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elipsometrie, solárńı články
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Author: Károly Marák

Department: Institute of Physics of Charles University

Supervisor: RNDr. Martin Veis, Ph.D., Institute of Physics of Charles University

Abstract: Periodic nanostructures, such as diffraction gratings, are widely used
in photonic devices and recently in solar cells. Rapidly developing technologies of
their preparation require improvements of characterization methods. In this the-
sis, the model method for the description of optical response of anisotropic diffrac-
tion gratings is introduced. This method is used to create a numerical model.
The correctness of this model is verified on the basic example of the Fabry-Perot
resonator, where the numerically calculated values of reflectivity correspond with
the analytical ones. Afterwards, a new structure of a solar cell with diffraction
grating was introduced. Parameters of this grating were optimized to obtain to
highest efficiency of light trapping inside the solar cell. Finally, the optical and
magneto-optical response of permalloy grating was calculated. It was found, that
the factory parameters of the grating do not correspond with real values.

Keywords: diffraction gratings, magneto-optical spectroscopy, spectroscopic el-
lipsometry, solar cells



Contents

1 Introduction 2

1.1 Di�raction Gratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Grating Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Electromagnetic Waves in Periodic Media 5

2.1 Maxwell's Equations and the Wave Equation . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Periodic Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Transfer Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Numerical Simulations 14

3.1 Wolfram Mathematica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 The Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Fabry�Pérot etalon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Possible applications in solar cell technology . . . . . . . . . . . . . . . . . . . . . . . 16

4 Experimental Results 20

4.1 Ellipsometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Magneto-optical spectrometer based on the azimuth modulation technique . . . . . . 21

4.3 The Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4 Longitudinal magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5 Polar magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.6 Ellipsometric experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Conclusion 32

1



Chapter 1

Introduction

1.1 Di�raction Gratings

Di�raction gratings have been used in spectroscopy and other studies of electromagnetic phenomena

for nearly two centuries. Josef Fraunhofer (1798-1826), the discoverer of the dark lines in the solar

spectrum, built the �rst gratings om 1819 by winding �ne wires around two parallel screws [1].

However, it is only during the past forty years or so that a thorough understanding of nearly all

aspects of the behavior of di�raction gratings has been archived through the consistent application

of Maxwell's equations with the help of advanced analytical and numerical techniques.

Simply said, a di�raction grating is an optical component with a periodic structure used to split

and di�ract light into beams traveling in di�erent directions. Because these directions depend on

the frequency of the incident electromagnetic wave, it can be used as a dispersive element. Because

of this, gratings are often used in monochromators and spectrometers.

Modern gratings may have up to thousands of lines per millimeter with near-perfect periodicity.

The groove shapes can be controlled to be sinusoidal, rectangular (as shown in �g.1.1) and so forth;

these gratings can be made on various metal, plastic and glass substrates and coated with thin-�lm

metal or dielectric stacks. The primary applications of di�raction gratings are in spectroscopy

(where they are used for analyzing the frequency content of electromagnetic radiation), but they

Figure 1.1: Cross section of a simple rectangular grating made of SiO2, with three orders of the
re�ected light displayed
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are also used as wavelength selectors in tunable lasers, beam sampling mirrors in high-power lasers,

band-pass �lters, pulse compressors and polarization-sensitive optics, among other applications.

1.1.1 Grating Theories

There are several theoretical approaches dealing with the EM theory of gratings. The simplest

theory of gratings treats them as corrugated structures that modulate the amplitude and/or phase

of the incident beam in proportion to the local re�ectivity and the height or depth of the surface

relief features. The modulated re�ected (or transmitted) wavefront is then decomposed into its

Fourier spectrum to yield the various di�racted orders. Known as the scalar theory of gratings,

this elementary treatment yields the correct number and direction of propagation for the di�racted

orders, but it does not provide an accurate estimate of the amplitude, phase and polarization state

of each order.

From a mathematical point of view, Maxwell's equations can be expressed as partial di�erential

equations. In the grating case, they have constant coe�cients - they can be solved numerically in

two dimensions. Because of numerical instabilities, this method - the classical di�erential method

- only works for shallow gratings.

Modal methods, like the one we're describing in this work, work for lamellar pro�les. They are

based on the decomposition of EM �eld in a combination of modes, which are some base vectors

chosen according to the situation.

The integral method is based on the idea that the solution of electromagnetic scattering problems

can be found by simple integration, provided that the �eld and its normal derivative on the surface

of the scattering object (and at in�nity) are known.

The �nite-element method represents the �eld as a sum of elementary functions φi over the

mesh cells number:

E =
∑

cmφm(x, y), (1.1)

with cmbeing the unknown amplitudes. φm is assumed to be di�erent from zero only in the

m-th cell.

See Table 1.1 for a summary of calculation methods.

For more details about the methods used to describe di�raction gratings, see [2].
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Chapter 2

Electromagnetic Waves in Periodic

Media

2.1 Maxwell's Equations and the Wave Equation

Maxwell's equations are a set of partial di�erential equations that describe how electric and magnetic

�elds are generated .In the absence of macroscopic currents, charges, polarization or magnetization

the equations have the following form[1]:

∇.E = 0, (2.1)

∇.B = 0, (2.2)

∇×E = −∂B

∂t
, (2.3)

∇×B =←→µ .←→ε .∂E

∂t
. (2.4)

Here E is the electric �eld vector, B is the magnetic �eld vector,←→µ is the permeability tensor

and ←→ε is the permittivity tensor. From these equations, we can derive the so-called wave equation,

which desribes the propagation of electromagnetic waves:

∆E−←→µ .←→ε .∂
2E

∂t2
= 0. (2.5)

2.2 Polarization

One solution to Maxwell's equations is a monochromatic plane wave:

E = E0e
ı(k.r−ωt), (2.6)
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Figure 2.1: Linear, elliptical and circular polarizations[3]

B = B0e
ı(k.r−ωt); (2.7)

where k is the wave-vector which speci�es the direction of propagation, r is the position vector, t

is time and ω is the angular frequency. In isotropic media, described by constant permittivity and

permeability, vectors E,B,k form an orthogonal clockwise system. Because of this and Maxwell's

equations, two of these vectors already allow us to compute the third. In our calculations, we'll

use k to specify the wave's direction and E to specify its polarization - a general property of all

vectorial waves describing the evolution of the vector in time and space .

Let us consider a plane wave with k pointing along the z direction. In this case, the electric

�eld can only have x and y components(as shown in Fig.2.1) :

Ex(z, t) = x̂E0xe
ı(kz−ωt), (2.8)

Ey(z, t) = ŷE0ye
ı(kz−ωt+δ). (2.9)

As a function of δ (here δ is the phase difference between the y and x ), we can have several

kinds of polarizations: linear(for exampleδ = 0), circular (δ = π
2 ), elliptical (δ = π

4 ) (See �g. 2.1

) . Every polarization can by characterized by an angle of rotation (azimuth) and ellipticity (the

major to minor axis ratio). Furthermore, we call a polarization transverse electric (TE) when there

is no electric �eld in the direction of propagation (so it is parallel to the surface of the grating).

In the opposite case, when the same can be said about the magnetic �eld, we call a polarization

transverse magnetic (TM).
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Figure 2.2: In our example, the permittivity tensor is diagonal in both materials (air and SiO2),
thus we can work with it as a scalar quantity. In points A and B, function ε(r) will have the
following values : ε(A)= εair, ε(B) = εSiO2

. Furthermore, we can see that in the grating region,ε(r)
is periodic in the y-direction with a period of 200nm, while constant in the direction of axes x and
z , so Λx = Λz =∞ and Λy = 200nm .

2.3 Periodic Media

A periodic medium for us is a medium in which permittivity is a periodic (repeating in space)

function of the coordinates.

Let us assume an anisotropic medium described by a general relative permittivity tensor

←→ε (r) =

 εxx(r) εxy(r) εxz(r)

εyx(r) εyy(r) εyz(r)

εzx(r) εzy(r) εzz(r)

 . (2.10)

At optical frequencies, we can replace the permeability tensor with a scalar quantity:

←→µ = µ0, . (2.11)

In the general case, we can characterize the periodicity of the grating region with the so-called

grating vector :

Γ = x̂Γx + ŷΓy + ẑΓz, (2.12)

where

|Γ| = Γ =
2π

Λ
(2.13)

and

Γi =
2π

Λi
, i = x, y, z. (2.14)

We have

1

Λ2
=

1

Λ2
x

+
1

Λ2
y

+
1

Λ2
z

. (2.15)
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Here, x̂, ŷ, ẑ are unit vectors in the directions of the Cartesian axes, Λ is the grating period and

Λx, Λy, Λzare the grating periods parallel to their respective axes.

Since←→ε (r)is indeed periodic, it is favorable to expand the permittivity into a Fourier series:

εij(r) =
∑
l

exp(ılΓ.r)εij,l, (2.16)

where i, j are coordinates and l speci�es terms in the Fourier expansion.

We can rewrite equation (2.16) with normalized components:

εij(r) =
∑
l

exp(ılnΓ.r)εij,l, (2.17)

where (we use this to de�ne p, q and s):

nΓ = Γ
c

ω
= x̂

λ0

Λx
+ ŷ

λ0
Λy

+ ẑ
λ0

Λz
= px̂ + qŷ + sẑ, (2.18)

and

r =
ω

c
r, z =

ω

c
z, y =

ω

c
y x =

ω

c
x, (2.19)

Now let's rewrite Maxwell's equations for the �elds in equation (2.6) and equation (2.7):

∇×E = −ıωB = −ıωµvacH, (2.20)

∇×B = ıωµvacεvacεE. (2.21)

According to the Floquet theorem, the electric and magnetic �elds of waves can be expressed

as , √
εvac
µvac

E(z) =
∑
m

em(z) exp(−ınm.r), (2.22)

√
µvac
εvac

H(z) =
∑
m

hm(z) exp(−ınm.r); (2.23)

where

em(z̄) = x̂exm(z̄) + ŷeym(z̄) + ẑezm(z̄)z, (2.24)

hm(z̄) = x̂hxm(z̄) + ŷhym(z̄) + ẑhzm(z̄)z, (2.25)

and the normalized propagation vector of the m-th Fourier components has the form

nm(z̄) = x̂pm(z̄) + ŷqm(z̄) + ẑsm(z̄)z. (2.26)

Here,

pm = mp, qm = mq + q0, sm = ms, (2.27)
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with

q0 =
√
ε(0) sin(ϕi), (2.28)

where ϕi is the angle of incidence.

2.4 Transfer Matrix

After some mathematical alterations detailed in [4], we get the following equations:

d

dz
ft̂ = ıCf t̂, (2.29)

fn̂ = Df t̂. (2.30)

Here,

ft̂ =


ex

hy

ey

hx

 , (2.31)

fn̂ =

(
ez

hz

)
; (2.32)

C =


pε−1

zz εzx + s pε−1
zz p pε−1

zz εzy −pε−1
zz q

εxzε
−1
zz εzx − εxx + q2 εxzε

−1
zz p + s εxzε

−1
zz εzy − εxy + qp −εxzε−1

zz q

qε−1
zz εzx qε−1

zz p qε−1
zz εzy + s −qε−1

zz q + 1

εyx − εyzε−1
zz εzx + pq −εyzε−1

zz p εyy − εyzε−1
zz εzy − p2 εyzε

−1
zz q + s

 , (2.33)

D =

(
−ε−1

zz εzx −ε−1
zz p −ε−1

zz εzy ε−1
zz q

−q 0 p 0

)
, (2.34)

where

p =


Mp 0 0 0 0

0 p(M − 1) 0 0 0

0 0 ... 0 0

0 0 0 −p(M − 1) 0

0 0 0 0 Mp

 , (2.35)

q =


q0 +Mq 0 0 0 0

0 ... 0 0 0

0 0 q0 0 0

0 0 0 ... 0

0 0 0 0 q0 −Mq

 , (2.36)
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s =


Ms 0 0 0 ...

0 s(M − 1) 0 ... 0

0 0 ... 0 0

0 ... 0 −s(M − 1) 0

... 0 0 0 −sM

 , (2.37)

εij =


εij,0 εij,−1 . . εij,−M

εij,1 εij,0 . . .

. . . . .

. . . εij,0 εij,−1

εij,M . . εij,1 εij,0

 ; (2.38)

here M is the order of the Fourier expansion (can be any integer, it shows how precisely we

approximate the periodic structure of permittivity).

The solution to eqs. 2.29, 2.30 reduces to a problem of �nding the eigenvectors of matrix C.

Let κrdenote an eigenvalue determined from the characteristic equation:

det(C− κ1) = 0. (2.39)

The corresponding (column) eigenvector will be denoted as νr( with elements νrl ). Matrix T

which is transforming C to a diagonal one is built of these eigenvectors, so

T =

 ν1 ν2 ... νn

 . (2.40)

We de�ne vector g, which multiplied by T gives ft̂:

ft̂ = Tg; (2.41)

with further algebraic operations we get the following equations:

d

dz
T−1ft̂ = ıT−1CTT−1ft̂, (2.42)

d

dz
g = ıκg, (2.43)

where κ = δrlκlis a diagonal matrix and g is a column vector.

For homogenous and isotropic regions, we get:

T =


q̇ ṗ q̇ ṗ

q̇ξ εṗξ−1 −q̇ξ −εṗξ−1

−ṗ q̇ −ṗ q̇

ṗξ −εq̇ξ−1 −ṗξ εq̇ξ−1

 , (2.44)

where
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ṗ = δnlṗl (2.45)

q̇ = δnlq̇l (2.46)

ξ̇ = δnlξl, (2.47)

ξm = (ε− nt̂m)1/2, (2.48)

nt̂m = (p2
m + q2

m)1/2, (2.49)

ṗm =
pm
nt̂m

, (2.50)

q̇m =
qm
nt̂m

. (2.51)

The corresponding column vector becomes :

g =

(
g+

g−

)
=


TEg+

TMg+

TEg−

TMg−

 , (2.52)

where elements of the column vectors can be written as :

TEg± =



TEg±M
·
·

TEg±0
·
·

TEg±−M


, (2.53)

TMg± =



TMg±M
·
·

TMg±0
·
·

TMg±−M


, (2.54)

For example, TMg(0)−
3 indicates the third di�raction order (3 in the subscript ) of the inci-

dent(signed by the −) TM wave in the region above the grating ((0) in the superscript) (as shown

in �g.2.3).
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Ultimately, all the information about the grating can be expressed using the transfer matrix

(superscripts indicate the region or boundary which the matrices characterize)

W = B(01)U(1)(d̄1)B(12). (2.55)

Here

U(1)(d̄1) = exp(ıκ(1)d̄1), (2.56)

B(01) =
[
T(0)

]−1

T(1), (2.57)

B(12) =
[
T(1)

]−1

exp(−ıs(1)d̄1)T(2). (2.58)

Here d̄1 = ω
c d1is the normalized thickness of the grating.

Matrix W relates vectors g(0)and g(2) the following way:

g(0) =

(
g(0)+

g(0)−

)
=

(
W1 W2

W3 W4

)(
g(2)+

g(2)−

)
= Wg(2). (2.59)

The wave of unit amplitude incident from region (0) onto the grating with TE/TM polarization

is de�ned by :

TEg(0)− =



0

·
0

1

0

·
0


, TMg(0)− = 0, (2.60)

TMg(0)− =



0

·
0

1

0

·
0


, TEg(0)− = 0. (2.61)

We shall assume that there is no wave propagating from region(0) towards the grating region

(1) . The incident wave generates re�ected (g(0)+) and transmitted (g(2)−) waves.

Assuming the situation described above and using equation 2.59, we get :

g(2)− = (W4)−1g(0)−, (2.62)

g(0)+ = W2(W4)−1g(0)−. (2.63)
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Figure 2.3: The geometric situation

The power carried by a wave of the m-th di�raction order propagating with the normal, i .e., the

z̄ component of the normalized propagation vector oriented parallel or anti-parallel with respect to

ẑ in region I (I = 0, 2) with TE and TM polarizations is given by:

TEp(I)±
m = <(ξm)|TEg(I)±

m |2, (2.64)

TMp(I)±
m = <(

ε(I)

ξm
)|TMg(I)±

m |2. (2.65)

13



Chapter 3

Numerical Simulations

With the aim of numerically solving the aforementioned problem, speci�cally, to compute g(2)−

and g(0)+, a program was written in the programming language Mathematica.

3.1 Wolfram Mathematica

Mathematica [5] is a computational software program used in scienti�c, engineering, and mathe-

matical �elds and other areas of technical computing. It was conceived by Stephen Wolfram and

is developed by Wolfram Research of Champaign, Illinois . One of its strengths is the potential of

symbolic calculations, which for say a problem with a symmetry can dramatically reduce calcula-

tion times. It was chosen because of the ease it handles matrix operations with (the creation of

matrix C from its submatrices, then the division of matrix W to submatrices). The numerically

most challenging part ( computing the eigenvalues and eigenvectors of C for matrices Tand κ )

could also be done without problems.

3.2 The Code

As an input, we always had the permittivities of the materials used in the grating as a function

of the energy of the light, and of course the geometric structure of the grating. From here, our

aim was to calculate g(0)+, speci�cally, to compute the Kerr rotation of the re�ected light then to

compare it to the experimental results (for more details, see chapter 4). In our case, the surface

of the grating was rectangular, so we used a combination of Heaviside functions to model it (see

algorithm 3.1 ) (the Heaviside theta function is a function which is 0 for negative values and 1

positive values and zero):

From this, we then substitute to the equations outlined, and arrive to the vector g(0)+, which

contains all the information we need, speci�cally, the Kerr rotation and ellipticity to compare with

experimental measurements:

TEΘj =TE θj + ıTEεj =
TMg±j
TEg±j

, (3.1)

where TEθj is the rotation of polarization in the j-th di�raction order for incoming TE waves
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Algorithm 3.1 Calculating the Fourier coe�cients for the surface permittivity. Here, g is the order
of expansion, x is the function variable and ii

π is the ratio of the length of protruding part to the
whole period (We're working with a one-dimensionally periodic region. Furthermore, ExxFourier is
a vector of εxx's Fourier expansion; we can see that in between the protruding parts it is supposed
to be 1 (we're working with relative permittivities). Similarly, εxy is supposed to be zero in between
the protruding parts, because the permittivity of air is diagonal ).

FC = Table[ FourierCoe�cient[(HeavisideTheta[x + ii*(Pi*1)/1090.] - HeavisideTheta[x -
ii*(Pi*1)/1090.]), x, k], {k, -(g - 1), (g - 1)}];
Unitvector = Table[KroneckerDelta[i, g], {i, 2 g - 1}];
ExxFourier = Table[FC*(Permit[[i, 2]] - 1) + Unitvector, {i, n}];
ExyFourier = Table[FC*(Permit[[i, 3]] ), {i, n}];

Figure 3.1: Fabry-Pérot etalon

and TEεj + + is the j-th order ellipticity . Similarly for TM waves :

TMΘj =TM θj + ıTM εj =
TEg±j
TMg±j

. (3.2)

3.3 Fabry�Pérot etalon

A Fabry-Pérot etalon is made of a transparent plate with two re�ective surfaces (as shown in �gure

3.1)

As follows from Fresnell's equations, re�ectivities for the s and p polarizations are[6] :

Rs =

n1 cos(θi)− n2

√
1−

(
n1

n2
sin(θi)

)2

n1 cos(θi) + n2

√
1−

(
n1

n2
sin(θi)

)2


2

, (3.3)
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Rp =

−n2 cos(θi) + n1

√
1−

(
n1

n2
sin(θi)

)2

n2 cos(θi) + n1

√
1−

(
n1

n2
sin(θi)

)2


2

. (3.4)

Furthermore, if we calculate the interference of in�nity re�ections ( like in �gure 3.1 ), then we

get as the �nal result the re�ective function:

Re =
Ir
Ii

=
F sin2( δ2 )

1 + F sin2( δ2 )
, (3.5)

where

F =

(
2R

1−R2

)2

(3.6)

is the coe�cient of �nesse and

δ =

(
2π

λ

)
2n2d cos(θt) (3.7)

is the phase di�erence between each succeeding re�ection (θt is the angle of light inside the

material ).

Now we attempt to calculate Re using our numerical model and compare the results. To model

the situation, we are using a thin plate made of SiO2with a varying thicknesses and angle of

incidences. The (diagonal) permittivity is dependent on the wavelength. Also, because this is not

a periodic medium, we have Λx = Λy = Λz = 0. The results obtained by the analytical formulae

along with the numerical model are shown in �gures 3.2, 3.3, 3.4.

From the above results it follows that the results obtained for the special case are in accordance

with our methods of computation.

3.4 Possible applications in solar cell technology

Light trapping is one of the major topics in solar cell research. Basically, it deals with preventing

light that has entered the solar cell from leaving it again and thus increasing the probability of it

being absorbed. One way to achieve this is to increase the internal path length of light inside a

solar cell by di�raction with optical nanostructures [7]. The basic idea of using a grating is that

incident light is di�racted into several paths. An optimized grating will di�ract as much light as

possible into directions close to parallel to the surface - thus, it will travel a long distance through

the solar cell before escaping.

The photocurrent density produced by the solar cell is given by [7]:

jph = −e0

λ2ˆ

λ1

ΦAM1.5(λ)abs(λ)dλ. (3.8)

Here, e0 is the elementary charge, abs(λ) is the spectrally dependent absorption coe�cient of

the solar cell, and ΦAM1.5 is the photon �ux in the AM1.5 G spectrum.

16



2.5 3.0 3.5 4.0 4.5 E@eVD

0.05

0.10

0.15

0.20

R

Figure 3.2: Re�ection coe�cient as a function of the light-wave's energy. The continuous line
represents the results obtained with the methods above and the dots those obtained with our
theoretical model. The angle of incidence is 30 degrees and the etalon is 500 nm thick.
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Figure 3.3: Re�ection coe�cient as a function of the light-wave's energy. The continuous line
represents the results obtained with the methods above and the dots those obtained with our
theoretical model. The angle of incidence is 80 degrees and the etalon is 500 nm thick.
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Figure 3.4: Re�ection coe�cient as a function of the light-wave's energy. The continuous line
represents the results obtained with the methods above and the dots those obtained with our
theoretical model. The angle of incidence is 30 degrees and the etalon is 900 nm thick.
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Figure 3.5: The inspected model of a solar cell
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Figure 3.6: Re�ection coe�cient as a function of Λ and d. It can be seen that R has several
local minima; in a setting without a grating or without properly chosen parameters the refraction
e�ciency is around 0.9.

In our example, we consider a structure consisting of a SiN antire�ection coating with a thick-

ness of dAR = 67.8nm, a layer of crystalline silicon with a thickness of dSi = 40µm , a di�raction

grating consisting of Si and SiO2 with its period (Λ) and thickness (d) as variables, and �nally a

backside mirror ( as shown in �gure 3.5). This case was inspected for a single wavelength of light

(1.36µm) for the sake of simplicity.

Since the photocurrent is proportional to the absorbed light's energy, the lesser the re�ected

light's energy the more energy is absorbed inside the medium. Because re�ectivity is easy to

calculate from our model, we used it to judge the e�ectiveness of various con�gurations. In �gure

3.6 we can see the re�ection coe�cient as a function of d and Λ. For d = 125nm and Λ = 400nm we

get the lowest value of re�ection in the inspected interval; we can see that with these parameters,

more energy is absorbed inside the solar cell, thus its e�ciency is higher.
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Figure 4.1: Experimental setup of four zone null ellipsometer for scatterometric experiments.

Chapter 4

Experimental Results

4.1 Ellipsometer

In our experiments, we used a four-zone null ellipsometer.

Spectroscopic ellipsometry is an experimental technique that measures the change of incident

light polarization upon its re�ection (or sometimes transmission). The exact nature of polarization

change is determined by the material and geometry of the nanostructured array. If the material

of the sample is isotropic, then the Jones re�ection matrix is diagonal and there is no interaction

between the s and p waves. The diagonal elements are related to the array structure and its optical

properties. The ellipsometric angles Ψ and ∆ are then de�ned by following equation:

% =
rpp
rss

= tan Ψeı∆. (4.1)

Spectral dependence of Ψ and ∆ obtained by SE carries the important information about the

geometry of nanostructured arrays.Typical ellipsometric experimental setup is the high power arc

lamp�polarizer�sample�compensator�analyzer. This so-called PSCA optical sequence is widely

used in standard ellipsometric setups. Detailed information about the main ideas of ellipsometry

including basic notions on polarization and experimental techniques is treated in the book written

by Azzam and Bashara [8].

Here, we restrict ourselves to the description of a speci�c four zone ellipsometric con�guration
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which was used in our experiments. This experiential setup is depicted in Fig. 4.1. An optical

sequence of this null ellipsometer is polarizer�sample�compensator�analyzer (PSCA), where the

compensator is a phase-retarding tool. The Jones vector of the light at the output of the analyzer

(and the intensity detected by the detector as well) depends on the rotation angles of polarizer,

compensator and analyzer α, β, γ. By searching the right values of α and β at a �xed γ the null

ellipsometry provides a zero intensity of the light at the output.

4.2 Magneto-optical spectrometer based on the azimuth mod-

ulation technique

A magneto-optical spectrometer was also used to obtain data - the experimental setup for the

measurement of the Kerr rotation was developed by Kahn and later extended for the extraction of

Kerr ellipticity.

When an external magnetic �eld is applied to a ferromagnetic sample, it induces magneto-optical

anisotropy. The o�-diagonal elements of the Jones re�ection matrix become in general nonzero,

which indicates the conversion between s incident and p re�ected (rps) as well as p incident and

s re�ected (rsp) waves. Although the Jones re�ection matrix has generally four elements, it can

be simpli�ed if the magnetic �eld is applied in the certain directions (e.g. perpendicular to the

sample) [4].

There are two basic classes of experimental techniques which are employed for studies of weak

MO e�ects. The �rst class is measuring the direct change of the intensity of light at the output of

an optical element sequence. The second class, more sophisticated one, is based on the modulation

of azimuth or ellipticity of incident light. In combination with a synchronic detection system,

modulation techniques increase the signal-to-noise ratio. However, both classes are used in di�erent

speci�c situations (Kerr microscopy, Kerr vector magnetometry, Kerr spectroscopy, etc.).

There are two basic techniques using the time modulation of the light polarization. First, an

intensity-based method is based on the modulation of ellipticity of a light wave using the photoelas-

tic modulator. This method allows fast measurement, which makes it suitable for studying dynamics

of magnetization processes. Because it is an intensity method, the calibration of the equipment is

required in each measurement, which makes it inconvenient for spectroscopic experiments. The sec-

ond experimental technique employs the Faraday rotation in glass for the modulation of the azimuth

of the polarization ellipse. Such a modulator, called the Faraday cell, consists of a fused quartz rod

with optically polished faces, inserted into a solenoid coil. Owing to the sinusoidal time dependence

of the modulation current in the coil generated by a high power audio ampli�er, the azimuth of

the light wave passing through the cell is harmonically modulated in time. One can imagine the

Faraday cell as a rotator with time dependent angle of rotation. A typical sequence of optical

elements in a null MO spectrometer based on the azimuth modulation technique (depicted in Fig.

4.2) is high power arc lamp�monochromator�polarizer compensating Faraday rotator modulating

Faraday rotator�phase plate (for Kerr ellipticity measurements)�sample�analyzer�photomultiplier.

In the small angle approximation, the complex MOKE is measured as the ratio

rsp
rss
≈ θK + iεK
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or

− rps
rpp
≈ θK + iεK ,

where the indecent light beam is s- or p-polarized, respectively. Here θK and εK denote the Kerr

rotation and ellipticity. Compensating Faraday cell automatically turns the plane of polarization

by a certain angle to adjust detected intensity approximately to zero. Therefore it compensates all

changes produced by MO e�ects in the sample or by rotation of the polarizer. This Faraday cell

is controlled by negative feedback loop. Measured signal on the output is then proportional to the

magneto-optical e�ect of the sample and it decreases with increasing ampli�cation of the feedback

regulator. The negative feedback is introduced by means of analog output signal from the lock-in

detector. This signal is used to control the current supply for the compensating cell.

Such compensation technique with azimuth modulation has several advantages over the other

experimental methods. Azimuth modulation with synchronic detection notably increases the signal

to noise ratio. The intensity dependence at the output is a linear function of the deviation from

crossed polarizers. Crossing of the polarizers can be completely automatic (controlled by the

negative feedback loop) and very precise without mechanical input. The value of the measured

angle is not dependent on the intensity of output light (null method). Therefore if a highly stable

current supply for the compensating Faraday cell is used, very small MOKE angles down to the

order of one millidegree can be measured. On the other hand the usage of Faraday cells limits the

photon energy range of the measured spectrum. Typically the energy range is from 1.2 to 6 eV [9].

There were three types of experiments conducted: magneto-optic with perpendicular incidence

and polar magnetization, another magneto-optic with a non-perpendicular incidence in longitudinal

magnetization and ellipsometric experiments without any magnetization.

4.3 The Sample

The investigated sample consisted of a layer of rectangular permalloy grating on a layer of silicon

(with a thickness that for our purposes can be considered in�nite) , as pictured in �gure 4.3. In

the theoretical model we described it as a layer of alternating oxygen and permalloy, a layer of

permalloy and a half-space of silicon. Aside from the factory data (a period of 1000nm, a top line

width of 400nm, a 32nm thick NiFe layer and the relief 16nm deep), AFM experiments have also

been conducted, yielding the following results:

period -1091.5nm, top line width - 359.4nm, depth of the relief - 21.7nm; AFM cannot measure

the thickness of the NiFe layer, so we used the factory value - 32nm (see �g. 4.4 for more details).

4.4 Longitudinal magnetization

In a longitudinal magnetic �eld (the magnetic �eld is parallel to the surface of the grating), the

permittivity tensor has the following form:

←→ε =

 ε1 0 ıε2

0 ε1 0

−ıε2 0 ε1

 . (4.2)
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Figure 4.2: As a light source, a high pressure 450W Xe lamp was used. Afterward, the light was
monochromatized by a prism monochromator. All optical elements, including lenses and glass rods
for modulation and the null cell, were made of suprasil quartz glass with extended transmission to
UV. The temperature of the Faraday cells was kept constant using a closed water circuit with a
termostat. The signal modulation frequency was approximately 2kHz. A pair of calcite polarizers
served as the polarizer and analyzer. To detect the signal in the blue region and near UV, a
photomultiplier tube was employed. The synchronic detection was provided by a lock-in amli�er.
The negative feedback is introduced by means of analog output signal from the lock-in detector.
This signal feedback is introduced by means of analog output signal from the lock-in detector. This
signal is used to control the current supply for the null cell. Owing to the very high stability of
this supply, the resolution of the spectrometer is the order of 10−4deg.The measured sample is
mounted in an electromagnet with a variable magnetic circuit to measure the Kerr e�ect in polar,
longitudinal or transverse geometry. During the measurement, usual values of the magnetic �eld
were 470mT at 2A for the polar con�guration and 100mT at 2A for the longitudinal con�guration.
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Figure 4.3: The factory data

Figure 4.4: AFM measurements
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The angle of incidence was 56 degrees in this case. In these graphs we also included an illustration

of changing the order of the Fourier series, and the e�ect it has on the results (see �gures 4.5, 4.6).

From the results we can see that the data from the AFM experiments approximate the grating more

accurately. Besides these graphs, all the other calculations use a �xed 10th order Fourier series.

The higher the order of approximation, the more accurate is the approximation of the rectangular

grating; however, increasing it also increases computation time as the matrices increase in size with

the order linearly.

4.5 Polar magnetization

In a polar magnetic �eld (the magnetic �eld is perpendicular to the surface of the grating), the

permittivity tensor has the following form:

←→ε =

 ε1 ıε2 0

−ıε2 ε1 0

0 0 ε1

 . (4.3)

The angle of incidence was approximately 0 degrees in this case. Aside from the experimental

data and the standard calculations, we also include approximate calculations based on the so-

called local method, which deals with only planar surfaces; we get the �nal result from a linear

combination of a grating with Ni layers with thicknesses 16nm (or10nm in the other case) and a

32nm respectively (as shown in �g.4.7, 4.8). For more details on the model, see [10].

From the results we can see that the data from the AFM experiments approximate the grating

more accurately. The local method fails in this case; it only gives a rough approximation.

4.6 Ellipsometric experiments

In an ellipsometric setting, the permittivity tensor is diagonal:

←→ε =

 ε1 0 0

0 ε1 0

0 0 ε1

 . (4.4)

The angle of incidence was 60 degrees. In �gures 4.9 and 4.10 the real and imaginary parts of

ρ described in equation 4.1 are shown.

It can be seen that calculations from AFM measurements' parameters yield results that are in

general closer to the experimental data.
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Figure 4.5: Kerr rotation (θk) and ellipticity (εk) as a function of light energy for the factory data.
Dots represent the experimental results while the continuous lines represent the theoretical predic-
tions with the order of the Fourier series (1 means that we used the -1st, 0th and 1st coe�cients ) as
it follows: red - 1, green - 3, yellow - 7, black - 15, blue - 22. Some of the higher order calculations
show �uctuations which are possibly caused by numerical instabilites
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Figure 4.6: Kerr rotation (θk) and ellipticity (εk) as a function of light energy for the data from the
AFM measurements. Dots represent the experimental results while the continuous lines represent
the theoretical predictions with the order of the Fourier series (1 means that we used the -1st, 0th
and 1st coe�cients ) as it follows: red - 1, green - 3, yellow - 7, black - 15, blue - 22. Some of the
higher order calculations show �uctuations which are possibly caused by numerical instabilites.
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Figure 4.7: Kerr rotation (θk) and ellipticity (εk) as a function of light energy for the factory
data. Dots represent the experimental results while the continuous lines represent the theoretical
predictions; blue represents the results from the standard model while khaki represents the simpler
model with the planar surfaces.
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Figure 4.8: Kerr rotation (θk) and ellipticity (εk) as a function of light energy for the data from
the AFM measurements. Dots represent the experimental results while the continuous lines repre-
sent the theoretical predictions; blue represents the results from the standard model while khaki
represents the simpler model with the planar surfaces.
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Figure 4.9: Quantity ρ as a function of energy (E) for the factory data. Dots represent the
experimental results while the continuous lines represent the theoretical predictions.
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Figure 4.10: Quantity ρ as a function of energy (E ) for the data from the AFMmeasurements. Dots
represent the experimental results while the continuous lines represent the theoretical predictions.
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Chapter 5

Conclusion

The primary purpose of this thesis was to create a model of di�raction gratings which makes

it possible to compare experimental results (ellipsometric and magnetooptical) of our permalloy

grating. Taking into consideration the fact that there were two sets of grating parameters availible

- the factory data and the data from the AFM measurements - from the results we can conclude

that the AFM measurements describe the grating more accurately than the factory data.

As the model is able to treat a fairly wide array of problems, we were able to test the it for the

special case of the Fabry-Perot etalon in which comparison with a simpler method implies that the

model yields the correct results for that special case.

Also, we were able to create a simple approximation of light trapping in solar cells and prove

that a correctly chosen con�guration can increase the absorption of light in solar cells.
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