
Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Juraj Citorík

Hlasové ovládání pro efektivní editaci
textu

Department of Software Engineering

Supervisor of the bachelor thesis: RNDr. Jakub Loko£, Ph.D.

Study programme: Computer Science

Curriculum: General Computer Science

Prague 2013

None of this would be possible without the support of my family. Thank you.
I would also like to thank my thesis supervisor, RNDr. Jakub Loko£, Ph.D. for
helpful advice, patience and trust. I would like to extend my sincere gratitude
to those who went above and beyond to help me, including Martina �erníková,
Luká² �urovský, Zuzana Abelovská, Dominik Me¬hart, Martin Klepá£, Tomá²
Susedik, Michal Bilanský, Samuel Barto² and Vendula Michlíková.

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
Charles University in Prague has the right to conclude a license agreement on
the use of this work as a school work pursuant to Section 60 paragraph 1 of the
Copyright Act.

In date Signature

Názov práce: Hlasové ovládání pro efektivní editaci textu

Autor: Juraj Citorík

Katedra: Katedra softwarového inºenýrství

Vedúci bakalárskej práce: RNDr. Jakub Loko£, Ph.D., Katedra softwarového
inºenýrství

Abstrakt: Cie©om tejto práce je poskytnú´ úvod do problematiky digitálneho
spracovania zvuku a rozpoznávania re£i. V texte je popísaných nieko©ko vy-
braných deskriptorov re£i a algoritmov spojených s problematikou. Tieto sú
pouºité v implementácii jednoduchého hlasom ovládaného textového editoru a
.NET kniºnice. Deskriptory sú porovnané s oh©adom na rýchlos´ a presnos´
pri pouºití v systéme rozpoznávania príkazov pre textový editor a to v systéme
závislom alebo nezávislom na hovoriacom. Kniºnica tried poskytuje jednoduchý
spôsob implementácie hlasového ovládania závislého na hovoriacom v obmedzenej
doméne príkazov v ©ubovo©nom programe. Editor textu umoº¬uje uºívate©ovi pri-
radi´ hlasové povely k zabudovaným funkciám programu, £o napríklad umoº¬uje
aj neskúseným uºívate©om pouºíva´ pokro£ilé funkcie bez nutnosti predo²lého
u£enia sa napríklad klávesových skratiek. Tento prístup je navy²e nezávislý na
jazyku a je pouºite©ný aj pre ©udí s poruchami re£i, £o momentálne roz²írené rie²e-
nia neumoº¬ujú. Výsledky experimentov ukazujú, ºe prezentované deskriptory a
algoritmy sú, za predpokladu dostato£nej kvality nahrávky, dostato£ne efektívne
pre pouºitie pri rozpoznávaní príkazov v systéme závislom na hovoriacom.

K©ú£ové slová: hlasové ovládanie, digitálne spracovanie zvuku

Title: Voice control for e�ective text editing

Author: Juraj Citorík

Department: Department of Software Engineering

Supervisor: RNDr. Jakub Loko£, Ph.D., Department of Software Engineering

Abstract: The aim of this thesis is to provide a comprehensive introduction to
digital sound processing and speech recognition. Selected speech recognition fea-
tures as well as algorithms are introduced and utilized in a voice controlled text
editor and a .NET class library. The performance of the features is evaluated in
both speaker-dependent and speaker-independent recognition of commands relat-
ed to text editing. The library provides a straightforward way of implementing
a speaker-dependent, domain-constrained voice recognition in an arbitrary appli-
cation. It is used in a simple voice controlled text editor. The editor allows the
user to assign voice commands to built-in actions. In this way, it is possible for
inexperienced users to access and use advanced features of the program without
having to learn complex work�ows. Moreover, this approach is language-agnostic
and can even be used by people with speech impairments as opposed to major-
ity of presently used voice recognition systems. The results of the experiments
indicate that, given a recording of su�cient quality, the presented features and
algorithms provide an e�ective means to implement a speaker-dependent speech
recognition system, which can be used in a voice controlled text editor.

Keywords: voice recognition, digital sound processing

Contents

Introduction 3

1 Speech and Sound Processing Fundamentals 5
1.1 Sound . 5

1.1.1 Properties of Sound . 5
1.2 Digital Signal Processing Fundamentals 6

1.2.1 Sound Digitization Process 6
1.2.2 Waveform and Frequency Spectrum 6
1.2.3 The Discrete Fourier Transform 8

1.3 Windowing . 10
1.3.1 Spectral Leakage . 10
1.3.2 Window Characteristics 10
1.3.3 Windows . 10

1.4 Speech . 13
1.4.1 Production of Speech . 13
1.4.2 Speech Signal Characteristics 13
1.4.3 Speech Perception . 15
1.4.4 A Simple Speech Production Model 17

1.5 Speech Recognition Features . 17
1.5.1 Mel Frequency Cepstral Coe�cients 17
1.5.2 Linear Predictive Coding 20
1.5.3 Perceptual Linear Prediction 21

1.6 Measuring Level of Similarity Between Speech Signals 23
1.6.1 Similarity of Feature Vectors 23
1.6.2 Dynamic Time Warping 23

1.7 Voice Activity Detection . 24

2 Related Works 25
2.1 Types of Speech Recognition Systems 25

2.1.1 Speaker-dependent Systems 25
2.1.2 Speaker-independent Systems 25
2.1.3 Speaker-adapting Systems 26

2.2 Modern Speech Recognition . 26
2.2.1 Acoustic Models . 27
2.2.2 Language Models . 27
2.2.3 Decoding . 27

2.3 Summary . 27

3 Implementation 28
3.1 Available Speech Recognition Feature Extraction Tools 28

3.1.1 MARSYAS . 28
3.1.2 Yaafe . 28
3.1.3 openSMILE . 28

3.2 .NET Class Library Implementation 28
3.2.1 Using openSMILE to extract speech features 28

1

3.2.2 Object Model . 30
3.3 Using the Voice Control Library 32

3.3.1 Prerequisites . 32
3.3.2 Basic usage . 32
3.3.3 Advanced Usage . 33

4 A Voice Controlled Text Editor 34
4.1 Motivation . 34
4.2 A List of Possible Commands . 34
4.3 A Simple Voice Controlled Text Editor 36

4.3.1 Usage Guide . 37
4.3.2 Implementation . 37

4.4 Further Challenges . 38

5 Experiments 39
5.1 Goals . 39
5.2 Evaluated Features . 39
5.3 Methodology . 40

5.3.1 List of Commands Used 40
5.3.2 Speaker-dependent Speech Recognition 41
5.3.3 Speaker-independent Speech Recognition 41

5.4 Results . 41
5.4.1 Speaker-dependent Recognition 41
5.4.2 Speaker-independent Recognition 42
5.4.3 Recognition Success Rates of Individual Commands 42
5.4.4 Extraction Time . 42

5.5 Discussion . 42
5.5.1 Speaker-dependent speech recognition 42
5.5.2 Speaker-independent speech recognition 42
5.5.3 Recognition Success Rates of Individual Commands 45
5.5.4 Extraction Time . 45
5.5.5 Summary . 46

Conclusion 47

Bibliography 48

2

Introduction

Speech has always been the dominant means of human communication. This
preference for spoken language communication, however, hasn't yet been re�ected
in the way humans interact with computers. Most computers utilize a graphical
user interface, which depends on keyboard input and mouse clicks. Nowadays,
consumers place a premium on simplicity of use and therefore it is essential to
create human-computer interfaces that allow for a more natural interaction, gentle
learning curve and thus higher productivity. One of the means to achieve this is
speech recognition.

In the following chapters we will explore fundamentals of digital sound process-
ing and speech recognition. This includes basic properties of sound and human
speech, digitization of sound, speech recognition features and algorithms. These
will be used as a foundation to build a voice controlled text editor and a .NET
class library. Finally, the performance of the various speech recognition features
will be assessed in both speaker-dependent and speaker-independent system for
voice control with focus on commands related to text editing.

Motivation

Novice users and expert users alike can bene�t from a spoken language interface.
It is frequently di�cult for novice users to control a new program, where simple
actions require the knowledge of the program's interface conventions and involve
manipulating several windows, checkboxes and sliders. This is in stark contrast to
the simplicity of merely saying what the user wants to do. Moreover, professional
users can use voice commands to avoid unnecessary obstacles in their work�ow.
For instance, a graphic designer might invoke a text formatting command using
his or her voice while using the mouse to pinpoint the area to which the desired
action should be applied. This results in a more �uid work�ow and thus increased
productivity.

Speech recognition features

Speech recognition features describe the speech signal in a way that allows us to
�nd for a spoken command a matching command already present in the voice
command database. In the following chapters, we will explore various speech
recogniton features, such asMel Frequency Cepstral Coe�cients, as well as speech
processing algorithms and techniques that allow us to create a voice-controlled
text editor.

We will evaluate the performance of the features in one of the following chap-
ters. The criteria that are of interest to us are speed of extraction and accuracy.

Voice control for text editing

The set of actions used in a typical text editing task is limited which allows us
to provide the user with a list of available commands and prompt him or her to

3

record the corresponding phrase. In this way, a local speaker-dependent voice
command database is created.

This database is then utilized when the user uses the voice control to deter-
mine the correct action with respect to the spoken utterance. The fact that the
user creates his or her own command database renders it usable for people with
mild speech impairments and people who speak with a strong accent. It is also
language-agnostic.

Speaker-independent speech recognition

We will also examine the perfomance of a speaker-independent voice recognition
system, which will use a database of text editing commands recorded by several
users. We will assess the accuracy of this database, as well as its perfomance
when di�erent underlying speech recognition features are used.

Chapters overview

Chapter 1 contains introduction to digital sound processing and speech recog-
nition. It also provides descriptions of three speech recognition features: Mel
Frequency Cepstral Coe�cients, Linear Predictive Coding and Perceptual Linear
Prediction. Algorithms for tackling voice activity detection and command match-
ing are presented as well.
Chapter 2 discusses related works and techniques used in state-of-the-art speech
recognition.
Chapter 3 includes details about the implementation of the .NET voice control
library.
Chapter 4 contains the speci�cation of the voice controlled text editor. A set of
commands to be used in the program is determined. This chapter also speci�es
problems that have to be tackled so as to implement a functional solution.
Chapter 5 speci�es the methodology of feature performance testing and discusses
the results of the tests.

4

1. Speech and Sound Processing

Fundamentals

1.1 Sound

Sound is a wave of pressure caused by an oscillating object that propagates
through a medium, such as air. The wave includes zones where air molecules
are in a compressed con�guration and zones where air molecules are less com-
pressed. The former zones are called compressions and the latter zones are called
rarefactions. The alternating con�gurations of compression and rarefaction can
be depicted by a graph of a sine wave as shown in Figure 1.1

We often use the term signal or audio signal to refer to a sound wave. A
signal is a function that conveys information about the behaviour or attributes
of some phenomenon. Throughout the remainder of this text we will use terms
�speech� and �speech signal� interchangeably.

1.1.1 Properties of Sound

The sound wavelength λ is the distance between two subsequent maximal com-
pressions or minimal rarefactions as depicted in Figure 1.1.
The frequency f of a sound is de�ned as:

f =
c

λ

Where c is the speed of sound in the corresponding environment.
Signal amplitude is the amount by which the signal di�ers from zero. Signal

magnitude is de�ned as the absolute value of amplitude. Signal power is de�ned
as magnitude squared.

In practice, due to the vast range of sound pressure levels the human ear can
detect, it is convenient to use a logarithmic decibel scale for sound intensity.

The sound's pressure level (SPL) in decibels (dB) is actually a comparison of
its pressure level P to the reference pressure level P0 that is equal to 0 dB and

Amplitude
Wavelength

Figure 1.1: The sinewave can be used to describe a sound wave. The peaks
of the sine curve correspond to maximal compression, while the valleys indicate
minimal rarefaction. Two important properties of a sound wave, amplitude and
wavelength, are shown in the �gure as well.

5

Sound dB Level Times higher than TOH
Threshold of hearing 0 100

Light whisper 10 101

Quiet conversation 40 104

Normal conversation 60 106

Heavy truck tra�c 90 109

Pain threshold of ear 120 1012

Sonic boom 140 1014

Rocket engine 180 1018

Table 1.1: Intensity and decibel levels of various sounds.[1]

corresponds to the threshold of human hearing (TOH):

SPL (dB) = 20 log10

(
P

P0

)
Decibel levels of selected sounds are shown in Table 1.1.

1.2 Digital Signal Processing Fundamentals

1.2.1 Sound Digitization Process

To be able to work with sound signals on a computer, we have to digitize them.
In this process, a continuous analog signal is turned into a discrete signal by a
process called sampling (Figure 1.2). This process is carried out by a analog-to-
digital converter (ADC), which samples the continuous signal at regular intervals
and stores the amplitude corresponding to a particular moment in a sample. The
sample rate is the number of times an analog signal is measured (sampled) per
second. The conversion of the amplitude of each sample to a binary number
is called quantization. The number of bits used for quantization is referred to
as bit depth. Bit depth and sample rate (sampling frequency) are the two most
important factors that determine the quality of a digital audio system[5].

A digital signal can only contain a limited range of frequency components.
The limit is given by the sampling frequency as stated in the Nyquist Sampling
Theorem:

Theorem 1. For a signal sampled at a rate R the highest frequency that the
signal can contain is R/2. Otherwise distortion appears in the digitized signal.

1.2.2 Waveform and Frequency Spectrum

With the exception of pure sine waves, sounds are made up of many di�erent
frequency components vibrating at the same time. The particular characteristics
of a sound are the result of the unique combination of frequencies it contains.
Sounds contain energy in di�erent frequency ranges, or frequency bands. Once
we obtain the frequency components of a signal, we can represent the signal in
the frequency domain with a spectrogram, as shown in Figure 1.3, which also
displays the waveform of the signal, representing the amplitude of the signal in
the time domain.

6

Figure 1.2: Digitization of a simple sound signal with various sample rates[7]

Figure 1.3: Speech signal waveform, and its spectrogram. The light spots indicate
high intensity of the frequency components at the corresponding time.

7

1.2.3 The Discrete Fourier Transform

To obtain the frequency spectrum of a signal, the Fast Fourier Transform (FFT)
is used, which is an e�cient implementation of the Discrete Fourier Transform
(DFT). The DFT of a signal xN [k] is de�ned as

XN [k] =
N−1∑
n=0

xN [n]e−j2πnk/N 0 ≤ k < N

And since

e−j2πnk/N = cos (2πnk/N)− j sin (2πnk/N)

we can intuitively see that DFT is a decomposition of a signal into a linear
combination of sines and cosines of various frequencies. Figure 1.4 shows the
FFT of the signal from Figure 1.3 which is sampled at 14 kHz . Note that it
contains information about frequencies up to 7 kHz, which corresponds to the
Nyquist frequency of a signal sampled at 14 kHz. The FFT of a simple signal is
shown in Figure 1.5.

Straightforward implementation of the above formula yields a computational
complexity of O

(
n2
)
, but if the FFT algorithm is used to compute the transform,

the complexity is O
(
n log n

)
. Detailed description of the FFT algorithm can be

found in [1]
The result of an N -point transform is a vector containing N frequency bins.

Each bin contains intensity information about a range of frequencies. The range
is determined by N , the sampling rate of the signal and the index of the bin. For
instance, the frequency band corresponding to a bin with a zero-based index k,
in a transform of size N of a signal sampled at fs Hz is:

k

(
fs

N

)
to (k + 1)

(
fs

N

)
Hz

The Inverse Discrete Fourier Transform

To transform a signal from the frequency domain back to the time domain, the
Inverse Discrete Fourier Transform (IDFT) is used:

xN [n] =
1

N

N−1∑
k=0

XN [k]e−j2πnk/N 0 ≤ n < N

The Discrete Cosine Transform

Closely related to the Discrete Fourier Transform and frequently used in speech
recognition is the Discrete Cosine Transform (DCT). The DCT of a real-valued
signal xN [k] is de�ned as

C[k] =
N−1∑
n=0

x[n] cos (πk (n+ 1/2) /N) 0 ≤ k < N

Compared to DFT, it is often the case that the coe�cients of DCT are concen-
trated at lower indices, which means we can approximate the signal with fewer
coe�cients.[1]

8

Figure 1.4: Fourier transform transform of the signal from Figure 1.3

Figure 1.5: Fourier transform of a 440 Hz sine wave

9

1.3 Windowing

In digital signal processing (DSP), a signal is rarely processed in one piece. The
signal is usually divided into frames and the processing is applied to individual
frames. However, a problem called spectral leakage may occur, which causes an
FFT bin to contain energy from adjacent frequency bins. To counter this, we use
windows.

1.3.1 Spectral Leakage

The FFT algorithm assumes that the input signal is periodic throughout all time
and that the period length is the same as the length of the input. If the input
contains a non-integral number of cycles, spectral leakage occurs. The problem
is illustrated in �gure 1.6, which shows the spectrum of a frame taken from the
signal whose fourier transform (computed for the whole signal at once) is shown
in �gure 1.5. It is clear that the information about frequency components is
inaccurate. One way to amend this is to divide the signal into frames that only
contain integral number of cycles. In many cases, however, this is either not
possible or a constant frame size is required.

Figure 1.6 shows the spectra obtained from a frame containing non-integral
number of cycles, using three types of windows. Spectral leakage is clearly present.

1.3.2 Window Characteristics

Figure 1.7 shows characteristics that describe a window and tell us how it will
perform. The center of the main lobe occurs at each frequency bin of the sig-
nal. The width of the main lobe is given in bins and determines the frequency
resolution of the window. However, as the main lobe narrows, its energy is dis-
tributed into its side lobes which decreases the accuracy of the information about
amplitude.

1.3.3 Windows

Applying a window is equivalent to convolving the window with the input. Even
when no window is used, the input is in fact convolved with a rectangular win-
dow of uniform height, therefore no window is sometimes called Rectangular or
Uniform window. The most frequently used windows in speech recognition are
rectangular, Hann and Hamming window.

Rectangular (Uniform) Window

An N -sample Rectangular Window is de�ned by:

w (n) = 1

10

Figure 1.6: Spectra obtained from a part of a signal containing a 440 Hz sine wave,
using no window (also called Rectangular or Uniform window), Hann window and
Hamming window.

Figure 1.7: Properties of a window function

11

(a) Rectangular window plot
(b) Rectangular window magnitude re-

sponse

Figure 1.8: Rectangular window plot and magnitude response

(a) Hamming window plot (b) Hamming window magnitude response

Figure 1.9: Hamming window plot and magnitude response

Hann Window

An N -sample Hann Window is de�ned by:

w (n) = 0.5

(
1− cos

(
2πn

N − 1

))
Hamming Window

An N -sample Hamming Window is de�ned by:

w (n) = 0.54− 0.46 cos

(
2πn

N − 1

)

(a) Hann window plot (b) Hann window magnitude response

Figure 1.10: Hamming window plot and magnitude response

12

Window -3 dB Main Lobe
Width (bins)

-3 dB Main Lobe
Width (bins)

Maximum Side
Lobe Level (dB)

Rectangular 0.89 1.21 -13
Hann 1.44 2.00 -31

Hamming 1.30 1.82 -43

Table 1.2: Properties of the Rectangular, Hann and Hamming window. Rectan-
gular window has great frequency resolution due to a narrow main lobe. On the
other hand, the Hann and Hamming windows have better amplitude resolution
thanks to their low maximum side lobe level.

An overview of the properties of the aforementioned window functions can be
found in Table 1.2. Figures 1.8,1.9 and 1.10 display plots and magnitude response
of these windows.

1.4 Speech

1.4.1 Production of Speech

When humans produce speech, the air �ows �rst through the glottis, which is the
combination of the vocal cords and the space between them, then through the
throat and �nally, mouth. There are three ways a speech signal can be produced:

• voiced excitation A periodic sequence of pulses (pulse train) is generated
by air pressure that forces the closed glottis to open. The pulse train de-
termines the �fundamental frequency� and in the case of human speech it
usually lies between 80 Hz to 350 Hz. (Figure 1.11)

• unvoiced excitation The air passes through the open glottis and through a
narrow passage in the throat or mouth. This creates a noise signal. (Figure
1.12)

• transient excitation The air pressure is raised by a closure in the throat
or mouth and then a sudden opening of the closure causes the pressure to
drop immediately. (Figure 1.13)

The spectrum of a speech signal is determined by the shape of the vocal
tract(throat,teeth,tongue and lips).

1.4.2 Speech Signal Characteristics

There are a few properties of the speech signal worth noting:

• All the information necessary to understand human speech is contained
within 0�4 kHz

• The fundamental frequency ranges from 80 Hz for a large man to 350 Hz
for a child or a woman

13

Figure 1.11: Waveform and spectrum of a speech sound produced by voiced
excitation

Figure 1.12: Waveform and spectrum of a speech sound produced by unvoiced
excitation

14

Figure 1.13: Waveform and spectrum of a speech sound produced by transient
excitation

• Upon closer examination of a speech signal spectrum, on may notice peaks
in the spectrum at formant frequencies

(2n− 1) ∗ 500Hz n = 1, 2, 3, . . .

1.4.3 Speech Perception

The speech understanding process works as follows. The signal is passed to a
part of the inner ear called cochlea1.14. The cochlea can be roughly viewed as
a �lter bank (a set of �lters which extract a certain frequency band from the
signal and attenuate the frequencies outside the band). The spectrum from the
cochlea is converted by neural transduction into signals for the auditory nerve,
which roughly correspond to a speech feature extraction component. It is currently
not known how the signal from the auditory nerve is mapped into the language
system and how comprehension is achieved in the brain[4].

Mel Frequency Scale

Researchers have found that the perception of sounds at di�erent frequencies is
not linear in nature. In hope that a more natural model of human ear sensitivity
is achieved, the mel frequency scale has been created. It is linear below 1 kHz and
logarithmic above. The mel frequency fmel for frequency f can be approximated
as

fmel = 1125 ln (1 + (f/700))

The motivation behind this is the fact that the passbands(the range of frequencies
that are not attenuated by the �lter) as well as the central frequencies of the �lters
in the cochlea are non-linearly spaced on the frequency scale. If, however, we map

15

Figure 1.14: Human ear anatomy[6]

Figure 1.15: The mel frequency scale

16

Figure 1.16: A simple speech production model[3]

the frequency scale to the mel scale, the passbands and their central frequencies
are spaced linearly on this scale. Figure 1.15 depicts the mel scale.

When we describe a speech signal, we want to approximate the way the speech
is perceived by the human ear. Thus we examine the energy contained in fre-
quency bands that are the same as the bands that the cochlea extracts from the
sound. However, the bands are not linearly spaced on the frequency scale. If we
use the mel scale to �nd the frequency ranges to examine, we get more accurate
results.

1.4.4 A Simple Speech Production Model

Using the information presented so far about speech production, we can now
create a simple model(Figure1.16) for speech production that will help us describe
speech recognition features later in this chapter. In this model, voiced excitation is
modeled by a pulse generator v with spectrum given by P(f). Unvoiced excitation
is modeled by a noise generator u with spectrum N(f). Amplitude of u and v can
be adjusted. The next box models spectral shaping cause by varying shape of the
vocal tract. This section of the model is of great interest to us, as we will later
see, due to the fact that for a speech recognizer, the most valuable information
is contained in the way the spectral shape of the speech signal changes in time.
This shaping is done by H(f). Finally, the lips characteristics are applied to the
signal by R(f) to give the spectrum of the speech signal S(f)[3]

S (f) = (vP (f) + uN (f))H (f)R (f) = X (f)H (f)R (f)

1.5 Speech Recognition Features

Audio features are a means of representing a signal in a way that re�ects the most
important properties for our application. In case of speech recognition, there are
several features that provide a representation of a speech signal that is close to
the way humans perceive speech. In this section, we will examine three of them.

1.5.1 Mel Frequency Cepstral Coe�cients

Mel Frequency Cepstral Coe�cients(MFCC) have been the dominant features
used in speech recognition. The extraction of MFCCs consists of several steps,

17

Figure 1.17: The MFCC extraction process

Figure 1.18: From top: The spectrum of a speech signal and a smoothed version
of that signal

as shown in Figure1.17. To understand the intuition behind MFCC, we use the
speech production model from 1.4.4. The goal of MFCC is to obtain a smooth
spectrum from a speech signal. Both an original and a smoothed spectrum are
shown in Figure1.18. The ripples in the spectrum initially obtained from the
speech signal are caused by the excitation part of our model and MFCCs attempt
to remove them. In this way, the in�uence of the voice pitch is eliminated, in
other words it doesn't matter if the speech is produced by a man, a woman or a
child.

Pre-emphasis Filtering

The input signal is �rst passed through a pre-emphasis �lter, which ampli�es
higher frequencies. This accounts for -6 dB magnitude decrease per octave for
higher frequencies in a typical speech signal[3]. The �lter application to a signal
s to obtain sp is denoted as:

sp (k) = s (k)− 0.97s (k − 1)

18

Figure 1.19: A triangular �lter bank. The weight of the bin in a group sum is
determined by a triangular function. Every triangle corresponds to one frequency
band

Framing and Windowing

After applying the pre-emphasis �lter, the signal is divided into frames, to which
a Hamming window is applied to diminish spectral leakage. The size of the frames
is usually between 16 ms and 40 ms and overlap is set between 6 ms to 30 ms[3].

DFT

In this step, DFT is computed for each frame, which gives us the rippled spectrum
of the frame.

Mel-Frequency Warping

To re�ect the nonlinear perception of frequencies, we group the bins from the DFT
into bands that are linearly spaced on the mel scale. The values of the frequency
bins within a group are added together. This also reduces the dimensionality of
the resulting features. The number of groups is usually set to 20.

In some implementations, the sum of the frequency bins within a group is a
weighted sum. To determine the weights, a set of triangular functions is used.
Since we are operating in the frequency domain, we call this set a triangular �lter
bank. The peaks of the triangles are spaced equally on the mel scale and every
triangle starts at the center frequency of the previous triangle. An example of a
(smaller) triangular �lter bank is shown in Figure1.19. To compute a weighted
sum for a band of N frequency bins, we sample the corresponding triangular
function N times to obtain weights for the bins. We then calculate the weighted
sum using these weights.

Logarithm of the Frequency Spectrum

For the equation in 1.4.4, it holds that:

log
(
|S (f) |2

)
= log

(
|H (f) |2 · |U (f) |2

)
= log

(
|H (f) |2

)
+ log

(
|U (f) |2

)
where U (f) = X (f) ·R (f)

19

If we knew |U (f) |2, we could subtract it to get |H (f) |2). All we know, however,
is that |U (f) |2) causes the ripples in the spectrum. If we looked at the spectrum
as if it were a time signal, the ripples would be caused by a high frequency
component. To eliminate this component, we can do a low-pass �ltering, which
attenuates high frequencies.

Discrete Cosine Transform

The DCT is applied to the log spectrum obtained in the previous step. The result
of applying the DCT to the spectrum is called cepstrum.

Liftering

To remove the high frequency components (which cause the ripples in the spec-
trum), we set the coe�cients with higher indices (these represent the higher
frequencies) to zero. We are basically altering the spectrum of a spectrum (the
cepstrum). This is called liftering. We are left with a number of non-zero coe�-
cients, these are usually the �rst 14 (or fewer) coe�cients[3]. These are the Mel
Frequency Cepstral Coe�cients

Delta Coe�cients

In current state-of-the-art speech recognition systems, the �rst-order delta ∆ck
and second-order delta ∆∆ck are added to the MFCC features ck[1].

∆ck = ck+2 − ck−2

∆∆ck = ∆ck+1 −∆ck−1

1.5.2 Linear Predictive Coding

Linear Predictive Coding (LPC) is another method of separating out the e�ects of
excitation and vocal tract shaping from a speech signal. The technique models a
signal as a linear combination of previous values. For instance, an approximation
of a signal y at time n using p coe�cients is denoted as:

y[n] = a[1]y[n− 1] + a[2]y[n− 2] + . . .+ a[p]y[n− p] + e[n]

Where p is called the LPC model order and e[n] is the error of the prediction.
The aim of LPC is to minimize the error, which can be expressed as the di�erence
between the predicted signal value ŷ[n] and the actual value y[n]:

e[n] = y[n]− ŷ[n] = y[n]−
p∑

k=1

aky[n− k]

or equivalently:

y[n] = ŷ[n] + e[n]

This formulation de�nes the signal as a weighted past samples and and an error
signal. If we use the same system for speech production as for MFCCs, we can

20

look at the error signal as the excitation signal and the predicted signal as the
vocal tract �lter responsible for the spectral shape of speech.

It is important to compute the predictor coe�cients for a short speech segment
since the speech properties change quickly over time. The predictors at time n
are computed from a short segment of the signal around time n. We now de�ne
short-term speech and error segments to be used in equations for �nding the
predictors.

yn[m] = y[n+m]

en[m] = e[n+m]

To minimize the error at time n, we are going to minimize the mean squared
error at time n:

En =
∑
m

e2
n[m] =

∑
m

(
yn[m]−

p∑
k=1

akyn[m− k]

)
Since we seek to minimize the error, we take the derivative with respect to ai and
equate it to 0, obtaining:∑

m

(
yn[m]yn[m− i]− yn[m− i]

p∑
k=1

akyn[m− k]

)
= 0

which can be written as:∑
m

yn[m]yn[m− i] =

p∑
k=1

ak
∑
m

yn[m− i]yn[m− k]

and by setting

φn (i, k) =
∑
m

yn[m− i]yn[m− k]

can be expressed in a compact notation as:

φn (i, 0) =

p∑
k=1

akφn (i, k) 1 ≤ i ≤ p

which describes a set of p equations in p unknowns. Solving the system of equa-
tions gives us the predictor coe�cients which can be used to describe a speech
sound in a speech recognition system.

1.5.3 Perceptual Linear Prediction

The Perceptual Linear Prediction (PLP) utilizes the properties of human hear-
ing to alter the speech spectrum. The resulting spectrum is then used in LPC
analysis, as described in the previous section.

Spectral Analysis

The signal is divided into windows, usually 20 ms long[9], the Hamming Window
is applied to each and the FFT is used to obtain the short-term spectrum of the
speech signal. The square of the absolute value of the spectrum is taken to get
squared power spectrum.

21

Critical-band Spectral Resolution

In this step, the squared power spectrum is warped into the Bark scale. Similar to
Mel scale, Bark scale also attempts to warp the frequency scale so that it better
re�ects the way human ear perceives various frequencies. The scale ranges from
1 to 24, re�ecting 24 critical bands of hearing[8]. The conversion from hertz to
Bark is de�ned as:

b (f) = 13 arctan (0.00076f) + 3.5 · arctan
(
(f/7500)2)

To approximate the shape of the auditory �lters in the cochlea, the warped spec-
trum is convolved with the power spectrum of the simulated critical band masking
curve ψ (Ω). This is similar to the application of a triangular �lter bank in the
MFCC extraction process. The masking curve is given in [9] as:

ψ (Ω) =

0 for Ω < −1.3,

102.5(Ω+0.5) for − 1.3 ≤ Ω ≤ −0.5,

1 for − 0.5 < Ω < 0.5,

10−1.0(Ω−0.5) for 0.5 ≤ Ω ≤ 2.5,

0 for Ω > 2.5.

The convolution results in a reduced resolution of the spectrum, which allows us
to downsample. The sampling interval is chosen so that an integral number of
spectral samples covers the whole band of frequencies examined. Typically, 18
samples cover frequencies from 0�16.9Bark (0�5kHz) in 0.994 Bark-steps[9].

Equal-loudness Preemphasis

In this step, each spectral component is multiplied by a weight given by its
frequency f in Hertz[10]:

E (f) =
(f 2 + 1.44 · 106) f 4

(f 2 + 1.6 · 105)2 (f 2 + 9.61 · 106)

This accounts for the frequency sensitivity of the human ear.

Intensity-loudness Power Law

The last step before computing LPC is to take the cubic root of the pre-emphasized
spectrum obtained in the previous step. This as an approximation of the power
law of hearing and simulates the relationship between intensity of a sound and
the perceived loudness.

Inverse Discrete Fourier Transform

After the aforementioned changes have been applied to the spectrum, the inverse
discrete Fourier transform (the size of which is usually 34[9]) is taken to bring
the signal back to the time domain. From this signal, the LPC coe�cients are
computed as described in the previous section. In some applications the PLP
coe�cients are transformed into cepstral coe�cients (PLP-CC)[1].

22

1.6 Measuring Level of Similarity Between Speech

Signals

When building a speech recognition system, we need a way of determining the
level of similarity between speech signals. We will represent the signals as series
of speech recognition features. The individual features can be seen as points in
an N -dimensional vector space, where N is the length of the feature vector.

1.6.1 Similarity of Feature Vectors

To determine how similar two feature vectors are, we compute their distance in
the vector space. The lower the distance, the more similar they are. Various
distance functions can be used, such as the l1 metric or Euclidean metric. In
our application, the Euclidean metric is used. The Euclidean distance between
vectors u and v of N dimensions is given by:

d (u, v) =

√√√√ N∑
i=1

(ui − vi)2

1.6.2 Dynamic Time Warping

Another problem that we encounter is that two speech signals containing the
same phrase obtained on two occasions are rarely of the same length. A more
precise formulation of the problem follows.

For a feature vector sequence X of M feature vectors and a feature vector
sequence Y of N vectors, we want to �nd the best alignment. An alignment of
two sequences is de�ned as a sequence of tuples pi = (a, b) where 0 ≤ a < M
and 0 ≤ b < N . Let L be the length of the alignment and pi = (mi, ni) the
i+ 1th element of the alignment, then the alignment has to satisfy the following
conditions:

• p0 = (0, 0) and pL−1 = (M − 1, N − 1).

• m0 ≤ m1 ≤ . . . ≤ mL−1 and n0 ≤ n1 ≤ . . . ≤ nL−1

• pl+1 − pl ∈ {(1, 0) , (0, 1) , (1, 1)} for 0 ≤ l < L− 1

We seek to minimize the cost of the alignment, which is de�ned as:

cmin =
L−1∑
i=0

d (X[mi], Y [ni])

where d is a distance function.
For two sequences there are many possible alignments. It is unfeasible to com-

pute the cost of all of them. Fortunately, there is an algorithm based on dynamic
programming, that lets us �nd the optimal alignment e�ciently. An informal
description of the algorithm follows, for a detailed description refer to[11].

23

The Dynamic Time Warping Algorithm

We de�ne D (m,n) as the optimal alignment of subsequences X (0 : m) and
Y (0 : n). These values de�ne an M ×N matrix. Clearly, the optimal alignment
for sequencesX and Y isD (M − 1, N − 1). We computeD (M − 1, N − 1) grad-
ually, using optimal solutions for subsequences of X and Y . First we initialize
the matrix with the following values:

D (m, 0) =
m∑
k=0

d (xk, y0) for m ∈ [0 : M − 1]

D (0, n) =
n∑
k=0

d (x0, yk) for n ∈ [0 : N − 1]

then we compute the remaining values in the matrix using the following identity:

D (m,n) = min {D (m− 1, n− 1) , D (m,n− 1) , D (m− 1, n)}+ d (xm, yn)

for 0 < m < M and 0 < n < N . The optimal alignment of the whole sequences
D (M − 1, N − 1) can be computed in O

(
MN

)
time[11].

1.7 Voice Activity Detection

Another problem we face when processing a speech recording for speech recogni-
tion is the fact that the speech itself rarely spans the whole recording. In other
words, there is usually silence at the beginning and at the end of the recording.
Our task is to determine when the speech starts and ends in the recording.

Several voice activity detection (VAD) approaches of various robustness have
been developed[12][13]. If a speech recognition system is to be used in a noisy
environment, the VAD algorithms have to deal with noise detection and sup-
pression. We expect, however, that a voice controlled text editor will be used
in a calm working environment. Therefore a simple approach described below is
su�cient:

1. Take the �rst 200 ms long window from the input and compute the average
energy (amplitude squared) in that window. This is what we consider to be
silence, or �non-speech�. This threshold will be used to determine whether
a window contains speech or not.

2. Take the next window, starting 100 ms later than the previous and compute
the average energy in it. If the average energy is at least twice the value of
the threshold, the window is marked as the beginning of the speech in the
recording.

3. After �nding the start, we determine where the speech ends by repeating
the above process, but starting at the end and moving towards the start in
time. Once the average energy is twice as high as the threshold, we mark
the window as the end of the speech.

Experiments indicate that this method of VAD shows good results, is computa-
tionally e�cient, but heavily depends on the choice of the threshold[14].

24

2. Related Works

This chapter provides an overview of currently used speech recognition systems
and techniques.

2.1 Types of Speech Recognition Systems

There are three types of speech recognition (SR) systems:

• Speaker-dependent systems - the user is required to dictate every word he
or she intends to use with the system. The set of recognizable phrases can
be augmented by connected-word recognition which allows for a sequence
of phrases from the vocabulary to be recognized (e.g. phone numbers).

• Speaker-independent systems - the system is trained on large amounts of
data and does not require any con�guration by the user.

• Speaker-adapting systems - a speaker-independent system is adjusted to the
user's voice

2.1.1 Speaker-dependent Systems

Speaker-dependent systems are scarcely used nowadays. One of the �elds where
they are still used is warehousing. For example, a solution by Voxware allows
order pickers to pick orders more quickly, with fewer errors and hands-free. The
reason a speaker dependent system is used is, according to the company's web
page [17], better performance in a noisy environment.

2.1.2 Speaker-independent Systems

Speaker-independent systems are the most widely used systems. Well-known
examples are Siri [18] (Figure 2.1a) from Apple and Google Now [19] (Figure 2.1b)
from Google, which are virtual personal assistant services available on mobile
platforms. These services utilize speech recognition, natural language processing
and arti�cial intelligence. A user uses voice input to ask the assistant a question
regarding weather, sports results, directions, public transport information and
much more. Many third party services are being integrated into the assistants,
thus providing table reservations, restaurant reviews and more.

The number of supported input languages is limited and these systems are
wont to have problems with accents. This is clear from the fact that users of
both services have to choose from several accents of English. Users who don't
speak with a �supported accent� often encounter many di�culties when using the
software. Although no scienti�c studies are regarding the problems with accents
are available, there are many frustrated users complaining on various web sites,
including renowned technology magazines[20].

Furthermore, speaker-independent systems require vast training sets to work
well. The processing of the speech commands is carried out on servers, therefore
internet connectivity is required. However, this also means that users always use

25

(a) Siri (b) Google Now

Figure 2.1: Virtual personal assistants available on iOS and Android mobile
devices

the latest version of the software, which is improving over time with more learning
data available.

2.1.3 Speaker-adapting Systems

In case when near-perfect accuracy of speech recognition is required, speaker-
adapting systems are used. Upon �rst using the software, the user is guided
through a setup process which �ne-tunes the speaker-independent speech recog-
nition system's properties. In this way, a higher accuracy can be achieved[16]. An
example of such software is Dragon NaturallySpeaking [21]. It provides dictation,
text-to-speech and command input.

2.2 Modern Speech Recognition

Modern speech recognition systems consist of three major architectural compo-
nents:

• Acoustic model

• Language model

26

• Decoding component

The approach currently employed in vast majority of state-of-the-art SR systems
is statistical SR. It can be described by the fundamental equation of statistical
SR:

Ŵ = arg max
W

(P (W)P (X|W))

where X = X1X2 . . . Xn is a feature vector sequence and the goal is to �nd a
word sequence Ŵ = w1w2 . . . wm that has the highest probability. P (W) and
P (X|W) represent probabilities computed by an acoustic model and a language
model, respectively.

2.2.1 Acoustic Models

Creating an acoustic model for SR typically entails building statistical repre-
sentations of feature vectors obtained from input. One of the most commonly
used acoustic models are Hidden Markov Models[22]. Major progress has been
achieved recently with neural networks used for acoustic modeling[23].

Pronunciation modelling is also a part of acoustic modelling. It describes how
a sequence of basic speech units forms larger speech units, such as words and
phrases.

2.2.2 Language Models

A language model is either a grammar describing permissible structures for the
language or a stochastic language model. The latter language model type can
be de�ned as a probability distribution over word strings W that re�ects how
often W occurs as a sentence. For a language model to work well, it necessitates
training data consisting of millions of words[24].

2.2.3 Decoding

Decoding is the process of �nding a sequence of words whose corresponding acous-
tic and language models best match the feature vector sequence obtained from
input. It is often referred to as a search process. Graph search algorithms serve
as a foundation for search algorithms in SR. Speech recognition search is mostly
done using the Viterbi decoder[25]. Di�erent language models have great impact
on the search complexity.

2.3 Summary

Most modern speech recognition systems are speaker-independent and based on
statistical SR. These require large amounts of training data to work well. For
many languages, data sets of this size are not available, and in some cases never
will be. Moreover, people who speak with a strong accent frequently encounter
di�culties when using speaker-independent SR.

The aforementioned drawbacks of speaker-independent systems render speaker-
dependent SR systems a viable solution for context-constrained applications in
languages used by smaller number of speakers.

27

3. Implementation

This chapter provides a description of a .NET voice control class library imple-
mentation. The implementation uses a feature extraction tool called openSMILE,
an overview of such tools is given as well. Description of the programming inter-
face of this library is also provided.

3.1 Available Speech Recognition Feature Extrac-

tion Tools

3.1.1 MARSYAS

MARSYAS [26] (Music Analysis, Retrieval and Synthesis for Audio Signals) is a
framework for audio analysis. Although its focus is music information retrieval,
its capabilities include MFCC extraction. It is available under the GNU Public
Licence (GPL) Version 2, for non-commercial use. It is available for Linux, OS
X and Windows.

3.1.2 Yaafe

Yaafe[27] (Yet Another Audio Feature Extractor) is a feature extraction toolbox
providing several audio features, including MFCC and LPC. It is available under
the GNU Public Licence (GPL) Version 3 for Linux and OS X platforms.

3.1.3 openSMILE

OpenSMILE: The Munich Versatile and Fast Open-Source Audio Feature Extrac-
tor [29] is a toolbox for extracting both music and speech recognition features.
These include MFCC, LPC and PLP features. It is available under the GNU
Public Licence and for Linux, OS X and Windows platforms. This toolbox is
used in our .NET library, which is described below.

3.2 .NET Class Library Implementation

3.2.1 Using openSMILE to extract speech features

OpenSMILE is available as a command line executable and a C++ library. We
use the command line executable, SMILExtract.exe, due to the fact that our
library is written in C#.

Con�guration

The feature extraction process in openSMILE is con�gured using con�guration
�les. In the con�guration �le, the user speci�es modules to use. These modules
perform various tasks, ranging from dividing the signal into frames, applying win-
dows and calculating the Fast Fourier Transform to writing the resulting features

28

to an output �le. Each module contains dataReader and dataWriter compo-
nents. Using these components, we specify the name of the memory level to
which a module should write and from which it should read data. In this way we
can connect modules that form a �chain�. We start with a module reading a WAV
�le containing speech signal, process the signal using the necessary modules and
eventually use a module that writes the computed features to a CSV �le. Each
module has a set of parameters that we use to adjust the extraction process. For
instance, the module which divides the signal into frames has parameters that
specify how long the frames are and how long an overlap is between two successive
frames. More details about modules and their parameters can be found in the
openSMILE documentation[28]. Our class library contains a con�guration �le for
each speech recognition feature and its modi�cations, if used.

Extraction

Once we have created a con�guration �le, we can use the SMILExtract.exe ex-
ecutable to extract features from a WAV �le containing speech. To do this, we
simply run the executable, specifying 3 parameters:

• Con�guration �le: -C con�gFile

• Input (WAV) �le: -I inputFile

• Output (CSV) �le: -O outputFile

A sample execution may look like:

SMILExtract.exe -C myCon�g.con�g -I speech.wav -O features.csv

To use a WAV �le as an input and a CSV �le as an output, it is necessary to
specify this in the con�guration �le. Details can be found in the openSMILE
documentation or in the con�guration �les included with our class library.

Querying

To determine the best matching command in a database, the dynamic time warp-
ing algorithm is used. When we query the database with a command, a sequence
of features is obtained. This sequence is then aligned with every command present
in the database using the DTW algorithm. In the case of speaker-dependent com-
mand database, the result of the query is the command from the database which
has the lowest alignment cost.

In the case of speaker-independent command database consisting of N speak-
ers, the query algorithm is slightly di�erent. We also compute the DTW align-
ment cost for each command in the database. Once we have the costs, we select
the top N commands with the lowest alignment cost. We look at the names of the
commands in this set and return the one that has the highest number of occur-
rences in the top N matching commands. If there are multiple �top� commands,
we choose the one which has the lowest cost.

29

Figure 3.1: Feature extraction class diagram

3.2.2 Object Model

Overview

The class providing interface for voice control is called VoiceControl. For record-
ing sound it requires an instance of a class implementing the IVoiceRecorder
interface. In our case, the VoiceRecorder class is used. VoiceControl also uses a
VoiceCommandDB to store commands and �nd a matching command for speech
signals received from the user.

The VoiceCommandDB only stores features extracted from a speech signal
using one of the classes derived from the FeatureExtractor class. The extractor
classes utilize the OpenSmileCommandExecutor to extract features.

The extracted features are represented by the AudioFeature class. The fea-
tures are stored together with a name assigned to them in the VoiceCommand
class, which represents a voice command. VoiceCommand instances are used
inside the VoiceCommandDB class.

Feature Extraction Classes

A class diagram of feature extraction classes is shown in �gure3.1.
The OpenSmileCommandExecutor uses the openSMILE command line exe-

cutable to extract features. Its three properties, Con�gFile, InputFile and Out-
putFile are set in the constructor. To extract features from the speci�ed �le,
using the speci�ed con�guration, the Execute() method is called.

The FeatureExtractor class is an abstract base class for three extractor classes.
Each of the three classes is used to extract di�erent speech recognition features.
When an instance of an extractor class is created, the corresponding OpenS-
mileCommandExecutor instance is created and used by the class for feature ex-
traction.

Voice Control Classes

Figure 3.2 contains a class diagram of voice control classes.

30

Figure 3.2: VoiceControl object model

The AudioFeature class contains the feature coe�cients and a method for
loading them from a CSV �le.

To represent a voice command, the VoiceCommand class is used, which con-
tains speech recognition features of a command as well as its name. The name of
the command is used for identi�cation.

The process of recording speech is carried out by the VoiceRecorder class,
which implements the IVoiceRecorder interface. This interface declares methods
for starting and ending the recording process as well as a method for saving
the recorded speech to a WAV �le, which is necessary for subsequent feature
extraction. Apart from the interface methods, the VoiceRecorder also contains
an event, RecordingComplete. The event is used when automatic voice detection
is used. When the recorder obtains a recording, it saves it to a WAV �le and uses
this event to notify the subscribers about the new recording.

The static DTW class contains a method which uses the dynamic time warp-
ing algorithm to compute the cost of the optimal alignment between two sequences
of audio features. In our case, one sequence is stored in the command database
and the other is a sequence obtained from the user's spoken command.

The static Metrics class contains methods that compute L1 or L2 distance
between two vectors. These are used in the DTW algorithm in the previous class.

The classes extending the VoiceCommandDB class provide functionality that
allows us to add and remove commands as well as query the database for the
best match to a command spoken by the user. The Query() method returns the
name of the command which has the lowest DTW �distance� from the recorded
command.

Finally, the VoiceControl class provides an interface for building a speech
recognition system. The interface is described in detail in the next section.

31

3.3 Using the Voice Control Library

In this section, we will explain how to use the Voice Control Library in a .NET
assembly.

3.3.1 Prerequisites

To successfully use the library, it is necessary to perform the following steps:

• Place the SMILExtract executable and the library openSmileLib.dll in a
folder called OpenSmile and place this folder into the folder where our
program's executable lies.

• Place the con�guration �les for feature extraction in a folder called Con�gs,
which also has to be located in the same folder as the program's executable.

• Add a reference to NAudio.dll in your project. This library is used to
record sound. It is recommended to use the assembly that is supplied with
the voice control library.

• Add a reference to VoiceControlLibrary.dll in your project.

3.3.2 Basic usage

After creating an instance of the VoiceControl class using one of the constructors,
we can perform the following actions:

• Record a voice command: to start recording, the StartRecording() method is
used. To end the recording, we use the StopRecording() method, which saves
the obtained recording to a WAV �le called �speech.wav� and extracts audio
features speci�ed in the VoiceControl instance. The recorded command's
features are temporarily stored until another command is recorded and are
used by other methods described in this section.

• Add a voice command to the command database: the AddCommand(string
name) method is used to add the latest recorded command to the database
and assigns the speci�ed name to it. If a speaker-dependent voice command
database is used, the name has to be unique.

• Remove a command from the command database: the RemoveCommand(string
name) method removes a command with the speci�ed name assigned to it
from the command database.

• Query the command database: the Query() method uses the last recorded
command to �nd the closest match in the command database. It returns a
string identifying the best matching command in the database. There is also
an overload of the Query() method, which provides an output parameter,
through which we obtain the DTW cost of the match.

• Save the command database for later use: we can persist the recorded com-
mand database using the SerializeCommandDB(string �leName) method.
To load a persisted database, the LoadSerializedCommandDB(string �le-
Name) method is used.

32

3.3.3 Advanced Usage

It is also possible to specify what speech recognition features the voice control
should use as well as toggle automatic voice detection. There are three construc-
tors apart from the default one that facilitate customization:

• VoiceControl(RecordingObtainedEventHandler handler): this constructor is
the same as the default one, except that it sets the AutoVAD property
to true and assigns the handler from the argument to its VoiceRecorder's
RecordingComplete event. Thus, it is possible to be noti�ed when a new
recording becomes available.

• VoiceControl(IVoiceRecorder recorder, FeatureExtractor extractor, VoiceCom-
mandDB db, Metric metric): this constructor allows us to specify the fea-
tures supplying a FeatureExtractor instance to be used. We can also supply
our own database, a voice recorder and choose a metric that should be used
in Dynamic time warping.

• VoiceControl(IVoiceRecorder recorder, FeatureExtractor extractor, VoiceCom-
mandDB db, Metric metric): the constructor is the same as the one above,
but allows us to assign a RecordingComplete event handler. As with the
�rst constructor, the AutoVAD property is set to true.

To turn on automatic voice detection, we set the AutoVAD property to true.

33

4. A Voice Controlled Text Editor

In this chapter, we examine the task of building a voice controlled text editor.
An implementation of a simple voice controlled editor, which utilizes the library
described in the previous chapter, is presented.

4.1 Motivation

Since the advent of the personal computer, text editors have gained many features.
The way we interact with these programs has not changed signi�cantly, however.
Together with the number of features grew the number of icons, sliders and other
user interface (UI) elements available to the user. This has made the learning
curve steeper and hidden many useful functions from a casual user.

Moreover, if a user has to constantly click on buttons to make even the slightest
changes, his or her work �ow is hindered. The issue is exacerbated for people who
do creative writing. Of course, one can use keyboard shortcuts in many cases to
alleviate this problem. This, however, requires the user to learn the shortcuts
and it is rarely the case that a user remembers more than few shortcuts.

As opposed to keyboard shortcuts and a large set of multi-layered menus,
buttons and other UI elements, controlling the program using speech is natural.
If we allow the user to record their own command for each action, they do not
have to memorize anything, they just tell the program what to do. What is
more, it allows the user to concentrate on his or her work, which leads to greater
productivity.

4.2 A List of Possible Commands

We used a collaboratively edited online spreadsheet to determine the set of com-
mands that a voice controlled text editor could incorporate. The set of commands
is listed below.

1. Page Up/Down

2. Copy, Paste, Cut

3. Undo, Redo

4. Select line

5. Select paragraph

6. Select all

7. Numbers 1-19

8. Numbers 20, 30, . . . , 100

9. Go to the beginning

10. Go to the end of �le

34

11. Find

12. Next - jumps to the next occurrence of the searched word

13. Previous - jumps to the previous occurrence of the searched word

14. Find and replace

15. Open �le

16. Save �le

17. Save �le as

18. Select from here left - selects text starting at the cursor position and ending
at the beginning of the line

19. Select from here right - selects text starting at the cursor position and
ending at the end of the line

20. Insert page break

21. Newline

22. Minimize

23. Maximize

24. Snap the window to the left

25. Snap the window to the right

26. Print

27. Save as PDF

28. Send via email

29. Compare

30. Insert a link

31. Insert a header

32. Insert a footer

33. Insert a table

34. Insert a horizontal line

35. Insert an image

36. Insert an equation

37. Spell check

38. Set the document language

35

39. Show information - shows document properties, e.g.: word count

40. Help

41. New window

42. New document

43. Set font size

44. Bold

45. Underline

46. Italic

47. Align left

48. Align right

49. Center

50. Justify

51. Show the character map

52. Scroll - starts scrolling until the user stops it

53. Switch to the next document - when multiple �les are open, switches to the
next document

Most of the commands are either frequently used actions or actions that are
usually not easily accessible for a novice user. For example, allowing the user to
save his or her work by merely saying �save� can save hours of work for forgetful
users. On the other hand, commands such as �show the character map� are used
sparsely, but are quite di�cult or tedious to access.

These commands are used in a speaker-independent command database to
assess the performance of speech recognition features. A subset of the commands
is used to query the database and determine the success rate of the evaluated
features.

4.3 A Simple Voice Controlled Text Editor

To provide an example of how the class library from the previous chapter can
be used to implement a speech recognition system, we present a simple voice
controlled text editor. Its capabilities only include a subset of commands from
the aforementioned list, since it is beyond the scope of this thesis to implement
a more complex solution.

36

Figure 4.1: The text editor window

4.3.1 Usage Guide

Figure 4.1 shows the main window of the editor. There are �ve buttons at the
top, from right to left:

• Start Command: When automatic voice activity detection is disabled (see
the next button description), this button starts recording a voice command.
When the button is clicked again, the recording is stopped, features extract-
ed and the best match from the database is used to execute the correspond-
ing command.

• Automatic Voice Activity Detection Toggle: When this button is clicked,
spoken commands are detected automatically. After obtaining a recording,
the process is the same as in the previous case.

• Record Commands: this button displays a pop-up window (Figure 4.2)
which allows the user to record his or her commands for various actions, as
well as delete existing ones in order to re-record them. The commands that
are recorded are indicated by green color.

• Save: saves the edited �le

• Open: opens a text �le

The block of text in the middle of the top bar displays the name of the last
matching command found in the database, i.e. the result of the last query.

4.3.2 Implementation

Commands and the corresponding actions are stored in the program using Dic-
tionary<string,Action>, where the key is the command name (the same as in
the command database) and Action is a delegate representing a function with no

37

Figure 4.2: Command recording pop-up window

parameters and return type of void. When the user speaks a command, the voice
control queries the command database and uses the obtained string to execute
the action associated with the string in the aforementioned dictionary.

4.4 Further Challenges

The following problems need to be solved in order to build a robust and reliable
solution:

• Noise suppression - the performance of a speech recognition system can
be severely a�ected by noise environment, e.g.: noise from the street. A
robust solution must eliminate noise before adding recorded commands to
the database and before querying the database with a command from the
user. An approach for noise estimation is described for example in [30].

• Voice activity detection - the approach for voice activity detection presented
in Section 1.7, is only usable in calm environments. A system using this
approach can, for example, easily mistake a dog bark for a voice command.
To determine whether the sound recorded is indeed a command from the
user, a more sophisticated approach has to be employed, such as[12].

• Speaker identi�cation - in an environment where multiple speakers may be
present, it is necessary to distinguish between the speakers and only accept
commands from the right user.

38

5. Experiments

This chapter contains an evaluation of speech recognition features described in
the �rst chapter as well as an assessment of a speaker-dependent and a speaker-
independent speech recognition using these features.

5.1 Goals

We will evaluate the performance of �ve speech recognition features as speci�ed
in the next section. Apart from assessing the feature performance in a speaker-
dependent speech recognition, we will also use a speaker-independent command
database consisting of 20 speakers to test the performance of the �ve features.

5.2 Evaluated Features

The speech recordings used in the test are sampled at 16 kHz and contain one
audio channel. The features are extracted using openSMILE. The common ex-
traction parameters for all the features are:

• Frame length = 25 ms

• Frame step length = 10 ms. The next frame starts 10 ms after the previous
one. In other words, adjacent frames have a 15 ms long overlap.

• Window type = Hamming window

The features evaluated are:

1. MFCC: the number of coe�cients we use is 13, which is the typical value
used for MFCC, as mentioned in 1.5.1. Because the number of mel frequency
bands has been shown to have insigni�cant impact on the perfomance in
[31], we use the openSMILE default value, which is 26.

2. MFCC + Delta: Delta coe�cients as described in 1.5.1 are added to MFCC
coe�cients.

3. MFCC + Delta + Acceleration: Acceleration coe�cients as described in
1.5.1 are added to the MFCC and Delta coe�cients.

4. LPC: The choice of LPC order is discussed in [1]. It is suggested to use
1 coe�cient for every kHz contained in the speech, plus 2�4 coe�cients.
The authors also note that if the order is too high, it may lead to worse
separation of the source from the vocal tract shaping. That is why we
choose the order of LPC to be 10.

5. PLP: It is shown in [9] that the optimal order for PLP is 5, which is the
order we use.

39

5.3 Methodology

We have collected recordings from 5 female and 5 male speakers. Each speaker
recorded 24 commands, the list of which is located below. Each of the 24 com-
mands was recorded on two occasions by the speaker. The recording of the second
command did not follow immediately after the �rst, to ensure sample variability.
This gives us two recordings for each command and speaker. For each command,
we use one recording to store the command in a speaker-dependent database and
the other one to query the database and thus determine performance. The second
recording is also used to query a speaker-independent database. We have applied
the voice activity detection algorithm, described in chapter 1 to remove silence
from all recordings.

5.3.1 List of Commands Used

The following set of commands was used for the evaluation. It is a subset of
the commands listed in the previous chapter. The chosen commands include
frequently used actions as well as commands that share one or more words, to
thoroughly test the accuracy of the features.

1. Page up

2. Page down

3. Cut

4. Copy

5. Paste

6. Undo

7. Redo

8. Select line

9. Select paragraph

10. Select all

11. Go to the beginning

12. Go to the end of �le

13. Find

14. Next

15. Previous

16. Find and replace

17. Save �le

18. Insert a table

40

Features Average Success Rate
MFCC 69.58%
MFCC + Delta 70%
MFCC + Delta + Acceleration 70.41%
LPC 55.83%
PLP 76.25%

Table 5.1: Average success rates of 5 speech recognition features, for 10 speakers,
in a speaker-dependent command database

19. Insert an image

20. Set font size

21. Bold

22. Underline

23. Italic

24. Show the character map

5.3.2 Speaker-dependent Speech Recognition

For each speaker, as discussed in the beginning of this section, we take half of
the recordings and create a speaker-dependent database, one for each type of
features tested. This leaves us with �ve databases. We use the second half of the
recordings to query the �ve databases and determine the success rate.

5.3.3 Speaker-independent Speech Recognition

To build a speaker-independent database, we have obtained recordings of all the
85 commands listed in the previous chapter from 20 speakers, 13 of them male
and 7 female. The commands were recorded using an Adobe Flash web utility.
As in the previous case, we create one database for each type of features. We use
the second half of test commands as described in the beginning of this section to
query the databases.

5.4 Results

For each speaker, we compute the success rate for each feature type as the ratio
between the number of successfully recognized commands and the number of all
tested commands.

5.4.1 Speaker-dependent Recognition

Table 5.1 shows the average success rate for the 10 speakers in a speaker-dependent
speech recognition system.

41

Features Average Success Rate
MFCC 3.75%
MFCC + Delta 3.75%
MFCC + Delta + Acceleration 5%
LPC 1.67%
PLP 12.08%

Table 5.2: Average success rates of 5 speech recognition features, for 10 speakers,
in a speaker-independent command database.

5.4.2 Speaker-independent Recognition

Table 5.2 shows the average success rate for the 10 speakers in a speaker-independent
speech recognition system.

5.4.3 Recognition Success Rates of Individual Commands

We have also calculated success rates for individual commands. It is given as the
ratio of the number of speakers for whom the command was recognized and the
total number of speakers. This allows us to see if there is a signi�cant di�erence
between success rates of commands that share words with other commands and
those which do not. Table 5.3 shows the success rates of the commands in a
speaker-dependent command database.

5.4.4 Extraction Time

Using a set of 85 recordings, we have computed the average extraction time for
the tested features. The results are in table 5.5. Each recording used in the test
corresponds to one command from the list in chapter 4.

5.5 Discussion

5.5.1 Speaker-dependent speech recognition

The results indicate that adding delta features to MFCC has little e�ect on
success rate. LPC coe�cients achieved the poorest results. However, performing
perceptual modelling of the spectrum before conducting linear prediction in case
of PLP makes it the most accurate of the features. What is more, PLP achieves
the best results using far less data to describe a speech signal, compared to other
features. While using 39 coe�cients in case of MFCC with delta and acceleration
coe�cients does not provide nearly any performance improvement compared to
using 13 MFCC coe�cients, PLP manages to outperform all the other features
while using only 5 coe�cients to describe each frame of the signal.

5.5.2 Speaker-independent speech recognition

In speaker-independent speech recognition PLP again shows signi�cantly better
results, compared to the other evaluated features. The overall performance of

42

Command MFCC MFCC+D MFCC+D+A LPC PLP
Page up 50% 60% 60% 50% 70%
Page down 80% 80% 80% 20% 70%
Cut 90% 90% 90% 80% 90%
Copy 80% 80% 80% 70% 80%
Paste 60% 50% 50% 60% 70%
Undo 60% 60% 60% 60% 60%
Redo 60% 60% 60% 50% 60%
Select line 70% 70% 70% 50% 90%
Select paragraph 60% 70% 70% 40% 80%
Select all 70% 60% 60% 50% 90%
Go to the beginning 80% 80% 90% 50% 80%
Go to the end of �le 60% 60% 60% 40% 70%
Find 60% 60% 60% 40% 50%
Next 50% 50% 50% 60% 60%
Previous 60% 70% 70% 70% 90%
Find and replace 80% 90% 90% 70% 70%
Save �le 80% 80% 80% 60% 90%
Insert a table 100% 90% 90% 80% 70%
Insert an image 50% 50% 50% 50% 60%
Set font size 80% 80% 80% 80% 100%
Bold 80% 80% 80% 70% 80%
Underline 60% 60% 60% 40% 90%
Italic 60% 60% 60% 50% 60%
Show the character map 90% 90% 90% 50% 100%

Table 5.3: Success rates of individual commands in a speaker-dependent database.
MFCC+D means MFCC with delta coe�cients, and MFCC+D+A means
MFCC with delta and acceleration coe�cients

43

Command MFCC MFCC+D MFCC+D+A LPC PLP
Page up 20% 20% 20% 0% 30%
Page down 0% 10% 10% 0% 10%
Cut 10% 10% 10% 0% 20%
Copy 0% 0% 0% 0% 10%
Paste 30% 40% 40% 20% 10%
Undo 0% 0% 0% 0% 0%
Redo 0% 0% 0% 0% 20%
Select line 0% 0% 0% 0% 10%
Select paragraph 0% 0% 0% 0% 0%
Select all 0% 0% 0% 0% 10%
Go to the beginning 0% 0% 0% 0% 0%
Go to the end of �le 0% 0% 0% 0% 10%
Find 10% 10% 10% 0% 30%
Next 0% 0% 0% 10% 10%
Previous 10% 0% 0% 0% 0%
Find and replace 0% 0% 0% 0% 0%
Save �le 0% 0% 0% 0% 30%
Insert a table 0% 0% 0% 0% 0%
Insert an image 0% 0% 10% 0% 0%
Set font size 10% 0% 0% 10% 40%
Bold 0% 0% 20% 0% 20%
Underline 0% 0% 0% 0% 20%
Italic 0% 0% 0% 0% 0%
Show the character map 0% 0% 0% 0% 10%

Table 5.4: Success rates of individual commands in a speaker-independent
database. MFCC+D means MFCC with delta coe�cients, andMFCC+D+A
means MFCC with delta and acceleration coe�cients

Features Average Extraction Time
MFCC 0.176 s
MFCC + Delta 0.179 s
MFCC + Delta + Acceleration 0.191 s
LPC 0.173 s
PLP 0.169 s

Table 5.5: Average extraction time of the 5 features, obtained from 85 extractions
from recordings corresponding to the 85 commands listed in chapter 4

44

the speaker-independent system, however, is poor. There are multiple reasons for
this:

• Inconsistency of the obtained recordings: the recordings that are used in
the database have been recorded using several di�erent devices of various
quality. Although we have removed recordings that were incomplete or
unrecognizable by human, we could not account for volume variations and
background noise, which may have a�ected the recognition rate.

• Variations in accent and pronunciation: The commands have been recorded
by non-native speakers, among who the variations in accent and pronunci-
ation are larger than among native English speakers.

• Low number of speakers: a larger number of speakers would help account
for the large number of variations mentioned in the previous point.

• DTW cost: the DTW cost calculated for the same command spoken by two
di�erent speakers can be quite large, as examined in [32]. This causes a
large number of mismatched commands.

• Silence removal: in some cases, the algorithm used to remove silence may
have removed parts of the spoken command, due to the part being too
silent.

The results unequivocally show that using only speech features and DTW is insuf-
�cient for a speaker-independent speech recognition system. More sophisticated
methods have to be used, such as acoustic modelling described in the second
chapter.

5.5.3 Recognition Success Rates of Individual Commands

As we can see from table 5.3, the fact that two commands share a sequence
of words does not a�ect accuracy, i.e. the results for these commands are not
signi�cantly worse than for the other commands. For commands which start
or end with an unvoiced sound, it is possible that, for some speakers, a small
part of the speech has been removed by the voice activity detection algorithm.
Examples of such commands are �Find�, where �d� is unvoiced or �Next�, where
�xt� is unvoiced. This lowered the success rate, especially for speakers, whose
recordings had very narrow dynamic range (the di�erence between the loudest
and the most silent moment in the recording).

5.5.4 Extraction Time

There is only a minor di�erence between the time of extraction of the features.
Notably, of the evaluated features, PLP not only are the most accurate speech
recognition features, but their extraction time is also the shortest among the
features.

45

5.5.5 Summary

Since our text editor's voice recognition system is a speaker-dependent one, the
results for this system are of most interest to us. Using 10 speakers is only enough
to determine the relative performance of the features. We have found out that
PLP features perform the best among the assessed features. From the results
obtained from just 10 speakers, it might seem that the accuracy is still too low to
be usable in a user friendly program. However, if we look at the best success rates
obtained for a single speaker, they are well above 90%. Upon closer examination
of the records that scored a high success rate, we have found out that the quality
of the recording plays a signi�cant part in the accuracy of a speech recognition
system. If the user has an average quality recording device (e.g. a built-in laptop
microphone), the speech recognition accuracy is very good and the system is
usable. In case a user has a recording device that produces a noisy recording, or
a recording that is too silent, the performance of the speech recognition system
su�ers.

46

Conclusion

In this thesis, we have provided an introduction to digital signal and speech pro-
cessing. We have explained how sound is digitized in order to be processed by
a computer. We use the Fast Fourier Transform algorithm to �nd the frequency
components of a sound signal. We can use this information to describe the pro-
cess of human speech production. Speech production and perception has been
explained in order to better understand the motivation behind various speech
recognition features. The speech recognition features are a means of describing a
speech signal, so that it can be matched with another speech signal already stored
in the database of a speech recognition system. We have introduced three types
of features: MFCC, LPC and PLP. To match sequences of features, we use the
dynamic time warping algorithm, which allows us to �nd for a command spoken
by the user, the best matching command in the command database. Before we
process a recording obtained from the user, we have to remove silence that does
not bear any information. To accomplish this, we have described a simple voice
activity detection algorithm.

We have also explored available speech recognition systems and the ways in
which they are used. An overview of modern state-of-the-art speech recognition
techniques has been given as well.

We have created a .NET class library which allows programmers to easily
implement a simple speech recognition system in their programs.

To provide an example of how the class library might be used and to show
how voice control can be used in a text editor, we have implemented a simple
voice controlled text editor.

Finally, we have carried out experiments to determine the accuracy of the pre-
sented features in both a speaker-dependent and a speaker-independent system.
We have found out that the approach of using speech features and dynamic time
warping is insu�cient for a speaker-independent system. However, in the case
of a speaker-dependent system, the performance of the features is signi�cantly
better and provided that the recordings obtained are of su�cient quality, a re-
liable, speaker-dependent speech recognition system can be implemented using
this approach.

Further augmentations may develop techniques of coping with a noisy speech
signal or signal recorded in a noisy environment, which would improve the speech
recognition system's robustness. Moreover, work e�ectiveness can be increased
with a speaker-independent dictation.

However, not all possible augmentations have to revolve around the speech
recognition e�ectiveness. As voice controlled programs are still a novelty, it is
important to develop new user interface paradigms that allow for a seamless
experience and work�ow.

47

Bibliography

[1] Huang, Xuedong. Spoken language processing: a guide to theory, algorithm,
and system development. New Jersey: Prentice-Hall, 2001. ISBN 01-302-
2616-5.

[2] Priemer, Roland. Introductory signal processing. Teaneck, NJ: World Sci-
enti�c, c1991, xvi, 734 p. ISBN 99-715-0920-2.

[3] Plannerer, Bernd. An introduction to speech recognition. Munich, Ger-
many, 2005.

[4] Rodd, J. M. The Neural Mechanisms of Speech Comprehension: fM-
RI studies of Semantic Ambiguity. Cerebral Cortex. 2004-11-24, vol.
15, issue 8, p. 1261-1269. DOI: 10.1093/cercor/bhi009. Available at:
http://www.cercor.oupjournals.org/cgi/doi/10.1093/cercor/bhi009

[5] Digital Audio. In: Digital Audio [online]. 2013 [cit. 2013-07-08]. Available at:
http://documentation.apple.com/en/�nalcutpro/usermanual/index.html
#chapter=52%26section=7

[6] Chittka, Lars and Axel Brockmann. Perception Space - The Final Frontier.
PLoS Biology. 2005, vol. 3, issue 4. DOI: 10.1371/journal.pbio.0030137.

[7] Karbos Guide. Karbos Guide [online]. 2013 [cit. 2013-07-08]. Available at:
http://www.karbosguide.com/books/videosound/chapter05.htm

[8] Fastl, Hugo , Eberhard Zwicker. Psychoacoustics facts and models. 3rd ed.
Berlin: Springer, 2007. ISBN 35-406-8888-9.

[9] Hermansky, Hynek. Perceptual linear predictive (PLP) analysis of speech.
The Journal of the Acoustical Society of America. 1990, vol. 87, 1738 pages.

[10] Hönig, Florian and Stemmer, Georg and Hacker, Christian and Brugnara,
Fabio. Revising Perceptual Linear Prediction (PLP). INTERSPEECH, 2005,
p. 2997�3000.

[11] Müller, Meinard. Information retrieval for music and motion. New York:
Springer, 2007, xv, 313 p. ISBN 35-407-4047-3.

[12] Wu, Bing-Fei and Wang, Kun-Ching. Voice activity detection based on auto-
correlation function using wavelet transform and teager energy operator.
Computational Linguistics and Chinese Language Processing. 2006, vol. 11,
issue 1, p. 87-100.

[13] Ouzounov, Atanas. A Robust Feature for Speech Detection. Cybernetics
and Information Technologies. 2004, vol. 4, issue 2, p. 3-14.

[14] Keerio, Ayaz and Mitra, Bhargav Kumar and Birch, Philip and Young, Ru-
pert and Chatwin, Chris. On Preprocessing of Speech Signals. International
Journal of Signal Processing. 2009, vol. 5, issue 3, p. 216-222.

48

[15] Sajjan, Sharada C. and C Vijaya. Comparison of DTW and HMM
for isolated word recognition. International Conference on Pattern Recog-
nition, Informatics and Medical Engineering (PRIME-2012). IEEE,
2012, p. 466-470. DOI: 10.1109/ICPRIME.2012.6208391. Available at:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6208391

[16] Huang, Xuedong. A Study on Speaker-Adaptive Speech Recognition. HLT,
1991.

[17] Voice Picking Technology 101. In: Voice Picking Technology 101 [online].
2013 [cit. 2013-07-14]. Available at: http://www.voxware.com/in-your-
world/voice-picking-blog/post/view/single/post/voice-picking-technology-
101-better-recognize/

[18] Siri. In: Siri [online]. 2013 [cit. 2013-07-14]. Available at:
http://www.apple.com/ios/siri/

[19] Google Now. In: Google Now [online]. 2013 [cit. 2013-07-14]. Available at:
http://www.google.com/landing/now/

[20] Siri, Why Can't You Understand Me?. In: Siri, Why Can't You
Understand Me? [online]. 2013 [cit. 2013-07-14]. Available at:
http://www.fastcompany.com/1799374/siri-why-cant-you-understand-me

[21] emphDragon NaturallySpeaking Home Edition. In: Dragon Natu-
rallySpeaking Home Edition [online]. 2013 [cit. 2013-07-14]. Avail-
able at: http://www.nuance.co.uk/for-individuals/by-product/dragon-for-
pc/home-version/index.htm

[22] Jelinek, Frederick. Continuous speech recognition by statistical methods.
Proceedings of the IEEE. 1976, vol. 64, issue 4, p. 532-556.

[23] Hinton, Geo�rey, Li DENG, Dong YU, George DAHL, Abdel-rahman
MOHAMED, Navdeep JAITLY, Andrew SENIOR, Vincent VANHOUCKE,
Patrick NGUYEN, Tara SAINATH a Brian KINGSBURY. Deep Neural Net-
works for Acoustic Modeling in Speech Recognition: The Shared Views of
Four Research Groups. Signal Processing Magazine, IEEE. 2012, vol. 29,
issue 6, p. 82-97.

[24] Huang, Xuedong and Deng, Li. An overview of modern speech recognition.
Handbook of Natural Language Processing. 2010, p. 339-366. Boca Raton,
FL, USA: CRC, Taylor and Francis.

[25] Viterbi, Andrew. emphError bounds for convolutional codes and an asymp-
totically optimum decoding algorithm. Information Theory, IEEE Transac-
tions on. 1967, vol. 13, issue 2, p. 260-269. IEEE.

[26] Tzanetakis, George and Cook, Perry. Marsyas: A framework for audio
analysis. Organised sound. 2000, vol. 4, issue 3, p. 169-175. Cambridge Uni-
versity Press.

49

[27] Benoit, Mathieu and Essid, Slim and Fillon, Thomas and Prado, Jacques
and Richard, Gaël. YAAFE, an Easy to Use and E�cient Audio Feature
Extraction Software. ISMIR. 2010 , p. 441-446.

[28] Eyben, Florian, Martin Woellmer and Bjoern Schuller. openSmile: the Mu-
nich open Speech and Music Interpretation by Large Space Extraction toolkit.
2010. Munich, Germany.

[29] Eyben, Florian, Martin Wöllmer, Björn Schuller. openSMILE - The Munich
Versatile and Fast Open-Source Audio Feature Extractor. Proc. ACM Mul-
timedia (MM), ACM, Florence, Italy. pp. 1459-1462, 25.-29.10.2010 ISBN
978-1-60558-933-6

[30] Hirsch, HG and Ehrlicher, C. Noise estimation techniques for robust speech
recognition Acoustics, Speech, and Signal Processing. 1995, vol. 1, p. 153-156.
IEEE.

[31] Zheng, Fang and Zhang, Guoliang and Song, Zhanjiang. Comparison of
di�erent implementations of MFCC. Journal of Computer Science and Tech-
nology. 2001, vol. 16, issue 6, p. 582-589. Springer.

[32] Bala, Anjali and Kumar, Abhijeet and Birla, Nidhika. Voice command
recognition system based on MFCC and DTW. International Journal of En-
gineering Science and Technology. 2010, vol. 2, issue 12, p. 7335-7342.

50

	Introduction
	Speech and Sound Processing Fundamentals
	Sound
	Properties of Sound

	Digital Signal Processing Fundamentals
	Sound Digitization Process
	Waveform and Frequency Spectrum
	The Discrete Fourier Transform

	Windowing
	Spectral Leakage
	Window Characteristics
	Windows

	Speech
	Production of Speech
	Speech Signal Characteristics
	Speech Perception
	A Simple Speech Production Model

	Speech Recognition Features
	Mel Frequency Cepstral Coefficients
	Linear Predictive Coding
	Perceptual Linear Prediction

	Measuring Level of Similarity Between Speech Signals
	Similarity of Feature Vectors
	Dynamic Time Warping

	Voice Activity Detection

	Related Works
	Types of Speech Recognition Systems
	Speaker-dependent Systems
	Speaker-independent Systems
	Speaker-adapting Systems

	Modern Speech Recognition
	Acoustic Models
	Language Models
	Decoding

	Summary

	Implementation
	Available Speech Recognition Feature Extraction Tools
	MARSYAS
	Yaafe
	openSMILE

	.NET Class Library Implementation
	Using openSMILE to extract speech features
	Object Model

	Using the Voice Control Library
	Prerequisites
	Basic usage
	Advanced Usage

	A Voice Controlled Text Editor
	Motivation
	A List of Possible Commands
	A Simple Voice Controlled Text Editor
	Usage Guide
	Implementation

	Further Challenges

	Experiments
	Goals
	Evaluated Features
	Methodology
	List of Commands Used
	Speaker-dependent Speech Recognition
	Speaker-independent Speech Recognition

	Results
	Speaker-dependent Recognition
	Speaker-independent Recognition
	Recognition Success Rates of Individual Commands
	Extraction Time

	Discussion
	Speaker-dependent speech recognition
	Speaker-independent speech recognition
	Recognition Success Rates of Individual Commands
	Extraction Time
	Summary

	Conclusion
	Bibliography

