. Weights and nodes for the Gaussian formula

> vlastniG:=eigenvectors(JG):
> nodesG:=vector(N,i->vlastniG[i][1]):
> VG:=vector(N,i->vector(N,j->vlastniG[i][3][1][j])):

> orthovectsG:=[seq(VG[i],i=1..N)]:

> intwG:=int(w(x),x=a..b):

> weightsG:=vector(N,j->(orthovectsG[j][1])^2*intwG):

> weightsG=weightsG():

7. Integration of given function

> f:=x->sin(6*x):
> exact:=evalf(int(w(x)*f(x),x=a..b)):
> resultA:=sum(weights[s]*f(nodes[s]),s=1..N+1):
> abserrA:=simplify((resultA-exact)):
> relerrA:=abs(abserrA/resultA):
> resultG:=sum(weightsG[s]*f(nodesG[s]),s=1..N):
> abserrG:=simplify((resultG-exact)):
> relerrG:=abs(abserrG/resultG):
> result_average:=(resultA+resultG)/2.:
> abserr_average:=abs(result_average-exact):
> relerr_average:=abs(abserr_average/result_average):
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Errata

In the line numbering only the text lines count.
(1) Page 5, formula (1.2) - add: where f is a function uniquely defined in xi, i = 1, . . . , n
(2) Page 5, Remark 1.3 - add:

Note that there is no direct relationship between the weights w
(n)
i and the values of

w(xi).
(3) Page 5, line 15 - the formula (1.4) instead of (1.3) should be referenced.
(4) Page 6, line 6 - note that the nodes yi are distinct.
(5) Page 7, line 14 and after - the Gaussian quadrature rule for the linear functional

2I −G
(n)
w is meant in the sense of the following definition:

We shall say that a linear functional G of the form

Gf =
n∑

i=1

λi(n)f(ξi(n))

is the n-point Gaussian formula for the linear functional F if

Gf = Ff ∀f ∈ P2n−1.

(6) Page 8, Theorem 2.1 and after - the polynomials orthogonal with respect to the linear
functional 2I −G

(n)
w are defined as follows:

We shall say that the polynomials {pi}∞i=0 are orthogonal with with respect to the

linear functional 2I −G
(n)
w if

2
∫ b

a
w(x)pk(x)pl(x)dx−

n∑

i=1

w
(n)
i pk(x

(n)
i )pl(x

(n)
i ) =

{
0 if k 6= l

Ck 6= 0 if k = l
.

If Ck = 1 ∀k = 0, 1, . . . we shall say the polynomials are orthonormal with respect to

2I −G
(n)
w .

(7) Page 8, line 7 - the citation (e.g. [10]) is related to all the preceding notions.
(8) Page 8, formula (2.2) - the sign := should be replaced by =.
(9) Page 9, formula (2.10) - the lower index at b should be j − 1

(10) Pages 9-10 formulas from (2.10) to (2.11) and page 10, line 2 - the range for j is
2, . . . , n + 2.

(11) Page 11, line 8 to formula (2.21) - the range for j is 1, . . . , n + 1.
(12) Page 11, last line - b = √

wj .
(13) Page 12, formula (2.20) - (q0

j )
2 = wjp

2
0(tj)

(14) Page 12-13, formulas (2.22), (2.27) and (2.30) - missing minus on the right hand side.
(15) Page 18, line 5 - the references should be (2.30),(2.31) and (2.4)
(16) Page 19, line 6, page 20, line 7 and page 21, line 2 - should be 4.1 d) instead od 4.1

b).
(17) Pages 18-20, proofs of the theorems 4.3 and 4.4 - the factorials of positive non-integer

values are meant to be defined by the Gamma function Γ(p + 1) =
∫∞
0 xpe−xdx = p!.

(18) Page 19, formula (4.8) - (n + 1 + α)(n + α) ≥ n(n + α)
(19) Pages 19-20 - Note: The relevant data from the tables 22.2 in [1] and 22.3 in [1] are

collected in the table 9.1 in section 9 and the data from table 22.7 in [1] in the table
9.2.



(20) Page 20, formula (4.12) -

p
(α,β)
n+1 (1)

p
(α,β)
n−1 (1)

=

(
n+1+α

n+1

)
2n+1

(
2n−2+α+β

n−1

)
(
n−1+α

n−1

)
2n−1

(
2n+2+α+β

n+1

) = 4
(n+1+α)!
(n+1)!α! ·

(2n−2+α+β)!
(n−1)!(n−1+α+β)!

(n−1+α)!
(n−1)!α! ·

(2n+2+α+β)!
(n+1)!(n+1+α+β)!

=

= 4
(n + 1 + α)!(2n− 2 + α + β)!(n + 1 + α + β)!
(n− 1 + α)!(2n + 2 + α + β)!(n− 1 + α + β)!

=

= 4
(n + α)(n + 1 + α)(n + α + β)(n + 1 + α + β)

(2n− 1 + α + β)(2n + α + β)(2n + 1 + α + β)(2n + 2 + α + β)
.

(21) Page 20, formula (4.13) - for a ∈ R, b ∈ Z
(22) Page 20 the third, fourth and fifth formula - the second term in the square brackets

should be multiplied by (α2 − β2)
(23) Page 20, line 4 - the binomial should be

(
2i+α+β

i

)
.

(24) Page 21, line 1 - add the reference:
Now it remains to find (Thm. 4.1 d)) when...

(25) Page 22, second paragraph - add:
Finally for α, β < −1

2 the formula requires an exterior node for any n.
(26) Page 25, line 5 - should be right instead of left.
(27) Page 30, line 15 - Note: The interchanging of the order of integration can be legalized

as follows: We replace the integral from −1 to 1 by the integral from −α to α where
0 < α < 1, we interchange the order of integration (since the the integrated function
is continuous for x in [−α, α]) and we perform the limit passage for α → 1.

(28) Page 31, line 3 - E
(

1
ξ−x

)
is meant in the sense of the formula (6.5) even if 1

ξ−x is not
analytic. In case xi = ±1 for some i = 1, . . . , n + 1 the analogous construction as in
the previous item has to be used.

(29) Page 32, line 4 - should be geometric instead of quadratic
(30) Page 32, the third and fourth formula - holds ∀x ∈ (−1, 1). E(±1) = 0, since the

quadrature formula integrates constants exactly. Therefore
E

(
1

1−xe−it

)
=

∑∞
j=0 E(xj)e−itj , x ∈ [−1, 1].

(31) Page 33, line 8 - should end by 2π max
t∈[0,2π]

∣∣f(eit)
∣∣

(32) Page 34, the third formula - Note: The interchanging of the order of integration and
summation can be legalized as follows: We replace the integrals from −1 to 1 by
integrals from −α to α where 0 < α < 1, we interchange the order of integration and
summation (since the geometric sequence converges for any x and y in [−α, α]) and
we perform the limit passage for α → 1.

(33) Page 41, caption - a1(n)pn+1(x) = (a2(n) + a3(n)x)pn(x)− a4(n)pn−1(x)
(34) Page 41 - for the definition of (2n + α + β)3 see the formula (4.13).


