Title: Recombination study of ions with electrons at temperatures below 300 K
Author: Tomáš Kotrík
Department: Department of Surface and Plasma Science
Supervisor of the doctoral thesis: Prof. RNDr. Juraj Glosík, DrSc.
Department of Surface and Plasma Science

Abstract: Presented is the study of recombination of ions with electrons performed at low temperatures using the Flowing afterglow with Langmuir probe experimental technique. Studied was the dissociative recombination of \(\text{H}_3^+ \) and \(\text{D}_3^+ \) ions at temperatures 77 – 300 K. Apart from a two-body also a three-body recombination channel assisted by neutral He atoms was identified and studied. The obtained temperature dependence of the two-body recombination rate coefficient is in a good agreement with findings of other experimental and theoretical works. The dissociative recombination of \(\text{HCO}^+ \) and \(\text{DCO}^+ \) ions with electrons was studied in the temperature range 150 – 300 K. The observed temperature dependence of measured recombination rate coefficient for \(\text{HCO}^+ \) and \(\text{DCO}^+ \) ions (~\(T^{-1.3} \) and ~\(T^{-1.1} \), respectively) is in agreement with the majority of previous experimental works and evokes that indirect mechanism governs the recombination process. The electron-assisted collisional-radiative recombination of \(\text{Ar}^+ \) ions was for the first time studied at temperatures 50 – 300 K. The measured temperature dependence of the recombination rate coefficient ~\(T^{-4.5} \) corresponds with the value given by the theoretical works. For the measurements at cryogenic temperatures below 77 K a novel FALP-type apparatus was developed and constructed – Cryo-FALP II.

Keywords: dissociative recombination, collisional-radiative recombination, FALP, \(\text{H}_3^+ \), \(\text{HCO}^+ \)