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Abstract: The GMRES(m) method for solving linear systems Ax = b, i.e.
restarted GMRES with restart parameter m, is attractive when a good precondi-
tioner is available. The determining of some types of preconditioners is connected
with construction of an A–invariant subspace corresponding to eigenvalues clos-
est to zero. One class of methods for computation of invariant subspaces is based
on the construction of polynomial filters. In the first part of this thesis, we study
using of Tchebychev polynomials for constructing suitable filters and compare
them with classical ones proposed by D. C. Sorensen. Convergence of the pre-
sented algorithm is studied and also the case where geometrical multiplicity of a
small eigenvalue of A is greater than one is analyzed. Numerical results assessing
the quality of polynomial filters and preconditioners are presented.

In the second part of this thesis, an orthogonally invariant linear approxi-
mation problem Ax ≈ b is considered. C.C. Paige and Z. Strakoš proved that
the (partial) upper bidiagonalization of the matrix [b,A] determines a core ap-
proximation problem A11x1 ≈ b1, with all necessary and sufficient information
for solving the original problem given by b1 and A11. Here we derive the core
problem formulation from the relationship between the Golub-Kahan bidiago-
nalization and the Lanczos tridiagonalization, and from the known properties
of Jacobi matrices. We discussed how the presented relationship may be found
useful in applications of the core problem formulation, especially in regulariza-
tion methods for solving large ill-posed problems. Possible directions for further
research are outlined and several open questions are formulated.

Keywords: Krylov methods, Arnoldi factorization, restarted GMRES, invariant
subspaces, ill-posed problem, core problem, Golub-Kahan bidiagonalization.
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Notation

N, R, C the set of all natural, real, complex numbers
A = (ai,j)

n,m
i,j=1 the square (if n = m) or rectangular (if n 6= m) matrix

Ik, I the k by k identity matrix - if there is no doubt we omit the index
0k,l, 0 the k by l zero matrix - if there is no doubt we omit the indexes

e
(k)
i , ei the ith column of Ik, I

(x)i the ith component of the vector x
A−1 the inverse matrix
A+ the Moore-Penrose pseudoinverse matrix
AT , xT the transposed matrix, vector
AH , xH the transposed and complex conjugated matrix, vector
diag(α, β, . . .) the square diagonal matrix with α, β, . . . on the diagonal
diag(B1,B2, . . .) the square block diagonal matrix
ᾱ the complex conjugated value for α ∈ C
Uε(α) the ε-neighborhood of α ∈ C
‖x‖ the Euclidean vector norm ‖x‖ =

√
xT x

‖A‖ the spectral matrix norm ‖A‖ = supx 6=0
‖Ax‖
‖x‖

‖A‖F the Frobenius matrix norm ‖A‖F =
√∑n

i=1

∑m
j=1 a2

ij

R(A) the range of the matrix A
σ(A) the spectrum of the matrix A
ρ(A) the spectral radius of the matrix A
Pk set of all polynomials of degree at most k
MPk set of all monic polynomials of degree at most k
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Introduction

Numerical methods for solving real-world problems often lead to large systems
of linear algebraic equations and iterative methods, especially Krylov subspace
methods, are typically used to solve them. In the first part of this thesis, we
concentrate on accelerating convergence of one of the most widely used Krylov
method for solving large, sparse, nonsymmetric linear systems - GMRES method
[75]. In the second part, we analyze the core concept [64] in linear approxima-
tion problems that leads to better understanding of several well known iterative
techniques used to solve these problems.

In Part I, we consider the linear system

Ax = b, A ∈ Rn×n, b ∈ Rn,

with a large, sparse and nonsingular matrix A. The restarted GMRES method is
often used to solve such system. It has been observed that restart slows down the
convergence, stagnation may occur in many cases and it is advisable to use pre-
conditioning to overcome these difficulties. If the matrix A is symmetric, conver-
gence is strongly connected with the distribution of its eigenvalues. Eigenvalues
close to zero may cause the troubles and thus many preconditioners are based on
the idea to remove them from the spectrum. If A is nonsymmetric, the situation
is more complicated and the convergence behavior is still not well understood.
For matrices close to normal, i.e. matrices having well conditioned set of eigen-
vectors, ideas similar to the symmetric case can often be used. Though, note that
range of applications can be found, where the matrix is strongly nonnormal and
the convergence does not depend on the distribution of its eigenvalues, see, e.g.,
[50] where the convergence of the GMRES method for convection-diffusion model
problem is analyzed, and the dependence of convergence on particular right-hand
side and boundary condition is proved. Thus analysis of the spectrum of A is
only one of possible approaches, that can offer several options for acceleration of
convergence in some applications.

In this thesis, we concentrate on preconditioners of the restarted GMRES
method that can be constructed by exploiting spectral information of A gath-
ered in the previous restart. Usually a rectangular matrix V is constructed whose
columns generate an invariant subspace of A corresponding to the smallest eigen-
values. There are several ways to use such matrix V. The first possibility is to
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construct a preconditioner which is relatively inexpensively updated after each
restart of GMRES, so called adaptive preconditioner, see [3], [12], [13], [21], [23].
Another possibility is to augment the Krylov subspace by the columns of the ma-
trix V, see [14], [23], [58], [57], [56], [55]. The quality of preconditioner depends
strongly on the matrix V and thus the goal of the first part of this thesis is to
analyze and improve procedures for computation of invariant subspaces.

Implicitly restarted Arnoldi process with shifts (IRA) proposed by D. C.
Sorensen [81] is an attractive technique for computing a few eigenvalues and
the associated eigenspace of a general matrix. This technique iteratively updates
the starting vector v1 of the Arnoldi process such that it produces an upper Hes-
senberg matrix of order k ¿ n with the property that its eigenvalues are good
approximations to searched eigenvalues of the original matrix A. Moreover, the
Krylov subspace Kk(A, v1) approximates well the corresponding eigenspace. The
vector v1 is updated by a polynomial called polynomial filter which filters out
selected part of the spectrum. Here we work out the idea to use Tchebychev
polynomials for constructing polynomial filters. In the new approach the roots
of transformed and scaled Tchebychev polynomials are used for the shifts in the
IRA process. Then an analysis of convergence of constructed approximations to
the searched invariant subspace is presented. This convergence was studied in
[81], [49] for some special cases. We generalize some of these results.

In practice, usually an unreduced and therefore nonderogatory Hessenberg
matrix is obtained. The question arises what happens if the smallest eigenvalue
of A, say λ, has geometric multiplicity greater than one. Here we prove that
when the Jordan canonical form of the matrix A has s > 1 blocks corresponding
to λ with maximal dimension of the block d, then an integer j exists such that the
vectors v

(j)
1 ,Av

(j)
1 , . . . ,Adv

(j)
1 are almost linearly dependent, where v

(j)
1 is the jth

update of the starting vector of the Arnoldi process. Hence the Arnoldi process
stops after at most (d + 1) steps and thus it is important to modify the stopping
criterion for determining an invariant subspace.

We compare the classical IRA process and the new technique numerically
and show that the new approach leads to improvement of numerical accuracy
and convergence properties.

In Part II, we consider the (possibly incompatible) linear approximation prob-
lem

Ax ≈ b, A ∈ Rn×m, b ∈ Rn,

with a nonzero matrix A and a nonzero vector b. Such systems arise in many
scientific and technical areas and various techniques are used to solve them. When
the matrix representing the model in the approximation problem is large, which
is often the case, we need to consider iterative methods (e.g., Krylov subspace
methods) with some appropriate stopping criteria.

12



A new contribution in theory and computation of linear approximation prob-
lems was published in a series of papers [64], [65], [67]. Here the authors define
a core problem within an unitarily invariant linear approximation problem. It
is proposed to orthogonally transform the original approximation problem to
the block form that allows to separate the necessary and sufficient information
present in the data b,A from the redundancies. It is shown that the core reduc-
tion represents a theoretical basis for several well known techniques as well as
for new future developments. After reviewing the basic concept of core reduc-
tion, we present in this thesis alternative proofs of its fundamental characteristics
based on the relationship between the Golub-Kahan bidiagonalization, the Lanc-
zos tridiagonalization and the well known properties of Jacobi matrices. They
were published in the paper [42]. Here the Golub-Kahan bidiagonalization and
the Lanczos tridiagonalization are used not as computational methods, but as
well suited mathematical tools for constructing proofs.

Then we discuss how the presented relationship may be found useful in ap-
plications of the core problem formulation, in particular in connection with reg-
ularization of ill-posed problems and investigation of efficient stopping criteria.
Possible directions for further research are outlined and several open questions
are formulated.

The structure of this thesis is as follows. Chapter 1 contains basic defini-
tions and notation, followed by an overview of some adaptive preconditioning
techniques. Finally, the properties of Arnoldi factorization are discussed. In
Chapter 2, the IRA process is briefly reminded and a new technique based on the
properties of Tchebychev polynomials is described. Algorithm for computation
of invariant subspace is presented. Chapter 3 contains convergence analysis of
discussed algorithms including the case that the matrix A is derogatory and/or
defective. In Chapter 4, numerical results are presented comparing the algorithms
for construction of invariant subspaces and preconditioning techniques. Chapter
5 summarizes main types of linear approximation problems and methods usu-
ally used for solving them, including iterative methods. Chapter 6 describes
the concept of the core reduction, presents alternative proofs of its fundamental
properties and outlines some directions for further research.
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Approximation of invariant
subspaces and convergence of
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Chapter 1

Basic concepts

In this chapter we point out main advantages of iterative methods compared
with other strategies in context of solving large, sparse, linear algebraic problems.
We concentrate on the restarted GMRES method, especially on adaptive precondi-
tioning techniques for this method that are based on the idea to remove smallest in
magnitude eigenvalues from the spectrum of the matrix A. These preconditioners
are constructed by exploiting spectral information of A gathered from the Arnoldi
factorization obtained in the previous restart. Thus we remind two orthogonal-
ization processes – Arnoldi process and Householder process, and summarize the
fundamental properties of the Arnoldi factorization. The question when Ritz (re-
spectively harmonic Ritz) values and vectors approximate the eigenvalues and the
eigenvectors of A is discussed.

1.1 Iterative methods

Consider the system of linear algebraic equations

Ax = b, A ∈ Rn×n, b ∈ Rn, (1.1)

with a large, sparse, nonsingular and nonsymmetric matrix A. We consider only
real problems, but extension to complex ones is straightforward.

Systems of the form (1.1) arise in many scientific and technical areas. For
example, a part of reality can be modeled by a system of differential or integral
equations and their discretization leads to linear problem that can be character-
ized by the system of linear algebraic equations. Two types of methods can be
used to solve these systems - direct and iterative. Most direct methods consists
of performing some type of factorization of the matrix A, as LU factorization,
Cholesky factorization etc., followed by calculation of inverse of the matrix A
which is applied to the vector b to obtain the solution. Direct method finds
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the solution at the very end of the computation and intermediate results do not
represent any approximate solution. If the problem (1.1) arises from some dis-
cretized model, it is influenced by modeling and discretization errors. Errors on
all stages of solving the real-word problems should be in balance and thus also
the approximate solution of (1.1) suffices in accuracy which needn’t be necessary
large. Therefore iterative methods are often suitable for solving (1.1), because it
is possible to stop the process at any iteration step and an approximation of the
solution is obtained.

Having an initial approximation x0 ∈ Rn of the exact solution x∗ ∈ Rn, itera-
tive method computes in step k an approximation xk of x∗. Natural requirement
is that xk converges to the solution x∗ as k grows. Therefore we can define the
residual of the approximation xk by

rk := b−Axk

and the iterative process is stopped as soon as the norm of the residual is smaller
then the prescribed number, i.e. the required accuracy is reached. More fre-
quently relative residual norm

‖rk‖/‖r0‖,
where r0 is the initial residual, is tested because it gives better information about
the improvement of the approximation. Recently also the relative backward error

‖rk‖/(‖b‖+ ‖A‖‖xk‖),

has been preferred, see [66].
Another advantage of iterative methods is that the sparse structure of the ma-

trix A allows to solve large system of millions of unknowns without transforming
the whole system matrix or even without explicitly forming it, because usually
only the matrix-vector product must be available.

In practice, direct and iterative methods are often combined in order to ben-
efit from advantages of both approaches, e.g. incomplete factorizations can be
used to precondition the system (1.1).

One of the most popular class of iterative methods form Krylov subspace
methods - projective methods which seek an approximation

xk ∈ x0 +Kk(A, r0) = x0 + span{r0,Ar0, ...,A
k−1r0}

satisfying Petroff-Galerkin condition

b−Axk ⊥ Lk

for a subspace Lk of dimension k. Different methods can be obtained by choosing
different Lk, e.g., Lk = Kk(A, r0) gives Full Orthogonalization Method (FOM),
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Lk = AKk(A, r0) gives Generalized Minimum Residual Method (GMRES) etc.
Very nice overview of Krylov methods including detailed algorithms can be found
in [73] Chapter 6,7, see also [89], [22], [31].

In this thesis, we concentrate on one of the most widely used Krylov method
for solving large, sparse, nonsymmetric linear systems - the GMRES method.
GMRES is a method with long recurrences, one more vector has to be saved
in each iteration and memory requirements grow with number of iterations.
Thus the classical GMRES algorithm is not suitable for practical computations
and restart must be used. Unfortunately, convergence of the restarted GMRES
method can be very slow, stagnation may occur in many cases and process can
become inapplicable for practical use. These problems can often be removed
by using preconditioning which might improve properties of the original system.
Adaptive preconditioning techniques, that will be discussed in this thesis, are
presented in Section 1.4.

Before we turn to the GMRES method, we remind two main algorithms for
construction of appropriate basis of the Krylov subspace.

1.2 Building orthonormal basis

Denote by

Kk(A, v) = span {v,Av, ...,Ak−1v}
the kth Krylov subspace corresponding to the matrix A and the vector v, k ∈ N.
It is well known that Krylov basis {v,Av, ...,Ak−1v} of this subspace is numer-
ically unstable, because as k grows the vectors Akv can become nearly linearly
dependent. This can lead to loss of accuracy in Krylov subspace methods, e.g.,
GMRES, FOM, DIOM, QGMRES (see [73]). Thus orthonormal basis of the
Krylov subspace is usually constructed by Arnoldi process or its modified ver-
sion, or by Householder process. In this section, algorithms of the modified
Arnoldi process and the Householder process are reminded. For comparison of
these algorithms see, e.g., [19], [87].

Modified Arnoldi process

Let v be a starting vector and Kk(A, v) required Krylov subspace. Then the
algorithm of the modified Arnoldi process is the following:
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ALGORITHM 1.1 (Modified Arnoldi process):
input: v,A, k - dimension of Krylov subspace
output: v1, .., vk - orthonormal basis of Kk(A, v)

v1 := v/‖v‖
for j = 1, .., k − 1

wj := Avj

for i = 1, .., j
hij := vT

i wj

wj := wj − hijvi

end i
hj+1,j := ‖wj‖
if hj+1,j = 0 then STOP
vj+1 := wj/hj+1,j

end j

At each iteration the vector vj is multiplied by the matrix A and orthogo-
nalized against the previous vectors using modified Gramm-Schmidt orthogonal-
ization process. The algorithm stops as soon as k basis vectors of Kk(A, v) are
computed, or hj+1,j = ‖wj‖ = 0 for some j. The second situation appears if the
vectors in Krylov basis are linearly dependent, i.e. the subspace does not have full
dimension. Consider hj+1,j 6= 0 for j = 1, . . . , k and denote by Vk := (v1, .., vk),

Hk :=




h11 h12 ... h1,k−1 h1k

h21 h22 ... h2,k−1 h2k

0 h32 ... h3,k−1 h3k
...

...
. . . . . .

...
0 0 0 hk,k−1 hk,k




, Hk+1,k :=

(
Hk

hk+1,ke
T
k

)
.

Now we formulate a well known theorem.

Theorem 1.1: Assume that Algorithm 1.1 does not stop before step k. Then it
generates the vectors v1, v2, . . . , vk such that vT

i vj = 0 for i 6= j and

span{v1, ..., vk} = Kk(A, v).

Moreover

AVk = Vk+1Hk+1,k (1.2)

= VkHk + wke
T
k , where wT

k Vk = 0. (1.3)

Proof: Follows immediately by induction, see [73] pp. 147. 2
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The basis {v1, v2, . . . , vk} is called Arnoldi basis and the factorization (1.3) is
called Arnoldi factorization with starting vector v1. Its important properties are
discussed in Section 1.5. Algorithm 1.1 is in exact arithmetics equivalent with
classical Arnoldi algorithm (see [73] p.146), but modified version is numerically
more stable. Nevertheless, in many cases loss of orthogonality in Arnoldi basis
appears, see [8], [10], [27], and improvement can be obtained by using reorthogo-
nalization which can be, on the other hand, computationally expensive. Another
possibility is to use the following approach.

Householder process

Different approach to construction of orthonormal basis is used by House-
holder method, that is based on application of reflection matrices (sometimes
also called elementary Hermitian matrices)

P = I− 2wwT ,

where ‖w‖ = 1. Such matrices are Hermitian, unitary and det(P)= - 1. From
the properties of P it can be proved that a vector Pv is a mirror reflection of the
vector v with respect to span{w}⊥, i.e. ‖Pv‖ = ‖v‖ and (v − Pv) is orthogonal
to span{w}⊥. The following algorithm can be found, e.g., in [73] p. 149.

ALGORITHM 1.2 (Householder process):
input: v,A, k - dimension of Krylov subspace
output: v1, .., vk - orthonormal basis of Kk(A, v)

z1 := v/‖v‖
for j = 1, .., k

β̂ := − sign((zj)j) (
∑n

i=j(zj)
2
i )

1/2

for i = 1, .., j − 1
(ŵj)i := 0

end i
(ŵj)j := (zj)j − β̂
for i = j + 1, .., n

(ŵj)i := (zj)i

end i
wj :=

ŵj

||ŵj ||
Pj := I− 2wjw

T
j

hj−1 := Pjzj

vj := P1..Pjej

if ||vj|| = 0 then STOP
if j ≤ k − 1 then zj+1 := Pj..P1Avj

end j
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Remark: The Householder matrices Pj need not be formed explicitly. Multipli-
cation of Pj by a vector x can be performed by

Pjx = (I− 2wjw
T
j )x = x− 2ζwj, where ζ := wT

j x.

This multiplication needs only about 4 ∗ (n− j + 1) operations if we use the fact
that (wj)i = 0 for i = 1, . . . , j − 1.

Algorithms 1.1 and 1.2 are equivalent in exact arithmetics, but the House-
holder algorithm is more time consuming and retains orthogonality between the
basis vectors better than the modified Arnoldi process. The following table pre-
sented in [73] pp. 151 shows estimations of memory requirements and number of
flops needed for different orthogonalization processes under the assumption that
all algorithms do not stop before step k. ARN denotes classical Arnoldi algo-
rithm, ModARN and ReARN denotes modified Arnoldi process (see Algorithm
1.1) and modified Arnoldi process with reorthogonalization in each step, respec-
tively. Finally, HHA is Householder process presented in Algorithm 1.2.

ARN ModARN ReARN HHA

Flops 2k2n 2k2n 4k2n 4k2n− 4/3k3

Storage (k + 1)n (k + 1)n (k + 1)n (k + 1)n− 1/2k2

1.3 GMRES method

Generalized Minimum Residual Method (GMRES) proposed in [75] is very pop-
ular technique for solving problems defined in (1.1). As we have mentioned in
Section 1.1, GMRES is a projection method with Lk = AKk(A, r0), i.e. it com-
putes the kth approximate solution such that

xk ∈ x0 +Kk(A, r0) = x0 + span{r0,Ar0, ...,A
k−1r0}

and
b−Axk ⊥ AKk(A, r0).

This is equivalent to

xk = arg min
x∈x0+Kk(A,r0)

‖b−Ax‖ = x0 + argmin
u∈Kk(A,r0)

‖r0 −Au‖ = x0 + Vkyk, (1.4)

where the columns of Vk form an orthonormal basis of Kk(A, r0), that can be
computed by Algorithm 1.1 or 1.2 with the starting vector r0. Then v1 = r0/β,
where β = ‖r0‖ and, according to (1.4),

yk = arg min
y∈Rk

‖r0 −AVky‖. (1.5)

22



It follows from Theorem 1.1 that

r0 −AVky = Vk+1(βe1 −Hk+1,ky)

and the relation (1.5) results in

yk = arg min
y∈Rk

‖βe1 −Hk+1,ky‖. (1.6)

This minimalization problem is easy to compute and requires solving least-squares
problem with upper Hessenberg matrix Hk+1,k ∈ R(k+1)×k, where k is usually
small in comparison with the dimension of the original linear system.

Problem (1.6) is usually solved by using QR–decomposition. The matrix
Hk+1,k has full column rank and thus there exists an orthogonal matrix Qk+1 ∈
R(k+1)×(k+1) and an upper triangular matrix Rk+1,k ∈ R(k+1)×k such that

Hk+1,k = Qk+1Rk+1,k.

Let us rewrite the norm in (1.6) in the form

||βe1 −Hk+1,ky‖2 = ‖βe1 −Qk+1Rk+1,ky‖2 = ‖gk −Rk+1,ky‖2,

where gk+1 := βQT
k+1e1, gk+1 ∈ Rk+1. Matrix Rk+1,k is upper triangular with zero

last row. Let Rk be a matrix Rk+1,k without the last row and gk+1 = (ĝT
k , ηk)

T ,
where ηk ∈ R. Then

‖gk+1 −Rk+1,ky‖2 = ‖ĝk −Rky‖2 + |ηk|2.
Substituting this into (1.6) gives together with (1.4) equivalent formulation for
the kth GMRES iteration

yk = arg min
y∈Rk

‖ĝk −Rky‖, xk = x0 + Vkyk. (1.7)

Matrix Hk+1,k has full column rank. Therefore Rk is square and nonsingular and
yk satisfies equation

Rky = ĝk. (1.8)

Summarizing, the problem (1.4) reduces to solving small system (1.8) with non-
singular upper triangular matrix. Moreover,

‖rk‖ = ‖b−Axk‖ = |ηk|.
Remark: The QR–decomposition of the matrix Hk+1,k can be computed by
Givens rotations. Define the rotation matrices Gk+1

i ∈ R(k+1)×(k+1),

Gk+1
i :=




Ii−1 0 0 0i−1,k−i

0 ci −si 0
0 si ci 0

0k−i,i−1 0 0 Ik−i


 ,
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where

ci :=
hii√

h2
ii + h2

i,i+1

, si :=
−hi+1,i√
h2

ii + h2
i,i+1

.

Then the matrix Gk+1
i eliminates the element hi+1,i of Hk+1,k. Therefore mul-

tiplying Hk+1,k successively by matrices Gk+1
i for i = 1, . . . , k transforms the

matrix to upper triangular form. Moreover, QT
k+1 := Gk+1

k Gk+1
k−1...G

k+1
1 is unitary

and

Hk+1,k = Qk+1Rk+1,k,

where Rk+1,k := QT
k+1Hk+1,k. The rotation matrices need not be computed for

each k separately, because the iteration scheme for computation of Gk+1
i can

be derived. More computational cost can be saved if we use some interesting
properties of the rotation matrices. For example the GMRES residuals satisfy

‖ri+1‖ = −si‖ri‖,

because ηi+1 = −siηi, see [73] pp. 160–163.

Remark: Implementation of the GMRES method using Householder orthogo-
nalization process is described in [90], [73] p. 159. Numerical stability of GMRES
with the Arnoldi and Householder orthogonalization process is studied and com-
pared in [19], [33].

Denote by

δ := min{k| dimKk(A, r0) = dimKk+1(A, r0)}

degree of the vector r0 with respect to the matrix A. The GMRES method has
the following well known properties.

Lemma 1.2: Let x∗ be the exact solution of (1.1) and xk the kth GMRES ap-
proximate solution, k = 1, . . . , n. Then
(i) xδ = x∗

(ii) xk 6= x∗ for k < δ
(iii) xk = x∗ for k > δ.
Moreover, dim Kk(A, r0) = dim Kδ(A, r0) for k > δ.

As a consequence of Lemma 1.2, in exact arithmetics the GMRES algo-
rithm using orthogonalization process given by Algorithm 1.1 or 1.2 stops with
hk+1,k = 0 if and only if the exact solution is found, see [73] p. 164. Unfortu-
nately, this fact is no longer true in finite precision arithmetics. Further, GMRES
is a method with long recurrences, the memory requirements and computation
time grow quickly with k and therefore the full version is not used in practice.
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The number of operations per iteration grows generally as O(k2n) (the most
costly operation is orthogonalization of the basis vector against all the previous
Arnoldi vectors) and the storage requirements as O(kn) (this represents the k
Arnoldi vectors of the length n that need to be saved). Therefore the GMRES
algorithm becomes impractical when n is large. There are two main remedies
that can be used. In Quasi–GMRES or DQGMRES (see [73] pp.168-172) full or-
thogonalization process is replaced by incomplete one where the basis vector vi is
orthogonalized only against the last l < i− 1 vectors. This technique accelerates
the computation of one single iteration but leads to the loss of accuracy in the
solution. Thus a restarted version of the GMRES algorithm is more popular, i.e.
the algorithm is stopped after some number of iterations, say m ¿ n, and the
method is restarted with x0 := xm. Algorithm of the restarted GMRES method
follows.

ALGORITHM 1.3 (GMRES(m)):
input: x0, b, A, m - restart length,

TOL - tolerance for ‖rm‖/‖r0‖
max – maximal number of iterations

output: xm - approximate solution, rm - corresponding residual

r̂0 := b−Ax0

xm := x0, rm := r0 = r̂0

for i = 0, 1, . . . , max
x0 := xm, r0 := rm

perform m steps of orthogonalization process with A and starting vector r0

denote by Vm := (v1, .., vm), Vm+1 := (Vm, vm+1), Hm+1,m := (hij)
m+1,m
i,j=1

compute QR–decomposition Qm+1Rm+1,m = Hm+1,m

gm+1 := βQT
m+1e1

compute ym solving (1.8)
xm := xm + Vmym, rm := b−Axm

if ‖rm‖/‖r̂0‖ < TOL then STOP
end i

It is well known, that restart slows down the convergence and stagnation may
occur in many cases. This phenomenon was widely studied, e.g., in [84], [95], [2],
but is still not well understood. It has been observed on many examples that
the eigenvalues of the matrix A close to zero may cause the troubles for some
types of linear systems. Hence several preconditioning techniques are based on
the idea to remove them the spectrum. For preconditioning to be effective, the
faster convergence have to overcome the costs of computing the preconditioner,
so that the total cost of solving (1.1) is lower. Therefore these preconditioners are
constructed by exploiting spectral information gathered in the previous restart
from the Arnoldi factorization. First a rectangular matrix V is constructed whose
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columns generate an invariant subspace of A corresponding to the smallest eigen-
values and then the preconditioning matrix is relatively cheaply computed, see
[3], [12], [13], [21], [23]. We will not discuss all of these techniques here, although
they can give interesting results in some cases. We concentrate on precondition-
ers presented in [3] and [21]. Main ideas are briefly summarized in the following
section.

1.4 Construction of preconditioners

The main goal of preconditioning is to decrease the computational effort needed to
solve the linear system (1.1). Such system can be preconditioned by a nonsingular
matrix M ∈ Rn×n from the left

M−1Ax = M−1b (1.9)

or from the right
AM−1Mx = b. (1.10)

Both techniques can also be combined to obtain a split preconditioning

N−1AM−1Mx = N−1b,

where M,N ∈ Rn×n are both nonsingular matrices. Matrices M from equation
(1.9) and (1.10) are called left and right preconditioner, respectively, and can be
constructed such that the matrix M−1A or AM−1 does not have small eigenval-
ues of A in its spectrum. Now we present two preconditioning techniques with
this property.

Adaptive preconditioning from left

Let the eigenvalues of A be ordered according to

0 < |λ1| ≤ |λ2| ≤ . . . ≤ |λk| < |λk+1| ≤ . . . ≤ |λn|,
where usually k ¿ n. In this part we assume that |λn| = 1 and, moreover, A is
diagonalizable. Let V ∈ Rn×k be an orthogonal matrix whose columns generate
an invariant subspace of A corresponding to the k smallest eigenvalues. The
following theorem demonstrates the construction of preconditioner by using V,
see [3].

Theorem 1.3: Let V ∈ Rn×k,Q = [V,W] ∈ Rn×n be matrices with orthonormal
columns, where span{V} is an invariant subspace of A corresponding to the
eigenvalues λ1, λ2, . . . , λk. Let H = VTAV be nonsingular. Then the matrix

M = VHVT + WWT (1.11)
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is nonsingular and M−1 = VH−1VT +WWT . Moreover, eigenvalues of the matrix
M−1A are

λk+1, λk+2, . . . , λn, 1,

where 1 has multiplicity at least k.

Theorem 1.3 shows that a preconditioner removing the k smallest eigenvalues
from the spectrum of A can be easily constructed, if we have an invariant sub-
space corresponding to these eigenvalues. The preconditioner replaces the small
eigenvalues by multiple eigenvalue 1.

Remark: Theorem 1.2 can be proved with exactly the same statement without
the assumption |λn| = 1. The theorem shows how a prescribed set of eigenvalues
{λ1, . . . , λk} can be replaced by the eigenvalue 1. Our aim is to replace small
eigenvalues by a larger number, but we do not explicitly know the distribution
of eigenvalues of A. Therefore it seems to be a good idea to normalize (1.1) such
that |λn| = 1 and thus the preconditioner (1.11) replaces the small eigenvalues of
A by the eigenvalue with the magnitude equal to magnitude of λn.

Remark: Assumption |λn| = 1 can be approximately fulfilled after the first
restart of GMRES(m) by dividing both sides of equation (1.1) by a number ap-
proximating |λn|. A norm of the largest in magnitude eigenvalue of the matrix
Hm, can be considered for such number. Details about when the eigenvalues of
Hm approximate some eigenvalues of A are given in the following section.

This technique was proposed in [3] as an adaptive preconditioning technique,
i.e. the preconditioner (1.11) is updated in each restart of the GMRES(m)
method in the following sense. Let V(1) be an approximation of the matrix
V obtained in the first restart of GMRES(m). Then, using Theorem 1.2, the left
preconditioner to the system (1.1) is set to

M−1
1 := V(1)(H(1))−1(V(1))T + I−V(1)(V(1))T .

If V(1) is a good approximation to V, the preconditioned matrix M−1
1 A does not

have k smallest in magnitude eigenvalues of A in the spectrum. Now we perform
second restart of GMRES(m) applied to the system

M−1
1 Ax = M−1

1 b

and compute a new approximation V(2) of invariant subspace of M−1
1 A corre-

sponding to the k smallest eigenvalues. We form the second preconditioner M2 to
remove these values from the spectrum of M−1

1 A. We update the preconditioner
such that M−1 := M−1

2 M−1
1 and apply GMRES(m) method to the system

M−1Ax = M−1b,
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etc. It is possible to continue removing small eigenvalues this way until a good
preconditioner of (1.1) is found and fast convergence is obtained. In practice, the
preconditioning matrix is usually updated only several times and then computa-
tion continues with fixed preconditioner. For detailed algorithm see [3] p. 217.

Remark: If only a coarse approximation V(1) is used, which is often the case,
some of the k smallest eigenvalues can remain in the spectrum of the precondi-
tioned matrix M−1

1 A. This does not necessarily mean a problem in computation,
because as we update the preconditioner these eigenvalues can be removed in
some of the following restarts.

Adaptive preconditioning from right

Similar idea was used in [21] to construct a right preconditioner. The funda-
mental theorem from this paper follows.

Theorem 1.4: Let V ∈ Rn×k be a matrix with orthonormal columns, where
span{V} is an invariant subspace of A corresponding to the eigenvalues λ1, . . . , λk.
Let this space have full dimension k and denote by T = VTAV. Then the matrix

M = In + V(1/|λn|T− Ik)V
T (1.12)

is nonsingular and M−1 = In +V(|λn|T−1− Ik)V
T . Moreover, eigenvalues of the

matrix AM−1 are
λk+1, λk+2, . . . , λn, |λn|,

where |λn| has multiplicity at least k.

The preconditioner (1.12) has properties similar to the preconditioner (1.11),
except that here the small eigenvalues are replaced by |λn|. Update of the matrix
M can be performed similarly as in the previous case, but authors in [21] pro-
posed slightly different method. After each restart, the matrix V is enriched by
columns approximating a prescribed number (usually one or two) of basis vectors
of invariant subspace of A. Therefore the number of columns of the matrix V
grows. The preconditioner is fixed after some number of restarts and computa-
tion continues with constant preconditioner. Number |λn| can be approximated
by the largest eigenvalue of Hm. For detailed algorithm see [21] p. 309.

1.5 Properties of Arnoldi factorization

In this section, properties of the Arnoldi factorization are discussed. The follow-
ing considerations lead to idea, how to construct a basis of an invariant subspace
of A corresponding to a prescribed part of the spectrum.
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We have presented in Section 1.2 that both the Arnoldi and the Householder
algorithm with starting vector v1, ‖v1‖ = 1, yield after k steps the Arnoldi
factorization of the form

AVk = VkHk + wke
T
k , (1.13)

where the columns of Vk form an orthonormal basis of the Krylov subspace
Kk(A, v1), wk ⊥ span{Vk} and Hk is an upper Hessenberg matrix. In the follow-
ing we assume that the matrices Hk are unreduced, i.e. the Krylov subspace has
full dimension. This is equivalent to

‖wi‖ = hi+1,i 6= 0 for i = 1, . . . , k − 1.

In the opposite case, i.e. if dim(Kk(A, v1)) < k, it can be proved that the exact
solution x∗ of (1.1) satisfies

x∗ ∈ x0 +Kk(A, v1)

and the GMRES algorithm stops yielding the exact solution. Assuming that
hk+1,k 6= 0, denote by vk+1 := wk/hk+1,k.

The matrix Hk is a Ritz-Galerkin approximation of the matrix A on the
subspace Kk(A, v1). Therefore spectral information about A can be gathered
through the factorization (1.13) using two types of values and vectors that char-
acterize spectral properties of Hk - Ritz values and vectors and harmonic Ritz
values and vectors, respectively.

Ritz values and vectors

Denote by θ1, . . . , θk eigenvalues of the matrix Hk and gi the eigenvector
corresponding to θi, i.e.

Hkgi = θigi, gi ∈ Cn, ‖gi‖ = 1. (1.14)

The numbers θi are called Ritz values of A and the vectors yi := Vkgi are called
the corresponding Ritz vectors. The pair (θi, yi) is called Ritz pair.

It can be proved (see [49]) that if the Hessenberg matrix Hk is unreduced,
each of its multiple eigenvalues has only one eigenvector associated with it. Hence
multiple Ritz values have only one corresponding Ritz vector and the matrix Hk

is nonderogatory. In case the Ritz value θi has algebraic multiplicity ki we have

Hk(g
(1)
i , g

(2)
i , . . . , g

(ki)
i ) = (θig

(1)
i , θig

(2)
i + g

(1)
i , . . . , θig

(ki)
i + g

(ki−1)
i ).

Here g
(1)
i is an eigenvector of Hk and g

(j)
i is a principal vector of order j. Analo-

gously we can define y
(j)
i := Vkg

(j)
i for j = 1, 2, . . . , ki. Although all the following
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consequences remain true in this general case, we assume in the following that Hk

has k distinct eigenvalues to avoid the notational difficulties. Opposite situation
is discussed in the second part of Chapter 3.

Harmonic Ritz values and vectors

Consider the inverse problem, i.e. an orthogonal section of the matrix A−1

onto the Krylov subspace Kk(A
−1,Akv1) = AKk(A, v1). The corresponding

Arnoldi factorization has the form

A−1Sk = SkTk + tk+1,ksk+1e
T
k , (1.15)

where Ske1 = s1 = Akv1/βk with βk = ‖Akv1‖ and the columns of the matrix
(Sk, sk+1) form an orthonormal basis of Kk+1(A

−1,Akv1) = Kk+1(A, v1).
Denote by θ̃i inverses of the eigenvalues of the matrix Tk and z̃i eigenvector

corresponding to θ̃−1
i , i.e.

Tkz̃i = θ̃−1
i z̃i, z̃i ∈ Cn, ‖z̃i‖ = 1. (1.16)

The numbers θ̃i are called harmonic Ritz values of A. To obtain these values we
need not form the inverse of the matrix A because they satisfy the generalized
eigenvalue problem

VT
k ATVkg̃i = θ̃−1

i VT
k ATAVkg̃i, (1.17)

for more details see [23], [32], [56], [58]. The vectors ỹi := Vkg̃i are called har-
monic Ritz vectors of A with respect to Kk(A, v1). The pair (θ̃i, ỹi) is called
harmonic Ritz pair.

Using (1.3), equation (1.17) becomes

HT
k g̃i = θ̃−1

i HT
k+1,kHk+1,kg̃i or

HT
k g̃i = θ̃−1

i RT
k Rkg̃i or

(Hk + hk+1,kH
−T
k eke

T
k )g̃i = θ̃−1

i g̃i,

where Rk is an upper triangular matrix obtained from QR–decomposition of the
matrix Hk+1,k. This gives several possibilities to compute the harmonic Ritz val-
ues and vectors by using only the matrix Hk of smaller dimension k.

Remark: The vectors Skz̃i are harmonic Ritz vectors of A−1 with respect to
Kk(A

−1,Akv1). It is easy to show that Skz̃i = Aỹi. Here we work only with har-
monic Ritz vectors of A with respect to Kk(A, v1) defined above and call them
shortly harmonic Ritz vectors.
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Approximation of eigenpairs

Now the question arises when the Ritz value θi or the harmonic Ritz value θ̃i

can be considered a good approximation to an eigenvalue of A. First, consider
the situation that the orthogonalization process gives the decomposition (1.13)
with wk = 0, i.e. AVk = VkHk. Let G−1

k HkGk = J be the Jordan canonical
decomposition of the matrix Hk, with the columns of the matrix Gk being the
eigenvectors of Hk. Then the Jordan matrix J is a block in the Jordan canonical
form of the matrix A and the columns of the matrix VkGk are eigenvectors of the
matrix A corresponding to the eigenvalues included in the matrix J. In this case
the Ritz values are exact eigenvalues of the matrix A and the columns of VkGk

form a basis of the corresponding eigenspace. The following assertion indicates
when the orthogonal process stops with wk = 0, see [81]. This result is important
for our further considerations.

Proposition 1.5: Let the matrix Hk in the Arnoldi factorization (1.13) be unre-
duced and GJ = AG be a Jordan matrix of order k, where G has rank k. Then
wk = 0 if and only if v1 lies in the space generated by the columns of the matrix G.

Now, consider a more usual situation wk = hk+1,kvk+1 6= 0. Let (θ, g) be an
arbitrary eigenpair of Hk and y the corresponding Ritz vector, i.e. y = Vkg.
Then

‖AVkg −VkHkg‖ = ‖Ay − θy‖ = hk+1,k |eT
k g| (1.18)

indicates that if hk+1,k is small, then the Ritz pair (θ, y) will be in many cases
a reasonable approximation to an eigenpair of A and, according to (1.13), the
columns of Vk will nearly span an invariant subspace of A, see [4]. Unfortunately,
we must note that these considerations are not true for matrices that are highly
non-normal. The relative departure from normality can be measured by Henrici
number [41]

‖AAT −ATA‖F /‖A‖F .

If this number is large, the matrix A is considered highly non-normal and the
basis of its eigenvectors is ill-conditioned, see [16]. Thus small number hk+1,k or
more precisely hk+1,k |eT

k g| does not imply that the Ritz pair (or similarly the
harmonic Ritz pair) is an accurate approximation to an eigenpair of A. The
influence of high nonnormality on convergence of iterative methods for solving
system (1.1) and eigenvalue solvers is discussed, e.g., in [5], [11].

To make these facts more obvious, rewrite the Arnoldi factorization (1.13)

AVk = VkHk + hk+1,kvk+1e
T
k = VkHk + hk+1,kvk+1v

T
k Vk,

in the form

(A− hk+1,kE)Vk = VkHk,
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where E = vk+1v
T
k . Multiplying the last equation by gi yields

(A− hk+1,kE)yi = θiyi

and thus the Ritz pair (θi, yi) is at the same time the eigenpair of the perturbed
matrix A− hk+1,kE. Analogously from (1.15) we have

(A−1 − tk+1,kẼ)ỹi = θ̃−1
i ỹi,

where Ẽ = A−1sk+1s
T
k A. Hence the following considerations can be transformed

for a harmonic Ritz pair. According to analysis given in [74], [82], we have the
following assertion:

Proposition 1.6: Let θi be a simple eigenvalue of the matrix A − hk+1,kE, pi

the corresponding right eigenvector and qi the corresponding left eigenvector. If
hk+1,k ¿ 1 then there exists exactly one eigenvalue λ of the matrix A such that

λ = θi + hk+1,k
qH
i Epi

qH
i pi

+ O(h2
k+1,k).

Hence if hk+1,k ¿ 1 and if the angles between each pair pi and qi are small,
then each Ritz value approximates some eigenvalue of A well. The last relation,
together with (1.18), motivates the search for an algorithm that reduces the mag-
nitude of ‖wk‖ = hk+1,k in the Arnoldi factorization by an appropriate update of
the starting vector v1.

It was observed that the Arnoldi process estimates the large eigenvalues more
accurately than the small ones and that the Ritz vectors corresponding to the
largest eigenvalues have better significance. The harmonic Ritz values are com-
puted by a process which moves the small in magnitude eigenvalues to the exterior
of the spectrum, see [23], [32], [59]. Therefore it is often argued that the harmonic
Ritz values can give better approximations to the small eigenvalues than the Ritz
values. Discussion can be found in [23], [59], [56], [55]. The appropriateness of
using harmonic Ritz values in connection with the GMRES method is described
in [32]. In our theoretical investigations it is often not important to distinguish
between the Ritz and the harmonic Ritz values and vectors. Hence we do not
specify what sort is used, beyond some special cases. Difference will be seen in
numerical experiments.

Arnoldi basis in polynomial form

Orthonormal basis of the Krylov subspace Kk(A, v1) can be constructed us-
ing a Frobenius matrix. Even thought this technique is not suitable for real
computations, it shows several interesting properties of the Arnoldi factorization.
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The difference between the Arnoldi process and the application of the Frobenius
matrix is in construction. The Arnoldi process starting with v1, constructs the
vector v2 in the following way. The vector Av1 is projected to the span{v1} us-
ing the projection v1v

T
1 . Putting w1 := (I − v1v

T
1 )Av1 immediately yields that

w1 ⊥ v1 and v2 is obtained by normalizing w1. In the second step the vector
Av2 is projected to the span{v1,Av1}, denote this orthogonal projection by ŵ,
and the vector v3 is obtained by normalizing w2 := Av2 − ŵ. If the Frobenius
matrix is used, the first step is the same but in the second step the vector A2v1 is
projected instead of Av2 and the projection is orthogonal to the span{v1,Av1}.
For completeness, we briefly describe this technique for arbitrary step k.

Denote by K := (v1,Av1, . . . ,A
k−1v1) the Krylov matrix and by F ∈ Rk×k

the Frobenius matrix, i.e.

F :=

(
0 f1

I f̂

)
,

where f1 ∈ R, f̂ ∈ Rk−1 and put f := (f1, f̂
T )T . The form of the matrices K and

F immediately yields

AK = KF + r̂eT
k , r̂ = Akv1 −Kf (1.19)

and a vector f is sought such that ‖r̂‖ is minimal. Denoting

Sl := Hk−1,k−2 Hk−2,k−3 . . . Hk−l,k−l−1

it can be proved by induction that

K = VkRk, (1.20)

where Rk := (e
(k)
1 ,S1e

(k−1)
1 ,S2e

(k−2)
1 , . . . ,Sk−1) is an upper triangular matrix with

diagonal elements
rii := eT

i Rkei = h1,0h2,1 . . . hi,i−1, (1.21)

where h1,0 := 1 and hi+1,i = ‖wi‖. Apparently rii > 0 for all i = 1, . . . , k and
(1.20) represents the QR–decomposition of the matrix K. Multiplying (1.19) by
R−1

k we obtain
AVk = VkRkFR−1

k + r̂eT
k R−1

k , (1.22)

where Tk := RkFR−1
k is an upper Hessenberg matrix and

r̂eT
k R−1

k = r̂(0, . . . , 0, 1/rkk) = (1/rkk)r̂e
T
k = ŵeT

k ,

where ŵ = (1/rkk) r̂. If f minimizes the norm ‖Akv1 −Kf‖, i.e.

f = arg min
f̃∈Rk

‖Akv1 −Kf̃‖, (1.23)

then r̂ is orthogonal to Kk(A, v1) and thus VT ŵ = 0. Therefore (1.22) is the
Arnoldi factorization identical with (1.13), i.e. Tk = Hk and ŵ = wk, and
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the Frobenius matrix formulation yields in exact arithmetics the Arnoldi basis
v1, . . . , vk, for more details see, e.g., [81], [87].

The second equation in (1.19) implies that r̂ = p̂k(A)v1, where p̂k is the
characteristic polynomial of F. This fact together with (1.23) gives

p̂k(A) = arg min
p∈MPk

‖p(A)v1‖. (1.24)

Combining the last result with the fact that wk = ŵ = (1/rkk) r̂ yields

‖wk‖ = 1/rkk‖r̂‖ = ‖p̂k(A)v1‖/rkk. (1.25)

It is easy to see that the last equality remains true if any i ∈ {1, . . . , k} is
substituted for k. Moreover, it follows from (1.21) that

ri+1,i+1

rii

= hi+1,i = ‖wi‖. (1.26)

The equalities (1.25) and (1.26) yield ri+1,i+1 = ‖p̂i(A)v1‖. Finally, we have

wi = p̂i(A)v1 / ‖p̂i−1(A)v1‖, (1.27)

hi+1,i = ‖wi‖ = ‖p̂i(A)v1‖ / ‖p̂i−1(A)v1‖. (1.28)

The important result is that the number hk+1,k, that represents a part of the
residual of the Ritz eigenpair, see (1.18), is a function of the starting vector v1.
Its form (1.28) will be used in Chapter 4 to derive some convergence results for
algorithms for computation of invariant subspaces of A.
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Chapter 2

Polynomial filters

In the previous chapter, it was described how a matrix V, whose columns
generate an invariant subspace of A corresponding to the smallest eigenvalues,
can be used to construct the left and right preconditioner of the GMRES method.
In this chapter we concentrate on techniques for computation of the matrix V, by
using an iterative procedure which updates the starting vector of the Arnoldi fac-
torization by a polynomial in matrix A called polynomial filter. First the classical
technique - implicitly restarted Arnoldi process with shifts is briefly summarized.
Then a new technique based on the properties of Tchebychev polynomials is pre-
sented.

2.1 Construction of invariant subspaces

In this chapter, we discuss techniques for construction of a matrix V, whose
columns generate an invariant subspace of A corresponding to the prescribed
part of the spectrum. After one restart of GMRES(m), the Arnoldi factorization
is obtained. In Section 1.5, we have discussed when the Ritz or the harmonic
Ritz values and vectors, available through this factorization, are good approx-
imations to the eigenvalues and the eigenvectors of A. The idea steams from
the fact that hk+1,k = ‖wk‖ = 0 in (1.13) if and only if the columns of V span
an invariant subspace of A (see Proposition 1.5). When V nearly spans such
subspace, hk+1,k will be small. On the other hand, if A is not too nonnormal
and hk+1,k (or more precisely hk+1,k|eT

k g|, where g is an eigenvector of Hk+1,k)
becomes small, the Ritz values can be considered for good approximations to the
eigenvalues of A (see Proposition 1.6). The same considerations holds for the
Ritz vectors in many cases. These considerations motivates the search for an
algorithm that reduces the magnitude of hk+1,k by an appropriate update of the
starting vector v1 = Vke1, because hk+1,k is a function of v1. Proposition 1.5 also
suggests that one might find an invariant subspace by replacing v1 by a linear
combination of approximate eigenvectors corresponding to the smallest eigenval-
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ues. Note that construction of invariant subspaces by modifying the vector v1

was generally studied, e.g., in [4].

Let the eigenvalues of A be ordered according to

0 < |λ1| ≤ |λ2| ≤ . . . ≤ |λk| < |λk+1| ≤ . . . ≤ |λn|.

and define the sets

σW = {λ1, . . . , λk}, σU = {λk+1, . . . , λn}

of wanted and unwanted eigenvalues, respectively. Then σ(A) = σW ∪ σU . Let l
be a positive integer and m := k + l ¿ n. Assume that the Arnoldi process with
the starting vector v1 does not stop before the (k + l)th step. Then we obtain
the Arnoldi factorization

AVk+l = Vk+lHk+l + wk+le
T
k+l, (2.1)

where Vk+l ∈ Rn×(k+l),Hk+l ∈ R(k+l)×(k+l), wk+l ∈ Rn. Let us order the Ritz and
the harmonic Ritz values as

0 < |θ1| ≤ |θ2| ≤ . . . ≤ |θk+l| and 0 < |θ̃1| ≤ |θ̃2| ≤ . . . ≤ |θ̃k+l|.

We will assume in the rest of this chapter that Hk+l has k + l distinct eigenvalues
to avoid the notational difficulties, although all the following consequences remain
true in the general case.

Our goal is to update the starting vector v1 = Vk+le1 of the Arnoldi process
in order to obtain good approximations to the eigenvalues from σW and the
corresponding eigenspace. Putting v

(0)
1 := v1, we find a new v

(1)
1 = ψ1(A)v1 such

that ψ1 ∈ Pl filters out the l largest eigenvalues from σ(Hk+l). Such polynomials
will be called polynomial filters. Repeated application of filters gives the following
schema

v
(1)
1 = ψ1(A)v1

v
(2)
1 = ψ2(A)v

(1)
1

... (2.2)

v
(i)
1 = ψi(A)v

(i−1)
1

Denote by
AV

(i)
k = V

(i)
k H

(i)
k + w

(i)
k eT

k , V
(i)
k e1 = v

(i)
1 , (2.3)

the Arnoldi factorization obtained in the ith step. We want to construct the
polynomials ψi such that limi→∞ ‖w(i)

k ‖ = 0. In the rest of this section we assume

that the polynomials ψi are scaled so that ||v(i)
1 || = 1 for i = 1, 2, . . .
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The following algorithm presents the successive application of polynomial fil-
ters. Note that the modified Arnoldi or the Householder process (see Section 1.2)
can be used as an orthogonalization process.

ALGORITHM 2.1 (Computation of invariant subspace):
input: v1, k, l, TOL,

max – maximal number of iterations
POL – procedure for construction of polynomial ψ

output: Vk such that ‖wk‖ < TOL

perform k steps of orthogonalization process with A and starting vector v1 (we
obtain (2.3) for i = 0)
for i = 1, . . . , max

1. perform l additional steps of orthogonalization process (we obtain (2.1))
2. compute Ritz (resp. harmonic Ritz) values θ1, . . . , θk+l

3. call POL(ψ(λ), θ1, . . . , θk+l)
4. perform k steps of orthogonalization process with starting vector

v1 := ψ(A)v1 (we obtain (2.3))
5. if ‖wk‖ < TOL then STOP

end i

Remark: If the Ritz values are used for the shifts and we want to calculate
an approximation to the (say) jth eigenpair of A, j ≤ k, then the convergence
condition in step 5 . is replaced by more accurate one ‖wk‖ |eT

k gj| < TOL, where
gj is defined by (1.14). Accuracy of this condition is analyzed in [15].

Remark: Computational difficulties can arise from the fact that if ‖w(i)
k ‖ is

“small” (i.e. span{Vk} is near to an invariant subspace of A), then the vector

vk+1 := w
(i)
k /‖w(i)

k ‖ looses significant digits, see [49]. The same is true if w
(i)
j is

“small” for some j < k. This is demonstrated on Example 3 in Section 4.2.

Now we will discuss the procedure POL. First a few details about the implic-
itly restarted Arnoldi process with shifts (IRA) are given in Section 2.2. Then the
idea to use Tchebychev polynomials for constructing suitable filters is described
and worked out in Section 2.3.

2.2 Implicitly restarted Arnoldi process

A well-known technique for constructing suitable polynomial filters was described
in [81], see also [49]. It is based on application of shifted QR–algorithm on the
matrix Hk+l. Let µ1, . . . , µl be shifts and let G1 := Hk+l, S1 := Vk+l. Applica-
tion of the ith shift consists of the following steps. First the QR–decomposition
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(Gi − µiI) = QiRi is computed, where Qi ∈ R(k+l)×(k+l) is an unitary upper
Hessenberg matrix and Ri ∈ R(k+l)×(k+l) is an upper triangular matrix. Then
(2.1) multiplied by Qi gives succesively

(A− µiI)Si − SiQiRi = wk+le
T
k+lQ1 . . .Qi−1, (2.4)

A(SiQi)− (SiQi)(RiQi + µiI) = wk+le
T
k+lQ1 . . .Qi−1Qi. (2.5)

Denote by Si+1 := SiQi and Gi+1 := RiQi + µiI. It is easy to show that Gi+1

is an upper Hessenberg matrix and, moreover, Gi+1 = QT
i GiQi. Consequent

applications of the shifts µ1, . . . , µl yields

ASl+1 = Sl+1Gl+1 + wk+le
T
k+lQ̂, (2.6)

where Sl+1 := Vk+lQ̂, Gl+1 := Q̂THk+lQ̂ and Q̂ := Q1Q2...Ql. Denote by
s(i) := Sie1 for i = 1, . . . , l. Multiplying (2.4) by e1 yields

s(i+1) = Si+1e1 =
1

eT
1 Rie1

(A− µiI)s
(i)

and thus

v+
1 := Sl+1e1 =

1

τ

l∏
i=1

(A− µiI)v1, (2.7)

where τ :=
∏l

i=1 eT
1 Rie1.

Denote by V+
k the first k columns of the matrix Sl+1 and by H+

k the main
submatrix of order k of the matrix Gl+1. Then (2.6) becomes

A[V+
k , V̂l] = [V+

k , V̂l]

[
H+

k B
βe1e

T
k C

]
+ vk+l+1u

T , (2.8)

where βe1e
T
k ∈ Rl×k, vk+l+1 := wk+l/‖wk+l‖ and uT := ‖wk+l‖eT

k+lQ̂. From (2.8)
and the fact that (u)i = 0 for i = 1, . . . , k − 1 it follows that

AV+
k = V+

k H+
k + w+

k eT
k , w+

k := V̂le1β + vk+l+1(u)k. (2.9)

The matrix Sl+1 has orthonormal columns and ST
l+1vk+l+1 = Q̂TVT

k+lvk+l+1 = 0.
Thus

(V+
k )T w+

k = (V+
k )T V̂le1β + (V+

k )T vk+l+1(u)k = 0

and w+
k is orthogonal to V+

k . Summarizing, (2.9) is the Arnoldi factorization of
the matrix A with the starting vector (2.7).

Complete IRA process with shifts is described by the following algorithm.
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ALGORITHM 2.2 (IRA with shifts):
input: v1, k, l, TOL,

max – maximal number of iterations
output: Vk such that ‖wk‖ < TOL

perform k steps of orthogonalization process with A and starting vector v1 (we
obtain (2.3) for i=0)
for i = 1, . . . , max

1. perform l additional steps of orthogonalization process (we obtain (2.1))
2. compute Ritz (resp. harmonic Ritz) values θ1, . . . , θk+l and choose shifts

µ1, . . . , µl

3. Q := Ik+l

for j = 1, .., l
compute QR–decomposition QjRj = (Hk+l − µjIk+l)
Hk+l := QT

j Hk+lQj

Q := QQj

end j

Vk := [Vk+lQ]

[
Ik

0l,k

]

Hk := [Ik,0l,k]Hk+l

[
Ik

0l,k

]

4. compute wk according to (2.9)
5. if ||wk|| < TOL then STOP

end i

Now the question arises how to choose optimal shifts. The idea is to construct
a starting vector v+

1 being a linear combination of the eigenvectors corresponding
to the eigenvalues from the set σW . These values are not available, but we can
use numbers θ1, . . . , θk+l. The following theorem from [81] motivates the selection
of the shifts.

Theorem 2.1: Let (θi, gi) for i = 1, . . . , k + l be the eigenpairs of the matrix
Hk+l. Then the IRA method with the shifts θk+1, . . . , θk+l yields

Gl+1 =

[
H+

k B
0l,k C

]
,

where C is an upper triangular matrix. Moreover, H+
k has the eigenvalues

{θ1, .., θk} and

v+
1 = Vk+lQ̂e1 =

k∑
j=1

αjgj, αj ∈ R, j = 1, . . . , k.
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Thus substituting the Ritz values θk+1, . . . , θk+l for the shifts, it can be proved
that the smallest in magnitude eigenvalues of Hk+l form the spectrum of H+

k and
that the relation (2.3) holds. Therefore

ψ(λ) =
1

τ

l∏
j=1

(λ− θk+j)

is a polynomial filter of degree l. We refer to this filter as classical filter. Com-
putation of the vector w+

k in (2.9) simplifies to

w+
k = vk+l+1(u)k = wk+le

T
k+lQ̂ek,

because β = eT
k+1Gl+1ek = 0.

Remark: Even if a Ritz value is complex, the computation described in Algo-
rithm 2.2 can be done in the real arithmetics because eigenvalues of real matrices
are complex conjugate. Two consequent applications of complex conjugate shifts
µ1, µ2 ≡ µ̄1 can be joined into one real step using the fact that the numbers
µ1 + µ2 and µ1 ∗ µ2 are real, see [49].

Application of the shifts µ1, µ2 on a matrix H according to Algorithm 2.2
consists of the steps

H− µ1I = Q1R1, G2 = R1Q1 + µ1I,

G2 − µ2I = Q2R2, G3 = R2Q2 + µ2I.

Moreover,
G3 = QH

2 G2Q2 = QH
2 QH

1 HQ1Q2.

The matrix

M := (H− µ1I)(H− µ2I) = H2 − (µ1 + µ2)H + µ1µ2I (2.10)

is real and satisfies M = (Q1Q2)(R2R1), that is the QR–decomposition of the
real matrix. Thus it is possible to construct the matrix G3 by a product of real
matrices using the following technique. First the matrix M is computed according
to (2.10), then the real QR–decomposition M = ZR is performed and finally it
is set G3 = ZTHZ. Application of complex conjugate shifts on a general matrix
pencil (A− γB) was studied, e.g., in [70].

2.3 Filters based on Tchebychev polynomials

In this section we work out an alternative technique, which idea was mentioned
in [81], for constructing a polynomial filter based on the properties of Tcheby-
chev polynomials. We use some results from [52], [53] and [74]. Proposition 1.5
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suggests that the invariant subspace can be constructed by replacing the starting
vector v1 by a linear combination of approximate eigenvectors corresponding to
the wanted eigenvalues. Thus we try to modify v1 to be, in the ideal case, a linear
combination of the eigenvectors of the matrix A corresponding to the set σW , or
more realistically to be a linear combination of the Ritz vectors corresponding to
the Ritz values nearest to the eigenvalues from σW . The following considerations
hold for the Ritz as well as the harmonic Ritz values. Therefore we work only
with the Ritz values.

For simplicity we assume for a moment that A is diagonalizable. Denote
by u1, . . . , un eigenvectors of A, where ui corresponds to the eigenvalue λi. Let
v1 =

∑n
i=1 αiui. For any polynomial p of degree l it holds that

v+
1 ≡ p(A)v1 =

n∑
i=1

αip(λi)ui =
k∑

i=1

αip(λi)ui +
n∑

i=k+1

αip(λi)ui. (2.11)

If A is defective, the form of p(A) is more complicated and it was described by
T. A. Manteuffel [53], [52]. From (2.11) it follows that the vector v+

1 is a linear
combination of the eigenvectors corresponding to σW if p(λ) = 0 for all λ ∈ σU .
Unfortunately, we do not exactly know the eigenvalues and eigenvectors of the
matrix A, but only their approximations Ritz values θ1, . . . , θk+l and Ritz vectors
y1, . . . , yk+l (eventually the harmonic ones).

Let E be a domain in the complex plane such that

0, θ1, . . . , θk 6∈ E, θk+1, . . . , θk+l ∈ E, (2.12)

and let p be a polynomial having the property maxλ∈E |p(λ)| < ε, where ε is a
“small” positive number. Assuming that σU ⊂ E and σW 6⊂ E, it follows from
(2.11) that the vector v+

1 is “close to” the subspace generated by the vectors
u1, . . . , uk. Assuming, moreover, that |θi−λi| < ε for i = 1, . . . , k it is reasonable
to construct a polynomial p satisfying the condition

p = arg min
p̃∈Pl, p̃(θ1)=1

max
λ∈E

|p̃(λ)|. (2.13)

If the matrix A does not have strongly ill conditioned set of eigenvectors and if
we will be successful in finding a polynomial p satisfying (2.13), then the contri-
butions of the unwanted eigenvalues can be damped in the decomposition (2.11)
of v+

1 .

First we describe the construction of polynomial filter in case that the matrix
Hk+l has only real eigenvalues. Then the general case follows.
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Real case

Let σ(Hk+l) ⊂ R. Denote by Cl(λ) the real Tchebychev polynomial of the
first kind of degree l defined for all λ ∈< −1, 1 >, i.e.

Cl(λ) = cos(l ∗ cos−1(λ)).

It is well known that this polynomial satisfies the condition

Cl = arg min
p∈MPl

max
λ∈<−1,1>

|p(λ)|.

The function f(λ) = 1+2λ−β
β−α

represents the mapping of the interval < α, β > on
< −1, 1 >. Therefore it is easy to see that the transformed and scaled Tchebychev
polynomial

Ĉl(λ) ≡
Cl

(
1 + 2λ−β

β−α

)

Cl

(
1 + 2 θ1−β

β−α

) , (2.14)

satisfies (2.13) with E =< α, β >, see [69]. The polynomial Ĉl(λ) will be taken
for a polynomial filter, if the set E is defined as the smallest interval containing
θk+1, . . . , θk+l such that θ1, . . . , θk 6∈< α, β > . It is easy to construct such interval
if all the numbers θk+1, . . . , θk+l have the same sign. Then

α = min{θk+1, θk+l} and β = max{θk+1, θk+l}.

In the opposite case, two intervals must be constructed – the interval < α1, β1 >⊂
R− for negative and < α2, β2 >⊂ R+ for positive Ritz values, respectively. The
values θk+1, . . . , θk+l are then eliminated from the spectrum in two steps. We
alternately apply the polynomial filter (2.14) for the intervals < α1, β1 > and
< α2, β2 >. This technique will be called alternation of intervals.

The previous considerations lead to the following algorithm which is a special
case of the Algorithm 2.1 for application of the Tchebychev filters in the real
case. Details about realization of the update v1 := ψ(A)v1 in step 4. are given
in Section 2.4.

ALGORITHM 2.3 (Tchebychev filter):
input: v1, k, l, TOL,

max – maximal number of iterations
output: Vk such that ‖wk‖ < TOL

perform k steps of orthogonalization process with A and starting vector v1 (we
obtain (2.3) for i=0)
dir = 1
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for i = 1, . . . , max
1. perform l additional steps of orthogonalization process (we obtain (2.1))
2. compute Ritz (resp. harmonic Ritz) values θ1, . . . , θk+l

3. M1 := M−1 := ∅, l1 := l−1 := 0, dir := −dir
for j = 1, . . . , l

if (θk+i > 0) then M1 := M1 ∪ {θk+i}, l1 := l1 + 1
else M−1 := M−1 ∪ {θk+i}, l−1 := l−1 + 1

end j
if (ldir = 0) then dir := - dir
α := min{θ|θ ∈Mdir}, β := max{θ|θ ∈Mdir}
put ψ(λ) := Ĉldir

(λ)
4. perform k steps of orthogonalization process with A and starting vector

v1 := ψ(A)v1 (we obtain (2.3))
5. if ||wk|| < TOL then STOP

end i

Remark: If the alternation of intervals in R+ and R− is used, it may happen
that a positive or a negative part of the set {θk+1, . . . , θk+l} is damped sooner
then the other part. Then the iterations simply continue only in the remaining
part of the set {θk+1, . . . , θk+l}.

Remark: The intervals does not have to alternate regularly. In each iteration
the interval can be chosen according to some prescribed rules - interval containing
the largest in magnitude Ritz (or harmonic Ritz) value, interval containing more
Ritz (or harmonic Ritz) values or the largest interval, etc.

Complex case

Let σ(Hk+l) ⊂ C. Generally, the Tchebychev polynomials of degree l are
defined for all complex λ by the formula

Cl(λ) = cosh(l ∗ cosh−1(λ)),

where cosh(ζ) = 1
2
(eζ +e−ζ), ζ ∈ C. For more details about the complex Tcheby-

chev polynomials see, e.g., [52], [53], [72], [74]. The set E can be chosen as interior
of an ellipse in C satisfying the condition (2.12). Because eigenvalues of a real
matrix are complex conjugate, the center d of the constructed ellipse lies on the
real axis and the semi-major axis is parallel with the real axis or the imaginary
axis. Let a and e be the lengths of the semi-major axis and the eccentricity of
an ellipse respectively. If the semi-major axis is parallel with the imaginary axis
we define a and e as purely complex numbers. Denote by E(d, a, e) the ellipse
with the above defined parameters and for the set E consider the inner area of
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E(d, a, e) including its boundary. Then it can be proved that the polynomial

Ĉl(λ) ≡ Cl

(
λ−d

e

)

Cl

(
θ1−d

e

) (2.15)

is the near-best polynomial satisfying (2.13), see [74] pp. 144–148, and thus
the polynomial filter in the complex case is also constructed. Similarly to the
real case, (2.15) is transformed and scaled complex Tchebychev polynomial. The
transformation represents the mapping of the ellipse with the center d and the
eccentricity e on the circle with the center in zero and radius equal to 1.

If θk+1, . . . , θk+l do not lie in one complex half-plane, two ellipses are con-
structed - for the Ritz values with a real part in R+ and in R−, respectively.
Then we can alternately apply polynomial filters for these two ellipses analo-
gously as in the real case. Algorithm of this process is similar as Algorithm 2.3,
where only construction of the interval < α, β > is replaced by the construction
of the ellipse and filter (2.14) is replaced by (2.15).

Note that techniques for construction of the minimal ellipse containing pre-
scribed complex numbers in the interior has been widely described in [53], [52]
and can also be found in [74]. The main idea is to find a minimal positive hull
of the prescribed numbers with vertexes in some of them. Using the symmetry
of the hull with respect to the real axis, parameters d, a, e of the optimal ellipse
containing this hull in the interior are computed.

Remark: There are still some open questions about the construction of an op-
timal ellipse satisfying (2.12) in some special cases, e.g., if a Ritz (or harmonic
Ritz) value has a very big imaginary part and a small real part. The problem
arises from combination of two facts. The first is that the minmax property of
polynomial (2.15) is proved only for ellipses with the center on the real axis and
the second is that zero must not lye in the inner area of the ellipse.

Remark: If the eccentricity e is a real number (i.e. the semi-major axis of
the ellipse lies on the real axis) the real Tchebychev polynomial can be used for
construction of the polynomial filter (2.15). Thus the polynomial filter is real
and computation can be simplified.

2.4 Application of polynomial filters

Two methods for constructing a polynomial satisfying (2.13) were discussed in
the previous text. Taking this polynomial as a filter (denoted by ψ) we have to
decide how to apply a filter ψ to update the starting vector v1 of the Arnoldi
factorization. Direct calculation of v+

1 = ψ(A)v1 is very expensive because many
matrix-vector multiplications must be computed. Multiplication of a vector by a
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matrix polynomial can also be performed by a Horner’s scheme, see [41], [69]. But
the most suitable and very cheap opportunity is to use the IRA process described
in Section 2.2 in which the roots of the polynomial ψ are chosen for the shifts.
Let ψ(λ) ∈ Pl and denote by ν1, . . . , νl it’s roots. Then

ψ(A) =
l∏

i=1

(A− νiI)

and (2.7) yields that Algorithm 2.2 with shifts ν1, . . . , νl computes the factor-
ization (2.3) with the starting vector ψ(A)v1. This shows another advantage of
using IRA with shifts compared to the Horner’s scheme - we obtain the updated
Arnoldi factorization of order k implicitly.

Now we will concentrate on application of the polynomial filters presented
in the previous section. Consider the real Tchebychev polynomial filter (2.14).
Denote by ϕi for i = 1, . . . , l the roots of the real Tchebychev polynomial in the
interval < −1, 1 >, i.e.

ϕi = cos

(
π

l

(
i− 1

2

))
.

Using the inverse mapping g(λ) = (λ − 1)β−α
2

+ β of the interval < −1, 1 > on
< α, β >, it is easy to verify that

νi := (ϕi − 1) ∗ β − α

2
+ β, i = 1, . . . , l

are the roots of (2.14) lying in < α, β >. Similarly, in the complex case the
polynomial filter is determined by equation (2.15) and its roots are

νi := ϕi ∗ e + d, i = 1, . . . , l,

where ϕi for i = 1, . . . , l are roots of the Tchebychev polynomial constructed
in the complex case. Note that here the numbers ϕi can be complex, but not
necessary complex conjugate. Thus application of these shifts have to be carried
out in complex arithmetic. This fact complicates the computation.

Remark: If eccentricity e of an ellipse is real, the roots of the real Tchebychev
polynomial can be used for calculation of the roots of the corresponding Tcheby-
chev filter (2.15), see [74]. Thus only real arithmetic is needed for application of
such polynomial filter by the IRA process.
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Chapter 3

Convergence behavior

In Chapter 2 we have described a technique for updating the Arnoldi factoriza-
tion in order to obtain a matrix V whose columns generate an invariant subspace
of A. The core of this method is in updating the starting vector of the Arnoldi
process by a special polynomial - polynomial filter. In this chapter we concen-
trate on convergence behavior of the given algorithms. Putting assumptions on
the polynomial filter, we show that ‖wk‖ converges to zero. Then we prove the
convergence of the updated starting vector to the searched invariant subspace, as-
sessed by the magnitude of the angle between the updated vector and the subspace.
In practice, usually an unreduced and therefore nonderogatory Hessenberg matrix
is obtained. The question arises what happens if the smallest eigenvalue of A
has geometric multiplicity greater than one. Thus, in the last section, we present
some convergence results for derogatory and/or defective matrix A.

3.1 Convergence to invariant subspace

The repeated application of polynomial filters according to (2.2) updates the
matrices Vk,Hk and the residual term wke

T
k in the Arnoldi factorization. Con-

vergence of this process was proved in [81] in case that A is symmetric or the
polynomial filter is fixed, i.e. ψi = ψ ∀ i, see also [49]. The presented analysis
does not apply to adaptive algorithms, but it gives an indication how these might
behave near the final stages of the computation where polynomial filters tend to
become stationary. This motivates us to assume polynomial filters that change
in every iteration but converge to some polynomial.

We consider a general nonsymmetric matrix A and put assumptions only on
polynomial filters. Assumptions of presented theorems are discussed at the end
of this section.
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Let the upper index (j) denote the jth repetition in (2.2), v
(0)
1 := v1. Denote

by µ
(j)
1 , . . . , µ

(j)
l the shifts applied in the jth step of Algorithm 2.2 and let

ψj(λ) :=
1

τj

l∏
m=1

(λ− µ(j)
m ), Ψj(λ) :=

j∏
i=1

τiψi(λ).

Then

v
(j)
1 = ψj(A)v

(j−1)
1 =

j∏
i=1

1

τi

Ψj(A)v1,

where the numbers τi > 0 are chosen so that ‖v(i)
1 ‖ = 1 for i = 1, 2, . . .

In this section we assume:

Assumption 1: Let ε > 0 and complex numbers µ1, . . . , µl exist such that

{µ1, . . . , µl} ∩ ∪n
i=1Uε(λi) = ∅, (3.1)

∞∑
j=1

|µm − µ(j)
m | < ∞, m = 1, . . . , l, (3.2)

where {µ(j)
m }∞j=1 for m = 1, . . . , l are sequences of shifts. If µm1 ∈ C then there

exists an index m2 ∈ {1, . . . , l} such that µm1 = µ̄m2 and µ
(j)
m1 = µ̄

(j)
m2 ∀j. 2

Note that the last condition yields that the vectors v
(j)
1 are real.

Assumption 2: Let the polynomial ψ(λ) =
∏l

i=1(λ− µi) satisfy the condition

M1 := min
i=1,..,k

|ψ(λi)| > max
i=k+1,..,n

|ψ(λi)| =: M2 (3.3)

and denote by δ := M1 −M2 and γ := M2+δ/3
M1−δ/3

< 1. 2

Let the columns of the matrix X1 ∈ Cn×k, XH
1 X1 = I span the eigenspace of

the matrix A corresponding to σW . Denote by X1 = span{X1}. The space X1 is
simple due to σU ∩ σW = ∅ (see [82] pp. 219–225). Hence a decomposition

A[X1,X2] = [X1,X2]

[
L1 0
0 L2

]
(3.4)

exists such that σ(L1) = σW and σ(L2) = σU . Apparently, for any polynomial p
the equality

p(A)[X1,X2] = [X1p(L1),X2p(L2)] (3.5)

holds. The columns of the matrix [X1,X2] form a basis in Cn. Thus there exist
vectors t1 ∈ Ck, t2 ∈ Cn−k such that v1 = X1t1 +X2t2. From (3.5) it follows that

j∏
i=1

τi v
(j)
1 = Ψj(A)v1 = X1Ψj(L1)t1 + X2Ψj(L2)t2. (3.6)
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Assumption 3: Let v1 6∈ X2 := span{X2}. 2

The following two lemmas will be used to proof the convergence theorems.

Lemma 3.1: There exist a positive number q < 1 and a constant C > 0 such
that

‖Ψj(L2)‖ ≤ C qj(M1 − δ/3)j. (3.7)

Proof. Since τjψj converges to ψ as j →∞, there exists j0 ∈ N+ such that for
each j > j0 the inequalities

min
i=1,..,k

|τjψj(λi)| > M1 − δ

3
> M2 +

δ

3
> max

i=k+1,..,n
|τjψj(λi)| (3.8)

hold. According to Assumption 3 the vector v
(j0)
1 6∈ X2. Therefore, without any

loss of generality, we assume j0 = 0. According to (3.1), ψ(L2) is nonsingular
and for each i we have

τiψi(L2) =
l∏

m=1

(L2 − µ(i)
m I) =

l∏
m=1

(L2 − µmI) [I + (µm − µ(i)
m )(L2 − µmI)−1]

= ψ(L2)
l∏

m=1

[I + (µm − µ(i)
m )(L2 − µmI)−1].

Using this fact we obtain

‖Ψj(L2)‖
(M1 − δ/3)j

=
∥∥∥

j∏
i=1

τiψi(L2)

M1 − δ/3

∥∥∥ ≤

≤
∥∥∥

(
ψ(L2)

M1 − δ/3

)j ∥∥∥
l∏

m=1

j∏
i=1

‖I + (µm − µ(i)
m )(L2 − µmI)−1‖.

It follows from the assumption (3.2) that for each m = 1, . . . , l there exists a
constant cm > 0 independent from j such that

j∏
i=1

‖I + (µm − µ(i)
m )(L2 − µmI)−1‖ ≤

j∏
i=1

(
1 + |µm − µ(i)

m |‖(L2 − µmI)−1‖ ) ≤ cm.

Therefore
‖Ψj(L2)‖

(M1 − δ/3)j
≤ C1

∥∥∥
(

ψ(L2)

M1 − δ/3

)j ∥∥∥,

where C1 :=
∏l

m=1 cm. The matrix L2 has the eigenvalues λk+1, . . . , λn and from

(3.3) and (3.8) it follows that the spectral radius ρ
(

ψ(L2)
M1−δ/3

)
< γ. Choose ϑ > 0
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such that q := γ + ϑ < 1. There exists a multiplicative matrix norm ‖.‖∗ such

that ‖ ψ(L2)
M1−δ/3

‖∗ < γ + ϑ = q. The equivalence of both matrix norms implies the
existence of a constant C > 0 such that

‖Ψj(L2)‖
(M1 − δ/3)j

≤ C1

∥∥∥
(

ψ(L2)

M1 − δ/3

)j ∥∥∥ ≤ C
∥∥∥

(
ψ(L2)

M1 − δ/3

)j ∥∥∥
∗

≤ C
∥∥∥ ψ(L2)

M1 − δ/3

∥∥∥
j

∗
≤ C qj.

Multiplying the last inequality by (M1 − δ/3)j yields (3.7). 2

Lemma 3.2: The inequality

‖Ψj(L1)‖ > (M1 − δ/3)j

holds.

Proof. It follows from (3.8) that |Ψj(λi)| > (M1 − δ/3)j ∀ i = 1, . . . , k. Hence

‖Ψj(L1)‖ ≥ ρ(Ψj(L1)) = max
i=1,..,k

|Ψj(λi)| > (M1 − δ/3)j.

2

Assumption 4: Let

lim
j→∞

sup
‖Ψj(L1)‖
‖Ψj(A)v1‖ < ∞. (3.9)

2

Now we have prepared everything for proofs of fundamental convergence theo-
rems.

Theorem 3.3: Let Assumption 1-4 be valid. Then

lim
j→∞

sin ∠(v
(j)
1 ,X1) = 0. (3.10)

Proof. By Lemma 3.1 and 3.2 we obtain the relation

‖Ψj(L2)‖
‖Ψj(L1)‖ < C

(M1 − δ/3)jqj

(M1 − δ/3)j
= C qj j→∞→ 0. (3.11)

It follows from (3.6) that

v
(j)
1 =

1∏j
i=1 τi

(X1Ψj(L1)t1 + X2Ψj(L2)t2)

=
‖Ψj(L1)‖∏j

i=1 τi

[
X1

Ψj(L1)

‖Ψj(L1)‖t1 + X2
Ψj(L2)

‖Ψj(L1)‖t2

]
. (3.12)
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For the second term in (3.12) we have from (3.11)

∥∥∥X2
Ψj(L2)

‖Ψj(L1)‖t2

∥∥∥ ≤ C‖X2‖ ‖t2‖ qj. (3.13)

From Assumption 4 it follows that a positive number D exists such that

‖Ψj(L1)‖∏j
i=1 τi

< D ∀j. (3.14)

Hence we obtain from (3.12) and (3.13)

‖v(j)
1 −X1dj‖ ≤ CD‖X2‖ ‖t2‖ qj, (3.15)

where

dj :=
‖Ψj(L1)‖∏j

i=1 τi

Ψj(L1)t1
‖Ψj(L1)‖ =

Ψj(L1)t1∏j
i=1 τi

.

Let PX1 be the orthogonal projection on X1. From inequality (3.15) we obtain

‖(I− PX1)v
(j)
1 ‖ ≤ ‖v(j)

1 −X1dj‖ ≤ CD ‖X2‖ ‖t2‖ qj j→∞−→ 0.

The last inequality yields the assertion of the theorem due to the fact that
‖(I− PX1)v

(j)
1 ‖ = sin ∠(v

(j)
1 ,X1). 2

Remark: Let us mention that the projection PX1 = X1(X
H
1 X1)

−1XH
1 = X1X

H
1

is represented by a real matrix and hence (I − PX1)v
(j)
1 is a real vector. This

statement can be easily proved using the fact that if the real matrix A has an
eigenvector or principal vector with complex components belonging to X1, then
the vector with complex conjugate components is also an eigenvector or principal
vector of A corresponding to a wanted eigenvalue and thus it belongs also to X1.

Theorem 3.4: Let Assumption 1-4 be valid. Let a positive number ω exist such
that, in (2.3), eT

i+1H
(j)
k ei = h

(j)
i+1,i > ω for i = 1, . . . , k − 1 and for all j. Then

lim
j→∞

‖w(j)
k ‖ = 0. (3.16)

Proof. According to Assumption 3 the vector t1 6= 0. Define t
(j)
1 := Ψj(L1)t1,

t
(j)
2 := Ψj(L2)t2. Combining (1.24) with (1.28) yields the well known formula

πj := Πk
i=1h

(j)
i+1,i = min

p∈MPk

‖p(A)v
(j)
1 ‖.

In the following, we prove the convergence of πj to zero and this fact will imme-
diately give the statement of the theorem.
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For the characteristic polynomial p̂k(λ) of the matrix L1, we obtain from (3.6)

πj‖Ψj(A)v1‖ ≤ ‖p̂k(A)

j∏
i=1

τi v
(j)
1 ‖ = ‖p̂k(A)(X1t

(j)
1 + X2t

(j)
2 )‖ =

= ‖p̂k(A)X2t
(j)
2 ‖, (3.17)

because p̂k(A)X1 = X1p̂k(L1) = 0 and ‖Ψj(A)v1‖ =
∏j

i=1 τi. Dividing both sides
of (3.17) by (M1 − δ/3)j yields

πj
‖Ψj(A)v1‖
(M1 − δ/3)j

≤ ‖p̂k(A)X2t
(j)
2 ‖

(M1 − δ/3)j
≤ ‖p̂k(A)X2‖ ‖t2‖ ‖Ψj(L2)‖

(M1 − δ/3)j
.

According to Lemma 3.1 a positive constant C2 exists such that

πj
‖Ψj(A)v1‖
(M1 − δ/3)j

≤ C2 qj, (3.18)

where C2 := C‖p̄k(A)X2‖‖t2‖. Moreover,

‖Ψj(A)v1‖
(M1 − δ/3)j

=
‖X1Ψj(L1)t1 + X2Ψj(L2)t2‖

(M1 − δ/3)j
≥ ‖X1Ψj(L1)t1‖

(M1 − δ/3)j
− ‖X2Ψj(L2)t2‖

(M1 − δ/3)j
.

The matrix X1 has orthonormal columns and therefore we can remove X1 on
the right-hand side of the last inequality. Define Bj := Ψj(L1)/(M1 − δ/3)j.
It follows from (3.8) that all eigenvalues of Bj are greater than 1. Therefore
ρ(B−1

j ) < 1 and choosing ζ > 0 such that ρ(B−1
j ) + ζ < 1, there exists a multi-

plicative matrix norm ‖.‖+ and a constant C3 > 0 such that

‖B−1
j ‖ ≤ C3‖B−1

j ‖+ < C3(ρ(B−1
j ) + ζ) < C3.

Because t1 6= 0

∥∥∥ Ψj(L1)t1
(M1 − δ/3)j

∥∥∥ = ‖Bjt1‖ ≥ ‖t1‖ 1

‖B−1
j ‖ > C4,

where C4 := (1/C3)‖t1‖. Using the fact that q < 1 there exists j1 ∈ N+ such that

(‖X2‖ ‖t2‖C)qj ≤ C4/2

for all j > j1. According to Lemma 3.1 we have
‖X2Ψj(L2)t2‖

(M1−δ/3)j ≤ C4/2 and thus

‖Ψj(A)v1‖
(M1 − δ/3)j

≥ C4 − C4/2 = C4/2

for all j > j1. From (3.18) we obtain

πj ≤ C5 qj, (3.19)
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where C5 := 2C2/C4. We have defined πj = ‖w(j)
k ‖Πk−1

i=1 h
(j)
i+1,i. According to the

assumptions of the theorem the inequality πj > ωk−1‖w(j)
k ‖ holds. Combining

this result with (3.19) yields

‖w(j)
k ‖ <

C5

ωk−1
qj

and hence (3.16) immediately follows. 2

According to the above formulated assumption h
(j)
i+1,i > ω for i = 1, . . . , k− 1

and for all j, the matrices H
(j)
k are unreduced and dim Kk(A, v

(j)
1 ) = k for all

j. Theorem 3.3 states that v
(j)
1 lies arbitrary near to the space X1, which is the

eigenspace of the matrix A corresponding to the k smallest eigenvalues and there-
fore an invariant subspace of A. Consequently, the vectors Aqv

(j)
1 for q = 1, 2, . . .

lie approximately in the space X1. Using the fact that X1 and Kk(A, v
(j)
1 ) have

the same dimension k and Kk(A, v
(j)
1 ) = span{v(j)

1 ,Av
(j)
1 , . . . ,Ak−1v

(j)
1 } (if the

set σW contains at least one complex eigenvalue, the span is considered over Cn),

we can see that the space Kk(A, v
(j)
1 ) is near to the searched eigenspace X1. The

columns of the matrix V
(j)
k span the Krylov subspace Kk(A, v

(j)
1 ) and hence ap-

proximate the basis of the invariant subspace of A corresponding to the smallest
in magnitude eigenvalues. The situation when a matrix H

(j)
k for some j is not

unreduced, i.e. the assumption h
(j)
i+1,i > ω for i = 1, . . . , k − 1 is not fulfilled, is

discussed in Section 3.2.

Discussion on assumptions

Now we concentrate on polynomial filters described in Chapter 2, i.e. the
classical filter (see Section 2.2) and the Tchebychev filter (see Section 2.3), and
discuss verification of Assumptions 1-4 for these filters.

In Assumption 1, we have assumed that ε > 0 exists such that

{µ1, . . . , µl} ∩ ∪n
i=1Uε(λi) = ∅.

Obviously, this condition is fulfilled for σW . The polynomials ψj are constructed
such that a set of k + l (harmonic) Ritz values is computed, the k smallest
in magnitude values (hopefully approximating some small eigenvalues of A) are

separated, and the remaining l values are used for construction of the roots µ
(j)
i of

the polynomial ψj. Therefore µi 6= λj for j = 1, . . . , k and i = 1, . . . , l is expected
to be true. Fulfillment of this condition for j = k +1, .., n is not so clear. In fact,
we assume that the roots of constructed polynomials are uncorrelated with the
eigenvalues of A. If ψj is the classical filter, its roots are the largest (harmonic)
Ritz values and these values can sometimes converge to some eigenvalues from
σU . On the other hand, this assumption is usually fulfilled for the Tchebychev
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filter and this can be observed on many numerical examples. We document it on
Example 1 in Chapter 4. Further, we think that it will be possible to remove this
assumption (used to prove Lemma 3.1) in the future.

In Assumption 2, we have assumed that

min
i=1,..,k

|ψ(λi)| > max
i=k+1,..,n

|ψ(λi)|.

It follows directly from the construction of filters, that this condition is satisfied
for the classical filter, and for the Tchebychev filter in case that alternation of
intervals is not used. If the alternation is used, the minimality of Tchebychev
filter is ensured only on large (harmonic) Ritz values in R+ or R−, respectively.
Thus Assumption 2 is satisfied alternately for eigenvalues of A in R+ or R− during
the iteration process. Nevertheless, this fact does not usually induce problems
with convergence in practice.

Assumption 3 is very natural and requires that the first starting vector v1 has
a nonzero component in eigenspace corresponding to σW .

Assumption 4 is expected to be fulfilled, because the polynomial Ψj is con-
structed such that it damps the components of v1 corresponding to σU , i.e. the
updated vector Ψj(A)v1 has large components in eigenspaces corresponding to
σW = σ(L1). Numerical experiments also support this statement.

Remark: If the matrix A is strongly nonnormal problems with convergence
of Algorithm 2.2 may appear. In this case the (harmonic) Ritz values do not
have to approximate the eigenvalues of A, actually they can lie far from the
spectrum of the matrix A. Moreover, even if the process converges in the sense
of Theorem 3.4, the resulting matrix Vk sometimes does not have to span the
desired invariant subspace, see the discussion in Section 1.5.

3.2 Generalization for derogatory matrices

Now we introduce some terminology, that will be used in this section.

Definition 3.1: Let λ be an eigenvalue of a matrix A. Then

• λ has algebraic multiplicity p, if it is a root of multiplicity p of the charac-
teristic polynomial of A.

• λ has geometric multiplicity p, if the maximal number of independent eigen-
vectors associated with it is equal to p.

The eigenvalue λ is called

• simple, if it has algebraic multiplicity one. Otherwise it is called multiple.

• semisimple, if its algebraic multiplicity is equal to its geometric multiplicity.
Otherwise it is called defective.
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Definition 3.2: A matrix A is called

• derogatory, if geometric multiplicity of at least one of its eigenvalues is
larger than one.

• defective, if at least one of its eigenvalues is defective.

We return to the assumption h
(j)
i+1,i > ω for i = 1, . . . , k − 1 and for all j

of Theorem 3.4. It can be proved, see [49], that if H
(j)
k is unreduced then it

is nonderogatory, i.e. geometric multiplicity of each of its eigenvalues is equal
to one. The question arises what happens if the geometric multiplicity of some
wanted eigenvalue of A is greater than one and we want to construct the whole
invariant subspace corresponding to this eigenvalue. We ask, how the sequences
h

(j)
2,1, h

(j)
3,2,. . . , h

(j)
k+1,k for j = 1, 2, ... behave in this case. In the following part, we

prove that when the Jordan canonical form of A has s > 1 blocks corresponding
to λ1 with maximal dimension d < k, then an integer j exists such that the
vectors v

(j)
1 ,Av

(j)
1 , . . . ,Adv

(j)
1 are almost linearly dependent. Hence the matrix

H
(j)
k is not unreduced and the Arnoldi or Householder process stops after at most

(d + 1) steps. The exact formulation is contained in Theorem 3.8 and 3.9. Note
that the presented results can be reformulated for any small multiple eigenvalue.
We consider the multiplicity of λ1 to simplify the explanation only.

It is easy to estimate from (3.13)

∥∥∥X1
Ψj(L1)

‖Ψj(L1)‖ t1 + X2
Ψj(L2)

‖Ψj(L1)‖ t2

∥∥∥ ≤ ‖X1‖ ‖t1‖ + C ‖X2‖ ‖t2‖ qj. (3.20)

Denote by α the term on the right hand side of the previous inequality. Using
(3.12) we obtain 1/α ≤ ‖Ψj(L1)‖/(

∏j
i=1 τi). Combining this with (3.14) immedi-

ately yields

lim
j→∞

inf
‖Ψj(L1)‖∏j

i=1 τi

> 0, lim
j→∞

sup
‖Ψj(L1)‖∏j

i=1 τi

< ∞. (3.21)

Moreover, from(3.12) and (3.13) we have

v
(j)
1 = X1

Ψj(L1)∏j
i=1 τi

t1 + O(qj), (3.22)

where the last term denotes a vector with all components O(qj).
To analyze the behavior of polynomial filters in this special case, the matrix

L1 must be transformed to the Jordan form, i.e. J1 := Z−1L1Z. From (3.4) we
have

AZ1 = Z1J1 and Ψj(A)Z1 = Z1Ψj(J1), (3.23)
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where Z1 := X1Z. The columns of Z1 are eigenvectors and principle vectors of A
corresponding to the wanted eigenvalues. Apparently, the inequalities (3.21) are
valid if we substitute J1 instead of L1. From (3.22) we obtain

v
(j)
1 = Z1

Ψj(J1)∏j
i=1 τi

z1 + O(qj), where z1 := Z−1t1. (3.24)

As will be seen later, we need to substitute ψ(J1)
j instead of Ψj(J1) in (3.24).

For that reason we formulate some auxiliary assertions. According to the defini-
tion

Ψj(λ)∏j
i=1 τi

=

j∏
i=1

1

τi

(τiψi(λ)).

In analogy with the proof of Lemma 3.1 we write

τiψi(J1) =
l∏

m=1

(J1 − µ(i)
m I) = ψ(J1)

l∏
m=1

[I + (µm − µ(i)
m )(J1 − µmI)−1]. (3.25)

Define A
(i)
m := (µm − µ

(i)
m )(J1 − µmI)−1 and α

(i)
m := ‖A(i)

m ‖. It follows from

Assumption 1 that limj→∞
∑∞

i=j α
(i)
m = 0 for m = 1, . . . , l and if we define the

sequences {ζ(m)
j }∞j=1 by the relation ζ

(m)
j := e

P∞
i=j α

(i)
m − 1 then

lim
j→∞

ζ
(m)
j = 0 for m = 1, . . . , l. (3.26)

Now we seek to determine Ψj(J1)/
∏j

i=1 τi. According to the relation (3.2) an

integer j1 exists such that α
(i)
m ≤ 1/2 for all m ∈ {1, . . . , l} and for all i ≥ j1. In

the sequel let j1 be fixed. Let j1 ≤ s < j. From (3.25) it follows that

Ψj(J1)∏j
i=1 τi

= (

j∏
i=1

τi)
−1 ψ(J1)

j

l∏
m=1

j∏
i=1

(I + A(i)
m )

= (

j∏
i=1

τi)
−1 ψ(J1)

j Gs (I + Fj,s), (3.27)

where Gs :=
∏l

m=1

∏s
i=1(I + A

(i)
m ) and I + Fj,s :=

∏l
m=1

∏j
i=s+1(I + A

(i)
m ).

In the following we show that the norms of the matrices Gs are uniformly
bounded and the norm of Fj,s converges to zero. This auxiliary assertions will be
used to prove theorems about derogatory and/or defective matrices.

Lemma 3.5: Let s ≥ j1 be an arbitrary integer. Then

GsJ1 = J1Gs (3.28)
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and the norms ‖Gj‖ for j ∈ {j1, j1+1, . . .} are uniformly bounded, i.e. a constant
K exists such that

‖Gj‖ ≤ K ∀j ≥ j1. (3.29)

Proof. The matrix Gs can be expressed in the form

Gs =
l∏

m=1

ps,m((J1 − µmI)−1),

where ps,m are polynomials of degree s such that ps,m(0) = 1. This immediately
yields (3.28). The integer j1 is fixed and therefore a constant K1 exists such that
‖Gj1‖ ≤ K1. Hence

‖Gj‖ ≤ ‖Gj1‖
l∏

m=1

∥∥∥∥∥
j∏

i=j1+1

(I + A(i)
m )

∥∥∥∥∥ .

But for the last norm we have
∥∥∥∥∥

j∏
i=j1+1

(I + A(i)
m )

∥∥∥∥∥ ≤
j∏

i=j1+1

(1 + α(i)
m ) = e

Pj
i=j1+1 ln(1+α

(i)
m ) ≤ e

P∞
i=j1+1 α

(i)
m =: K

(m)
2 .

In the last inequality we have used the relation ln(1 + x) ≤ x for x ∈< 0, 1
2

>. If
we joint all previous estimates we obtain

‖Gj‖ ≤ K1

l∏
m=1

K
(m)
2 =: K. (3.30)

2

Lemma 3.6: Each matrix Fj,s commutes with J1 and

lim
s→∞,
j>s

‖Fj,s‖ = 0.

Proof. Let us rewrite Fj,s as a multi-polynomial function of the matrices A
(i)
m for

m = 1, . . . , l and i = s, s + 1, . . ., i.e. Fj,s = qs+1,j(A
(i)
m ). For the norm we have

the estimate

‖Fj,s‖ ≤ 1 + qs+1,j(α
(i)
m )− 1 ≤

l∏
m=1

j∏
i=s

(1 + α(i)
m )− 1

≤
l∏

m=1

(e
P∞

i=s α
(i)
m )− 1 =

l∏
m=1

(1 + ζ(m)
s )− 1 =: ηs

and lims→∞ ηs = 0 according to (3.26). 2
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Lemma 3.7: Let Assumption 1-4 be valid. Then the inequalities (3.21) are valid
if we substitute ψ(J1)

j instead of Ψj(L1).

Proof. The lemma immediately follows from (3.21) and previous assertions. 2

According to previous lemmas we can now easy express the vector v
(j)
1 from (3.24)

by using the limit polynomial ψ instead of the polynomial Ψj.

Theorem 3.8: Let Assumption 1-4 be valid. Then sequences of vectors {v̂(j)}∞j=1

and {t(j)}∞j=1 and a positive constant R exist such that

v
(j)
1 = Z1

ψ(J1)
j

∏j
i=1 τi

t(j) + v̂(j) (3.31)

holds, where ‖t(j)‖ ≤ R ∀j and limj→∞ ‖v̂(j)‖ = 0.

Proof. Let ξ be an arbitrary positive number. From (3.24), (3.27) and Lemma
3.5 we have

v
(j)
1 = Z1

ψ(J1)
j

∏j
i=1 τi

Gs(I + Fj,s)z1 + O(qj)

= Z1
ψ(J1)

j

∏j
i=1 τi

Gsz1 +
(
Z1

ψ(J1)
j

∏j
i=1 τi

Fj,sGsz1 + O(qj)
)
.

Using the previous lemmas an index s(ξ) exists such that ‖v̂(j)(ξ)‖ ≤ ξ ∀j ≥ s(ξ),
where

v̂(j)(ξ) := Z1
ψ(J1)

j

∏j
i=1 τi

Fj,s(ξ) Gs(ξ)z1 + O(qj). (3.32)

For t(ξ) := Gs(ξ)z1 it is ‖t(ξ)‖ ≤ K‖z1‖ =: R according to (3.30). Hence for each
ξ > 0 an integer s(ξ), a vector t(ξ) and a sequence of vectors {v̂(j)(ξ)}∞j=s(ξ) exist
such that

v
(j)
1 = Z1

ψ(J1)
j

∏j
i=1 τi

t(ξ) + v̂(j)(ξ) (3.33)

for all j ≥ s(ξ), where ‖t(ξ)‖ ≤ R and ‖v̂(j)(ξ)‖ ≤ ξ for all j ≥ s(ξ). Let {ξi}∞i=1 be
a decreasing sequence of positive numbers such that limi→∞ ξi = 0 and construct
the increasing sequence of corresponding indexes {s(ξi)}∞i=1. Define

t(j) := t(ξi), v̂(j) := v̂(j)(ξi) for j ∈< s(ξi), s(ξi+1)− 1 > .

For j < s(ξ1) put t(j) := t(ξ1) and define v̂(j) such that the equality (3.31) is

fulfilled. Then the vector v
(j)
1 has the form (3.31). 2
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To simplify the following explanation, consider for a moment a special form
of the Jordan matrix J1 := diag(J

(1)
1 ,J

(2)
1 ,J

(3)
1 ), where

J
(1)
1 =




λ1 1 0
0 λ1 1
0 0 λ1


 , J

(2)
1 =

(
λ1 1
0 λ1

)
, J

(3)
1 =

(
λ2 1
0 λ2

)
.

The general case can then be formulated immediately.
It is easy to calculate that

ψ(J1)
j = ψ(λ1)

j diag(B
(1)
j ,B

(2)
j ,B

(3)
j ),

where

B
(1)
j :=




1,
(ψ(λ)j)

′
λ=λ1

ψ(λ1)j ,
(ψ(λ)j)

′′
λ=λ1

2! ψ(λ1)j

1,
(ψ(λ)j)

′
λ=λ1

ψ(λ1)j

1


 , B

(3)
j :=


 (ψ(λ2)

ψ(λ1)
)j,

(ψ(λ)j)
′
λ=λ2

ψ(λ1)j

(ψ(λ2)
ψ(λ1)

)j




and B
(2)
j is the leading 2×2 submatrix of B

(1)
j . Let Z1 = (z

(1)
1 , . . . , z

(7)
1 ); for ξ > 0

let t(ξ) = (t1(ξ), . . . , t7(ξ))
T and v̂(j)(ξ) be the vectors defined in (3.33). With

this notation we have

Z1
ψ(J1)

j

∏j
i=1 τi

t(ξ) =
ψ(λ1)

j

∏j
i=1 τi

7∑
r=1

αr(j, ξ)z
(r)
1 ,

where 


α1(j, ξ)
...

α7(j, ξ)


 = diag(B

(1)
j ,B

(2)
j ,B

(3)
j )




t1(ξ)
...

t7(ξ)


 .

Assumption 5: Let |ψ(λ1)| > |ψ(λj)| for j ∈ {2, . . . , k}. 2

From Assumption 5 (that reduces to |ψ(λ1)| > |ψ(λ2)| in our special case), it
follows that

lim
j→∞

B
(3)
j = 0. (3.34)

Let ε > 0 be arbitrary and choose ξ > 0 and j ≥ s(ξ) such that

ξ + L ‖B(3)
j ‖K ‖z1‖ < ε,

where L := limj→∞ sup ‖ψ(J1)j‖Qj
i=1 τi

and K is defined by (3.30). Such j exists due

to (3.34). The vectors z
(1)
1 , z

(2)
1 , z

(3)
1 and z

(4)
1 , z

(5)
1 form an invariant subspace

respectively. Hence putting αr := αr(j, ξ) (j and ξ are now fixed) and

c1 :=
ψ(λ1)

j

∏j
i=1 τi

3∑
r=1

αrz
(r)
1 , c2 :=

ψ(λ1)
j

∏j
i=1 τi

5∑
r=4

αrz
(r)
1 ,
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v̂j := v̂(j)(ξ) +
ψ(λ1)

j

∏j
i=1 τi

7∑
r=6

αrz
(r)
1 ,

where v̂(j)(ξ) is defined by (3.32), we have that v
(j)
1 = c1 + c2 + v̂j with ‖v̂j‖ < ε.

From the last considerations we conclude that for every ε > 0 an integer j > 0
and vector v̂j exist such that ‖v̂j‖ < ε and the vectors

(v
(j)
1 − v̂j), A(v

(j)
1 − v̂j), A2(v

(j)
1 − v̂j), A3(v

(j)
1 − v̂j)

are linearly dependent. From the above presented analysis the following general
theorem can be formulated.

Theorem 3.10: Let Assumption 1-5 be valid. Let the Jordan canonical form
of the matrix A have s > 1 blocks corresponding to the eigenvalue λ1 with the
maximal dimension d < k. Then for every ε > 0 a positive integer j and a vector
v̂j exist such that ‖v̂j‖ < ε and the vectors

(v
(j)
1 − v̂j), A(v

(j)
1 − v̂j), . . . , Ad(v

(j)
1 − v̂j)

are linearly dependent.

Theorem 3.10 implies that the implicitly restarted Arnoldi process with shifts
yields after j steps the Hessenberg matrix with the element h

(j)
i+1,i ≈ 0 for some

i ∈ {1, 2, . . . , d}. Hence the iterative process described in Algorithm 2.1 cannot
construct an approximation to the whole eigenspace corresponding to a multiple
eigenvalue (to which corresponds more than one Jordan block), but it constructs
an approximation to an eigenspace of the dimension less or equal to d. Therefore
it is important to replace the condition in step 5 . of Algorithm 2.1

5. if ‖wk‖ < TOL then STOP (3.35)

by a more general condition

5. if ‖wj‖ < TOL for some j ∈ {1, 2, . . . , k} then STOP (3.36)

and one must be careful about the dimension of the constructed space. Let us
remind that ‖wj‖ for j = 1, . . . , k − 1 need not be computed explicitly because
‖wj‖ = eT

j+1Hkej.
We remark, moreover, that in numerical experiments the Arnoldi process

starting with v
(j)
1 breaks down usually in the dth step. The above presented results

do not imply a problem in computations with a derogatory and/or defective
matrix A, because preconditioning techniques presented in Section 1.4 remove
small eigenvalues from the spectrum iteratively. Therefore a multiple eigenvalue
is removed successively starting usually from the largest to the smallest Jordan
block. The above statements are documented on Examples 2 in Chapter 4.
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Chapter 4

Numerical experiments

In this chapter, we present numerical experiments to illustrate the behavior
of the methods for computation of invariant subspaces described in Chapter 2.
First we compare the widely used implicitly restarted Arnoldi process with shifts
being the Ritz or the harmonic Ritz values, and the method using Tchebychev
filters. Then we concentrate on comparison of the restarted GMRES method with
its preconditioned versions described in Chapter 1. We exemplify that these pre-
conditioners can accelerate the convergence of the GMRES method.

4.1 Description

In this chapter, we present numerical experiments comparing the method de-
scribed in Section 2.2 (classical method) and the method based on Tchebychev
polynomials described in Section 2.3 (Tchebychev method). Tchebychev filter
is applied by IRA with shifts as it was described in Section 2.4. We compare
the number of iterations needed to compute a good approximation to k smallest
eigenvalues and the corresponding invariant subspace of a given matrix A for
different choices of k and l. Arnoldi factorization is constructed by the modified
Arnoldi process, see Algorithm 1.1. It is well known that the Householder pro-
cess, see Algorithm 1.2, retains orthogonality of the computed matrix Vk better,
but it is more time consuming. The effect of using the Householder process is
documented on Example 1.

Further, in the last part of this chapter we exemplify that preconditioners
based on invariant subspaces described in Section 1.4 can remove stagnation of
the GMRES method and accelerate the convergence. Tables and graphs compar-
ing the number of iterations and computation time are given. As it was mentioned
in the previous, Ritz or harmonic Ritz values can be used in both the classical
and the Tchebychev method. It can be observed that usage of harmonic Ritz
values gives better results for larger k and l. This effect is also demonstrated on
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numerical examples in the last part of this chapter.

Numerical experiments were carried out on AMD Duron, 700 MHz/128 MB
RAM computer. Example 6 was, by reason of its larger dimension, carried out
on AMD Opteron 246, 2 GHz/2 GB RAM computer. We use the initial ap-
proximation x0 = (0, . . . , 0)T and the right hand side b = (1, 1, . . . , 1)T . Denote
by

err = log10(||rs||/||r0||),
where rs is the residual after s iterations of the GMRES(m) method, s = j ∗m,
j is the number of restarts, and r0 = b − Ax0. We stopped the GMRES(m)
process as soon as err < −10. Computation time is measured in seconds. If
the invariant subspace is computed, one iteration of the classical method and
the Tchebychev method for the same k, l and orthogonalization process takes
the same time. Therefore we compare the number of iterations while computing
invariant subspaces.

4.2 Computation of invariant subspace

In this section, we concentrate on computation of invariant subspaces. Presented
experiments are theoretical and complete the convergence results from the pre-
vious chapter.

In the first example, we verify the assumptions of Theorems 3.3 and 3.4 and
demonstrate the relation between the number of iterations in which condition
(3.8) is satisfied and the convergence of the process. Moreover, the difference
between using the modified Arnoldi process (ARN) and the Householder process
(HHA) is analyzed.

To understand the complicated behavior of discussed preconditioners of the
GMRES method, one needs first to understand the relevant simple cases. Con-
vergence of GMRES for special matrices - (perturbed) Jordan blocks and Toeplitz
matrices, is widely studied, e.g., in [45], [51], [85]. Thus Example 2 and 3 present
results for special forms of the matrix A. In Example 2 a block diagonal matrix
with Jordan blocks on the diagonal is considered and the behavior of Algorithm
2.2 is studied. The matrix is derogatory and the statements of Theorem 3.10 are
confirmed. Example 3 demonstrates the typical behavior of Algorithm 2.2 on the
bidiagonal matrix. The lost of orthogonality between the columns of the matrix
Vk in connection with convergence of subdiagonal elements of the matrix Hk to
zero is analyzed.

Example 1: Consider the matrix A ∈ R100×100, where A = SDS−1, D =
diag(1, 2, .., 100) and S is bidiagonal matrix with 1 on the diagonal and 1.1 on
the superdiagonal. This test matrix is taken from [21] and it is highly nonnormal
with the Henrici number ‖AAT −ATA‖F /‖A‖F

.
= 102 080.
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method iteration ‖wk‖ Ass. 2 Ass. 1
classical filter 15 10−2 1.-4. iter. NO

Tchebychev + ARN 35 10−3 1.-4. iter. NO
Tchebychev + HHA 38 10−6 1.-42. iter. YES

Table 4.1: Convergence of the classical method and the method using Tchebychev
polynomials for k = 5, l = 5 for Example 1.

In this example, our attention is concentrated on verification of the assump-
tions of the fundamental Theorem 3.3 and Theorem 3.4. Then the behavior of
Algorithm 2.2 is observed, in case that the Arnoldi factorization is computed
by ARN and HHA, respectively. We set k := 5, l := 5, i.e. an invariant sub-
space of dimension 5 is computed using the Arnoldi factorization (2.1) of order
k + l = 10. The second column of Table 4.1 reflects the number of iterations in
which the smallest ‖wk‖ was reached and the third column contains the smallest
‖wk‖. The fulfillment of the Assumptions 1 and 2 is displayed in the last two
columns. The results in the first two lines of Table 4.1 are not quite as satisfying
as we may expect. This is probably due to the fact that A is highly nonnormal.
The HHA process, on the other hand, does not suffer from this. Figure 4.1 shows
the progress of the shifts in the last five iterations for the process using HHA.
Bold numbers represent the nearest eigenvalue of A. The graph demonstrates
that the part (3.1) of Assumption 1 is fulfilled, even though the shift µ3 is very
close to eigenvalue 53.

Figure 4.1: Shifts obtained by using the Tchebychev filter in the last five iterations
for Example 1.
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Example 2: Let A = diag(J1,J2,J3,J4) ∈ R100×100 be a block diagonal
matrix with Jordan blocks on the diagonal, where J1,J2 and J3 are blocks of
dimensions 2, 3 and 5 corresponding to λ1 = . . . = λ10 = 0.1 and J4 is a Jordan
block corresponding to λ11 = . . . = λ100 = 100. We demonstrate the behavior of
the presented algorithms for computation of invariant subspaces on the classical
method using ARN and the harmonic Ritz values. (The behavior is similar, if
the Tchebychev filter, the Ritz values, HHA is used.) In this example, a large
gap between λ1 and λ11 was taken in order to obtain quickly hd+1,d ≈ 0.

Let k := 8, l := 2, i.e. an approximation to the eigenspace of dimension 8 is
searched, corresponding to the eigenvalue λ1 = 0.1 using the Arnoldi factoriza-
tion of order k + l = 10. As proved in Theorem 3.10, the iterative process indeed
constructs approximation to the eigenspace of dimension equal to the dimension
of the largest Jordan block corresponding to λ1, i.e. d = 5, and the element
hd+1,d = h6,5 converges to zero. The only fast decreasing curve in Figure 4.2
corresponds to the element h6,5. The number h9,8 denotes ‖wk‖ = ‖w8‖.
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Figure 4.2: Progress of subdiagonal elements of the matrix Hk for Example 2.

Example 3: The matrix A is bidiagonal with entries 1, 2, . . . , 20 on the
main diagonal and 0.1’s on the superdiagonal. The following tests illustrate what
happens if the required tolerance (TOL) of the approximation to the invariant
subspace is too small. Let k := 3, l := 2. The results were obtained by the
classical method using ARN and the Ritz values. (The behavior is similar, if the
Tchebychev filter, the harmonic Ritz values, HHA is used.)
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k 22 25 33 39 40 54 63
h21 4.66E−3 6.06E−4 6.15E−5 7.00E−6 1.12E−7 9.90E−6 3.30E−6
h32 3.03E−3 5.36E−6 3.15E−4 1.50E−2 2.24E−6 2.22E−6 2.22E−6
h43 1.39E−3 1.76E0 3.84E−4 7.58E−7 9.32E−1 9.073E−6 8.23E−9

Table 4.2: Subdiagonal elements of the Hessenberg matrices for Example 3.

Figure 4.3 curve “full iteration” shows that the value ‖wk‖ decreases until the
iteration 25 and then it jumps upwards. Then the process converges again until
the same situation occurs in iteration 40 and again in iteration 64. From Figure
4.5 it is obvious that these jumps correspond to the loss of orthogonality in the
last columns of the matrix Vk. The behavior of functions log10 ‖I−VT

j Vj‖ for
j = k, k − 1, k − 2 is drawn. For completeness the subdiagonal elements of the
Hessenberg matrices H3 are presented in Table 4.2 for some choices of k. We
observed that after each jump one more very small eigenvalue appears in σ(H3),
the matrix is more and more rank deficient, and thus we continue in estimating
an invariant subspace of smaller dimension. Therefore replacing (3.35) by (3.36)
in Algorithm 2.1 is important even if the matrix A has distinct eigenvalues.

Loss of orthogonality can be caused by implicit updating of the Arnoldi fac-
torization by using shifts, see [49]. To emphasize this hypothesis we substitute the
implicitly restarted Arnoldi process after some number of iterations by Arnoldi
factorization starting from the beginning, i.e. from the updated vector v1. We say
that the restart has been performed. The process without restart is called “full
iterations”. In Figure 4.4 the function log10 ‖I−VT

k Vk‖ is drawn for the restarts
5, 10 and “full iterations”. The iterative process can achieve smaller TOL if we
use restart, see Figure 4.3 for the restarts 5 and 10. The error analysis is beyond
the scope of this thesis. Let us remark that if the Tchebychev filter is used, all
jumps appear a few iterations later.
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Figure 4.3: Convergence of ‖wk‖ for Example 3.
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4.3 Acceleration of GMRES method

Now we will use the results from the previous chapters to accelerate the conver-
gence of the GMRES method by using preconditioners described in Section 1.4.
We compare GMRES(m) with GMRESQR (method preconditioned from the left
according to Theorem 1.3) and DEFLGMRES (method preconditioned from the
right according to Theorem 1.4). Both algorithms change the preconditioning
matrix adaptively after each restart, but the update is performed differently, see
Section 1.4. This is described in details in Example 2. Note, that numerical
experiments show that it is usually sufficient to take TOL ∈< 10−4, 10−6 > in
Algorithm 2.2 or Algorithm 2.3. Thus this TOL is used in the presented experi-
ments.

The first two matrices are theoretical and the same as in Example 1 and 2
in the previous section. Example 1 shows that the preconditioners based on in-
variant subspaces can accelerate the convergence, even if the matrix is highly
nonnormal. Example 2 describes the behavior of preconditioners for derogatory
matrix A. The following linear systems arise from practical problems. Example 3
considers strongly ill-conditioned, but close to normal matrix and shows that in-
variant subspaces of this matrix are computed very quickly and accurately. Thus
also the preconditioners work very good. Example 4 gives the results for matrix
that is not normal, but also not too nonnormal. Finally, Examples 5 and 6 con-
sider linear system arising from discretization of partial differential equation and
show that the behavior of all discussed GMRES methods is similar if we proceed
to larger dimensions, i.e. the grid is refined.

Example 1: Let A be the matrix from Example 1 in Section 4.2. Though
there is no extremely small eigenvalue, the high nonnormality of the matrix A
may cause stagnation of the GMRES method.

Let the restart length be m := 10 for all considered solvers. Figure 4.6 shows
the convergence behavior of GMRES(10), DEFLGMRES (where in each of the
first twenty restarts one vector is added for constructing the adaptive precon-
ditioner) and GMRESQR (where an invariant subspace of dimension k := 5 is
constructed). We can observe that GMRES(10) stagnates; both preconditioned
versions have an “initial phase” of stagnation (that corresponds to a few restarts
in which the preconditioning matrix is refined and small eigenvalues are gradu-
ally captured) followed by a phase of fast convergence. This is a typical behavior
and can be observed for almost all linear systems. The length of the initial phase
depends on the quality of approximation of invariant subspace, i.e. on the matrix
Vk. Table 4.3 compares the residual norms and computation times in case that
one of the studied methods attained err < −10.

Example 2: Consider the matrix A from Example 2 in Section 4.2. We
have seen that setting k := 8, l := 2, the classical and the Tchebychev method
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Figure 4.6: Convergence of GMRES, DEFLGMRES, GMRESQR for Example 1.

number of GMRES(10) DEFLGMRES GMRESQR
iterations ‖rs‖ time ‖rs‖ time ‖rs‖ time

170 5,65E−1 7,14E−1 2,56E−11 1,76
470 5,65E−1 6,42E−11 10,02

Table 4.3: Convergence times of GMRES, DEFLGMRES, GMRESQR for Ex-
ample 1.

computes invariant subspace of dimension 5.

Let m := k + l = 10. Figure 4.7 and Table 4.4 display the convergence
of GMRES(10) and its preconditioned versions DEFLGMRES and GMRESQR.
Classical GMRES(10) converges very slowly, but both preconditioners accelerate
the convergence. Let us have a look at the GMRESQR method. After the first
restart the linear system is divided by the largest Ritz value θ10 = 100.14 and
then the eigenspace of the dimension 5 corresponding to λ1 is computed. (Five
iterations of the implicitly restarted Arnoldi process are performed according to
Figure 4.2, see Example 2 in Section 4.2.) Having constructed the preconditioner
M1 based on this eigenspace according to Theorem 1.3, the matrix A1 := M−1

1 A
is obtained that has λ1 with multiplicity only 3 + 2 = 5. We observed that the
same invariant subspace is computed for arbitrary k ≥ 5. In the second restart
with the matrix A1 we can choose arbitrary k ≥ 3 to obtain the eigenspace of di-
mension 3. The multiplicity of λ1 is only 2 in the spectrum of A2 := M−1

2 M−1
1 A.

The following restart removes the eigenspace corresponding to λ1 totally and the
solution of the linear system is computed very quickly. Eigenvalues of precon-
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number of GMRES(10) DEFLGMRES GMRESQR
iterations ‖rs‖ time ‖rs‖ time ‖rs‖ time

30 1,12E−1 5,71E−24 0,21 1,05E−5
40 9,56E−1 4,71E−11 0,10
350 1,80E−11 0,73

Table 4.4: Convergence times of GMRES, DEFLGMRES, GMRESQR for Ex-
ample 2.

ditioned matrices are reported in Table 4.5. In DEFLGMRES, the matrix V
is gradually enriched by the vectors approximating required invariant subspaces
and thus the convergence curve is more smooth.
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Figure 4.7: Convergence of GMRES, DEFLGMRES, GMRESQR for Example 2.

Example 3: Let A = Watt1, where Watt1 is the matrix from the Harwell-
Boeing collection [40], which originates from problems in petroleum engineerings.
The matrix is nonsymmetric, of order n = 1856 and has 11 360 nonzero entries.
Its condition number is very large, it is estimated at 5,38E+9, but the matrix is
close to normal with the Henrici number 9,55E−8. Thus we expect that the dis-
cussed preconditioners accelerate the convergence of GMRES strongly. This ma-
trix has large eigenvalues with both positive and negative real parts. Therefore,
alternation of intervals described in Section 2.3 must be used. The calculation of
Tchebychev filter proceeds according to Algorithm 2.3.

We compute an invariant subspace of dimension k = 2 and k = 15 from the
Arnoldi factorization of order 5 and 20, respectively. In Table 4.6, the numbers of
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eigenvalues of A A/θ10 A1 A2 A3

λ1 1E−1 9,97E−4 9,82E−4 1,35E−3 9,14E−1
λ2 1E−1 9,97E−4 9,82E−4 1,35E−3 9,14E−1
λ3 1E−1 9,97E−4 9,82E−4 9,50E−1 9,26E−1
λ4 1E−1 9,97E−4 9,83E−4 9,50E−1 9,49E−1
λ5 1E−1 9,97E−4 9,83E−4 9,50E−1 9,53E−1
λ6 1E−1 9,97E−4 9,44E−1 9,74E−1 9,78E−1
λ7 1E−1 9,97E−4 9,44E−1 9,74E−1 9,84E−1
λ8 1E−1 9,97E−4 9,44E−1 9,74E−1 9,86E−1
λ9 1E−1 9,97E−4 9,44E−1 9,75E−1 9,93E−1
λ10 1E−1 9,97E−4 9,44E−1 9,75E−1 9,97E−1
λ11 1E+2 9,97E−1 1,12E0 9,93E−1 1,07E0
λ100 1E+2 9,97E−1 1,30E0 1,01E0 1,11E0

Table 4.5: Eigenvalues of preconditioned matrices for Example 2.

k=2, l=3 k=15, l=5
‖wk‖ classical Tchebychev classical Tchebychev
10−7 1 1 1 1 1 1 1 1
10−8 43 4 3 1 7 7 2 2

Table 4.6: Convergence of the classical method and the method using Tchebychev
polynomials for Example 3.

iterations are reported in which various precisions of approximations measured by
‖wk‖ are reached. The first and the second column show the results obtained by
using the Ritz and the harmonic Ritz values, respectively. All methods compute
invariant subspaces very quickly and with high accuracy.

We have used restart m := 30 for all considered GMRES methods. The pre-
conditioner based on the invariant subspace of dimension only two suffices for
fast convergence in the GMRESQR method. In the DEFLGMRES, one vector
was added to construct the preconditioner in each of the 3 first restarts. Rates of
convergence of all considered methods are presented in Table 4.7 and Figure 4.8.
Both preconditioning techniques accelerate the convergence and, moreover, Fig-
ure 4.8 illustrates that there is no initial phase of stagnation or slow convergence
of GMRESQR and DEFLGMRES, that can be observed in other examples. This
is a consequence of the fact that the matrix V2 is computed in high accuracy
already after the first restart.

Example 4: Consider the matrix Sherman4 from the Harwell-Boeing collec-
tion [40], which originates from oil reservoir modeling. The matrix is nonsym-
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Figure 4.8: Convergence of GMRES, DEFLGMRES, GMRESQR for Example 3.

number of GMRES(30) DEFLGMRES GMRESQR
iterations ‖rs‖ time ‖rs‖ time ‖rs‖ time

660 8,70E−4 1,61E−10 3,51 2,55E−9
722 4,80E−4 1,72E−10 7,06
2190 8,55E−11 9,83

Table 4.7: Convergence times of GMRES, DEFLGMRES, GMRESQR for Ex-
ample 3.

metric, of order n = 1104 and has 3 786 nonzero entries. Its condition number is
estimated at 7,20E+3 and the Henrici number is 1,3813. Though the small eigen-
values of this matrix are not sharply separated from the rest of the spectrum, the
adaptive preconditioning accelerates the convergence of GMRES.

Table 4.8 is analogous to Table 4.6 and presents results for several choices
of k and l. Again, the first and the second column display the results obtained
by using the Ritz and the harmonic Ritz values, respectively, and a free space
denotes that the method did not reach required precision. The case k = 5, l = 5
illustrates that in some cases usage of harmonic Ritz values can help to attain
smaller ‖wk‖.

Let m := 15. Though GMRES(15) converges, both preconditioners acceler-
ate the convergence, see Figure 4.9 and Table 4.9. The preconditioner in the
GMRESQR method was constructed using the invariant subspace of order 5. In
DEFLGMRES, one vector was added to construct the preconditioner in each of
the 5 first restarts.
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k=5, l=5 k=5, l=10 k=10, l=10
‖wk‖ classical Tchebychev classical Tchebychev classical Tchebychev
10−2 37 37 17 17 16 16 14 8 30 26 29 24
10−3 60 53 20 20 20 20 32 32 30 30

Table 4.8: Convergence of the classical method and the method using Tchebychev
polynomials for Example 4.
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Figure 4.9: Convergence of GMRES, DEFLGMRES, GMRESQR for Example 4.

Example 5: In this example we consider a linear system that arises from
discretization of the partial differential equation

−e−xyuxx − e−xyuyy + (10 + ye−xy)ux + (10 + xe−xy)uy − 60u = 1 (4.1)

in the domain Ω = (0, 1) × (0, 1) with Dirichlet boundary condition (see [80]).
Discretization was performed by standard finite differences on a 100 × 100 uni-
form grid and yields the stiffness matrix A ∈ R10 000×10 000 with 49 600 nonzero
elements. This matrix is close to normal with the Henrici number 0,0097.

We compute an invariant subspace of dimension k = 5 and k = 15. Table
4.10 is analogous to Tables 4.6 and 4.8. The method using Tchebychev filter is
faster than the classical one in all cases. Table 4.10 also shows that harmonic
Ritz values give slightly better results for larger k and l.

Figure 4.10 and Table 4.11 illustrate convergence results for restart parame-
ter m := 35. In the GMRESQR method an invariant subspace of dimension 5

73



number of GMRES(15) DEFLGMRES GMRESQR
iterations ‖rs‖ time ‖rs‖ time ‖rs‖ time

330 1, 85E−3 1, 92E−9 1, 88E−10 2, 34
360 1, 48E−3 4, 45E−11 2, 10
1365 7, 87E−11 5, 23

Table 4.9: Convergence times of GMRES, DEFLGMRES, GMRESQR for Ex-
ample 4.

k=5, l=5 k=5, l=15 k=10, l=20
‖wk‖ classical Tchebychev classical Tchebychev classical Tchebychev
10−2 21 21 9 9 9 9 4 4 11 9 7 6
10−3 87 87 55 55 25 18 15 15 19 15 16 16

Table 4.10: Convergence of the classical method and the method using Tcheby-
chev polynomials for Example 5.

was computed and in DEFLGMRES one vector was added in each of the 10 first
restarts. In this example restarted GMRES(35) fully stagnates.

-12

-10

-8

-6

-4

-2

 0

 2

 0  500  1000  1500  2000  2500  3000

er
r

number of iterations

GMRES(35)
DEFLGMRES

GMRESQR

Figure 4.10: Convergence of GMRES, DEFLGMRES and GMRESQR for Exam-
ple 5.

Example 6: Similar behavior of the algorithms GMRES, GMRESQR and
DEFLGMRES as in the previous example can be observed, when we proceed
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number of GMRES(35) DEFLGMRES GMRESQR
iterations ‖rs‖ time ‖rs‖ time ‖rs‖ time

1075 8,87E−1 8,02E−8 3,20E−13 226,08
1435 8,86E−1 8,09E−11 128,64

Table 4.11: Convergence times of GMRES, DEFLGMRES, GMRESQR for Ex-
ample 5.

to larger dimensions. Discretizing (4.1) on a 320 × 320 grid yields the stiffness
matrix A ∈ R102 400×102 400 with 510 720 nonzero elements.

Figure 4.11 illustrates convergence results for restart m := 50. The restarted
GMRES(50) fully stagnates. In the GMRESQR method an invariant subspace of
dimension 10 was computed and in DEFLGMRES one vector was added in each
of the 20 first restarts.
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Figure 4.11: Convergence of GMRES, DEFLGMRES and GMRESQR for Exam-
ple 6.
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Chapter 5

Basic concepts

In this chapter we are interested in unitarily invariant linear approximation
problems, represented by systems of linear algebraic equations with a generally
rectangular and possibly rank deficient matrix. Such systems arise in many sci-
entific and technical areas and various techniques are used to solve them. When
the matrix representing the model in the approximation problem is large, which
is often the case, we need to consider iterative methods with some appropriate
stopping criteria. Main types of linear approximation problems and methods for
solving them are summarized in this chapter.

5.1 Linear approximation problems

Consider estimating x from the system of linear algebraic equations

Ax ≈ b, A ∈ Rn×m, b ∈ Rn (5.1)

with a nonzero matrix A and a nonzero vector b. The system can be compatible,
i.e. b ∈ R(A), or incompatible, i.e. b 6∈ R(A). The uninteresting case is excluded
by the assumption AT b 6= 0 (otherwise it is meaningless to approximate b by the
columns of A and the system (5.1) has a trivial solution x ≡ 0). We assume, for
simplicity of notation, that A and b are real. The extension to complex data is
straightforward.

Sources of approximation problems

Linear approximation problems of the form (5.1) arise in a broad class of
scientific and technical disciplines and applications. The first group of such prob-
lems comes from errors-in-variables modeling. Here A represents the data matrix
determining the model, b is the observation vector and x is the unknown vector of
true solution. The vector b represents some observed or measured variables and
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thus it can contain errors. Furthermore, in many applications the sampling or
modeling errors may also imply inaccuracies in the matrix A. Least squares [6]
(also called linear regression in statistics) and total least squares [44] (orthogonal
regression in statistics) techniques can be used to solve such system in case they
are well-posed, e.g., in statistical applications. The corresponding approaches are
summarized in Section 5.2.

Additional difficulty appears when the system (5.1) is ill-posed. Ill-posed
systems appear in many applications - medical image deblurring (tomography),
bioelectrical inversion problems, geophysics (seismology, radar or sonar imag-
ing), astronomical observations. Here the matrix A is ill conditioned and a small
perturbation on b typically causes large changes in the estimated solution x.
Moreover, the matrix A is often numerically rank deficient and/or it has small
singular values, but without a well defined numerical rank. We illustrate this on
testing matrices from Matlab Regularization Tools [37].

Example 1: Figure 5.1 shows the singular values of 100 × 100 matrix Foxgood
(left figure) and 100 × 23 matrix Parallax (right figure). Both matrices corre-
spond to ill-posed problems, but the singular values of Foxgood decay fast to
machine precision, while the singular values of Parallax decay gradually without
a noticeable gap.
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Figure 5.1: Singular values of the matrices Foxgood (left) and Parallax (right).

Usually linear models have the form

Ax ≈ b, where b = bexact + berror

and possibly also A = Aexact + Aerror. In such cases the least squares, total least
squares or similar techniques might give a solution that is absolutely meaningless,
because it is dominated by errors present in the data b, A and possibly also by
computational errors. The regularization techniques must be used in order to
obtain a meaningful solution. For more discussion see Section 5.3.
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Model reduction represents another important area of applications. The idea
is to approximate high order system (5.1) by a lower order one while approximat-
ing well the behavior of the whole system. Truncation and projection techniques
(that may be viewed also as a type of regularization) are used here to reduce the
dimensions of the linear system, see Section 5.3.

5.2 Least squares and related techniques

Ordinary least squares

The ordinary least squares (LS) method is used to solve the system (5.1) when
errors are confined to the right hand side b but not to the matrix A. The LS
method seeks a vector g ∈ Rn satisfying

a) b̃ ∈ R(A), where b̃ = b + g

b) g = argg̃∈Rn min ‖g̃‖ subjected to a), (5.2)

i.e. a minimal perturbation of the right-hand side b is searched such that Ax ≈ b̃
is compatible. From the definition it follows that b̃ is the orthogonal projection
of b on the space generated by the columns of A. The LS solution always exists
and is equal to

xLS = A+b. (5.3)

Numerical methods for computing LS solution are direct (based on singular value
decomposition or QR-factorization of A), or iterative, see [6].

Total least squares

The total least squares (TLS) method is used to solve the system (5.1) when
errors are confined both to b and A. The TLS method seeks a vector g ∈ Rn and
a matrix E ∈ Rn×m such that

a) b̃ ∈ R(Ã), where b̃ = b + g, Ã = A + E

b) [g,E] = arg[g̃,Ẽ] min ‖[g̃, Ẽ]‖F subjected to a), (5.4)

i.e. a minimal perturbation of the right-hand side b and the matrix A is searched
such that Ãx ≈ b̃ is compatible.

The existence and uniqueness of the TLS solution depends on the right sin-
gular vector subspace of the matrix [b,A], corresponding to the smallest nonzero
singular value σ. If σ is simple and the first component of the corresponding right
singular vector s is nonzero, it can be proved that the TLS solution exists and is
unique and has closed-form

xTLS = (ATA− σ2I)−1AT b,
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see [44] p. 53. If eT
1 s = 0 (or more generally eT

1 S
′

= 0, where the columns of
S
′
generate the right singular vector subspace of [b,A] corresponding to multiple

singular value σ) the TLS solution does not exist. This unpleasant situation can
be illustrated on the following simple example.

Example 2: Consider the linear approximation problem

(
1 0
0 0

) (
x1

x2

)
≈

(
1
1

)
.

The TLS method seeks the smallest perturbation [g,E] such that the resulting
system is compatible. If we put

[g,E] =

[
0 0 0
0 0 θ−1

]
,

then the Frobenius norm of this correction is equal to θ−1 and the corresponding
solution is x = (1, θ)T . Thus θ → ∞ implies ‖[g,E]‖F → 0 and ‖x‖ → ∞, i.e.
only the non-optimal TLS solution can be obtained. Moreover, the above solu-
tion vector needs have nothing to do with the original approximation problem
because θ is an arbitrary number.

Example 2 indicates that in case that eT
1 S

′
= 0 the TLS problem (5.4) is not

well formulated. S. Van Huffel and J. Vandewalle analyzed this difficulty and
defined a nongeneric TLS solution as a solution of the TLS problem (5.4) with
the restriction

[g,E] ⊥ S
′
,

see [44] pp. 66-84. However, the nonexistence of the generic TLS solution in this
case was at first proved in [64] and follows from the core theory. The core reduc-
tion avoids the nonuniqueness and nongenericity of the solution, by transforming
the original data b,A to core data b1,A11 smaller in size, that contain the neces-
sary and sufficient information for solving the original problem. More discussion
about the core reduction is given in Chapter 6, thus we omit the details here.

Remark: The condition σ < σ̃, where σ̃ is the smallest nonzero singular value
of A, is often used to guarantee the existence of the solution. This condition is
equivalent only to the case that σ is simple and eT

1 s 6= 0. The proof follows from
interlacing theorem (see [44] p. 35). Therefore this condition is only sufficient
but not necessary for existence of the TLS solution.

For more details about the TLS solution in nongeneric case and also in case
that σ is a multiple singular value see, e.g., [44], where also efficient numerical
methods for computation of TLS solution are discussed. They are usually based
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on the singular value decomposition. Discussion for the TLS problem with mul-
tiple right-hand side can be found, e.g., in [44], [77]. For comparison of the TLS
and the LS solution of (5.1) see [91], [92].

Scaled total least squares

All approaches presented above can be unified by considering the following
general scaled total least squares (ScTLS) method. For a given real γ > 0, the
ScTLS seeks a vector g ∈ Rn and a matrix E ∈ Rn×m such that

a) b̃ ∈ R(γÃ), where b̃ = γb + g, Ã = A + E

b) [g,E] = arg[g̃,Ẽ] min ‖[g̃, Ẽ]‖F subjected to a). (5.5)

When γ → 0 the ScTLS solution approaches the LS solution, γ = 1 coincides
with the TLS formulation and when γ →∞ the ScTLS solution approaches data
least squares solution, where the correction is allowed only in the matrix A.

5.3 Truncation and regularization methods

Truncation methods for linear approximation problems are applicable when an
(usually SVD-based) expansion of the system is computable. The idea is to reduce
the rank of the original linear system, i.e. to approximate the system by a well
conditioned compatible one with smaller rank l, such that the components of the
solution corresponding to unwanted subspaces are ignored.

Consider the singular value decomposition (SVD)

A = R̃Σ̃S̃
T

=
l∑

i=1

r̃iσ̃is̃
T
i ,

where l ≡ rank(A), σ̃1 ≥ . . . ≥ σ̃l > 0 are singular values and ri, si left and
right singular vectors of A, respectively. Then the LS solution of (5.1) can be
expressed in the form

xLS =
l∑

i=1

r̃T
i b

σ̃i

s̃i. (5.6)

The matrix Ak ≡
∑k

i=1 r̃iσ̃is̃
T
i is the nearest rank k approximation to the matrix

A, see [20], [54]. The simplest type of truncation methods - truncated LS (T-LS)
(also called truncated SVD) can be obtained by replacing A by Ak in (5.2), i.e.
the T-LS solution of (5.1) has the form

xT−LS
k =

k∑
i=1

r̃T
i b

σ̃i

s̃i. (5.7)
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Similarly the truncated TLS (T-TLS) method can be obtained by completing
(5.4) by the condition rank([b̃, Ã]) = k. The T-LS and the T-TLS solution are
closely connected, see [24].

The expansion (5.6) indicates that the components of the LS solution corre-
sponding to small singular values may be dominated by errors in the right-hand
side b and these components can be eliminated by choosing good truncation level
k in (5.7). Thus truncation methods as truncated LS, truncated TLS etc. have
regularizing properties and the important question is how to identify a good trun-
cation level here. The choice is clear if the matrix A has well defined numerical
rank (i.e. if there is a large gap between “small” and “large” singular values)
or in applications where a noise level is apriori known. Then it is reasonable
to eliminate all information below this level. Unfortunately, in many cases the
choice is more complicated, e.g., in ill-posed problems where singular values de-
cay gradually to zero and/or numerical rank of the matrix A is not well defined.
Therefore more sophisticated regularization methods are required to suppress the
effect of errors in the data and extract the essential information about the system.

Regularization methods

Regularized (or filtered) solution can be generally formulated as

x =
l∑

i=1

fi
r̃T
i b

σ̃i

s̃i,

where fi are filter factors. For example in T-LS the filter factor are simply fi = 1
for i = 1, . . . , k and fi = 0 for i = k + 1, . . . , l. Thus k can be understood as
a filtration or regularization level. The form of the filter factors for T-TLS was
derived in [25] and indicates the filtering property, even if there is no marked
gap between large and small singular values (see pp. 1230-1231). Regularizing
properties of this method were widely discussed also in [24], [35].

Many regularization techniques control not only the residual of the solution
but also the solution norm. Tikhonov regularization is originally connected with
LS. Here the condition b) in (5.2) is replaced by

g = argg̃∈Rn min{‖g̃‖2 + λ‖Lx‖2} subjected to a), (5.8)

where the matrix L is often equal to I or represents a discretized differential
operator, e.g., approximate first order derivative operator, and the number λ is
regularization (or penalty) parameter controlling the trade-off between the LS
distance and the norm of the solution. If L = I then

xTik =
l∑

i=1

σ̃2
i

σ̃i + λ2

r̃T
i b

σ̃i

s̃i.
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Tikhonov type regularization can be similarly used to regularize the TLS solu-
tion, see, e.g., [28], [39], [71]. In [28] connection between the LS and the TLS
solution of Tikhonov type is analyzed. Computation of the Tikhonov solution in
case that L 6= I usually consists of transforming the problem to standard form
(section 2.3 in [35]), then using truncated TLS method to compute the regular-
ized solution and transforming it back to the original variables. Recently also
methods working directly with the matrix L have been developed.

A lot of regularization methods is based on Golub-Kahan (also called Lanc-
zos) bidiagonalization, see [30], [61]. LSQR (see [62], [63]) is a frequently used
conjugate-gradient type method for solving both sparse linear systems discussed
in the first part of this thesis, and sparse least squares problems in the Tikhonov
form (5.8) with L = I. The method is algebraically equivalent to applying sym-
metric conjugate gradient (CG) method to normal equations

(ATA + λ2I)x = AT b

corresponding to the problem (5.8), but has better numerical properties, espe-
cially if A is ill conditioned. The idea is the following. First the problem (5.1) is
projected on the Krylov subspace using the lower Golub-Kahan bidiagonalization
of the matrix A starting from the vector u1 ≡ b/β1, where β1 ≡ ‖b‖ 6= 0 (for
algorithm see Section 6.2). After k steps of the bidiagonalization we obtain

AVk = Uk+1Lk+,

where Vk ∈ Rm×k, Uk+1 ∈ Rn×(k+1) have orthonormal columns, u1 = Uk+1e1 and
Lk+ ∈ R(k+1)×k is lower bidiagonal matrix. The CG method seeks a vector xk in
the kth Krylov subspace Kk(A

TA,AT b) = span{Vk} that minimizes ‖Ax− b‖.
The solution can be written in the form xk = Vky and

min
x∈Kk(AT A,AT b)

‖Ax− b‖ = min
y∈Rk

‖Lk+y − β1e1‖.

The LSQR algorithm in fact produces the bidiagonal decomposition above and
the approximation vector xk is computed recursively from xk−1 using only the
reduced problem Lk+y ≈ β1e1. Hybrid methods developed, e.g., in [7], [9], [34],
[35], [60], are based on similar ideas as LSQR. The outer bidiagonalization is
combined with an inner regularization applied to the problem Lk+y ≈ β1e1.

Remark: CG is only one of the Krylov subspace methods that have regularizing
properties. Regularizing properties of QMR method [26], [76] or GMRES [75]
were explored in series of papers, e.g., [17], [18].
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5.4 Stopping criteria

If there is no apriori knowledge about the required truncation or regularization
level, several stopping criteria can be used. The first is based on estimation of
the L-curve (see [38], [35], [36]), i.e. the curve where the norm of the approximate
solution ‖xk‖ is plotted against the norm of residual error ‖Axk − b‖ for various
k and the corner in the log-log scale is chosen. The discrepancy principle requires
knowledge about the properties of the noise in the perturbed data. Generalized
cross validation combines the residual error with the effective number of used
parameters (see, e.g., [29]). These techniques are widely discussed in literature,
comparison is given in [35], [78], [77].

Methods used to solve problems arising from errors-in-variables modeling and
problems of model reduction are the same, but choice of optimal stopping criteria
can be different. Let us concentrate only on methods using bidiagonalization,
where the core theory may be found useful. Computational method for reducing
b,A to core data b1,A11 involves (partial) upper bidiagonalization of the matrix
[b,A]; more precisely b1 ≡ β1e1 and A11 ≡ Lp if (5.1) is compatible, or A11 ≡ Lp+

if (5.1) is incompatible. This transformation is widely described in Chapter 6.
If the bidiagonalization is used in model reduction in order to obtain a lower
rank approximation to (5.1), it can be stopped at step k < p and a lower rank
approximation of rank k can be computed from this partial bidiagonalization.

If the bidiagonalization is used in ill-posed problems, the situation is more
complicated. In exact arithmetics the necessary and sufficient information from
(5.1) is extracted to b1,A11 as soon as a zero value is encountered either on
the diagonal or on the superdiagonal of the matrix L. This gives an important
theoretical background for the LSQR and hybrid methods. At each step k < p
these techniques compute the system Lk+y ≈ β1e1 that is ”approximation” to
the core system and thus the approximate solution cannot contain redundant
informations. On the other hand, stopping the bidiagonalization process when
a zero value is encountered is numerically not suitable and one should ask how
to decide about the ”truncation level” for the bidiagonalization, i.e. how to
numerically indicate the separation of the core problem. Then the question arises
whether and when the main submatrix of the bidiagonal matrix A11 can be
considered a sufficiently good approximation to the whole core matrix. Many
recent results about submatrices of bidiagonal matrices, as interlacing property
of the eigenvalues, can give some ideas. In Chapter 6 we give a motivation, how
the relationship between the Golub-Kahan bidiagonalization and the Lanczos
tridiagonalization, together with the properties of Jacobi matrices can be used in
further investigation of efficient stopping criteria for regularization methods.
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Chapter 6

Core reduction

In this chapter we concentrate on the concept of core reduction in linear al-
gebraic systems. First we briefly summarize the main idea of the core theory
given by C.C. Paige and Z. Strakoš, that shows how the core problem extracts the
necessary and sufficient information for solving the original linear algebraic sys-
tem. The computation is connected with the (partial) bidiagonalization and this
fact can be used to solve efficiently the approximation problem with the original
data. Then we relate the core problem formulation to the Lanczos tridiagonal-
ization and derive its fundamental characteristics from the relationship between
the Golub-Kahan bidiagonalization, the Lanczos tridiagonalization and the well
known properties of Jacobi matrices. Finally we outline some directions for fur-
ther research.

6.1 Basic ideas of core reduction

C.C. Paige and Z. Strakoš proposed, in a sequence of papers [65], [67], [64], to
orthogonally transform the original problem (5.1) to the block form that allows
to separate the necessary and sufficient information present in the data b,A from
the redundancies. This transformation leads to better understanding of several
well known regularization techniques, that were briefly summarized in the pre-
vious chapter, and can also lead to the improvement in the stopping criteria for
these methods. In this section, we explain the idea of the core reduction and
summarize its fundamental characteristics.

Assuming that the approximation problem (5.1) is unitarily invariant, it was
proved in [64] that there exists an orthogonal transformation of the form

PT
[

b AQ
]

=

[
b1 A11 0
0 0 A22

]
, (6.1)
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where P ∈ Rn×n, Q ∈ Rm×m are orthogonal matrices, b1 = β1e1 and A11 is a
lower bidiagonal matrix with nonzero bidiagonal elements. The matrix A11 is ei-
ther square, when (5.1) is compatible, or rectangular, when (5.1) is incompatible.
Depending on the relation between b and A, the matrix A22 and the correspond-
ing block row and/or column in (6.1) can be nonexistent. This situation will be
explained in the following section.

Using this transformation, the original problem is decomposed into the ap-
proximation problem

A11x1 ≈ b1 , (6.2)

which contains all necessary and sufficient information for solving the problem
(5.1), and the remaining part A22x2 ≈ 0 containing the redundancies from the
original data. The problem (6.2) is therefore called a core problem within (5.1).
In [64], it was suggested to find x1 from (6.2), set x2 ≡ 0, and substitute

x ≡ Q

[
x1

0

]
(6.3)

for the solution of (5.1). The fact that the problem (6.2) extracts all necessary
and sufficient information from the problem (5.1) follows easily from the proper-
ties of the orthogonal transformation summarized in the following theorem.

Theorem 6.1: Let A ∈ Rn×m be a nonzero matrix, b ∈ Rn and AT b 6= 0. Then
there exists a decomposition

PT
[

b AQ
]

=

[
b1 A11 0
0 0 A22

]
,

where P ∈ Rn×n, Q ∈ Rm×m are orthogonal matrices, b1 = β1e1 and A11 is a
lower bidiagonal matrix with nonzero bidiagonal elements. Moreover:

(i) The matrix A11 has full column rank and its singular values are simple. Con-
sequently, any zero singular values or multiplicities of singular values that A
has, must appear in A22.

(ii) The matrix A11 has minimal dimensions, and A22 has maximal dimensions,
over all orthogonal transformations giving the block structure above, with-
out any additional assumptions on the structure of A11 and b1.

(iii) All components of b1 = β1e1 in the left singular vector subspaces of A11 (i.e.
the first components of all left singular vectors of A11) are nonzero.

Proof: Proofs of (i)–(iii) are given in [64], see Theorems 2.2, 3.2 and 3.3. They
are based on the singular value decomposition of A and on the properties of the
upper bidiagonal form [b1,A11] with nonzero bidiagonal elements. 2

The properties (i) and (iii) imply that the TLS solution (5.4) of the system
(6.2) always exists and is unique, while the property (ii) shows that the system

88



has minimal dimensions. Thus the problem (5.1) can always be reduced to the
core problem (6.2) of minimal dimensions that is uniquely solvable.

Computation of core problem

The core problem (6.2) can be obtained from the singular value decompo-
sition of the extended matrix [b,A], but for computational efficiency reasons a
bidiagonal transformation is usually used. The transformed data b1 and A11

can be computed by the (possibly partial) upper bidiagonalization of the matrix
[b,A]. If A has small dimensions, bidiagonalization can be performed directly
using Householder transformations [31]. Otherwise, when A is large and sparse,
Golub-Kahan bidiagonalization (see [30], [61]) is suggested in [64] as the algo-
rithm for computing the core problem. The bidiagonalization is stopped at the
first zero element, giving the block structure in (6.1). Note that the remaining
part (giving the matrix A22) need not be bidiagonalized, because it is not needed
for computation of the solution (6.3).

If the Golub-Kahan bidiagonalization is used, at any iteration step the com-
puted left principal part of A11 represents an approximation to the core problem
matrix. Practical applications may require stopping the computation before the
full decomposition (6.1) is reached, see discussion in Section 5.4. Therefore it is
important to study iterative approximations to the core problem decomposition.
It is well known, that the Golub-Kahan bidiagonalization is closely related to the
Lanczos tridiagonalization [48], which has been throughly investigated as a tool
for computation of a few dominant eigenvalues. We believe that the knowledge
about the partial Lanczos tridiagonalization may prove useful in future investi-
gation of the partial core problem decomposition. Therefore, in the following
section, we briefly summarize the relationship of the core problem decomposition
with the Lanczos tridiagonalization. In Section 6.3, we present a new proof of
the fundamental characteristics (i)–(iii) of the core problem formulated in The-
orem 6.1, from the connection between the Golub-Kahan bidiagonalization and
the Lanczos tridiagonalization.

6.2 Connection between core problem and Lanc-

zos tridiagonalization

Consider the partial lower Golub-Kahan bidiagonalization of the matrix A in the
following form. Given the initial vectors v0 ≡ 0, u1 ≡ b/β1, where β1 ≡ ‖b‖ 6= 0,
the algorithm computes for i = 1, 2, . . .

αivi = AT ui − βivi−1, ‖vi‖ = 1, (6.4)

βi+1ui+1 = Avi − αiui, ‖ui+1‖ = 1 (6.5)
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until αi = 0 or βi+1 = 0, or until i = min{n,m}.
We present, for completeness, the basic properties of the Golub-Kahan bidi-

agonalization as given in [61]. Consider αiβi 6= 0 for i = 1, . . . , k + 1 and denote
by Uk ≡ (u1, . . . , uk),Vk ≡ (v1, . . . , vk),

Lk ≡




α1

β2 α2

. . . . . .

βk αk


 , Lk+ ≡

(
Lk

βk+1e
T
k

)
.

Then (6.4)–(6.5) can be rewritten in the matrix form

ATUk = VkL
T
k , (6.6)

AVk = [Uk, uk+1]Lk+, (6.7)

giving

UT
k AVk = (ATUk)

TVk = LkV
T
k Vk

= UT
k [Uk, uk+1]Lk+ = UT

k UkLk + βk+1U
T
k uk+1e

T
k ,

and thus
LkV

T
k Vk = UT

k UkLk + βk+1U
T
k uk+1e

T
k . (6.8)

Similarly, (6.4) gives for i = k + 1

AT [Uk, uk+1] = VkL
T
k+ + αk+1vk+1e

T
k+1, (6.9)

and therefore

VT
k AT [Uk, uk+1] = VT

k VkL
T
k+ + αk+1V

T
k vk+1e

T
k+1

= (AVk)
T [Uk, uk+1] = LT

k+[Uk, uk+1]
T [Uk, uk+1],

which yields

LT
k+[Uk, uk+1]

T [Uk, uk+1] = VT
k VkL

T
k+ + αk+1V

T
k vk+1e

T
k+1. (6.10)

As a direct consequence we get the following well known properties of the matri-
ces Uk and Vk.

Lemma 6.2: Assume that algorithm (6.4)–(6.5) does not stop before step k +1.
Then it generates the vectors u1, u2, . . . , uk+1 and v1, v2, . . . , vk+1 such that uT

i uj =
vT

i vj = 0 for i 6= j.

Proof: Follows immediately by induction. The induction assumption UT
k Uk = I,

VT
k Vk = I gives from (6.8)

Lk = Lk + βk+1U
T
k uk+1e

T
k ,

90



and thus UT
k uk+1 = 0, because βk+1 6= 0. Similarly, (6.10) and αk+1 6= 0 yield

LT
k+ = LT

k+ + αk+1V
T
k vk+1e

T
k+1,

that gives VT
k vk+1 = 0. 2

Summarizing, the Golub-Kahan bidiagonalization (6.4)–(6.5) of the matrix
A with u1 = b/‖b‖ results in one of the two following situations, which will be
distinguished throughout this chapter:

Case 1. αiβi 6= 0 for i = 1, . . . , p; βp+1 = 0 or p = n. Then (6.6) gives

UT
p AVp = Lp,

UT
p [b,AVp] =




β1 α1

β2 α2

. . . . . .

βp αp


 ≡ [b1|A11] (6.11)

and A11x1 ≡ Lp x1 ≈ β1e1 ≡ b1 is the compatible core problem. The matrices
Up,Vp represent the first p columns of the matrices P,Q respectively, see (6.1).

Case 2. αiβi 6= 0 for i = 1, . . . , p, and βp+1 6= 0; αp+1 = 0 or p = m. Then (6.7)
gives

[Up, up+1]
TAVp = Lp+,

[Up, up+1]
T [b,AVp] =




β1 α1

β2 α2

. . . . . .

βp αp

βp+1



≡ [b1|A11] (6.12)

and A11x1 ≡ Lp+ x1 ≈ β1e1 ≡ b1 is the incompatible core problem. The matrices
Up+1 and Vp represent the first (p + 1) and p columns of the matrices P and Q
respectively.

Remark: For clarity of exposition we review the situations when the bidiag-
onalization is not stopped until the maximum number of steps is reached. If
p = n = m, then Up = Un = P, Vp = Vm = Q and

PT
[

b AQ
]

=
[

b1 A11

]
.

If p = n < m, then Up = Un = P, and completing Vp by (m − n) additional
columns into the orthogonal matrix Q gives

PT
[

b AQ
]

=
[

b1 A11 0
]
.
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If p = m < n, then Vp = Vm = Q, and completing Up+1 by (n−m−1) additional
columns into the orthogonal matrix P gives

PT
[

b AQ
]

=

[
b1 A11

0 0

]
.

Lanczos tridiagonalization

First we remind the basic terminology used in this section.

Definition 6.1: Let B ∈ Rt×t be a tridiagonal matrix with elements bi+1,i 6= 0,
bi,i+1 6= 0 for i = 1, . . . , t− 1. Then it is called a Jacobi matrix.

The bidiagonalization algorithm is closely connected with the Lanczos tridi-
agonalization. Let B ∈ Rt×t be a symmetric matrix. Given the initial vector
w1 ∈ Rt such that ‖w1‖ = 1; w0 ≡ 0, δ1 ≡ 0, the partial tridiagonalization
algorithm computes for i = 1, 2, . . .

yi = Bwi − δiwi−1, (6.13)

γi = (yi, wi), (6.14)

δi+1wi+1 = yi − γiwi, ‖wi+1‖ = 1 (6.15)

until δi+1 = 0, or until i + 1 = t. Consider δi 6= 0 for i = 1, . . . , k + 1 and denote
by Wk ≡ (w1, . . . , wk),

Tk ≡




γ1 δ2

δ2 γ2
. . .

. . . . . . δk

δk γk


 .

Then Wk has orthonormal columns and Tk represents the symmetric tridiagonal
matrix with positive elements on the subdiagonal, i.e. a Jacobi matrix. The
Lanczos algorithm can be written in the matrix form

BWk = WkTk + δk+1wk+1e
T
k , WT

k wk+1 = 0. (6.16)

Given a real symmetric B, (6.16) is fully determined by the starting vector w1.
Moreover, the properties of Jacobi matrices yield the fundamental properties of
the matrix Tk.

Lemma 6.3: Let B ∈ Rt×t be a symmetric matrix, w1 ∈ Rt and ‖w1‖ = 1.
Assume that algorithm (6.13)–(6.15) does not stop before step k. Then:

(I) The matrix Tk has distinct eigenvalues.

92



(II) If B is real symmetric positive semidefinite and w1 ⊥ ker (B), then all
eigenvalues of Tk are positive.

(III) The first (as well as the last) components of all eigenvectors of Tk are
nonzero.

Proof: The properties (I) and (III) are the basic properties of Jacobi matrices,
see [68] Lemma 7.7.1, Theorem 7.9.3. Further, (II) follows from the fact that the
final Jacobi matrix Tl, for which BWl = WlTl, must be nonsingular (and, us-
ing the assumption in (II), symmetric positive definite) and from the interlacing
property (see [68] Theorem 10.1.1). 2

The relationship between the Lanczos tridiagonalization and the Golub-Kahan
bidiagonalization can be described in several ways, see [7] pp. 662–663, [9] pp.
513–515, [30] pp. 212–214 and also [61] pp. 199–200, [47] pp. 115–118. Consider
the coefficients of the Golub-Kahan bidiagonalization αiβi 6= 0 for i = 1, . . . , k+1.
Then, (6.6) multiplied by A and combined with (6.7) gives

AAT Uk = AVk LT
k = [Uk, uk+1]Lk+LT

k = Uk LkL
T
k + αkβk+1 uk+1e

T
k , (6.17)

where

LkL
T
k =




α2
1 α1β1

α1β2 α2
2 + β2

2
. . .

. . . . . .
αk−1βk

αk−1βk α2
k + β2

k


 .

In short, (6.17) represents k steps of the Lanczos tridiagonalization of the matrix
AAT with the starting vector u1 = b/β1 = b/‖b‖. Here, according to the notation

in (6.16), we have B(1) ≡ AAT , W
(1)
k ≡ Uk, T

(1)
k ≡ LkL

T
k and δ

(1)
k+1 ≡ αkβk+1.

Similarly, (6.7) together with (6.9) gives

ATAVk = AT [Uk, uk+1]Lk+ = Vk LT
k+Lk+ + αk+1βk+1 vk+1e

T
k , (6.18)

where

LT
k+Lk+ = LT

k Lk + β2
k+1eke

T
k =




α2
1 + β2

2 α2β2

α2β2 α2
2 + β2

3
. . .

. . . . . .
αkβk

αkβk α2
k + β2

k+1


 .

The identity (6.18) represents k steps of the Lanczos tridiagonalization of the
matrix ATA with the starting vector v1 = AT u1/α1 = AT b/‖AT b‖. Here we

have B(2) ≡ ATA, W
(2)
k ≡ Vk, T

(2)
k ≡ LT

k+Lk+ and δ
(2)
k+1 ≡ αk+1βk+1.
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Remark: The relationship between (6.4)-(6.5) and (6.16) can be similarly de-
scribed using the following relation. The Lanczos tridiagonalization applied to
the augmented matrix

B ≡
(

0 A
AT 0

)

with the starting vector w1 ≡ (u1, 0)T yields in 2k steps the orthogonal matrix

W2k =

(
u1 0 . . . uk 0
0 v1 . . . 0 vk

)

and the Jacobi matrix T2k with the zero main diagonal and the subdiagonals
equal to (α1, β2, . . . , βk, αk).

6.3 Proof of the core problem characteristics

In this section, we prove Theorem 6.1 by relating the characteristics (i)–(iii) of
the core problem to the well known properties of the Lanczos tridiagonalization,
and the properties (I)–(III) of the Jacobi matrices, see Lemma 6.3. We distin-
guish two cases described in the previous section.

Case 1. αiβi 6= 0 for i = 1, . . . , p; βp+1 = 0 or p = n (i.e. n ≤ m), see (6.11).

The square matrix A11 ≡ Lp represents a Cholesky factor of T
(1)
p ≡ LpL

T
p , which

we see by (6.17) results from the Lanczos tridiagonalization of B(1) ≡ AAT with
the starting vector u1 = b/‖b‖, which stops exactly in p steps, i.e.

AAT Up = Up LpL
T
p . (6.19)

Consider the singular value decomposition Lp = RΣST , where Σ = diag(σ1, .., σp),
and R,S ∈ Rp×p are orthogonal matrices. Then

T(1)
p = LpL

T
p = RΣ2RT

is the spectral decomposition of the matrix T
(1)
p , σ2

i are its eigenvalues and ri =
Rei its eigenvectors, i = 1, . . . , p. Consequently, from (I) the values σ2

i are
distinct and thus the singular values of Lp are distinct. The matrix Lp is square
with positive elements on its diagonal. Therefore all its singular values must be
positive, which proves (i). Moreover (iii) follows from (III), since

bT
1 ri = β1e

T
1 ri 6= 0 for i = 1, . . . , p.

The minimality property (ii) can be proved by contradiction. For some or-
thogonal matrices P̃, Q̃ let

P̃T
[

b AQ̃
]

=

[
b̃1 Ã11 0

0 0 Ã22

]
,
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where Ã11 ∈ Rq×q with q < p. (The system (6.1) is compatible, see (6.11), and
therefore, for example by considering the QR–decomposition of Ã11, we can with
no loss of generality assume that Ã11 is square.) Substituting

A = P̃

[
Ã11 0

0 Ã22

]
Q̃T

into the Lanczos tridiagonalization (6.19) gives

P̃

[
Ã11 0

0 Ã22

] [
ÃT

11 0

0 ÃT
22

]
P̃T Up = Up T(1)

p ,

i.e. [
Ã11Ã

T
11 0

0 Ã22Ã
T
22

]
(P̃TUp) = (P̃TUp)T

(1)
p , (6.20)

with

P̃T u1 = P̃T b/‖b‖ =

(
b̃1/‖b‖

0

)
.

Since Ã11Ã
T
11 ∈ Rq×q and b̃1 ∈ Rq, the Lanczos tridiagonalization represented by

(6.20) must stop in at most q steps, and T
(1)
p must have δ

(1)
q+1 = 0, which contra-

dicts the fact that T
(1)
p is a Jacobi matrix.

Case 2. αiβi 6= 0 for i = 1, . . . , p, and βp+1 6= 0; αp+1 = 0 or p = m (i.e. n ≥ m),
see (6.12). The rectangular matrix A11 ≡ Lp+ can be linked to the matrix

T
(2)
p ≡ LT

p+Lp+, which we see by (6.18) results from the Lanczos tridiagonalization

of B(2) ≡ ATA with the starting vector v1 = AT b/‖AT b‖. It stops exactly in p
steps, i.e.

ATAVp = Vp LT
p+Lp+. (6.21)

Consider the singular value decomposition Lp+ = RΣST , where R ∈ R(p+1)×p

is now a rectangular matrix with orthonormal columns, S ∈ Rp×p is orthogonal
matrix. Then

T(2)
p = LT

p+Lp+ = SΣ2ST

is the spectral decomposition of the matrix T
(2)
p , σ2

i are its eigenvalues and si =
Sei its eigenvectors, i = 1, . . . , p. Similarly to the previous case, from (I) it
follows that the singular values of Lp+ are distinct. Since by construction v1 does
not have any nonzero component in the nullspace of ATA, (II) yields that the
singular values of Lp+ are positive, which proves (i). Moreover, eT

1 si 6= 0 by (III),
i = 1, . . . , p. Considering Lp+S = RΣ and the fact that Lp+ is lower bidiagonal
with nonzero bidiagonal elements, eT

1 ri 6= 0, i = 1, . . . , p. Consequently

bT
1 ri = β1e

T
1 ri 6= 0 for i = 1, . . . , p
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which proves (iii).
The minimality property (ii) can be proved by contradiction, similarly to the

previous Case 1. For some orthogonal matrices P̂, Q̂ let

P̂T
[

b AQ̂
]

=

[
b̂1 Â11 0

0 0 Â22

]
,

where Â11 ∈ R(q+1)×q with q < p. (The system (6.1) is incompatible and therefore
we can with no loss of generality assume that Â11 is rectangular of the given
dimensions.) Substituting

A = P̂

[
Â11 0

0 Â22

]
Q̂T

into the Lanczos tridiagonalization (6.21) gives
[

ÂT
11Â11 0

0 ÂT
22Â22

]
(Q̂TVp) = (Q̂TVp)T

(2)
p , (6.22)

with

Q̂T v1 = Q̂TAT b/‖AT b‖ =

[
ÂT

11 0

0 ÂT
22

]
P̂T b/‖AT b‖ =

(
ÂT

11b̂1/‖AT b‖
0

)
,

which leads to a contradiction exactly in the same way as in Case 1.

Summarizing, we have shown in this chapter that the fundamental properties
of the core problem can be proved in an elegant way without using the singular
value decomposition of the whole matrix [b,A]. Here the Golub-Kahan bidiago-
nalization and the Lanczos tridiagonalization are used as very strong mathemat-
ical tools for constructing proofs.

Possible directions for further research

The presented relationship may be found useful in applications of the core
problem formulation discussed in the previous chapter, in particular in connection
with large ill-posed problems. From the core problem point of view one should
particularly ask whether and when the matrix Lk+ for k < p (possibly k ¿ p) can
be considered a sufficiently good approximation to the core matrix Lp+. When
p ¿ m, one must ask how to numerically indicate the separation of the core
problem, since in finite precision computation αp+1 will hardly be identically
zero. Similarly, one can ask when the tridiagonal matrix Tk, k < p, sufficiently
approximates the matrix Tp discussed above. It might be useful to study in
this context perturbation theory of Jacobi matrices, in particular the specific
perturbations when the off-diagonal element δk+1 = αk+1βk+1 is replaced by zero,
see [46].
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Conclusions

In part I of this thesis, we have discussed techniques for constructing invariant
subspaces of a general square matrix A. First, we have considered the frequently
used IRA process with shifts beeing the smallest Ritz or harmonic Ritz values
of A, see [81]. Then we have presented an alternative technique in which the
roots of transformed and scaled Tchebychev polynomials are taken for the shifts
in the IRA process. The convergence of the IRA process has been studied in
[81] for some special cases, see also [49]. We have generalized some of these
results and described the convergence by the angle between the updated starting
vector of the Arnoldi process and the searched invariant subspace, and by the
convergence of subdiagonal elements of the upper Hessenberg matrix to zero. We
have tested assumptions of these theorems on numerical example to demonstrate
their fulfillment.

We have analyzed the case when the smallest in magnitude eigenvalue λ of A
has geometric multiplicity greater then one. We have shown that in this case the
IRA process produces a Hessenberg matrix with a small subdiagonal element on
the position corresponding to the dimension of some of the Jordan blocks corre-
sponding to λ. Thus it is not always possible to construct the invariant subspace
of prescribed dimension and it is important to modify the stopping criterion for
determining an invariant subspace. The error analysis is an extra open problem,
which is not solved here. However, the discussion based on our observation indi-
cates how to avoid the difficulties with defective and/or derogatory matrices in
practice.

We have compared the classical IRA process and the new technique numeri-
cally and we have found that on the demonstrated examples the new technique
is usually more efficient. The remaining issue is how to construct Tchebychev
filters in some special cases, e.g., for matrices having eigenvalues with a small
real part and a very big imaginary part.

In Part II, we have considered the concept of core reduction in general al-
gebraic unitarily invariant linear approximation problem. We have presented
alternative proofs of fundamental properties of the core problem based on the
relationship between the Golub-Kahan bidiagonalization, the Lanczos tridiago-
nalization and the well known properties of Jacobi matrices. We have discussed
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possible applications of the core problem formulation; especially in regularization
methods for solving large scale ill-posed problems, where the outer Golub-Kahan
bidiagonalization is combined with an inner regularization applied to the reduced
problem. We have outlined possible directions for further research and formulated
several open questions arising from the core theory. We believe that the relation-
ships presented in this thesis, together with known results on Jacobi matrices,
can be used in further investigation of effective stopping criteria in regularization
methods.
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