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Abstrakt: Anti-gaussovska kvadraturni formule je (n 4+ 1)-bodovéa formule, jejiz alge-
braicky stupen presnosti je 2n — 1 a pro polynomy az do stupné 2n + 1 je jeji zbytek
v absolutni hodnoté roven zbytku n-bodové Gaussovy kvadraturni formule, ale ma opacné
znaménko. V praci podame zevrubné dukazy vyznamnych vlastnosti anti-gaussovské
kvadratury uvedenych v [7] (zejména kladnost vah a postacujici podminky uzavienosti pro
specidlni typy vahovych funkef), popiSeme algoritmus pro konstrukei anti-gaussovské for-
mule, ktery vyuziva znalost ortogonalnich polynomu pottebnych pro konstrukci Gaussovy
formule a predvedeme jeho implementaci v Maple. Daéle dokdzeme konvergenci anti-
gaussovské kvadratury pro spojité funkce a odvodime odhady chyb nejprve klasickou
metodou vyuzivajici derivace vyssich fadu integrované funkce a nasledné pro analytické
funkce spoc¢teme odhad bez uziti derivaci. Pro pripad uzavienych anti-gaussovskych for-
muli uvedeme tento odhad v zakonceném tvaru. V zavéru srovname presnost jednotlivych
odhadu pro ruzné vihy a integrované funkce a porovname praktickou piesnost (n + 1)-
bodové Gaussovy formule a formule vzniké jako prumeér anti-gaussovske formule a n-bodové
Gaussovy formule.
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Abstract: Anti-Gaussian quadrature formula is a (n + 1)-point formula of degree 2n — 1
which integrates the polynomials of degree up to 2n + 1 with an error of the same mag-
nitude as the the one of the n-point Gaussian formula but of the opposite sign. In this
thesis we present detailed proofs of significant properties of the anti-Gaussian quadrature
listed in [7] (in particular the positiveness of the weights and for certain weight functions
sufficient conditions for the formula to be internal), we describe the algorithm for the con-
struction of the anti-Gaussian formula using the knowledge of the orthogonal polynomials
needed to construct Gaussian formula and we demonstrate its implementation in Maple.
Next we prove the convergence of the the formula for continuous functions and derive the
error estimates at first by the classical method involving the higher order derivatives of
the integrated function and secondly an error estimate for analytic functions without use
of the derivatives. For the case of internal anti-Gaussian formulas we present a finite form
of this estimate. Finally we compare the accuracy of the estimates for different weight
and integrated functions and confront the practical accuracy of the (n 4+ 1)-point Gaussian
formula and a formula obtained as an average of the anti-Gaussian formula and the n-point
Gaussian formula.
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1. INTRODUCTION

In this section we shall recall some basic notions in the theory of quadrature formulas
and introduce the anti-Gaussian quadrature formula.

Definition 1.1. Let us consider a quadrature formula K for a functional F'. If
(1.1) Kf=FfVfeP”
where P denotes the space of all polynomials of degree less or equal m, we shall say that

the algebraic degree of precision of the formula K is m.

Definition 1.2. Let w be a given function defined and nonnegative almost everywhere in
the interval (a, b) for which the integral

/a bw(x)dx

is finite. Let G4 be a quadrature formula

(1.2) G = w f(a)
=1

then G is n-point Gaussian quadrature formula for the integral

(13) If = / w(z) f(z)dz

if and only if

(1.4) GMp = IpVp e P 1.

In other words the algebraic degree of precision of the n-point Gaussian quadrature
formula has to be the maximal possible which is 2n — 1.

Remark 1.3. In the definition 1.2 we shall say w is a weight function and wi(n) and xl(n) are

weights and nodes of the quadrature formula G,

There are various questions of interest regarding the existence and other properties of
quadrature formulas defined by a set of equations (e.g. (1.3)). To make the terminology
precise we introduce the following definition.

Definition 1.4. We shall say

e the formula ezists, if the set of the defining equations has a (possibly complex)
solution.

e the formula is real if the points and weights are all real.

e a real formula is internal if all the nodes belong to the (closed) interval of inte-
gration. A node not belonging to the interval of integration is called an exterior
node.

e the formula is positive if all the weights are positive.



It is known [10] that Gaussian formulas are internal and positive.

Often we need to estimate the error [ f — G f where f is a function that has not been
subjected to much analysis. The usual method is to use another quadrature formula A of
degree greater than 2n — 1 and to estimate the error as Af — ai f. Any such quadrature
rule requires at least n+1 additional points. Imagine we want to keep the original Gaussian
nodes x;, ¢ = 1,...,n and add n-arbitrary nodes y;, + = 1,...,n so that it will be possible
to find such weights A; and B; that the obtained formula will have the degree at least
2n — 1.

In other words we are looking for A;, B; and y;, i = 1,...,n for which

n n b
Z Agxk + ZBlyf = / w(x)rtdr =: I, Yk € [0,2n — 1].
i=1 i=1 a

Or equivalently in the matrix form

1 ... 1 1 ... 1 Ay
T ... Tn 1 - Un : Iy
U vt vi o ... 12 A, I
: : : : B |~
xz"*Q o 1:721"_2 yf"ﬂ . yfl"_g : I,
mln_l . xi"fl yf”_l . yi"il B,

One solution of this problem is to choose the weights A; to be equal to the original weights
of the Gaussian formula and B; =0V ¢ = 1,...,n. But for any choice of y; different to
x; the matrix above is regular, which implies that the solution is unique. Therefore we
need to add at least n 4+ 1 additional points to the ones of the Gaussian formula to achieve
a better degree of precision than 2n — 1.

In fact any additional n 4 1 points can be used to construct a formula of the degree at
least 2n. Determining the weights would lead to a similar matrix as the one above. And
for any choice of y; there will be a unique solution of the problem

.1 1.1 Ay
T ... T Y1 - UYn : I
2 S ot vi o ... 22 A, L
: : : : B | |
. Lot Tt NUTY. Lo : I
S N VPO Vot B

However the degree 2n is not the best we can get. For example if we choose y; to be
equal to the nodes of the (n + 1)-point Gaussian formula we get the degree 2n + 1. Of
course in this case the weights of the nodes of the n-point Gaussian formula will turn to
be zeros. It has been shown by Kronrod [5] that for certain weight functions (including
w(z) = 1) it is possible to find a (2n + 1)-point quadrature formula containing the original
n-points, with the degree at least 3n + 1. Unfortunately there are weight functions for
which the Kronrod extension is not real.



Let us return back to the choices of y; providing that there will exist a (2n + 1)-point
formula with the nodes z;, 1=1,...,nand y;, « = 1,...,n + 1 of degree at least 2n + 1.
The concept of choosing the nodes of the (n + 1)-point Gaussian formula is not the only
option. In this work we are going to deal with a different possibility. Again we are looking
for a (2n+ 1)-point formula with the degree at least 2n+ 1 containing the n original nodes,
but we shall add the condition that the weights of these ”old” nodes are precisely the halves
of the original ones. Equivalently we are looking for a (n + 1)-point quadrature formula
which integrates polynomials up to degree 2n 4+ 1 with an error equal in magnitude to the
one of the Gaussian formula, but with the opposite sign.

Let us denote such formula by HS™ . As mentioned above the formula HS"™ is precise
for polynomials up to the degree 2n — 1 and the averaged formula

1

(1.5) L@t = §(H§,"“) +GM)

has degree at least 2n + 1 since the errors of G and HI™ cancel each other.

The existence of H{"™ is guaranteed by the fact that

() = Df = =G = Df vf e P!

or

H O f = (21 = GU) f Y f e PP
Hence Hqg,"ﬂ) is actually a Gaussian quadrature rule for the linear functional 21 — Ggl ),

The existence of HI™ can now be easily deduced from the theorem for existence of

Gaussian quadrature formulas.
The above mentioned rule Hz(unﬂ) is called the anti-Gaussian quadrature formula. After

we have explained the existence we can step up to the definition.

Definition 1.5. Let G{” be the Gaussian quadrature formula 1.2 for the integral 1.3. Let
I be (n + 1)-point quadrature formula

n+1
(1) =3 AR
i=1
such that
(1.7) (HD — I f = —(G™ — ) f Vf e P>+,

Then H{™™ is the anti-Gaussian quadrature formula for integral I and )\Enﬂ) and dnﬂ)

are its nodes and weights.

As we will see later anti-Gaussian formula has many advantageous practical and theoret-
ical properties. In particular it can be constructed with only minimal additional costs from
the data needed for the construction of the corresponding Gaussian formula, its weights
are positive, nodes are always real and at most two of them may lie outside the interval of
integration.



2. CONSTRUCTION OF THE ANTI-(GAUSSIAN FORMULAS

An effective algorithm for generating anti-Gaussian formulas will be demonstrated in
this chapter. We present a common procedure of constructing Gaussian quadrature rules
described in [3] and show how this process has to be modified if we wish to get the anti-
Gaussian rule. The reader is expected to be familiarized with the basic results of the theory
of the orthogonal polynomials, particularly the definition, existence of 3-term recurrence
relationship, Stieltjes formulas for the recurrence coefficients (e.g. [10]), the interlacing
property and Christoffel-Darboux identity [1, p. 785].

2.1. Algorithm.

As we have already mention in section 1 from 1.7 we see that
(2.1) HDf = (2 — G f Vf € PP,

By comparing 2.1 with the definition 1.2 we see that HI™ s in fact an (n + 1)-point
Gaussian formula for the linear functional 27 — G\, Therefore the weights and nodes of
HI™ can be enumerated with use of the following theorem for the Gaussian formulas.

Theorem 2.1. Denote F := 21— G\ and {pi}2, be a sequence of polynomials orthogonal
with respect to F, let k; be the leading coefficient of p; Vi and {t,}}=1 C {(a,b) be the zeros
of pn+1, then

n+1
(2.2) Ff =Y wVft) vfeprt!
=1
where
K, 1
(2.3) w{m = 22 L i=1,2...,n+1.

Ept1 Do (ti>p;L+1 (t:)

Unfortunately to apply the above theorem we would need to know the orthogonal poly-
nomials of high degree and even their roots. One way of course is to determine the whole
sequence of polynomials and then to find the desired zeros, but we shall present here
a simpler way how to get the weights and nodes. To be precise we show that the nodes
are the eigenvalues and weights are proportional to the squares of the first components of
the orthonormal eigenvectors of a certain 3-diagonal matrix.

We know that every set {p;}71]! of the polynomials orthogonal with respect to the linear

functional I satisfies the 3-term recurrence relationship:

(2.4) pi(x) = (a; 4 bj)pj-1(x) — ¢jpj—2(x) j=1,2....n+1
where
(2.5) aj,c; >0, p_i(z) =0, po(zr)=1.

Later we will see how the recurrence coefficients can be obtained but now let us believe
we know them.



Writing the formula 2.4 in the matrix form we get

;_lil a_ll 0
Po() @ b 1 : po(x)
p T ao a2 a2 p T
(2.6) N )
) . Cn —bn, 1 )
Pn(T) ' an  On o Pn()
0o - Sl Zbnin
An+1 An+1
0
+ 0
anrl(l')
An+1

Let us denote the matrix above by T, the vector (po(z), p1(z), ..., p.(z))T by p(z) and
e,r1 = (0,...,0,1)T. Now we can rewrite 2.6 in the form

(2.7) zp(z) = Tp(x) +

Pn+1 (l‘) €n+1
(p41

Thus p,41(t;) = 0 if and only if
(2.8) t;p(t;) = Tp(;),

so the eigenvalues of T correspond to the zeros of p, 1.

If we multiply the formula 2.4 by p;_5(x) and apply the functional F' on the both sides
we get

(2.9)  F(pj-2(2)p;(2)) = a;F(2pj-1(2)pj—2(2)) + b;F (pj-1()pj-2()) — ¢ F (0] _5(x))-

As the polynomials p; are orthogonal, the terms F'(p;_o(x)p;(x)) and F(p;_1(x)pj—2(x))
are equal to zero. And hence

o — GF(@pi1(2)pj-2(2))
’ F(p7_s(x)) ‘

Shifting the index j to j — 1 in the formula 2.4 gives
(2.10) pi-1(@) = (@12 + bj_)pj—2(x) — ¢j—1pj—s(x),

and if we multiply it with p;_;, apply the functional F' and consider the orthogonality
of the polynomials we arrive to

F(p?_\(z)) = a1 F(xp;_1(x)pj—2(z))
which implies
F(pi_i(x))

F(l’pj—l(x)pj_z(x)) - aj—1



and hence

(2.11) Cc; = % —F<p32‘71>
. j = — F( 3 ) .
aj—1 pj*2

Thus 2—9 = - L Vj (which means T is symmetric) if and only if there exists a positive
J

j—1

constant K such that for every i = 0,1,...,n+1 p; = Kp} where the polynomials {p;}7
are orhonormal, in other words if and only if the sequence {p; ?jol is an uniform multiple
of the set {p; ?:Jrol. Soon we will see that this is precisely the property we need to get
the weights. Obviously there exist such constants d; that if we use the orthogonal system
{d;p;}1=4 instead of {p;}70) in 2.4 we would get a symmetric matrix at the place of T in
the formula 2.8. It is easy to show that the (symmetric) matrix on the place of T will be
J = DTD~! where

dO .. 0
d .
(2.12) D= !
0 d,
and hence
b do 1 ..
al di aq 0
di ca —ba di 1
do a2 as d2 as
(2.13) J=
dn—l Cn —bn dn—l L
dn_2 an an dn an
0 . dn  Cn+1 —bni1
dnfl an+41 an+1

Now we shall show how to find the constants d;. The requirement of the symmetry leads
to the following conditions for d;:
diq 1 - d; Ciy1

2.14 =
( ) d; a; di—1 Qi1

, Vi=1,...,n.

Having these n conditions for n + 1 constants d; we can choose the first constant dy
arbitrarily and compute the rest recurrently from the following relationship obtained by
simple formatting of the equation 2.14:

di—1

(Ci+lai )% ’
Qi+1

(2.15) d; =

As multiplying by a constant does not change the zeros of the (n + 1)th polynomial, we
can without the loss of generality consider the symmetric matrix J instead of T.

To proceed further we will need the following lemma:

Lemma 2.2. Let p(t;) be the eigenvector of the matriz J corresponding with the eigenvalue
tj. Let w; be of the same form as in the theorem 2.1. Then

(2.16) w;[p(t)] [pt)] =1Vi=1,2,...,n+1.

10



Proof. From the Christoffel-Darboux identity we have

n+1
Z Pm pm »To _ Fnta pn+2(5’3)pn+1($o) - Pn+2($o)pn+1(ﬂf)

Ko F(p721+1($))($ — o)

We make a 11m1t passage for = tending to xy on the both sides and add and subtract
Prt2(20)Pnt1(z0) in the numerator on the right hand side. We get

= p%(%) _ k1 im Prt2(T)Pni1(0) — Prra(T0)Pni1(T0) .
mZ::O F(p2,(20))  kns2F (pp 41 (20)) ik (z — o)
. pn-&-?(‘ro)pn-i-l(l‘) - pn-&-?(xo)pnﬁ-l(l‘())
(x — x0) )

We notice that the terms in the square brackets correspond to p!, . o(zo)pn+1(z0) and
Prt2(20)P4 1 (z0) respectively. This observation allows us to continue this way:

P2 (20) _ Kns1 / . /
Z F(p2,(20)) _kn+2F(p31+1($0))[pn+2(‘r0)p”+1<x0) Pu+2(20)Pr 1 (20)]

We remmd the fact that the polynomials p; are the uniform multiples of the orthonormal
polynomials and so

F(p2,) = F(p,) Ym,n € N,
which lets us to reduce these terms on the both sides.

Since zy was chosen arbitrarily, we can put zy := t; (note that p,4:(¢;) = 0), which
implies
n+1 k 1
_ T N = et A, N —
(217) 2 7in(ts) = (I I()] =~ et () =

U

From the formula 2.8 we can see that if ¢; is an orthonormal (with respect to the standard
scalar product on R™*1) eigenvector of J corresponding to the eigenvalue ¢; i.e.

Jq; = t;q;
and

g9;9; =1
then the eigenvectors g; are necessarily multiples of p(¢;) and hence

(2.18) Vi B eR that g = (¢0, .-, q) = b(po(ts)s- - - palty))
which together with 2.17 implies

(2.19) L=g;g; =b[pt;)]" [p(t))] = —

especially b = w;.

11



This yields

(2.20) q; = w;ps(t5)

L=
kS

and as pyg = ko and fabw(x)dx, we get

(221) wy = () = @) [ v

So the weights are proportional to the squares of the first components of the orthonormal
eigenvectors of the symmetric matrix J. Moreover the weights are positive, which will plays
an important role in the convergence of these quadrature formulas.

2.2. Development of the Coefficients of the Recurrence Relationship.

Obviously the weak point of the above construction is in the proposed knowledge of
the recurrence coefficients in the 3-term recurrence for the polynomials orthogonal with

respect to the functional 21 — G, Without the loss of generality we can assume that the
coefficients a; = 1 V). The coefficients b; and ¢; are given by the Stieltjes formulas:

(n)
(2.22) b = @]_GZ%mﬁﬂ,j:Lz”wn+1
(21 — Gu )(piq)

(21 — G (2y)
(21 — G)(P2y)

The coefficient ¢; can be any finite number, soon we will see that a convenient choice is

= (21— els ))(po). Now we shall show how the required coefficients can be obtained from
the corresponding coefficients for the original linear functional I. In many classical cases the
coefficients for the functional I are known explicitly and tabulated (e.g. in [1]); in others
software packages used to compute the Gaussian formulas compute them as a preliminary
step.

Let {p;} be the sequence of polynomials orthogonal with respect to the integral I, which
satisfies the recurrence relation:

(2.24) pi(@) = (z — a;)pj1(x) — Bipja(x) j=1,2,...
w_1(z) =0, po(z) = 1.
Same as before we choose (31 = I(pg) and for the other coefficients holds:

I(‘T‘P?fﬂ

(2.23) cj , j=2,...,n+ 1.

(2.25) G =Ty J=12 ...

(2.26) B; zﬁﬁéﬁ J=2,3,...
For p € P21 is (2] — G3)p = Ip, therefore

(2.27) by = ojj=1,2,...,n

(2.28) ¢ = B;j=12....n

(2.29) p, = ¢ j=12,... n

12



We only need to compute b, and ¢, 1. As the nodes of G are the zeros of Dn, the
result of applying G to any product containing p,, is 0. So
_ @I =G)(apy) _ 2A(wp) _

2.30 bt = — .
(2:50) T er -ty 2003) o

Using the above argument as well as the fact that the degree of p2_, is less then 2n — 1
we find that

(21 - GW)(p2) _ 21(p3)
21 -GN ) 1)

In other words we take precisely the same set of recurrence coefficients as when computing
the Gaussian formula, except that the last coefficient ¢, is doubled.

(2.31) Cnt1 =

- 2671-&-1'

3. IMPLEMENTATION OF THE ALGORITHM FOR THE
CONSTRUCTION

In section 2 we have seen the algorithm for generating the nodes and weights for the
anti-Gaussian formulas of the prescribed degree. In this section we show an example of the
implementation of the algorithm in Maple programming language and give explicit values
of the nodes and weights generated by the program for common weight functions. The
source code of the programme is attached in section 9.

At the first line of the programm we initialize the linear algebra package by typing
with(linalg) and set the number of digits Maple will use when performing the floating
point operations by Digits:=20:. The program itself is divided into 7 sections. As I have
mentioned above it is able to determine the anti-Gaussian rule of a given degree for a given
weight function. The aim of the first part (Definition of the weight function, recurrence re-
lations and degree) is therefore to define the weight function, the degree and the recurrence
relationship.

Taking Legendre weight function as an example we would first describe the weight func-
tion and the interval of integration by

> w:= x->1: #Legendre weight function is w(x)=1
> a:=-1:b:=1: #interval of integration is (a,b)=(-1,1)

then we enter the desired number of nodes (The program computes the (N + 1)-point
anti-Gaussian formula and the degree of precision is therefore 2N — 1.)

> N:=2: #number of nodes for the Gaussian formula

and finally we put the formula for the leading coefficient k(n) of the n-th orthogonal
polynomial

>k :=n-> 1./2 nxbinomial (2*n,n):

and the recurrence coefficients al(n),. .., ad(n)

13



> al:= n-> (n+1);
> a2:= n—> 0;

> a3:= n-> (2*n+1);
> a4:= n-> n;

obtained from the recurrence relationship for the orthogonal polynomials p;(x) of the form

(3.1) al(n)pni1(2) = (a2(n) + ad(n)a)pa(r) — ad(n)pp(2).

Obviously this recurrence relationship is not compatible with the notation in the section
2. However in the classical cases the leading coefficients are tabulated (see section 9 or [1])
precisely in the form given above.

Deriving the recurrence relationships in the form used in the section 2 is the point of
the second part of the program (Derivation of the recurrence relationships for ” Gaussian”
and ”anti-Gaussian” orthogonal polynomials).

We need the recurrence of the form

P,(z) = (x4 by) Po-1(x) — cnPr—a()

where P; are polynomials orthogonal with respect to the weight function w(z) with the
leading coefficient equal to 1. Assuming al(n) # 0 and shifting the index n to n — 1 we
can write the formula 3.1 as

_(a2(n—1)  a3(n—1) ad(n —1)
@) = (S0 * iy P gy

So for the polynomials

with the leading coefficients equal to 1 holds

a2(n—1) a3(n—1) k(n—1)  ad(n—1)
0D ) PN G

+

Pu(z) = (

To simplify this expression we introduce the following notations:

Which in Maple would be represented by:

k(n —2)ad(n — 1)
k(n)al(n —1)

and gb(n) =

n—> -(k(n-1)/k(n))*(a2(n-1)/a1(n-1)):
n—> (k(n-2)/k(n))*(ad(n-1)/a1l(n-1)):

> ga:
> gb:

14



Now the recurrence can be written in the form

(3:3) Po(z) = (z — ga(n)) Pu-1(x) — gb(n) P, —2(),

which finally corresponds to the section 2.
We know that if the recurrence for the anti-Gaussian formula should be

(3.4) Qn(z) = (z — aga(n))@n-1(z) — agh(n)Qn—2(z),

then the corresponding coefficients are equal except for the last one where agb(N +1) =
2gb(N +1).

Hence
> aga:= n-> ga(n) :#aga(n)=ga(n) for all n
> agb:= proc(n)
> if N+1>n then return(gb(n))fi: #agb(n)=gb(n) for n < N+1
> if N+1=n then return(2+gb(n)) fi: #agb(N+1)=2gb(N+1)
> end proc:

In the third section of the program (Symmetric matrix J for the ”anti-Gaussian” case)
the factors d; (formula 2.15) are computed by

> d[0]:= 1:
> for i from 1 to N do d[i]:=d[i-1]/sqrt(agb(i+1)) od:

and the symmetrized matrix J (see formula 2.13) is built up as follows:

>matrixJ:= proc(i,j)

if i=j then return aga(i)

elif i=j-1 then return (d[i-1]1/d[il+d[j-11/d[j-2]*agb(j))/2
elif i=j+1 then return (d[j-1]1/d[jl+d[i-1]/d[i-2]*agb(i))/2
else return(0)

fi

> end proc:

> J:=matrix(N+1,N+1,matrixJ):

vV V V Vv V

Here I have replaced the explicit expressions for J; ;1 and J;_;; by their average since
otherwise the rounding error would destroy the symmetry of J.

The fourth and perhaps the most important part (Weights and nodes for the anti-
Gaussian formula) finally determines the nodes and weights of the desired anti-Gaussian
formula.

In section 2 I have shown that nodes are the eigenvalues and weights can be gained
by multiplying the squares of the first components of the orthonormal eigenvectors of the
matrix J by fabw(x)dx To obtain the eigenvalues and eigenvector of J I use the Maple
function ”eigenvectors”
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>eigen_all:=eigenvectors(J):

which returns a sequence of lists of the form [\;, m;, {v[1,4],...,v[n;,i]}], where the J\; is
the eigenvalue, m; its algebraic multiplicity, and {v[1,4], ..., v[n;,]} is a set of orthonormal
eigenvectors of J corresponding to \;.

The purpose of the next few commands is now to extract the important values from this
structure.

> nodes:=vector(N+1,i->eigen_all[i] [1]);

#i-th node is the first component of i-th list

> orthovects:= vector(N+1,i->eigen_all[i] [3][1]):

#i-th orthogonal eigenvector is the first component of the third item of
the i-th list.

The line
>intw:=int (w(x) ,x=a..b);

is responsible for computing the value of fab w(z)dr which allows us to define the weights

by
>weights:=vector (N+1, j->(orthovects[j] [1])~2.*intw):,

hence j-th weight is the square if the first component of the j-th orthogonal eigenvector
multiplied by f; w(z)dz.

In this point the anti-Gaussian formula is ready. Its nodes and weights are stored in
the arrays of the corresponding names. The rest of the program computes the according
Gaussian formula and evaluate the integral for a given function.

In sections 5 (Symmetric matrix JG for the ”Gaussian” case) and 6 (Weights and nodes
for the Gaussian formula) of the programme the Gaussian formula is derived using the
same tools as in the third and fourth part for the anti-Gaussian formula. As the result
of this we get nodes and weights for the N-point Gaussian formula stored in the arrays
nodesG and weightG.

In the last part (Integration of given function) we first enter the function to be integrated

and compute the "exact” value of the integral fabw(x) f(z)dz using the implicit Maple
facility for integration,

> f:=x->sin(x):
> exact:=int (w(x)*f(x),x=a..b);

and then we evaluate the integral, absolute error and relative error by using the anti-
Gaussian formula:

> resultA:=sum(weights[s]*f (nodes[s]),s=1..N+1);

> abserrA:=simplify(abs(resultA-exact));
> relerrA:=abs(abserrA/resulth);
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the Gaussian formula:

> resultG:=sum(weightsG[s]*f (nodesG[s]),s=1..N);
abserrG:=simplify(abs(resultG-exact));
> relerrG:=abs(abserrG/resultG) ;

\"

and the averaged formula (H(NJrl GL,N))/Q.

> result_average:=(resultA+resultG)/2.;
abserr_average:=abs(result_average-exact) ;
> relerr_average:=abs(abserr_average/result_average) ;

A\

All together the program uses the weight function, the interval of integration, the re-
currence relationship and the expected number of nodes as the inputs and gives the nodes
and weights for both the Gaussian and anti-Gaussian quadratures. Finally it computes the
integral of a given function with use of the formulas just derived and the averaged formula
(HY + G /2 each accompanied with the relative and absolute errors.

Some examples of the gained nodes and weights for various weight functions can be
found in section 9.

4. THEORETICAL PROPERTIES

In this section we will formulate and prove some assertions concerning theoretical pro-
perties of the anti-Gaussian formulas. First we (among other facts) derive a necessary
and sufficient condition for the anti-Gaussian for being internal and after that we show its
applications in several classical cases.

Theorem 4.1. The anti-Gaussian quadrature formula g = Z"H)\ f(&) has the
following properties:

a) The weights \; > 0Vi=1,2,...,n+ 1.

b) The nodes &, i = 1,2,...,n+ 1 are real and are interlaced by the nodes of the
Gaussian formula GS}), i.€.

(4.1) S <x <& < <wp <&yt

c) The nodes &, . .. ,{’n belong to the integration interval.
d) &1 € (a,0) & 28 > By and Gy € (a,b) & 210 > 5.0 where @,
j=0,1,....n+1 and 5n+1 are the same as in the formulas 2.24 and 2.26.

Proof. The proposition a) follows immediately from the construction (see the formula 2.21).

In b) the nodes are the eigenvalues of the real symmetric matrix thus real. From the
theory of orthogonal polynomials we know that the zeros of an i-th orthogonal polynomial
are interlaced by the zeros of the (i + 1)-th one. As the polynomials are orthogonal with

respect to the original integral I and 27 — G are equal up to the degree n we see that
the roots of p,(= ¢,) are interlaced by the zeros of p, 1. Finally the zeros of ,, are the

nodes of G and zeros of Pni1 are the nodes of H which proves the statement.

c) follows trivially from b) and the fact that the Gaussian formula is internal.
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d) We derive a condition for &,,; to belong to (a,b). & would be treated similarly. As
all the zeros of ¢; Vi belong to (a,b) and the limit of a polynomial with a positive leading
coefficient is oo when n — oo holds that ¢, _1(b) > 0, p,1(b) > 0 and p,4+1(b) > 0 < Py
does not have any zeros greater or equal to b (which means 41 € (a,b)). Using the
relationships 2.27, 2.28 and 2.29 we get

(4'2) pn—i-l(x) = (l‘ - an+1)90n(x) - 26n+1§0n—1(x)
(4.3) Ont1(z) = (T = any1)en(T) = Buy1on-1(T).
Subtracting 4.2 - 4.3 gives:

(4-4) pn+1($) = 90n+1($) - 5n+190n—1($)
and if we substitute x := b then
90n+1(b)
i <b& pn+1(b) >0<= €0n+1($) - ﬁn+190n—1($) > 0= m > Bot1-

O

Remark 4.2. An alternative proof of the proposition b) could be held with help of the
Cauchy interlace theorem [9], which says that if we delete i-th row and i-th column from
a real symmetric matrix, then the eigenvalues of the "new” matrix interlace those of the
original one. The recurrence coefficients for G and HSMY are equal up to the index
n so the nodes of G4 are the eigenvalues of a matrix which we get by deleting the last
row and column from the matrix in T in the formula 2.7. Concerning the fact that the
nodes of H{"™Y are the eigenvalues of T and that T can be without the loss of generality
considered to be symmetric and we can apply the Cauchy interlace theorem to obtain the
desired result.

Theorem 4.3. The anti-Gaussian formulas corresponding to the following weight functions
are internal

1) w(xz) =2z% " in (0,00) where « > —1 (Generalized Laguere)

2) w(z) = |z|*e™*" in (—oo,00) where o > —1 (Generalized Hermite)

3) w(z) = (1 —x%)* in (—1,1) where a > —1 (Gegenbauer),

including special cases a = 0 (Legendre), a = —% (Chebyshev) and o = % (Chebyshev,
second kind).

Proof. For this proof and also later in this work we will work with the data in the tables
22.2 (Orthogonality Relations), 22.3 (Explicit Expressions), 22.4 (Special Values) and 22.7
(Recurrence Relations) in [1]. For more convenience a copy of the data, which we will need
more than once can be found in section 9.

1) We need to verify the assumption of the theorem 4.1 d) at the point 0. In line with
[1] let us denote the corresponding set of the orthogonal polynomials by LEO‘) (x). From the
table 22.3 in [1] we can see that the polynomials LEO‘) (x) are considered to have the leading

coefficient =2 so the values Lga)(O) = (") read from the table 22.4 in [1] need to be

7!

divided by % for our purpose. In the following we shall write

(4.5) 1“Nz) =L
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Now

n+l+o (n41)! (n414a)!

) (0) ( n+1 ) —ntl = (n+1)n 1 |
4.6 nt1 _ (—1) l _ (Dl i _ (n+1+a)! _ 1 ‘
40 o =TI ot Gerray = (14 1+ a)(n o)
From the table 22.7 in [1] we can deduce the recurrence relationship
(4.7) (n+ 1LY (x) = [2n + a + 1) — 2] L (2) — (n + @) L, (x).

However we need the recurrence for [

(_1)n+l l(a)
(n+ 1)1+t

(Ojr)l (x). Using 4.5 we can proceed as follows:

(_1)n_1 a
mlg—)l(x)

(n+1) () =[2n+a+1) -1 (@) = (n+a)

(=)t

dividing both sides by — we get

-1t nl N
En —) 1)! (_1)n+1l£31(x)

o -1)"  nl o
) = [2n a4 1) - ) L @) — (ot

or
bih(@) = [r = @n+ o+ DI (@) = n(n + o)l (@),
which is the recurrence we wanted and hence (3,11 from the theorem 4.1 b) is n(n + a).
It remains to prove that

(4.8) (n+1l+a)(n+a)>nn+a),

but this is trivial since we assumed that o« > —1.

The case of the generalized Hermite weight is obvious since the interval of integration
is whole real axis and the Gegenbauer’s weight will be subsumed as a special case in the
next theorem. O

Theorem 4.4. The anti-Gaussian formula HY where n > 1 corresponding to the weight
function w(x) = (1 — 2)*(1 + x)? where a, > —1 in (—1,1) is internal if and only if

(4.9) 20+ 1)n® + 2a+ )(a+ B+ 1)n+ %(a +1D(a+pB)(a+B8+1)>0

(110) (54 Dn?+ @0+ Da+ B+ Dnt (54 Dlact H)at 1) >0

Proof. Let us denote the appropriate set of the orthogonal polynomials according to the
[1] by Pi(a’ﬁ ). Again from the table 22.3 in [1] we see that the leading coefficient is chosen

as %(2”‘;‘% ) therefore be

@8 _ 2 )
(4.11) P; —WR

7

set of the orthogonal polynomials with the leading coefficient 1. Let us for example show
that there are no nodes of Hy'™" exceeding 1 (the proof for -1 would be analogous). The
table 22.4 gives us that P{*” (1) = (") and hence
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e n+l+a\on 2n— 2+a+,8 (n+14a)! (2n—24+a+43)!

(4.12) M = ( ntl )2 H( ) _ 4 (ntDl! " (n=Dlln—1+a+p) _

. (@9 (1) B (") n- 1(2”+2+a+ﬁ) (n1ta)l _ @ni2taid)l
4

Pn1 n+1 (n—Dlal ~ (n+1)!(n+1+a+s)
m+14+a)@n—2+a+pB)n+1+a+p3)!
(n—1+a)2n+2+a+p)(n—1+a+08)
(n+a)n+l+a)ntatBn+ltats)
Cn—1+a+8)2n+a+B)2n+1+a+0)2n+2+a+p)

During our search for an appropriate recurrence relationship the following notation will
be useful:

b—1
(4.13) ap = [ [(a+ i) where a,b € Z.

=0

Let us start with the recurrence from the table 22.7:

2(n+1)(n+a+ﬂ+1)(2n+a+ﬁ) n+1 (:U):
= [2n+a+B)sz+ 2n+a+ B+ 1P (2) = 2(n+a)(n+ B8)(2n+ 2+ a+ B) PV ().

If we substitute PZ-( ( ) by pZO‘ 2 ()5 (2”72;?% ), divide the equality by the coefficient

at the left hand side and reduce the factorials a bit, we arrive to

N 2 ! N
W) = G G a2 @ Bk Lot A o)-
.y nn+a+B)(n+a)n+p)2n+2+a+5)2n—2+a+ F)! (aﬂ)( )
' 2n+a+B)2n+2+a+3) Pno1 i
and after some more reducing we finally get
W= | w+ 1 P ) -
i @2n+24+a+3)2n+a+p) ™"
n(n+a+ 0)(n+ a)(n+3) P (),

4(2n+a+5)2(2n+1+a+ﬁ)(2n—1+a+5) n—1

Hence the recurrence coefficient 3, from the theorem 4.1 b) is

4 n(n +a+ f)(n+a)(n+ )
Cn+a+p)22n+1+a+8)2n—1+a+03)
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piﬁ’f) (1)

Now it remains to find when —"*—+— > 1. Reminding the formula 4.12 we see that

Brn+1p,, 7 (1)
(@.B) (n+a)(n+l+a)(nta+s)(nt+l+atp)
Pt (1) (2n—1+a+6)(2n+a+p)(2n+-1+a+6)(2n+24+a+p)

(a,8) n(n+a+p)(nta)(n+p)
Bn1pp-y (1) @ntatB)22nti+atf)@n—15a1s)

(n+14a)(n+1+a+3)
(2n+2+a+p)

n(n+p)
(2n+a+p)

(n+1l4+a)(n+1l+a+8)2n+a+p)
2n+2+a+ B)n(n+ 3)
(n+1+a)(n+1+a+B)2(n+ 22)
B 2(n+ 1+ “)n(n + B) a
(m+1+a)n+1+a+pB)(n+ ) —n+1+2n(n+43)
(n+ 1+ “2Yn(n+ )

- 1+

As the denominator of the last fraction is positive, the condition of the theorem 4.1 b)
holds if and only if the numerator is positive.

This can be shown as follows

(n+a+ Do+ G+ D0+ 55 —nn+ B0+ 1+ 255) =
_ m+a+Um+a+ﬁ+Dn+m+a+nm+a+g+ng§ﬁ_

a+p
=

—nn+ ) (n+1) —n(n+5)

= a—gﬁ[(n+a+1)(n+a+ﬁ+1)—n(n—l—ﬁ)]—i—
+ann+1l4+a+8)+n+nn+1l+a+8)—nn+p5)(n+1)=
= Tt atmtat st —nmt o)+

+an(n+1+a+05)+
+n+nn+0)+m+nla+1)—(n+1nn+p) =

= a;ﬁmm+a+ﬁ+1ﬂwa+nm+a+ﬁ+n—nm+ﬁﬂ+
+an(n+1+a+p6)+(n+1)n(a+1) =
a+ 3

= 5 nn+a+5+1)+
Ha+Dn+ (a+1)(a+B+1) —n(n+ 8)] +

+an(n+14+a+8)+n+1n(a+1) =

21



— a;—ﬁ[n(n—i-oﬁ—ﬁ—i-l)—i-(Oz—i-l)n—n(n—i-ﬁ)]—l—
a;ﬁ(a—i—l)(a—i-ﬁ—i-l)—i—
+an(n+1+a+08)+n+1n(a+1)=

= a;ﬁ(Qn—l—Zna)—i-
a—gﬁ(oﬁ—l)(&—i—ﬁ—i-l)—i—

+an(n+1+a+p)+n+1)n(la+1) =
= nfla+B)(a+1)+an+14+a+8)+n+1)(a+1)]+

ot ot s+ =

= n[n+1+a+f)(a+l)+an+1+a+p)+
a+ 3
2

_|_

+

_|_

+ (a+1)(a+p0+1) =

a+pf

= nn+1l+a+B)(2a+1)+ (a+1D)(a+F+1)=

a—+f
2
Hence all the nodes are smaller or equal 1 if and only if the last formula is positive,
which is exactly what we wanted to prove. When proving the fact that there are no nodes
smaller than -1 we get to the assumption 4.10.

= (a+1)n*+ (a+n(a+p+1)+ (a+1D(a+B+1).

O

Now some sufficient conditions for the anti-Gaussian formula for the Jacobi weight func-
tion to require an exterior node can be deduced. For example if o < —%, then the formula
needs an exterior node if n is large enough, because the coefficient in front of n? in 4.9 is
negative. If a = —% and 3 € (—%, %) then the formula requires an exterior node for every
n since then the left hand side of 4.9 is independent of n and negative. If § € (=3, 3) then
we can find « close enough to —% such that the coefficients in front of n and n? will be small
and the last term on left hand side of 4.9 will be negative and therefore for n sufficiently

small an exterior node will be required.

Although the result stated in the previous theorem is precise we shall now show a (weaker)
proposition for the anti-Gaussian formula for the Jacobi weight to be internal this time
without the dependence on n.

Theorem 4.5. The anti-Gaussian formula HY for the Jacobi weight function w(x) =
(1 —2)*(1 +2)? in (—1,1) is internal for every n > 1 if a and B satisfies the following
conditions:

1 1

a > 5 B> 3
(4.14) (2a+1)(a+ﬁ+2)+%(a—l—l)(a—i—ﬁ)(avLﬁ—i-l)20
(4.15) (26+1)(a+5+2)+%(ﬁ+1)(a+ﬁ)(a+ﬁ+1)zo.
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FIGURE 1. The anti-Gaussian formulas for the Jacobi weight function are
internal for all n if & and ( lie in the region to the north-east of the heavy
lines.

Proof. If a and (3 are greater or equal to —% then the coefficients in front of n and n? in
the conditions 4.9 and 4.10 are nonnegative. Therefore the polynomials on their left hand
sides are nondecreasing functions of n and it is enough to show that they are nonnegative
for n = 1. As the conditions 4.14 and 4.15 were gained by substituting n = 1 in 4.9 and
4.10, the proof is finished. O

Now let us remind the Gegenbauer’s weight function from the theorem 4.3. When
o = § > —1 the conditions 4.14 and 4.15 reduce to (2a + 1)(a + 1)(a + 2) > 0, which
holds.
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5. CONVERGENCE OF THE ANTI-GAUSSIAN FORMULAS

So far we have been considering the anti-Gaussian formulas only as a tool for integrating
polynomials. In this section we shall show that with increasing n the formula H Y f
b . .
converges to [ w(x)f(x)dz for any continuous function f.

First let us consider internal anti-Gaussian formulas. Probably the simplest way is
to start with the Weierstrass approximation theorem (see e.g.[11]) claiming that every
continuous function can be arbitrarily well approximated by a polynomial. To be precise
that Ve > 0 and for any function f continuous in the interval of integration there exists
a polynomial p such that

(5.1) |f—pll <e
where the norm is the maximum norm defined as follows:
191 = mas |£(@)] Vf € Cl(a.b)

Our task is now to show that Ve positive and every continuous function f(x) there exists
ng € N such that for every n > ng

(5.2) /bw(x)f(x)dx — HMY < e

Let us have a given function f and a positive constant . By the Weierstrass theorem
there exists a polynomial p such that

19
If—pl < W

The purpose of this complicated choice of the bound will be seen later.

HM integrates the

From now on let n > ng where ng is so large that the formula

n+1

polynomial p exactly. Now if we write HY™ in the form > )\En) f(&") and add and
i=1

subtract ffw(:r)p(x)d:v and > )\Z(-n)p(ff) inside the absolute value, we can write 5.2 as

/a b w(r) f(z)dr — / bw(:l:)p(m)dm + / bw(w)p(x)dx -

=S TAMRE) + > ApEn) = Y AT f(Er)
=1

=1 =1

/vawM—%ﬁ”

and using the triangle inequality
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b b b
/w(x)f(x)dx—H&"H) < /w(m)f(x)d:c—/ w(z)p(z)dz| +
b n+1
5. + | [ w@plelde = 3 A7p(E)| +

n+1 n+1

1 AMpEn = ST A (e
=1 =1

furthermore thanks to 5.1 the first and third absolute value on the right can be estimated
by

b
b;/ w(x)dx = =
2 [ w(x)de Ja 2
and
c n+1 - c
— = N am==
Qf;w(x)dx ; 2
since

n+1 b
Z /\En) = / w(x)dx (The formula is exact for constants).
i=1 a

The second absolute value on the left hand side of 5.3 is equal to zero as for n large
enough the anti-Gaussian formula for p is exact. So finally

/bw(x)f(x)dx — HY| < e

and the convergence is proved.

An alternative way to achieve our goal is to use the well known Banach-Steinhaus
theorem (sometimes also called Uniform boundedness theorem):

Theorem 5.1. Let X be a Banach space, Y be a normed linear space. Let T and {T,}5°,
belong to L(X,Y), which is the space of continuous linear operators from X to Y. Then

Tox — Tx < the sequence {|| T, ||}, is bounded AND T,,x — Tx forallz € D C X
where D s dense in X.

For the proof of this theorem please refer to any textbook of the functional analysis e.g.
[3].

Proof of the convergence of the anti-Gaussian formulas can be now performed by a direct
application of the Banach-Steinhaus theorem. The space X is considered to be the space
C({a,b)) of the functions continuous in the (closed) interval of integration equipped with
the maximum norm. It is known that the space C'({a, b)) is complete in the maximum norm
and therefore it is a Banach space. Obviously the space Y will be the set of real numbers.
If we put T;, = H™™! we have to prove that there exists a real constant M independent of
n such that
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| H") |< M Vn e N

Using the definition of the operator norm we can write

n+1
| HE™ 1= sup | HEF 1= sup | 3NVSE )|
=l =1
The sum (and therefore the whole expression) can be estimated by using the above facts
as follows:

n+1 n+1
n 1 n+1 n+1) n+1
Hfgnlp@x” <+>>|<§;ﬁp2|ﬂ [ LAE) ]
1 =1 11 1

As the norm of f is considered to be 1 then | f( inﬂ)) |<1Vi=1,...,n+1. Therefore

n+1 n+1
n+1) n+1 n+1
”?}JPZIAH FETIY I A
Lo i=1

and as the weights >\Z- ) are nonnegative

n—+1 n+1

b
Z | )\(n+1 |= ZAWH —/ w(x)dr =1 M < co.

a

Not to forget the second assumption of the theorem we remind the fact that the space
of polynomials is a dense subset of X and can therefore serve as the set D. Obviously for
any polynomial p there exists ny € N such that for every n > ny holds

b
Hp = / w(z)p(z)da,

hence as all the assumptions of the Banach-Steinhaus theorem are fulfilled, we have
proved the convergence of the anti-Gaussian formulas for any function continuous in the
appropriate interval.

In case that the formula requires an exterior node, both proofs can be held in exactly
the same way with the only difference that we will need to change the definition of norm
and the interval where the function f is supposed to be continuous. In particular the
continuousness will have to be assumed in a larger interval containing all the nodes and
the maximum in the definition of the norm will have to be taken over the larger interval
as well.

Finally let me mention one more interesting tool which can be used when examining the
convergence of the linear functionals, even if it can not be use for our problem.

Theorem 5.2 (Korovkin). Let {L,} be a sequence of positive linear functionals on C|0, 1]
satisfying L,(1) — 1, L,(x) — ¢ and L,(2?) — ¢ for some ¢ € [0,1]. Then L,(f(x)) —
f(e) for every f € C0,1].
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Proof of this theorem can be found e.g. in [6].

Remark 5.3. Positiveness of the linear functional L defined on Cla, b] means that L(f) > 0
for all f € C[a,b] where f(z) > 0 Vax € [a,].

Remark 5.4. In case we are working on an interval [a,b] different to [0,1] we can use
following linear transform:

r—a
y=y()=— Ve e€la],

mapping the interval [a, b] to [0, 1].

Conversely

r=y(b—a)+a,
which yields

f(@) = fly(b—a) +a) = g(y),
where ¢g(y) € C|0, 1].

Finally if L,(1) — k # 1 we can use the sequence {£2} instead.

Unfortunately in our case there is no use for the theorem since the functionals H&"H)
do not fulfill the assumptions of the theorem at all (and even the claim of the theorem is
not what we want to prove). This can be easily seen from the following considerations:

As for any n > 2 the anti-Gaussian formula is precise for x and 22, it holds that

c:= lim H"V(z) = H®(2)

and
d = lim H"(z%) = H® (2?).

n—oo

To satisfy the assumptions of the theorem it would have to be valid that ¢ = d which
means

(H) () = H (2?)

w

2 2 2
=0 1=0

hence

which is obviously not true.

We shall end this section with the remark that the same methods can be used (and
analogous results achieved) when examining the convergence of the sequence of averaged

formulas %(Ggl )+ H&nﬂ)) since their weights are positive and they integrate constants
exactly.
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6. ERROR ESTIMATES

In this section we derive error estimates for the anti-Gaussian and ”averaged” formulas.
First we present the classical estimate containing a higher order derivative f( (¢) evaluated
at some intermediate point of the interval of integration /. Since this point will usually be
unknown, we shall employ the estimate max,¢; | f (")(I)‘ instead. Such an estimate is valid
for every function which is smooth enough which guarantees wide applicability of it but
has several disadvantages as well. In the first place, the higher order derivatives might be
difficult to obtain or not available at all (e.g. if the values of the integrated function are
given by some measurements in a few points only) and estimating their maximum can be
even more serious problem. Secondly, different rules can lead to estimates involving the
derivatives of different order so it becomes impossible to compare the accuracy of the rules.

That is why we introduce an alternative error estimate based on the idea in [2]. Since
in [2] the description of the process of deriving the estimate is not to detailed, we shall
add all the missing details. The resulting estimate will consist of a multiplicative constant
depending only on the used rule and a certain the norm of the integrated function. The
clear advantages of this concept are that we do not need to know the derivatives of the
function operated upon and in some cases even the norm can be estimated without the
knowledge of the values in all points of the interval of integration. The price one has
to pay for this is that the estimate only holds for analytic functions and we have to be
able to estimate the values of the corresponding holomorphic function on the unit complex
circumference. Finally we show, that for certain weight functions the infinite sum included
in the estimate can be replaced by a "finite” expression, on the contrary to [4] we stress
that this trick can not be used for any quadrature rule.

6.1. Classical Approach. Let (), be a quadrature rule with algebraic degree of precision
equal to k and f be a function with k+1 continuous derivatives in the interval of integration
I = (a;b). Then for any = € I we can write the function f(z) in the terms of its Taylor

polynomial in the point ¢ = (“+b) as:
" (k) (k+1)

61) 1) = 1@+ e+ E D pmep e Lo gp L e
where &, € I depends on z.

To make everything more transparent we introduce the notations

: f"(e) 2 f®(e) K
file) = £©) + @)@ =) + 2w = o+ P = o)
and
FE(E)

(6.2) folz) = m(é} — o)t

Denoting the error by Ejf we can write:

b b b
Euf - / w(a) f(2)dx — Quf / w(a) fi(2)de — Qufy + / w(@) fole)de — Qufal
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The degree of f; is k so the quadrature @) is precise for f; and the above formula
simplifies to

b b
Bf = | [ w) fo)e - Qub| < | [ w@n@dd + 1w
If we substitute from 6.2 we get:
b b (k+1) (k+1)
/ w(x) fo(x)dz|+|Qr f2| = / w(:t)]lkT%z')(gx — o)t dy +‘Qkf(kT<fﬁ)(§x — o)kt

Since &, belongs to I we can estimate ‘(fz - C)k“} from above by (Z’_T“)kJrl and ‘f(k“)(fgg)‘
by maxges | T (z)].

This gives

ooy | FEFD L\ K+ b
(6.3) Eivf <2 S (llfljfl)' (@) (b 5 a) /a w(z)dx

because Q)1 = fabw(a:)dx
This means, that the estimate only depends on the degree of the quadrature rule in
question and not explicitly on its nodes and weights. Since the Gaussian formula GEZJJ{I)

and the averaged formula (Gi(,?) + Hz(unﬂ))/? are both of the degree 2n + 1 the theoretical
estimate above is the same for both of them.

6.2. Alternative approach. In the alternative estimate we will assume, that the interval
of integration is [—1, 1]. Otherwise we can use the linear transform

20 — b —
y=ylz) = % V€ [a, b],
which maps the interval [a,b] to [-1,1].
Then
. yb—a)+b+a
N 2
and hence

y(b—a)+b—i—a)

o) = £ (10 - 1)

is the transform of the function f to the interval [-1,1]. The analogous transform needs
to be performed with the weight function and the nodes of the quadrature formula and
one has to keep in mind that the result will be proportional to the original one with the
factor b’T“ Formally we are just using the substitution

/abw(x)f(x)dxz/lw(y(b—a)2+b+a)f(y(b—a)2+b+a> b;a dy.

1
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To avoid handling these complicated expressions, we will simply assume that the interval
of integration [a, b] is equal to [—1, 1] in the following.

For any function f analytic in [-1,1] there exists the Taylor series

o0
= Zaixl Vo e [-1,1].
i=0
Any such function can be extended to a function holomorphic for all complex z in the
unit circle |z| < 1 as
[e.e]
= Zaizl Vz € C such that |z| < 1.
i=0

Let us denote the boundary of the unit circle by C'. By the Cauchy formula the function
f possesses the representation

(6.9 10 =5 [ L

2w Jo & — 2

In the following we will already work with the anti Gaussian formula Hy' 't = Z"H A f ().
However the process of deriving the formula estimating the error does not anyhow depend
on the used quadrature rule.

We shall try to estimate the error Ef defined as

(6.5) Ef = / z)dx — H D f

where f is analytic in the interval [—1,1].
In the formula 6.5 we can write f in the form given by 6.4, which gives

b n+1
_ f(€)
(6.6) Ef_/a w(w)— /g_xdgd ZAJQ /Cg_%dg.
The right hand side can be rewritten as
e f(©) [ S
s ([ [0 dSaess 5 [ )

Using the Fubini theorem we can interchange the order of integration in the first term
and the second term can be replaced by the integral of the sum. Hence

(// S g - /”jf%_ dg)

or
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n+1
d _
27TZ// E—u ]f—

f(&) can be moved behind the first integration sign, Wthh implies

Efz%/cf(ﬁ)(/:w ii&g )

If we compare the term in the round brackets with the formula 6.5, we see that it is
1

exactly B ( —), where s is considered as a function of x with the parameter &.
Therefore we can write
1
6.7 EFf=— E
67) r-5 [ 1o

1
) dg.
—x
The error can be now estimated as follows:

(6.9 BIP < g | [ 108 (25 )d&

If we use the parametrization ¢(t) = €%, t € [0,27] of the circumference C' we get

08 (=) ¢ 0

The Holder inequality allows us to estimate the right hand side from above by
1

L %If(w(t))Ith)% ( [E (o= ) w0 2dt>%

The linear (see 6.5) functional £ ”looks” at the function m as at the function of z,

where ¢ is just a parameter. As the expression ¢'(t) does not depend on x we can use the

linearity of F to get
/t 2 %
E (“0—()> dt
p(t) —x

) 1 ) 27
(6.9 /P < - () ( /

2

Ef|?

2

2

where the norm ||.|| corresponds to the inner product
1 2 -
(6.10) (u,v) = —/ u(t)v(t)dt,
2 Jo

where Z denotes the complex conjugate of z. Hence

= (5 [ |f(w(t))|2dt); .
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Since ¢(t) = e and ¢'(t) = ie™ it holds that

o 2 o . it
ie
dt = E| —
/ [ (=)
27 1
= El— )1
/0 (1 — me‘”) !
27 1
= Fl—
/ (1 - xe”)

de

The function ﬁ (please note that the independent variable is x, not t) can be

represented in the form of the sum of the following quadratic sequence:

00
1 S

— 7, —it]

1 — gpe—it Z e )

J=0

[e=]

hence

(6.11) 7P < o 7P /

As the functional F is linear it holds that

E(ﬁ)_ (Zxﬂ ) ZE:@J

The set {e~®} is orthonormal with respect to the inner product 6.10, because

(6.12) — e~ tme—itnt —
1 when m=n

I L[ p—it(m—n) gy _ 0 when m # n
2m Jo o

which allows us to use the Parseval equality

1 S U 1 ?
Bl = | |E(i
1 —ze 2m Jo 1 —ze
2 1 2
[ ()
0 o(t) — =

Substituting this into the formula 6.11 yields

1P < 7)1 Z|Eaﬂ S ORI

dt = Z ’E(xj)|2
=0

Hence

dt = QWZ |E(x])‘2
=0
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hence

-

1 1
3 2

(6.13) |Ef] < \/%_ﬂ [/0% ‘f(e“)fdt} g\]g(ggi)f]

If we introduce the notation

(6.14)

> \E<wf>|2] ,

=0

1
0= —
2T

we can rewrite the estimate 6.13 in the form

(6.15) Bf| <o V:ﬂ \f(e“)fdt] -

Remark 6.1. In the beginning of this subsection we have assumed the function f to be
analytic. In fact this requirement is not to restrictive since the quadrature formula only
uses the values of the function in a finite number of points which can always be interpolated
by an analytic function.

1
We will assume that we are able to estimate the expression [ fo% | F(e™)]? dt} * by 27 max |f(e™)]
te|0,2m

and we shall turn our attention to o.

If all the nodes of the quadrature formula lie inside the interval (-1,1), which for the
anti-Gaussian formula does not have to be true (see section 4), it is possible to write o in
the "finite” form.

Let us denote

Then
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and we can write

2ol = Z 75 — BE(U’"“A)(:Itj)}2

= ZTJQ —227']2)% Qik j +Z (Z)\k(l‘k)]>

= ZT].Q —2ZAkZTj($k)j +Z (Z )\kz)\l(xk>j($l)j>

Now we use the assumption that all the nodes z; belong to (—1,1), which allows us to
sum the quadratic sequence in the last term. After this we have

2no? = ZTJZ—QZAkZT] xy) +Z>\k2)\lz
§=0 k=0  j= k=0 =

Jj=
- ZTJZ—QZ)\]CZTJ (zx) +Z/\k2)\l1
Jj=0 k=0 j= k=0 1=0 _xkl‘l

From the definition of 7; we can easily sum the infinite sums in the first and second
term. We get

ZTjQ = Z/_1 ]dy/_ w(z)2? dr

= // y:vjd:cdy
_ //y_dxdy
1Ja -y

i}@-(xk)ﬂ‘ _ Z/ D)0 (4 da
_ /1w(x);xj(xk)jdx
_ /jllj@kdﬂ
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This finally gives

1 1 n 1
(6.16) omo? = / / W)y gy 2y )\k/ w@) g
—1J-=1 1 - .:Ey =0 -1 1 — XX

n n

1
+ Z Ak Z )\z—l .
=0  1=0

so the estimate 6.15 can be rewritten as

y w(z
n n 1 % 2 2 %
+;Ak;)\ll—wk$l> [/0 ’f(e >‘ dt]

If there exists one or more nodes not belonging to (-1,1) then the process we have
just presented cannot be used. The logical idea is to perform another linear transform
which would ”compress” the nodes into (-1,1) by dividing them by an appropriate constant
a. Unfortunately it crashes on the fact that the integrated function f(x) = 27 will be
transformed to f(az) = (ax)’ so finally in the quadrature formula we will have (a%)!
again.

7. PRACTICAL RESULTS

In this section we first give the particular forms of the classical error estimate 6.3 for
several weight functions and demonstrate its useability for different integrated functions.
Next we compare the values of ¢ in the estimate 6.15 for different quadrature rules. Finally
suggest how the estimate 6.15 could be improved.

After substituting a, b and f x)dr into 6.3 we get these particular forms of the
estimate for the chosen weight functlons

For Legendre and Jacobi (with a = 1, § = 0) weight functions holds

Eopi1f < X ‘f(2n+2)(x)|>

4
(2n +2)! xg[l—a1 1]
(In both cases f x)dx = 2, therefore the estimates are the same)
for Chebyshev Welght functlon of the first kind (or Jacobi weight function with a = 3 =

_l)
2
Eop1 [ < m e 11} ‘f(2n+2 (x)}

and for Chebyshev weight function of the second kind (or Jacobi weight function with

27
i f < (2n + 2)! :cg[l 1,1] ‘f (x)|

In the following tables one can see how (in)accurate the estimates are in practice. In each
case we compare the error estimate with the actual errors of the (n + 1)-point Gaussian
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formula and the averaged formula Ly = %(Ggl )4 H&nﬂ)). The number of nodes n will

be set to 5 and 6 each time. Presented results were obtained from the data generated
by the programme discussed in section 3. To prevent confusing the decimal point and

multiplication, we shall use the notation Ek instead of 10¥.

Legendre weight function (w(x) =

1),

n=>5
f(x) | error estimate | error of G& | error of L™
sin(62) 18.17 2.4E—19 48E—19
sin (£) 6E—19 8E—21 2E—-19
b 7333.39 6.2E—-3 23E-5
es 1E-17 1E-19 1E-19
n=>6
f(x) | error estimate | error of G4V | error of LE™
sin(61) 3.6 3.4E—19 I5E — 19
sin (£) 9E—23 1.1E—20 1E—-20
5% 1450.56 28E—4 6.2E—7
es 6.9F—22 1E—-19 1E-19

Jacobi weight function (w(z) = (1 — 2)%(1 + 2)?) with a =1, 8 =0,

n=>y
f(x) | error estimate | error of GOt | error of LE™Y
sin(62) 18.17 1E—1 3E—6
sin (£) 6E—19 5E—-19 4.8E-19
eb” 7333.39 2E-3 1E-5
es 1E-17 1.3£-18 1.2E-18
n=>06
f(x) | error estimate | error of GU | error of L&
sin(6x) 3.6 1.9E-5 3E -8
sin (£) 9E—23 4.8E-19 4.8E-19
5% 1450.56 1E—-4 32E-7
€6 6.9F—22 1.3E-18 1.1E-18

Chebyshev weight function of the first kind (w(z) = (1 — 22)"2)

n=>o
f(x) | error estimate | error of GU | error of LG
5in(61) 28.50 51E—19 23619
sin (£) | 9.9E-19 3.3E—-20 2.8E—-20
b 11519.26 1.3E-2 1.3-8
es TE—18 2E—19 2E—19
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f(x) | error estimate | error of GO | error of LE™Y
sin(61) 5.6 0.4E—19 1.6E — 19
sin (%) | 1.5E-22 5.9E—-20 1.5E—20
5% 2278.53 6.2E—4 4E—-12
es 1E£-21 6£—19 3E—-19
Chebyshev weight function of the second kind (w(x) = (1 — x2)2)
n=>y
f(x) | error estimate | error of GV | error of LE™Y
sin(6x) 14.27 3E-19 2.1E-19
sin (£) | 4.9E-19 9.1E-21 9.4E—-21
b 5759.63 3E—-3 6.2—11
es 3.56E—18 0 TE—-18
n=>6
f(x) | error estimate | error of G&™ | error of L&
sin(62) 2.82 0.8E—20 18E — 19
sin (£) | T7.6E-23 1.7E-21 1.7E—20
5% 1139.273 14FE—-4 1.34F—-14
€6 5.4E—-22 1E-19 0

We can see that for the functions where the differentiation causes multiplying by a con-
stant grater than 1, the estimate is very pessimistic. On the other hand if the differentiation
generates a constant smaller than 1 the estimate is quite accurate. An explanation of this
phenomenon is this: We are taking the maximum of the n-th derivative instead of the
derivative in some point £ € [a,b] which we do not know. If there are a big differences
among the values of the appropriate order derivative is different points of (a,b), the error
committed by estimating the value of the derivative in £ by the maximum over the whole
interval can be huge. On the other hand if the graph of the high order derivative is "flat”
(i.e. the difference between its minimum and maximum over (a,b) is small), we would not
be far from the truth by taking the value at any point (or the maximum).

The reason why in some of the tables above the actual errors are greater than their
estimates is that in those cases the values are on the edge of the accuracy used by the
software (which was set to 20 digits) and these anomalies are the consequence of the
computational error.

Comparing the accuracy of the Gaussian and anti-Gaussian formulas of the correspon-
ding degree we can observe that in some cases (mostly for the function €5%) the results
obtained by the anti-Gaussian formula are a bit better.

Let us investigate whether there is any theoretical reason for this.

As we have shown in section 4. The nodes of the anti-Gaussian formulas for Legendre,
Jacobi (with o = 1, = 0) and Chebyshev (second kind) weight functions are internal.
Moreover their nodes lie inside (-1,1) and hence in these cases we can apply the estimate
6.17.
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The formula 6.16 lets us to compute following values of o (see 6.14 for the definition):

Legendre weight function:

o for G’glﬂ)

o for Lq(fnﬂ)

n

4 0.6098 0.4721
5 0.0835 0.0375
6 0.0724 0.0317
7 0.0638 0.0275

Jacobi weight function (o =1, = 0):

o for GSZ,IH)

o for LS,?"“)

n
4 0.1286 0.0590
5 0.1100 0.0490
6 0.0961 0.0419
7 0.0854 0.0366

We can see that even if the degree of precision if always the same for both formulas in
each row of the above tables, the theoretical error estimate from the subsection 6.2 gives
much better results for the anti-Gaussian formulas. Although there is no analytic reason
why they should be more accurate, this can be a good reason to believe, that they actually
are better.

1
Even if we have not included the term [ fOQW | f(e™)]? dt] * in the tables above, we can see

that for the functions where the classical error estimate were to pessimistic the alternative
one can lead to satisfactory results.

Turning back to the estimate 6.15 we can see, that the estimate would not be zero if we
apply it to a polynomial of a degree which the quadrature rule integrates accurately. An
idea how to remove or at least reduce this imperfection can be replacing f by a function
g such that the difference between f and ¢ is a polynomial which is integrated exactly

1 1
and the value of [fo% lg(e™)[? dt} * is less than [ 0% 1f(e)) dt} *. The best result would be

achieved if f — ¢ is in some sense the best approximation of f by a polynomial of a given
degree. However we would not go to the details in thesis.
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8. CONCLUSION

In this thesis we have proved that the weights of the anti-Gaussian formulas are posi-
tive and that at most two nodes can lie outside the interval of integration. In section 4
conditions for the formulas to be internal are stated. Concerning the construction of the
(n + 1)-point anti-Gaussian formulas we have shown that it is the question of determining
the eigenvalues and eigenvectors of certain (n 4 1) x (n 4+ 1) matrix. This means that the

costs of constructing the (n + 1)-point anti-Gaussian formula HE™™ is the same as the

cost of constructing the (n + 1)-point Gaussian formula Gt

Practical testing has shown that the averaged formula L& = (Ggf ) 4 HI(U"H)) /2 gives

in many cases better results than the (n+1)-point Gaussian formula GU™) even if the
theoretical degree of precision is 2n 4+ 1 in both cases. Moreover the error estimate derived
in section 6.2 appears to be much better for the anti-Gaussian formula. In section 1 we
have suggested the difference Gt f— Af (where A is a quadrature formula of a higher

degree) as a numerical approximation of the error G applied to the function f.

The results presented in this thesis show that using the averaged formula L& as

the formula A would give more accurate estimate than using the formula GO Since
deriving both formulas requires the same amount of operations (assuming we already have
the n-point Gaussian formula) and the number of points where the integrated function
f has to be evaluated are the same in both cases as well we can recommend using the

averaged formula instead of the Gaussian formula in the above numerical estimate.
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9. APPENDICES
Table 9.1 Orthogonal Polynomials

1 00— 9 ()o OYTULIO]
14
u 00— P (x)"H ONULIDY
- AMH:L 0 b2 (x)ur oronge|
. oLIONde |
I—<n =5 0 oLy 2 (@) (1 pozI[eIouar)
(reouraydg)
G - H ()"t o1puoB|
puny puoods
e I- 2(;7—1) ()"n o1} JO AdYSAQIT)
pury jsig
-G I- e (;7—1) ()"L o1} JO A9USAQI)
(1oneqUOdor))
¢ <w GMMW%Z%N I- ¢ _o(g? = 1) (%) (10 [eotroydsenyyn
1= <0 (gyotu) T - | g+ Dol® = 1) | (#) gofd 1qooe
Sy Tewoy] Uy D (z)m (z)"d | permoudjod o1y Jo oureN
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Table 9.2 Recurrence Relations

ar(n)ppi1(z)

(az(n) + az(n))pa(r) — as(n) fn1(z)

u I 0 I (¥)"2H
ug e 0 I ()"
u - I+ug I+u (@)1
0 +u - [+ +ug T+u (%) )T
u 14 ug 0 I+ u (2)'q
I e 0 I ()"n
I é 0 I ()L
[ —vg+u (0 +u)g 0 1+u (%) 30
(¢ + ¢ +v+ug) (g + 0+ ug)
(¢ +u)(o+u)g | S(g+0+ug) | (6 —P) T+ +0+ug) | (T+6+0+u)(1+UT | () gfd
(u)7D (u)eD ()2 (u) ™ uq
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Table 9.3

Nodes and weights of H"™ where w(z) =1 (Legendre)

nodes

.816496580927726
-.816496580927726

-.930949336251263
.930949336251263
-.000000000000000

.964335275879562
.429352058315787
-.964335275879562
-.429352058315787

-.000000000000000
.978315678013417
-.638731398345590
.638731398345590
-.978315678013417

-.280556681820821
.280556681820821
-.752558388054789
.752558388054789
.985446820998315
-.985446820998315

-.989564901331163
.820496210793208
-.820496210793208
.463335883847022
.989564901331163
-.463335883847022
.000000000000000
-.586467949432683
-.864059339845500
.992154829409481
.586467949432683
-.992154829409481
-.207447135295099
.207447135295099
.864059339845500

weights

1.000000000000000
1.000000000000000

.384615384615385
.384615384615385
1.230769230769231

.199826014447922
.800173985552078
.199826014447922
.800173985552078

.693766937669377
121787277062268
.531329254103044
.531329254103044
121787277062268

.545769074217690
.545769074217690
.372395751222672
.372395751222672
.081835174559638
.081835174559638

.058719277436163
.273663854856191
.273663854856191
.426675691237058
.058719277436163
.426675691237058
.481882352941176
.338113373846498
.208912408709088
.044164752444346
.338113373846498
.044164752444346
.408809465000068
.408809465000068
.208912408709088
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n

8

10

nodes

.893581190017803
-.000000000000000
-.993888391435683
-.893581190017803
-.360613635820053

.993888391435683
-.672520467240063

.360613635820053

.672520467240063

-.734696655470703
.995105205867138
-.995105205867138
.475285190219825
-.475285190219825
.164365837601352
-.914477642987090
.914477642987090
.734696655470703
-.164365837601352

-.929795638911367
-.962678595062891
-.780937965408210
-.294419959277147
.995991885381824
.780937965408210
.000000000000000
-.995991885381824
.294419959277147
.929795638911367
.562678595062891

weights

.164411441988856
.368957072484166
.034415599386995
.164411441988856
.344040703534754
.034415599386995
.272653718847312
.344040703534754
.272653718847312

.223654050135981
.027569114782485
.027569114782485
.290430742781218
.290430742781218
.325730290621930
.132615801678385
.132615801678385
.223654050135981
.325730290621930

.109154362380246
.246927255598589
.186329092356386
.285581325610890
.022578391655128
.186329092356386
.298859144797520
.022578391655128
.285581325610890
.109154362380246
.246927255598589



nodes

-1.000000000000000
1.000000000000000

-.000000000000000
-1.000000000000000
1.000000000000000

-.500000000000000
-1.000000000000000
.500000000000000
1.000000000000000

-1.000000000000000
.707106781186548
1.000000000000000
-.707106781186548
-.000000000000000

-.809016994374947
.809016994374947
-1.000000000000000
-.309016994374947
.309016994374947
1.000000000000000

.866025403784439
-.500000000000000
-1.000000000000000
.000000000000000
.500000000000000
-.866025403784439
1.000000000000000

-.900968867902419
-.623489801858734
1.000000000000000
.900968867902419
.222520933956314
.623489801858734
-.222520933956314
-1.000000000000000

Table 9.4 )
Nodes and weights of H"™" where w(xz) = (1 —x)~2 (Chebyshev, first kind)

weights

1.570796326794897
1.570796326794897

1.570796326794897
.785398163397448
.785398163397448

1.047197551196598
.523598775598299
1.047197551196598
.523598775598299

.392699081698724
.785398163397448
.392699081698724
.785398163397448
.785398163397448

.628318530717959
.628318530717959
.314159265358979
.628318530717959
.628318530717959
.314159265358979

.523598775598299
.523598775598299
.261799387799149
.523598775598299
.523598775598299
.523598775598299
.261799387799149

.448798950512828
.448798950512828
.224399475256414
.448798950512828
.448798950512828
.448798950512828
.448798950512828
.224399475256414
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n

10

nodes

-.707106781186548
-.000000000000000
.923879532511287
1.000000000000000
-.382683432365090
-1.000000000000000
.707106781186548
-.923879532511287
.382683432365090

-.500000000000000
1.000000000000000
.939692620785908
.173648177666930
.766044443118978
-1.000000000000000
-.173648177666930
.500000000000000
-.766044443118978
-.939692620785908

.000000000000000
.809016994374947
.951056516295154
1.000000000000000
-.951056516295154
-.309016994374947
-1.000000000000000
-.809016994374947
.309016994374947
.b87785252292473
-.087785252292473

weights

.392699081698724
.392699081698724
.392699081698724
.196349540849362
.392699081698724
.196349540849362
.392699081698724
.392699081698724
.392699081698724

.349065850398866
.174532925199433
.349065850398866
.349065850398866
.349065850398866
.174532925199433
.349065850398866
.349065850398866
.349065850398866
.349065850398866

.314159265358979
.314159265358979
.314159265358979
.157079632679490
.314159265358979
.314159265358979
.157079632679490
.314159265358979
.314159265358979
.314159265358979
.314159265358979



\V)
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nodes

.707106781186548
-.707106781186548

.000000000000000
.866025403784439
-.866025403784439

-.382683432365090
.923879532511287
.382683432365090

-.923879532511287

.b87785252292473
-.951056516295154
.951056516295154
.000000000000000
-.087785252292473

.707106781186548
-.707106781186548
-.258819045102521

.965925826289068
-.965925826289068

.258819045102521

433883739117558
-.433883739117558
.000000000000000
.974927912181824
.781831482468030
-.974927912181824
-.781831482468030

-.555570233019602
.831469612302545
-.831469612302545
-.980785280403230
.555570233019602
-.195090322016128
.980785280403230
.195090322016128

Table 9.5 )
Nodes and weights of H"™" where w(x) = (1 — x)2 (Chebyshev, second kind)

weights

.785398163397448
.785398163397448

1.047197551196598
.261799387799149
.261799387799149

.670379265333622
.115018898063826
.670379265333622
.115018898063826

.411239817295253
.059999080743216
.059999080743216
.628318530717959
411239817295253

.261799387799149
.261799387799149
.488524308328427
.035074467269872
.035074467269872
.488524308328427

.364310259621239
.364310259621239
.448798950512828
.022222534076746
.174465894443050
.022222534076746
.174465894443050

.271489257084905
.121209824613819
.121209824613819
.014946218840648
.271489257084905
37T7752862858077
.014946218840648
3T7752862858077

44

n nodes

8 -.642787609686539
.642787609686539
.342020143325669
-.866025403784439
.866025403784439
-.984807753012208
-.342020143325669
.984807753012208
-.000000000000000

9  .987688340595138
-.156434465040231
-.987688340595138
.891006524188368
.707106781186548
-.891006524188368
-.707106781186548
.156434465040231
.453990499739547
-.453990499739547

10 .281732556841430
-.281732556841430
-.000000000000000
.909631995354518
.540640817455598
-.540640817455598
.989821441880933
-.909631995354518
.755749574354258
-.755749574354258
-.989821441880933

weights

.204840249603193
.204840249603193
.308232902689759
.087266462599716
.087266462599716
.010525623305347
.308232902689759
.010525623305347
.349065850398866

.007688024442412
.306471240916567
.007688024442412
.064750541154967
.157079632679490
.064750541154967
.157079632679490
.306471240916567
.249408724204012
.249408724204012

.262930389642668
.262930389642668
.285599332144527
.049285771941039
.202120791210338
.202120791210338
.005784389841430
.049285771941039
.122477154689710
.122477154689710
.005784389841430



Table 9.6

Nodes and weights of H"™) where w(z) = e * (Laguere)

nodes

5.236067977499790
.763932022500210

.493358053613672
8.716021885347972
2.790620061038356

12.309046017390413
2.000000000000000
5.324782088068325

.366171894541262

4.035899241536990
.291555083447512
1.570446368284971
8.132847536700815
15.969251770029712

19.674659672659734
11.116040824928635
.242345652236039
3.279645965112819
6.391127476449262
1.296180408613512

.207408536677957
2.771738036768087
5.317741941298702

23.412876446490799
14.222348454865667
1.104762626924511
8.963123956974277

.963192868381727
.181303717030789
2.404059915514005
4.571665521898387
7.589603084182166
27.176159939067557
17.420666094980109
11.693348858945259

weights

.276393202250021
.723606797749979

.386975717692728
.016600486503632
.596423795803641

.000718795204851
.642857142857143
.115944898786902
.240479163151104

.225707562416030
.163789573089150
.597954531467579
.012522283363778
.000026049663464

.000000843349820
.000972233216916
.118690314809966
.308670750659650
.040647934398461
.531017923565187

.089943926027562
.360932400305636
.079398971149898
.000000025246690
.000060902740029
.464703732319837
.004960042210348

.405616564458865
.070503768824035
.388658800369186
.121290949042948
.013460003015817
.000000000713378
.000003276693310
.000466636882461

45

n

10

nodes

20.690763117090409
.161050277991333
2.124444015263906
30.959318414600767
6.610606785813053
14.544920817084766
10.037434401792262
.854083129890533
4.017379040472970

8.834079630283873
.144875507219649
5.868902519022967
12.623231607779934
1.904135355837561
17.492955936005562
3.587124014598416
24.018668013446837
.767343192609217
34.758684223195985

20.519795103187287
38.571560706765761
7.908255249718729
5.283983470112122
11.204969516479362
.131658172571087
1.725827648907708
.696695160544573
27.394286810766428
3.242430062765930
15.320538098181012

weights

.000000157277689
.056746980623896
.399056077613122
.000000000019281
.026527254145573
.000036372342705
.001716820826204
.354904800060654
.161011537090875

.004307619099761
.046656228710126
.043218857278315
.000177643855176
.397956067866459
.000002456317432
.195733688390548
.000000006905056
.311947431576624
.000000000000503

.000000148084787
.000000000000013
.008554779048588
.062209886834183
.000560285535228
.039035841257194
.389566770803746
.275658401559781
.000000000282141
.224398248149325
.000015638445015



Table 9.7

Nodes and weights of H'™" where w(x) = e "z (Generalized Laguere with a = 1)

n

nodes

5.236067977499790
.763932022500210

.493358053613672
8.716021885347972
2.790620061038356

12.309046017390413
2.000000000000000
5.324782088068325

.366171894541262

4.035899241536990
.291555083447512
1.570446368284971
8.132847536700815
15.969251770029712

19.674659672659734
11.116040824928635
.242345652236039
3.279645965112819
6.391127476449262
1.296180408613512

.207408536677957
2.771738036768087
5.317741941298702

23.412876446490799
14.222348454865667
1.104762626924511
8.963123956974277

.963192868381727
.181303717030789
2.404059915514005
4.571665521898387
7.589603084182166
27.176159939067557
17.420666094980109
11.693348858945259

weights

.276393202250021
.723606797749979

.386975717692728
.016600486503632
.596423795803641

.000718795204851
.642857142857143
.115944898786902
.240479163151104

.225707562416030
.163789573089150
.597954531467579
.012522283363778
.000026049663464

.000000843349820
.000972233216916
.118690314809966
.308670750659650
.040647934398461
.531017923565187

.089943926027562
.360932400305636
.079398971149898
.000000025246690
.000060902740029
.464703732319837
.004960042210348

.405616564458865
.070503768824035
.388658800369186
.121290949042948
.013460003015817
.000000000713378
.000003276693310
.000466636882461

46

n

10

nodes

20.690763117090409
.161050277991333
2.124444015263906
30.959318414600767
6.610606785813053
14.544920817084766
10.037434401792262
.854083129890533
4.017379040472970

8.834079630283873
.144875507219649
5.868902519022967
12.623231607779934
1.904135355837561
17.492955936005562
3.587124014598416
24.018668013446837
.767343192609217
34.758684223195985

20.519795103187287
38.571560706765761
7.908255249718729
5.283983470112122
11.204969516479362
.131658172571087
1.725827648907708
.696695160544573
27.394286810766428
3.242430062765930
15.320538098181012

weights

.000000157277689
.056746980623896
.399056077613122
.000000000019281
.026527254145573
.000036372342705
.001716820826204
.354904800060654
.161011537090875

.004307619099761
.046656228710126
.043218857278315
.000177643855176
.397956067866459
.000002456317432
.195733688390548
.000000006905056
.311947431576624
.000000000000503

.000000148084787
.000000000000013
.008554779048588
.062209886834183
.000560285535228
.039035841257194
.389566770803746
.275658401559781
.000000000282141
.224398248149325
.000015638445015



ot

Table 9.8
Nodes and weights of H{"™ where w(z) = e~ (Hermite)

47

nodes weights n nodes weights
1.000000000000000  .886226925452758 8 -.767093261812311 .430993129420261
-1.000000000000000  .886226925452758 -2.441238396489535 .002453565951945
-3.606368819529907 .000003860692187
-.000000000000000 1.417963080724413 1.563977927181141 .071475372891044
1.581138830084190  .177245385090552 .767093261812311 .430993129420261
-1.581138830084190  .177245385090552 -1.563977927181141 .071475372891044
3.606368819529907 .000003860692187
-.602114101464426  .853956146188936 .000000000000000 .762601992994642
-2.034074386254762  .032270779263822 2.441238396489535 .002453565951945
.602114101464426  .853956146188936
2.034074386254762  .032270779263822 9 -3.852560035693396 .000000603397903
.361029660612894 .635288343749770
.000000000000000 1.050343022758824 -1.861875888092628 .024933296378120
1.074612544170356  .355476054592375 -.361029660612894 .635288343749770
-2.417686472624545  .005579359480971 -2.713869218294079 .000586187968298
-1.074612544170356  .355476054592375 3.852560035693396 .000000603397903
2.417686472624545  .005579359480971 1.093513053818293 .225418493958667
2.713869218294079 .000586187968298
1.475240917716105  .120659834409163 -1.093513053818293 .225418493958667
-1.475240917716105  .120659834409163 1.861875888092628 .024933296378120
-2.756238231186230  .000932833322973
2.756238231186230  .000932833322973 10 -.000000000000000 .685938300577191
476251034270315  .764634257720621 2.138862006542903 .008005478131748
-476251034270315  .764634257720621 -2.969558895028934 .000133954051144
-2.138862006542903 .008005478131748
-1.828611210013403  .035886351703077 2.969558895028934 .000133954051144
-.881604323971558  .413891949277428 .688554304791181 .431890198057097
1.828611210013403  .035886351703077 -1.393823156221992 .103228051512604
3.062507936082447  .000152291941665 4.085356687543293 .000000093411569
-3.062507936082447  .000152291941665 -4.085356687543293 .000000093411569
.881604323971558  .413891949277428 -.688554304791181 .431890198057097
-.000000000000000  .872592665061177 1.393823156221992 .103228051512604
1.239870481811766  .184403570904643
-3.344197200038493  .000024419812028
.406782010086496  .692079585307343
-.406782010086496  .692079585307343
2.147927995035343  .009719349428744
-1.239870481811766  .184403570904643
-2.147927995035343  .009719349428744
3.344197200038493  .000024419812028



[\)

ot

Nodes and weights of H™™") where w(r)=e =

nodes

1.414213562373095
-1.414213562373095

2.236067977499790
-2.236067977499790
.000000000000000

.851517928387080
2.876615583917214
-.851517928387080

-2.876615583917214

.000000000000000
-3.419124999151600
1.519731634261974
3.419124999151600
-1.519731634261974

3.897909487674797
-3.897909487674797
-.673520671759293
.673520671759293
2.086305713601847
-2.086305713601847

4.331040258083033
1.246776791607341
.000000000000000
-1.246776791607341
-4.331040258083033
2.586046773508430
-2.586046773508430

-3.037628901579833
-.575276635593711
.575276635593711
4.729409035544568
-4.729409035544568
1.753441650964263
-1.753441650964263
3.037628901579833

Table 9.9

weights

1.253314137315500
1.253314137315500

.250662827463100
.250662827463100
2.005302619704800

1.207676363612255
.045637773703246
1.207676363612255
.045637773703246

1.485409347929482
.007890405847344
.502719057503415
.007890405847344
.502719057503415

.001319225536783
.001319225536783
1.081356137523587
1.081356137523587
.170638774255131
.170638774255131

.000215373329343
.585331608025175
1.234032381356800
.585331608025175
.000215373329343
.050750965282582
.050750965282582

.013745235779573
978748335783191
978748335783191
.000034534829361
.000034534829361
.260786030923375
.260786030923375
.013745235779573

48

n

8

9

2

x

(Hermite)
nodes weights
-3.452432449301447  .003469866245417
5.100175695498644  .000005459843251
1.084833694459986  .609516328915756
-.000000000000000 1.078482081185775
2.211798795871730  .101081441718188
-2.211798795871730  .101081441718188
3.452432449301447  .003469866245417
-1.084833694459986  .609516328915756
-5.100175695498644  .000005459843251
3.837990655018357  .000828994974867
1.546460991341850  .318789891366064
-1.546460991341850  .318789891366064
-2.633090132396046  .035261005892605
.510573042457711  .898433391748466
-3.837990655018357  .000828994974867
-5.448342652334175  .000000853333498
2.633090132396046  .035261005892605
5.448342652334175  .000000853333498
-.510573042457711  .898433391748466
10 -4.199590463615580  .000189439635863
-.000000000000000  .970063247627417
4.199590463615580  .000189439635863
5.777566834655347  .000000132103908
3.024807657697504  .011321455747199
-3.024807657697504  .011321455747199
-1.971163611078814  .145986510466473
-.973762836266066  .610784975548349
-5.777566834655347  .000000132103908
1.971163611078814  .145986510466473
.973762836266066  .610784975548349



Appendix 9.10
Programme for deriving the anti-Gaussian formulas

> reset:with(linalg) :Digits:=20:
1. Definition of the weight function, recurrence relations and degree

> w:= x—>1: #Legendre

a:=-1:b:=1: #interval of integration

N:=b: #number of nodes for the Gaussian formula

> k :=n-> 1./2°nxbinomial (2*n,n): #leading coefficient of the n-th
orthogonal polynomial

al:= n—> (n+1):#coefficients of the recurrence relationship

a2:= n-> 0:
a3:= n—> (2*xn+1):
ad:= n-> n:

2. Derivation of the recurrence relationships for ”Gaussian” and ”anti-
Gaussian” orthogonal polynomials

ga:= n-> -(k(n-1)/k(n))*(a2(n-1)/al(n-1)):
ghb:= n-> (k(n-2)/k())*(ad(n-1)/a1(n-1)):
aga:= n-> ga(n):

agb:= proc(n)

if N+1>n then return(gb(n))fi:

if N+1=n then return(2*gb(n)) fi:

end proc:

VVVYVYV VYV

3. Symmetric matrix J for the ”anti-Gaussian” case

d[o0]:= 1:
for i from 1 to N do d[i]:=d[i-1]/sqrt(agb(i+1)) od:

matrixJ:= proc(i,j)

if i=j then return aga(i)

elif i=j-1 then return (d[i-1]1/d[il+d[j-11/d[j-2]*agb(j))/2
elif i=j+1 then return (d[j-1]/d[jl+d[i-1]/d[i-2]*agb(i))/2
else return(0)

fi

end proc:

J:=matrix (N+1,N+1,matrixJ):

VVVVVYVVYV VYV

4. Weights and nodes for the anti-Gaussian formula

eigen_all:=eigenvectors(J):

nodes:=vector(N+1,i->eigen_all[i] [1]):
orthovects:= vector(N+1,i->eigen_all[i] [3] [1]):

intw:=int (w(x) ,x=a..b):
weights:=vector (N+1, j->(orthovects[j] [1])"2.*intw):

vV V. V V V V

weights=weights():
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5. Symmetric matrix JG for the ”Gaussian” case

VVVVVYVVYV VYV

el[0]:= 1:

for i from 1 to N-1 do e[i]:=el[i-1]/sqrt(gb(i+1)) od:
matrixJG:= proc(i,j)

if i=j then return ga(i)

elif i=j-1 then return (el[i-1]/elil+el[j-1]1/e[j-2]*gb(j))/2
elif i=j+1 then return (el[j-1]/el[jl+el[i-1]1/e[i-2]*gb(i))/2
else return(0)

fi

end proc:

JG:=matrix(N,N,matrixJG) :

6. Weights and nodes for the Gaussian formula

vV V V V VV V

vlastniG:=eigenvectors(JG) :

nodesG:=vector(N,i->vlastniG[i] [1]):
VG:=vector(N,i->vector (N, j->vlastniG[i] [3] [1][j]1)):

orthovectsG:=[seq(VG[i],i=1..N)]:
intwG:=int (w(x) ,x=a..b):

weightsG:=vector(N, j->(orthovectsG[j] [1]) "2*intwG) :
weightsG=weightsGQ) :

7. Integration of given function

VVVVVYVVVYV VYV

f:=x->sin(6%x):

exact:=evalf (int(w(x)*f(x),x=a..b)):
resultA:=sum(weights[s]*f(nodes[s]),s=1..N+1):
abserrA:=simplify((resultA-exact)):
relerrA:=abs(abserrA/resultl):
resultG:=sum(weightsG[s]*f (nodesG[s]),s=1..N):
abserrG:=simplify((resultG-exact)):
relerrG:=abs(abserrG/resultG) :
result_average:=(resultA+resultG)/2.:
abserr_average:=abs(result_average-exact):
relerr_average:=abs(abserr_average/result_average) :
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ERRATA

In the line numbering only the text lines count.

(1) Page 5, formula (1.2) - add: where f is a function uniquely defined in z;, i =1,...,n
(2) Page 5, Remark 1.3 - add:

Note that there is no direct relationship between the weights w
w(z;).

(3) Page 5, line 15 - the formula (1.4) instead of (1.3) should be referenced.

(4) Page 6, line 6 - note that the nodes y; are distinct.

(5) Page 7, line 14 and after - the Gaussian quadrature rule for the linear functional

(n)

; ~ and the values of

21 — Ggl ) is meant in the sense of the following definition:
We shall say that a linear functional G of the form

Gf =Y A(n)f(&(n)
=1

is the n-point Gaussian formula for the linear functional F' if
Gf =FfvYfept

(6) Page 8, Theorem 2.1 and after - the polynomials orthogonal with respect to the linear

functional 21 — Ggl ) are defined as follows:
We shall say that the polynomials {p;}°, are orthogonal with with respect to the

linear functional 21 — Gq(f) if

b n
2 / w(@)pr(@)pi(@)de — > wpp(a)py () = {
a =1

If C, =1Vk =0,1,... we shall say the polynomials are orthonormal with respect to
27 — G,
(7) Page 8, line 7 - the citation (e.g. [10]) is related to all the preceding notions.
(8) Page 8, formula (2.2) - the sign := should be replaced by =.
(9)
10)

0if k1
Cp £0if k=1

Page 9, formula (2.10) - the lower index at b should be j — 1
Pages 9-10 formulas from (2.10) to (2.11) and page 10, line 2 - the range for j is
2,...,n+2.

Page 12-13, formulas (2.22), (2.27) and (2.30) - missing minus on the right hand side.

Page 18, line 5 - the references should be (2.30),(2.31) and (2.4)

Page 19, line 6, page 20, line 7 and page 21, line 2 - should be 4.1 d) instead od 4.1

b).

(17) Pages 18-20, proofs of the theorems 4.3 and 4.4 - the factorials of positive non-integer
values are meant to be defined by the Gamma function I'(p + 1) = [~ #Pe™“dz = pl.

(18) Page 19, formula (4.8) - (n+ 14 a)(n+ o) > n(n+ «a)

(19) Pages 19-20 - Note: The relevant data from the tables 22.2 in [1] and 22.3 in [1] are

collected in the table 9.1 in section 9 and the data from table 22.7 in [1] in the table

9.2.

(11)
(12)
(13) Page 12, formula (2.20) - (q?)2 = w;pd(t;)
(14)
(15)
(16)



(20) Page 20, formula (4.12) -

B +1+ In—24+a+ (n+14+a)! (2n—2+a+p)!
pGPay (A2 ) e e et
(a,3) 1 - (n—1+a)2n_1 (2n+2+o¢+ﬁ) T T (n—14a)! (2n+24a+p)! =
Pp-1 (1) n—1 n+1 (n=Dlal " (n+D)!(n+1+a+p)!

4(n—|—1+a)!(2n—2+oz—|—ﬁ)!(n—|—1+a—|—ﬁ)! B
(n—14+a)2n+2+a+3)!n—-1+a+p)!
m+a)n+l+a)n+a+8)(n+1+a+p)
Cn—1+a+8)2n+a+8)C2n+1l+a+3)2n+2+a+f)
(21) Page 20, formula (4.13) - fora € R, be Z
(22) Page 20 the third, fourth and fifth formula - the second term in the square brackets
should be multiplied by (a? — 3?)
(23) Page 20, line 4 - the binomial should be (2i+?‘+ﬁ).
(24) Page 21, line 1 - add the reference:
Now it remains to find (Thm. 4.1 d)) when...
(25) Page 22, second paragraph - add:
Finally for o, 8 < —% the formula requires an exterior node for any n.
(26) Page 25, line 5 - should be right instead of left.
(27) Page 30, line 15 - Note: The interchanging of the order of integration can be legalized
as follows: We replace the integral from —1 to 1 by the integral from —a to « where
0 < o < 1, we interchange the order of integration (since the the integrated function
is continuous for z in [—a, a]) and we perform the limit passage for o — 1.

(28) Page 31, line 3 - E (é) is meant in the sense of the formula (6.5) even if g—% is not

analytic. In case z; = =1 for some 7 = 1,...,n + 1 the analogous construction as in
the previous item has to be used.

(29) Page 32, line 4 - should be geometric instead of quadratic

(30) Page 32, the third and fourth formula - holds Vz € (—1,1). E(£1) = 0, since the
quadrature formula integrates constants exactly. Therefore

(k=) = X0 B@i)e ™, z e [-1,1].
(31) Page 33, line 8 - should end by 27 n?ax} !f(e“)‘
te|0,2m

(32) Page 34, the third formula - Note: The interchanging of the order of integration and
summation can be legalized as follows: We replace the integrals from —1 to 1 by
integrals from —« to a where 0 < a < 1, we interchange the order of integration and
summation (since the geometric sequence converges for any x and y in [—a, a]) and
we perform the limit passage for o — 1.

(33) Page 41, caption - a1 (n)pa+1(z) = (az(n) + as(n)2)pa(x) — as(n)pa—i()

(34) Page 41 - for the definition of (2n 4+ o + ()3 see the formula (4.13).



