
Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Adam Hanka

Engine for Real-time Strategy (RTS) Games

Department of Distributed and Dependable Systems

Supervisor of the bachelor thesis: Mgr. Pavel Ježek, Ph.D.

Study program: Computer Science (B1801)

Specialization: Programming

Prague 2013

I would like to thank my supervisor, Mgr. Pavel Ježek, PhD, for the patient
guidance, advice and useful suggestions he has provided me throughout the work on
my Bachelor thesis. I have been lucky to have a supervisor who cared so much about
my work, and who responded to my questions and queries so promptly.

I must also express my gratitude to my family for their continued support and
encouragement during my Bachelor studies and especially during the time I spent
with this thesis.

I declare that I carried out this bachelor thesis independently, and only with the cited
sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.
121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles
University in Prague has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In…...... date............ signature

Název práce: Engine for Real-time Strategy (RTS) Games

Autor: Adam Hanka (adam.hanka@gmail.com)

Katedra / Ústav: Katedra distribuovaných a spolehlivých systémů

Vedoucí bakalářské práce: Mgr. Pavel Ježek, Ph.D., Katedra distribuovaných a
spolehlivých systémů (jezek@d3s.mff.cuni.cz)

Abstrakt: Realtimové strategie (RTS) jsou velmi populární žánr na poli
počítačových her. Bohužel, komerční RTS hry jsou uzavřené a nerozšiřitelné, což
znemožňuje jejich důkladné poznání na úrovni zdrojového kódu.

V této práci prezentujeme velmi ilustrativní 2D RTS hru založenou na .NET
Frameworku s objektově orientovaným návrhem, která je plně rozšiřitelná a
publikována jako open-source. Hra podporuje jak single-player, tak i multiplayer
mód s možností hry proti počítačovým hráčům, kteří jsou vedeni umělou inteligencí.
Systém umělé inteligence je rozšiřitelný pomocí pluginů.

Projekt obsahuje budovy a jednotky s jejich vlastní vnitřní umělou inteligencí, která
jim umožňuje chovat se (částečně) nezávisle. Nové jednotky a budovy i vnitřní
inteligence pro ně mohou být přidávány jako kompilované DLL binární soubory.

V tomto projektu dále prezentujeme propracovaný koncept managementu surovin,
který umožňuje snadnou rozšiřitelnost sběru, transportu a přeměny surovin.

Klíčová slova: RTS hra, realtimová strategie, umělá inteligence pro RTS hry,
multiplayer RTS hry

Title: Engine for Real-time Strategy (RTS) Games

Author: Adam Hanka (adam.hanka@gmail.com)

Department / Institute: Department of Distributed and Dependable Systems

Supervisor of the bachelor thesis: Mgr. Pavel Ježek, Ph.D., Department of
Distributed and Dependable Systems (jezek@d3s.mff.cuni.cz)

Abstract: Real-time strategy (RTS) is a very popular genre of computer games.
However, commercial RTS games are closed and not extendable, which prevents the
community from investigating RTS games on the source-code level and from
tailoring them to their needs.

In the thesis, we present an illustrative, extendable open-source 2D RTS computer
game for the .NET framework with an object-oriented architecture. It supports both
single-player and multiplayer sessions with the possibility to play against computer
players run by artificial intelligence. The system of AI is extendable with plug-ins.

The project contains entities (buildings and units) with their own artificial
intelligence, which enables them to behave as (partially) autonomous agents. New
entities and artificial intelligence for them can be added easily through a
programmer-friendly interface as compiled DLL files.

The project also comprises a developed concept of resource management providing
for easy design-extendability of resource gathering, transport and transformation.

Keywords: RTS game, game engine, multiplayer RTS games, artificial intelligence
for RTS

Contents
1 Introduction..4

1.1 Definitions of RTS games..4
1.1.1 Resource management..5
1.1.2 Base building..6
1.1.3 War tactics..6
1.1.4 Developing new technologies...7
1.1.5 Our definition of RTS ..8

1.2 Requirements..8
1.2.1 Players and their opponents..10
1.2.2 Resource management in our game..10
1.2.3 Game entities in our project..11
1.2.4 Game map...12
1.2.5 Extensibility..13
1.2.6 Graphics..13

1.3 Project goals...14
2 Problem analysis..16

2.1 Continuous time progress...16
2.2 Graphics libraries...16

2.2.1 Microsoft XNA...17
2.2.2 The Open Toolkit Library (OpenTK)...18
2.2.3 SlimDX...18
2.2.4 SharpDX...18
2.2.5 Summary...19

2.3 Artificial intelligence (AI) for computer players..20
2.3.1 Cheating AI...20
2.3.2 Example of an AI: Erik, The Warrior...21
2.3.3 Rules for decision-making..22
2.3.4 Implementation...23

2.3.4.1 Scripting language..23
2.3.4.2 Finite state machine..24

2.4 Game entities as autonomous agents..25
2.4.1 The degree of independence...26

2.5 Game map..26
2.5.1 Map without subdivision..27
2.5.2 Tile-based map ...28
2.5.3 Path...30
2.5.4 Pathfinding in map...30

2.5.4.1 Dijkstra's algorithm...30
2.5.4.2 A* search algorithm..31
2.5.4.3 Heuristic for A* and optimality of shortest path...............................32

2.5.5 Pathfinding in our game...33
2.5.5.1 Use of heuristic...33
2.5.5.2 Collisions..34
2.5.5.3 Unreachable target..34

2.6 Network communication for remote game sessions..35
1

2.6.1 Enhancements in network communication...37
2.6.2 Correctness of information shared across games.....................................37

3 Development documentation...38
3.1 Program structure...38

3.1.1 RTSGame.csproj...39
3.1.2 Game window...41
3.1.3 Namespaces in RTSGame.csproj..41

3.2 Identification of types...42
3.3 GameObject..43

3.3.1 Initialization..43
3.3.2 Class MovingGameObject..44
3.3.3 Interactions between game entities...44
3.3.4 Resource collectors and transporters..45
3.3.5 StaticGameObject...46
3.3.6 Building..46
3.3.7 Obstacles...47

3.4 Resource Management...48
3.4.1 Resources present in map...48
3.4.2 Resources produced in structures...50

3.5 Network communication..51
3.5.1 Network topology...52
3.5.2 Server and client communication...53
3.5.3 GamePacket..55
3.5.4 Types extending GamePacket...56
3.5.5 Logging of player packets..58
3.5.6 Position of computer players in the network..59
3.5.7 Use of random numbers in the game..59
3.5.8 Project LogsComparer.csproj...60

3.6 Artificial intelligence..61
3.6.1 Class FiniteStateMachine...61
3.6.2 FSMState..62
3.6.3 Initialization of FSM..63
3.6.4 Types extending FiniteStateMachine..65
3.6.5 AI for entities..65
3.6.6 Defining FSM for GameObject..67
3.6.7 AI for computer players..67

3.7 Map and pathfinding..70
3.7.1 Loading maps...71

3.8 Deployment – RTSGameSetup.vdproj...72
4 User documentation...73

4.1 Installation..73
4.2 Initial screen...73
4.3 Gameplay...74

4.3.1 Entities..75
4.3.2 Resources..76

4.4 Player's input..77

2

5 License...79
6 Comparison with similar products...80
7 Conclusion...82
8 Recommendations for future work..85
9 Attachments..87
10 Bibliography..88

3

1 Introduction
A real time strategy (RTS) is a game making an impression of a continuous time

progress. It is a sub-genre of strategy computer games, which has grown to a large
extent over the recent years and has become very popular among many computer
games players.

Commercial RTS software is closed and not extendable. This prevents the
community from investigating RTS games on the source-code level and from
tailoring them to their needs. We, by contrast, intend to develop an open source RTS
game which would be very illustrative and accessible for the community so that
anybody familiar with programming can make use of it.

Although there are many open source RTS games (visit the article List of open-
source video games in Wikipedia [1]), they are mostly based on C++ (in the article
List of open-source video games, all of them are). However, there is also a large
number of programmers familiar with other languages and we would like to make
our open source RTS game accessible to them as well. In the past, C++ used to be the
development language number one for computer games, but we believe that
nowadays, an RTS computer game can also be created using the Microsoft .NET
Framework [2] and its language C#.

For all the reasons, the goal of this thesis is to design and develop an extendable
open source RTS computer game. For the development, we will use the .NET
Framework.

Let us first of all investigate how are RTS games generally understood, so that we
know what a typical RTS games has to comprise.

1.1 Definitions of RTS games
Despite to the popularity of the RTS genre, not many complex definitions of RTS

games can be found. Dan Adams [3] describes RTS as “a military strategy game in
which the primary mode of play is in a real-time setting“. The Urban Dictionary [4]
says: “RTS refers to a strategy-based computer game, generally involving
management of an army or civilization.” So RTS is a military strategy. The
participants (gamers) take the role of a supreme commander in a battlefield.
According to the article Real-time strategy in Wikipedia [5], they “position and
maneuver units and structures under their control to secure areas of the map and/or
destroy their opponents' assets. In a typical RTS, it is possible to create additional
units and structures during the course of a game. This is generally limited by a
requirement to expend accumulated resources.” The article also mentions 4 main
components of a typical RTS game:

(c1) resource management
(c2) base building
(c3) war tactics (commanding units in battles)
(c4) technology development
The above definitions exclude city-building games such as SimCity [6] or

4

Pharaoh [7] due to the absence of military elements, although they process in real
time. Similarly, there is a large class of games concentrating on complexity in war
tactics and combat while neglecting other components (typically resource
management and base building). This genre is called real-time tactics (RTT) [8] and
it is not considered to be a part of the RTS genre. This category contains for example
the Total War series [9] (where resource management is turn-based) or the
Warhammer 40,000 [10].

Further, computer games combining elements from both RTS and turn-based
strategy (TBS) [11] can be found. In such games, either time can be stopped in battles
to plan the tactics, or the game progresses in steps between battles held in real-time.
Apart from the Total War series, The Lord of the Rings: The Battle for Middle-earth
II [12] is one such game.

The genre of RTS games is also distinguished from god games [13] (for example
Black & White [14]), where the players influence their units (worshipers) only
indirectly. Also, players are given supernatural power (e.g., controlling the weather),
which is not an element of RTS games.

Now that we know what is an RTS game and what it is not, let us investigate
components (c1) – (c4) mentioned in the definitions.

1.1.1 Resource management

Resource management symbolizes the player's economy. No matter how many
types of resources are present in a particular game, they always stand for a currency;
their main purpose is to pay for new structures, units, and for technology
development. Each unit, structure and technology has its cost, which is the amount of
resources the player expends for constructing/developing it. This concept can be
expressed with the following formula:

Supposed we have resources R1, R2,..., RN, then the cost C of a unit, structure or
technology can be expressed as:

Where ai is the amount of resource Ri required for acquiring the unit, structure or
technology.

The article “Real-time strategy” [5] gives the following definition of how
resources are obtained: “Resources are garnered by controlling special points on the
map and/or possessing certain types of units and structures devoted to this purpose.”
Each game presents different types of resources, gathering them and using them.
Examples range from very simple to complex resource-management systems. For
example, Dune II [15] features only one type: the spice. A special unit (spice
collector) goes to area where spice is present and collects it. On the other hand, in
Stronghold [16] for instance, wheat (grown in farms) is ground into flour in mills; the
flour is brought to bakery where bread is produced. Extra rations of food can then be
given to the population to increase their happiness and raise the taxes income, which,
in turn, allows hiring more military units (notice that also abstract resource such as
happiness may be present in an RTS game). The chain of resources production can
be summarized with the following (recursive) definition:

5

C=∑
i=1

N

ai⋅Ri

Resource RN+1 is produced by a unit U or structure S from resources R1, R2,..., RN ,
where Ri is produced from other resources or collected by a unit or obtained directly
from controlling an area in the game:

In the formula, ai is the amount of resource Ri required for acquiring the resource
RN+1.

1.1.2 Base building

Base building is a general concept in which players build structures in order to (1)
secure their position in certain areas, (2) gather, produce, and store resources, and (3)
produce military units. Usually, the players concentrate their structures into one area
to enhance the interaction between them (e.g. in case of a chain of resources), and to
simplify their protection (be it by other structures or by units).

In many games, e.g., Age of Empires II (AoE) [17] and Stronghold, it is essential
to erect defensive structures (castles, towers, walls, moats, etc.) around the base to
defend it against opponent's attacks. On the other hand, in some games, defensive
structures are limited to a small number of buildings (Original War [18]) or they are
not present at all (Warcraft [19]).

Games with a complex resource management require many structures in the
manufacturing chain. In Stronghold, bread production begins with a wheat farm and
continues with mill and bakery before the bread lands in the granary. If the game
features simpler resource management, then also less structures related to it are
present: in Dune II, it is only the spice refinery.

In most RTS games, military units are produced in buildings (an exception are
soldiers in Original War, which are given to the gamer in the beginning of the
session). Either all units are created in one building (barracks in Stronghold) or
different units are produced in different buildings (in AoE, where swordsmen and
pikemen are created in barracks, archers and crossbowmen in archery range, scouts
in stables, etc.).

1.1.3 War tactics

Military tactics is “the science and art of organizing a military force, the
techniques for using weapons or military units in combination for engaging and
defeating an enemy in battle,“ as defined in the article “Military tactics” in
Wikipedia [20]. This definition expresses the main idea of war tactics in RTS games.
It requires the player to combine military units of different types to develop tactics
which would be successful against the opponent's units and structures.

The player can not stop the time progress to plan the battle, to investigate the
battlefield or to issue commands to units. Some games (e.g. Original War) even
penalize players for reloading the game during battle. RTS games are usually fast-
paced so that if the player is wasting time, opponents are likely to gain an advantage.

Each unit and structure has a certain amount of health. In a typical RTS game,
interactions between different types of units and structures are defined as the damage

6

⟦U || S ⟧&∑
i=1

N

a i⋅Ri→RN+1

(the loss of health) caused by one to another.
We define set of all units and structures SU := {a ; a is Unit or a is Structure},

function damage: SU x SU → N, where damage(K1, K2) is the amount of health unit
K2 looses if it is attacked by K1, and function health: SU → N, which expresses the
health a unit or a structure currently has.

In order to simplify the formula, we presume that such K1, K2 may exist that
damage(K1, K2) = 0. (In a typical RTS game, there would be many such pairs, for
example a wall attacking a soldier). The formula does not presume that the relation
“K1 isAttackedBy K2” is symmetric [21].

It is possible that a unit will be variously effective against different types of units
(and the above formula allows such an option). For instance, in AoE, pikemen do
more damage to mounted knights than to infantry (i.e. pikemen are very effective
against mounted knights). Such information is important in planning the combat
tactics.

In some RTS games, the properties of the battlefield play an important role; some
areas on the battlefield favor or disadvantage the units and structures occupying them
against units or structures occupying other areas. This includes for example an
increased archers' range when they shoot from a higher point, the fact that in a forest,
soldiers are less likely to be hit by an arrow (both in Stronghold) or a lower speed of
vehicles while they go uphill (Original War). Not all RTS games consider the
properties of the battlefield important (Warcraft and Dune II).

1.1.4 Developing new technologies

The player has usually the possibility to perform research for new technologies.
After a new technology is developed, new structures, units or technologies are
unlocked or current units and/or structures may be improved/upgraded.

7

After K2 is attacked by K1: health(K2) := health(K2) – damage(K1, K2)

Figure 1: A part of a technology tree from Age of Empires. Orange squares
represent buildings, blue squares units and green squares technologies.
Source: http://www.wsgf.org

http://www.wsgf.org/

Upgrades are ordered into technology trees. According to the article Technology
tree in Wikipedia [22], it is “a hierarchical visual representation of the possible
sequences of upgrades a player can take, by means of research. The diagram is tree-
shaped.“ We can see an example of a technology tree from AoE in Figure 1. Orange
squares represent buildings, blue squares units and green squares technologies.

In RTS games, taking one sequence of research does not exclude other sequences
from also being researched. It is very usual that the player needs specific buildings
and units to perform research (for example in Original War, research is done by
scientists in laboratory; in AoE, several buildings such as university, blacksmith,
castle, etc. are responsible for research).

Unlike the former 3 components (resources management, base building, war
tactics), in-game technology development run by the player is not present in all RTS
games; for instance Stronghold, Warcraft and Dune II do not contain it.

1.1.5 Our definition of RTS

Now that we have investigated components (c1) – (c4) of RTS games named by
the article Real-time strategy, we should refine our definition of the RTS genre so as
we understand it. From our experience with playing RTS games, components (c1) –
(c3) are reasonably balanced in the most successful RTS games (this is, for instance,
the case in AoE and Stronghold) so that the player spends some time with managing
each of them. It is important to realize that the more time the player has to spend
with one of the components, the less time they have left for others components. So,
here is our definition:

RTS is a fast-paced military strategy simulation making an impression of a
continuous time progress. The participant takes the role of a supreme commander
controlling units and structures to secure areas in the map or destroy their
opponent's units and structures. New units and structures can usually be constructed
during the course of the game. The game contains 3 main components, which are
(c1) resource gathering and management, (c2) base building, and (c3) war tactics,
where non of them is neglected in favor of other two. A 4th component, the
development of new technologies (c4), may or may not be present.

We must not forget the most important aspect about computer games in general:
they are intended to entertain players!

1.2 Requirements
We have come up with a definition of RTS games as we understand them, and we

feel that it is more specific than the definitions we were able to find in literature. We
have also covered the 4 main components of RTS games. However, these
components are still very general and we are yet to discuss how to implement them
within our project. Furthermore, there is still a large number of important
requirements on the game which have not yet been explained thoroughly enough. We
can divide them into 2 main groups: (1) conceptual requirements, and (2) technical
requirements.

8

(1) Conceptual requirements include decisions about the nature of the RTS game.
According to our definition, the player controls units and structures (we will call
them game entities in our project) and fights against their opponents. The game plays
in a battlefield or in a world; we have yet to discuss the game map which represents
it. We have to include resource management, elements of war tactics, and base
building into our game. We believe that those three components should be in balance
so that neither of them will be superior to another. We also declared that it is our
intention to make the game illustrative and well comprehensible so that it is
accessible to the community. For this reason, we want to keep the three components
simple but with further possibility to be extended. For the same reason, we will give
up the in-game technology development.

(2) Concerning the technical requirements of the project, we have to discuss the
extendability of the project (what parts of it should be extensible). Furthermore, the
graphics of the game plays an important role, as it influences the experience players
obtain from playing the game.

We will illustrate the specific parts using two screenshots from 2D RTS computer
games. Figure 2 shows a screenshot from AoE, Figure 3 from Dune II.

9

Figure 2: A screenshot from Age of Empires II.
Source: http://en.wikipedia.org/wiki/File:Age_ii_feudal_age_celts.jpg

Buildings

Resources

Defensive structures

Resources and obstacles

Military unit

Map thumbnail

Resource collectors

http://en.wikipedia.org/wiki/File:Age_ii_feudal_age_celts.jpg

1.2.1 Players and their opponents

According to the definition of RTS games, the participant plays against
opponents. There are 2 possible types of opponents: (1) other human players and (2)
computer players. If more human players than one participate in the game, it is called
a multiplayer mode. In some game genres (such as car racing, for instance), human

players can share one computer screen (it is called split screen, the screen is divided
into two parts). However, in RTS games, players very often try to keep some
information (for example position of units, the amount of resources, etc.) hidden
from each other for tactical reasons. Therefore, it is necessary to allow each player to
have their own computer and connect them via network. The game session is then
called remote game session. If there is only one human player competing against
computer players, the mode is called single player mode.

Nowadays, the socializing element is getting more and more important (and
entertaining) in RTS games so that our game certainly has to support remote game
sessions. As we realize that network communication in general can be prone to
mistakes which are difficult to debug, we will include a possibility of testing it on
correctness of all information exchanged between communicating games.

Unlike humans, computer players do not have a brain, therefore they need to
receive one from us – we will have to give them artificial intelligence (AI). In many
games, there are more different AIs available, each of them concentrating on a
specific strategy. It simulates real human players, as different human players may
choose different approach to different issues in the game. Furthermore, it is more
entertaining for the gamers to play against computer players which do not all follow
the same pattern of behavior (e.g. some AIs may prefer attacking more often with
less units whereas other AIs might like to attack in longer intervals, but with more
units at once). Therefore, we want to include the possibility of computer players

10

Figure 3: A screenshot from the game Dune II.
Source: http://www.dosgamers.com/uploads/images/original/dune2c.gif

Resources

Map thumbnail

Military units

Buildings

http://www.dosgamers.com/uploads/images/original/dune2c.gif

following different strategies, and we would also like to enable the community to
extend the game by inserting additional AI strategies.

Before the game begins, players should be able to set the number of computer
players in the game and the strategies the computer players will follow.

1.2.2 Resource management in our game

In section 1.1.1, we showed that no matter the concept of resource management,
the main point is always in using resources as a currency for obtaining structures,
units and technologies. We also showed a chain of resource processing (i.e. resources
are either collected or created from other resources). Examples of resource
management are shown in both Figure 2 and Figure 3. Let us now have a look at
options we have encountered across various RTS games:

• Resources appear during the course of the game and they disappear after
being exhausted (collected). For example in Stronghold, trees (provide wood)
grow naturally; they are cut down by a woodcutter. In Original war, crates
literally appear (they come from the future via time machine) in the game in
certain areas and they are collected by workers.

• Resources are given from the beginning and their number may decrease while
they are being harvested (collected). For instance, in AoE, stone is present in
the map from the beginning and the amount of it lowers while it is being
mined by workers. However, its amount does not increase during the course
of the game.

• Resources are produced in a structure (sometimes, the structure has to be
placed to a certain area), with or without input of any other resource. For
instance in Stronghold, wheat grows in farms without any input, but the farm
needs to be placed on fertile soil. On the other hand, to produce bread in a
bakery, flour is needed (it is an input resource).

One of the main goals is the extendability of our project. For this reason, we want
to support the community in creating the resource management according to their
needs and we do not want to be restrictive. However, the basic implementation
should not contain too many resource types and resource-processing structures for
the sake of the illustrative nature of the game. The community has to be able to
extend the game by new resource types and game entities related to resource
management:

There has to be a few resource types in our game with the support for both
growing and non-growing resources. Furthermore, the game has to contain
structures processing the resources brought to them and transforming them into
other resources. Players will control special units: resource collectors will collect
resources and bring them to the processing structures, and resource transporters will
transport resources between structures.

1.2.3 Game entities in our project

Game entities play an important role in all the three main components (c1) – (c3)
(apart from resources management, it is war tactics and base building). Examples of
various game entities (resource collectors, military units, defensive and other

11

structures) can be seen in Figure 2 and Figure 3.
In various RTS games, there are 3 possibilities where military units are created:
• All types are created in one building (in Stronghold, it is in barracks).
• Different types are created in different buildings (in AoE, soldiers are created

in barracks, scouts in stables, archers in archery range, etc.).
• In Original War, the soldiers are not created at all, they are given to the player

in the beginning of the game. However, this approach is merely an exception.
• There are also 3 options how structures are created:
• In other structures: for example in Dune II, all structures are created in

Construction Yard.
• By a special type of units (in AoE and Original War, there are

workers/builders who build structures).
• Without any special structure or unit (in Stronghold). The players choose

which structure they want to build from a list in the game and place it to a
chosen area.

In some RTS games, there is a special building which can not be created – it is
given to the player in the beginning of the game. For example in Dune II, it is the
Construction Yard.

The goal of our project states that we want to keep both the war tactics, i.e. the
management of military units, and the base building, which is building of structures,
easy to comprehend. For this reason, only a few military units and structures may be
available in the basic implementation, and we do not want to define complex
interactions between them. On the other hand, we want to enable the community to
extend the program by additional game entities. According to all the facts listed, the
system of game entities has to be as follows:

In our game, we want to allow different types of units to be created in different
structures. Structures should be created in other structures. There may also be
structures which will be given to the player in the beginning of the game and which
will not be constructed in any other structure (we do not forbid this option). We have
to support future extensibility of the game by new game entities.

1.2.4 Game map

The game map represents the world where the game is played. Generally, the map
might be of any shape, but in RTS games, it is typically a rectangle. In some games,
the map is subdivided into layers; some of them might be inaccessible for some game
entities (in AoE, there are two layers – water and ground, and e.g., a ship cannot step
on ground or an archer can not walk on water). For the sake of the easy
comprehensibility of our game, it will not contain different layers. There will only be
one layer in the game map which will be accessible for all units.

In many RTS games (AoE, Stronghold, Original War), there are various terrain
profiles such as hills, mountains or lowlands. On the contrary, in Warcraft and Dune
II, no terrain profile is to be found. Among other things, terrain profile influences the
war tactics. For the simplicity of our game, it is our choice not to use terrain profile,
which will also make the war tactics (and units management) easier.

On the other hand, the game has to contain obstacles, i.e. areas of the map which

12

are inaccessible to units and where structures can not be built. We see examples of
obstacles in Figure 3. Both Figure 2 and Figure 3 show us also a map thumbnail,
which improves human player's orientation in the map. In order to make the game
more interesting, we want to enable the community to tailor it to their preferences by
adding new maps.

1.2.5 Extendability

There are 2 major concepts of extendability: (1) design extendability, and (2) run-
time extendability.

(1) Design extendability means that the system is designed for future growth. We
intend to use patterns from object-oriented programming to make the game
extendable by design. After design extensions have been added, the program
typically needs to be recompiled. Since the game is an open-source project which
aims to be as illustrative as possible, a well maintainable and extendable design is
very important.

(2) Run-time extendability does not need recompilation of the program; new
extensions are included at run time. We already declared our intention to allow the
community to extend the game at run time by the following:

• Strategies for computer players
• Game entities
• Game maps

To support the community and to make the task of creating new extensions easier,
we would like to prepare sample extensions on which we will demonstrate how to
make such an extension.

1.2.6 Graphics

Authors of RTS games choose from 2 basic possibilities: (1) 2D graphics and (2)
3D graphics. For the sake of simplicity, we will use 2D, because for 3D, we would
need 3D models of each game entity, which would also apply for each of its
extensions. This would in turn limit the extensibility of our program as making a 3D
model is much more demanding than making a 2D picture, so that anybody who
would like to extend the game by adding a new game entity would have to be skilled
in 3D modeling, too.

Considering 2D graphics, 2 approaches to its projection can be chosen: (1) true
2D projection (called bird's-eye view or top-down projection) and (2) a simulated 3D
projection.

(1) In bird's-eye view, the virtual camera is placed above the game plan, and it
shows the game as a true 2D scene. In Dune II (Figure 3) this projection is used.

(2) Simulated 3D projection (used in AoE shown in Figure 2) is sometimes called
2.5D. The article 2.5D in Wikipedia [23] describes it as graphical projection “using
some form of parallel projection, wherein the point of view is from a fixed
perspective, but also reveals multiple facets of an object.” In parallel projections,
lines which are parallel in reality are also parallel in the projection. In Figure 2,
axonometric projection [24] is used.

For this projection, more pictures for one game entity have to be provided

13

(because the game entities may be seen from more camera positions than just one),
which would again limit the extensibility of our project. As we want to keep the
game easy to comprehend and illustrative, we will use the 2D top-down graphical
projection, where for each unit, only one facet is revealed (the upper one) so that
only one picture is sufficient.

1.3 Project goals
Now that we have had a look at all the important parts of our game, let us

summarize the goals of our project.
The main goal of this thesis is to design and develop an extendable open source,

bird's-eye-projected 2D RTS computer game, which would meet our definition of
RTS. For the development, we will use the .NET Framework.

1. Conceptual goals:
1.2. The game has to be illustrative and easy to comprehend, so that the

community will be able to tailor it easily to their own needs.
1.3. The game has to support multiplayer mode (human players connected via

network), and single player mode (one human player competing against the
computer). Players have to be able to set the number of computer players in
the game (for both single player mode and multiplayer mode).

1.4. The game has to contain more than one strategy for computer players.
Players should be able to choose the strategies for AI opponents.

1.5. Resource management, elements of war tactics, and base building have to
be in balance so that neither of them is superior to another. It is our
intention to make the game illustrative and well comprehensible so that it is
accessible to the community. For this reason, we have to keep the three
components simple but with further possibility to be extended.

1.6. The concept of resource management in the game has to be as follows:
• There has to be a few resource types in our game with the support for

both growing and non-growing resources.
• The game has to contain structures which will process the resources

brought to them and transform them into different resources.
• Players will control special units: resource collectors will collect

resources and bring them to the processing structures, and resource
transporters will transport resources between structures.

1.7. The concept of game entities in the game has to be as follows:
• The basic implementation will contain only a few game entities, but the

system of game entities will be extendable at run time so that the
community will be able to extend it by additional game entities easily.

• We allow different types of units to be created in different structures.
• Structures will be created in other structures.
• There may (but does not have to) be structures which will be given to the

player in the beginning of the game and which will not be constructed in
any other structure.

• We do not require complex interactions between game entities.

14

1.8. The game map will be rectangular and it will comprise one layer accessible
to all units. For the simplicity of our game, we will not use terrain profile
(the terrain will be a plane).

1.9. The game map has to contain obstacles, i.e. areas of the map which are
inaccessible to units and where structures can not be situated.

1.10. The game has to contain a map thumbnail, which improves human player's
orientation in the map.

2. Technical goals:
2.2. The design of the game has to allow simple extensibility of the game by the

community.
2.3. There has to be support for following run-time extensions in the game:

• Strategies for computer players
• Game entities
• Maps

2.4. In order to support the community, we have to prepare sample extensions
and explain, how to make new extensions.

2.5. Network communication in general can be prone to mistakes which are
difficult to debug; for this reason, the game has to contain a possibility of
testing the correctness of information exchanged between communicating
games.

15

2 Problem analysis
In chapter 1, we described all the important components the game has to contain

and we set the goals of our project. Let us now analyze different possibilities of
implementing the game components.

2.1 Continuous time progress
In our definition (see section 1.1.5), RTS game makes an impression of a

continuous time progress. However, based on properties of graphics cards, only
separate pictures can be displayed on screen. We have to display a reasonably high
number of pictures (for example 25) per second so that the human eye perceives the
pictures as a movie and not as separate pictures. This implies a subdivision of the
game time progress into rounds; in each round, the state of the game has to be
updated and drawn on the screen. In RTS computer games, these 2 activities are very
often represented by 2 subroutines: (1) Draw and (2) Update.

• Draw displays the current state of the game. It does not know how many
times the state has changed since the last time it was displayed. Draw will be
able to display the game even without any updates.

• Update is responsible for processing one step in the game logic. It will only
care for computing the next state of the game.

In other words, Draw receives data and renders graphical output, while Update
provides the data.

2.2 Graphics libraries
According to the main goal of our project, we are developing a 2D game. We do

not need to use vector graphics as we do not expect the textures used in the game to
be resized; bitmaps are sufficient. Therefore, we need a graphics library for loading,
creating, and displaying 2D bitmaps.

In RTS games, game entities belonging to one player are denoted by his or her
color. Figure 4 (A) and (B) shows us the same game entity with colors of two
different players. To achieve this, we use two different textures for each game entity,
shown in Figure 4 (C) and (D), where (C) is used as the base texture and (D) as a
mask, which is covered with the color of the player. Here, magenta color represents
transparent color.

16

A B C D
Figure 4: Composition of a tank. From left to right: Two tanks, (A) first belongs to the red player,
the other (B) to the blue player. (C): Image defining the body of the tanks. (D): Image defining
the color mask. Note that the magenta color represents transparent color.

In the game, it will be important to use some transparent colors, either truly
transparent (using the alpha channel in RGBA [25]) or a default transparent color
(like magenta color in Figure 4). Both of them are properties of the class
System.Drawing.Bitmap [26], which is a part of the .NET Framework.

We also need easy rotation of the bitmaps. We will have many moving entities in
our game and we want them rotated in the moving direction. For this, the bitmap will
have to be rotated with respect to the direction vector of the moving entity. Also,
proper documentation of the graphics library plays an important role for us: it makes
our development easier and provides valuable support for the community.

Let's summarize our requirements:
• We only need 2D bitmap-based graphics, no vector graphics and no 3D

graphics is required (and will not be discussed).
• Create, load, and display bitmaps.
• Rotate bitmaps.
• Proper documentation is important.

We will briefly describe the most popular graphics libraries available for .NET
and learn if they meet our requirements; then, we will decide which of them to use.
We choose from the following graphics libraries:

• Microsoft XNA [27]
• The Open Toolkit Library (OpenTK) [28]
• SlimDX [29]
• SharpDX [30]

2.2.1 Microsoft XNA

The Microsoft XNA Framework, built on top of DirectX [31], enables the game to
run under various platforms such as Microsoft Windows, Windows Phone 7 and
Xbox 360. Applications created using XNA are portable to various platforms (Linux,
Mac OS, iOS, Android) using the open source project MonoGame [32], which is
based on OpenGL [33].

 XNA provides a class called Texture2D, which wraps 2D textures. It also
provides a simple way of rotating textures just at the moment they are being drawn
by specifying the angle or rotation to the axis. Apart from being able to load pictures
of various formats from stream using the Texture2D.FromStream method,
XNA provides a component called ContentManager. It loads images and other
content (e.g. fonts, sounds, etc.) from files produced by the design time content
pipeline. However, the content has to be inserted into the solution before
compilation.

Furthermore, XNA offers a class Game, providing methods Update and Draw,
which do the jobs we described as Update and Draw. Another important point of
XNA is the large number of examples available on the internet in different forums
and blog articles; also the documentation homepage serves as a valuable source of
information.

17

2.2.2 The Open Toolkit Library (OpenTK)

The OpenTK is a library allowing .NET and Mono programs to use the OpenGL
graphics library. Handling textures mainly relies on the Bitmap class to load data.
Although the approach is not as straightforward as loading and storing textures in
XNA, it is still simple and after adding a few functions, very convenient. Rotating a
texture is slightly more complicated than within XNA; in OpenTK, the OpenGL
rotation based on rotation matrices has to be used.

The OpenTK also provides a Game class with 2 basic methods:
OnUpdateFrame, and OnRenderFrame, dealing with rendering frames (Draw)
and updating frames (Update).

At the time we were considering graphics libraries, the documentation at the
homepage of the OpenTK project was weaker than the one of XNA. Certainly, one
option is using the OpenGL documentation, but the methods very often have slightly
different interfaces. On the other hand, OpenTK provides many examples and
tutorials with the installation packet; users can take them and play with them just
after installing OpenTK.

2.2.3 SlimDX

SlimDX is an open source project wrapping DirectX (very much like XNA). It
provides class Texture2D for storing textures. Rotating a 2D texture works exactly
the same way as in XNA, which means that we only have to specify the rotation
angle while the texture is being drawn.

When investigating the documentation, we immediately notice that there is a
detailed class reference, much like within the XNA. However, there is no in-depth
documentation. On the other hand, according to the authors of SlimDX, the concept
itself is very similar to XNA so that XNA and DirectX tutorials should be useful for
SlimDX as well. SlimDX also provides the Game class (much like XNA and
OpenTK) comprising methods for game logic update (called Tick) and for drawing
the game (called DrawGame).

However, there is no support for Linux-based operating systems within SlimDX;
also no content manager is present so that only loading bitmaps using
Texture2D.FromStream is possible.

2.2.4 SharpDX

SharpDX is also an open source project encapsulating DirectX. It fully supports
all Windows platforms including Windows Phone 8.

SharpDX also provides Texture2D class which wraps textures. There are also
methods for loading textures directly from a BMP file such as
TextureLoader.LoadBitmap. The texture can also be rotated while being
drawn just by specifying the rotation angle; this is similar to SlimDX and XNA.

SharpDX also features a documentation on approximately the same level as
SlimDX, but compared to XNA, it is rather limited. One of the main issues it the lack
of code examples. However, the method interfaces are similar to XNA and SlimDX
so that an XNA example should also apply for SharpDX.

18

SharpDX also provides the Game class with properties similar the SlimDX and
XNA Game class (Update, Draw). It contains the ContentManager with the
same function as in XNA.

2.2.5 Summary

We can say that all the graphics libraries fulfill our requirements, and even though
there are differences between them, we can imagine building our application on the
top of any of them. We summarize what we learned in Table 1.

XNA OpenTK SlimDX SharpDX

Create bitmaps ✓ ✓ ✓ ✓

Load bitmaps ✓ ✓ ✓ ✓

ContentManager ✓ - - ✓

Easy rotation of textures ✓ Matrix ✓ ✓

Documentation ✓ Limited Limited Limited

Underlying technology DirectX /
OpenGL *

OpenGL DirectX DirectX

Table 1: Summary of how the graphics libraries fulfill our requirements.
* XNA uses DirectX as underlying technology under Windows, and OpenGL under
Linux (MonoGame).

Also, for the sake of of extendability of the project, it would be beneficial if the
game graphics would work under various platforms. We show the summary of the
graphics libraries we investigated in Table 2.

XNA OpenTK SlimDX SharpDX

Windows ✓ ✓ ✓ ✓

Linux ✓ ✓ - -

Windows Phone 7 ✓ - - -

Mac OS ✓ ✓ - -

Xbox 360 ✓ - - -

iOS ✓ ✓ - -

Android ✓ ✓ - -
Table 2: Supported platforms

First of all, we exclude OpenTK and SlimDX from the pool. The reason is the
absence of the ContentManager, which might be a very useful component for
example for loading fonts or music effects used in the game.

Then, XNA and SharpDX seem to be equivalent choices, but we also have to
consider that there is much more support for XNA such as a large number of
examples available online (forums, blogs, etc). XNA also has documentation on a
higher level than SharpDX. Furthermore, Table 2 shows that XNA supports more
platforms, which may be also advantageous for the extendability of our project. For

19

this reasons, we choose the Microsoft XNA to be the graphics library used in our
project.

2.3 Artificial intelligence (AI) for computer players
According to goal 1.4 of the thesis, the game has to contain more than one

strategy for computer player. AI for computer players might be one of the key factors
in the experience the user (i.e. gamer) receives from playing a computer game.
According to Buckland [34], there are 2 different approaches to implementing the AI:
(1) searching for the optimal solution and (2) designing suboptimal but entertaining
AI.

Searching for the optimal solution: The main goal would be to design AI always
able to find the optimal solution to a given problem, despite to time and hardware
limitations. From a mathematical point of view, this might seem the right approach,
and also, in some games (chess, for instance), it is. On the other hand, in RTS games,
the reality is different due to the amount of resources (e.g. CPU properties) varying
from machine to machine, and to the complexity of the game.

Furthermore, the gamer wants to be entertained and to have a fair chance to win
the game, whereas competing against a player, which knows everything and always
wins (because it knows the winning strategy, if there is such one) would be
frustrating for the gamer.

Designing suboptimal but entertaining AI: Buckland [34] (page xx) says: “If
the player believes the agent he’s playing against is intelligent, then it is intelligent.
It’s that simple. Our goal is to design agents that provide the illusion of intelligence,
nothing more.”

Here, a very important idea of the AI design is mentioned: The aim is to entertain
the human player, not to find the always-winning strategy. The AI will not be judged
on the quality of the solution; it will be judged on the ability to produce fun for the
human player as he or she has to believe that the enemy is intelligent, which,
incidentally, also includes making wrong decisions and mistakes. In contrast to the
optimal solution, this approach also saves system resources thus being more suitable
for RTS computer games.

2.3.1 Cheating AI

In order to enhance the impression of computer player's intelligence without
increasing the cost of development or complexity, it is possible to allow the AI to
cheat, which means that the computer player receives an advantage unavailable to the
human player under the same conditions. However, human players must not loose
their trust in the AI, which means that cheating strategies should not produce
unrealistic behavior. There are some ideas on what could cause the human player
loosing their thrust in the AI:

• Human player stands next to an enemy's building, which is being created at
the moment and he or she sees that the construction runs very quickly (the
building is finished almost immediately) compared to his or her own
buildings whose construction takes much more time.

• Human player notices that if the computer player's unit is shot, the damage is

20

lower than the damage made to his or her own unit when shot by the same
type of a game entity.

However, there are also some cheating strategies the human player will not notice;
such strategies are often used in computer games. Two examples:

• Computer player may have more information than human players. For
instance, it might know the position of all game entities in the game so that it
can better prepare its defense.

• Computer players might enter the game with a higher amount of resources
than human players. Due to it, they might seem stronger in the beginning; in
this case, human players might even believe that the AI is more intelligent
than it really is. This would give them a better feeling after defeating such an
AI player. On this example, we see that a cheating AI might even enhance the
experience a player obtains from playing the game.

To conclude the discussion, let's summarize the observations important for the
design of our game:

• We aim to create an entertaining AI which does not have to provide an
optimal solution. However, the human player should believe that he or she is
up to an intelligent player.

• The AI will be allowed to cheat as long as it does not influence the human
player's experience in a negative way.

2.3.2 Example of an AI: Erik, The Warrior

In order to illustrate the AI which may be used in our project, let us first think
about a simple AI strategy. It is an easy strategy (to be illustrative) and it reflects our
experience with computer players' strategies from various RTS games. The strategies
very often have a defensive component and an offensive component, which define
the player's behavior towards defending and attacking. For the sake of illustrative
nature of the strategy we have chosen, we give up the defensive component of the
computer player. We will call the player “Erik, The Warrior”:

Erik enters the game with a rather high amount of resources. He creates some
(but not many) resource collectors and orders them to collect resources. Then, Erik
constructs two or three buildings in which attack units are produced before
producing a high number of attack units. At the end of the tenth minute (to give the
human player enough time to prepare for defense), Erik sends its attack units to
engage the human player. Then, every 3 minutes, a new attack is sent if the computer
player has at least a medium number of attack units. Otherwise, more attack units
are produced. If Erik does not have enough resources, he produces more resource
collectors.

Apparently, Erik does not poses an optimal AI (if he loses all his units while
attacking, he would be defenseless and hence prone to being destroyed very quickly).
However, the human player might have some hard time (and fun) fighting off his
attacks and then preparing his or her own units to attack him. Here, we considered
that Erik is in possession of a cheating AI, because he starts with “a rather high
amount of resources”. However, the same AI could work without cheating. It would
only take Erik more time to collect enough resources to rear the desired amount of

21

attack units. Let us now decompose Erik's behavior as if we were to make simple
rules he has to follow:

• If you do not have enough resource collectors, then build some.
• If you have less than 2 buildings where attack units are created, then build

one more such building.
• If you have less than a high number of attack units, then create some.
• If at least 10 minutes have elapsed, attack the human player.
• If at least 3 minutes have elapsed since the last attack and you have less than

a medium number of attack units, build some.
• If at least 3 minutes have elapsed since the last attack and you have at least a

medium number of attack units, then attack the human player.
In each Update, Erik acts according to the rules we gave him. Let us now consider

what the rules actually mean. Then, we will investigate the approaches for
implementing a system consisting of such rules.

2.3.3 Rules for decision-making

“If you have less than a high number of attack units, then create some,” we told
Erik. But what is a high number of attack units? A very straightforward idea could
be: “It is between 15 and 20”. According to it, Erik would stop producing attack units
if he had 15 of them or more. We could rewrite the rule in order that it would look
like: “If you have less than 15 attack units, then create some.” Even though this
approach is often used in RTS games, it is not the only one possible. Some games use
the concept of Fuzzy logic.

Fuzzy logic (also sometimes called many-valued logic or probabilistic logic),
unlike classical logic with crisp sets, does not rely on absolute truth values. It
introduces a degree of membership of an element into a set, which can be any
number between 0 and 1 so that a player may have a rather high number of resources
– let's say that the number of resources is 0.4 medium and 0.6 high, whereas in
classical logic, the number of resources could only be either medium, or high. In
Figure 5, we see an example of a fuzzy set, which represents the number of resources
a player has. Between 0 and 3000, the number is considered to be low, it is medium
between 1500 and 8000, and if the number is greater than 5000, it is considered to be
high.

Due to its complexity, fuzzy logic might be a suitable option for AI to provide the
impression of sensitive human-like decision making with ambiguous or vague input
data such as “If you have a great deal of resources and the enemy is at a rather
medium distance, then build more attack units” because this exactly is the way
human players think. However, the complexity is one of its most significant
drawbacks at the same time.

If we implemented fuzzy logic, we would obtain a very complicated system of AI
which would simulate human decision-making, but on the other hand, the resulting
gain for the quality of the AI would be very small compared to the complex
implementation. This is mainly due to our intention to apply a simple, suboptimal AI
which would mainly entertain the human player. Furthermore, goal 1.2 states that the
game has to be simple and illustrative so that it is easy to comprehend by the

22

community. On the other hand, we want to allow the community to extend the game
by design by fuzzy logic.

 As a result, we decided not to use fuzzy logic, so that for instance the
representation of the question “Does the player have enough resources to build an
army” will be: “is number of resources greater than N” where N is a constant given
by the AI designer.

For more information about Fuzzy logic, visit Fuzzy logic at Wikipedia [35] or
read Buckland [34], chapter 10 (page 415).

2.3.4 Implementation

Now that we know how to understand the rules we gave to Erik, The Warrior, we
should find an appropriate way to implement them. In RTS games, 2 approaches are
used very often: (1) scripting languages [36] or (2) finite state machines [37] (FSM).

2.3.4.1 Scripting language

 A scripting language is a lightweight programming language intended to be easy
to learn and to write programs in. To name but two examples, Lua [38] and Python
[39] are used in scripting AI. Use of a scripting language brings some considerable
advantages:

• It does not require AI designers to be skilled programmers.
• Scripts allow large changes to the logic without having to recompile the

program as they are loaded on the fly.
• Scripts can be written in any text editor.

23

Figure 5: The plot of a fuzzy set for the number of resources a player has. The plot was created
using the free online tool “Fuzzy Logic Online Tool” available under the following link:
http://etools.elasticbeanstalk.com/faces/fuzzy.xhtm l on 11th of April, 2013.

http://etools.elasticbeanstalk.com/faces/fuzzy.xhtml
http://etools.elasticbeanstalk.com/faces/fuzzy.xhtml

On the other hand, there are also disadvantages of scripting languages. First,
scripting languages assume the presence of useful components written in the main
programming language. Without this background library, scripting might be very
inflexible. Also, scripts are very difficult to introspect and to debug, and the

maintainability of large scripts is limited.
Figure 6 shows us some rules for Erik's behavior. The function AI_warrior

receives the player and a timer as arguments and it defines the player's actions. The
script is very short, but if we wanted to define more complex behavior, it would get
much less comprehensible.

2.3.4.2 Finite state machine

An FSM is an abstract computational model for decision-making in a computer.

24

Figure 7: A simplified example of an FSM.

FUNCTION AI_warrior (player, timer)

** if the player does not have enough resource collectors, then create one

IF player.has_less_RC_than(5) AND player.has_Resources_for_RC() THEN

player.create_new_RC()

** if the player has less than 2 buildings where attack units

** are created, then erect one more such building

IF player.has_less_buildings_than(ATTACK, 2) AND

player.has_resources_for_building(ATTACK) THEN

player.create_new_building(ATTACK)

** if at least 10 minutes have elapsed and you have a high number of

** attack units, attack the human player.

IF player.has_more_attack_units_than(10) AND

timer.elapsed_seconds(60 * 10) THEN

player.attack(HUMAN)

END FUNCTION

Figure 6: Some rules we gave to the Warrior AI written as a script

At any time given, the state machine is in one of a finite number of states. To change
the state, the machine follows a transition. This happens if certain conditions are met.
A sample FSM with four states and transitions between them can be found in Figure
7. We simplified some of the rules Erik received from us.

For instance, if Erik is in the initial state and he has enough resources, the FSM
moves to the “Create attack units” state. Similarly, if it is in the “Create attack units”
state and Erik already has enough attack units, then he can attack the human player;
the FSM moves into the “Attack enemy” state.

Considering whether to use a scripting language or the FSM, we have to look at
the rules we set up for Erik and in Figure 6 again. We realize that they, in fact,
represent an FSM; each condition can be rewritten into a transition leading to a state
of an FSM, just as we actually did in Figure 7.

To summarize our decision, the artificial intelligence in our game will be using a
finite state machine; its transitions will contain conditions from classical logic.

2.4 Game entities as autonomous agents
In RTS games, the player controls game entities, makes decisions and issues

commands to them. Then, it is a task of the game entity to fulfill the commands. For
example, the player issues a command: “Move to point P” and he expects the entity
to “do its best” to reach the point. Doing its best might mean finding a path or asking
for path, evading dynamic obstacles or deciding what to do if the target turns out to
be unreachable.

Gamers usually control a large number of game entities (in AoE, for example, it is
up to 200 units and tens of buildings) and if they were to decide about all situations
in the game, the gameplay would be very limited because the players would spend
too much time with micromanagement of insignificant situations instead of
concentrating on important strategy-related decisions. Therefore, the entities have to
behave autonomously (to a certain degree). Here are some more examples of what
the game entities have to be able to decide themselves:

• A unit is idle while attacked by an enemy unit. Should it stay idle, fight back
or even pursue the attacker? For example in Warcraft, the unit does not
defend itself and it is up to the player to issue the command. In Original War,
units fight back if the attacking unit is within their reach.

• A resource collector (RC) collects resources. When its capacity is exhausted,
it brings the resources to a building where they are stored. The player expects
the RC to return to the place where it was collecting the resources to
continue. After the source is consumed, the collector can start to search for
other sources in its close surroundings.

The examples bring us to the idea that game entities need to have their own
internal artificial intelligence which makes them behave like autonomous agents.

According to Buckland [34], “An autonomous agent is a system situated within
and a part of an environment that senses that environment and acts on it, over time,
in pursuit of its own agenda and so as to effect what it senses in the future.”

Game entities in our game will receive input in 2 different ways: (1) from the
player (commands) and (2) from the environment (what they “sense”). Commands

25

from the player give them the “agenda” (example of a command: collect resources in
a certain area) and the entity then behaves autonomously and acts in pursuit of the
agenda (collects resources, stores them in a certain structure and returns back for
more resources). Let us now split the agenda of a resource collector into some very
simple rules:

• If you are told to collect resources in a certain area, go to the area and
collect them.

• If your capacity is full, remember the position of the resources, return to the
base and store the resources in a structure intended for this purpose.

• If you have a position of resources in memory, go to this position and
continue collecting.

• If the resources have run out, search in the close surroundings. If you find
other resources, go there and collect them. If you do not, stay idle.

We notice that these rules lead to an FSM similar to the one we described in
section 2.3.4.2. For this reason, we will be using the FSM not only for the AI of
computer players, but also for the autonomous behavior of game entities.

2.4.1 The degree of independence

We can simplify the artificial intelligence for computer players while decreasing
the amount of information (i.e. the number of commands) exchanged between the
computer player and its game entities if we make the entities more independent.
Imagine the following situation: A resource collector finished collecting resources
and is staying idle. If the player finds new resources in the map, they send the
collector unit to the place to collect resources again.

The (human) player has to issue a command for the resource collector to start
collecting again (give it a new agenda). Here, we can make the task easier for the
computer player's AI while making the (already autonomous) collector more
autonomous: we give him one additional rule: If you are idle, search for resources in
a much larger area than just in the closest surroundings. The computer player's AI
will not have to take care about the collector, which will independently wander
through the map, collect resources and bring them to the player's base. This approach
is very advantageous because it allows subdivision of the decision-making between
computer player and its game entities.

The only condition is that at the time computer player creates an entity, it is able
to decide which from the list of available strategies will be assigned to the entity. The
computer player will still be able to issue commands to the entity, but it will not have
to do so as often as the human player.

2.5 Game map
Another problem to consider is the implementation of the map in our game.

According to goals 1.8 and 1.9, it has to be rectangular and it has to contain one layer
only; there will be no terrain profile. Let's first of all specify our requirements on it.

We already know that the game contains game entities and obstacles, which will
be placed in the map. Using the map, the game has to be able to recognize accessible
and inaccessible areas so that units are able to plan their path through the map (i.e.

26

change their position in the map while evading inaccessible areas). The process of
planning the path through the map is called pathfinding.

Typically (and not only in RTS games), pathfinding uses graph algorithms, and
the graph representing the map narrows the space which has to be searched. Such a
graph is called a navigation graph (see an example in Figure 9); it is a weighted
graph whose vertices stand for significant points in the map, and whose edges
(weighted with the amount of time needed to pass the edge) represent free paths
between these points. The navigation graph can be directed (e.g., if it has to represent
one-way streets in a traffic network). The task of pathfinding is then to find the
shortest path, which is a path on which the unit spends the least time possible.

There are 2 general ways of constructing a navigation graph: (1) either, it is
dynamically created from the current state of the map, (2) or the navigation graph is
static and it does not change in time.

A disadvantage of the static navigation graph is that it can not reflect positions of
entities (they change in time), which causes the pathfinding to be less effective or

even not to work properly. For this reason, we want to be able to dynamically create
the navigation graph from the map.

Let us now think about the nature of the map while considering the requirements.

2.5.1 Map without subdivision

The most simple possibility is a map without any primary subdivision. We have to
consider how we find out whether an area in the map is free: to simplify the problem,
we assume that any area in the map can be thought of as a convex polygon (in case
of a different shape, we consider the convex hull of the shape).

We have to compute the polygon intersection of the given area with areas of all
entities and obstacles within a certain range. The complexity of the algorithm equals
O(N) where N is the number of all entities and obstacles combined, because all of
them have to be taken into consideration by the algorithm.

27

Figure 8: An example of a navigation graph for pathfinding.
Source: http://www.sciencedirect.com/science/article/pii/S1474034612000365

http://www.sciencedirect.com/science/article/pii/S1474034612000365

Dynamic construction of navigation graph

An example of a typical dynamic construction of a navigation graph from a map
without any subdivision is shown in Figure 9. As we can see, the vertices of the

graph are placed in corners of the polygons, and edges connect each pair of vertices
between which there is a free path, so that if there are N vertices, N2 computations
have to be performed (intersections of a segment with all polygons).

To illustrate the complexity of the computation, we will take an example from
AoE, where in a typical game, up to 8 players with up to 200 units and at least 30
structures take part. For simplification, we consider each entity to be a square
(having 4 corners). This example yields 8 * (200 + 30) * 4 = 7630 vertices in the
navigation graph, with 73602 = 54 169 600 edges, for which, the free path would
have to be determined in every round (for details on rounds, visit section 2.1). Notice
that we did not consider obstacles, and the complexity of the algorithm is already
very well visible. For this reason, the designers of RTS games use a different
implementation of the map – they subdivide it into tiles.

2.5.2 Tile-based map

In order to improve the detection of free areas in the map and to make the
construction of the navigation graph easier, designers of RTS games very often use a
subdivision of the map into cells, which are called tiles. A tile may only be free or
occupied, and any area in the map is free if all tiles it contains are free. Using this
approach, we do not have to compute polygon intersections – we only have to go
over the tiles. Tiles have also an effect on the nature of entity movement in the map,
because moving entities can not move entirely freely – they have to move from one
tile to an adjacent one.

Shape of tiles

 To our best knowledge, 2 shapes of tiles are used in strategy games (see Figure

28

Figure 9: Navigation graph based on polygons. Source:
http://theory.stanford.edu/~amitp/GameProgramming/MapRepres
entations.html

http://theory.stanford.edu/~amitp/GameProgramming/MapRepresentations.html
http://theory.stanford.edu/~amitp/GameProgramming/MapRepresentations.html

10): (1) square-shaped tiles and (2) hexagon-shaped tiles.
Square-shaped tiles allow the moving entity to move in 4 or 8 directions,

depending on whether we allow diagonal movement. It is important to notice that the
distance to the border is different along different directions.

Hexagon-shaped tiles, on the other hand, provide the moving entity with 6
directions, and the distance to the border is equal along all of them.

While considering the choice of the shape, we have to think about two criteria.
Square-shaped tiles can be easily ordered into a two-dimensional array, which is an
advantage of them. On the other hand, different distance to the border along different
directions is their greatest disadvantage.

We have to realize that in RTS games, tiles are subdivided into smaller units (in
fact, pixels), as we show in Figure 11, and each moving entity has a property called
velocity, which is given in units per round, so that the distance to the tile border does
not play such an important role in RTS games (for contrast, in turn-based strategies,
velocity is usually given in tiles per round and the distance to tile borders is very
important).

The above discussion implies that if we decided to use a map based on tiles, the
tiles would be of a square shape.

Dynamic construction of navigation graph

Navigation graph construction from a tile-based map is easier than from polygons:
each free tile is converted into one vertex, and two vertices are connected with an
edge if they represent adjacent tiles. We do not have to do complex computations to
determine whether there is a free path between adjacent tiles, because it is if both of
them are free.

Again, we will illustrate the approach with the example from AoE. The maximum

29

Figure 10:Square-shaped and hexagon-shaped tiles. Notice that the distance to borders is different
along different directions.

Figure 11: Subdivision of tiles in RTS games

map size is 512 x 512 tiles, and entities move in 8 directions from the tiles.
Altogether, it yields a navigation graph of maximum 512 * 512 = 262 144 vertices,
but only 262 144 * 8 / 2 = 1 048 576 edges. This example shows that the navigation
graph constructed from a tile-based map consumes less computation time to be
created and also to be searched.

For all the reasons listed above, we will use a map based on tiles. As we already
decided, the tiles will be square-shaped.

2.5.3 Path

The map in our game will be composed of tiles so that a path in the map has to be
represented as a list of tiles. We have found 2 possible representations of a path: (1)
relative and (2) absolute representation.

We will explain the difference between them using the following example: a unit
is moving from tile with coordinates [50, 50] over tile [50, 51] to tile [50, 52]. A
relative path contains two points: [0, 1], [0, 1]. An absolute path would also
contain two point, but it would be [50, 51] and [50, 52].

Let us consider following situations: following its path, a unit enters a
teleportation device, which changes its position abruptly (such a device exists in
Original War, for instance). After the unit appears at new position, we expect it to
continue to move in the previous direction – and here, the relative path, which gives
the direction and not the next point, comes in handy, because it produces the
expected behavior, whereas the absolute path would have to obtain the unit's
previous position to compute the correct direction (and rotation). For this reason, we
will use the relative representation of path in our game.

2.5.4 Pathfinding in map

We already know that pathfinding algorithms are graph algorithms operating on
navigation graphs. They range from simple ones (like choosing a random direction)
to complex algorithms. We will describe 2 algorithms, which are used typically: (1)
Dijkstra's algorithm [40], and (2) A* search algorithm [41].

2.5.4.1 Dijkstra's algorithm

Dijkstra's algorithm computes distances (the cost of shortest path) between a
given starting vertex (“origin”) and all other vertices. If we want to compute the
distance from the origin to only one vertex in the navigation graph, we can stop the
algorithm after this vertex has been reached. The algorithm runs in O(m + n*log(n))
[40], where n is the number of vertices and m the number of edges in the navigation
graph.

We will briefly describe the algorithm. It uses two sets of vertices: S and Q, with
the following rules:

• Vertex v S if its shortest distance from the source has already been ∈
computed. After Initialize(G,s) it holds that S = .∅

• Otherwise, v Q, so that Q = V \ S, where Q is implemented as a data ∈
structure supporting the search for a vertex with the lowest distance value (a
min-heap, for example).

30

Method Initialize assigns infinity distance value to every vertex, and zero to
the source. It marks all vertices unvisited. Let's now have a look at the pseudo-code
of the algorithm:

Dijkstra (G,s)

Initialize (G,s)

S := ∅

Q := V(G)

while (Q ≠) do∅

u := Extract-Min (Q)

S := S {u}∪

for each {v V(G) ∈ | (u,v) E(G)∈ } do
Relax(u,v)

Method Relax(u,v) computes new distance value of vertex v and overwrites the
previous distance value if it is greater than the new one.

We show an example of the pathfinding done by the Dijkstra's algorithm in a
square-tile-based map in Figure 12. The numbers in tiles denote their distance from
the source. Notice that the yellow path is not the only one possible – there are many
equivalent paths.

2.5.4.2 A* search algorithm

Unlike the Dijkstra's algorithm, A* algorithm computes the shortest path in the
navigation graph from the source to one target vertex only. The algorithm keeps a
queue Q of visited vertices sorted by their fitness (F), which is a value obtained as
F = G + H, where G is the cost of the path from the source to the vertex and H is an
estimate of the cost of the shortest path from the vertex to the target – the heuristic.
The choice of an appropriate heuristic plays an important role. After we have a look
at the pseudo-code of the algorithm, we will investigate possible heuristics.

Astar(G,s,t)

Q := {s}

while (Q ≠) do ∅

Dequeue vertex v with lowest F from Q

closed(v) := true

For each neighbor u of v where not closed(u) do

If u == t then

ReconstructPath (t, s)

break

31

Figure 12:Pathfinding using the Dijkstra's algorithm. It visited 111 tiles.

7 6 5 4 3 4 5 6 7 13 14 15 16 17

6 5 4 3 2 3 4 5 6 12 13 14 15 16 17

5 4 3 2 1 2 3 4 5 11 12 13 14 15 16 17

4 3 2 1 0 1 2 3 4 10 11 12 13 14 15 16 17

5 4 3 2 1 2 3 4 5 9 10 11 12 13 14 15 16 19

6 5 4 3 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18

7 6 5 4 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 Origin Target Obstacle Found Path

else

F(u) = G(u) + H(u)

Q := Q {u}∪

2.5.4.3 Heuristic for A* and optimality of shortest path

Let's now investigate the choice of a heuristic for the A* pathfinding algorithm.
The heuristic H(u) for a given vertex u (the estimate of the cost of shortest path from
u to the target) plays an important role because it strongly influences the number of
vertices which have to be visited before the target is reached, thus influencing the
time the algorithm consumes.

The estimate H(u) may be of any non-negative value, with a simple rule: the
higher the estimate is, the less vertices have to be visited before the path is found.
For this reason, a large number of different heuristics for A* can be found; we will
concentrate on their admissibility (H(u) is admissible [42] if it never overestimates
the cost of reaching the target from vertex u) rather than on listing them.

Admissible heuristics: If the heuristic is admissible, then A* is guaranteed to find
the shortest path. For a tile-based map, one of the heuristics which are used very
often is the Manhattan heuristic (we will denote it as HM(u) for vertex u). It is simply
the sum of x and y distances to the target.

To illustrate the use of the Manhattan heuristic, we use the example from Figure
12, but this time searched by the A* algorithm, in Figure 13. Notice that there are

more than one optimal path.
Inadmissible heuristics provide no guaranty that the found path would be the

shortest path in the navigation graph. On the other hand, they may save a great deal
of computation time needed to find the (suboptimal) path because the algorithm
visits less vertices.

As we see, with the choice of the heuristic, we also choose between the optimality
of the path and the number of steps the algorithm has to undertake. A question arises:
What would happen if we gave up some of the optimality for the sake of faster
computation? An answer to this question is given by Christer Ericson in his article
“Don’t follow the shortest path!” [43]. Here, he mentions the following idea:

“It may be less important to find a solution whose cost is absolutely minimum
than to find a solution of reasonable cost within a search of moderate length. In such

32

Figure 13: Pathfinding performed using the A* with Manhattan heuristic. It visited
84 tiles.

5 4 3 4 5 6 7 17

5 4 3 2 3 4 5 6 12 13 14 15 16 17

4 3 2 1 2 3 4 5 11 12 13 14 15 16 17

3 2 1 0 1 2 3 4 10 11 12 13 14 15

3 2 1 2 3 4 5 9 10 11 12 13 14

3 2 3 4 5 6 7 8 9 10 11 12 13

3 4 5 6 7 8 9

 Origin Target Obstacle Found Path

a case, one might prefer an A* that evaluates nodes more accurately in most cases
but sometimes overestimates the distance to a goal, thus yielding an inadmissible
algorithm.“

The quotation says that the heuristic does not always have to be admissible,
because the path we are searching for does not have to be optimal – it may be more
important to save computation time than to provide an optimal solution.

In Figure 14, we illustrate the use of inadmissible heuristic H(u) = 2*HM(u) with
the example used in Figure 12 and Figure 13. The values in tiles are presented as
G+H, where G is the distance from source, and H the heuristic value. Notice that
some tiles have a wrong G value (they are circled in Figure 14), which is one of the
results of the inadmissibility of the heuristic. Furthermore, the algorithm did not find

the path it found in Figure 12 and Figure 13 (yet it yielded an optimal path). On the
other hand, the algorithm visited less tiles than A* with Manhattan heuristic and than
Dijkstra's algorithm.

2.5.5 Pathfinding in our game

We described the Dijkstra's algorithm, whose purpose is to find distances from the
source to all vertices, and the A* pathfinding algorithm with different heuristic,
whose purpose is to find a path between source and target. We also presented
examples (Figure 12, Figure 13, Figure 14) of how many tiles the algorithms have to
visit in a typical case in order to find the path from source to target, and we have seen
that the A* is more efficient than Dijkstra; for this reason, we will use A* for
pathfinding in our game.

Let us now investigate 3 issues we have to handle in order that the pathfinding in
our game works as players expect it to work without consuming too much
computation time: (1) use of an appropriate heuristic, (2) collisions between moving
units, and (3) dealing with an unreachable target.

2.5.5.1 Use of heuristic

We first implemented A* with Manhattan heuristic, which always finds an optimal
path and performs well over short and medium distances. At long distances,
especially on a map with large obstacles, the heuristic often floods the navigation
graph. While experimenting, we discovered that this effect may be reduced if the

33

Figure 14:Pathfinding using inadmissible heuristic H(u) = 2*HM(u). It visited 65
tiles.

 Origin Target Obstacle Found Path

4+26 3+24 4+22 5+20 6+18 7+16

4+26 3+24 2+22 3+20 4+18 5+16 6+14 17+0

3+28 2+26 1+24 2+22 3+20 4+18 5+16 17+4 16+2 17+4

1+28 0+26 1+24 2+22 3+20 4+18 16+6 15+4 16+6

1+28 2+26 3+24 4+22 5+20 9+16 10+14 11+12 12+10 13+8 14+6 15+4

3+28 4+26 5+24 6+22 7+20 8+18 9+16 10+14 11+12 12+10 13+8 14+10

7+24 7+22 9+20 10+18 11+16 12+14 13+12 14+10

value of the Manhattan heuristics is multiplied by a constant C > 1. The greater C is,
the less vertices have to be visited in the navigation graph (and the less optimal path
is found). In the current implementation, we are using C = 4, which is a constant
resulting from our experiments as a good relationship between quality of the path and
time consumed by the algorithm.

We also considered the option of using a dynamic coefficient, so that the quality
of the path would depend on the amount of computation time available. This
approach seems logical from a mathematical point of view, because it tries to find a
path as optimal as possible regarding the current situation. However, it may also lead
to an unpredictability of the path, because it depends on circumstances the player
neither understands nor is able to influence.

We will explain the problem using following example: A unit follows a very
suboptimal path starting at point P, and it evades enemy's assets which would
destroy it. Player, knowing that the unit has chosen such a path, sends another unit
from point P to the same target while expecting it to follow the same path. However,
this time, there is more computation time available at the CPU and the pathfinding
algorithm finds an optimal path, which, by accident, leads very close to enemy's
assets, so that the second unit gets destroyed. This is a situation which we believe
should not happen in RTS games, which is the reason why we use a static coefficient.

2.5.5.2 Collisions

After implementing A*, we found out that the algorithm works well for a single
unit. However, in modern RTS games, it is usual that the player controls a group of
units; they consider each other static at the time they perform pathfinding. For this
reason, many collisions between them occur once they start to move, which results
into the need to recompute the path with respect to the current situation.

We found out that an option which improves the situation (decreases the number
of collisions) is that the unit waits some time after collision before it runs the
pathfinding algorithm again. Nevertheless, if two units collide with each other and
they both wait the same amount of time, they are likely to run into each other again.
To prevent this, we decided to generate a random wait interval after a collision,
which significantly improved the behavior of units.

2.5.5.3 Unreachable target

We also had to think about what happens if a unit is given a command to move to
an unreachable target position. If there is no path available in the map, the A*
algorithm has to investigate all reachable vertices in the navigation graph before it
knows that there is no path. However, there may be a large number of tiles in the map
and the algorithm may consume a great deal of time before it finds out that it can do
nothing. To limit the number of vertices visited by the algorithm, we use a simple
estimate based on the Manhattan heuristic. We set a constant C (after some
experimenting, we obtained an optimal value C = 20) and define the upper bound
UB of visited vertices for search from source S to target T as:

Using this formula, the upper bound is dependent on the distance between source

34

UB=(∣S.x−T.x∣+∣S.y−T.y∣)⋅C

and target. We also suppose that most of the searches for path are done at short to
middle distance (they do not consume so much computation time), where this
formula does the most work in preventing flooding if the target is not reachable.

2.6 Network communication for remote game sessions
Goal 1.3 states that there has to be support for remote game sessions for

multiplayer games. On a high level of abstraction, this means that there has to be a
system of sharing information about the game progress over the network.

In order to find out what type of information can be shared in the game, let's take
an example of a unit. The player wants the unit to move from point P to point Q, and
he or she gives it command C to do so in round r (for details about rounds, see
section 2.1). The unit moves while changing its position in the map every round until
it arrives at point Q. To describe its movement, we define a sequence of positions P
= P0, P1, …, PN = Q, where Pi is the position of the unit in update r + i. (Pi does not
have to be aligned to a tile – it can be any position, depending on its representation in
the game, e.g. given in pixels). We also define the difference di, which is the distance
covered by the unit in update r + i. The process is illustrated in Figure 15.

As we see from the description of the movement, there are 3 types of information
in the game which can be shared:

(1) Absolute positions of the unit (Pi)
(2) Relative changes of the unit's position (di)
(3) Input from the player (the command Move to point Q)
While considering the options, we will pay especial attention to the following

criteria:
• The quality of the game which can be achieved using the option (the

experience delivered to the user is important, because the user wants to see a
smooth and well-running game).

• We can not presume that the game will only be played in LANs, so that we
have to pay attention to the amount of information shared across the network.

• The use of the underlying communication protocol (UDP [44] vs. TCP [45]).

Sharing absolute positions

Sharing absolute positions, we assume that they are computed at one of the
communicating computers and broadcasted to all other computers in the network. In
case of loss of a piece of information (e.g., one of the communicating computers
receives the following sequence: P1, P2, nothing, P4, i.e. the information about
position P3 has been lost), the game will not be incorrect (it will still be
synchronized), although it may look slightly choppy. This may have a negative
influence on the user's experience, especially if it should happen more often, because

35

Figure 15: A unit moving from point P = P0 to point Q = PN

the unit may seem to be “jumping” instead of moving smoothly.
For this type of information shared, the UDP protocol can be used. The protocol

does not guarantee the delivery of the information, but the game does not need this
guarantee for the right functionality.

There will be a large amount of information shared between the games in each
turn, because we suppose a large number of entities in the game – for each entity, the
absolute position will have to be sent.

Sharing relative changes

Similarly to absolute positions, we assume that the relative positions are computed
by one of the communicating computers and sent to all other computers in the
network.

Unlike absolute positions, the relative positions have to be delivered all (with no
data losses) and in the right order – to illustrate this, we will use the example from
Figure 15: Let's suppose that di = dj for all i,j (the distances between Pi, Pi+1 are
equal). In case one di gets lost and does not reach some of the communicating
computers, the unit arrives there at position PN-1 instead at position PN, which results
into lost synchronization of the game. In order to ensure the correct delivery of all
information and its right order, we would have to use the TCP protocol.

Compared to sharing absolute positions, this approach decreases the amount of
information sent via network, because it only has to send the updates – and it is very
likely that there are many entities whose state does not change in every turn. On the
other hand, the use of TCP may cause some lagging because the delivery may be
slower (due to the properties of TCP protocol) and the game has to wait for all
packets in one turn to arrive before proceeding into next turn.

Sharing input from players

If the games share the players' input (in Figure 15, it is the command C for the
unit to move to point Q), the evaluation of the command is processed in a distributed
manner – at each of the computers connected in the network. We have to ensure that
the command is delivered to all the computers (using TCP) and that the computation
proceeds equally at all of them.

This approach considerably decreases the use of network resources as we only
send small pieces of information – the players' input, which will eliminate the
problem with lagging caused by the TCP protocol described in previous section.

Sharing information in our game

After we have described the various possibilities, we have to choose one of them.
We believe that sharing relative changes is the least optimal option, because it makes
use of TCP protocol while sharing a relatively large amount of information, thus
potentially slowing down the game progress or causing lagging.

The option of sharing absolute information seems to be more suitable, because it
does not cause lagging. On the other hand, it may let the game look choppy as much
more information has to be sent via network than if we just shared the relative
information, and any lost data packet causes the game to look less smooth.

For this reason, we choose the third approach (sharing input from players and
distributed evaluation of them) to be used in our game, as it limits the amount of

36

shared information to the minimum. Any time a command is issued by a player, it
will be transmitted to all other games, so that the input in all the communicating
games is the same.

2.6.1 Enhancements in network communication

After we implemented the system for network communication we have chosen,
we found out that under certain circumstances, it may cause the game to lag –
especially if there are differently powerful computers communicating in the network.
Then, it may happen that one of the computers has to perform a very demanding
computation in one of the rounds, which takes a large amount of computation time.

In their article “1500 Archers on a 28.8: Network Programming in Age of Empires
and Beyond”, [46] Mark Terrano and Paul Bettner offer a solution to this problem.
They introduce a communication offset (CO) for commands so that a command

issued in round N is evaluated in round N + CO, as can be seen in Figure 16.
This technique improved the quality of network communication in our game

significantly, as it really prevented lagging. We are using CO = 3, which means that
if a demanding computation occurs at one computer in round N, it has still 3 rounds
to catch up with other computers without causing any lagging.

2.6.2 Correctness of information shared across games

In goal 2.5, we state that network communication can be prone to mistakes which
are difficult to debug and that we want to include a possibility of testing the
correctness of all information shared across the games.

We decided that the games will share players' inputs (commands) and that the
computation will be performed by each of the games separately. For this reason, we
have to ensure that each game receives the same input (the same sequence of
commands) in each round and that the computation based on the state of the game
and the input yields the same results.

To achieve this, we have to seed random number generators so that if anything is
controlled by random numbers, every computer produces the same random number
at the same time. In order to test the correctness of all random numbers, we have to
log them; we have to provide a tool for comparing them on the right order.

Furthermore, it is essential that all communicating computers obtain the same

37

Figure 16: The communication offset for commands issued in the
current turn. Here, it is equal to 3. Source:
http://www.gamasutra.com/view/feature/131503/1500_archers_on_a_2
88_network_.php

http://www.gamasutra.com/view/feature/131503/1500_archers_on_a_288_network_.php
http://www.gamasutra.com/view/feature/131503/1500_archers_on_a_288_network_.php

sequence of commands. In order to compare the sequences of commands, we have to
log all the commands processed by the games in the order the game processes them.
We have to provide a tool which will compare the logged sequences and decide if all
logged sequences at all computers are in the same order.

38

3 Development documentation
In this part, we will introduce the structure of the program and its implementation.

To develop the program, Visual Studio 2010 Ultimate with .NET Framework 4 was
used. It is also necessary to have the Microsoft XNA Game Studio 4.0 installed for
the project to open correctly.

3.1 Program structure

The solution RTSGame.sln, whose structure is shown in Figure 17, is accessible
from Attachments [A] (directory \RTSGame). It contains the main project
RTSGame.csproj, 3 projects with sample extensions, the ContentManager
(RTSGameContent.contentproj), which is a run-time component loading content
(e.g. images, fonts, sounds, etc.) from files produced by the design time content
pipeline, project LogsComparer.csproj providing a tool for comparing logs from
network communication, and project RTSGameSetup.vdproj, which creates an
installation packet.

We will describe the structure of the project RTSGame.csproj, because it contains
all the important namespaces and types. The description of the projects with sample
extensions will be provided along the description of the particular components whose
extensions they contain. Details about projects LogsComparer.csproj and
RTSGameSetup.vdproj will be given in sections 3.5.8, and 3.8, respectively.

39

Figure 17: The structure of the solution RTSGame.sln

3.1.1 RTSGame.csproj

This project represents the core of the whole application. The entry point into the

program is class MainGame (see Figure 18), which runs the main game loop after it
initializes the program.

During the initialization, AssemblyManager loads extensions of AI for computer
players from directory .\PlayerAI, extensions of AI for game entities from directory
.\AI, and extensions of game entities from directory .\obj. ScenarioManager loads
maps for the game from directory .\scenarios.

The extensions of maps and AI for players are then offered to the player before he
or she starts the game as available settings for the game – the player chooses the
number of AI players, the AI for them and the map where the game will be played.

ResourcesManager registers a ResourceHolder for each to-be-collected resource,
which is a class containing information about the nature of the resource such as
whether it is an obstacle in map, if it is destroyed if run over, if it grows in time, if its
amount decreases while it is being collected, etc:

class RubberHolder : ResourceHolder {...}

ResourcesManager.registerResource(new RubberHolder());

Code example from class MainGame, file MainGame.cs

The main game loop (Figure 19) implements the subdivision of the continuous
time progress into rounds (for details, see section 2.1) with methods
MainGame.Update (computes one step in the game) and MainGame.Draw (displays the
current state of the game). In order that the game runs smoothly, variable
MainGame.IsFixedTimeStep is set to false, which enforces calling Draw regularly
after Update. However, due to the fact that the default rate of 60 fps is too high, the
interval for calling Update has been increased to 33 ms per frame (variable
mMillisecondsPerFrame), which decreases the Update-rate to 30 fps. Method Draw
may be called more often to provide a smoother impression of the game, but between
two Updates, at least one Draw is always called.

40

Figure 18: Initialization of the game

While class MainGame is responsible for initialization of the program and for
providing the user interface, class Level represents one session played in the game. It
bears the most important components of the game and connects them together: it
holds the map (IGrid<SquareTile> mGrid), list of obstacles (ListOfGameObjects
mObstacles) present in the map, and list of players playing the game (List<Player>
mPlayers). Human players are represented by class Player, computer players by
AIPlayer : Player.

Player encapsulates the list of entities it controls (ListOfGameObjects
mEntities), and AIPlayer extends Player with artificial intelligence (described in
section 2.3.4) provided by FiniteStateMachine mStateMachine.

Entities and obstacles are represented by class GameObject or its successors. There
are entities of 3 types in our game: (1) static entities, (2) workers, and (3) vehicles
(specified in enum ObjectType). Entities have their own artificial intelligence
(FiniteStateMachine mInnerLoop), so that they behave as (partially) autonomous
agents, as described in section 2.4.

41

Figure 19: The structure of the Update and Draw subroutines performed in one round

3.1.2 Game window

The result of rendering (MainGame.Draw) is displayed in the game window, which
is divided into two Viewports, as shown in Figure 20. Right Viewport shows
information about the player, the amount of resources the player has, map thumbnail,
and information about active entities (health, thumbnail, name, etc.). The class
responsible for displaying the information in the right Viewport, called RightColumn,
is owned by MainGame (member variable mRightColumn).

Main Viewport, which shows the game progress, contains the result of rendering
the Level (Level.Draw).

3.1.3 Namespaces in RTSGame.csproj

The project RTSGame.csproj is subdivided into 6 namespaces logically grouping
types to make the project clear and understandable:

• namespace RTSGame
This namespace is the umbrella namespace of the project. It contains types
which are not specific enough to belong into any other namespace.

• namespace RTSGame.FSM
Contains types related to the finite state machine which we use for artificial
intelligence of computer players and for the internal intelligence of entities.

• namespace RTSGame.GameMap
Contains types related to the tile-based map, tiles, path and
pathfinding.

• namespace RTSGame.GameObjects
Contains types related to game entities and obstacles and to their
extendability.

42

Figure 20: The screen of the game is divided into two Viewports.

Main Viewport Right Viewport

• namespace RTSGame.ResourceManagement
Contains types related to resource management, apart from types for resource
collectors and resource transporters, which are included in namespace
RTSGame.GameObjects.

• namespace RTSGame.Networking
Contains types related to network communication.

3.2 Identification of types
For the sake of extendability of the program with run-time extensions, we had to

develop a concept of type identification without neither us, nor the compiler knowing
whether the types exist in the type system at compilation time. We will explain the
problem we faced using an example from projects Tanks.csproj and
RTSGame.csproj.

The project RTSGame.csproj contains class FSM_AI_Player_NoActivity, which
implements one of possible strategies for computer players in the game. The designer
of this class wants it to be able to create attack units of types SmallTank and
BigTank, which are included in project Tanks.csproj (loaded as a run-time
extension), so that the compiler does not know about them at the time project
RTSGame.csproj is being compiled.. For this reason, we represent the types as strings
and provide a method for instantiating them at run-time from this representation:

Type smallTankType = AssemblyManager.getTypeFromString("SmallTank");

Type bigTankType = AssemblyManager.getTypeFromString("BigTank");

Code example from class FSM_AI_Player_NoActivity, file FSM_AI_Player_NoActivity.cs

The method AssemblyManager.getTypeFromString receives the string
representation of the type and returns a Type or null. Notice that the type is
identified by the name of the class only – this is due to the fact that in the
initialization phase of the game, we create a dictionary Dictionary<string, Type>
AssemblyManager.mDictionaryOfSimplifiedTypes, which contains Types present
in the game identified by their class names. In case the Type is not found based on its
class name, all assemblies plugged into the game are iterated while trying to find it
according to its full name (which includes the name of the namespace – i.e., in case
of class SmallTank, its full name is RTSGame.GameObjects.SmallTank). For this
reason, the type can also be identified by its full name, and the following piece of
code is equivalent to the previous one:

Type smallTankType = AssemblyManager.getTypeFromString("RTSGame.GameObjects.SmallTank");

Type bigTankType = AssemblyManager.getTypeFromString("RTSGame.GameObjects.BigTank");

Modified code example from class FSM_AI_Player_NoActivity, file FSM_AI_Player_NoActivity.cs

The approach we described in this section is used in numerous places in the
project – for example to identify FSM for entities (for details, see section 3.6.6), to
identify entities created in Buildings (see section 3.3.6), etc.

43

3.3 GameObject
GameObject is an abstract class representing a common ancestor for entities and

obstacles (grouped into the namespace RTSGame.GameObjects). The tree of types
inheriting from it is shown in Figure 20, where fields with white background contain

abstract classes, whereas the gray background stands for real units and buildings
present in the game.

We also provide sample extensions of entities in project Tanks.csproj, which
contains types SmallTank and BigTank. The extensions have to be inserted into
directory .\obj in form of .dll files. The project Tanks.csproj fulfills this condition,
because it is set up to compile as a .dll file to directory
RTSGame\RTSGame\bin\x86\XXX\obj\, where XXX stands for Debug or Release
(depending on settings of the project RTSGame.csproj).

3.3.1 Initialization

All properties of the game entity (name, number of hit points, damage it does to
other units, etc) have to be specified in GameObject.initGameObject, unless we
want them to have default values, because the method is called in the parameterless
constructor, which is in turn needed for loading run-time extensions by
System.Reflection. The following code shows the method initGameObject used in
one of the units from our game:

public override void initGameObject() {

mSpeed = 3; // in pixels per second

mName = "Scorpion"; // the name given to the entity

mNumberOfHitPoints = 80; // the total amount of hit-points

mNumberOfRemainingHitpoints = 80; // the current amount of hitpoints

mObjectType = objectType.vehicle; // type of the entity

44

Figure 21: Classes extending the GameObject class

mCost = new Resources(); // reset the cost

mCost.setResource(ResourceTypes.Money, 180); // the cost in Resources

}

Code example from class SmallTank, file Tanks\Tanks.cs

Furthermore, method loadContent has to be overwritten to load textures. Notice
that the method loads textures either from the ContentManager, or textures directly
inserted into the project, whose Build Action (to be found in Properties) is set to
Embedded Resource.

public override void loadContent() {

mTxtMainTexture = LoadTextureFromFile("Tanks.SmTankChassis.png");

mTxtColors = LoadTextureFromFile("Tanks.SmTankColors.png");

mTxtThumbnail = LoadTextureFromFile("Tanks.SmTankThumb.jpg");

}

Code example from class SmallTank, file Tanks\Tanks.cs

The textures mTxtMainTexture and mTxtColors are used for drawing the unit into
the main Viewport, mTxtThumbnail is displayed in the right Viewport (for details on
Viewports, see section 3.1.2) as a thumbnail of the entity.

3.3.2 Class MovingGameObject

MovingGameObject is the abstract representation of a unit – in contrast to a
StaticGameObject, a MovingGameObject is able to change its position – it moves
along its path (MovementPath<Point> mMovementPath).

While a MovingGameObject is moving, it is heading to the mOriginalTarget. If
the MovingGameObject is given a command to move towards a new target, it may
obtain the command just in the middle of interpolation between tiles. It must first
finish the interpolation before it may change its direction to produce smooth
movement. In order to save a new target until the interpolation has been finished, it
uses mNewTarget.

3.3.3 Interactions between game entities

In section 1.1.3, we described interactions between game entities as the ability of
game entity A(ttacker) to attack game entity D(efender), i.e. A performs such an
action that D gets damaged; D looses some of its health (mNumberOfRe-
mainingHitpoints). AttackingBuilding and AttackingMovingGameObject are able
to attack other game entities; they have an instance of AttackAttributes, which
encapsulates all member variables and methods related to attacking.

If A attacks D, then A calls D.receiveAttack(A.mAttackAttributes). The
attacked entity D computes the resulting damage and subtracts it from its remaining
hit points.

In order to define new interactions between game entities, we have to work with
the method GameObject.receiveAttack.

3.3.4 Resource collectors and transporters

Resource collectors collect resources available in the map, resource transporters

45

transport resources between structures. We represent them with ResourceCollector-
Object and ResourceTransporter : ResourceCollectorObject, respectively.

We will explain the methods and member variables of ResourceCollector-
Object using an example: the collector receives a command to go on a specific tile to
collect resource R. It arrives on the given tile, and if its mResourceCapacity of the
resource R is greater than zero, it collects the amount of resource R given in
mResourceTransfer at the rate (per round) given in mTransferInterval until its
mResourceCapacity is reached. Then, the collector searches for an appropriate
structure accepting resource R using 3 rules (Figure 22).

(rule 1) If the mBuildingReceiverOfResources is not null, the resource collector
sets off to this building.

(rule 2) If the Type of receiver (mTypeOfResourcesReceiver) is set, the collector
searches for any building of that type. If non is found, it does not perform any action.
This is useful if the collector should cooperate with one type of building only (and
ignore buildings of other types).

(rule 3) If nothing is set, the collector searches for the closest building accepting
its resources, no matter what type of building it is.

In order to find the building for unloading resources, the collector uses method
findBuildingToUnloadResources implementing the rules (rule 1) – (rule 3).
Having unloaded the resources, the collector checks its mResourceMemory, and if it
remembers a ResourceGroup for collecting, it goes back there.

Resource collector may be able to collect more types of resources at different rates
and in different amounts, and it may have different capacities with respect to
different resource types. This is one of important parts of the design-extendability of
the program. Furthermore, the properties mBuildingReceiverOfResources and
mTypeOfResourcesReceiver may be set for each resource type separately, and the
collector chooses the option based on mResourceType. This is due to the fact that
variables mBuildingReceiverOfResources and mTypeOfResourcesRe-ceiver are

46

Figure 22: Rules for resource collectors

implemented as properties over the dictionaries:

public Dictionary<ResourceTypes, int?> mBuildingIDsForResourceTypes;

public Dictionary<ResourceTypes, Type> mResourceReceiversTypes;

Code example from class ResourceCollectorObject, file ResourceCollectorObject.cs

There are not many differences between resource collectors and resource
transporters; only the resource collector collects resources present in a map, whereas
the resource transporter considers a building to be the source of resources
(mBuildingSourceOfResources). If the transporter is given a command to obtain
resources produced in a building, it waits at the building until the resource is
available.

The behavior of both ResourceCollectors and ResourceTransporters can be
changed in their mInnerLoop.

3.3.5 Class StaticGameObject

StaticGameObject serves as a common ancestor of the classes Building and
GameObstacle extending GameObject; it sets the following member variable:

mObjectType = ObjectType.staticObject;

Any GameObject inheriting from this class is considered to be a static object – it
does not move and there is no possibility that it would move out of its position.

3.3.6 Class Building

Buildings are represented by class Building. They have 3 main functions:
(f1) They are used to secure the player's position in certain areas – in such a case,

we use AttackingBuilding, which contains an instance of AttackAttributes, as
described in section 3.3.3.

(f2) They are used to produce entities. For this purpose, each building stores a list
of entities it constructs (ListOfObjsConstructedInBuilding mObjsCon-
structedInBuilding), which is filled with game entities by the method
ObjsConstructedInBuilding. For example, in LightVehicleFactory, two types of
units, a small tank (SmallTank) and a big tank (BigTank) can be created:

public class LightVehiclesFactory : Building {

public override void ObjsConstructedInBuilding() {

setGameObjConstructedInBuilding("BigTank");

setGameObjConstructedInBuilding("SmallTank");

 }

}

Code example from class LightVehiclesFactory, file LightVehiclesFactory.cs

For details about identification of types in the example (SmallTank and BigTank),
see section 3.2.

In order that the players do not have to pay too much attention to
micromanagement of the construction process, they can place up to 10 units into the
ConstructionQueue mConstructionQueue, and the units are then created one after
another.

47

(f3) Buildings are also used as an important part of the resource management (for
details about resource management, see section 3.4), as they accepts resources
denoted as mInputResources. This variable is a Boolean function, so that a resource
is accepted if and only if it has a non-zero value in mInputResources. Variable
mProvidableResources stands for the resources the building provides; it is usually
the result of resource transformation. The amount of resources the building currently
stores is denoted as mCurrentResources.

The building might require to be placed on a tile containing a certain resource –
for example, a coal mine has to be placed over the resource Coal. This is specified in
mRequiredUnderlyingResource, where the amount of resources stands for the
number of tiles with the resource required to be beneath the Building.

Resource transformation is proceeded using the ResourcesTransformer
mTransformer (described in section 3.4.2). For instance, steel mill transforms 100
units of Coal and 100 units of Iron into 100 units of Steel – Coal and Iron are input
resources, Steel is output resource. On the other hand, if we declare input resources
to be zero, we create a building which produces resources – a mine, for instance, but
the building may require to be placed on a certain resource type. This example shows
that the design of resource management within buildings is easily extendible.

3.3.7 Obstacles

Obstacles have to have the following properties:
(1) they have to be present in the map
(2) game entities can not enter a tile where an obstacle is placed
(3) no structure can be built on a tile where an obstacle is placed
(4) obstacles may be removed using a special unit (for instance, in Original War,

some obstacles may be removed by bulldozer)
The properties (1) – (4) are the properties of a StaticGameObject, if we allow the

object to be destroyed just by special units. Therefore, we implemented
GameObstacle as a class inheriting from StaticGameObject, but with a few
rearrangements. Any StaticGameObject placed in the map may be identified by the
ID of its player owner and its own ID (which is unique within the instance of the
Player class). In order to identify the obstacle, we have to set its member variable
mPlayerID = -1, and mPlayerOwner to null.

Removing an obstacle has to be implemented in the method GameObsta-
cle.receiveAttack, and the unit removing obstacles has to be given AttackAt-
tributes.

48

3.4 Resource Management
 All types related to resource management are grouped into namespace

RTSGame.ResourceManagement, apart from resource collectors and resource

transporters, which are grouped in namespace RTSGame.GameObjects.
The structure of resource management is shown in Figure 23. Class Resources

specifies the amount of resources of all resource types (defined in enum
ResourceTypes). In the game, we define five resource types: Money, Rubber, Coal,
Iron, and Steel (as we show in the following example).

enum ResourceTypes { Money, Rubber, Coal, Iron, Steel }

Code example from file Resources.cs

Let's now have a look at the chain of resource management. There are 2 classes of
resources present in the game: (1) resources collectable from map, and (2) resources
created in structures.

3.4.1 Resources present in map

Some types of resources are collected from the map – i.e. each tile (represented by
interface IGridTile) of the map (for details about tiles, see section 2.5.2) has an
instance of class Resources. If the amount of resource R is non-zero on the tile, then
the resource R can be collected by a ResourceCollectorObject (for details, see
section 3.3.4).

Resources are not present entirely separately in the map – they may be grouped in
a ResourceGroup. It is a class which contains at least one tile with resources. For
example, we want a type of resource to grow in bunches (in our game, it is Rubber –
see Figure 24), so that the resource has to grow at adjacent tiles. For this reason, we
use the ResourceGroup and put all Rubber in a bunch into the same ResourceGroup.

Class ResourceHolder (see its
structure in Figure 25, where fields with
white background contain abstract
classes, gray background stands for real
ResourceHolders used in the game)
represents a resource type present in
map (for each member of enum
ResourceTypes, there is maximum one
ResourceHolder, and it has to be
registered in ResourcesManager).
ResourceHolder contains information

49

Figure 23: Structure of resource management

Figure 24: Bunches of Rubber in our game

Bunch of Rubber

Bunch of Rubber

about the nature of the resource such as whether the resource is an obstacle in map, if
it is destroyed if run over, etc.

ResourceHolder contains a list of all ResourceGroups (mGroupsOfResources) in
which the given resource is stored, as well as a list of all tiles on which the resource
is present (mResourceFields).

Class ResourceGrower : ResourceHolder represents growing resources (i.e.
resources whose amount increases in time up to a certain limit). The increase of
growing resource is defined as mResourceIncrease and their growing interval as
mGrowInterval.

In our game, we use IronOreResourceHolder (see example bellow) for the
resource Iron, CoalResourceHolder for the resource Coal, and RubberGrower for the
resource Rubber.

public class IronOreResourceHolder : ResourceHolder {

public IronOreResourceHolder() : base(ResourceTypes.Iron) {

/* Iron ore is an obstacle */

isObstacle = true;

/* Its amount does not decrease while it is being collected */

mDecreasesWhileHarvested = false;

/* It will have orange-red color in the map thumbnail */

mColorInMapThumbnail = Color.OrangeRed;

/* It can not be destroyed if run over */

isDestroyableByMovingGameObject = false;

}

/* Iron is given from the beginning and it does not appear at new tiles */

public override void createNewResource() { }

}

Code example from class IronOreResourceHolder, file ResourceHolder.cs

Each ResourceHolder has to be registered in ResourcesManager:

ResourcesManager.registerResource(new IronOreResourceHolder());

ResourcesManager.registerResource(new CoalResourceHolder());

ResourcesManager.registerResource(new RubberGrower());

Code example from class MainGame, file MainGame.cs

50

Figure 25: Structure of class ResourceHolder

3.4.2 Resources produced in structures

Not all resources have to be collected from the map – the chain of resource
management also knows resources created in buildings (with or without any resource
input). For such resources, there is class ResourcesTransformer.

Its method transformResources receives input resources (or nothing), calls the
method StartTransformation and after mTransformationLenght of rounds, method
FinishTransformation is called. This approach allows an easy extendability of the
program with new ResourceTransformers. In SteelMill in our game, we define
transformation of Coal and Iron into Steel, so that 100 units of Iron and 100 units of
Coal are transformed into 100 units of Steel:

class CoalAndIronToSteelTransformer : ResourcesTransformer {

public CoalAndIronToSteelTransformer() {

mTransformLenght = 300; // number of rounds

mInputResources = new Resources();

mInputResources.setResource(ResourceTypes.Coal, 100);

mInputResources.setResource(ResourceTypes.Iron, 100);

mOutputResources = new Resources();

mOutputResources.setResource(ResourceTypes.Steel, 100);

}

}

/* building to proceed the transformation, it also stores the resources */

class SteelMill {

Resources mOwnedResources; // resources stored in the building

ResourceTransformer mTransformer = new CoalAndIronToSteelTransformer();

public override void transformResources() {

/* the structure keeps the transformation result */

mTransformer.transformResources(mCurrentResources);

}

}

Code example from classes CoalAndIronToSteelTransformer and SteelMill, file SteelMill.cs

The transformation result may be also directly transmitted from the structure to
resources of the player controlling the structure. Then, method transformResources
would be the following:

public void transformResources () {

/* this transmits the resources to the player (owner of this structure) */

mTransformer.transformResources(mOwnedResources, mPlayer.mResources);

}

Code example from class SteelMerchant, file SteelMerchant.cs

There are 3 possibilities of extending the behavior of this class:
(1) change mInputResources and mOutputResources
(2) overwrite methods StartTransformation and FinishTransformation
(3) overwrite method transformResources

51

3.5 Network communication

Network communication (see Figure 26) is used for information exchange
between communicating games. Types related to network communication are
grouped in namespace RTSGame.Networking. We define a piece of information as an
instance of class GamePacket, which represents one command (for details about
commands, see section 2.6). The GamePacket is sent from Game 1 to Game 2 using
synchronous communication and the TCP protocol (as declared in section 2.6).

There are 3 types of GamePacket within the system of network communication:
(1) High-priority packets
(2) Control packets
(3) Player packets
They have different roles and they are also handled differently:
(1) High-priority packets (e.g. a ping, which checks if the game has not been

disconnected) have to be evaluated in the round they arrive, so that they are dealt
with by the NetworkCommunicator in its method processHighPriority-
GamePackets.

(2) Control packets, produced and evaluated by Level in its method processOne-
Packet, carry information about the game progress, but they do not contain any
specific commands (for information about commands, see section 2.6) for entities
(for example, a StartGamePacket carries the information that the game has to be
started from server to clients).

(3) Player packets, produced and evaluated by Player, carry information from
players for players or for entities controlled by the player. Player reads the
commands for the current round from mPacketsForCurrentTurn and evaluates them
in method evaluateGamePackets. For example, player packet TurnDonePacket

52

Figure 26: Network communication – the path of one GamePacket

carries information that the sender-player has finished the current round, a
MoveToGamePacket carries a move-to command for an entity.

WriterDaemon and ReaderDaemon are separate threads operating over the
OutgoingPacketQueue and IncomingPacketQueue, respectively. They regularly
check if there are any data to be written to the stream or to be read from it.

OutgoingPacketQueue is implemented as a GamePacketLindedList, which is a
sorted queue of GamePackets using a double-linked list; method AddLast inserts
GamePackets in sorted way according to their mOrdinalNumber, and it iterates the
sorted queue from behind (from highest mOrdinalNumbers) because it is very likely
that the GamePackets arrive in a sequence similar to an increasing sequence and our
experiments have shown that inserting GamePackets this way saves a considerable
amount of time.

IncomingPacketQueue is implemented as GamePacketQueue, which is a data
structure for storing incoming packets implemented as a linked list of GamePacket-
LinkedLists. In each of the GamePacketLinkedLists, it stores packets from one
round (in a sorted way) to allow quick access to them. This solution is advantageous
because at any moment, we only store packets from a few rounds in advance due to
the communication offset (presented in section 2.6.1). Compared to a simple sorted
queue of GamePackets, this data structure saved up to 75% of time needed to access
the GamePackets stored in it.

3.5.1 Network topology

The network has a star topology (shown in Figure 27) with one central point
(server). If a client game is sending a GamePacket to all other games, it sends the
GamePacket to itself and to the server, which forwards it to all clients apart from the
sender (left part of Figure 27). If server sends a GamePacket, it sends it to itself and
to all clients (right part of Figure 27).

Server game is using class Server : NetworkCommunicator, client games use
Client : NetworkCommunicator as the NetworkCommunicator shown in Figure 26.

Server game can choose from different sending options for each GamePacket
(stored in enum SendingOptions), so that the GamePacket can be sent to one client
only (SendToOne), to all but the server (ServerForwarding), or to all and to the
server (BroadcastAndToMe). The option Broadcast is used by client games.

53

Figure 27: Network topology. Left: Client 1 sending GamePacket to all games. Right: Server
sending GamePacket to all games.

3.5.2 Server and client communication

Initialization

While creating the connection (see Figure 28), users choose one game to be the
server game, which then listens for connections from all client games. Once all
clients are connected, the server game initializes the network session with
SeedRandGenGamePacket (seeds all random number generators in client games).
Then, the game synchronizes the map using DefineMapGamePacket, ObstacleGame-
Packet, and ResourceGamePacket, which carry the information about the map size,
obstacles in the map, and resources present in the map. Then, the server sends
InitPositionGamePacket (tells the games initial positions of all players in the
game), and WelcomeToGamePacket, which tells client games:

• that the game has just been launched
• ID of the local player playing the client game
• total number of players in the game

Upon receiving the WelcomeToGamePacket, each client informs the server about
the extensions available to the client (using TypeGuidPacket) followed by
SynchDonePacket, which in turn informs the server that the list of extensions
available to the client has been sent. After all client games have finished the
synchronization, the server determines the set intersection of the extensions and
informs the games about the extensions which are to be used in the game (using
TypeGuidPacket). Then, it starts the game with a StartGamePacket.

54

Figure 28: Establishing connection between server and client games

Communication during the game

The game progress is subdivided into rounds
(for details, see section 2.1); in each round, each
player does one turn, after which, a
TurnDonePacket is sent to inform other games in
the network that the current player's turn has been
finished. After all players have sent their
TurnDonePacket, the round is finished and next
one can be started.

In section 2.6.1, we introduced communication
offset CO, so that if round R has been finished,
round R + CO can be started. In Figure 29, we
show an example for CO = 3. Game 1 has finished
its turns in rounds N, …, N + 3 and is waiting for
Game 2 to finish its turn in round N + 1. Once
Game 1 has received the TurnDonePacket from Game 2 in round N + 1, it will be
allowed to enter round N + 4.

Loss of connection

There are 2 possible scenarios related to the loss of connection.
(1) If client game looses connection to the server, the game is terminated.
(2) If server looses connection to a client game, the player at the client game is

considered to be dead and the game continues without this player.
The disconnection of a client game is announced by PlayerDisconnectedGame-

Packet, which is sent to the server and then forwarded to all (connected) client
games.

If the server waits too long for a TurnDonePacket from a client game, it starts
sending PingGamePackets to it to find out if the game is still reachable, and if it finds
out that the connection to the game has been lost, it disconnects it sending a
PlayerDisconnectedGamePacket to all other clients.

Identification of types

The command to create an entity with AI for its internal intelligence is represented
by UnitWithAITypePointGamePacket with the following variables:

int mUnitTypeIndex

int mAITypeIndex

The variables stand for indices into AssemblyManager.mIndexedListOfTypes,
from which, the type of the entity and the type of its AI is taken. For this reason,
AssemblyManager.mIndexedListOfTypes has to contain exactly the same list of
types in the same order at all communicating games, which is processed in the
synchronization phase of the initialization of the network communication.

55

Figure 29: Game 1 has finished
rounds N, ..., N + 3 and waits for
Game 2 to finish round N + 1

3.5.3 GamePacket

In Figure 30, we see types extending the GamePacket class. Red border stands for
high-priority packets, blue border denotes control packets and violet border means
player packets. Fields with white background contain abstract classes, gray
background stands for real packets used in the game.

56

Figure 30: Types extending GamePacket

Class GamePacket

This class represents one command sent via network to be executed in a certain
round (denoted by mTimeStamp). The information contained in GamePacket is
encoded (transformed into byte-array) and decoded (transformed from byte-array)
using methods Encode and Decode, respectively. In inheriting types which add a new
variable to the set of information sent over network, these methods have to be
overridden – e.g., class PlayerGamePacket adds variable Value to GamePacket:

public class PlayerGamePacket : GamePacket {

public int mPlayerID;

public override int Encode() {

int nextIndex = base.Encode();

nextIndex = encodeNumberIntoArray(mPlayerID, byteCode, nextIndex,
EncodingType.encodingAsInt);

return nextIndex;

}

}

Code example from class PlayerGamePacket, file GamePacket.cs

Method encodeNumberIntoArray accepts parameter EncodingType, which
determines the number of bytes the variable needs in the mByteCode. The same
EncodingType has to be used for decoding the variable from the mByteCode:

mPlayerID = decodeFromArray(out nextIndex, mBinaryData, nextIndex,
EncodingType.encodingAsInt);

Code example from class PlayerGamePacket, file GamePacket.cs

If a GamePacket is being encoded into byte-array and decoded from it, it needs to
know the resulting length of the information (the number of bytes) contained in it
(mNumberOfBytes), because the length of it varies across different types of
GamePackets. This information is stored in static dictionary GamePacket.mDictOf-
InformationLenght, which is dynamically created during the initialization phase of
the game by static method GamePacket.initializeDictOfInformationLenght.
From this dictionary, each Type can easily read the length of the information
contained in it.

The GamePacket has a property mOrdinalNumber, which is its ordinal number
within the scope of one player's turn (i.e. unique for player and round). This property
is used to control that the packets are received in right order.

Identification of GamePacket

In order to identify the GamePacket over the network from its binary
representation, it has to have an identification value, which is unique for each Type of
GamePacket. The identification value is generated by method Type.GUID.GetHash-
Code, and we assume that the value is unique within the scope of the game.

To convert from the identification value to Type, we create static
Dictionary<int, Type> mDictionaryOfGamePacketTypes in the initialization
phase of the game, and the identification value, called mIndexIntoTypesArray, is
used as the key of the dictionary.

After a NetworkCommunicator receives a GamePacket in its binary form, it first

57

reads the first 4 bytes and converts them into the identification value. Then, it
converts the identification value into Type (using static method GamePacket.get-
GamePacketTypeFromIndex) and uses the Type to create the GamePacket using static
method GamePacket.createPacketFromType.

3.5.4 Types extending GamePacket

Let us now briefly describe types extending the GamePacket class. These are
simple types only adding a piece of information to their ancestors, which has to be
sent over the network.

Class PlayerGamePacket

Contains integral value mPlayerID, which stands for the ID of a player.

Class PointGamePacket

Contains integral values mPlayerID, which stands for the ID of a player, and a
Point.

Class UnitPointGamePacket

Contains integral values PlayerID and UnitID, Point, and index into
AssemblyManager.mIndexedListOfTypes, which denotes the type of unit.

Class UnitWithAITypePointGamePacket

Contains integral values PlayerID and UnitID, Point, and two indices into
AssemblyManager.mIndexedListOfTypes, which denote the type of unit and the type
of AI for it.

Class MoveToGamePacket

Represents a move-to-position command to a unit denoted by PlayerID and
UnitID.

Class CreateBuildingGamePacket

Represents a command to building denoted by PlayerID and UnitID to create a
building of type denoted by mUnitTypeIndex with internal AI denoted by
mAITypeIndex (both indices into AssemblyManager.mIndexedListOfTypes).

Class CreateUnitGamePacket

Represents a command to building denoted by PlayerID and UnitID to create a
unit of type denoted by mUnitTypeIndex with internal AI denoted by mAITypeIndex
(both indices into AssemblyManager.mIndexedListOfTypes).

Class TurnDoneGamePacket

Used to inform all games that the player denoted by PlayerID has finished the
round in which the packet has been sent.

Class PlayerDisconnectedGamePacket

Sent to inform all games that the player denoted by PlayerID has been
disconnected from network communication.

Class StartGamePacket

This GamePacket is sent by server at the very beginning of the game to inform

58

network clients that the server has just started the game. This packet does not use an
ordinal number because it is sent in the initialization phase of the game.

Class PingGamePacket

This high-priority packet is used by server to find out whether a network client is
still connected in case the server is waiting too long for a response from the client.

Class ReturnPingGamePacket

This high-priority packet is used to response to a PingGamePacket.

Class WelcomeToGamePacket

Used for initializing the game and it is only sent by server. The packet contains
player-specific information, for example ID of the receiving player, the number of
other players playing the game, etc. This packet does not use an ordinal number
because it is sent in the initialization phase of the game.

Class InitPositionGamePacket

This packet initializes the positions of all players in the network. Server has to
inform all players about all positions, because it is essential for the synchronization
of the game. This packet does not use an ordinal number because it is sent in the
initialization phase of the game.

Class DefineMapGamePacket

This packet is used in the initialization phase of the game to inform all clients
about the size of the map. This packet does not use an ordinal number because it is
sent in the initialization phase of the game.

Class ObstacleGamePacket

This packet informs all clients about an obstacle present in the map. It does not
use an ordinal number because it is sent in the initialization phase of the game.

Class ResourceGamePacket

This packet informs all clients about a resource present in the map – it carries an
index into the enum ResourceTypes (mIndexIntoTypesEnum), index into the list of
ResourceGroups held by the ResourceHolder to indicate the ResourceGroup into
which the resource belongs (mIndexIntoListOfGroups), and its amount (mAmount).
This packet does not use an ordinal number because it is sent in the initialization
phase of the game.

Class SeedRandGenGamePacket

This packet is used for sending the seed of random numbers generator to all
games connected in network, which is essential for the synchronization of the game.
This packet does not use an ordinal number because it is sent in the initialization
phase of the game.

Class TypeGuidPacket

Used for synchronizing extensions available to communicating games. This
packet does not use an ordinal number because it is sent in the initialization phase of
the game.

59

Class SynchDoneGamePacket

Used to inform server or client that the synchronizing process has been finished.
This packet does not use an ordinal number because it is sent in the initialization
phase of the game.

3.5.5 Logging of player packets

If the value of Globals.LOG_GAME_PACKETS is set to true, the game logs player
packets from communication between games in network (i.e. commands issued by
players: MoveToGamePackets, CreateUnitGamePacket, CreateBuildingGamePacket,
and TurnDoneGamePacket) into log files in the root directory of the game. The logs
can be compared using method LogsComparerTool.compareGamePacketLogs, which
is encapsulated by a command-line application for comparing logs in project
LogsComparer.csproj.

Comparing logs of player packets is important to verify that the network
communication is synchronized, for example after a new strategy for computer
players has been added into the game.

3.5.6 Position of computer players in the network

In Figure 31, we see an example of
communication between a server game and
a client game with altogether 3 players –
two human and one computer player. All
computer players are always accommo-
dated by the server game, where their
decision-making is proceeded. They issue
commands (as if they were human players)
and client games read them. On the other
hand, commands from the human player at
client game are issued by this player, and
they are read (and evaluated) by the server
game.

60

Figure 31: Position of players in network.
Green fields stand for players issuing
commands, yellow fields represent players
reading commands.

3.5.7 Use of random numbers in the game

In section 2.6, we described the system
of sharing information between games as
sharing commands (i.e. GamePackets). In
order to keep the game synchronized, it is
necessary to provide the same evaluation
of the commands at each of the game,
which may be complicated if want to use
random numbers. We will now describe
the rules for using random numbers in the
game.

There are 2 types of random numbers in
the game, as we show in Figure 32:

(1) Random numbers used in one
instance of the game only (white
background in Figure 32). For example, in
the beginning of the network session, the server initializes the position of all players
in the map – it is only done by the server, so that these numbers can not be
synchronized with other games (and the server then sends InitPositionGamePacket
to all clients to inform them about the positions of players). Another example is the
reasoning of a computer player. If the player wants to issue any command, it sends a
GamePacket to all games in the network, as if it was a human player. Any decision of
the computer player based on random numbers does not need the synchronized
random numbers, because this decision is made at one of the communicating
computers only.

(2) Random numbers used in all instances of the game at the same time (green
background in Figure 32). In contrast to computer players, entities make their
decision at all communicating games and need to obtain the same random number at
all of the games at the same time. For example, Unit1 collides with another entity,
and chooses a random interval to wait before it runs the pathfinding algorithm again
(this behavior is described in section 2.5.5.2). As we show in Figure 32, the unit
needs the random number both at server and at client game. If it obtains a different
random number at different games, the game looses its synchronization and is very
likely not to regain it again.

In order to obtain a synchronized random number, the entity has to use static
method Level.nextRand, which provides random numbers from seeded random
numbers generator (seeded by SeedRandGenGamePacket in the initialization phase of
the multiplayer game).

If the value of Globals.LOG_RANDOM_NUMBERS is set to true, the game logs
random numbers generated by the method Level.nextRand into log files in the root
directory of the game. These logs can then be compared using method
LogsComparerTool.compareRandNumbersLogs, which is encapsulated by a
command-line application for comparing logs in project LogsComparer.csproj.

61

Figure 32: Use of random numbers. Notice
that those represented by green fields have
to be synchronized.

3.5.8 Project LogsComparer.csproj

As we already mentioned in sections 3.5.5 and 3.5.7, project
LogsComparer.csproj is used for comparing logs of random numbers with each
other and logs of player packets with each other.

The project is set up to compile into the root directory of the RTSGame
(RTSGame\RTSGame\bin\x86\XXX\, where XXX stands for Debug or Release –
depending on settings of the project RTSGame.csproj) – as a console application
LogsComparer.exe, which accepts 3 commands:

(1) QUIT terminates the applications
(2) RANDNUM file1 file2 file3 … fileN compares logs of random numbers

with names file1, file2, file3, …, fileN using method LogsComparer-
Tool.compareRandNumbersLogs.

(3) PACKETS file1 file2 file3 … fileN compares logs of player packets with
names file1, file2, file3, …, fileN using method LogsComparer-
Tool.compareGamePacketLogs

The application either writes message "Logs OK" to state that the logs are equal,
or indicates the first occurrence of an error in the compared log files.

62

3.6 Artificial intelligence
The artificial intelligence in our game, implemented with the use of a finite state

machine (for details, see section 2.3.4.2), is used for two purposes: for artificial
intelligence of computer players and for the autonomous behavior of entities (details
in section 2.4.1). All types related to the artificial intelligence in the main project,
RTSGame.csproj, are stored in namespace RTSGame.FSM.

We also provide sample extensions of artificial intelligence in projects
FSM_Player_AI.csproj (artificial intelligence for players) and FSM_AI.csproj
(artificial intelligence for entities).

The extensions of AI for computer players have to be inserted into directory
.\PlayerAI, extensions of AI for entities have to be inserted into .\AI in form of .dll
files. The projects FSM_Player_AI.csproj and FSM_AI.csproj fulfill these
conditions, because they are set up to compile as a DLL files to directories
RTSGame\RTSGame\bin\x86\XXX\PlayerAI\, and
RTSGame\RTSGame\bin\x86\XXX\AI\, respectively, where XXX stands for Debug or
Release (depending on settings of the project RTSGame.csproj).

3.6.1 Class FiniteStateMachine

This is the main class for the finite state machine. It contains a list of states
represented by class FSMState (identified within the FiniteStateMachine through
their unique StateId), which are inserted into the FSM with the method Insert. The
FiniteStateMachine changes the states in its method Update (see Figure 33), calling
the method FSMState.Update of the current state mCurrentState, which returns a
reference to the next FSMState or null, if there is no suitable transition.

In order to simplify the design of the FSM, we allow it to change the states as long

as the change is possible – i.e., as long as the method mCurrentState.Update returns
a non-null value. In Figure 33, the FiniteStateMachine.Update starts in
mCurrentState and jumps over the State1 into State2, i.e., method mCurrent-

63

Figure 33: Example of an Update of FSM, which jumps from mCurrentState over State1 to State2

State.Update finds a transition into State1, and State1.Update finds a transition
into State2. From State2, no suitable transition is possible, so that the method
State2.Update returns null, and the Action State2.OnActive is performed.

In case of a wrong design of the FSM, an infinite loop may occur, which we
prevent by using the variable jumpsRemaining, which can be set to any integral
number (or -1 which means that there is no upper bound for the number of jumps in
one FiniteStateMachine.Update).

The FSMState contains 3 important instances of type Action:
• Action OnEnter, which is performed if the state is being entered
• Action OnExit, which is performed if the state is being exited
• Action OnActive, performed if the FSM remains in the state after the

FiniteStateMachine.Update method, processes the action which is to be
done by the artificial intelligence (either an action of the player or an action
of an entity, such as keep moving, attack an entity, etc.)

3.6.2 FSMState

In our program, we use 2 successors of the abstract class FSMState:
(1) ExplicitTransitionFSMState with explicitly given transitions to other states.
(2) ImplicitTransitionsFSMState with implicitly given transitions to other

states.

Explicit transitions

The state with explicit transitions uses the Action OnUpdate, which is called in its
Update method.

public class ExplicitTransitionFSMState : FSMState {

public Func<FSMState> OnUpdate { get; set; }

public override FSMState Update() { return OnUpdate(); }

}

Code example from class ExplicitTransitionFSMState, file ExplicitTransitionFSMState.cs

An example of possible use of the Action OnUpdate can be found within the class
FSM_AI_Player_NoActivity, where we use it for the initialState:

stateInitial.OnUpdate = () => {

if (rubberMerchantGroup.Count == 0) return stateCreateRubberMerchant;

if (harvestersGroup.needsToConstructMoreUnits()) return stateCreateHarvesters;

if (getLVF() == null) return stateCreateLVF;

/* etc. … */

return null; // this says: stay in this state and go on to OnActive

};

(Slightly modified) code example from class FSM_AI_Player_NoActivity, file
FSM_AI_Player_NoActivity.cs

ExplicitTransitionFSMState may be very useful, if the transition function is
easy to understand. For more complicated transition functions, we use
ImplicitTransitionsFSMState.

Implicit transitions

To represent implicit transitions between states, we use class ImplicitTransi-
64

tionsFSMState.Transition. In the method ImplicitTransitionsFSMSta-
te.Update, the FSMState iterates over all its Transitions (stored in
List<Transition> mImplicitTransitions) until it reaches a transition whose
condition is met (i.e. the Func<bool> Condition returns true), which is taken
(Action OnFollow is performed before the method ImplicitTransitions-
FSMState.Update returns FMSState NextState).

A transition is added to a state using method AddTransition. In the FSM for
FSM_MovingObject, we set the transition from stateMoving to stateWaiting as
follows:

protected ImplicitTransitionsFSMState stateMoving;

/* Transition into stateWaiting if the condition Obj.mPathFinished is met. Set varia-
ble Obj.mPathFinished to false while taking this transition: use Action OnFollow.*/

stateMoving.AddTransition(stateWaiting, () => Obj.mPathFinished,
 () => Obj.mPathFinished = false);

Code example from class FSM_MovingObject, file FSM_MovingObject.cs

3.6.3 Initialization of FSM

The class FiniteStateMachine is initialized by its method initialize, (called
by the constructor of the FSM), which initializes all states of the FSM and defines
transitions between them. This approach, combined with the use of
ImplicitTransitionsFSMState, allows easy extendability of the FSM, which we
will explain using the following example:

In section 3.3, we presented a MovingGameObject, which is able to move in the
map, and AttackingMovingGameObject, which extends the MovingGameObject with
the ability to attack other entities.

We use FSM_MovingObject for the AI of MovingGameObject, and
FSM_AttackingMovingGameObject for AI of AttackingMovingGameObject:

public class FSM_MovingObject : FSM_DoNothing {

public override void initialize(GameObject aObj) {

/* Run-time check of the argument */

MovingGameObject Obj = aObj as MovingGameObject;

if (Obj == null) throw new ArgumentException();

base.initialize(Obj);

stateMoving = new ImplicitTransitionsFSMState("stateMoving");

Insert(stateMoving);

stateWaiting.AddTransition(stateMoving,

() => Obj.needsNewPath(),

() => Obj.resetHowLongWaitForFreePath());

stateWaiting.OnActive = () => Obj.resetPath();

}

}

Code example from class FSM_MovingObject, file FSM_MovingObject.cs

65

The following piece of code shows how we easily extend the state stateWaiting
from the previous code with new transition in class AttackingMovingGameObject
(inheriting from FSM_MovingObject):

public class FSM_AttackingMovingGameObject : FSM_MovingObject {

public override void initialize(GameObject aObj) {

/* Run-time check of the argument */

AttackingMovingGameObject Obj = aObj as AttackingMovingGameObject;

if (Obj == null) throw new ArgumentException();

base.initialize(Obj);

stateWaiting.AddTransition(stateAttacking,

() => Obj.mAttackAttributes.findRandomEnemyObjectInRange());

}

}

Code example from class FSM_AttackingMovingGameObject, file
FSM_AttackingMovingGameObject.cs

Notice the run-time checks of the argument for method initialize. This is due to
the fact that it is not possible to provide a more specific argument to the method
initialize in a more specific successor of FiniteStateMachine (for example, in
FSM_MovingObject, we want to use initialize(MovingGameObject aObj), which is
not supported by the language specification).

3.6.4 Types extending FiniteStateMachine

In Figure 34, we show the tree of types extending FiniteStateMachine. Fields with
blue background represent the AI for entities, whereas green background stands for
AI for computer players.

66

Figure 34: Types extending FiniteStateMachine.

3.6.5 AI for entities

The game provides a variety of AIs for entities, with different degrees of
independence and with different use – some of them are supposed to be used for
entities created by human players and some of them are meant for entities created by
computer players. We will now describe them briefly while explaining their usage.

Class FSM_DoNothing

Being the default value for GameObject.mInnerLoop, this class represents internal
intelligence which does not perform any activity – it only has state stateWaiting, in
which it stays idle.

Class FSM_MovingObject

This class, whose use is restricted to MovingGameObject (and its successors),
implements the internal intelligence of a moving entity. It extends FSM_DoNothing
with 2 states: stateMoving, in which it processes the movement, and
statePathSearching, in which it searches for path in map (i.e. runs a pathfinding
algorithms – for details, see section 2.5.4).

Notice that this class also extends the behavior of the stateWaiting defined in
FSM_DoNothing with a transition to stateMoving and with redefinition of
stateWaiting.OnActive:

stateWaiting.AddTransition(stateMoving, () => Obj.needsNewPath(),

() => Obj.resetHowLongWaitForFreePath());

stateWaiting.OnActive = () => Obj.resetPath();

Code example from class FSM_MovingObject, file FSM_MovingObject.cs

Class FSM_AttackingMovingObject

This class, whose use is restricted to AttackingMovingGameObject, implements
the behavior of a MovingGameObject which is able to damage other entities (it has
AttackAttributes – for details, see section 3.3.3). It extends the FSM_MovingObject
with stateAttacking, in which, it performs the attack.

If an entity using this AI (in state stateWaiting) finds an enemy entity within its
range of attack (specified in AttackAttributes), it starts to attack it.

In our game, this class is used for types BigTank and SmallTank (stored in
Tanks.csproj) created by human players.

Class FSM_DefendPlayer_AttackingMovingGameObject

This extension of FSM_AttackingMovingObject is used for some units produced
by computer players – it has an enhanced internal intelligence for autonomous
behavior (its degree of independence is higher than the one of
FSM_AttackingMovingObject – for details, see section 2.4.1), because it
autonomously searches for intruders within the computer player's base and attacks
them. In order to save system resources, it does so only once upon a time
(mCheckInterval). The higher degree of independence of this AI produces an
enhanced impression of the intelligence of computer players using units with this
internal intelligence (for discussion about the impression of computer players'
intelligence, see section 2.3).

67

Class FSM_WideSearch_AttackingMovingGameObject

This class extends the behavior of FSM_AttackMovingObject with the ability to
search for enemy entities within a broader range than only the range of attack
(specified in AttackAttributes) and attack them if in stateWaiting. Although this
is not a great change in the behavior of attacking entities, it increases the impression
of the owning player's intelligence, so that this FSM may be used for some units
created by computer players.

Interface IPointStateMachine

This interface defines one point, mTarget, allowing the FSM implementing it to
include this specific point into its behavior.

Class FSM_GotoTarget_AttackingMovingGameObject

This class, implementing the interface IPointStateMachine, makes the attacking
unit to protect the point mTarget specified in the interface. It fixes the point so that
any time the unit is in stateWaiting, it returns to it. This is especially useful for
units produced by computer players to protect the base. This behavior of entities also
enhances the impression of intelligence of their owners – computer players.

Class FSM_AttackingBuilding

This class implements the behavior of a static entity which attacks enemy entities
coming into its range of attack (defined in AttackAttributes).

Class FSM_CollectorObject

This class implements the behavior of a resource collector and resource
transporter (described in section 3.3.4), which should be used for resource collectors
and transporters created by the human player.

Class FSM_AI_ResourceCollectorObject

This class implements the behavior of resource collector and resource transporter,
which is supposed to be used for units created by computer player, because it extends
the autonomous behavior of FSM_CollectorObject so that if the collector stands in
stateWaiting, it starts to search for new resource again – thus being more
independent and enhancing the impression of computer player's intelligence.

3.6.6 Defining FSM for GameObject

As we already explained in section 3.2, due to the run-time extendability of the
game, the compiler may not know about the existence an FSM at compilation time.
For this reason, it can be added to entities using the AddFSMAttribute:

[AddFSM("FSM_AttackingMovingGameObject")]

public abstract class AttackingMovingGameObject : MovingGameObject

Code example from class AttackingMovingGameObject, file AttackingMovingGameObject.cs

The attribute defines the given FSM for the GameObject and for all types
inheriting from it, unless they are given another AddFSMAttribute.

68

3.6.7 AI for computer players

In the game, we provide 4 predefined AI strategies for computer players. As we
described in section 2.3.1, we allow the AI for computer players to cheat. On one
hand, the AI has access to the whole game via AIPlayer.mLevelOwner and it is only
up to the AI designer which information will be used, on the other hand, in section
3.6.5, we described AIs for entities with an increased degree of independence, which
are meant to be used for entities created by computer players. The independent
behavior of entities provides an enhanced impression of their owner's (computer
player's) intelligence. Furthermore, computer players receive more resources in the
beginning than human players. Let's now describe the strategies for computer
players.

Class FSM_AI_BasicPlayer

Class FSM_AI_BasicPlayer serves as the frame for all other AI strategies while
providing methods which implement the basic functionality of the AI for the player
such as construction of units and buildings, giving commands to units, searching for
buildings of specific types etc.

Class FSM_AI_Player_NoActivity

This class stores a (cheating) intelligence of computer players able to collect
resources (in this case, the resource Rubber), to defend themselves and to create units
to attack other players.

In order to make the management of entities easier for the designer of AI, we use
class GroupOfEntities, which stores entities of the same Type and with the same
internal AI. The player can set the maximum number of entities stored in the
GroupOfEntities (mMaxNumberOfEntities), the minimum acceptable number of
them (mMinAcceptableNumberOfEntities), the Type of the entities (mTypeOfEntity)
and the Type of the AI for them (mTypeOfFSM).

For each GroupOfEntities, the AI checks if there are enough (i.e. more than
mMinAcceptableNumberOfEntities) entities, and if not, it starts creating entities of
the given type while going into the state where the units are created.

69

In FSM_AI_Player_NoActivity, there are 4 groups of entities specified:

GroupOfEntities harvestersGroup; // Rubber Collectors

GroupOfEntities staticDefendersGroup; // Defenders with a given point to wait on

GroupOfEntities activeDefendersGroup; // Defenders searching for enemy units

GroupOfEntities attackingUnitsGroup; // Attack units

Code example from class FSM_AI_Player_NoActivity, file FSM_AI_Player_NoActivity.cs

In order to provide an understandable example of how the FSM_AI_Player_No-
Activity works, we will restrain the strategy to creating a RubberMerchant and
RubberCollectors (i.e. states stateInitial, stateCreateRubberMerchant and
stateCreateHarvesters from the original FSM) – see Figure 35. Type rmType is the
Type of RubberMerchant, Type harvesterType is the Type of ResourceCollector
and Type harvesterFSM is the Type of FSM_CollectorObject. In the following
example, we show the code behind the FSM from Figure 35 with highlighted states:

stateInitial.OnUpdate = () => {

if (getRubberMerchant() == null) return stateCreateRubberMerchant;

if (harvestersGroup.needsToConstructMoreEntities())

return stateCreateHarvesters;

return null;

};

stateCreateRubberMerchant.AddTransition(stateCreateHarvesters,

() => getRubberMerchant() != null);

stateCreateRubberMerchant.OnActive = () => {

if (hasConstructionFactory()) { createBuilding(new RubberMerchant()); }

};

stateCreateHarvesters.AddTransition(stateCreateRubberMerchant,

() => getRubberMerchant() == null);

stateCreateHarvesters.AddTransition(stateInitial,

70

Figure 35: Simplified FSM of a player

() => !harvestersGroup.needsToConstructMoreEntities());

stateCreateHarvesters.OnActive = () => {

constructUnit(harvestersGroup, getRubberMerchant);

};

Code example from class FSM_AI_Player_NoActivity, file FSM_AI_Player_NoActivity.cs

Defensive and offensive strategies

 In class FSM_AI_Player_NoActivity, we set the required numbers of all entities
in the groups to zero, so that the AI does not create any of them. AI designers can
extend this AI so that they set the desired numbers of entities in the groups according
to their preferences – as we do in the project FSM_Player_AI.csproj, where we
define FSM_AI_Player_Defender and FSM_AI_Player_Attacker.

FSM_AI_Player_Defender is a defensive computer player strategy, which requires
more defensive entities and less offensive ones:

/* The constructor has 4 arguments: type of the entity to be created, minimum
acceptable number of entities in the group, maximum number of entities in the group,
and type of FSM for the entities in the group. */

harvestersGroup = new GroupOfEntities(harvesterType, 2, 4, harvesterFSM);

activeDefendersGroup = new GroupOfEntities(smallTankType, 8, 12, activeDefenderFSM);

staticDefendersGroup = new GroupOfEntities(bigTankType, 8, 16, staticDefendersFSM);

attackingUnitsGroup = new GroupOfEntities(bigTankType, 3, 7, wideSearchAttackersFSM);

Code example from class FSM_AI_Player_Defender, file FSM_AI_Player.cs

FSM_AI_Player_Attacker is a strategy requiring a larger number of offensive
entities and less defensive ones:

harvestersGroup = new GroupOfEntities(harvesterType, 1, 3, harvesterFSM);

activeDefendersGroup = new GroupOfEntities(smallTankType, 4, 6, activeDefenderFSM);

staticDefendersGroup = new GroupOfEntities(bigTankType, 8, 8, staticDefendersFSM);

attackingUnitsGroup = new GroupOfEntities(bigTankType, 10, 20,
wideSearchAttackersFSM);

Code example from class FSM_AI_Player_Attacker, file FSM_AI_Player.cs

71

3.7 Map and pathfinding
All types related to map and pathfinding are grouped in namespace

RTSGame.GameMap. All types related to the work with tiles are generic, so that the
types from this namespace can be used with tiles of any shape (represented by
interface IgridTile).

As we described in section 2.5.2, we use square-shaped tiles (SquareTile :
IgridTile). From a square tile, a moving entity can move into 8 directions, which
are specified in class SquareTileDirections.

The map is encapsulated by class Grid<Tile>, which orders the tiles into a two-
dimensional array and makes them conveniently accessible through the indexer
this[Point p]. This class is also responsible for management of the map (inserting
and removing entities and obstacles, finding out if an area in the map is free or what
unit is at a given point in the map, etc.). In the game, we use the class
Grid<SquareTile>.

We will now briefly describe the most important types contained in the namespace
RTSGame.GameMap.

Class MovementPath<Vector>

This class represents a relative path through the map (see section 2.5.3 for details).
In the game, we use class MovementPath<Point>.

Class AStar<Tile>

This class, inheriting from abstract class PathSearchingAlgorithm<Tile>, which
stands for general pathfinding algorithm, represents the algorithm A* (described in
section 2.5.4.2). In its main method FindPath, it initializes the pathfinding using
method initSearching, then, method searchForPathUntil-TargetIsReached is
run. If the target is reached, the path is assembled in method reconstructPath.

The navigation graph for the pathfinding (described in 2.5.4) is represented by
class DynamicNavigationGraph<Tile>. The vertices and edges of the graph are
determined on the fly from the original map (DynamicNavigation-
Graph<Tile>.mOriginalGrid).

For keeping the queue of visited vertices sorted by their fitness, we use a heap
implemented in GridTileHeap<Tile>, whose nodes are represented by class
GridTileHeap<Tile>.HeapNode, which also carries the information (mCameFrom)
about the HeapNode from which the tile stored in the current HeapNode has been
visited. This information is then used for the reconstruction of the path in method
reconstructPath.

The GridTileHeap<Tile> uses a cache (mSimpleCache) to store the HeapNode
with the lowest fitness value. This approach considerably decreases the number of
times when the node with the lowest fitness has to be taken from the heap, thus
decreasing the amount of time the algorithm consumes.

Class GridThumbnail

This class creates the thumbnail from the map, whose presence is required in goal
1.10. In its method CreateThumbnail, the class uses unsafe code to accelerate the
creation of the thumbnail.

72

If the user clicks into the thumbnail, method clickedIntoMap centers the screen
to the point into which the user clicked, using ScrollManager.setPosition.

3.7.1 Loading maps

In the initialization phase of the game, the program has to load maps to offer them
to the player, who chooses which map to play. Maps, stored as XML documents, are
loaded by class ScenarioManager from directory .\scenarios. The XML is then
read by Level.initLevelMap, where the map for the Level is initialized.

As examples, we provide 3 sample maps in directory
RTSGame\RTSGame\RTSGame\Scenarios. Let's describe one of them: 1-
scenario-100x100.xml:

<scenario> The root element is called scenario

<name>Basic Scenario 100x100</name> This name is displayed the players

<width>100</width> Width of the scenario in tiles

<height>100</height> Height of the scenario in tiles

<obstacles> List of obstacles

<obstacle> One obstacle

<x>20</x> Its x-coordinate is 20 (in tiles)

<y>30</y> Its y-coordinate is 30 (in tiles)

<width>20</width> Its width is 20 tiles

<height>4</height> Its height is 4 tiles

</obstacle>

</obstacles>

Definition for resource Rubber. Always define resources with their name from
enum TypesOfResources, but in lowercase:

<rubber>

<group> GroupOfResources containing Rubber

<tile> Tile in the group at [30, 30]

<x>30</x>

<y>30</y>

<amount>90</amount> Initial value: 90 units of Rubber

</tile>

</group>

<tile>
A tile without any group: a group will be created for it

<x>200</x> Tiles with wrong coordinates will be ignored

<y>500</y>

If there is no initial value, we use the default value
(ResourceHolder.mInitialResourceValue).

</tile>

</rubber>

</scenario>

XML example from file RTSGame\RTSGame\RTSGame\Scenarios\ 1-scenario-100x100.xml

XML Schema for validating maps in the format we described above can be found
in Attachments [D].

73

3.8 Deployment – RTSGameSetup.vdproj
The deployment of the application is processed in setup project

RTSGameSetup.vdproj, which is set up to compile into directory
RTSGame\RTSGameSetup\XXX\, where XXX stands for Debug or Release (depending on
settings of the project RTSGame.csproj).

It creates two files: RTSGame.msi and setup.exe, which together compose the
installation packet of the game.

The setup project defines 3 prerequisites for successful installation of the game:
(1) Microsoft .NET Framework 4 Client Profile (x86 and x64)
(2) Microsoft XNA Framework Redistributable 4.0
(3) Windows Installer 3.1
If any of the prerequisites is missing at the user's computer, the installer

setup.exe downloads and installs it.
The current installation packet can be also found in Attachments [C].

74

4 User documentation

4.1 Installation
The installation packet (accessible from Attachments [C]) contains 2 files:

RTSGame.msi and setup.exe. Run the file setup.exe to begin the installation.
The program needs the following prerequisites before the game can be installed. If

any of them missing, the installer will download and installs them for you:
(1) Microsoft .NET Framework 4 Client Profile (x86 and x64)
(2) Microsoft XNA Framework Redistributable 4.0
(3) Windows Installer 3.1

4.2 Initial screen
After starting the program, you see the initial screen (Figure 36), where you can

choose from several options to customize the game according to your preferences.

Number of computer players and their strategies

After clicking on the button Set, you can set the number and strategies of
computer players in a dialogue box shown in Figure 37.

Single player game

If starting a single-player game, choose the number and strategies of computer

75

Figure 36: The initial screen of the game

Choose the map

Connect to (existing) multiplayer game

Set the number of AI players and their strategies

Figure 37: The choice of number and strategies of computer players

Setting the number

Choice of strategies

Close the program

Initialize multiplayer game

Start single player game

Start game as server

players, and the map in which the game will be played. After you click on button
Single Player, the game will start.

Multiplayer game

If more players want to play a multiplayer game, they have to choose one among
them who will set up the game and take the role of a server game (use of the most
powerful computer is recommended). This player then chooses the number and
strategies of computer players and the map before he or she initializes the server
game while clicking on button Create Game. After this button has been clicked, a
message appears: “Game created on IP: IPAddress:Port”. After the message has

appeared, other players can connect to the game
using the button Connect, which makes the
dialogue box from Figure 38 appear. Here, insert
the IPAddress and Port from the message the
server game has shown.

After all clients have connected to the game,
the player at the server game starts the game
pressing the button Start Game, which is now
active (unlike in the initial screen in Figure 36).

4.3 Gameplay
After the game has been started, the player plays against the opponents (computer

or human players). The goal of the game is to destroy all entities of all opponents –
only an opponent whose entities has been totally destroyed is considered dead.

As we thoroughly described in Chapter 1, the player has to collect resources in
order to be able to pay for the construction of buildings and units to defend his or her
base or to attack the opponents' entities. We will first describe the entities and then,
the chain of resource management, because most of the entities present in the game
are important parts of the resource management.

76

Figure 38: Dialogue box for
inserting IP Address and port

4.3.1 Entities

In Figure 39, we show the structure of buildings (blue background) and
units (gray background) in the game. Arrow from entity A to entity B symbolizes that
entity B is constructed in entity A. We will now present a brief description of each of
the entities.

Construction factory

Construction factory is the main building of the game, because it
constructs all other buildings available in the game, and it can not
be constructed in any other building. It the player looses this
building, his or her possibilities are very limited.

Rubber merchant

Rubber merchant collects resource Rubber from Rubber collectors
and transforms it into Money, which is transferred to the player's
resources. It also creates Rubber collectors.

Light vehicles factory

Light vehicles factory is a building creating attack units – Desert
leopards and Scorpions.

Steel mill

Steel mill is a building which receives resources Coal and Iron
and transforms them into Steel. It creates units Iron ore collector
and Coal transporter.

77

Figure 39: The tree of buildings and units in our game

Coal mine

Coal mine mines resource Coal. It has to be placed on an area in
the map where Coal is present.

Steel merchant

Steel merchant receives resource Steel transported by Steel
transporter from Steel mill and transforms it into Money, which is
then transferred to the player's resources. It creates unit Steel
transporter.

Desert leopard

Desert leopard, constructed in Light vehicles factory, is one of two
attack units present in the game. It is slower and more expensive, but
also more powerful than Scorpions.

Scorpion

Scorpion is another tank constructed in Light vehicles factory. It is
faster, cheaper, and less powerful than Desert leopard.

Rubber collector

Rubber collector collects resource Rubber and brings it to the Rubber
merchant, where it is transformed into Money, which is then transferred
to the player's resources.

Iron ore collector

Iron ore collector collects resource Iron from areas in the map and
brings it into the Steel mill.

Coal transporter

Coal transporter transports Coal from Coal mine into Steel mill.

Steel transporter

Steel transporter transports Steel from Steel mill to the Steel merchant.

78

4.3.2 Resources

We show the chain of resource management in our game in Figure 40. There are 5
types of resources in the game:

Money

Money is the resource which is used to pay for units and structures, and the
players receive some initial amount of it to be able to start their economy. The player
can obtain money in 2 buildings:

(1) Rubber merchant receives Rubber from Rubber collectors and transforms it
into Money.

(2) Steel merchant receives Steel from Steel transporters and transforms it into
Money.

Rubber

Rubber grows in bunches in the map, and it can be collected by Rubber collectors
which then bring it to the Rubber merchant.

Rubber growing in the map is destroyed by a unit (except for Rubber collector)
which drives over it.

Coal

Coal is a resource present in map, and it can be mined in building Coal mine,
which has to be constructed over fields with Coal on them. Coal is then transported
to Steel mill, where it is, together with Iron, transformed into Steel.

Iron

Iron is a resource present in map, and it can be collected by Iron ore collector. It is
then brought to Steel mill, where it is, together with Coal, transformed into Steel.

Steel

Steel is created in Steel mill from Coal and Iron. It is then transported to the Steel
merchant, where it is transformed into Money, which is transferred to the player's
resources.

79

Figure 40: Chain of resource management in our game

4.4 Player's input
During the gameplay, the player gives commands to his or her entities and to the

game using mouse. A game window is shown in Figure 41: we see the game progress

in the main window, and the map thumbnail and a detail of Construction factory in
the right column.

Choosing object

Left mouse click on an object (entity, resource, obstacle) chooses it and displays
its details in the right column. For choosing more units, drag over them or hold
CTRL and click on the units you want to choose (this only works for units, not for
buildings).

Constructing entities

If a building is chosen, the player can construct entities from the building menu
(right mouse click). In Figure 41, there is a choice of 5 different entities to be
constructed.

In case of construction of a building, the player has to choose where to place the
building – some buildings may have certain requirements, for example, a Coal mine
has to be placed on resource Coal. The area is chosen with a left mouse click, the
construction can be canceled with the right mouse button.

If the player constructs a unit, the unit is placed at the closest free tile to the
building.

Move-to command

If a unit is chosen, the player can instruct it to move to any point in the map with
the left mouse click. Attack units (i.e. Desert leopard and Scorpion) start to attack
enemy entities if the user left-clicks on the enemy entity, resource collectors start to
collect resources if the player left-clicks on resources, and resource transporters
transport resources from the building the user left-clicks on (if there is suitable
resource type available).

80

Figure 41: Game window with a detail of Construction factory in the right column.

Menu of the chosen building
click into it to construct an entity

Map thumbnail – click into it to
move the screen to the desired position

The amount of resources the player has

The chosen entity (its fitness
stripe is visible above it)

T
he

 s
cr

ol
li

ng
 a

re
a

fo
r

m
ov

in
g

th
e

sc
re

en
 le

ft

Moving the screen

There are generally two ways of moving the screen. Either, the player can click
into the map thumbnail and the map will be centered to the given point, or the player
can move the mouse to the border area of the game window and the screen will start
scrolling (in Figure 41, we show the scrolling area for moving the screen left – other
3 directions are in the same area, but at the respective borders of the screen).

81

5 License
The product of this thesis is an open-source RTS game intended as a contribution

to the community. For this reason, it is licensed with the MIT License published on
the official website of the Open Source Initiative (www.opensource.org).

Copyright (c) 2013 Adam Hanka

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.

82

http://www.opensource.org/

6 Comparison with similar products
In this chapter, we compare the product of out thesis with the most popular open-

source RTS games and engines. We first describe them and then present a table in
Figure 42 summarizing the most important features of the products.

Spring [47]

The Spring, published under the GPL license, is a cross-platform (Windows and
Linux) 3D RTS game engine written primarily in C++ and using the Lua language
for game-specific code. It is used as the base for many other computer games, such
as Kernel Panic or Zero-K. It allows customization of almost all components, such as
GUI, unit AI or pathfinding.

The Spring engine supports both on-line and LAN multiplayer games and single
player games with limitation for the number of entities used in the game as high as
5000. Considering the maps, Spring allows large and highly-detailed maps with
terrain profile and 3 layers: land, water and air.

0 A.D. / Pyrogenesis [48]

0 A.D. is an open-source 2D RTS game based on the engine Pyrogenesis, which a
custom engine developed for 0 A.D. only. The engine, written mostly in C++ and
using JavaScript for scripting, is a cross-platform project supporting Windows, Linux
and Mac OS X.

The game supports single player and multiplayer games using peer-to-peer
networking without a central server.

In the game, two types of licenses are used: GPL license for the engine and CC-
BY-SA license for the game content – the art.

Stratagus [49]

The Stratagus, formerly known as FreeCraft, is an open-source 2D RTS engine,
which has been used as the base for many RTS games (e.g. Bos Wars). The engine is
referred to as cross-platform, even though we have not found any list of platforms it
supports. The homepage of Bos Wars says that the game runs under Linux, MS
Windows, BSD, and Mac OS, from which we assume that the Stratagus engine
supports these platforms, too.

The engine has been licensed under GPL license. It uses C++ as the main
language, and Lua as the configuration language. It also supports both single player
games with computer opponents and multiplayer games over the local network. The
homepage says that a server for on-line game sessions is under heavy development.

ORTS [50]

The ORTS (Open Real-Time Strategy) is an engine currently under development
at the University of Alberta, Edmonton, Canada. It is intended as a scientific project
for studying problems connected to real-time AI, such as pathfinding, scheduling,
planning, etc in the environment of 2D and 3D computer games.

The engine supports both single player and multiplayer games, and it presents a
different approach to network communication. In contrast to the most popular RTS
games, whose network communication is based on peer-to-peer technology with

83

distributed computation, the ORTS engine leaves all computations to the server, only
distributing its results to client games. With this approach, the clients can not hack
their software so as to reveal a piece of information which is supposed to be hidden
from them (it would give them an unfair advantage), which makes games based on
the ORTS engine suitable for internet-based competitions.

The engine is written in C++ and it uses its proprietary scripting language. The
game is cross-platform, as it can be used under Windows, Linux and Mac OS.

Comparison

After we described the products, we will summarize what we learned in the
following table:

As we can see, our project comprises certain advantages over the other products.
The most important difference is that we developed the whole game for .NET

Framework' modern programming language C#. This, compared to languages such as
C++ and Lua, enables the developers to work in a state-of-the-art, user-friendly
programming environment.

Also, we publish the project under the MIT license, which allows anybody who
obtains a copy of the software to “use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software” without any limits. This makes the
project more accessible than other products we compared, because GPL license
prevents the code from being used in any type of proprietary software, whereas MIT
license does not, so that the game can also be turned into such type of software.

84

S
pr

in
g

0
A

.D
. /

 P
yr

og
en

es
is

S
tr

at
ag

us

O
R

T
S

O
ur

 p
ro

je
ct

: R
T

S
G

am
e

Programming
languages

C++, Lua C++,
JavaScript

C++, Lua C++ C#

Online games ✓ - - - -

LAN multiplayer ✓ ✓ ✓ ✓ ✓

Single player games ✓ ✓ ✓ ✓ ✓

2D support ✓ ✓ ✓ ✓ ✓

3D support ✓ - - ✓ -

Windows supported ✓ ✓ ✓ ✓ ✓

Linux supported ✓ ✓ ✓ ✓ ✓

Mac OS supported - ✓ ✓ ✓ ✓

License GPL GPL GPL GPL MIT
Figure 42: The summary of comparison with similar products

7 Conclusion
To conclude the Thesis, let us examine how it fulfilled the goals we set up in

Section 1.3:
We developed an illustrative and extendable bird's-eye projected RTS computer

game for .NET framework and its modern programming language C#, which can be
further used by the community and tailored to their needs. To enable an unrestricted
use of the project, we published it under the MIT license, which is less restrictive
than the GPL license used for most of open-source RTS games.

The game contains both a single player mode, and a multiplayer mode. Players in
both modes can choose from 3 different strategies for computer players (artificial
intelligence strategies). The system of artificial intelligence is easily extendible with
plug-ins, and the game contains two computer player strategies loaded as plug-in
FMS_Player_AI.dll.

The game comprises three main components of RTS games:
• Base building: The game contains 6 buildings, which allow the player to

construct new entities and which are a part of the chain of resource
management. In the beginning of the game, the player receives one building,
which can not be created in any other building.

• Elements of war tactics: The player can construct 2 types of attack units,
which can be used both for defending the base and attacking enemy entities.
We also defined some basic interactions between entities. The system of
entities is extendable with plug-ins, and attack units are loaded as a plug-in
tanks.dll. In the game, entities have their own internal artificial intelligence,
which enables them to behave as autonomous agents. We provide a sample
extension of the AI for entities loaded as plug-in FMS_AI.dll.

• Resource management: The game contains 5 types of resources, from
which, 3 types (one of them growing, two not-growing) can be collected from
the map (using resource collectors) and 2 types have to be created from
collected resources in buildings. The resources (especially one of them –
Money) are used as a general currency in the game; players use them to pay
for construction of entities. Resource management can be easily extended by
design.

The game also contains a map with obstacles, which has one layer and no terrain
profile. Maps are loaded from XML files containing the definition of obstacles and
resources present in the map from the beginning. The XML can be verified by
attached XML Schema file. There is a map thumbnail available to improve player's
orientation in the map.

In the development documentation, we provide a detailed description of the
concepts used in the game with numerous examples in order to explain the concept
of extendability of the game to the community.

We provide a tool for testing correctness of information exchanged between
games communicating over network, which is a command-line application
LogsComparerTool.exe. The tool also tests logs of random numbers used in
communicating games, in order to verify their correct use.

We can conclude that all the project goals set up in section 1.3 have been fulfilled.

85

8 Recommendations for future work
Although the project we created is a fully functional computer game, there is a

large number of possible improvements:

• Many RTS games use a level editor for designing maps. This feature has to be
able to output a map in the XML format we introduced in Section 3.7.1. The
level editor would be a great extension, because it would enable users without
any experience with XML to add new maps.

• The game currently only offers the possibility to play a single-level game, but
no campaigns. We believe that the possibility of playing a campaign would
bring the game closer to modern RTS games.

• Loading and saving the game is currently not possible. While it is usually not
possible to save multiplayer sessions in RTS games, saving a single player
game and reloading it is considered to be a standard feature, which is missing
in our project.

• As we explained in Section 1, we have given up the terrain profile of the map
for the sake of the illustrative nature of the game. However, in most
commercial RTS games, the terrain profile plays a significant role. Altering
the game map so that it bears terrain profile would be a very useful
supplement to the game, which would increase its quality.

• The game map currently has only one type of obstacles, but this is usually not
the case in RTS games. Adding a variety of different obstacles would
certainly improve the player's experience from playing the game.

• In order to improve the gameplay and to enhance the player's experience, the
system of units and building in the game needs an extension and
improvements. Along with additional entities, it will be necessary to extend
the game with new strategies (internal intelligence) for their autonomous
behavior. The entities could also do with a new design.

• We provide only a basic definition of interactions between entities. In
numerous RTS games, the system of interactions is very elaborated, and it has
a strong influence on the strategy players have to take to win the game.
Defining more complex interactions between entities will definitely enhance
the entertainment effect on players.

• The set of artificial intelligences for computer players is very limited (there
are only four of them). The strategies only know how to collect rubber, and
they are not able to use other resources. Also, they use simple logic, so that
they only repeat certain steps, and human players will easily find effective
strategies against the computer players. Adding more computer player

86

strategies, which would be more elaborated than the ones currently present in
the game, will certainly improve the overall quality of experience the human
player gains from playing the game.

• It is common in RTS games that players can form alliances, so that they do
not attack each other and cooperate in attacking their enemies. However, the
possibility of alliances is missing in our game. A useful hint may be, that the
core of implementation of alliances can be done in method
Payer.isEnemeyPlayerID, which identifies enemy and friendly units
according to the ID of their player owner.

• The current implementation of the game does not contain the “fog of war”,
which usually covers areas which do not have to be seen by players – i.e.
unexplored or invisible areas of the map. We did not use it to enable the
players to see the moves of enemies, mainly for the sake of the illustrative
nature of the game. Adding the fog of war would not be complicated, because
it would only require to mark tiles in the map either visible, or invisible, or
unexplored, and draw the map according to it in method Level.Draw.

87

9 Attachments
Attachments, which can be found on the attached CD:

A. The implementation of RTSGame
The solution RTSGame.sln can be found in folder \RTSGame. It contains source-

code of the RTSGame with XML comments, and compiled binary files.

B. Documentation created from the source-code of the project
The documentation, which has been created from the source-code using tool

Sandcastle [51], can be found in folder \Documentation. It contains following files:
• RTS_Game_documentation_private_members.chm

This file contains documentation of all members and methods, including
private ones.

• RTS_Game_documentation_public_and_protected_members.chm
This file contains documentation of public and protected members and
methods, excluding private ones.

C. Setup
The installation files, which can be found in folder \setup: RTSGame.msi and

setup.exe. The begin the installation, the file setup.exe has to be run. The
installation progress is described in section 4.1.

D. XML Schema
XML Schema for validating maps (which are XML files) can be found under

\Schema\map_schema.xsd.

88

10 Bibliography
[1] List of open-source video games, online document available from www:

https://en.wikipedia.org/wiki/List_of_open-source_video_games
[2] .NET Framework, online document available from www:

http://msdn.microsoft.com/en-us/vstudio/aa496123.aspx
[3] The State of the RTS, online document available from www:

http://www.ign.com/articles/2006/04/08/the-state-of-the-rts
[4] Urban Dictionary on RTS, online document available from www:

http://www.urbandictionary.com/define.php?term=rts
[5] Real-time strategy, online document available from www:

http://en.wikipedia.org/wiki/Real-time_strategy
[6] SimCity, online document available from www:

http://en.wikipedia.org/wiki/SimCity
[7] Pharaoh, online document available from www:

http://en.wikipedia.org/wiki/Pharaoh_(video_game)
[8] Real-time tactics, online document available from www:

http://en.wikipedia.org/wiki/Real-time_tactics
[9] The Total War series, online document available from www:

http://en.wikipedia.org/wiki/Total_War_(series)
[10] Warhammer 40,000, online document available from www:

http://en.wikipedia.org/wiki/Warhammer_40,000
[11] Turn-based strategy, online document available from www:

http://en.wikipedia.org/wiki/Turn-based_strategy
[12] The Lord of the Rings: The Battle for Middle-earth II, online document

available from www:
http://en.wikipedia.org/wiki/The_Lord_of_the_Rings:_The_
Battle_for_Middle-earth_II

[13] God Games, online document available from www:
http://en.wikipedia.org/wiki/God_game

[14] Black & White, online document available from www:
http://en.wikipedia.org/wiki/Black_%26_White_(video_game)

[15] Dune II, online document available from www:
http://en.wikipedia.org/wiki/Dune_II

[16] Stronghold, online document available from www:
http://en.wikipedia.org/wiki/Stronghold_(2001_video_game)

[17] Age of Empires , online document available from www:
http://en.wikipedia.org/wiki/Age_of_Empires

[18] Original War, online document available from www:
http://en.wikipedia.org/wiki/Original_War

[19] Warcraft, online document available from www: Warcraft
[20] Military tactics, online document available from www:

http://en.wikipedia.org/wiki/Military_tactics
[21] Symmetric relation, online document available from www:

http://en.wikipedia.org/wiki/Symmetric_relation
[22] Technology tree, online document available from www:

http://en.wikipedia.org/wiki/Technology_tree
[23] 2.5D, online document available from www:

http://en.wikipedia.org/wiki/2.5D
89

[24] Axonometric projection, online document available from www:
http://en.wikipedia.org/wiki/Axonometric_projection

[25] RGBA color space, online document available from www:
http://en.wikipedia.org/wiki/RGBA_color_space

[26] Bitmap Class, online document available from www:
http://msdn.microsoft.com/en-
us/library/system.drawing.bitmap(v=vs.90).aspx

[27] XNA Framework Homepage, online document available from www:
http://msdn.microsoft.com/en-us/centrum-xna.aspx

[28] OpenTK Homepage, online document available from www:
http://www.opentk.com/

[29] SlimDX Homepage, online document available from www: http://slimdx.org/
[30] SharpDX Homepage, online document available from www:

http://www.sharpdx.org/
[31] DirectX, online document available from www:

http://en.wikipedia.org/wiki/DirectX
[32] MonoGame Homepage, online document available from www:

http://monogame.codeplex.com/
[33] OpenGL, online document available from www:

http://cs.wikipedia.org/wiki/OpenGL
[34] Buckland, Matt, Programming Game AI by Example
[35] Fuzzy Logic, online document available from www:

http://en.wikipedia.org/wiki/Fuzzy_logic
[36] Scripting languages, online document available from www:

http://en.wikipedia.org/wiki/Scripting_language
[37] Finite-state machine, online document available from www:

http://en.wikipedia.org/wiki/Finite-state_machine
[38] The Lua programming language, online document available from www:

http://www.lua.org/
[39] Python Programming Language, online document available from www:

http://www.python.org/
[40] A Note on Two Problems in Connexion with Graphs, online document

available from www: http://www-
m3.ma.tum.de/foswiki/pub/MN0506/WebHome/dijkstra.pdf

[41] A* search algorithm, online document available from www:
http://en.wikipedia.org/wiki/A-star_search_algorithm

[42] Admissible heuristic, online document available from www:
http://en.wikipedia.org/wiki/Admissible_heuristic

[43] Don’t follow the shortest path!, online document available from www:
http://realtimecollisiondetection.net/blog/?p=56

[44] User Datagram Protocol, online document available from www:
https://en.wikipedia.org/wiki/User_Datagram_Protocol

[45] Transmission Control Protocol, online document available from www:
http://cs.wikipedia.org/wiki/Transmission_Control_Protocol

[46] 1500 Archers on a 28.8: Network Programming in Age of Empires and
Beyond, online document available from www:
http://www.gamasutra.com/view/feature/131503/
1500_archers_on_a_288_network_.php

[47] The homepage of the Spring engine, online document available from www:
http://springrts.com/

90

[48] The homepage of 0 A.D., online document available from www:
http://play0ad.com/

[49] The homepage of Stratagus, online document available from www:
http://stratagus.com/

[50] The homepage of ORTS, online document available from www:
https://skatgame.net/mburo/orts/

[51] The homepage of Sandcastle, online document available from www:
http://sandcastle.codeplex.com/

91

	1 Introduction
	1.1 Definitions of RTS games
	1.1.1 Resource management
	1.1.2 Base building
	1.1.3 War tactics
	1.1.4 Developing new technologies
	1.1.5 Our definition of RTS

	1.2 Requirements
	1.2.1 Players and their opponents
	1.2.2 Resource management in our game
	1.2.3 Game entities in our project
	1.2.4 Game map
	1.2.5 Extendability
	1.2.6 Graphics

	1.3 Project goals

	2 Problem analysis
	2.1 Continuous time progress
	2.2 Graphics libraries
	2.2.1 Microsoft XNA
	2.2.2 The Open Toolkit Library (OpenTK)
	2.2.3 SlimDX
	2.2.4 SharpDX
	2.2.5 Summary

	2.3 Artificial intelligence (AI) for computer players
	2.3.1 Cheating AI
	2.3.2 Example of an AI: Erik, The Warrior
	2.3.3 Rules for decision-making
	2.3.4 Implementation
	2.3.4.1 Scripting language
	2.3.4.2 Finite state machine

	2.4 Game entities as autonomous agents
	2.4.1 The degree of independence

	2.5 Game map
	2.5.1 Map without subdivision
	Dynamic construction of navigation graph

	2.5.2 Tile-based map
	Shape of tiles
	Dynamic construction of navigation graph

	2.5.3 Path
	2.5.4 Pathfinding in map
	2.5.4.1 Dijkstra's algorithm
	2.5.4.2 A* search algorithm
	2.5.4.3 Heuristic for A* and optimality of shortest path

	2.5.5 Pathfinding in our game
	2.5.5.1 Use of heuristic
	2.5.5.2 Collisions
	2.5.5.3 Unreachable target

	2.6 Network communication for remote game sessions
	Sharing absolute positions
	Sharing relative changes
	Sharing input from players
	Sharing information in our game
	2.6.1 Enhancements in network communication
	2.6.2 Correctness of information shared across games

	3 Development documentation
	3.1 Program structure
	3.1.1 RTSGame.csproj
	3.1.2 Game window
	3.1.3 Namespaces in RTSGame.csproj

	3.2 Identification of types
	3.3 GameObject
	3.3.1 Initialization
	3.3.2 Class MovingGameObject
	3.3.3 Interactions between game entities
	3.3.4 Resource collectors and transporters
	3.3.5 Class StaticGameObject
	3.3.6 Class Building
	3.3.7 Obstacles

	3.4 Resource Management
	3.4.1 Resources present in map
	3.4.2 Resources produced in structures

	3.5 Network communication
	3.5.1 Network topology
	3.5.2 Server and client communication
	Initialization
	Communication during the game
	Loss of connection
	Identification of types

	3.5.3 GamePacket
	Class GamePacket
	Identification of GamePacket

	3.5.4 Types extending GamePacket
	Class PlayerGamePacket
	Class PointGamePacket
	Class UnitPointGamePacket
	Class UnitWithAITypePointGamePacket
	Class MoveToGamePacket
	Class CreateBuildingGamePacket
	Class CreateUnitGamePacket
	Class TurnDoneGamePacket
	Class PlayerDisconnectedGamePacket
	Class StartGamePacket
	Class PingGamePacket
	Class ReturnPingGamePacket
	Class WelcomeToGamePacket
	Class InitPositionGamePacket
	Class DefineMapGamePacket
	Class ObstacleGamePacket
	Class ResourceGamePacket
	Class SeedRandGenGamePacket
	Class TypeGuidPacket
	Class SynchDoneGamePacket

	3.5.5 Logging of player packets
	3.5.6 Position of computer players in the network
	3.5.7 Use of random numbers in the game
	3.5.8 Project LogsComparer.csproj

	3.6 Artificial intelligence
	3.6.1 Class FiniteStateMachine
	3.6.2 FSMState
	Explicit transitions
	Implicit transitions

	3.6.3 Initialization of FSM
	3.6.4 Types extending FiniteStateMachine
	3.6.5 AI for entities
	Class FSM_DoNothing
	Class FSM_MovingObject
	Class FSM_AttackingMovingObject
	Class FSM_DefendPlayer_AttackingMovingGameObject
	Class FSM_WideSearch_AttackingMovingGameObject
	Interface IPointStateMachine
	Class FSM_GotoTarget_AttackingMovingGameObject
	Class FSM_AttackingBuilding
	Class FSM_CollectorObject
	Class FSM_AI_ResourceCollectorObject

	3.6.6 Defining FSM for GameObject
	3.6.7 AI for computer players
	Class FSM_AI_BasicPlayer
	Class FSM_AI_Player_NoActivity
	Defensive and offensive strategies

	3.7 Map and pathfinding
	Class MovementPath<Vector>
	Class AStar<Tile>
	Class GridThumbnail
	3.7.1 Loading maps

	3.8 Deployment – RTSGameSetup.vdproj

	4 User documentation
	4.1 Installation
	4.2 Initial screen
	Number of computer players and their strategies
	Single player game
	Multiplayer game

	4.3 Gameplay
	4.3.1 Entities
	Construction factory
	Rubber merchant
	Light vehicles factory
	Steel mill
	Coal mine
	Steel merchant
	Desert leopard
	Scorpion
	Rubber collector
	Iron ore collector
	Coal transporter
	Steel transporter

	4.3.2 Resources
	Money
	Rubber
	Coal
	Iron
	Steel

	4.4 Player's input
	Choosing object
	Constructing entities
	Move-to command
	Moving the screen

	5 License
	6 Comparison with similar products
	Spring [47]
	0 A.D. / Pyrogenesis [48]
	Stratagus [49]
	ORTS [50]
	Comparison

	7 Conclusion
	8 Recommendations for future work
	9 Attachments
	10 Bibliography

