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Vedoućı: Mgr. Martin Schnabl, Ph.D., Fyzikálńı ústav AV ČR

Abstrakt: Ising̊uv model je jedńım z nejstudovaněǰśıch model̊u statistické fyziky.
V této práci shrnujeme metody už́ıvané k jeho řešeńı a soustřed́ıme se na stav při
kritické teplotě, kdy je systém popsatelný metodami konformńı teorie pole (CFT).
Konformńı teorie pole vnáš́ı nový vhled do problému a umožňuje klasifikaci tř́ıd
univerzality či relativně snadný výpočet korelačńıch funkćı v př́ıpadě dvou di-
menźı. CFT také umožňuje studium okrajových efekt̊u a defekt̊u na mř́ıžce. Kri-
tický systém s hranićı lze obvykle popsat metodami CFT s konformně invariantńı
okrajovou podmı́nkou. Klasifikace všech konformńıch teoríı pole s hranićı z̊ustává
stále otevřeným problémem.
Diskutujeme detailně metodu vyvinutou nedávno ve strunové teorii pole (SFT)
přicházej́ıćı s novým př́ıstupem a ilustrujeme ji na př́ıkladu Isingova modelu.
Z každého řešeńı pohybových rovnic SFT lze zkonstruovat okrajový stav popisuj́ıćı
konzistentńı okrajovou podmı́nku. V této práci formulujeme SFT Isingova mo-
delu, numericky nalezneme nová řešeńı a zkonstruujeme jim odpov́ıdaj́ıćı okrajové
stavy. Vyhneme se tak řešeńı komplikovaných seš́ıvaćıch podmı́nek a źıskáme vel-
mi dobrou shodu s exaktńım řešeńım. Narozd́ıl od metody renormalizačńı grupy
limitované g-teorémem ukazujeme, že lze zkonstruovat také stavy s vyšš́ı ener-
gíı. Konformńı defekty a korespondence dvojitého Isingova modelu s bosonem
na S1/Z2 orbifoldu je také diskutována. Práce rozšǐruje diskuzi připravovaného
článku [1].
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Abstract: The Ising model is widely studied model in statistical physics. In this
thesis, we review methods used to solve it and we concentrate on the state at
the critical temperature, where the system exhibits phase transition and can be
described by means of conformal field theory (CFT). This description comes with
a new insight into the problem and enables to study boundary effects. Critical
behavior for systems with boundaries is often described by conformally invariant
boundary conditions. Classification of all boundary CFTs still remains an open
problem.
We discuss methods developed recently in string field theory (SFT) proposing
a new approach and we illustrate it on the Ising model. Knowing a solution to
the SFT equations of motion, one can construct corresponding boundary state
describing consistent conformally invariant boundary condition. We have formu-
lated SFT for the Ising model, found new solutions numerically, and constructed
corresponding boundary states. This procedure avoids solving difficult sewing
constraints and results agree with exact values. Unlike the renormalization group
approach, where we are limited by the g-theorem, we can construct also states
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Introduction

The Ising model [2] is widely studied statistical model of ferromagnetism. Even
though it is quite a simple model, it undergoes a phase transition at the critical
temperature and therefore is serves as a useful toy model for the study of critical
phenomena. A lot of progress has been made in the past (see textbooks [3, 4]), but
still many open questions remain. Physicists often claim that solving the Ising
model in three dimensions is one of the most challenging tasks in modern physics.
Critical phenomena is an attractive subject since standard methods of statistical
physics, such as perturbative expansions, break down and new interesting features
appear. Key feature is the universality. Different models share the same critical
behavior. At the critical temperature a model can be characterized by just a few
parameters in contrast with variety of possible couplings of the original model [6].
At the critical point many quantities become divergent, such as correlation length.
Fluctuations spread up, and the model originally defined on a lattice with nearest
neighbor interactions suddenly develops long range correlated behavior [5]. In this
mode a theory becomes scale invariant and with some other natural assumptions
the symmetry extends to the full conformal invariance. The whole theory can be
then formulated in the language of conformal field theory (CFT) [7].

CFT becomes most powerful in 2 dimensions, where the conformal group is in-
finite dimensional and the conformal invariance thus restrictive enough to enable
solving exactly even nontrivial interacting models [8]. Apart from the applica-
tions in statistical physics, CFT is an interdisciplinary subject with connections
to many other branches of physics and mathematics. CFT provides fundamen-
tal background for studying string theory [9] and even its intrinsic mathematical
structure is interesting interesting in its own. Using CFT in two dimensions, one
can study two dimensional interacting quantum field theories nonperturbatively
and thus get some insight into the physics of strongly interacting systems.

One can add a boundary to a given bulk CFT and impose some boundary
condition on this boundary [10]. Inclusion of such a boundary is necessary when
studying finite size latices in statistical physics and it is also important for the for-
mulation of the string theory in covariant gauge. An open string can be stretched
between different D-branes corresponding to different boundary conditions for
the worldsheet bosons [11]. Moreover, studying boundaries in the tensor prod-
ucts of simple CFTs (folded models) is related to the defects in lattices. In CFT
with a boundary (often called boundary conformal field theory or BCFT) new
features appear. One of the most interesting question is classification of all pos-
sible consistent boundary conditions preserving conformal invariance for a given
bulk CFT. The previous statement can be reformulated as classifying all possible
BCFT’s for a given CFT. Precisely this question will be addressed here in detail.

Different consistent boundary conditions can be associated with different
boundary states [12]. In the past, Cardy found the solution for boundary states in
the case of rational models, and in particular for the Ising model. Unfortunately,
a solution for the irrational models (e.g. free boson on the torus, or the tensor
product of minimal models) has not yet been found in general. An important ex-
ception is the case of the folded Ising model, where one can use The only progress
in this direction has been made in the case of folded Ising model, where one can
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use a duality with the free boson on the orbifold to find the boundary states [13].

Assume that we are given a CFT with particular boundary condition and we
know all 2-point and 3-point functions in the theory (we have solved the model
in given BCFT background). With the use of the renormalization group (RG),
one can construct other consistent boundary conditions deforming the theory
by a relevant boundary operator and flowing to the infrared, or by marginal
deformations of the original theory [14]. Many methods, such as thermodynamical
Bethe ansatz, scattering matrices or truncated conformal space approach, have
been developed to address this issue [15]. All the methods based on the RG flows
have huge limitation given by g-theorem. It states that boundary entropy must
decrease along the RG flow. It leads to inability to find all the theories with
higher boundary entropy then the entropy of the original background.

String field theory[16] (SFT) comes with new methods to address these prob-
lems. In 1999, Sen conjectured that solitonic solutions in SFT correspond to
different D-brane configurations [17, 18]. If we believe in consistency of SFT,
these solutions must correspond to consistent boundary conditions (D-branes)
and due to recent developments in string theory, we can construct corresponding
boundary states. Moeller, Sen, Zwiebach [81] developed a numerical method that
is powerful in attempts to find solutions to the SFT equations of motion. Having
a solution we wish to find corresponding boundary state. The progress has been
made by construction of gauge invariant observables [20, 21] in open string field
theory, proposing Ellwood’s conjecture [22] and its recent generalization due to
Maccaferri, Schnabl and Kudrna [23]. Thanks to these tools, we can give physical
interpretation to an arbitrary solution by computing coefficients of its boundary
state.

This thesis is based on the paper with collaborators, Matěj Kudrna and Martin
Schnabl, where we construct all boundary states for the Ising model numerically
by means of string field theory and illustrate the recently developed methods on
this simple model [1]. The first numerically stable solution with positive energy
has been found. We briefly address extension to the double Ising model. Even
though the presented results are known only numerically, there has been a huge
progress in finding analytic solutions since 2005 following [24] and we believe that
analytic solutions of string field theory describing different boundary conditions
of the Ising model will be found soon. Here we will extend discussion from [1]
and give detailed discussion of the computations starting from very elementary
notions of CFT, the Ising model and string theory.In addition to the content
of our paper, we discuss conservation laws for higher weight primaries in folded
models that can lead to the identification of the other boundary states in the
double Ising model. The existence of new solutions is hinted and the discussion
is supported by many pictures, graphs, and tables.

This thesis is organized as follows. In the first chapter we elaborate on the
importance of the Ising model and briefly discuss some methods used to deal with
the model. In the second chapter we present necessary notions from CFT. We
also give brief discussion of the free boson, free fermion, and bc-ghost system as
examples. The Ising model CFT is discussed at the end of this chapter. The
third chapter is dedicated to discussion of BCFT. We give Cardy’s solution for
the boundary states and discuss folded models briefly. In the fourth chapter, we
address basic ideas of SFT constructing its action, describing level truncation
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method and Ellwood invariants. In the last chapter we formulate SFT for the
Ising model, comment on the computation of truncated action, find solutions and
determine its Ellwood invariants that lead to the interpretation of the discovered
solutions. We also discuss the double Ising model and give numerical results
obtained by our C++ code.
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1. The Ising model

1.1 Critical phenomena

During a phase transition, a system undergoes huge changes in its properties.
Phase transitions are interesting phenomena with many peculiarities that are not
yet well understood despite enormous progress in this field throughout the twen-
tieth century. There is enormous literature considering this topic, for example
[3, 4, 5]. This section reviews basic notions in this field.

Phase transitions can be divided into two broad categories. To the first cate-
gory of so called first order phase transitions, belong processes involving a latent
heat, that is absorbed or released precisely at the transition point. Correlation
length of the system that characterizes fluctuations and long-range behavior re-
mains finite. There exist mixed-phase regimes, in which some parts of the system
have completed the transition and the rest part is still in the initial configuration.
For example, freezing of water or Bose-Einstein condensation are examples of the
first order phase transition.

Second class consists of the continuous (sometimes called second order or
critical) phase transitions. There is nothing like latent heat for these phenomena
and correlation length (together with heat capacity, isothermal susceptibility and
other quantities) becomes divergent at the critical point. These systems are
often more difficult to be described. Ferromagnetic transitions, superconductors
or superfluid transitions belong to this category.

One of the most interesting features of the critical phenomena is its univer-
sality (see nice review [6]). Systems that seems to be totally different have often
the same critical behavior. Criticality erases many possible inputs in the model
and only a few relevant quantities are enough to describe criticality. All physi-
cal systems fall into a few universality classes characterized by different critical
exponents.

Another feature of the critical phenomena is the scaling hypothesis. It has
been introduced by Fisher, Kadanoff, and others and it was supported by wide
range of experiments and computations on the model systems [25, 26]. Scaling
hypothesis states that singular part of the free energy is degree a homogenous
function of its variables. Since thermodynamical potential is homogenous func-
tion of degree a and all the other properties can be found as derivatives of this
potential, they are also degree a′ homogenous function for some a′ 6= a. We will
come back to this hypothesis later, when focusing on ferromagnetic materials and
the Ising model. Scaling hypothesis gives us relations between critical exponents
and only few parameters remain to be relevant and cannot be computed using
this hypothesis. To find the remaining critical exponents and even to find the
critical point, renormalization group (RG) is widely used tool [27, 28].

1.2 Models of ferromagnetism

As a model system of the critical phenomena we will use a magnetic materi-
al. Atoms of a crystal lattice carry a magnetic moment, due either to the spin
of the electron or to electron’s motion around the atom nucleus. At the high
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temperature phase, these magnetic moments are randomly oriented and aver-
age magnetization of the lattice is zero. If we lower the temperature and reach
the critical point Tc (Curie temperature), new phase occurs. In the so-called
ferromagnetic materials, magnetic moments tend to get aligned and the total
magnetization of the material is non-vanishing below the critical temperature Tc.
At the temperature Tc the material undergoes second order phase transition.

To describe the phase transition, one needs an order parameter that enables
us to recognize the phase of the system. In the case of magnetic dipoles ~σi on the
lattice, total magnetization ~M =

∑
i ~σi plays the role of the order parameter since

it vanishes at high temperatures and becomes nonvanishing below the critical
temperature.

The simplest model of the phase transitions that can be solved analytically at
least in one and two dimensions and is still quite realistic is the Ising model. The
simplification is obtained by considering only one direction and two discrete values
of the spin σi = ±1 in this direction. Naturally, the Ising model Hamiltonian has
following form

H({σi}) = −J
∑

(i,j)

σiσj −B
∑

i

σi, (1.1)

where the first sum runs over all nearest neighbors (i, j), J is interaction constant
and B external magnetic field. For the ferromagnetic materials J > 0 unlike in
the case of anti-ferromagnetics. One configuration of two-dimensional Ising model
is visualized in the figure 1.1.

Figure 1.1: Ising model lattice with
random configuration of spins.

The Ising model was originally intro-
duced by Wilhelm Lenz (1920) and solved
in one dimension by his PhD student Ernst
Ising in 1925 [2]. Since that time, many
scientists have been involved in studying
properties of this beautiful model. Big
progress has been made by Kramers and
Wannier [29] who managed to determine
the critical temperature of the two dimen-
sional Ising model and thus proved exis-
tence of the phase transition at nonzero
temperature. Fundamental contribution
came in 1944 with Lars Onsanger [30], who found the solution for the parti-
tion function with zero external magnetic field in two dimensions. Osanger’s
solution has been simplified by others, like Kaufmann and Baxter. Computation
of spontaneous magnetization, magnetic susceptibility, correlation functions, and
analysis of general latices followed. Since 1990, new progress in solving Ising
model appeared with the help of quantum field theory methods and S-matrix
formalism originally proposed in this context by Zamolodchikov [31]. With these
methods, a spectrum of excitations of two-dimensional Ising model with exter-
nal magnetic field has been found and correlation functions calculated (Delfino,
Mussardo, Simonetti) [32, 33].

Unfortunately, despite numerous attempts, solution for the model in three
dimensions is still lacking. Many physicists consider the problem of solving the
Ising model in three dimensions to be one of the most interesting open problems
in theoretical physics. Due to computer advances in recent years, numerical
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Figure 1.2: Configurations of spins on the Ising lattice under four different cir-
cumstances obtained by Monte Carlo simulation on the lattice of 200×200 spins.
The first picture (a) shows high temperature disordered phase. The upper-right
picture (b) shows the critical phase with long-ranging clusters of the same spins.
The two bottom pictures (a) and (b) shows the system near the two energy min-
ima in the low temperature regime.

simulations and series expansions enabled to predict properties of the critical
behavior with very good accuracy.

Numerically, the Ising model is commonly studied by means of Monte Carlo
simulations [34]. Having a lattice of N × N spins and starting from arbitrary
initial configuration we can generate a sequence of new configurations (Markov
process). The simulation consists of two steps that are still repeating:

1. suggesting a flip of random spin and

2. accepting it with probability e−β∆H,

where we have denoted ∆H the energy difference caused by the flip and β is
the inverse temperature. When the thermodynamical equilibrium is reached (the
dependence on the initial configuration is suppressed), one can measure current
quantities on the simulated system and compute its time average after performing
a few steps. New configurations are then generated with Boltzmann distribution
and the time average is precisely the Boltzmann-weighted statistical average.

We have created a program simulating the Ising model in 2D and performed
the simulation on the lattice of 200×200 spins with periodic boundary conditions.
Main features of the model can be easily understood on the simulated system.

9



Figure 1.3: Two-point functions of the spin σ and energy density ε. The points
showing values obtained on the simulated system and corresponding exact curve
for the model in the thermodynamic limit.

With the help of these simulations, average magnetization, susceptibility, ener-
gy density, heat capacity, and other quantities can be easily computed as time
average of corresponding quantities currently measured on the simulated systems.

In the figure 1.2, four different states of the simulated systems are shown.
Black points correspond to the spin up and the white points correspond to the
spin down. There is a high temperature phase, where all the spins are almost
random. In this phase, the entropy maximization is the leading effect. The second
picture shows the system at the critical temperature. We can see long range
domains spreading almost along the whole lattice. The behavior of the spins
becomes collective, correlation length diverges, and the system is scale invariant
at scales much bigger then the lattice spacing. The system undergoes fractal-
like behavior. The last two cases correspond to the low temperature phase. At
low temperatures the system tends to be in the minimum energy configuration.
There are two such configurations if no external field is switched on. The energy
minimum is then degenerated and the system can fall into the configuration with
all spins up or all spins down. These two cases are visualized in the last two
pictures. Since the temperature is not precisely zero, some spins can be excited.

We have also measured the correlation functions for the spin variable σ and
the energy density ε. The results are shown in the figure 1.3. We have performed
regression with the function of the form

Gi(r) = a+
b

r2∆i
(1.2)

where ∆i has been kept fixed to precise value and parameters a and b have been
found. We performed normalization of the two-point function to set b = 1. ∆is
are scaling dimensions of the operators. These values ∆σ = 1

8
and ∆ε = 1 are

exactly computable using methods of statistical physics and we will see how they
emerge in the conformal field theory. We can see quite a good agreement of the
simulated data and exact values despite finite size effects and finite number of
sites in the simulated system. To obtain our results, we took an average of 50
000 current values at 10 different lattice points.

It is evident that description of the system near the absolute zero or at high
temperatures can be easily performed using perturbative expansions. There is
wide range of tools to study this cases generally and we will make a comment
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on them later. Much more interesting is the critical phase, where new features
emerge and the perturbative treatment fails.

Apart from the description of magnetic properties, the Ising model can be
reinterpreted as a model of gas on the lattice. The Ising model is thus a toy model
of gas atoms with short-range interaction. The Ising model is very universal and
one can also find its applications going beyond the physics. For example, it is a
model used in economics to explain correlations in the social structures.

Many generalizations of the Ising model are known [5]. Let us name some
of them. Direct extension of the Ising model is the Potts model. Spin at each
site can have q discrete values, i.e. 1, 2,. . . ,q and contribution of the neighboring
pairs to the energy is non-vanishing only if their spins equal. More realistic
generalization is the O(n) model, where spin ~σi is an n-component unit vector
and interaction of two spins in the Hamiltonian is given by the inner product of the
two vectors. Another important model is the tri-critical Ising model describing a
magnetic material with vacancies. There are 3 possible configurations at each site
σi = ±1, 0 and a new term −µ∑i(σi)

2 is added to the Ising model Hamiltonian
(1.1). There have been many models invented, but their description is behind the
scope of this thesis. Many methods developed for solving the Ising model can be
extended to these generalizations.

There are many quantities characterizing the ferromagnetic material. They
usually diverge with some power as the temperature approaches the critical value
T → Tc. Exponents in this dependence are called critical exponents. We will de-
note relative displacement from the critical point as t = (T −Tc)/Tc. An example
of quantities characterizing ferromagnets is the spontaneous magnetization

M(B, t) = −∂F
∂B

(1.3)

with corresponding scaling behavior

M(0, t) ∝ (−t)β, (1.4)

in the limit t→ 0−. Another important exponent characterizing the dependence
on the magnetic field B is δ, defined as

|M(B, 0)| ∝ |B|1/δ. (1.5)

Performing one more derivative, one finds the next thermodynamical function,
magnetic susceptibility, with critical exponent γ

χ(B, t) =
∂M(B, t)

∂B
, |χ(0, t)| ∝ |t|−γ. (1.6)

Derivative of the internal energy U gives us heat capacity with corresponding
scaling

C(t) =
1

Tc

∂U

∂t
, |C(t)| ∝ |t|−α. (1.7)

So far, we have defined critical exponents α, β, γ, δ. For the definition of the
other two, we will need a correlation function. Consider an infinite lattice of spins
σi associated with sites i. Average alignment of the spins situated at sites i and
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M(0, t) ∝ (−t)β |M(B, 0)| ∝ |B|1/δ |χ(0, t)| ∝ |t|−γ
|C(t)| ∝ |t|−α Cc(r, 0) ∝ 1

rd−2−η |ξ(B, t)| ∝ |t|−ν

Table 1.1: All the critical exponents introduced for ferromagnets.

j is characterized by the two-point correlation function, i.e. thermal average of
the product of corresponding spins

Cσ(i, j) = 〈~σi · ~σj〉. (1.8)

For systems in the thermodynamic limit this function is usually translationally
and rotationally invariant if we study it on the scales much bigger then lattice
spacing a. Then we can write just C(r), for r = |i−j|. If we are rather interested
in relative fluctuations in the ordered phase, it is convenient to subtract their
mean value ~σ0 = 〈~σi〉 and define connected correlation function

Cσ
c (r) = 〈(~σi − ~σ0) · (~σj − ~σ0)〉 = 〈~σi · ~σj〉 − |~σ0|2. (1.9)

Clearly, for a system with local interactions, nearby sites will be correlated and
the correlation will decrease with a distance. Dependence on the distance is
typically exponential

Cσ
c (r) ∝ e−r/ξ, (1.10)

where we have introduced the correlation length ξ. The correlation length mea-
sures typical size of the correlated domains of spins. The larger the correlation
is, the larger clusters of the same spins can be suspected. Precisely at the critical
temperature Tc, the correlation length diverges and the r-dependence becomes
power law

Cσ
c (r) ∝ 1

rd−2+η
, (1.11)

where η is the new critical exponent. Divergence of the correlation length ξ is
given by the exponent ν

|ξ(t)| ∝ |t|−ν . (1.12)

Generally, the multiplicative constant standing in front of the right sides of (1.6),
(1.6) and (1.6) can be different for positive and negative values of t.

Totally, we have defined 6 critical exponents, but they are not all independent.
Due to the scaling hypothesis, there exist 4 relations between them and only two
parameters remain to be determined. The 4 relations read

α + 2β + γ = 2, α + βδ + β = 2,

ν(2− η) = γ, α + νd = 2,
(1.13)

and can be derived using the scaling hypothesis and fluctuation dissipation theo-
rem. Introduction of the scaling hypothesis led to huge developments in statistical
physics. It was originally introduced as consequence of experimental data and
behavior of some statistical models and conjectured to be general fact for all
critical phenomena. We will sketch its proof later when talking about renormal-
ization group. Due to the scaling hypothesis, thermodynamic potential is degree
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y homogenous function of its variables, for some y ∈ R. For instance, in the case
of magnetic materials, density of the Gibbs energy scales as

g(t, B) = λ−dg(λytt, λyBB), (1.14)

where d is dimension of the lattice and we have introduced scaling exponents yt
and yB. Let us illustrate how the relations (1.13) emerge. Substituting λ = t−1/yt

into the equation above, one finds

g(t, B) = t
d
yt g(1, t

− yB
yt B) (1.15)

and for h = 0, we get scaling

g(0, t) ∝ t
d
yt . (1.16)

From this relation, one can easily obtain scaling of the heat capacity performing
two derivatives with respect to t. If we look at the table 1.1 defining the various
scaling coefficients, we find that scaling of the heat capacity is given by parameter
α and we find a relation

α = 2− d

yt
. (1.17)

Analogously, one can find relations for the other critical exponents and eliminat-
ing yt and yB leads to the relation between the critical exponents. It is then clear
that only two parameters (corresponding to yt and yB) are relevant and different
values of yt and yB characterize different universality classes.

Not all relations can be derived using above procedure. Some formulas re-
lating r-dependence on the lattice and thermodynamic quantities can be derived
using fluctuation-dissipation theorem relating linear response of the system and
fluctuations of the local quantities in general. For example, we find that

χ =
∂M(B, t)

∂B
= β

∑

i,j

(
〈~σj~σi〉 − |〈~σi〉|2

)

= β
∑

i,j

Cσ
c (|i− j|) ≈

∫
drrd−1 1

rd−2+η
f

(
r

ξ

)

∝ ξ2−η, (1.18)

where we have approximated the sum by an integral and substituted for Cσ
c at

the critical point with regulator f
(
r
ξ

)
that cuts off the divergence of the integral

and enables to deal with it. Finally, substituting χ ∝ t−γ and ξ ∝ t−ν one finds
relation

ν(2− η) = γ. (1.19)

With a similar procedure, one can derive critical exponent also for the energy
density εi =

∑
j Jijσiσj + hσi, where

Cε
c(r) = 〈εiεj〉 − |ε0|2 ∝

1

r2∆ε
. (1.20)

Performing the same procedure one finds a relation

ν = 2−∆ε. (1.21)

These two relations will lead us to the identification of the Ising model in confor-
mal field theory.
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(a)

(b)

(c)

g1

g2

Figure 1.4: RG flow in the two dimensional manifold of interaction constants
(g1, g2). Three types of fixed points are shown: (a) corresponds to an unstable
point with all directions relevant, (b) corresponds to a mixed fixed point, and (c)
corresponds to a stable fixed poin with all directions irrelevant.

1.3 Renormalization group

In this section, we will introduce powerful tool to study critical points of a system,
i.e. the renormalization group (RG) [6, 27, 28]. One can think of it as a process
during which we are looking at the system with different magnifying glasses.
Studying a system at some length-scale one can integrate out degrees of freedom
playing role on much smaller distances and obtain effective description on the
new length scale with some new effective Hamiltonian.

Starting from the initial lattice, one can group together some amount of neigh-
boring spins and assign to each such a group one new spin obtained from the
original spins. We get new lattice with new spins that effectively describe the
original system on larger distances. It is not difficult to construct a projection
from the original lattice to the new one, but there are many possibilities and it is
not at first sight clear, whether they are equivalent. It can be shown that (up to
some pathological cases) results do not depend on the choice of the projection.
To get correct description on the new lattice we must construct new (renormal-
ized) effective Hamiltonian for the system of new spins to get the same partition
function and thus the same thermodynamics. It is necessary to extend the origi-
nal Hamiltonian by adding new terms with possibly vanishing coupling constants
g = (g1, g2, . . .) so that the renormalized Hamiltonian has the same functional
form but with different coupling constants.

We wish to go on with the procedure and construct new lattices of spins
using the same projection again and again. With this procedure we obtain new
renormalized Hamiltonians with different coupling constants g0 → g1 → g2 → . . ..
One can visualize this sequence as RG flow on the manifold of coupling constants
as you can see in the figure 3.3, where only two coupling constants are shown for
simplicity.

Since the renormalization corresponds to looking at the system within bigger
length scale when lattice spacing changes as a → λa, correlation length must
renormalize as

ξ(g′) = λ−1ξ(g) (1.22)
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since it is measured with respect to the new lattice spacing. There can exist
special points on the manifold of coupling constants called RG fixed points g∗ that
are kept fixed under the action of renormalization group g′∗ = g∗. In this case we
have ξ(g∗) = λ−1ξ(g∗) for λ > 1 and correlation length must vanish or it must
be divergent. The points in the first case are called trivial fixed points whereas
the other category contains critical points, since correlation length is divergent.
Finding all the critical points for a given system now reduces to finding all fixed
points of the RG on the manifold of coupling constants.

Fixed points can be divided into three categories by their stability. After a
small displacement from the fixed point, the RG can flow back to the original
fixed point (attractive points), it can move away to a different point (repulsive
fixed point) or it can be mixed, i.e. attractive in some directions and repulsive
in the others. We wish to characterize the directions at fixed points.

Consider a small perturbation of coupling constants g = g∗+ δg. If we denote
RG transformation as g′ = R(g), then after performing the RG transformation,
one finds infinitesimal transformation

g∗ + δg′ = g∗ +Kδg. (1.23)

We obtained linearized version of the RG transformation with matrix of coeffi-
cients

Kab =
∂Ra

∂gb
. (1.24)

Denoting ki its eigenvalues and ∆i
a its left eigenvectors, we can define so-called

scaling variables

ui =
∑

a

∆i
aδga (1.25)

that have nice scaling transformation properties under the action of the RG

u′i =
∑

i

∆i
aδg
′
a =

∑

a,b

∆i
aKabδgb =

∑

b

ki∆i
bδgb = kiui. (1.26)

Since we have denoted b the scaling parameter of the lattice spacing, it is usual
to parametrize ki as ki = λyi . Quantities yi determine critical exponents that can
be computed from the knowledge of the matrix K. Scaling variables ui can be
divided into he three classes with the help of the formula (1.26)

1. yi > 0 Relevant variables corresponding to the unstable directions.

2. yi < 0 Irrelevant variables corresponding to the stable directions.

3. yi = 0 Marginal variables that do not change under the RG action.

If we wish to construct new critical points, we can make a perturbation of
the original Hamiltonian by some relevant variable and flow to the infrared. If
we deform the theory by a marginal variable, one gets continuous spectrum of
critical points and the corresponding set on the manifold of coupling constants is
called critical surface. Irrelevant perturbations do not change properties of the
critical behavior and if we study criticality, we can restrict our attention only to
the relevant and marginal perturbations.
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1 2 3 4 5

T̂ T̂ T̂ T̂

Figure 1.5: Transfer matrix performing a transfer between beighboring sites.

Now, we will prove scaling hypothesis in the case of magnetic material with
relevant parameters t and h. Partition function does not depend on the renor-
malization and we can write

e−βNf(g) = Z = Z ′ = e−β
′Nλ−df(g′), (1.27)

where f is the free energy density, N is the number of sites in a lattice, and the
third equality introduces the renormalized free energy. Since we know the scaling
properties of coupling constants t′ = λytt and B′ = λyBB at the critical point, we
find the scaling hypothesis

f(t, B) = λ−df(λytt, λyBB). (1.28)

RG provides a technique how to determine yi. Looking at the table 1.1 and
relations similar to (1.17), we find that RG enables us to find all the critical
exponents.

1.4 Solution to the 1D model

There are many approaches to solve a linear chain of Ising spins. One can solve it
recursively or by series expansion which we will discuss in the next section in the
case of 2D model briefly. Here, we will review transfer matrix method discussed
in [5], which also generalizes to the two-dimensional case. The other approaches
are discussed for example in [3, 4, 5]. Moreover, we will come across with the
problem of boundaries that will be addressed in more detail later.

Let us assume we are given a Hamiltonian of the form (1.1) for a chain of N
spins and let us implement periodic boundary condition σi = σN+i. Our goal is
the computation of partition function

Z =
∑

{σi}
e−βH({σi}). (1.29)

It can be rewritten as

Z =
∑

{σi}

N∏

i=1

exp
[
J σiσi+1 +

1

2
B(σi + σi+1)

]
, (1.30)

where we have denoted J = βJ and B = βB. Now, let us define the transfer
matrix

T̂ =

(
eJ+B e−J

e−J eJ−B

)
, (1.31)

whose elements are given by the factors appearing in (1.30). The transfer matrix
is acting on a two dimensional space of spin up and down states. Denote |+〉
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and |−〉 base vectors corresponding to the spin states. Partition function can be
reexpressed using quantum theory notation as

Z =
∑

{σi}
〈σ1|T̂ |σ2〉〈σ2|T̂ |σ3〉 · · · 〈σN |T̂ |σ1〉 =

∑

σ1=±
〈σ1|T̂N |σ1〉 = Tr T̂N , (1.32)

where we have used insertions of the completeness relation I =
∑

σ=±
|σ〉〈σ|.

To get thermodynamic potentials for this model, we can proceed by diag-
onalizing the transfer matrix (1.41). Due to its Hermiticity, it can always be
diagonalized and denoting λ+ and λ− its eigenvalues one arrives at

Z = Tr T̂N = λN+ + λN− . (1.33)

Now, it is easy to find the expression for the free energy per unit spin

f(β,B,N) = − 1

βN
lnZN = − 1

β

[
lnλ+ +

1

N
ln
[
1 +

(
λ−
λ+

)N]]
. (1.34)

We can substitute expressions for the eigenvalues of T̂ that are solutions to the
characteristic equation

(eJ+B − λ)(eJ−B − λ)− e−2J = λ2 − 2λeJ coshB + 2 sinh 2J = 0. (1.35)

This equation has two independent solution and we will assume that λ+ > λ−. If
we consider the thermodynamic limit N →∞, the second term in (1.34) vanishes
and we simply find that

f(J ,B, N) = − 1

β
ln
[
eJ coshB +

√
e2J cosh2 B − 2 sinh 2J

]
, (1.36)

from which all the thermodynamical properties can be found.
The transfer matrix can be thought of as the exponential of the ’quantum

Hamiltonian’ T̂ = e−H that brings us from one site to another as in the figure
1.5. Computation of the partition function for the original system can be then
interpreted as quantum evolution with Hamiltonian H.

Now, we will derive correlation function of Ising spins. It can be easily com-
puted using transfer matrix formalism

〈σ1σr+1〉 =
1

ZN

∑

{σi}
σ1〈σ1|T̂ |σ2〉 . . . σr+1〈σr+1|T̂ |σr+2〉 . . . 〈σN |T̂ |σ1〉. (1.37)

If σz is the Pauli matrix corresponding to the z projection, we can write

Cσ(r) = 〈σ1σr+1〉 =
1

ZN
Tr σzT̂

rσzT̂
N−r. (1.38)

Since we already know how to diagonalize T̂ , the computation is now straightfor-
ward and one finds for the correlation function in the limit N →∞

Cσ(r) = sin2 2φ

(
λ−
λ+

)r
, (1.39)
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where we have used 〈σ1〉 = 0 and φ is a parameter in the unitary matrix

U =

(
cosφ − sinφ
sinφ cosφ

)
(1.40)

that diagonalizes T̂

U−1T̂U =

(
λ+ 0
0 λ−

)
(1.41)

and obeys the equation

cot 2φ = e2J sinhB. (1.42)

From the equation (1.10) and (1.39), one can extract the correlation length

ξ =
1

lnλ+ − lnλ−
. (1.43)

Looking at the values for λ+ and λ− one immediately sees that the only divergence
appears at the point T = 0 and B = 0. One dimensional Ising model is in this
sense trivial since no critical point appears.

1.5 Ising model in two and higher dimensions

Solving the Ising model in higher dimensions is much more difficult. We will
sketch here basic approaches that are usually used. The Ising model can be
solved in 2 dimensions exactly, but the solution for the three dimensional model
is still lacking.

One can use approximative methods, such as mean field theory. This method
is not very accurate, but it can provide useful insight into the problem. It is
based on the approximation that every site interacts with all the other spins
and the other spins form an effective magnetic field at this point. Consistency
condition emerges if one requires that the value of the effective magnetic field and
magnetization computed as statistical average are equal. Solving the consistency
condition for the effective field leads to the solution for the critical temperature
and other characteristics. Mean field theory provides qualitative predictions, but
quantitatively it is rather off. One can use the Bethe-Peierls approximation to
get more precise results.

One can thik of the Ising model as a model of continuus spin variable σ with δ-
function probability distribution composed of two delta functions at σ=±1. This
probability can be substituted by new one that shares the same mean value and
dispersion. For example, we can use a Gaussian distribution and obtain so-called
Gaussian model approximation that can be solved exactly. Detailed description
of the approximate methods goes beyond the scope of this thesis and we invite
reader to read the details for example in [5].

Despite unsatisfactory result from the Ising model in one dimension, where
no phase transition appeared, a critical point exists for the model in higher di-
mensions. It was suggested in 1936 by Peierls for the first time [35]. He argued
that there exists a low temperature regime in which spontaneous magnetization
is different from zero.
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Figure 1.6: Pictures showing examples of configurations over which one has to
sum when performing high-temperature and tow-temperature expansion. In the
high-temperature phase one needs to sum over all closed loops connecting neigh-
boring spins. In the low temperature phase one has to sum over boundaries of all
blocks of spins with the same spin value. It corresponds to the summation over
all loops in the dual lattice.

The critical temperature Tc for the Ising model in 2 dimensions without the
external magnetic field has been determined by Krammers and Wannier for the
first time [36]. They studied low-temperature and high-temperature series for
the partition function and found a duality between these two expansions. The
self-dual point can then be identified with the critical point

βcJ = −1

2
ln(
√

2− 1) ≈ 0.440686, (1.44)

for coupling constant J and βc critical inverse temperature.
We will comment on the duality argument and series expansions a bit. In the

high temperature phase one can rewrite the Ising model partition function as

Z =
∑

{σi}

∏

(i,j)

coshJ (1 + σiσj tanhJ ) (1.45)

and expand the product on the right-hand side into a series in the small param-
eter tanhJ . A product of some terms gives nonzero contribution only if sites
incorporated in the product create closed chains as in the figure 1.6. In all the
other cases, there exists another term in the expansion with all spins the same,
except for one. The one differing term gives the same contribution but with op-
posite sign and terms differing by relative sign subtract. Contribution from such
a closed chain is then (tanhJ )l, where l is the length of the chain. Total partition
function can be written in the form

Z = (2 coshJ )N
2 ∑

loops

(tanhJ )l, (1.46)

where N is the total number of sites in one row. As long as tanhJ is small,
i.e. for temperatures big enough, we can truncate the exact expansion and get
approximate result.

In the low temperature phase, there are huge blocks of the same spins and
only few spins are different. The energy of a configuration is then proportional
to the length of the contour encircling the clusters with different spins as in the
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figure 1.6. Similar procedure can be performed and we arrive at low-temperature
J ′ � 1 expansion

Z = 2N
2J ′ ∑

loops

e−2J ′l. (1.47)

We can immediately see a duality between these two expansions e−2J ′ = tanhJ .
The self-dual point J ′ = J corresponds to the critical point given above.

There are many other methods that lead to the complete solution of the two-
dimensional Ising model. Huge machinery of combinatorial techniques have been
developed and their detailed discussion would take hundreds of pages [37]. These
methods are based on the manipulations with the expansions and lead to the
determination of the critical exponents 1.1 for the Ising model such as

η =
1

4
and ν = 1, (1.48)

others being computed from the scaling laws (1.13).

|ψ〉 T̂
T̂
T̂

T̂

T̂

T̂

Figure 1.7: Action of the transfer
matrix T̂ on the initial state |ψ〉 de-
scribing a configuration of spins on
a horizontal line performing a trans-
lation to the next row.

Another possible way to solve the two-
dimensional Ising model is to use the trans-
fer matrix method [3, 5]. The idea behind
this method is the same as in the case of
one dimension. The state space is no more
two-dimensional vector space, but it is 2N
dimensional space, where N is the number
of sites in one row of the lattice. Each basis
state |ψ〉 from the state space corresponds
to a different configuration of spins on the
line and the transfer matrix T̂ brings us to
the next row. Computing eigenvalues leads
us to the partition function and thus all
thermodynamic properties as in the case of
the Ising model in 1D.

Key condition to solve the model in 2D
is commutativity of the transfer matrices
for different values of coupling constants separately in horizontal and vertical
direction. In the case of the 2D Ising model, it can be proven that the trans-
fer matrices commute if we take diagnal slicing of the square lattice and cou-
pling constants J1 and J2 corresponding to different directions in the lattice keep
sinh 2J1 sinh 2J2 constant. If the matrices commute, they have the same spectra
and this enables us to find the spectrum using the change of interaction constants.

1.6 Boundary problems

In the section 1.4, we were considering periodic boundary conditions σi = σi+N .
We can proceed in a bit different way changing the boundary condition. We can
impose for example fixed boundary condition (spins + or -) on the two boundaries
σ1, σN = ±1 or free boundary condition with no interaction for σ1 on the left and
no interaction of σN on the right. Both spins can take both values ±1.

In the Hilbert space formulation, each boundary condition can be associated
with a boundary state and transfer matrix evolves the initial state to the final
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Figure 1.8: Process of folding during which a boundary emerges from a defect.

one. The partition function can be then interpreted as an amplitude between the
initial state |a〉 and the final state |b〉. We can find explicit expression for the
three boundary states

|+〉 =

(
1
0

)
, |−〉 =

(
0
1

)
, and |f〉 =

(
1
1

)
. (1.49)

Using these vectors the corresponding partition function can be written as

Z
(a,b)
N =

∑

{σi}
〈a|T̂ |σ2〉〈σ2|T̂ |σ3〉 . . . 〈σN−1|T̂ |b〉. (1.50)

Performing the same diagonalization as in the case of periodic boundary con-
ditions, we find partition functions

Z
(+,+)
N = λN−1

+ cos2 φ+ λN−1
− sin2 φ,

Z
(−,−)
N = λN−1

+ sin2 φ+ λN−1
− cos2 φ,

Z
(+,−)
N = sinφ cosφλN−1

+ + λN−1
− ,

Z
(f,f)
N = λN−1

+ + λN−1
− + sin 2φ

(
λN−1

+ − λN−1
−

)
. (1.51)

Different boundary conditions should not change bulk properties if the system is
big enough. That is indeed true, since the boundary condition gives contribution
to the free energy density of the order O(1/N). The correction ∆f to the free
energy density f is

∆f = − 1

βN
ln b(φ), (1.52)

where b(φ) = cos2 φ in the case of (+,+) boundary conditions, b(φ) = sin2 φ in
the case of (-,-) boundary conditions, b(φ) = cosφ sinφ for the mixed boundary
conditions, and b(φ) = 1 + sin 2φ for the free boundary conditions. This term is
suppressed in the limit N →∞.

There are many interesting effects connected to the boundary. Some correla-
tion functions may diverge if we are near the boundary. Real materials always
contain a boundary and it is natural to study its effects.

Moreover, one can be interested in defect lines in the lattice. A defect line is
a line, where discontinuities of local quantities can emerge. Indeed, defects are
important constituents of real materials. We can study defects using so-called
folding technique [13, 38]. One can fold the original model to find a doubled
model with twice the number of degrees of freedom in each site than in the
original model. The defect becomes a boundary in the folded model as can be
seen from the figure 1.8.The two copies of the Ising lattice are not decoupled
completely, but they influence each other precisely through the boundary.
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Figure 1.9: A simulation showing boundary effects for four different boundary
conditions on the horizontal boundary. Picture (a) shows a boundary condition
+ on both sides, picture (b) shows − boundary conditions, and the two bot-
tom pictures show free resp. periodic boundary conditions. Periodic boundary
condition is imposed on the vertical boundaries in all four cases.
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Figure 1.10: One-point function of the spin variable σ near the +-boundary (1-
brane in the string field theory language) depending on the distance r from the
boundary. Points are obtained from the simulated system and compared with
the exact curve.

Ashkin-Teller model is a model of two Ising lattices coupled together.[39] The
Hamiltonian of this model is

H({σi}, {σ̃j}) =
∑

(i,j)

[J(σiσj + σ̃iσ̃j) + Lσiσjσ̃iσ̃j] , (1.53)

where a new interaction constant L coupling the two theories is introduced. The
folded Ising model corresponds to the decoupling point L = 0 of the Ashkin-Teller
model. Studying boundary states in this model, one learns about the properties
of the defects in the original model.

In two dimensions, the boundary problem is even more interesting. Boundary
state is now a state in the 2N dimensional space and there are many possible
ways how to chose a boundary condition. Figure 1.9 shows, how the boundary
condition changes behavior of spins near the boundary. At high temperatures
the influence of the boundary is minimal, but if we lower the temperature, its
influence becomes markable. The pictures are obtained from the simulation on
the cylinder (periodic boundary condition is set on the vertical boundaries) near
the critical temperature. In four different pictures, boundary conditions (++),
(+,−), (−,−), and (f, f) are imposed on the lower and upper boundary respec-
tively. Later, boundary conformal field theory will prove useful to classify all
the possible boundary conditions and to find the behavior of quantities near the
boundary. In the next section, we start addressing this issues.

The boundary conditions listed above can be divided into two categories with
respect to the value of the interaction constant on the boundary. Starting at
the high temperature phase and lowering the temperature the boundary can
undergo phase transition before the bulk or it can follow the transition of the
bulk at the bulk critical temperature. The bulk transition, where the spins on the
boundary are already ordered, is called extraordinary whereas the other boundary
transitions are called ordinary. Extraordinary conditions can be descrtibed by
fixed boundary conditions in CFT and ordinary transitions are described by free
boundary conditions.

We have performed a simulation showing the behavior of spin variable σ and
energy density ε near the boundary (see figures 1.10 and 1.11). We will derive
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Figure 1.11: One-point functions of the energy density ε near the +-boundary (1-
brane) and f-boundary (σ-brane). Points are measured on the simulated system
and compared with the exact curves.

the form of this dependence using conformal field thery. We have performed
regression of the form

〈Oi〉(r) = a+
b

r∆i
(1.54)

and performed normalization of σ and ε induced by the normalization of two-point
functions. Then we read off the normalized coefficient b that can be compared
with the exact value encoded in the boundary state that we will determine using
string field theory methods at the end of this thesis.

In the case of σ variable near the + or - boundary, we get multiplicative
constant 1.02. It is not far away from the correct value 21/8 ≈ 1.09. Near the free
boundary the σ one-point function is vanishing. In the case of the energy density
ε correct values are 0.5 in the case of the fixed boundary condition and −0.5 in
the case of the free boundary. Numerically, we have found values 0.41 and -0.51,
respectively. The agreement is still not bad if we realize the finitne number of
sites present on the simulated lattice that spoils the criticality, which is present
only in the thermodynamic limit. Better agreement can be obtained performing
longer simulation on a bigger system, but that is not the central topic of this
thesis.
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2. Conformal field theory

2.1 Quantum field theory description

Consider a general d-dimensional toroidal lattice in thermodynamic limit with a
lattice spacing a and some interaction between its sites. Main quantity from the
previous chapter was the partition function

Z = Tr e−βH, (2.1)

where H was the classical Hamiltonian. If we consider the theory on the scale,
where the lattice spacing is negligible x� a, we can think of the lattice of spins
as continuous function of the spin density and study such a statistical field by
methods of quantum field theory (QFT). The role of the partition function in
QFT is played by the generating functional

Z =
∫

[dφ]e−S[φ], (2.2)

where S is the action of the theory and φ denotes a set of fundamental local fields.
The two approaches are identical at the critical temperature due to collective
behavior of spins. In this regime, properties do not depend on the details at the
microscopical scales. For further details see [5, 40].

One can find a correspondence between the transfer matrix T̂ and quantum
Hamiltonian H. For the two-dimensional Ising model, element of the transfer
matrix was a part of the partition function corresponding to the area between
two slices of the lattice with fixed values of the spins. It can be viewed as an
operator acting on the space of all possible configurations starting with the initial
configuration and transferring it to the new configuration on the next slice. Par-
tition function on the torus can be obtained as a trace of the appropriate power of
the transfer matrix. The same procedure is performed in QFT when constructing
a Hilbert space. A state corresponds to a configuration on the equal-time slice
and time translation is performed by exponential of the Hamiltonian. We recover
the correspondence

T̂ = e−∆yH , (2.3)

where H is the Hamiltonian performing translation along the torus and ∆y is
the length of the torus. Diagonalization of the transfer matrix T̂ is equivalent
to finding the energy eigenstates in the continuum limit of the theory. At the
critical point these eigenstates will be in in one-to-one correspondence with the
local operators in the theory.

To illustrate, how to construct the quantum Hamiltonian H, we will sketch the
procedure for the Ising model. We will see that the Ising model in the continuum
limit can be described by free Majorana fermion [41].

Let us consider a lattice of N × N spins with Hamiltonian (1.1) but zero
external magnetic field B = 0 and with possibly different interaction constants in
vertical and horizontal directions denoted as J and J ′. Firstly, we will construct
the transfer matrix acting on the 2N -dimensional Hilbert space of all possible
configurations on the horizontal slice of the lattice. Elements of the transfer
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matrix can be constructed similarly as in the case of the Ising model in one
dimension. If we denote σ̃i(a) = 1⊗ . . .⊗1⊗σi⊗1⊗ . . .⊗1, for all Pauli matrices
σi and x labeling its position in the product, we can write the transfer matrix as

T̂ =
N∏

x=1

[
eJ σ̃3(x)σ̃3(x+1)eJ

′σ̃1(x)
]
, (2.4)

where we have denoted J = βJ and J ′ = βJ ′.
To find the Hamiltonian we wish to take the limit ∆y → 0. Then we can

read off the Hamiltonian from the relation T̂ ≈ 1−∆yH. We must be careful in
performing the limit since interaction constants must be renormalized appropri-
ately to maintain properties of the original theory. If one proceeds correctly, the
solution for the Hamiltonian is

H = −
N∑

x=1

[σ̃1(x) + σ̃3(x)σ̃3(x+ 1)]. (2.5)

This Hamiltonian can be easily diagonalized using Wigner-Jordan transformation.
We can introduce a fermionic operator

c(x) =
N∏

y=−N
eiπσ̃

+(y)σ̃−(y)σ̃−(x), (2.6)

where we have moreover introduced

σ̃±(x) =
1

2
[σ̃1(x)± iσ̃2(x)]. (2.7)

It is simple matter of fact that they satisfy fermionic anti-commutation relations
{c(x), c†(x′)} = δxx′ . Using the fermionic operators, the Ising model Hamiltonian
can be written in the form

H = −2
∑

x

c†(x)c(x)− λ
∑

x

[c†(x)− c(x)][c†(x+ 1)− c(x+ 1)] (2.8)

as can be easily checked by substitution. We have obtained quadratic function
of fermionic operators. This expression can be diagonalized. Introducing new
fermionic operators c→ ψ that diagonalize the Hamiltonian

H =
∑

k,x

Λ(x)kψ
†
k(x)ψk(x), (2.9)

we get a theory of Majorana fermion ψ satisfying relations

ψ†i (x) = ψi(x), {ψi(x), ψj(x
′)} = δijδxx′ , ψ2

i (x) =
1

2
. (2.10)

We have thus argued that the Ising model in two dimensions is equivalent to the
Majorana fermion.

Classifying all universality classes and solving corresponding theories reduces
to study of fixed points in QFTs. If we adopt some other natural assumptions, we
will be able to make a huge progress in this direction using methods of conformal
field theory.

One can easily adopt standard methods of QFT, such as perturbative expan-
sions, for the Ising model [4, 5]. In this thesis, we are interested especially in
non-perturbative results and we will avoid this discussion here.
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Figure 2.1: Effective potential of
free boson describing the universal-
ity class of the Ising model.

Another comment will be on the uni-
versality class of the Ising model. We can
consider a QFT of bosonic field X with ef-
fective potential

U(X) =
m2

2
X2 +

g

4!
X4. (2.11)

This theory has Z2 symmetry and we could
expect it to belong to the same universal-
ity class as the Ising model. The potential
has one unique minimum for m2 > 0 at
the origin and two minima for m2 < 0 as
shown in the figure 2.1. The critical point
corresponds to the case when m2 = 0 (the
two minima joint and the only one centered
at the origin remains) and we can identify
correspondence m2 ≈ (T − Tc). A critical theory thus corresponds to a ’massless
theory’ [4, 5]. This theory can be solved using mean field theory and Landau-
Ginsburg model gives correct critical exponents above the upper critical dimen-
sion d =4. In this case, the theory belongs to the same universality class as the
Ising model.

2.2 Conformal invariance

As described in the previous two sections, one can effectively describe a lattice
theory at the critical point by means of QFT. Moreover, at the critical point (i.e.
fixed point of the RG) the scale invariance appears. But we can do better. If
the model satisfy some other natural conditions, we can obtain whole conformal
invariance that will be described in the following parts of this chapter. Before
restricting to the case of two-dimensional conformal field theory (CFT) let us
emphasize a CFT in general dimension d. This chapter will be a review of the
basic facts that can be found in most of the textbooks on CFT [8, 42, 43] or
string theory [9, 44, 45]. We will extract some essencialities from these books and
sometimes extend the discussion a bit. Proper explanation of the CFT methods
can be found in these texts.

Consider a generic d dimensional space with a metric gµν and local coor-
dinates xµ. Coordinate transformation xµ → x′µ(x) is called conformal if the
corresponding metric only locally rescales under the transformation

g′µν = Λ(x)gµν . (2.12)

Recalling the definition of the angles, one can easily check that conformal trans-
formations do not change them. Conformal transformations can be thus viewed as
a subgroup of the group of all diffeomorphisms providing local rescaling, rotation,
and translation.

Let us assume an infinitesimal transformation xµ → x′µ = xµ + εµ(x). Under
the infinitesimal transformation the metric transforms as g′µν = gµν + ∂µεν(x) +
∂νεµ(x). Substituting into the (2.12), one finds condition

∂µεν(x) + ∂νεµ(x) = ρ(x)gµν , (2.13)
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Figure 2.2: An example of conformal transformation mapping coordinate net to
the new one. One can see that angles have not been changed and the net is only
locally rescaled and rotated.

for some function ρ. Taking the trace

2∂ · ε = dρ(x) (2.14)

and substituting back to the (2.13), we get a constraint on the infinitesimal
conformal transformations

∂µεν(x) + ∂νεµ(x) =
2

d
(∂ · ε)gµν . (2.15)

In higher dimensions d > 2, the only possible transformations that are con-
formal are translations, dilation, rotations, and so-called special conformal trans-
formations, which follows from the constraint above. All the transformations
are reviewed in the table 5.1. One can check that infinitesimal versions of these
transformations satisfy above constraint (2.15). It can be also shown that these
transformations generate whole conformal group, but since we are interested in
two dimensional theories, we will skip the discussion here. These estimations can
be found in early mathematical work of Lie and others.

Translation xµ → xµ + aµ

Dilation xµ → λxµ

Rotation xµ →Mµ
ν x

µ, Mµν = −Mνµ

Spec. conf. trans. xµ → xµ−bµx2

1−bµxµ+b2x2

Table 2.1: Four fundamental conformal transformations that generate whole con-
formal group for d > 2 dimensions.

Now, we will state Polyakov’s conjecture [7, 46]. A field theory with local
interactions described by the action S with translational, rotational, and scale
invariance is also conformally invariant. Having a continuum limit of the lattice
model with homogenous and isotropic local interactions, like the Ising model, we
are precisely in this situation. Finding all the universality classes of the local,
translationally, and rotationally invariant theories is equivalent to classifying all
CFTs.
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For each local theory, we can define the stress-energy tensor Tµν as response
of the action on the coordinate transformation

δS =
1

(2π)d−1

∫
ddxTµν(x)∂µεν(x). (2.16)

If the action is invariant under the conformal transformations, we get restrictions
on the stress-energy tensor. Clearly, translation εµ = aµ obeys (2.15) and inte-
grating (2.16) by parts one finds a conservation law for the stress-energy tensor

∂µT
µν = 0. (2.17)

Similarly, invariance under the rotation εµ = Mµνxν , for Mµν antisymmetric
tensor, constraints T µν to be symmetric

T µν = T νµ. (2.18)

Finally, from the dilatation transformation invariance εµ = λxµ, the stress-energy
tensor T µν must be traceless

T νν = 0. (2.19)

To finish our proof of the conformal invariance, consider (2.16) and integrate it
by parts with the use of the above identities for the stress-energy tensor

δS =
1

(2π)D−1

∫
dDxTµν(x)∂µεν(x)

=
1

2

1

(2π)D−1

∫
dDx(Tµν(x) + Tνµ(x))∂µεν(x)

=
1

2

1

(2π)D−1

∫
dDxgµνTµν(x)∂ · ε = 0 (2.20)

and our proof of the conformal invariance is finished. All the local, translation-
ally, rotationally, and scale invariant theories in the continuum limit are also
conformally invariant.

In the following, let us restrict on 2D models. Some of the statements hold
similarly in general dimension, but general discussion goes beyond the scope of
this treatment.

As we mentioned earlier, conformal group becomes infinite dimensional in
two dimensions [47]. Substituting d = 2 into the (2.15) and fixing coordinates to
ensure gµν = δµν , one explicitly ends with

∂0ε0 = ∂1ε1, (2.21)

for (µ, ν) = (0, 0) component, and

∂0ε1 = −∂1ε0, (2.22)

for (µ, ν) = (0, 1). These are precisely Cauchy-Riemann equations. If we natural-
ly introduce a complex notation ε(z) = ε0(z) + iε1(z) and ε̄(z̄) = ε0(z̄)− iε1(z̄) for
complex coordinates z = σ0 + iσ1 and z̄ = σ0 − iσ1, every holomorphic function
ε(z) satisfy the above Cauchy-Riemann conditions and thus define a conformal
transformation. In two dimensions we are given an infinite set of conformal trans-
formations since infinitely many independent holomorphic functions exist.
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It is natural to regard z and z̄ as independent variables since they correspond
to two independent algebras as we will see later. At the end of the day the
physical situation will be restored equating z̄ = z∗.

In the conformal group in two dimensions there exists a subgroup called special
conformal group. General conformal transformation in two dimensions need not
to be everywhere well-defined and invertible. Every conformal transformation
that is well behaved can be written in the form

f(z) =
az + b

cz + d
, (2.23)

where ad − bc = 1. It can be easily shown that it is indeed closed under the
composition of transformations and it is invertible. These transformations form a
subgroup isomorphic with SL(2,C) and SO(3, 1). We learn that special conformal
group has 6 parameters with the same generators as in the table 5.1. It can be
easily shown that transformations (2.23) are the only globally defined invertible
holomorphic mappings.

2.3 Primary operators

In this section, we will define so-called primary operators introduced in [47] and
show that invariance with respect to the global conformal transformations con-
straints the form of the correlation functions. Primary operators will play main
role in the later analysis.

Consider CFT with a set of all operators {Oα} and assume the existence of
subset {Vα} ⊂ {Oα} of operators, transforming under the conformal transforma-
tion z → w = f(z), z̄ → w̄ = f̄(z̄) as

Vα(z, z̄)→ V ′α (w, w̄) =

(
∂f

∂z

)−hα (∂f̄
∂z̄

)−h̄α
Vα(z, z̄), (2.24)

where hα and h̄α are conformal weights for a primary field Vα. Primary field will
be a special case of the scaling fields with similar properties under the special
conformal transformations.

Due to the invariance of the action S[φ] and measure [dφ], general correlator
of n primary fields

〈V1(z1, z̄1) . . . Vn(zn, z̄n)〉 =
1

Z

∫
[dφ]V1(z1, z̄1) . . . Vn(zn, z̄n) exp(−S[φ]) (2.25)

transforms according to (2.24) as

〈V ′1(w1, w̄1) . . . V ′n(wn, w̄n)〉 =
n∏

α=1

(
∂f

∂z

)−hα (∂f̄
∂z̄

)−h̄α
〈V1(z1, z̄1) . . . Vn(zn, z̄n)〉,

(2.26)
where we have defined the partition function Z = 〈1〉.

Conformal invariance constraints the form of the correlation functions. In the
case of 2- and 3-point functions the form of the correlator is completely fixed.
In the case of the higher correlation functions, conformal invariance does not
suffice to fix its form and other constraints will have to be adopted. If there
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are four insertions at points z1, z2, z3 and z4 in the correlator, we can construct
so-called crossing (or harmonic) ratios η that are invariant under the conformal
transformations

η =
(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)
. (2.27)

Similarly, we can define η̄ for the antiholomorphic part. We have then ambiguity
in adding some function of these ratios when fixing the form of the correlator.

We will show, how the form of 2-point and 3-point functions is fixed. From
the translational and rotational invariance, correlators can only depend on the
relative positions zij = (zi − zj) and z̄ij = (z̄i − z̄j). For a 2-point function, there
is only one such a term z12 = (z1 − z2) (with corresponding anti-holomorphic
counterpart) and prescribed transformation under the dilatations xµ → λxµ forces
the correlator to be of the form

〈V1(z1, z̄1)V2(z2, z̄2)〉 =
C12

zh1+h2
12 z̄h̄1+h̄2

12

, (2.28)

where we have denote C12 a constant given by particular normalization of the
fields V1 and V2. Moreover, special conformal transformation gives us constraint
h1 = h2 and h̄1 = h̄2 for C12 6= 0. 2-point function of primary fields with different
conformal weights vanishes. Since any linear combination of primary fields with
conformal weights (h, h̄) is again a primary field with weights (h, h̄), we can always
find a basis of primary operators such that Cij = δij.

Similar procedure holds also for 3-point function. After substitution of the
formulas for the dilatation and special conformal transformation one finds

〈V1(z1, z̄1)V2(z2, z̄2)V3(z3, z̄3)〉 =
C123

zh1+h2−h3
12 zh2+h3−h1

23 zh3+h1−h2
13

× 1

z̄h̄1+h̄2−h̄3
12 z̄h̄2+h̄3−h̄1

23 z̄h̄3+h̄1−h̄2
13

. (2.29)

Indeterminated constants C123 are called structure constant of the theory.
We can see that two-point functions of primary operators has the same form

as the correlators in the lattice theory at the critical temperature. We will see
that primary operators will play a role of local variables in the lattice theory. If
we compare (2.28) with correlators of the Ising model, we can see that the spin

operator must have conformal dimension (hσ, hσ) =
(

1
16
, 1

16

)
and the operator

of the energy density must have dimensions (hε, hε) =
(

1
2
, 1

2

)
. Clearly, it must

be spinless and the scaling behavior must be in correspondence with critical
exponents η and ∆ε. Only if the operators scales with this weights, we obtain
correct behavior of the 2-point function.

As discussed above, conformal invariance does not fix precise form of the high-
er correlators. We will introduce concept of operator product expansion (OPE)
that will prove useful when computing higher correlation functions. Using OPEs,
one can locally exchange two nearby operators Vα and Vβ by string of operators
inserted at one of the two point1

Oα(z, z̄)Oβ(w, w̄) =
∑

γ

Cγ
αβ (z − w, z̄ − w̄)Oγ(w, w̄). (2.30)

1All operator equations must be viewed to hold within correlation functions. To clarify rela-
tion between operator equations and path integral formulation see nice review in the appendix
of [9].
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We will be mostly interested in the singular part of this expansion and the re-
maining regular part will be usually neglected while ∼ will be used except for the
equality. This singular part will lead to the commutation relations for operators
in radial quantization and it will tell us, what are the transformation properties
of the fields.

2.4 Stress-energy tensor

Stress-energy tensor (also called energy-momentum tensor) defined in (2.16) plays
central role in CFT since it generates conformal transformations. Transforming
Tµν into the complex plane language

Txx = Tzz + Tzz̄ + Tz̄z + Tz̄z

Txy = i(Tzz − Tzz̄ + Tz̄z − Tz̄z)
Tyx = i(Tzz + Tzz̄ − Tz̄z − Tz̄z)
Tyy = −Tzz + Tzz̄ + Tz̄z − Tz̄z, (2.31)

performing the inverse transformation and using constraints (3.7), (3.8), and
(3.9), we get

Tzz̄ = Tz̄z = 0, ∂̄T (z, z̄) = 0, ∂T̄ (z, z̄) = 0, (2.32)

where we have set T = Tzz and T̄ = Tz̄z. We can see that T (z) and T̄ (z̄) are
holomorphic resp. anti-holomorphic functions. This fact will lead to decoupling
of the holomorphic and antiholomorphic part of the theory that could be treated
separately.

Invariance of the action under the conformal transformations will lead us to
the conformal Ward identities. Stress-energy tensor gives us conserved currents
for conformal transformations. Consider a general conformal transformations
z → z + ε(z) and z̄ → z̄ + ε̄(z̄). Corresponding currents are J z̄ = Tzz(z)ε(z) =
T (z)ε(z) for the first transformation and J̄z = T̄ (z̄)ε̄(z̄) for the second one
as can be easily deduced from the definition of the stress-energy tensor. Let
Õ = O1(z1, z̄1) . . .On(zn, z̄n) be a string of operators and let z → z + ε(z) be a
transformation with compact support that is conformal in the neighbor of each
point, where the operator is inserted. We will denote the collection of all neigh-
bors D and the situation is sketched in the figure 2.3.

Using the identity
∫

[dφ]ÕδSe−S[φ] =
∫

[dφ]δÕe−S[φ], (2.33)

we will derive conformal Ward identities. Substituting for δS from the definition
of the stress-energy tensor (2.16) and recognizing correlator

δ〈Õ〉 =
n∑

α=1

〈O1(z1, z̄1)δOα(zi, z̄i)On(zn, z̄n)〉 (2.34)

on the right-hand side, one finds from the relation (2.3)

δ〈Õ〉 =
1

2π

∫

R2/D
d2σ〈(∂µεν)T µνÕ〉 = − 1

2π

∫

R2/D
d2σ〈∂µJµÕ〉, (2.35)
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X1(z1, z̄1)

X2(z2, z̄2)

X3(z3, z̄3)
X4(z4, z̄4)

operator insertion

ε conformal

ε arbitrary

ε = 0

Figure 2.3: Visualized situation used in derivation of the Ward identities.

where we have used the fact that δS vanishes in D and T µν is conserved. In two
dimensions, we can benefit from the Stokes theorem that reads

∫

R2/D
∂µJ

µ =
∮

∂D
(J0dσ

1 − J1dσ
0) = −i

∮

∂D
(Jzdz − Jz̄dz̄) (2.36)

since ε has compact support and thus infinity is a regular point. With the use of
this identity, we get the conformal Ward identities

i

2π

∮

∂D
dz〈Jz(z, z̄)Õ〉 − i

2π

∮

∂D
dz̄〈Jz̄(z, z̄)Õ〉 = δ〈Õ〉. (2.37)

Specially for the transformation z → z + ε(z) in the neighbor of zα and zero
elsewhere else, we get relation

δOα(zα) = −reszα [Jz(z)Oα(zα)] = −reszα [ε(z)T (z)Oα(zα)] (2.38)

and analogically for the transformation z̄ → z̄ + ε̄(z̄). The consequence of this
result is that whenever we know the OPE of T and T̄ with the operator Oα, we
can reconstruct arbitrary conformal transformation of this operator.

If we focus on the infinitesimal translation δz = ε, then all the operators
transform as Oα(z − ε) = Oα(z) − ε∂Oα(z) and the Ward identity gives us the
least singular term of the OPE

T (z)Oα(w, w̄) ∼ · · ·+ ∂Oα(w, w̄)

z − w . (2.39)

The other singular terms are not so easily computable since not all operators
transform simply under the other conformal transformations. Consider rotations
and scaling for a while. Later we will construct a basis of local operators with
good transformation properties under these transformations. The transformation
will be determined by two real numbers (hα, h̄α) defined as

δOα = −ε(hOα + z∂Oα)− ε̄(h̄Oα + z̄∂̄Oα), (2.40)

for transformations δz = εz and δz̄ = ε̄z̄. We will call 4α = hα + h̄α the scaling
dimension and sα = hα − h̄α the spin of the field Oα, since these transformation
encodes scaling and rotational properties. We can identify L = −i(σ0∂1−σ1∂0) =
z∂ − z̄∂̄ and D = σα∂α = z∂ + z̄∂̄ as scaling and dilation operators respectively.
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From the Ward identity (2.38), we see that operators with transformation (2.40)
have following OPE

T (z)O(w, w̄) ∼ · · ·+ hO(w, w̄)

(z − w)2
+
∂O(w, w̄)

z − w (2.41)

with the stress-energy tensor.
There is a special set of operators for which the process stops here and no more

singular term is needed. These are precisely the primary operators introduced
earlier. One can check it performing infinitesimal conformal transformation z →
z + ε(z) and using the definition of primary fields (2.24)

Vα → (1 + ∂ε)−hαVα(z − ε) = (1− hα∂εVα)(V (z)− ε∂Vα)

= V (z)− hα∂εVα − ε∂Vα, (2.42)

where we have restricted only on the holomorphic sector and neglected terms
containing higher powers of ε. In the antiholomorphic sector the situation is the
same. This relation is valid for all conformal transformations and from the Ward
identities (2.38), one immediately sees that there are no other singular terms in
the OPE with the stress-energy tensor for primary fields.

In the following part of this section, we will define the central charge of the
theory that will be a key parameter in later discussion. Some properties of the
stress-energy tensor will be discussed.

Scaling dimension of the stress-energy tensor is 4T = 2 since the energy can
be obtained performing an integration over the space. Moreover, it is symmetric
2-tensor and thus it has spin s = 2. From these two facts one concludes that the
stress-energy tensor has weights (2,0), whereas T̄ has weights (0, 2). Let us derive
general OPE for the two components of the stress-energy tensor. Restricting to
the holomorphic part, all terms in the OPE has form On/(z−w)n, where weight
of the operator On must be 4− n to scale correctly. If we consider only unitary
models, we will prove in the next section that only fields with positive conformal
weights are allowed and the most singular term must be (z − w)−4 multiplied
by a constant. The term (z − w)−3 cannot be present because it would spoil
the equality T (z)T (w) = T (w)T (z) that must hold within any correlator as can
be easily shown. The most general OPE for the stress-energy tensor of unitary
theories is

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
(2.43)

and similarly for T̄ with corresponding constant c̄. Constants (c, c̄) are called
central charges and play crucial role in the whole theory.

Knowing the above OPE, it is not difficult to find a transformation prescrip-
tion for the stress-energy tensor. Substituting the expansion of a general holo-
morphic function

ε(z) = ε(w) + ε′(w)(z − w) +
1

2
ε′′(z − w)2 +

1

3
ε′′′(z − w)3 + . . . (2.44)

into the Ward identity for the stress-energy tensor, we get for the infinitesimal
conformal transformations

δT (w) = −resw [ε(z)T (z)T (w)]
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= −resw

[
ε(z)

(
c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
+ . . .

)]

= −ε(w)∂T (w)− 2ε′(w)T (w)− c

12
ε′′′(w). (2.45)

Exponentiating this infinitesimal transformation leads to the following trans-
formation prescription for the finite transformations z → w(z)

T ′(w) =

(
dw

dz

) [
T (z)− c

12
{w; z}

]
, (2.46)

where we have introduced the Schwarzian derivative

{w; z} =
w′′′

w′
− 3

2

(
w′′

w′

)2

. (2.47)

We can easily convince ourselves that infinitesimal version of this transformation
is indeed (2.45) and it has correct properties under the composition of two trans-
formations. Detailed discussion is provided for example in [43]. In the case of
global conformal transformations given by (2.23) Schwarzian derivative vanishes
and the transformation of the stress-energy tensor is primary-like.

Since the central charge is a key parameter in our analysis, let us spend some
time to get intuition for this quantity. Extra term in the transformation (2.46)
is independent of T and plays a role of the Casimir energy of the system related
to the introduction of macroscopic length scale. Let us illustrate it by a simple
example of the theory defined on the cylinder parametrized by w = σ0 + iσ1 for
σ1 ∈ [0, 2π) and σ0 ∈ [−∞,∞). This cylinder can be conformally mapped to the
whole complex plane by z = expw. Schwarzian derivative for this transformation
can be easily computed and T transforms as

Tcylinder(w) = z2Tplane(z) +
c

24
. (2.48)

If the ground state energy on the complex plane vanishes 〈Tplane〉 = 0 then on
the cylinder, where the Hamiltonian is

H =
∫
dσTσ0σ0 = −

∫
dσ(Tww + T̄w̄w̄), (2.49)

the ground state energy is no more zero

E = −2π
c+ c̄

24
. (2.50)

This is the Casimir energy of the theory on the cylinder induced by the introduc-
tion of the compact dimnsion.

Another effect, where c is important, is the Weyl Anomaly. We have shown
that trace of the stress-energy tensor T vanishes at the classical level. This will
no longer be true in the quantum case with curved backgrounds. As discussed in
[43], it is proportional to the central charge

〈Tαα〉 = − c

12
R, (2.51)

where R is the Ricci scalar. Extended discussion of the central charge, introduced
in [47], can be found for example in [45] or [42]. The Weyl invariance of the theory
requires c = 0. This condition plays central role in string theory, where the Weyl
invariance emerges as a gauge symmetry, and restricts the theory dramatically.
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σ1

σ0

σ0 = const.

σ0 = const.

z = exp(σ0 + iσ1) σ0

σ1

Rez

Imz

Figure 2.4: Conformal mapping of the theory defined on the cylinder to the
complex plane. Equal-time slicings map to the concentric circles.

2.5 Operator formalism

In this section, we will empathize representations of the conformal group. Let us
assume a theory on an infinite cylinder parametrized by coordinates w = σ0 + iσ1

with compactification σ1 ∼ σ1 + 2π. In this picture, we can think of the theory
as a theory of a closed string evolving in time σ0. A Hilbert space corresponds
to the slices of constant σ0. Performing conformal map z = expw, one arrives
at whole complex plane, where slicings map to concentric circles as shown in the
figure 2.4. Time translation σ0 → σ0 + a in this picture corresponds to rescaling
z → eaz. We wish to construct CFT Hilbert space in this scheme. This scheme
of quantizing is called radial quantization and it has been proposed in [47] and
later developed in [48, 49].

If we switch to the complex plane description, the Hamiltonian of the system
becomes dilatation operator

D = z∂ + z̄∂̄ (2.52)

since it provides stretching of constant-time circles.
Similarly as the time-ordering appears in the standard definition of correlation

functions, radial ordering must be introduced in the radial quantizing scheme

R(O1(z)O2(w)) =

{
O1(z)O2(w) for |z| > |w|
O2(w)O1(z) for |z| < |w|. (2.53)

Let us see, how the conformal generators emerge in the radial quantization. In
the operator formalism, symmetry generators can be constructed by integrating
a Noether current over a fixed-time slice. In the case of conformal symmetry,
the currents are J = Tε and J̄ = T̄ ε̄. Performing the constants time contour
integration for ε = zn or ε = z̄n respectively, where n ∈ Z, one finds prescription
for conformal generators

Ln =
1

2πi

∮
dzzn+1T (z), L̄n =

1

2πi

∮
dz̄z̄n+1T̄ (z̄), (2.54)

where the integration is encircling the origin. Conformal generators are modes of
the stress-energy tensor since the previous relations can be inverted and we find

T (z) =
∑

z−n−2Ln T̄ (z̄) =
∑

z̄−n−2L̄n. (2.55)
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Figure 2.5: Contour deformation performed when deriving the relation for com-
mutators of two operators.

To find a Lie algebra of these so-called Virasoro generators Ln and L̄n one
needs to find their commutation relations. Generally, consider a and b to be
holomorphic fields and A and B corresponding operators obtained as equal-radius
contour integrals. Commutator of the operators A and B corresponds to the
switch of the two integrations, namely

[A,B] =
∮

C1
dz
∮

C2
dw a(z)b(w)−

∮

C1
dz
∮

C2
dw b(z)a(w), (2.56)

where the radius of C1 is bigger then the radius of C2. Using contour deformation
from the figure 2.5 and definition of the radial ordering for the deformed contour,
we get explicit expression for desired commutator

[A,B] =
∮

0
dw

∮

w
dz a(z)b(w). (2.57)

With the use of the TT OPE (2.43), we get specially for the Virasoro gener-
ators

[Ln, Lm] =
∮

0
dw

∮

w
dz T (z)T (w)

=
1

(2πi)2

∮

0
dw wm+1

∮

w
dz zn+1

[
c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)

]

=
1

2πi

∮

0
dw wm+1

[
c

12
(n2 + 1)nwn−2 + 2(n+ 1)wnT (w) + wn+1∂T (w)

]

= (n−m)Lm+n +
c

12
n(n− 1)δm+n,0. (2.58)

Similar computation can be performed for T̄ . Lms with the above commutation
relations form Virasoro algebra. This algebra has been introduced in [50] and
later used to in CFT [47]. At clasical level the term proportional to c is not
present, but it emerged as a consequence of conformal anomaly.

Using the Virasoro generators one can find explicit expression for the quantum
Hamiltonian. Since L0 + L̄0 corresponds to the transformation δz = z, δz̄ = z̄,
it stretches concentric circles corresponding to given time and thus provides time
translation in the radial picture. The dilatation operator can be written using
Virasoro generators as

D = L0 + L̄0. (2.59)

Mapping the stress-energy tensor back to the cylinder, we get the energy operator

H = L0 + L̄0 − 2π
c+ c̄

24
. (2.60)
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In CFT, we have one-to-one correspondence between operators and states.
Assume asymptotic state on the cylinder τ → −∞. This state maps into the
origin in the radial quantization and we are left with a single point. Specifying
a state is now equivalent to specifying local disturbance at the origin. This can
be done by operator insertion. Classifying all the possible states is equivalent to
classifying all the operators.

Now, we will construct highest weight representations of the Virasoro alge-
bra. Suppose |h, h̄〉 is an eigenstate of L0 and L̄0 with corresponding eigenval-
ues h and h̄. These are the energy eigenstates on the cylinder with the energy

E = 2π
(
h+ h̄− c+ c̄

24

)
, which can be seen from (2.60). From the commutation

relations (2.58), we find that

L0Ln|h, h̄〉 = (h− n) |h, h̄〉 (2.61)

and even Ln|h, h̄〉 is the energy eigenstate. We can generate whole spectrum
acting by Ls on the initial state. To get a spectrum bounded below, which
is needed for the theory to be unitary as we will see later, there must exist a
state anihilated by all Lns with positive n. Such state is a primary state and
has the lowest possible energy in given column of states. These highest weight
representations are also called Verma modules. Fields obtained from a primary
field by action of some combination of L−ns, for n > 0, are called descendant
fields and first few states of given Verma module are given in the table 2.2, where
we have decomposed the fields into the left and right sectors |h, h̄〉 = |h〉⊗|h̄〉 and
we have written only the chiral representation explicitly. The decomposition can
be done silce left and right Virasoro algebras are independent. The other chiral
representations can be obtained by h→ h̄, L→ L̄. Total Virasoro representation
is a tensor product of the two chiral representations.

Conformal weight State

h |h〉
h+ 1 L−1|h〉
h+ 2 L2

−1|h〉, L−2|h〉
h+ 3 L3

−1|h〉, L−2L−1|h〉, L−3|h〉
h+ 4 L4

−1|h〉, L−2L
2
−1|h〉, L−3L−1|h〉, L2

−2|h〉, L−4|h〉

Table 2.2: First few states in the chiral representation of Virasoro algebra with
corresponding conformal weights (levels).

In the table 2.2, all independent descendants on the first few levels are men-
tioned since all the other possibilities can be obtained commuting Virasoro gen-
erators to the right. One can associate a character

χ(c,h) = Tr qL0−c/24 =
∞∑

n=0

dim(h+ n)qn+h− c
24 , (2.62)

to a given Verma module with central charge c and conformal weight h, where
q = e2πiτ and dim(h+n) measures the number of the linearly independent states
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at level n. In terms of these characters, modular partition functions can be
written since it is precisely the trace of qL0+ c

24 over the whole Hilbert space. The
characters for the antiholomorphic Verma module are defined analogously.

Characters tells us, how many states are there at each level. It is simple to
find general form for the characters of a Verma module. The number of states
on given level is the partition number p(n) as can be easily deduced from the
structure of Verma modules. Generating function for the partition numbers is

1

φ(q)
=
∞∏

n=1

1

1− qn =
∞∑

n=0

p(n)qn (2.63)

as can be easily checked expanding the term 1/(1 − qn) and multiplying all the
terms. Defining so-called Dedekind function

η(q) = q1/24φ(q), (2.64)

one can rewrite a generic Virasoro character conventionally as

χ(c,h) =
qh+(1−c)/24

η(q)
. (2.65)

We have seen the form of correlators for primary fields. Primary fields cor-
respond to the highest weight states, but there are also many descendants. We
wish to compute correlators of these descendants. Although we will use a tech-
nique of conservation laws to compute correlators in string field theory, we will
comment on different method now. The method is based on the action of differ-
ential operator L−n corresponding to the descendant L−nVα on the correlator of
Vα alone.

Using contour deformation and OPE of the stress-energy tensor T with pri-
mary field Vα, one can compute a correlator of a descendant with other operators
V = V1(w1, w̄1) . . . Vn(wn, w̄n) as

〈L−nV0(w)V 〉 =
1

2πi

∮

w
dz (z − w)1−n〈T (z)V0(w)V 〉

= − 1

2πi

∑

α

∮

wα
dz (z − w)1−n

[
1

z − wα
∂wα〈V0(w)V 〉

+
hα

(z − wα)2
〈V0(w)V 〉

]
= L−n〈V0V 〉, (2.66)

where we have introduced a differential operator

L−n =
∑

i

[
(n− 1)hi
(wi − w)n

− 1

(wi − w)n−1
∂wi

]
(2.67)

that brings us from the correlator of primary fields to the correlator of their
descendants. Generalization to correlators with different number of different Vi-
rasoro generators acting on different operator insertions is straightforward. One
only needs to act by appropriate operators on the formula for the correlator of
corresponding primary operators.

Now, we will comment on the operator algebra introduced earlier. Using
OPE one can reduce the number of operators inserted in the correlator. Two

39



operators are exchanged by infinite sum of single insertions. It can be interpreted
as multiplication on the space of all operators in the theory. In the following, we
will see that, except of the structure constants introduced earlier, all coefficients
of the OPEs are fixed by conformal invariance.

Consider a theory with primary operators Vα and their descendants. Scaling
invariance then fixes the form of the operator algebra

V1(z, z̄)V2(0, 0) =
∑

α

∑

I,J

CαIJ
12 zhα−h1−h2+|I|z̄h̄α−h̄1−h̄2+|J |(L−IL̄−JVα(0, 0)),

(2.68)
where the sum runs over all primaries and their descendants given by multi-
indices I and J , for I = (k1, k2, . . .) and L−I = . . . Lk2

−2L
k1
−1. We have also denoted

|I| = ∑
i ki and similarly |J | = ∑

i li in the antiholomorphic sector.
One can now compute an overlap of this expression applied on the vacuum

|0〉 with other primary field Vβ. Only term proportional to Ci00
12 remains and the

amplitude can be also rewritten using known form of the 3-point function. One
arrives at

〈Vβ|V1(z, z̄)|V2〉 =
Cβ12

zh1+h2−hβ z̄h̄1+h̄2−h̄β
(2.69)

and we can identify the first coefficient of the OPE with corresponding structure
constant Cα12 = Cα00

12 . All the other coefficients are determined by conformal
invariance and structure constants are the only needed ingredients to compute
arbitrary correlator.

Since correlation functions of descendants are obtained from the correlators
of corresponding primaries, we expect the other coefficients to have form

CαIJ
12 = Cα12β

I
α12β̄

J
α12. (2.70)

Due to the relation Cα12 = Cα00
12 we set β0

α12 = 1 and all the other coefficients are
fixed by requirement that both sides of the expression (2.68) behave identically
under the conformal transformation.

Consider a spinless primary |h, h〉 and let us restrict ourselves only on the
holomorphic part. We will use notation

φ(z) =
∑

I

Cα12z
|I|βIα12L−I . (2.71)

In the operator algebra, states of the form

|z, hα〉 = φ(z)|hα〉 =
∞∑

N=0

z|I||N, hα〉 (2.72)

multiplied by corresponding structure constant emerge. We have also denoted
|N, hα〉 a state on the level N in corresponding Verma module.

Acting by (2.68) on the vacuum |0〉 and using the notation described above,
one finds

V1(z, z̄)|h2, h̄2〉 =
∑

α

Cα12z
hα−2hz̄h̄α−2h̄φ(z)φ̄(z̄)|hα, h̄α〉. (2.73)

If we apply Ln, for n > 0, on this equation we get on the left-hand side

LnV1(z, z̄)|h2, h̄2〉 = (zn+1∂z + (n+ 1)h)V1(z, z̄)|h2, h̄2〉, (2.74)
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where we have commuted Ln that annihilates a primary state to the right. On
the other side, we find

∑

α

Cα12z
hα−2hz̄h̄α−2h̄Ln|z, hα〉|z, h̄α〉

=
∑

α

Cα12z
hα−2hz̄h̄α−2h̄((hα + h(n− 1))zn + zn+1∂z)|z, hα〉|z, h̄α〉. (2.75)

Comparing coefficients on each side, one finds recursion relation that leads to the
solution for the states |N, hα〉 and so for the coefficients βIJα12. Using this relation
for N = 0 the only nontrivial constraint is given by n = 1 and one finds

L1|1, hα〉 = hα|hα〉 = β1
α12L1L−1|hα〉 = β1

α12[L1, L−1]|hα〉 = 2hαβ
1
α12|hα〉. (2.76)

We can now identify the coefficient β1
α12 = 1/2. Similar procedure holds for

higher levels, but the computation becomes more tedious. We have thus shown
that structure constants are the only needed input for the operator algebra to be
defined. All the other coefficients are then determined by conformal invariance.

Assume the existence of the vacuum state |0〉 on which we will construct the
Hilbert space. This state is defined to be as much symmetrical as possible. We
define it to be annihilated by all Lns, where n ≥ 0. The vacuum cannot be
annihilated by all the Virasoro generators because of consistency with the central
charge term. If it were not the case then

0 = L−n|0〉 = LnL−n|0〉 =
(
L−nLn +

c

12
(n3 − n)

)
|0〉 =

c

12
(n3 − n)|0〉 6= 0.

(2.77)
The contradiction do not appear in the case L−n|0〉 6= 0, for n ≥ 2.

Being equipped by the vacuum state |0〉 corresponding to the insertion of the
identity operator at the origin, we can get arbitrary primary state with L0, L̄0

eigenvalues (h, h̄) by insertion of a primary field (also called vertex operator in
this context) with conformal weights (h, h̄). Clearly,

Ln|Vα〉 =
∮ dz

2πi
zn+1T (z)Vα(0)|0〉

=
∮ dz

2πi
zn+1

(
hVα
z2

+
∂Vα
z

+ . . .

)
|0〉 = 0, (2.78)

for n > 0 and Vα primary operator, due to regularity of the expression which is
being integrated. Oppositely, if a state is annihilated by all the Virasoro genera-
tors with n > 0 and there exists a vertex operator, the singular part of the OPE
with the stress-energy tensor must stop with z−2 term and it must be primary
field. Moreover, we see from the above calculation that L0|Vα〉 = hα|Vα〉 and
L−1|Vα〉 = |∂Vα〉.

Finally, we will show that unitarity condition leads us to positivity of L0

eigenvalues. We need to define a dual states to |h, h̄〉. They will correspond to
the fields inserted on the other side of the Riemann sphere z → ∞. Intuitional
definition is obtained by mapping a primary operator Vα to the infinity using
w → −1/w. We define BPZ-dual state to be

〈Vα| = BPZ(|Vα〉) = lim
z→0
〈0|Vα

(
−1

z
,−1

z̄

)
1

z2hα

1

z̄2h̄α
(2.79)
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The overlap of states |V1〉 and |V2〉 is then regularized correlator of fields inserted
at the origin and at the infinity. We will denote BPZ-conjugation of the vacuum
〈0|. We wish to find BPZ-conjugation of operator modes appearing in a mode
expansion of general operator

Oα =
∑

m,n∈Z

Oαm,n
z−m−hα z̄−n−h̄α

(2.80)

that generalizes the expansion (2.55) of the stress-energy tensor. Performing the
mapping as in the case of primary operators, one finds

BPZ(Oαm,n) = (−1)n+m+∆αOα
−m,−n. (2.81)

This algebra will be important later when performing computations in string field
theory. Detailed discussion can be found in the books listed at the beginning of
this chapter. In the rest of this chapter, we will focus on some examples that
help us in clarifying the above abstracts considerations.

2.6 Examples of CFTs

2.6.1 Free boson

In this subsection, we will study the free scalar field that will prove useful in
discussions of bosonic string theory and double Ising model. The action of the
theory

S =
1

4π

∫
d2σ∂αX∂

αX (2.82)

is clearly conformally invariant since field X transforms under rescaling σα → λσα

as X (σα)→ X(λ−1σα). Note that any inclusion of polynomial term, such as the
mass term, would spoil the conformal invariance.

Standard procedure leads to the stress-energy tensor of the theory

Tαβ = −∂αX∂αX +
1

2
δαβ(∂X)2, (2.83)

where the expression on the left must be understood to be normal ordered prod-
uct. Taking the trace, one can check it vanishes. Switching to the complex
coordinates, we get

T = −∂X∂X, T̄ = −∂̄X∂̄X. (2.84)

Varying the action (2.82), we find equation of motion

∂∂̄X = 0, (2.85)

which tells us that ∂X is holomorphic field and ∂̄X is antiholomorphic field. Due
to the equation of motion ∂∂̄X = 0, we can split X into the holomorphic (left)
and antiholomorphic (right) piece X (z, z̄) = XL(z) + X̄R(z̄).

Let us proceed by computation of propagator. Consider the path integral of
total functional derivative

0 =
∫

[DX]
δ

δX(σ)

[
e−S(X(σ′))X(σ′)

]
(2.86)

=
∫

[DX]e−S(X)
[

1

2π
∂2X(σ)X(σ′) + δ(σ − σ′)

]
. (2.87)
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We find differential equation for the propagator

〈∂2X(σ)X(σ′)〉 = −2πδ(σ − σ′) (2.88)

with well known solution

〈X(σ)X(σ′)〉 = −1

2
ln(σ − σ′)2. (2.89)

The same derivation can be performed with arbitrary other insertions and we
obtain OPE

X(z)X(w) = −1

2
ln (z − w). (2.90)

It is clear that this OPE does not correspond to a primary operator, but per-
forming a derivative, one finds

∂X(z)∂X(w) = −1

2

1

(z − w)2
, (2.91)

i.e. OPE of primary operators with conformal weights (1, 0). Similar expression
would appear in the antiholomorphic case. To prove that ∂X is a primary field
we must find its transformation properties. They are encoded in the OPE with
the stress-energy tensor

T (z)∂X(w) = − : ∂X(z)∂X(z) : ∂X(w) ∼ 2
1

2

∂X(z)

(z − w)2

∼ ∂X(w)

(z − w)2
+
∂2X(w)

z − w , (2.92)

where the number 2 comes from two contractions in the Wick formula and we
have used OPE (2.91) with expansion of holomorphic field ∂X around w. This is
precisely the OPE for primary fields. Similarly, one can find OPE with T̄ to be
trivial. We have thus proved that ∂X is a primary field with conformal weights
(1, 0) and similarly ∂̄X is a primary field with weights (0, 1).

There can be found other primaries for the free boson, namely :eikX :. We wish
to prove that these field are indeed primary and find their conformal weights.
Expanding the normal ordered exponential and using the Wick’s formula, one
finds

∂X(z) : eiX(w) :∼ −ik
2

: eikX(w) :

z − w . (2.93)

With this knowledge it is easy to derive OPE with T

T : eiX(w) := − : ∂X(z)∂X(z) :: eikX(w) :

∼ k2

4

: eikX(w) :

(z − w)2
+

: ∂eikX(w) :

z − w , (2.94)

where the first term comes from two contractions, while the second one comes
from a singe contraction. Similar derivation holds for OPE with T̄ and we
have thus proved that : eikX : is a primary operator with conformal weights
(k2/4, k2/4). In the following, we will omit normal ordering colons for abbrevia-
tion.
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X w = 0

w = +1

w = −2

Figure 2.6: Closed strings in a compactified dimension X with different winding
numbers w.

Using relation (2.89), the Wick theorem, and expansion of eikX(z) around the
point w one finds OPE

eik1X(z1,z̄1)eik2X(z2,z̄2) = |z12|k1k2(1 + iz12k1∂X + iz̄12k1∂̄X

− |z12|2k2
1∂X∂̄X + . . .)ei(k1+k2)X(z2,z̄2) (2.95)

that will be needed when studying correspondence between the doubled Ising
model and the free boson living on the orbifold with radius

√
2.

Finally, the central charge can be determined from the OPE of the stress-
energy tensors

T (z)T (w) ∼ 1/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w (2.96)

and we find that c = 1. Similarly, one can also find that c̄ = 1.
Consider an example of the compactified boson X(σ+L, τ) ∼ X(σ, τ)+2πmR,

where m is called winding number and counts the number of times a string is
winded on the compactified dimension as shown in the figure 2.6. Since ∂X(z)
is holomorphic and ∂̄X(z̄) is antiholomorphic, we can expand it into the Laurent
series

∂X(z) = −i 1√
2

∞∑

m=−∞

αm
zm+1

, ∂̄X(z̄) = −i 1√
2

∞∑

m=−∞

α̃m
z̄m+1

. (2.97)

Quantizing the momentum one finds

n

R
= p =

1

2π

∮
(dz∂X − dz̄∂̄X) =

1√
2

(α0 + α̃0) (2.98)

and from the winding around the compact dimension

Rw =
1

2π

∮
(dz∂X + dz̄∂̄X) =

1√
2

(α0 − α̃0). (2.99)

From the above two relations we can define left and right momenta

kL =
√

2α0 =
n

R
+ wR kR =

√
2α̃0 =

n

R
− wR. (2.100)

One can split the field X into the holomorphic and antiholomorpfic parts
X(z, z̄) = XL(z)+XR(z̄) and any vertex operator corresponding to state |kL, kR〉
can be written in the form

VkL,kR(z, z̄) = eikLXL(z)+ikRXR(z̄), (2.101)
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∆ Primary field

0 1
1

2R2 cos X
R

R2

2
cosRX̃

1
R2 cos 2X

R

1
2R2 + R2

2
cos X+R2X̃

R
, cos X−R2X̃

R

R2 cos 2RX̃

Table 2.3: Spectrum of primary operators in non-twisted sector of the free boson
on the orbifold S/Z2 with radius R.

where kL and kR are appropriately quantized. We will also denote X̃(z, z̄) =
XL(z) − XR(z̄). Since the stress-energy tensor can be written in terms of α-
oscillators, we can find correspondence

Lm =
1

2

∞∑

n=−∞
αm−nαn (2.102)

and descendant fields are expressible as α-descendants.

The last example that we will consider in this subsection is the boson living
on the orbifold S1/Z2. In this theory only vertex operators that preserve orbifold
symmetry X ∼ −X will remain. On the other hand, new sector of so-called
twisted states satisfying X(σ0, σ1 + 2πR) = −X(σ0, σ1) appears.

Consider states that remain in the theory after projecting out the states that
are not invariant under the Z2 symmetry. Clearly, odd α-descendants will be
projected out. We need to find primary operators that maintain the invariance.
Half of the primaries have to be crossed out and few remaining primary operators
are listed in the table 2.3

We can see that spectrum does not change if we provide a switch X → X̃ and
X̃ → X together with the change of the radius of the compactified dimension R→
1
R

. This correspondence is called T-duality and it has far reaching consequences.

As mentioned above, there is also twisted sector in the spectrum of operators.
The twisted sector correspond to the antiperiodic boundary conditions and X
must have half-integral mode expansion. The antiperiodicity forbids any momen-
tum and the center of mass must be localized at fixed points. Corresponding
vacua will be denoted as |T1〉 and |T2〉 and their weights are

(
1
16
, 1

16

)
. We can

find them similarly as in the antiperiodic sector of the free fermion in the next
subsection. Detailed argument can be found in [9]. In the twisted sector only
even excitations are present since the other are projected out by Z2 projection.

2.6.2 Free fermion

In this subsection, we will rest a bit on the free fermion ψ, ψ̄ on the cylinder with
the action

S =
1

8π

∫
(ψ∂̄ψ + ψ̄∂ψ̄). (2.103)
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Similarly as in the case of the free boson, one finds OPEs

ψ(z)ψ(w) ∼ − 1

z − w, ψ̄(z̄)ψ̄(w̄) = − 1

z̄ − w̄ . (2.104)

The stress-energy tensor is

T (z) =
1

2
: ψ(z)∂ψ(z) :, T̄ (z̄) =

1

2
: ψ̄(z̄)∂̄ψ̄(w̄) : (2.105)

and computing TT OPE, one finds that (c, c̄)=
(

1
2
, 1

2

)
. From the Tψ OPE one can

verify that ψ and ψ̄ are indeed primary fields and they have conformal weights(
1
2
, 0
)

and
(
0, 1

2

)
respectively.

Now, we are ready to construct all states in the free fermion theory. Expanding
field ψ, one finds

iψ(z) =
∑

n

ψnz
−n−1/2, (2.106)

where modes ψn satisfy anticommutation relations

{ψn, ψm} = −
∮ dw

2πi
wm−1/2

∮ dz

2πi
zn−1/2 −1

z − w = δn+m,0.

There are two sectors in the fermionic theory related to the boundary con-
ditions chosen for 2π rotation around the origin. Fields with periodic and anti-
periodic boundary conditions satisfy one of the conditions ψ(e2πiz) = ±ψ(z). We
immediately see that the periodic field has modes labeled by half-integers whereas
the anti-periodic fields has integer modes. The first sector is called Neveu-Schwarz
(NS) and the other one is Ramond (R).

It is convenient to introduce an operator (−1)F , where F is the fermionic
number, defined as

(−1)Fψ(z) = −ψ(z)(−1)F . (2.107)

In the case of Ramond sector, the presence of the zero mode, satisfying

{ψ0, ψ0} = 1, {ψ0, (−1)F} = 0, (2.108)

has to be taken into account. Applying ψ0 on the L0 eigenstate remains to
be L0 eigenstate and thus we have a ground state degeneracy in this sector.
Corresponding primary fields are called order and disorder fields σ and µ and
they are defined as eigenstates of (−1)F with eigenvalue +1 or -1 respectively. It

is not difficult to prove that both σ and µ has conformal weights
(

1
16
, 1

16

)
. Similar

degeneration appeared in the twisted sector of the boson living on the orbifold.

2.6.3 bc-ghost system

During quantization of the bosonic strings in covariant gauge, so-called fermionic
ghost fields b and c appear. The action for this system is

S =
g

2

∫
d2σbµν∂

µcν , (2.109)

where ghosts are fermions and bµν is traceless and symmetric. In the complex
notation, equations of motion read

∂̄b = 0, ∂b̄ = 0, ∂̄c = 0, ∂c̄ = 0, ∂c = −∂̄c̄. (2.110)
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Standard procedure will lead to the stress-energy tensor

T = 2(∂c)b+ c∂b (2.111)

and its antiholomorphic counterpart. Using path integral method, one obtains
OPE

b(z)c(w) =
1

z − w. (2.112)

From the above OPE, one can prove that b and c are primary fields with conformal
weights (2, 0) and h = (−1, 0) respectively, computing OPE with the stress-energy
tensor T . From the TT expansion, one also finds that the central charge of the
theory is -26.

We can decompose the ghost fields b and c into the modes in accordance with
(2.80). Arbitrary state in radial quantization can be then obtained from the
action of these modes on the vacuum, where we require bn|0〉 = 0 for m > −2
and cn|0〉 = 0 for m > 1 to get regular expressions. From the relation (2.112) one
finds anticommutation relation for b and c ghosts

{bm, cn} = δm,−n. (2.113)

2.7 The Ising model as a minimal model

Huge progress can be done in the case of CFTs with central charge less then
one. In this case, all unitary models (i.e. models containing no state with nega-
tive norm) have been found. As discussed previously, unitarity implies that the
theory contains only highest weight representations and the energy eigenvalues
(i.e. scaling dimensions) are positive. This requirement is physical since negative
scaling dimension would correspond to growing correlations with distance. The
Ising model is thus unitary and since it can be formulated in terms of free fermion
that has central charge

(
1
2
, 1

2

)
, the Ising model will have the same central charge

and fall into the minimal models category.
To get unitary model, conformal charge cannot be negative since

〈h|LnL−n|h〉 =
[
2nh+

1

12
cn(n2 − 1)

]
〈h|h〉 (2.114)

becomes negative, for n sufficiently large, if c < 0.
If we denote |i〉 the basis states in the Verma module under consideration, we

can define a Gram matrix
Mij = 〈i|j〉. (2.115)

This Gram matrix has certainly block-diagonal structure with blocks correspond-
ing to different levels. Using this matrix, one can reproduce a norm of general
state |a〉 =

∑
i ai|i〉 from the formula 〈a|a〉 = a†Ma. Matrix M can be diag-

onalized by a unitary matrix U . Denoting Λi its eigenvalues and b = Ua, we
get

〈a|a〉 =
∑

i

Λi|bi|2. (2.116)

From this equation we see that unitarity is equivalent to the positivity of all
eigenvalues of M .
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If we study these Gram matrices, we can find restrictions on the possible
values of c and h. First restriction comes from the positivity of determinants of
the diagonal blocks M (l) of Gram matrix, where l labels the level of corresponding
block. General formula for this determinant have been found by Kac

detM (l) = αl
∏

1≤r,s;rs≤l
[h− hr,s(c)]p(l−rs), (2.117)

where αl is positive constant, p(t− rs) is the number of partitions of the integer
l − rs and

c(m) = 1− 6

m(m+ 1)
, hr,s(m) =

[(m+ 1)r −ms]2 − 1

4m(m+ 1)
. (2.118)

The form of the Kac determinant has been guessed in [51] and proven later [52].
It has been proven that there exists only a discrete set of CFTs with c < 1

that are unitary [53]. They lie on the vanishing curve of the Kac determinant
for some ll and the theories can be parametrized by integers m, r, and s, where
1 ≤ r < m and 1 ≤ s ≤ r in the above expression. Theories containing only these
representations associated with particular m will be called minimal models and
we will label them M(m+ 1,m).

Now, we are ready to indicate the Ising model. It has been done in [47] for
the first time. Since central charge of its chiral representation is 1

2
, which is

apparent from the correspondence with free fermion, we find that m = 3 in the
above equation. There are three possible conformal weights of primary states for
m = 3, namely 0, 1

16
, and 1

2
. The field with 0 conformal weight clearly corresponds

to the identity insertion. We wish to assign operators to the spin variable σ and
the energy density ε of the Ising model. This can be easily deduced recalling
critical exponents from the table (1.1) and the form of the 2-point function in
CFT. From the form of correlators of Ising spins, the fields has to be spinless.
It means that holomorphic field has to be combined with its antiholomorphic
counterpart with the same conformal weight. The field with conformal weights(

1
16
, 1

16

)
will decay as

∼ 1

z1/16+1/16z̄1/16+1/16
=

1

|z|1/4 (2.119)

and we get correct correlator for the spin operator σ. The same procedure leads
to the determination that the energy density ε corresponds to the primary field
with conformal weights

(
1
2
, 1

2

)
.

One may ask, whether there are any other primary operators than 1, σ, and ε
in the Ising model. The answer is no. These operators closes under the operator
algebra and consistently describe the Ising model. Moreover, we will argue that
modular invariance condition will force the Ising model CFT to be composed
of precisely these three representations (no representation emerges with higher
multiplicity).

Since all the primary operators in minimal models correspond to zeros of the
Kac determinant, there are null states in their Verma modules. It has far reaching
consequences. First of all, representations are not irreducible. If |χ〉 is a null state
then it is orthogonal to all the other states

〈h|Lkn . . . Lk1|χ〉 = 0. (2.120)
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If we wish to get irreducible representation, the null states have to be projected
out. The structure of the null states is quite complicated and we invite reader
to read corresponding chapter in [43] or in the original work [51]. Here, we give
only few first terms of characters for operators in the Ising model.

1 1 + q2 + q3 + 2q4 + 2q5 + 3q6 + . . .

ε 1 + q + q2 + q3 + 2q4 + 2q5 + 3q6 + . . .

σ 1 + q + q2 + 2q3 + 2q4 + 3q5 + 4q6 + . . .

Table 2.4: Characters of the three irreducible representations appearing in the
Ising model CFT.

The existence of null states gives restriction to the operator algebra. The
operator 1 has trivial OPE with other operators and we will be interested only
in σ × σ, σ × ε, and ε× ε combinations [47]. There are null states in the Verma
module of ε and σ at level 2

|χ1〉 =
[
L−2 − 4

3
L2
−1

]
|σ〉,

|χ2〉 =
[
L−2 − 3

4
L2
−1

]
|ε〉. (2.121)

Since this combination is null, the action of corresponding differential operators

Lσ =
[
L−2 − 4

3
L2
−1

]
,

Lε =
[
L−2 − 3

4
L2
−1

]
(2.122)

on the correlation functions of primary fields vanishes

Lσ〈σ(z)V1(z1)V2(z2)〉 = 0,

Lε〈ε(z)V1(z1)V2(z2)〉 = 0, (2.123)

for all operators V1 and V2. This relation gives us constrain on the conformal
weights of the other two operators and in turn on the operator algebra. After
some numerical manipulations we find that only nonvanishing cases gives rise to
the fusion rules

σ × σ = 1 + ε,

ε× ε = 1,

ε× σ = σ (2.124)

and assuming the trivial relation 1× 1 = 1, we get operator algebra for the Ising
model. The relation for fusion rules can be generalized for other models and
details can be found for example in [43]. The above relation means that taking
two fields from the Verma modules on the left-hand side and preforming their
OPE one finds states from the Verma modules appearing on the right-hand side.
Specially in the case of the Ising model

ε(z)ε(0) =
1

z

(
1 + 2z2L−2 + z3L−3 +

3

7
z4L−4 +

2

7
z4L−2L−2 + . . .

)
1
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σ(z)σ(0) =
1

z1/8

(
1 +

1

4
z2L−2 +

1

8
z3L−3 +

15

224
z4L−4 +

3

224
z4L−2L−2 + . . .

)
1

+
1

2
z3/8

(
1 +

1

2
zL−1 +

1

4
z2L−2 +

5

32
z3L−3 +

19

256
z4L−4

+
15

256
z4L−3L−1 + . . .

)
ε(0)

ε(z)σ(0) =
1

2

1

z1/2

(
1− 3zL−1 −

5

8
z2L−2 +

3

56
z3L−3 −

29

56
z3L−2L−1

+
75

2048
z4L−4 −

87

256
z4L−3L−1 + . . .

)
σ(0). (2.125)

and similarly for the antiholomorphic part.
In the above OPEs, structure constants C1εε, C1σσ, and Cσσε have been in-

serted. The first two are trivially 1 due to the normalization of 2-point function.
Finding Cσσε needs a bit of computation. It can be derived using correspondence
of the doubled Ising model with the free boson. We will proceed differently later
when introducing sewing constraints. The other numerical coefficients in (2.125)
have been obtained as in the case (2.76).

It is worth mentioning that correspondence of the Ising model with free Ma-
jorana fermion appears again here. Comparing conformal weights, we can find
correspondence of the energy density operator

ε(z, z̄) ∝ ψ(z)ψ̄(z̄) (2.126)

and similarly for the operator σ corresponding to the order operators in the NS
sector.

2.8 Double Ising and bosonization

Note that 1
2

+ 1
2

= 1. We can thus expect that doubling the Ising model (see
section about the double Ising model), we obtain some theory of the free boson.
In this section, we will comment on this correspondence a bit. Double Ising model
can be mapped on the theory of the free boson living on the S1/Z2 orbifold with
radius

√
2 [43].

Primary states of the free boson on the orbifold S1/Z2 have been already sum-
marized. The precise correspondence of fields can be proven computing partition
functions for these models and arguing that they are indeed the same. The com-
putation can be found for example in [8]. Here, we will find the correspondence
for the first few levels to get the intuition for it.

There is only one primary operator with conformal weight h =1 in both the
Ising model and the free boson theory. The operators ε ⊗ ε and ∂X∂̄X have to
be proportional. Since we know OPE of the Ising operator ε⊗ ε× ε⊗ ε ∼ 1⊗ 1
and OPE of the free boson operator ∂X∂̄X × ∂X∂̄X ∼ 1

4
1⊗ 1, we conclude that

ε⊗ ε = ±2∂X∂̄X.
For other computations on the free boson side, we will need OPE (2.95).

Using this OPE together with σ⊗ σ× σ⊗ σ ∼ (1 + 1
2
ε)⊗ (1 + 1

2
ε), one finds that

σ ⊗ σ = ±
√

2 cos( X√
2
). If we take the value conventionally to be positive, we get

correspondence

σ ⊗ σ =
√

2 cos

(
X√

2

)
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Level Fields

0 |0〉 ⊗ |0〉
1/16 |σ〉 ⊗ |0〉, |0〉 ⊗ |σ〉
1/8 |σ〉 ⊗ |σ〉
1/2 |ε〉 ⊗ |0〉, |0〉 ⊗ |ε〉
9/16 |ε〉 ⊗ |σ〉, |σ〉 ⊗ |ε〉
1 |ε〉 ⊗ |ε〉
9/8 (L

(1)
−1 − L(2)

−1)|σ〉 ⊗ |σ〉
25/16 (L

(1)
−1 − 8L

(2)
−1)|ε〉 ⊗ |σ〉, (8L

(1)
−1 − L(2)

−1)|σ〉 ⊗ |ε〉
2 (L

(1)
−2 − L(2)

−2)|0〉 ⊗ |0〉, (L
(1)
−1 − L(2)

−1)|ε〉 ⊗ |ε〉

Table 2.5: Primary fields in the double Ising model CFTI⊗CFTI with conformal
weights equal or less than two.

that fixes the sign in the above mentioned correspondence

ε⊗ ε = −2∂X∂̄X

using the σ ⊗ σ OPE.
Now, we would like to find correspondence at the level 1

2
. General primary

field on this level can be written as a(1 ⊗ ε) + b(ε ⊗ 1). Comparing their OPE
with the OPE for cos

√
2X and cos

√
2X̃, one finds

cos
√

2X = ±1

2
(ε⊗ 1− 1⊗ ε)

cos
√

2X̃ = ±1

2
(ε⊗ 1 + 1⊗ ε). (2.127)

To fix the sign we would have to find OPEs of primaries in the twisted sector and
knowledge of the correspondence of σ ⊗ σ.

There are other primaries at level 1
16

, namely 1⊗σ and ε⊗σ. These primaries
correspond to the two twisted states |T1〉 and |T2〉. The fields σ⊗ ε and ε⊗ σ on
the level 9

16
correspond to the α-descendants of these twisted fields α−1/2ᾱ−1/2|T1〉

and α−1/2ᾱ−1/2|T2〉.
Primary fields considered so far are not all the primaries in the theory since

new operators emerge as linear combinations of descendants in separate sectors.
Few first primary states are listed above 2.5. They correspond to the other
primary fields in the infinite column of the free boson primaries.
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3. Boundary CFT

3.1 Boundary conditions and Ishibashi states

This chapter introduces aspects of boundary conformal field theory (BCFT), i.e.
conformal field theory with consistent conformally invariant boundary [10, 54, 55].
We will focus our attention to the case of CFT with a boundary on the real axis of
the complex plane. Once we understand BCFT on the upper half plane (UHP),
we can calculate correlation functions on the surfaces with different geometry of
the boundary performing conformal map that deforms the real axis.

All the conformal transformations can be divided into two categories. The
first category contains transformations preserving UHP and the second category
provides deformations of the boundary. The transformation preserving bound-
ary will give us restriction on the correlation functions on the UHP. From the
global conformal transformations (2.23) the UHP is preserved only by the trans-
formations satisfying f(z̄) = f̄(z) on the real axis. This relation constrains the
parameters in (2.23) to be real and the special conformal group reduces to SL(2,R)

Now, we will follow the same procedure that led us to the conformal Ward
identities but now for conformal transformations preserving real axis [56]. Con-
sider a finite set of fields Õ = O1(z1, z̄1) . . .On(zn, z̄n) inserted at different points
on the UHP and let z → z + ε(z, z̄) be a transformation preserving real axis
with compact support that is holomorphic in the region K with all the insertions
inside as in the figure 3.1. We will again use the identity (2.33) and integration
by parts with the assumption of conformally invariant boundary δS|D = 0 and
we find

δ〈Õ〉 =
1

2π

∫

∂(K/D)
nν〈εµT µνÕ〉 −

1

2π

∫

K/D
εµ∂ν〈T µνÕ〉, (3.1)

where nν a unit vector normal to the boundary and we use notation from the
previous chapter.

From the second term on the left hand side, we see that stress-energy ten-
sor is conserved away from the insertion points. This term gives us the same
prescription for operator transformations as in the bulk. The first term gives us
new constraint on the stress-energy tensor, T xy(x, 0) = 0. We can give physical
interpretation to this constrain that there is no energy flow across the boundary.
This condition is necessary and sufficient to ensure conformal invariance on the
UHP. In complex coordinates this condition translates into the relation

T (x, x∗) = T̄ (x, x∗). (3.2)

operator insertion

ε holomorphic

ε arbitrary

ε = 0X3(z3, z̄3)

X2(z2, z̄2)

X1(z1, z̄1)

Figure 3.1: Situation used in derivation of the Ward identities on the UHP.
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This relation constraints a boundary condition but not uniquely. We wish to
classify all the consistent boundary conditions and thus all BCFTs for given
CFT.

In the bulk theory, we were given two independent components of the stress-
energy tensor T and T̄ . It is no more true if we introduce a boundary. Since
T (x) = T̄ (x) on the real axis and both T (z, z∗) and T̄ (z∗, z) are analytic, the
equation T (z, z∗) = T̄ (z∗, z) must hold everywhere due to analytic continuation.
We can think of T̄ to be analytic continuation of T to the other half of the plane.
This technique is often referred to as the doubling trick [57] since we can think of
T̄ to be T in the mirror image of the original insertion point and correspondingly
we consider antiholomorphic parts of bulk primaries to be inserted in the mirror
image point.

0

〈〈Vα|

Figure 3.2: Boundary
state in radial quantiza-
tion around bulk point
on the unit disk.

Now, we will give a Hilbert space formulation of the
theory with a boundary in radial quantization scheme.
There are two possible ways in doing so. The first one
that will lead us to the notion of boundary state is
based on the quantization around a point in the bulk.
Boundary state describing a boundary condition will
be out state in this scheme. The other possibility is
the expansion around a point on the boundary and it
will lead us to the notion of boundary operators that
will be discussed in the next section.

In the bulk, there are still two copies of Virasoro
generators Ln, L̄n. Consider for a while following set-
up. The theory is formulated on the unit disk centered
at the origin with a given boundary condition on its
boundary. In radial quantization, we are given a set of
states and we wish to find such out state that gives us
1-point function of field O inserted at the origin as an overlap

〈〈B ||O〉 = 〈O〉B (3.3)

with a boundary state ||B〉〉 describing particular boundary. There are many
constraints to be satisfied by the boundary state. First of all, it must ensure
consistency constrain T (x) = T̄ (x) after mapping to the UHP. Mapping UHP to
the unit disk by

f(z) =
i− z
i+ z

, (3.4)

the constraint translates into the relation

e2iθT (z, z∗) = e−2iθT̄ (z, z∗), (3.5)

for z = eiθ. Recalling definition of the Virasoro generators Ln with a contour
running on the circular boundary, the relation translates into the mode condition
Ln = L̄−n on the boundary. Solution to this condition

(Ln − L̄−n)|I〉〉 = 0 (3.6)

has been found by Ishibashi [58] and the states satisfying this condition are called
the Ishibashi states. We will now comment on this construction.
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For each diagonal primary, i.e. primary state |Vα〉 with equal left/right con-
formal weights h = h̄, there is corresponding Ishibashi state, which is given
unambiguously up to the normalization as we will see from construction. The
Ishibashi state can be constructed level by level solving the above condition (3.6)
for each n. For the first two levels, solving corresponding equations, one finds

|Vα〉〉 =
(

1 +
1

2hα
L−1L̄−1 + . . .

)
|Vα〉, (3.7)

for hα 6= 0. Similarly for the higher levels. If null states are present at some level,
the null directions have to be projected out.

If {|n, Vα〉}n is orthonormal basis of states in the chiral irreducible representa-
tion of Virasoro algebra (i.e. BPZ-product is 〈V α|Vβ〉 = δαβ ), the Ishibashi state
can be constructed as

|Vα〉〉 =
∑

n

|n, Vα〉 ⊗ |n, Vα〉. (3.8)

Condition (3.6) is indeed satisfied if one checks that it holds if multiplied with
any of the basis states of given irreducible representation |n, Vα〉 ⊗ |m,Vα〉

If we are given a basis constructed by the action of Virasoro generators on
the highest weight state L−I |Vα〉 in the holomorphic sector, where null states are
projected out (i.e. we are given irreducible representation), the solution for the
Ishibashi states can be easily written. Using the inverse of

MIJ(hα) = 〈V α|LIL−J |Vα〉, (3.9)

one can obtain orthonormal basis in the holomorphic sector and the Ishibashi
state is

|Vα〉〉 =
∑

I,J

M IJ(hα)L−IL̄−J |Vα〉, (3.10)

where M IJ(hα) is the inverse matrix M IJMJK = δIK .

3.2 Boundary fields

If we wish to construct the Hilbert space around a point x0 on the real axis, we
are given only one set of Virasoro generators since

Ln =
1

2πi

∮

0
dzzn+1T (z, z∗) = − 1

2πi

∮

0
dzz∗n+1T̄ (z∗, z) = L̄n, (3.11)

where we have reversed direction of the contour integration. The situation is
similar to the bulk case and every highest weight state can be interpreted as a
primary operator living on the boundary. We will call them boundary primaries
or boundary vertex operators. Action of Lns gives rise to descendant fields but
only single copy of Virasoro generators is present here. Highest weight property
is again equivalent to the energy being bounded below.

For a while, think of a BCFT on the strip with width R. This picture will
be quite intuitive when speaking about open string worldsheet. On each side
of the srip, there can be imposed different boundary condition. Hilbert space
Hab is dependent on these two conditions that will be labeled as a and b. If
we transform the strip by z(w) = exp

(
iπ
R
w
)

into the UHP, we have different
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a b

φ
(ab)
i

-∞
φ
(ab)
i

a b

z(w) = exp
(
iπ
Rw

)

Figure 3.3: BCFT defined on the strip with boundary conditions a and b mapped
to the UHP with the insertion of the boundary changing operator. This situation
will correspond to the open string worldsheet.

boundary conditions on the negative and positive real axis. Singularity at the
origin can be obtained by insertion of the boundary changing operator. The notion
of operators living on the boundary has been introduced by Cardy [59, 60] and
they correspond to vertex operators of open strings with boundary conditions a
and b.

Let us review what fields appear in general BCFT. Firstly, bulk fields Oα
are still present in the theory. Moreover, so-called boundary operators can be
inserted on the boundary. A boundary operator that could be inserted between
boundary conditions a and b will be denoted as φ

(ab)
i , where i labels different

possible operators. Even if the two boundary conditions are the same, we can
insert an operator φ

(aa)
i on the boundary. Such operator does not change the

boundary condition and we can think of it as a degree of freedom of boundary a.
Analogously as the bulk fields, boundary fields can be inserted into the cor-

relation functions. Conformal invariance fixes the form of the boundary 1-point,
2-point, and 3-point functions. In the first case

〈φ(ab)
i 〉abUHP = 0 〈1〉a = ga (3.12)

and in the other two cases

〈φ(ab)
i (x)φ

(ba)
j (y)〉abUHP = δijα

(ab)
i

1

(x− y)hi
(3.13)

and

〈φ(ab)
i (u)φ

(bc)
j (v)φ

(ca)
k (w)〉acUHP =

α
(ab)
i C

(bca)i
jk

xh1+h2−h3
12 xh2+h3−h1

23 xh3+h1−h2
13

. (3.14)

The coefficient in the boundary 2-point function can no more be fixed to the unity
by normalization since it is already fixed by normalization of the bulk fields as we
will see later. We have introduced boundary structure constants C

(bca)i
jk and the

g-function of the boundary ga. Logarithm of ga if often called boundary entropy
since it measures boundary contribution to the entropy.

One can also combine bulk operators with boundary operators within the
correlation functions. Bulk-boundary correlation function can be thus introduced
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and its form is also fixed by conformal invariance. The bulk-boundary correlator
is then of the form

〈Vα(x+ iy)φ
(aa)
i (0)〉aaUHP =

α
(aa)
i B

(aa)
αi

(2y)∆α−hi(x2 + y2)hi
, (3.15)

where B
(aa)
αi is a bulk-boundary structure constant.

3.3 Sewing constraints

V1

V2 V3

a b

c

a

φ
(ab)
1

φ
(bc)
2φ

(ca)
3

φ
(aa)
1

V1

Figure 3.4: basic constituents of BCFT amplitudes: bulk 3-point function, bound-
ary 3-point function and bulk-boundary correlator in string theory picture.

To solve particular CFT, i.e. to be able to compute all the possible correlators
in the bulk, one needs to know conformal charges (c, c̄), the spectrum of primary
operators with weights (hα, h̄α), and the structure constants Cijk of the theory.
Without the loss of generality, one can assume that 2-point functions are vanishing
for different basis primaries, which can always be done as discussed previously.
Conformal symmetry then fixes 2- and 3-point functions and the OPE coefficients
of descendant fields. Using OPE one can reduce higher-point correlators to an
infinite sum of 3-point functions and correlators of descendant fields can be found
using differential operators introduced earlier. This procedure is often referred
to as sewing since it corresponds to the construction of general closed string
amplitude by sewing three string amplitudes in the closed string theory picture.

If the boundary is introduced, one needs boundary and bulk-boundary OPE
to be able to compute arbitrary amplitude. Boundary OPE will have the same
form as in the bulk case, but we can also introduce bulk-boundary OPE that
exchanges a bulk operator near the boundary by series of boundary operators

Vα(z) ∼
∑

i

(2 Im z)hi−∆αBa
αiφ

(aa)
i (Re z) (3.16)

in accordance with the bulk-boundary correlator (3.15).
In the presence of boundary, one can include boundary operators and we need

to know the spectrum of boundary primaries, their 2-point and 3-point functions,
and also bulk-boundary structure constants Ba

αi. If one knows all of these together
with the previous quantities in the bulk, one can reconstruct arbitrary correlator
similarly as in the bulk case. Boundary fields correspond to open string states
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in the geometrical picture of sewing string amplitudes. Basic constituents can be
seen in the figure 3.4.

There are generally more ways to reconstruct higher-point correlator and the
theory to be consistent must be independent of the choice of its decomposition.
This gives us a set of consistency (sewing) conditions. We will list six sufficient
sewing conditions that ensure consistency of the theory. If the six sewing con-
ditions are satisfied, the theory is consistent on arbitrary surface with arbitrary
genus and arbitrary configuration of boundaries. All the correlators can be then
unambiguously cut into the collection of the three simple constituents. Detailed
proof of the statement that only the six constraints ensure consistency has been
performed by Lewellen in [61], who extended estimations of Sonoda [62] from
CFT to BCFT.

3.3.1 Crossing symmetry

V1 V2

V3 V4

V1 V1V2 V2

V4 V4V4 V4

Figure 3.5: Crossing symmetry of 4-point amplitude with 3 possible cuttings.

Now, we will go through the sewing constraints and make some comments.
First two constraints shown in the pictures 3.5 and 3.6 arise even in the theory
without a boundary and they are known as crossing-symmetry and modular in-
variance [47]. These relations constraint OPE coefficients for bulk fields and the
spectrum of primary fields.

Let us consider crossing symmetry first of all. Conformal symmetry fixes the
form of the 4-point function

〈V1(z1, z̄1)V2(z2, z̄1)V3(z3, z̄1)V4(z4, z̄1)〉 =
∏

i<j

(zi−zj)r−hi−hj(z̄i−z̄j)r̄−h̄i−h̄jY (η, η̄),

(3.17)
where r = 1

3

∑4
i=1 hi and η, η̄ are crossing ratios introduced earlier. Y (η, η̄) can be

arbitrary function of these rations due to their conformal invariance. Performing
conformal transformation, we can set z4 = 0, z1 = ∞, and z2 = 1 and then we
get z3 = η. This can always be done using some special conformal transformation
since it is determined by the transformation of three points in the complex plane.
Performing the map we get

Y (η, η̄) = lim
z1,z̄1→0

z−2h1
1 z̄−2h1

1 〈V1(−1/z1,−1/z̄1)V2(1, 1)V3(η, η̄)V4(0, 0)〉

= 〈h1, h̄1|X2(1, 1)X(η, η̄)|hh, h̄4〉. (3.18)

We can use OPE to replace the last two operators by a sum of single operators

V3(η, η̄)V4(0, 0) =
∑

α

Cα
34η

hα−h3−h4 η̄h̄α−h̄3−h̄4Ψα, (3.19)
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where we have denoted

Ψα =
∑

I,J

βIα34β̄
J
α34(L−IL̄−JVα)(0, 0). (3.20)

Whole correlator can be rewritten as

Y (η, η̄) =
∑

α

Cα34Cαp12F
α
12,34(η)F̄α

12,34(η), (3.21)

where we have split the holomorphic and antiholomorphic parts of the remaining
expression and defined conformal blocks

Fα
12,34(η) = ηhα−h3−h4

∑

I

βIα34η
|I| 〈h1|V2(1)L−I |hα〉
〈h1|V2(1)|hα〉

. (3.22)

In the procedure above, we have chosen to sew the last two insertions. There
are three possible ways how to perform sewing and repeating the same procedure,
we find that

Y (η, η̄) =
∑

α

C12αC34αF
α
12,34(η)F̄α

12,34(η̄)

=
∑

α

C14αC23αF
α
14,23(1− η)F̄α

14,23(1− η̄)

=
∑

α

C13αC24αF
α
13,24(1/η)F̄α

13,24(1/η̄) (3.23)

should equal to have consistent theory. Conformal block Fα
12,34(η) gives con-

tribution to the amplitude from the primary field Vα and all its holomorphic
descendants and analogously F̄α

12,34(η̄) for the antiholomorphic components.
If there is only finite number of conformal blocks F in the expression above,

each sum in (3.23) contains the same number of terms and conformal blocks are
linear combinations of one another. They are related by duality matrices [63]

Fα
ij,kl =

∑

β

M

[
i l
j k

]

αβ

F β
il,jk(1− η) (3.24)

It can be shown that in the case of minimal models, this condition together with
the crossing symmetry gives us a constraint on the structure constants

C12αC34αM

[
1 4
2 3

]

αβ

= C14βC23βM

[
1 2
4 3

]

βα

. (3.25)

This set of equations gives us overdetermined system for the structure constants
and solving this condition leads to their determination.

3.3.2 Modular invariance

If the theory is defined on the torus, there is ambiguity in the computation
of partition function. Although the sewing constraint from the figure 3.6 take
into account one insertion on the torus, we will consider only partition function
(i.e. the case with 1 insertion) here. Considering general case leads to many
difficulties and gives only little information beyond the constraints obtained from
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V1 V1

Figure 3.6: Modular invariance and 2 possible ways of computing 1-point function
on the torus.

the partition function alone. Modular invariance put a constraint on the spectrum
of operators in the theory [57].

A torus is given by two independent vectors (or complex numbers ω1 and ω2)
called periods that give identification of points with relative position given by
integer combination of these vectors. CFT does not depend on the scaling, nor
on the absolute orientation of the lattice. Relevant parameter will be a modular
parameter τ = ω2

ω1
that erase the dependence described above. The partition

function of the theory can be written in the form

Z(τ) = Tr
(
qL0− c

24 q̄L̄0− c̄
24

)
, (3.26)

where q = exp 2πiτ and the central term in the Hamiltonian emerges due to
mapping from the plane. Since the partition function should not depend on the
change of labeling w1 and w2 and correspondingly the direction that we interpret
as time and space in the Hilbert space formulation force partition function to be
modular invariant

Z(τ) = Z(1/τ). (3.27)

This is the modular invariance from the figure 3.6 with identity insertion.
In terms of characters of α representation χ(c,α)(τ) = e−iπc/12Trα e

2πiτL0 , one
can rewrite the partition function for diagonal theories (only primary fields with
the same homomorphic and antiholomorphic conformal weights are present) as

Z =
∑

α

Nc,αχ(c,α)(τ)χ̄(c,α)(τ̄), (3.28)

where Nc,α is the multiplicity of the occurrence of the representation α.
Now, we would like to know, how characters transform under the modular

transformation. Performing direct computation, one can find that in the case of
minimal models characters transform as [43]

χr,s(1/τ) =
∑

(ρσ)

Srs,ρσχρ,σ(τ) (3.29)

under the modular transformation τ → 1/τ , where we have introduced the mod-
ular S-matrix

Srs,ρσ = 2

√
1

pp′
(−1)1+sρ+rσ sin

(
π
p

p′

)
sin

(
π
p′

p

)
(3.30)

and the sum runs over all primaries in the theory labeled by ρ and σ. Quantities
p and p′ = p+ 1 label different minimal models M(p′, p).
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Modular invariance gives restriction on the spectrum of primary operators
since numbers Nc,α are constrained. It can be shown that in the case of the Ising
model, only 1, σ, and ε with multiplicity one are allowed by modular invariance.
No other coefficients Nc,α give consistent theory. Now, we have completed the
proof of correspondence between the critical Ising model and theM(4, 3) minimal
model.

3.3.3 Cardy’s condition

φ2φ1

a b

φ2φ1

a b

Figure 3.7: Cardy’s condition taking into account two different ways of compu-
tation the 2-point boundary function on the cylinder or partition function in the
case of identity field insertion.

Now, we are moving to BCFT. The next sewing relation (sometimes called
Cardy’s condition) constraints possible boundary conditions and spectrum of
boundary operators [60]. As mentioned above, conformally invariant boundary
condition corresponds to a linear combination of the Ishibashi states, but not all
combinations give us consistent boundary. Only particular combinations satisfy
Cardy’s condition. Here we restrict our attention to the cylinder with no inser-
tions and interpret the amplitude as the partition function. General solution with
the two operator insertions as in the figure 3.7 is not known and likely gives no
additional information.

Partition function on the cylinder with boundary conditions a and b can be
written in two ways. One can interpret it as an amplitude between the initial
state ||a〉〉 and the final state ||b〉〉

Zab = 〈〈a||e−iπτ (L0+L̄0− c
12)||b〉〉 (3.31)

or it can be interpreted as a trace over the spectrum of boundary states with
boundary conditions a and b

Zab = Trab e
2πiτ(L0− c

12) =
∑

i

N i
abχi(q), (3.32)

where N i
ab is the multiplicity of the occurance of corresponding representation and

q is a function of τ . In the string theory point of view, the first case corresponds to
the evolution of the closet string from the original state ||a〉〉 to the final state ||b〉〉
whereas the second case corresponds to the open string living between a-brane
and b-brane and evolving along the circle.

This condition will lead us to the boundary states that will be looked for
in the form of linear combination of Ishibashi states |i〉〉. If Ishibashi states are
normalized, we can rewrite the above relation (3.31) as

Zab =
∑

i,j

〈〈α||i〉〉〈〈i|e−iπτ (L0+L̄0− c
12)|j〉〉〈〈j||β〉〉 =

∑

j

〈〈α||j〉〉〈〈j||β〉〉χj(q), (3.33)

61



where we assume that the theory is diagonal.
On the other hand, one can use the modular invariance to transform (3.32)

and obtain the same expansion in terms of Virasoro characters

Zab =
∑

ij

N i
abS

j
iχj(q), (3.34)

where we have denoted the modular S-matrix Sji for abbreviation. Equating the
two expressions for the partition function, one find expression for the boundary
state. In the case of unitary models, it can be shown that Sj0 is positive. From
the above equation, one finds explicit expression for the boundary states

||a〉〉 =
∑

j

Sja√
Sj0

|j〉〉. (3.35)

We have reconstructed boundary states as linear combinations of Ishibashi states
with coefficients determined by the modular S-matrix.

From the constraint

∑

k

SjkN
k
ab = 〈〈a||j〉〉〈〈j||b〉〉 =

SjaS
j
b

Sj0
, (3.36)

one can also determine the boundary spectrum. Using considerations about mod-
ular S-matrix, one can derive so-called Verline formula that states that the right-
hand side is equal to

SjaS
j
b

Sj0
=
∑

k

SjkN k
ab, (3.37)

where N k
ab are the fusion coefficients in the operator algebra [43]. The spectrum

of boundary fields inserted between boundaries a and b can be thus determined
from the fusion rules a× b.

3.3.4 Boundary crossing symmetry

a

b

c

d

φ
(ab)
1 φ

(bc)
2

φ
(cd)
2φ

(da)
4

a

b

c

d

φ
(ab)
1 φ

(bc)
2

φ
(cd)
2φ

(da)
4

Figure 3.8: Sewing constraint relating two possible ways of cutting boundary
4-point function

There are three sewing constraints left [61]. Consider four boundary insertions
at first. Situation is almost the same as in the bulk. Conformal symmetry fixes
the form of the 4-point function on the real axis

〈φ(ab)
1 (x1)φ

(bc)
2 (x2)φ

(cd)
3 (x3)φ

(da)
4 (x4)〉 =

∏

i<j

(xj − xi)r−hi−hjY (η), (3.38)
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where x4 > x3 > x2 > x1, but now only one sector is present. Sewing constraint
gives us condition

Y (η) =
∑

p

C
(abc)
12p C

(cda)
34p α(ac)

p F p
12,34(η) =

∑

p

C
(dab)
41p C

(dcd)
23p α(db)

p F p
14,23(1− η), (3.39)

where we are now restricted to the real axis. Due to the ordering on the boundary,
there are only two possible ways of sewing amplitudes.

In the case of rational theories, we obtain similar relation for boundary struc-
ture constants as in the case on bulk operators

∑

p

C
(abc)
12p C

(cda)
34p α(ac)

p M

[
1 4
2 3

]

pq

= C
(dab)
41q C

(bcd)
23q α(db)

q . (3.40)

Solving this constraint leads to the determination of the boundary structure con-
stants.

3.3.5 Open-open-closed amplitude

a

b b

a a

φ
(ab)
2φ

(ab)
1

V1

V1

b

φ
(ba)
2φ

(ab)
1

Figure 3.9: Sewing condition relating two possibilities of the cutting of correlators
containing one bulk and two boundary insertions.

The next sewing condition incorporates two boundary operators φ
(ab)
1 , φ

(ba)
2 ,

and one bulk operator V1 on the UHP.
There are two possible ways how to decompose the above correlator depending

on the situation whether x1 < Re z < x2 or x1 < x2 < Re z, where x1 and x2

are insertion points of the boundary operators whereas z is the point, where the
bulk field is inserted. In the first case, we can use the bulk-boundary expansion
of the bulk field near the boundary b and in the second case expansion near the
other boundary a. Performing these two expansions and proceeding in the same
way as in the previous discussion, one finds another sewing constraint that relates
boundary and bulk-boundary structure constants.

3.3.6 Open-closed-closed amplitude

The last sewing constraint that is needed to be satisfied is consistency in the
decomposition of the correlator containing one boundary field and two bulk fields
on the UHP. There are two options how to decompose the amplitude. Firstly,
if we restrict to the case with no boundary insertion (identity insertion), we can
use the bulk OPE to get single insertion or two bulk-boundary OPEs to obtain
two boundary fields.
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φ φ

Figure 3.10: Sewing constraint relating two ways how to decompose the correlator
containing one boundary field insertion and two bulk field insertions.

In general case with boundary insertion, the situation is a bit more difficult,
but it is doable in the case of rational theories and leads to five-point sewings.
This constraint relates bulk and bulk-boundary structure constants.

3.4 Solving the Ising model BCFT

In this section, we will sketch the procedure how to solve the Ising model BCFT,
solving the sewing constraints. Detailed discussion of the computation can be
found in the following treatment [61]. This machinery is mentioned here to illus-
trate its difficulty and the main results will be needed later. Using level trunca-
tion, we will need the solution of the theory in some BCFT background. With
this solution, all the other boundary states will be constructed using string field
theory in the next two chapters.

From the previous section we know that modular invariance forces the Ising
model to contain only fields 1, ε, and σ with conformal weights (0, 0),

(
1
16
, 1

16

)
,

and
(

1
2
, 1

2

)
. Without the loss of generality, we will consider primary states to be

orthonormal. Fusion rules of the Ising operators read

1× 1 = 1, ε× ε = 1, σ × σ = 1 + ε. (3.41)

Computing conformal block functions and coefficients relating them, one finds
that the only non-trivial duality matrices are

M

[
ε ε
ε ε

]
=

(
1 0
0 1

)
M

[
ε ε
σ σ

]
=

(
2 0
0 2

)

M

[
ε σ
ε σ

]
=

(
1
2

0
0 1

2

)
M

[
ε σ
σ ε

]
=

(
−1 0
0 −1

)

M

[
σ σ
σ σ

]
=

( 1√
2

1
2
√

2√
2 − 1√

2

)
. (3.42)

With the knowledge of these matrices, one can find bulk structure constants
solving the crossing symmetry constraint

Cεε1 = Cσσ1 = 1, Cσσε =
1

2
. (3.43)

We can construct boundary states corresponding to the three bulk primaries
present in the theory solving Cardy’s condition. The modular S-matrix for the
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Ising model can be obtained plugging into the general expression (3.30) and we
find that

S =




1
2

1
2

1√
2
,

1
2

1
2
− 1√

2
,

1√
2
− 1√

2
0


 . (3.44)

Knowing the modular S-matrix, one can explicitly find the solution for the Cardy’s
boundary states in terms of the Ishibashi states

||1〉〉 =
1√
2
|1〉〉+

1√
2
|ε〉〉+

1
4
√

2
|σ〉〉

||ε〉〉 =
1√
2
|1〉〉+

1√
2
|ε〉〉 − 1

4
√

2
|σ〉〉

||σ〉〉 = |1〉〉 − |ε〉〉. (3.45)

The first two states, differing only by relative sign in front of the Ishibashi state
|σ〉〉, can be interpreted as fixed boundary conditions in the lattice model. This
is also evident from the graphs of 1-point functions obtained in the first chapter
using numerical simulations and the regression parameters obtained from this
dependence. The last boundary state can be associated with the free boundary
conditions. Using CFT we have been able to determine consistent boundary
conditions and compute explicitly behavior of the theory near the boundary

Now, we would like to determine boundary and bulk-boundary structure con-
stants. We will restrict ourselves only to the case with the same boundary con-
dition on the whole real axis. Recalling the Verline formula, we find that only
boundary primary field 1 with conformal weight 0 can be inserted on the ||1〉〉 and
||ε〉〉 boundary. On the ||σ〉〉 boundary, one more field ε with conformal weight 1

2

emerges.
From the prescription for the boundary states, one finds normalization con-

stants gB = 〈1〉B as an overlap with 〈0|

g1 = gε =
1√
2
, gσ = 1. (3.46)

Product of any operator with the identity gives the original operator and
clearly

Ca
i1i = Ca

1ii = 1 (3.47)

for all boundary conditions. One can easily deduce that

Cσ
εε1 = ασε = 1. (3.48)

Boundary crossing-symmetry does not give us much more information, but it
also constraints the boundary state

ασ =
√

2α1 =
√

2αε. (3.49)

The constraint is automatically satisfied, but generally one has to take into ac-
count that Cardy’s condition is not the only constraint on the boundary state.
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C111 = 1 C11ε = 0 C11σ = 0

C1ε1 = 0 C1εε = 1 C1εσ = 0

C1σ1 = 1 C1σε = 0 C1σσ = 1

Cε11 = 0 Cε1ε = 1 Cε1σ = 0

Cεε1 = 1 Cεεε = 0 Cεεσ = 0

Cεσ1 = 0 Cεσε = 0 Cεσσ = 1
2

Cσ11 = 0 Cσ1ε = 0 Cσ1σ = 1

Cσε1 = 0 Cσεε = 0 Cσεσ = 1
2

Cσσ1 = 1 Cσσε = 1
2

Cσσσ = 0

Table 3.1: Bulk structure constants for the Ising model.

C1
111 = 1

Cε
111 = 1

Cσ
111 = 1 Cσ

εεε = 0

Cσ
ε11 = 0 Cσ

1ε1 = 0 Cσ
11ε = 0

Cσ
1εε = 1 Cσ

ε1ε = 1 Cσ
εε1 = 1

Table 3.2: Boundary structure constants for the Ising model.

From the considerations of the two-point function near the boundary and
the last sewing constraint listed above, Cardy with Levellen have found bulk-
boundary structure constants

B1
ε1 = Bε

ε1 = 1 Bσ
ε1 = −1

Bσ
σ1 = 0 B1

σ1 = 21/4

Bε
σ1 = −21/4 Bσ

σε = 2−1/4. (3.50)

In this section, we have listed all necessary constants needed to find in principle
arbitrary correlator in the Ising model CFT. We have also found boundary states
solving Cardy’s condition and verified that it indeed satisfy all the other condi-
tions. In the following, we wish to find all the boundary states using different
method developed in string field theory and we will avoid solving the huge set of
sewing conditions. All the structure constants are reviewed in the tables.

B1
11 = 1 B1

ε1 = 1 B1
σ1 = 21/4

Bε
11 = 1 Bε

ε1 = 1 Bε
σ1 = −21/4

Bσ
11 = 1 Bσ

ε1 = −1 Bσ
σ1 = 0

Bσ
1ε = 0 Bσ

εε = 0 Bσ
σε = 2−1/4

Table 3.3: Bulk-boundary structure constants for the Ising model.
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3.5 Folded models

In the previous chapter, we studied double Ising model consisting of two Ising
spins at each point. In this section, we will find boundary states for this doubled
model. The importance of this problem becomes clear if we realize that conformal
boundary conditions in doubled model are equivalent to conformal defects in
simple model. By a defect we mean a line of inhomogeneity, where expectation
values of fields are allowed to be discontinuous. One can fold the model along
the defect and find doubled model with some boundary condition imposed on the
defect line [13].

The double Ising model is equivalent to the free boson on the S1/Z2 orbifold
and we will start with the revision of the free boson D-branes. When deriving
equations of motion from the action, a boundary term emerges

δS =
1

4π

∫

W
d2σ(−(∂2

σ + ∂2
σ)XδX +

1

4π

∫

∂W
dl(n · ∇X)δX. (3.51)

The first term leads to the equation of motion and the new term can be set to
zero introducing Neumann boundary condition ∂X|∂W = 0 or Dirichlet boundary
condition δX|∂W = 0 = ∂τX|∂W . In bosonic string theory, each space-time coor-
dinate is described as a free boson on the two dimensional worldsheet. Different
boundary condition can be assigned to each space-time direction. If there are p
Neumann boundary conditions on both sides, we say that the string is living on
the Dp-brane (i.e. p dimensional extended object on which open strings can end).
In the following part of this section, we will restrict to the single boson case.

0
0 2π 4π 6π

w = −1

w = +2w = 0

Figure 3.11: Open bosonic string living in the compactified space.

Consider a boson on the circle X ∼ X + 2πR. Fundamental domain of this
theory is interval [0, 2πR) and a string can be free (with Neumann boundary con-
dition) or it can end on a D-brane located anywhere within the interval [0, 2πR).
Moreover, new (winding) states appear in this case. Open string beginning on
a D-brane can wrap the curled dimension and it can end on the same D-brane.
Such string is topologically nontrivial since it is not contractible to the point and
belong to different sector then the non-wrapped strings.

Effectively the theory with compact dimension looks like a system of parallel
D-branes equally spaced by 2πR. A string can joint any two of these D-branes
and corresponding vacuum in each sector can be denoted as |n,m〉, where n labels
the D-brane, where the string begins and m labels the D-brane, where the string
ends. These vacua are called Chan−Patton factors. We will denote the winding
numbers w as in the bulk case. It is not difficult to find explicitly boundary
states for the free boson, but the intuitive picture will be enough for our later
discussions.

We wish to identify boundary states of the free boson on the orbifold with
boundary states of the Ising model. Due to the orbifold symmetry, the funda-
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(Ising)2 D-brane Interpretation 〈 1 〉B
〈 ∂X∂̄X 〉
〈1 〉 Position

1⊗ ε fractional D0 1
2

+1 πR

ε⊗ 1 fractional D0 1
2

+1 πR

1⊗ 1 fractional D0 1
2

+1 0

ε⊗ ε fractional D0 1
2

+1 0

1⊗ σ fractional D1 1√
2

- 1 -

σ ⊗ 1 fractional D1 1√
2

- 1 -

ε⊗ σ fractional D1 1√
2

- 1 -

σ ⊗ ε fractional D1 1√
2

- 1 -

σ ⊗ σ centered bulk D0 1 +1 πR
2

continuum set generic bulk D0 1 +1 φR

continuum set generic bulk D1
√

2 - 1 -

Table 3.4: Correspondence betweenD-branes in the double Ising model and in
the free boson theory. The energy 〈 1 〉B, coefficient characterizing type of the

boundary condition
〈
∂X∂̄X

〉
/ 〈 1 〉, and the position of the corresponding D-

brane is mentioned.

mental domain is restricted to the [0, πR) and all the string states have to be
symmetrical under the reflection. The first possibility to get correct picture is
to consider system of two D-branes on the interval (−πR, πR) that map to each
other under the Z2 reflection and a string living on these D-branes. The other
possibility is the existence of fractional D-brane being placed at one of the two
singular points and being build in the twisted sector. There are 4 Neumann and
4 Dirichlet fractional D-branes in the twisted sector. This D-brane will have half
of the energy then the pair of D-branes. All the free boson D-branes with their
Ising model counterparts are listed in the table 3.4.

The interpretation in each picture is done comparing coefficients of the bound-
ary states with the knowledge of the correspondence between bulk states. The
energy of the D-brane can be computed from the 〈1〉a, where a labels differ-

ent D-branes. Moreover, the coefficient 〈∂X∂̄X〉a〈1〉a characterizes the nature of the
boundary condition. Following from the propagator on the disk, we get +1 in the
case of Dirichlet boundary condition and -1 in the case of Neumann boundary
condition. These two coefficients give us interpretation from the second column
of the table. From the 〈cos( X√

2
)〉 coefficient, one finds position of D-branes. In

the case of D1-branes, this coefficient cannot be interpreted as D-brane position.
We can see that some boundaries carry the same coefficients. These differs in
the twisted sector and can be distinguished by the introduction of some twisted
charges. We can see that we have indeed 4 Dirichlet fractional D-branes and 4
Neumann fractional D-branes.

In the doubled Ising model, tensor products of boundary states from the single
Ising model remain to be boundary states, but including all the new primaries,

68



new boundary states emerge. There are two sets of them with energy 1 and√
2 corresponding to general D0-brane and D1-brane. All the states from this

continuous spectrum can be obtained by marginal deformations of the theory.
The two sets of boundary states are related by T-duality.

The last thing, we would like to do is demystification of the correspondence
between boundary spectra. 1 ⊗ 1 boundary condition together with all the first
four D-branes from the table 3.4 corresponds to the fractional D0-brane at X = 0.
The only boundary operators in the Ising model picture are descendants of the
identity. On the orbifold side, the identity and some winding primary states
are present since ∂X and half of the winding states are removed by the orbifold
projection. The surviving boundary primary states up to the level 2 are

h (Ising)2 Orbifold

0 1 1
2 T ⊗ 1− 1⊗ T cos

√
2X̃

(3.52)

1⊗σ boundary condition together with the other three corresponding bound-
ary conditions in the doubled Ising corresponds to the fractional D1-brane. We
have additional 1⊗ ε boundary primary in this case. On the D1-brane, momen-
tum modes instead of winding modes are present. The orbifold projection once
again removes ∂X and half of the momentum modes

h (Ising)2 Orbifold

0 1 1
1
2

1⊗ ε cos X√
2

2 T ⊗ 1− 1⊗ T cos
√

2X

(3.53)

The situation with σ⊗σ boundary condition, which corresponds to D0-brane
at X = πR

2
, is the most complicated. The boundary primaries on the Ising side

are constructed over all four combinations of 1 and ε in each subsector. In the
free boson picture, the boundary condition corresponds to two D-branes on the
domain (−π, π) with positions πR

2
and −πR

2
. To describe the free boson, we will

use Chan-Paton-like description. The Z2 symmetry acts on the 2×2 matrices as

Z

(
a b
c d

)
=

(
d c
b a

)
. (3.54)

In the non-twisted sector, there are following boundary primary fields: the iden-
tity, ∂X, and winding modes with integer winding number, all multiplied by the
Chan-Paton factors. Unlike the previous cases, we have a nontrivial twisted sec-
tor (that appears as the off-diagonal components of the matrices) that describes
states going from the D0-brane to its mirror image. The primaries in the twisted
sector are winding modes with half integer winding times the Chan-Paton factors.
Up to the mixing between the states at the same level, the match between the
primary states is
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h (Ising)2 Orbifold

0 1⊗ 1

(
1 0
0 1

)

1
2

1⊗ ε
(

0 1
1 0

)
cos X̃√

2

1
2

ε⊗ 1

(
0 1
−1 0

)
sin X̃√

2

1 ε⊗ ε
(

1 0
0 −1

)
∂X

2 ∂ε⊗ ε− ε⊗ ∂ε
(

1 0
0 1

)
cos
√

2X̃

2 T ⊗ 1− 1⊗ T
(

1 0
0 −1

)
sin
√

2X̃

(3.55)

Precise correspondence can be found in similar fashion as in the case of bulk
fields using OPEs. General D0 brane will have the same boundary spectrum but
the position of the D-brane will be different. Using the correspondence of the
boundary primaries on the σ⊗σ-brane, we will be able to compare our truncated
action with the action proposed in [64] for parallel D-branes.
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4. String Field theory

4.1 Bosonic open string theory

Before explaining basics of string field theory (SFT), we will review some facts
from the first quantized string theory. For more details see for example [9]. The
Polyakov action for bosonic string is1

S =
1

4π

∫

W
d2σg1/2gab∂aX

µ∂bXµ, (4.1)

where the integration runs over string worldsheet W parametrized by σ1 ∈ (0, π)
and σ0 ∈ (−∞,∞) and index µ runs over all D spacetime dimensions. String
theory has huge gauge freedom. This action is invariant under the Lorentz trans-
formation in target space, diffeomorphisms on the worldsheet, and local rescaling
(Weyl symmetry).

We can partially fix the gauge introducing the conformal gauge gab = e2ω(σ)δab
using diffeomorphisms and Weyl transformation. All the configurations related by
gauge transformations are equal and we need to ensure that only one representant
of each gauge orbit is counted when performing the path integral. The integration
over gauge orbits have to be divided out. Fixing gauge leads to the introduction
of so-called Fadeev-Popov determinant. This term can be interpreted as a new
term in the action. Introducing fermionic fields b and c, we get new action

1

2π

∫
d2z∂Xµ∂̄Xµ +

1

2π

∫
d2z(b∂̄c+ b̄∂c̄) (4.2)

with ghost part as a relict of the Fadeev-Popov determinant.
We are given CFT with matter fields Xµ and two ghost fields b and c. Since

there is no boundary for the closed strings, they correspond to the bulk operators
whereas open string states correspond to boundary insertions. To each field, one
can assign a ghost number. We define c to have ghost number 1, b ghost number
-2. Hilbert space of the theory can be obtained by the action of modes of the
operators on the primary states of the theory. In the case of open bosonic string
that we are interested in,

H = Span{αµ1

l1
. . . α

µq
−lqb−k1 . . . b−krc−n1 . . . c−ns|p〉}, (4.3)

where l1 ≥ l2 ≥ . . . ≥ lq, m1 ≥ m2 ≥ . . . ≥ mr, n1 ≥ n2 ≥ . . . ≥ ns, li ≥ 1,
mi ≥ 1, ni ≥ 0, and |p〉 labeling vacua with different momenta.

Not all the states above are physical. The physical states will be identified with
BRST cohomology in so-called BRST quantization. After gauge fixing, residual
symmetry that combines matter and ghost fields remains. This symmetry is
called BRST symmetry with corresponding BRST charge

QB =
∞∑

n=−∞
(cnL

m
−n + c̄nL̄

m
−n) +

∞∑

m,n=−∞
: (cmcnb−m−n + c̄mc̄nb̄−m−n) : −(c0 + c̄0).

(4.4)

1We use convention for the Regge slope α′ = 1.
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Physical states are anihilated by this BRST charge

QB|ψ〉phys = 0. (4.5)

In order the BRST charge to be consistently conserved, it must be nilpotent

Q2
B = 0. (4.6)

This is the case only if the matter theory has total central charge 26 to sum up
to zero with the central charge of the ghost sector. Since the free boson CFT
has conformal charge 1, it implies that we need 26 bosons and corresponding 26
spacetime dimensions.

Due to the hermiticity of QB, all QB-exact states has vanishing inner product
with all the physical states. Moreover, QB rises the ghost number of the string
state and we can restrict ourselves on the states with particular ghost number that
is equivalent to the restriction to the particalar cohomology class. Physical states
differing only by QB-exact term are then equivalent and if we denoteH(g) ⊂ H the
subspace of states with ghost number g, we can make a restriction and consider
only states from the cohomology class

Hphys = H(1)
closed/H(1)

exact. (4.7)

Let us state an identity that will be useful later when introducing Siegel gauge
in string field theory. It can be easily shown that

{bm, QB} = Lm. (4.8)

4.2 Witten’s cubic string field theory

The standard procedure from the previous section can, in principle, provide a
framework for calculation of an arbitrary on-shell scattering amplitude. To study
non-perturbative aspects of string theory, such as tachyon condensation, the off-
shell formalism is needed. Cubic open string field theory (OSFT), originally
introduced by Witten in 1986, provides the off-shell formulation and we will now
give basics of this theory [16]. For more details see reviews [65, 66, 67].

Ψ1 Ψ2

a

b

Figure 4.1: 2-vertex in SFT.

We would like to construct an OSFT ac-
tion that gives equation of motion QBΨ = 0
at linearized level for string field Ψ. The string
field Ψ is generally off-shell extension of the
string states and correspond to some state in
the Hilbert space HBCFT of the tensor product
of matter and ghost boundary conformal field
theory BCFT=BCFTm⊗BCFTgh. The matter
part BCFTm must have central charge (26, 26)
to obtain consistent theory as discussed above.
General state in HBCFT can be written as

|Ψ〉 =
∑

i,I,J

ΦiIJL
m
−IL

gh
−J |i〉, (4.9)
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where i runs over all boundary primaries present in particular BCFT background
and I and J are multi-indices running through the all descendants of particular
primary.

Appropriate linearized action can be written in three different forms as

Slin = −1

2
〈Ψ|QB|Ψ〉 ≡ −

1

2
〈Ψ, QBΨ〉 ≡ −1

2

∫
Ψ ∗QBΨ, (4.10)

where 〈Ψ| is the BPZ-conjugate of |Ψ〉. Witten has included interaction term
into the action and inspired by Chern-Simons theories, he proposed an action

S = −
∫ (

1

2
Ψ ∗QBΨ +

g

3
Ψ ∗Ψ ∗Ψ

)
, (4.11)

where the integration, star product, and derivation QB were formally defined
axiomatically. Quantity g is the interaction constant and can be set equal to
1 simply by redefinition of the string field Ψ → Ψ/g. Form (4.10), one finds
equations of motion for the string field

QBΨ + Ψ ∗Ψ = 0 (4.12)

using the Witten’s axioms to manipulate with the constituents of the action.
There is huge gauge freedom that extends the addition of BRST exact term in
the linearized version

δΨ = QBΛ + Ψ ∗ Λ− Λ ∗Ψ, (4.13)

for any ghost number zero string field Λ.

Ψ1

Ψ2

Ψ3

Figure 4.2: Situation corre-
sponding to general apmpli-
tude in SFT.

We can see that linearized version of the above
relation gives us correct equation QBΨ = 0. Since
there is already included the interaction of strings
in the Polyakov action, one has to verify that the
cubic term leads to the same predictions for g → 0
as the original theory. It has been done in the case
of bosonic string theory in [75, 76].

Now, we would like to rewrite the cubic term
from (4.11) that corresponds to gluing three strings
together in terms of CFT correlator. We will go
further since we will give CFT prescription for arbi-
trary

∫
Ψ∗. . .∗Ψ generalizing BPZ-product that has

been associated with
∫

Ψ ∗ Ψ. BPZ product glues
two string worldsheets and recalling its definition
for the primary fields

〈φ1|φ2〉 = lim
z→0

(
1

z2

)h1

〈φ1(−1/z)φ2(0)〉UHP , (4.14)

we can map the right-hand side correlator by a map

f(z) =
i− z
i+ z

(4.15)

to the unit disk and perform the limit. We get an unit disk with insertions at 1
and -1 as in the figure 4.2

〈φ1|φ2〉 = lim
z→0

(
1

z2

)h1

(f ′(−1/z))h1(f ′(0))h2〈φ1(f(−1/z))φ2(f(0))〉disk
= 4h1〈φ1(−1)φ2(1)〉disk, (4.16)
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where we have used h1 = h2 to get nonvanishing correlator.
Having two punctured disk obtained by gluing two string worldsheets, gener-

alization for the higher overlaps is straightforward. For n string fields, we need to
glue n worldsheets and arrive at n-punctured disk as in the figure 4.2. Functional
that generalize BPZ product (4.16) can be easily constructed. We need to map
n semi-disks to the wedges of the unit disk by conformal maps and compute the
correlator of these wedge states with insertions glued together

∫
Ψ1 ∗ . . . ∗Ψn = 〈(f (n)

1 ◦Ψ1(0)) . . . (f (n)
n ◦Ψn(0))〉, (4.17)

where corresponding conformal maps are

f
(n)
k =

(
i− z
i+ z

) 2
n

e
2πik
n . (4.18)

Having defined star product and integration in CFT approach, it is simple com-
putation to verify that the original Witten axioms are satisfied.

The most interesting case is the case of 3-vertex. Using the map of the above
correlator to the UHP, we find UHP representation of the 3-vertex with insertions
at −

√
3, 0, and

√
3. Performing the map, we get from the above functions f

(3)
i

new one with the expansion

f1(z1) =
√

3 +
8

3
z1 +

16

9

√
3z2

1 +
248

81
z3

1 + . . .

f2(z2) =
2

3
z2 −

10

81

√
3z3

2 + . . . (4.19)

f3(z3) = −
√

3 +
8

3
z3 −

16

9

√
3z2

3 +
248

81
z3

3 + . . . .

At the end of this section, we will introduce a twist operator Ω [65] that
reverses the parametrization of a string. We will call a field Ψ+ to be twist even
if ΩΨ+ = Ψ+ and twist odd if ΩΨ− = −Ψ−. It can be shown that Ω|0〉 = −|0〉,
ΩL−nΩ−1 = (−1)nL−n, Ωb−nΩ−1 = (−1)n+1b−n, and Ωc−nΩ−1 = (−1)nc−n. From
this relations, we can deduce that fields on the odd levels in (4.3) are twist-odd
whereas fields on the even levels are also twist-even. It is not difficult to show
that

〈Ψ+,Ψ+,Ψ−〉 = 0 (4.20)

is vanishing. This identity will provide truncation of the string field to the twist-
odd subspace.

4.3 Boundaries and Sen’s conjectures

At the ends of the open strings, one can impose different boundary conditions.
Choosing particular BCFT background, one finds a tachyon (a state with negative
mass2) in the string spectrum. This tachyon indicates that perturbative vacuum
is unstable and tends to condense to a more stable vacuum. First suggestions
in this subject comes from [70, 71], but with clear picture came Ashoke Sen in
1999. He suggested that open bosonic string with free boundary conditions should
be thought of as living on a space-filling D-brane and nonzero vacuum energy is
associated with its tension. Tachyons in the string spectrum are instability modes
of the initial D-brane. Sen came up with three conjectures [17, 18]

74



Figure 4.3: Map used in the definition of the Ellwood invariants.

1. The tachyon potential has a locally stable minimum with energy density
E with respect to the energy density of the unstable critical point that is
equal to minus the tension of the initial D-brane

2. Lower-dimensional D-branes are solitonic solutions on the background of a
D25-brane.

3. The locally stable vacuum of the system is the closed string vacuum with
no open string excitations.

Since the introduction of the above conjectures, they have been tested numerically
using level truncation that provides good insight into the problem. Two of the
conjectures have been also proven analytically. The first conjecture was verified
by Schnabl in 2005 when constructing the first analytical solution to the SFT
equations of motion [24]. The solution for the tachyon vacuum was followed
by the proof of the third conjecture by Schnabl and Ellwood [72]. The second
conjecture still remains to be proven and lump solutions to be constructed.

4.4 Ellwood invariants

As mentioned in the second conjecture above, solutions to SFT equations of
motion correspond to different D-brane configurations. To interpret the boundary
condition, one needs to compute coefficients in front of the Ishibashi states in the
boundary state. To find these coefficients, we will use gauge invariant observables
originally introduced in [73, 74]. Later, Ellwood conjectured a relation to the
closed string tadpole on a disk with appropriate boundary condition [22]. He
computed a class of invariants for marginal deformation solutions and tachyon
vacuum and argued that the relation should hold in general. Rigorous proof still
remains to be done. Recently the Ellwood conjecture has been generalized and
it has been shown how to use it to compute whole boundary state [23]. In this
section we will describe basics of the work listed above.

Let us define the gauge invariant quantities and show their gauge invariance.
Consider a ghost number 1 open string field |Ψ〉 = OΨ(0)|0〉 represented by
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insertion of OΨ(0) on the unit semicircle as in the figure 4.3. To define gauge
invariants W (Ψ,Vα), we will need a map

f(z) =
2z

1− z2
(4.21)

that brings us from the upper half disk to the entire UHP. Then we define gauge
invariants

W (Ψ,Vα) = 〈I|Vα(i)|Ψ〉 = 〈Vα(i)f ◦OΨ(0)〉UHP , (4.22)

for all Vα = cc̄V m
α ghost number 2 closed string vertex operator with conformal

weight (0, 0) satisfying {Q,Vα} = 0. We have also introduced the identity string
field

|I〉 = U †f |0〉, (4.23)

where Uf is the generator of the transformation f , that is the identity element of
the star algebra.

Now, we will proof the gauge invariance

W (Ψ +QΛ + [Ψ,Λ],Vα) = W (Ψ,Vα). (4.24)

Due to the linearity of W (Ψ,Vα) the above invariance is implied by

W (QΛ,Vα) = 0, W ([Ψ,Λ],Vα) = 0. (4.25)

The first term vanishes as a consequence of BRST invariance of the boundary
condition 〈{QB, . . .}〉 = 0 since then

W (QBΛ,Vα) = 〈Vα(i)f ◦ {QB,OΛ}〉UHP
= −〈{QB,Vα(i)}f ◦ OΛ〉UHP = 0. (4.26)

The second term also vanishes since

W (Ψ ∗ Λ,Vα) = W (Λ ∗Ψ,Vα), (4.27)

recalling the definition of the ∗-product.
Ellwood conjectured that starting on the BCFT0 background and finding a

solution to the equations of motion Ψ, there exists a relation, which enables to
find on-shell part of the boundary state (i.e. the part corresponding to weight
(1,1) bulk primaries)

W (Ψ,Vα)−W (ΨTV ,Vα) = − 1

4πi
〈Vα|c−0 ||BΨ〉〉, (4.28)

where |BΨ〉 is the boundary state we wish to find, ΨTV is the solution for the
tachyon vacuum, and c− = c0 − c̄0. Ellwood verified the relation for all known
analytical solutions and gave a sketch of its general prove. Although it is widely
believed, precise verification of the statement is still lacking.

Recently Kudrna, Maccafferri and Schnabl found a generalization of the Ell-
wood conjecture that enables the computation of all coefficients of the boundary
state [23]. Since the boundary state is expressible as a linear combination of the
Ishibashi states and every Ishibashi state corresponds to a spinless primary, one
needs only to compute coefficients standing in front of the primary states. The
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generalization uses following trick. We can add a BCFTaux with central charge 0
to the matter sector and introduce an auxiliary primary field w in the sector with
identity disk one-point function with the insertion at the origin 〈w(0)〉disk = 1.
They argued that there always exists such a theory. We can promote the orig-
inal spinless primary in the matter sector Vα with conformal weights (hα, hα)
by tensor multiplication Vα ⊗ w. If the auxiliary field w has conformal weights
(1 − hα, 1 − hα), we are totally given on-shell primary operator cc̄Vα ⊗ w with
conformal weights (0,0) and the Ellwood conjecture 4.28 can be used.

The next nontrivial question that have to be addressed is the problem of lifting
the solution from the original BCFT to BCFT’=BCFT⊗BCFTaux. In the cases
we will be studying, the lift is following. We will be interested in the matter
BCFT split into the two sectors BCFT1⊗BCFT2 with central charges (c,c) and
(26-c,26-c) and we will study tachyon condensation in the first sector BCFT1,
where boundary primaries will be switched on. In the second sector, the string
field will be universal with no other primaries switched on. The lift can be then
performed simply replacing L(2)

n → L(2)
n + L(aux)

n and |0〉 → |0〉 ⊗ |0〉aux. The
lifted solution will be denoted as Ψ̃ and the lifted bulk operator Ṽα. Generalized
Ellwood conjecture then reads

〈cc̄V α|c−0 ||BΨ〉〉 = −4πi〈E[Ṽα]|Ψ̃− Ψ̃TV 〉, (4.29)

where ΨTV is the solution for the tachyon vacuum and we have adopted shorthand
〈E[Ṽα]| = 〈I|Ṽα(i).

As discussed in the previous chapter, the boundary state can be written in
terms of the Ishibashi states that are known if the spectrum of bulk primaries is
known. The boundary state corresponding to the string field Ψ is

||BΨ〉〉 = ||BΨ〉〉m ⊗ ||B〉〉gh =
∑

i

nαΨ|Vα〉〉 ⊗ ||B〉〉gh, (4.30)

where the sum runs over all spinless bulk primaries and we have used matter-
ghost factorization of the boundary state proven in the appendix of [23]. The
coefficients

nαΨ = 〈V α||BΨ〉〉m (4.31)

remain to be determined. One can proceed by solving the difficult set of sewing
constraints or use methods of the RG to construct new boundary state from
the original one. SFT provides different approach due to the Ellwood conjecture.
With the use of the identity 〈0|c−1c̄−1c

−
0 ||B〉〉gh = −2, one finds for the coefficients

in the boundary state

nαΨ = 〈V α||BΨ〉〉m = −1

2
〈0|c−1c̄−1c

−
0 ||B〉〉gh〈V α||BΨ〉〉m

= −1

2
〈cc̄V αc−0 ||BΨ〉〉 (4.32)

and now using the generalized Ellwood conjecture, one finally finds explicit ex-
pression for the coefficients

nαΨ = 2πi〈E[Ṽα]|Ψ̃− Ψ̃TV 〉. (4.33)

To each solution of SFT equations of motion, there exists a boundary state de-
scribing corresponding D-brane. SFT thus provides new method how to look
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for the boundary states. Instead of solving difficult sewing constraints, one only
needs to solve SFT equations of motion. We assume that solutions to the equa-
tions of motion are indeed consistent and corresponding BCFTs satisfy sewing
conditions.

4.5 Level truncation method

Level truncation is a powerful numerical method in SFT that led to the discovery
of many solutions. This method will be used in the next chapter to construct
solutions in the Ising model SFT and corresponding boundary states (Ising D-
branes).

Level truncation has been introduced by Kostelecky and Samuel [71] to deal
with an infinite number of coefficients standing in front of the basis states of the
string field. The string field truncated to the level L is the one containing only
fields with scaling dimensions less or equal to L with all the other fields neglected.
Examples will be seen later. We can then construct a truncated action for these
truncated fields and assume that in the limit L → ∞ correct SFT results are
obtained. Kostelecky and Samuel performed the computation up to the level
L = 4 and managed to find a non-perturbative solution with lower energy then
the energy of the original configuration.

After the introduction of D-branes and Sen’s conjectures, the solution found
by Kostelecky and Samuel has been identified with the non-perturbative (closed
string) vacuum with no open string excitations. In 2005, the non-perturbative
vacuum appeared as the first analytic solution in SFT due to Schnabl [24]. Mo-
tivated by the Sen’s conjectures, level truncation became to be a popular tool to
address them.

String field can be also reduced in several ways when looking for particular
solution. There is huge amount of gauge freedom in SFT and many fields can be
projected out by fixing gauge in the truncated field. The Siegel gauge is typically
chosen and the same is the choice in this thesis. In the Siegel gauge, only states
anihilated by b0 are left. It corresponds to the situation, when all the states
containing c0 are projected out.

There are two reasons to fix gauge in level truncation. First of all, it reduces
number of fields at given level and thus it is numerically convenient. Moreover, it
reduces number of pure-gauge solutions that can be found using level truncation.
Gauge symmetry mixes fields at different levels and it is therefore broken in level
truncation since the maximal level is fixed. Gauge transformation corresponds
to flat directions in the potential, but it is not the case when the string field is
truncated. We can find nontrivial solutions that converge to a pure gauge solution
when the level increases and flatness restores.

There can be found problems in gauge fixing since gauge choices are generally
not globally well defined. The validity of the Siegel gauge has been studied by
Ellwood and Taylor [77]. We will assume that Siegel gauge is valid for all our
solutions.

Furthermore, there are many possible ways how to truncate the string field.
One can restrict the string field to the universal subspace Huniv ⊂ H composed
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of the states

Huniv = Span{Lm−j1 . . . Lm−jpb−k1 . . . b−kqc−l1 . . . c−lr |0〉|ji ≥ 2, ki ≥ 2, li ≥ −1}
(4.34)

since the other modes gives zero after the action on the perturbative vacuum |0〉.
Note that the zero momentum tachyon c1|0〉 is member of Huniv. Since BRST
operator can be written in terms of Tm, b, and c modes, we find that QB : H → H.
Moreover, H clearly forms a closed subalgebra under the ∗-multiplication.

One can further decompose the universal subspace into the direct sum of
spaces with given ghost number

Huniv = ⊕g∈ZH(g)
univ. (4.35)

From the previous arguments, the physical string fields have ghost number one
and the string field can be consistently truncated to live in the space H(1)

univ.

Since c1|0〉 = c(0)|0〉 ∈ H(1)
univ is a ghost number one primary state, all the other

states from H(1)
univ can be obtained acting with all the matter and ghost Virasoro

generators on this state

H(1)
univ = Span{Lm−j1 . . . Lm−jpL

gh
−l1 . . . L

gh
−lqc1|0〉|j1 ≥ 2, li ≥ 1}. (4.36)

The statement of the equivalence of the above set and the previous definition of
H(1)
univ can be proven studying spectra of the operators in each set. The procedure

is performed in [78].
Next, we can restrict our attention only to the twist even states, i.e. states

containing only odd numbers of the Virasoro generators. The twist transforma-
tion corresponds to the reversion of the parametrization of the string. It can be
proven that perturbative vacuum |0〉 is twist odd together with odd modes. Note
that the tachyon c1|0〉 remains in the spectrum. The prove that we can restrict
on the even fields is based on the following arguments. Since fields on different
levels in given Verma module have vanishing BPZ-product, the twist even and
odd fields do not mix in the kinetic part of the action. It has been already stated
that odd states cannot be present linearly in the cubic term of the action since
this vertices vanish. It means that twist-even fields appear at least quadratically
in the SFT action and thus can be consistently set to zero not to spoil equations
of motion.

The last truncation one can perform is based on the restriction to the SU(1,1)
singlets in the ghost sector. The Siegel gauge fixed equations of motion

L0Ψ + b0Ψ ∗Ψ = 0 (4.37)

admit consistent truncation to the fields Ψ ∈ Hsingl satisfying

b0Ψ = GΨ = XΨ = YΨ = 0, (4.38)

where we have introduced generators of the SU(1,1) symmetry

G =
∞∑

n=1

(c−nbn − b−ncn), X = −
∞∑

n=1

nc−ncn, Y =
∞∑

n=1

1

n
b−nbn. (4.39)

The consistency can be checked applying SU(1,1) generators on b0(Ψ ∗ Ψ) and
L0Ψ and showing that it vanishes if Ψ alone is a SU(1,1) singlet.
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SU(1,1) singlets in the ghost sector can be conveniently described using twist-
ed ghost CFT. Theory of the twisted ghosts is a theory with central charge -2
with Virasoro generators

L′gk = Lgk + kjghk + δk,0 =
+∞∑

n=−∞
(k − n) : bnck−n :, (4.40)

where jghk are ghost current jgh = cb modes. Details of the twisted ghosts CFT
can be found in [79, 80]. Performing some tedious exercise with commutators,
one finds commutators of the ghost number current modes

[jghm , j
gh
n ] = mδm,−n. (4.41)

As mentioned above the SU(1,1) singlet subspace can be now written explicitly
as

Hsingl = Span{L′gh−k1
. . . L′gh−knc1|0〉|ki > 1} ⊗Hmatter. (4.42)

Finally, putting all the truncations together (i.e. SU(1,1) subspace, twist even
states, and universal fields with ghost number 1), one obtains a space

Span{L′gh−k1
. . . L′gh−kmL

m
−l1 . . . L

m
−lnc1|0〉|ki > 1, li > 1,

∑
ki +

∑
lj is even}. (4.43)

4.6 Conservation laws

The cubic term for primary states in the action (4.10) is readily computable if one
knows corresponding structure constants. the situation is a bit more difficult in
the case of descendant fields. One can proceed computing conformal maps of the
inserted descendants and then apply corresponding differential operators L−n to
get the result. The same difficulty emerges when computing Ellwood invariants,
where bulk-boundary structure constants are needed to find a contribution from
the primary part of the string field. In this section, we will develop a technique
of conservation laws that will enable us to deal with the descendants easily.

Let us start with the derivation of the conservation laws for 3-vertex. We will
represent the 3-vertex by a state 〈V3| in the 3-string dual Fock space defined by

〈Ψ1,Ψ2,Ψ3〉 = 〈V3|Ψ1〉 ⊗ |Ψ2〉 ⊗ |Ψ3〉. (4.44)

Due to linearity of the 3-vertex, one can decompose the right-hand side into the
linear combination of vertices with insertions that are Virasoro descendants of
primary fields. If only primary operators are inserted, the cubic term can be eas-
ily computed from the knowledge of boundary structure constants. If there are
some Virasoro generators inserted, the conservation laws allow us to replace neg-
atively moded Virasoro generators by positively moded generators and iterating
this procedure, we can eliminate all the Virasoro generators using the Virasoro
commutation relation. One arrives at the simple 3-vertex with three primary
operators insertions.

We will derive conservation laws for the generators of Virasoro algebra with
central charge c, i.e. find coefficients Ak, akn, b

k
n, and ckn in the expression

〈V3|L(2)
−k = 〈V3|


Akc+

∑

n≥0

aknL
(1)
n +

∑

n≥0

bknL
(2)
n +

∑

n≥0

cknL
(3)
n


 , (4.45)
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0−
√
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Figure 4.4: Contour deformation used in the derivation of conservation laws for
3-vertex.

where upper indices of the Virasoro generators label insertions, where the par-
ticular Virasoro generator acts [78]. Conservation laws for the other insertions
can be easily obtained by cyclic permutation of these indices. Negatively moded
Virasoro generators L

(2)
−k acting on the second state are traded for the sum of

positively moded generators acting on all the three states.
Consider UHP representation of the 3-vertex with insertions at −

√
3, 0, and√

3. Let v(z) be a holomorphic vector field with possible singularities at the

punctures. This field transforms as v′(w) =
(
dz
dw

)−1
v(z). Regularity condition

at the infinity constraints limz→∞ z
−2v(z) to have finite value as can be seen

performing the change of variables z → −1/z.
With the above conditions imposed on v(z), we have following transformation

under the conformal map w(z)

T (z)v(z)dz =
(
T (w)− c

12
S(z, w)

)
v(w)dw. (4.46)

Since T (z) and v(z) are holomorphic almost everywhere, they can be integrated
and the integration contour can be continuously deformed as long as we do not
cross a puncture. Consider a contour C that encircles the three punctures. Due
to the regularity at the infinity, following quantity vanishes identically

∮

C
v(z)〈T (z)(f

(3)
1 ◦Ψ1(0))(f

(3)
2 ◦Ψ2(0))(f

(3)
3 ◦Ψ3(0))〉dz = 0. (4.47)

It must be so for any insertion and thus we can write simply
∮

C
v(z)〈V3|T (z)dz = 0. (4.48)

Deforming the contour C as in the figure 4.4 and transforming to the local coor-
dinates using f

(3)
i , we obtain

3∑

i=1

∮

Ci
vi(zi)〈V3|

(
T (zi)−

c

12
S(f

(3)
i (zi), zi)

)
dz = 0. (4.49)

Schwarzian derivative for maps fi is

S(fi, yi) = −10

9

1

(1 + y2
i )

= −10

9
+

20

9
z2
i −

10

3
z4
i +

40

9
z6
i + . . . (4.50)
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and it is the same for all three maps since they differ by SL(2,R) transformation
and is regular at the origin, where operators are inserted. The central term
contributes only for singular fields v(i).

Recalling the definition of the Virasoro generators L
(i)
−k, one needs v(2) ∼

z−k+1
2 +O(z2) around the puncture 2 and regular elsewhere to get desired relation.

The fields v(z) with these properties will give us Virasoro conservation laws.
Clearly, using globally defined vector field

v1(z) = −2

9
(z2 − 3) (4.51)

that satisfy all the conditions described above, we get conservation laws for L
(2)
−1.

After transformation to the local coordinates and performing Taylor expansion,
one finds

v
(1)
1 (z1) = − 4

3
√

3
z1 +

8

27
z2

1 −
40

81
√

3
z3

1 +
40

729
z4

1 +O(z5
1),

v
(2)
1 (z2) = 1 +

11

27
z2

2 −
80

729
z4

2 +O(z5
2),

v
(3)
1 (z3) =

4

3
√

3
z3 +

8

27
z2

3 +
40

81
√

3
z3

3 +
40

729
z4

3 +O(z5
3). (4.52)

We see that leading term near the puncture at zero will give us precisely L
(2)
−1.

Performing the three contour integration from (4.49) we can see that the central
term do not contribute due to the regularity of vi1 around each puncture and

we can simply replace v(i)
n z

n
i → v(i)

n L
(i)
n−1 in the expression above and set the

expression equal to zero

0 = 〈V3|
(
− 4

3
√

3
L

(1)
0 +

8

27
L

(1)
1 −

40

81
√

3
L

(1)
2 +

40

729
L

(1)
3 + . . .

)

+ 〈V3|
(
L

(2)
−1 +

11

27
L

(2)
1 −

80

729
L

(2)
3 + . . .

)

+ 〈V3|
(

4

3
√

3
L

(3)
0 +

8

27
L

(3)
1 +

40

81
√

3
L

(3)
2 +

40

729
L

(3)
3 + . . .

)
. (4.53)

If L−1 appears at different punctures, corresponding conservation law can be
found simply by cyclic permutation (1)→ (2), (2)→ (3), (3)→ (1).

Similar procedure with the vector field

v2(z) = − 4

27

z2 − 3

z
(4.54)

leads to the following conservation law

0 = 〈V3|
(
− 8

27
L

(1)
0 +

80

81
√

3
L

(1)
1 −

112

243
L

(1)
2 +

304

729
√

3
L

(1)
3 + . . .

)

+ 〈V3|
(
L

(2)
−2 +

5

54
+

16

27
L

(2)
0 −

19

243
L

(2)
2 + . . .

)

+ 〈V3|
(
− 8

27
L

(3)
0 −

80

81
√

3
L

(3)
1 −

112

243
L

(3)
2 −

304

729
√

3
L

(3)
3 + . . .

)
, (4.55)

where the central term now contributes due to the fact that v2(z) has a pole
at the second puncture. All the other conservation laws for the 3-vertex can be
derived using different vector fields.

82



−i

0

i

Ci

C0

C−1

C∞

Figure 4.5: Contour de-
formation used in the
derivation of conserva-
tion laws for the Ell-
wood invariants.

Next category of conservation laws that will de-
rived are the one for Ellwood invariants [23]. Total
central charge of the matter-ghost theory is zero. Con-
sider thus a theory decomposed into the two sectors
BCFT(1)⊗BCFT(2) with central charges c and −c. The
first sector BCFT(1) is the one, where we will find the
solutions for D-branes. The second sector is composed
of the rest matter subsector and ghost BCFT subsec-
tor. Let us denote

V (z, z̄) = V
(h,h̄)

(1) V
(−h,−h̄)

(2) (z, z̄) (4.56)

zero-weight primary operator in the Ellwood invari-
ants. We would like to find conservation laws for Vira-
soro generators in each sector. Clearly it is enough to
derive them for the first sector and conservation laws
in the other sector can be found simply exchanging
c→ −c and (h, h̄)→ (−h,−h̄).

Let us define anomalous derivation by

K(1)
n = L(1)

n −(−1)nL
(1)
−n =

∮ dw

2πi
vn(w)T (1)(w), (4.57)

where the holomorphic vector field vn(w) is given by

vn(w) = wn+1 − (−1)nw−n+1. (4.58)

In the following, we will show how this operator acts on the Ellwood state

〈E[V ]|K(1)
n = 〈I|V (h,h̄)

(1) V
(−h,−h̄)

(2) (i,−i)K(1)
n

=
∮

0

dw

2πi
vn(w)〈I|V (h,h̄)

(1) V
(−h,−h̄)

(2) (i,−i)T (1)(w). (4.59)

The identity string field is defined by 〈I| = 〈0|Uf with conformal map defined
above (4.21). We need to move the operator Uf to the right using that V (z, z̄)
has zero conformal weight and using the knowledge how T transforms

=
∮

0

dw

2πi
vn(w)〈I|V (h)

(1) (i)V
(h̄)

(1) (−i)V (−h,−h̄)
(2) (i,−i)T (1)(w) (4.60)

=
∮

0

dw

2πi
vn(w)〈0|V (h)

(1) (i)V
(h̄)

(1) (−i)
(

[f ′(w)]2T (1)(f(w)) +
c

12
Sf (w)

)
V

(−h,−h̄)
(2) Uf .

Note that only singularities in the above expression are located at 0,±i, and ∞.
The expression is invariant under the transformation w → − 1

w
as can be easily

checked and the integration around the infinity gives the same contribution as
the integration around the origin. Since

∮

0
. . . =

∮

∞
. . . , (4.61)

as mentioned above, we can get from the deformation sketched in 4.5 identity

∮

0
. . . = −1

2

∮

(i,−i)
. . . . (4.62)
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Now, we can evaluate the integrals using the OPE of stress-energy tensor T with
primary operators

= −1

2

∮

(i,−i)

dw

2πi
vn(w)[f ′(w)]2〈0|V (h)

(1) (i)V
(h̄)

(1) (−i)T (1)(f(w))V
(−h,−h̄)

(2) Uf

− c

24

∮

(i,−i)

dw

2πi
vn(w)Sf (w)〈0|V (h)

(1) (i)V
(h̄)

(1) (−i)V (−h,−h̄)
(2)

= −1

2

∮

i

dw

2πi
vn(w)[f ′(w)]2〈0|


 hV

(h)
(1) (i)

(f(w)− i)2
+
∂V

(h)
(1) (i)

f(w)− i


V (h̄)

(1) (−i)V (−h,−h̄)
(2) Uf

− 1

2

∮

−i

dw

2πi
vn(w)[f ′(w)]2〈0|V (h)

(1) (i)


 h̄V

(h̄)
(1) (−i)

(f(w) + i)2
+
∂V

(h̄)
(1) (−i)

f(w) + i


V (−h,−h̄)

(2) Uf

− c

24

∮

(i,−i)

dw

2πi
vn(w)Sf (w)〈0|V (h)

(1) (i)V
(h̄)

(1) (−i)V (−h,−h̄)
(2) . (4.63)

We have extracted the w-dependence from the points, where the operators are
inserted and the contour deformation can be easily performed. We arrive at

〈E[V ]|K(1)
n = n

[
in
(
c

8
− 4h

)
+ (−i)n

(
c̄

8
− 4h̄

)]
〈E[V ]|K(1)

n . (4.64)

This conservation laws allow us to reduce Virasoro generators standing in front
of the primaries in the string field and only correlators of primaries are needed
to be computed.

If we study folded models, new primaries emerge at higher levels combining
descendants from each sector, such as (L

(1)
−1 − L(2)

−1)|σ〉 ⊗ |σ〉 in the Ising model.
Generally, combining primaries |h1〉 and |h2〉, one finds a primary state on the

first level |V 〉 = (h2L
(1)
−1 − h1L

(2)
−1)|h1〉 ⊗ |h2〉. We wish to look for the conserva-

tion laws for these primary operators. The only needed ingredient to derive the
conservation laws is the OPE of L−1V = ∂V with the stress-energy tensor

T (z)∂V (h)(w) ∼ 2hV (w)

(z − w)3
+

(h+ 1)∂V (w)

(z − w)2
+
∂2V (w)

z − w , (4.65)

which can be found as a derivative of the OPE of a primary field with the stress-
energy tensor. The action of K(1) in the first sector is computable in similar
fashion as earlier and we find

〈E[V ]|K(1)
n = n

[
in
(
c

8
− 4h1

)
+ (−1)n

(
(
c

8
− 4h̄1

)]

− 4

3
h1i

n+1n(2n2 − 5)〈0|V h1(i)V h2(i)V̄ h̄1(−i)V̄ h̄2(−i)V (−h,−h̄)Uf

− 4inn〈0|∂V h1(i)V h2(i)V̄ h̄1(−i)V̄ h̄2(−i)V (−h,−h̄)Uf . (4.66)

We can see that new terms appeared. One can check that applying on the
state 〈E[V ]| operator K(1)

n +K(2)
n , the relation above indeed reduces to

〈E[V ]|K(1)
n = n

[
in
(
c

8
− 4(h1 + 1)

)
+ (−1)n

(
c

8
− 4(h̄1 + 1)

)]
. (4.67)
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Since there are new terms, we need to find corresponding conservation laws
to deal with them. The first case is obvious since a primary field is present

〈0|V h1(i)V h2(i)V̄ h̄1(−i)V̄ h̄2(−i)V (−h,−h̄)UfK
(1)
n (4.68)

= n
[
in
(
c
8
− 4h1

)
+ (−i)n

(
c̄
8
− 4h̄1

)]
×

×〈0|V h1(i)V h2(i)V̄ h̄1(−i)V̄ h̄2(−i)V (−h,−h̄)Uf .

The second term is a bit more complicated, but the well known procedure gives
us

〈0|∂V h1(i)V h2(i)V̄ h̄1(−i)V̄ h̄2(−i)V (−h,−h̄)Uf

= n
[
in
(
c

8
− 4(h1 + 1)

)
+ (−i)n

(
c̄

8
− 4h̄1

)]
×

× 〈0|∂V h1(i)V h2(i)V̄ h̄1(−i)V̄ h̄2(−i)V (−h,−h̄)Uf (4.69)

− 4

3
in+1n(2n2 − 5)〈0|V h1(i)V h2(i)V̄ h̄1(−i)V̄ h̄2(−i)V (−h,−h̄)Uf

Using these conservation laws, we can compute Ellwood invariants for prima-
ry fields obtained from the descendants on the first level in the folded models.
Computing conservation laws for higher primaries would needs a bit more care.
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5. Boundary states construction

5.1 The Ising model SFT

In this chapter, we wish to use the methods of SFT described in the previous
chapter to construct Ising model boundary states. First of all, we have to create
SFT setup. BCFT background in SFT can be decomposed into the matter and
ghost part BCFT=BCFTm⊗BCFTgh. We want to study boundary conditions
(or D-branes in string theory language) in the Ising model, which is a model with

central charge
(

1
2
, 1

2

)
. Since the matter BCFTm must have total central charge

(26,26), one can decompose it into the two sectors BCFTm=BCFTI⊗BCFTR,
where BCFTI is the Ising model part and BCFTR is a rest boundary conformal
field theory with central charge (25.5, 25.5) to sum up with the first sector central
charge to the correct value. This decomposition is done in analogy with the
one proposed in [81], where lump solutions in one compactified dimension are
successively looked for.

In the Ising sector BCFTI , the theory is defined using particular background
with some boundary condition described by a boundary state. In the Ising model,
we will denote the BCFTI backgrounds as 1-brane (corresponding to the bound-
ary state ||1〉〉I), ε-brane (corresponding to ||ε〉〉I) and σ-brane (corresponding to
||σ〉〉I). Other D-branes can be obtained as integer linear combinations of these
fundamental branes. Recall the formula for boundary states in terms of the Isi-
bashi states from the chapter 3

||1〉〉I =
1√
2
|1〉〉I +

1√
2
|ε〉〉I +

1
4
√

2
|σ〉〉I

||ε〉〉I =
1√
2
|1〉〉I +

1√
2
|ε〉〉I −

1
4
√

2
|σ〉〉I

||σ〉〉I = |1〉〉I − |ε〉〉I . (5.1)

Moreover, we assume the existence of a boundary state in the rest BCFTR denoted
by ||0〉〉R with g0 = 〈0||0〉〉 = 1 and we have a boundary state ||B〉〉gh in the ghost
sector. Since we will be interested in boundary states in CFTI , where all the
primaries will be switched on, we will denote ||V α〉〉 = ||V α〉〉I⊗||0〉〉R. In the case
of the Ising model, g-function is also the energy of corresponding D-brane since
graviton operator is not present in the Ising sector and only overlap with |0〉 has
to be computed to find the energy of the Ising model D-brane.

We will consider SU(1,1) basis in the ghost sector in our computations and
we will work in the Siegel gauge. We have to assume that Siegel gauge is restored
in the limit when the truncation level approaches infinity. In the sector BCFTR

the basis of states will be universal from the section 4.5. To find solutions cor-
responding to D-branes in the Ising sector, one has to allow all possible degrees
of freedom of the boundary, i.e. we have to consider whole boundary spectrum
in given background. Spectrum of boundary operators in given background is
reviewed in the table below.

Due to the fusion rules for the Ising model and considerations from the pre-
vious chapters, we can see that the string field is consistently truncated. BRST
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D-brane Energy Boundary spectrum

||1〉〉 1√
2

1

||ε〉〉 1√
2

1

||σ〉〉 1 1, ε

Table 5.1: Boundary spectrum of the Ising D-branes.

operator QB acts within the given Verma module and due to minimal models
fusion rules ∗-multiplication of two states still remains in the truncated space of
fields.

Verma modules of boundary operators in the Ising model are reducible repre-
sentations of Virasoro algebra with null states. By adding multiplications of the
null states we can set to zero the same number of components of the string field
as is the number of null states. The states set to zero are arbitrary as long as
the remaining states form a non-degenerate basis. From the form of the partition
function we can see that the best irreducible basis consists of states created by
only certain Virasoro operators. They are

L−2, L−3, L−4, L−5, L−11, L−12, L−13, L−14, L−18, L−19, L−20, L−21, . . . (5.2)

in the Verma module of the identity, and

L−1, L−4, L−6, L−7, L−9, L−10, L−12, L−15, L−17, L−20, L−20, L−22, . . . (5.3)

in the Verma module of ε. In both cases the pattern repeats modulo 16. We
have checked that this basis of descendants is non-degenerate numerically up to
the level 22. Had we needed also the Verma module of σ, we would find that we
need only Lodd, i.e. L−1, L−3, L−5, L−7, . . .. For further details see [1].

Using Cardy’s condition we were able to construct boundary states of minimal
models. But it is no more true for general CFT, where the situation becomes too
difficult. Different way to proceed is using the RG. One can add a perturbation
to the action of the form

Sψ = λ
∫

∂W
φ(s)ds, (5.4)

where φ is a relevant or marginal boundary operator, and study RG flows triggered
by this operator. For further details see [14], where authors study certain RG
flows in the case of minimal models. Unfortunately, there is huge limitation in
the methods based on the RG. The flow can only lead to the state with lower g-
function ga = 〈1〉a. This limitation is not present in the SFT as we will illustrate
on the solution found on the 1-brane and ε-brane with higher boundary energy.

5.2 Truncated action for the Ising model

In this section, we will illustrate the level truncation method on the Ising SFT.
We will construct explicitly the action for the truncated string field and find
solutions to the equations of motion corresponding to the extreme value of the
action. Starting from one D-brane we will find solutions that correspond to the
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other two boundary conditions. The only needed ingredients are the structure
constants in some BCFT background. They have been reviewed in the previous
chapter.

5.2.1 Solutions on the σ-brane

Let us start with the solutions on the σ-brane, where we will find the other two
elementary boundary states. The boundary spectrum of σ-brane contains primary
operators 1 and ε with conformal weights 0 and 1

2
. the string field truncated to

the level L = 1
2

can be written as linear combination of two tachyonic modes c1|0〉
and c1|ε〉 since all the other operators has higher scaling dimension

|Ψ〉 = tc1|0〉+ ac1|ε〉. (5.5)

We will study condensation on the original σ-brane trigered by relevant operator
ε to find the other two solutions.

First of all, we wish to construct the truncated action for the field (5.5). In
the Siegel gauge the kinetic term reduces to 〈Ψ|QB|Ψ〉 = 〈Ψ|c0L0|Ψ〉, which can
be derived from (4.8). From the BPZ conjugation of the above fields

BPZ(|0〉) = 〈0|, BPZ(c1) = c−1, (5.6)

we find in the ghost sector

〈0|c−1c0L0c1|0〉 = −〈0|c−1c0c1|0〉 = −1, (5.7)

where we have adopted normalization 〈c−1|c0|c1〉 = 1. In the matter sector, we
get on the σ-brane 〈1〉σ = 〈0||σ〉〉 = 1. For the state |ε〉, we find

〈ε|c−1c0L0c1|ε〉 = −1

2
〈ε|ε〉〈0|c−1c0c1|0〉 = −1

2
, (5.8)

where we have used the prescription for the boundary 2-point function of ε.
Putting the two expressions together we find a kinetic term in the SFT action

1

2
〈Ψ, QBΨ〉 =

1

2
〈tc1 + ac1ε, c0L0(tc1 + ac1ε)〉 =

= −1

2
t2〈0|c−1c0c1|0〉 −

1

4
a2〈ε|c−1c0c1|ε〉 = −1

2
t2 − 1

4
a2, (5.9)

where the crossed terms vanishes due to differing conformal weighs of 1 and ε.
Now, we move to the computation of the cubic term. We will use first two

terms from the expansion 4.20 defining 3-vertex on the UHP. From the normaliza-
tion 〈c−1|c0|c1〉 = 1 that fixes the boundary structure constant and the knowledge
of the conformal weight of c-ghost, one finds correlator

〈c(z1)c(z2)c(z3)〉 = (z1 − z2)(z1 − z3)(z2 − z3). (5.10)

With the use of this identity, we get in the ghost sector

〈c1, c1, c1〉 = 〈(f1 ◦ c(0))(f2 ◦ c(0))(f3 ◦ c(0))〉UHP

=

〈
c(
√

3)

8/3

c(0)

2/3

c(−
√

3)

8/3

〉

UHP

=
81
√

3

64
= K3, (5.11)
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Figure 5.1: Convergence of coefficients t and a with increasing level L.

where we have conventionally denoted

K =
3
√

3

4
. (5.12)

We get in the matter sector 〈1, 1, 1〉 = 1. From the Ising model fusion rules
correlators including only one operator ε or correlators composed of three such
operators vanish. The only nonvanishing terms are those containing two ε inser-
tions and corresponding 3-vertex is

〈ε, 1, ε〉 =

√
8

3

√
8

3
〈ε(−
√

3)ε(
√

3)〉 =
8

3

1

2
√

3
=

4

3
√

3
= K−1 (5.13)

and similarly for the other two options.
The interaction term is then

1

3
〈ψ, ψ, ψ〉 =

1

3
t3〈c1, c1, c1〉+

1

3
3a2t〈c1ε, c1, c1ε〉 =

1

3
K3t3 +K2a2t, (5.14)

where the factor 3 in the second step corresponds to three ways of the insertion
of the operators. Finally, we obtain SFT action truncated to the level 0.5 for the
string field (5.5)

V(t, a) = −1

2
t2 − 1

4
a2 +

1

3
K3t3 +K2a2t. (5.15)

It is simple to find solutions minimizing this action. We find two solutions
that will be precised using higher level computations and will lead to the other
two boundary states. The two solutions are

t = 0.14815, a = ±0.24348. (5.16)

Moreover, the tachyon vacuum can be found

t = 0.45618, a = 0. (5.17)

If we plug into the appropriately normalized action 2π2V(ψ) + 1, we find in the
first case the energy 0.83029, which is quite close to the expected value 1√

2
. The

difference is only 17%. For the tachyon vacuum one finds 0.31538.
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Figure 5.2: Convergence of the coefficients in the boundary state ||1〉〉 correspond-
ing to the solution found on the σ-brane.

To illustrate the use of the conservation laws let us write explicitly the two
solutions truncated to the level 2. The truncated string field has following form

|Ψ〉 = tc1|0〉+ ac1|ε〉+ uL′gh−2c1|0〉+ vc1L
I
−2|0〉+ wc1L

R
−2|0〉. (5.18)

The kinetic term of descendants can be evaluated in similar manner as in the
previous case since it is again L0 eigenstate. We can use Virasoro commutation
relations to move positively moded generators that anihilate vacuum to the right.

The interaction term can be computed using conservation laws. For example

〈c1, L
I
−2c1, c1〉 = 〈c1, c1, c1〉〈1, LI−21, 1〉 = − 5

54
c〈1, 1, 1〉 = − 5

108
(5.19)

since only the central term contributes and all the positively moded generators
anihilate the identity insertions. It would not be the case if some other Virasoro
generator appears at one of the three insertions. We would get contribution from
the positively moded generators that we could commute to the right. In the case
of ghost fields in SU(1,1) basis the algebra of ghost currents and their conservation
laws are needed, but the procedure is totally analogous and a bit more tedious.

The same procedure leads to the action truncated to the level L = 2. Finding
real solutions on this level leads to

t = 0.21084, a = ±0.27990, u = 0.08110, v = −0.09947, w = 0.03010
(5.20)

with corresponding energy 0.75421 that approaches the expected value and differs
only by 6.7 %.

The above procedure can be iterated and the coefficients converge to some
fixed value. Example of such convergence for the two tachyonic modes is shown
in the figure 5.1.
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Moreover, we would like to find all the Ellwood invariants to interpret the
solution. We get

2πi〈E[Ṽα]|cφj〉 = 2πi(f ′(0))hj−1〈Ṽ α(i,−i)cφj(0)〉aUHP
= −π2hj+∆β−1〈V β(i,−i)φj(0)〉aUHP
= −π22hj−1Ba

αj〈1〉aUHP (5.21)

for each boundary primary φi. In the expression above, we have used

〈c(i)c(−i)c(0)〉 = 2i, 〈wβ(i,−i)〉UHP = 2∆β−2, (5.22)

where the first relation comes from 5.10 and the second one can be obtained
mapping 〈w(0)〉disk = 1 to the UHP.

The only needed input into the above equation is the bulk-boundary correla-
tor. We get for example

〈1〉UHP = 1 and 〈ε(0)〉UHP = 0 (5.23)

for the identity insertion. In the case of ε insertion, one finds

〈ε(i,−i)〉UHP = −1

2
and 〈ε(i,−i)ε(0)〉UHP = 0 (5.24)

and in the third case

〈σ(i,−i)〉UHP = 0 and 〈σ(i,−i)ε(0)〉UHP = 21/8. (5.25)

At the level 0.5, we find for the first Ellwood invariant

n1
Ψ = −π

2
[t〈1〉UHP + a〈ε(0)〉UHP ] + 1 = −π

2
t+ 1. (5.26)

where the additive constant corresponds to ΨTV term and ensures correct nor-
malization. This term ensures that all the Ellwood invariants vanishes for the
tachyon vacuum, where no open string modes are present.

For the two solutions, we receive numerical value n1
Ψ = 0.76729 which differs

only by 8.5 % from the expected value of the coefficient in front of the corre-
sponding Ishibashi state |0〉〉 in (5.1). Similar procedure can be done for the other
two Ellwood invariants and we get nεΨ = 0.76729 and nσΨ = 0.64320. We can see
big disagreement in the second coefficient, but things will go better if we move
to the level 2.

Using conservation laws for the Ellwood invariants, we find for the new fields
on the second level

〈E[1]|LI−2 = 〈E[1]|LI2 +
cI
2
〈E[1]| (5.27)

and similarly for the other fields.
If we insert the coefficients of the found solutions, we find value n1

Ψ = 0.73370
differing only by 3.8 % from the expected value. Moreover, we can find nεΨ =
0.89339 that is much closer to the expected value then in the case of level 0.5.
General feature of the computation of boundary states using level truncation
method is decreasing convergence for coefficients corresponding to the Ishibashi
state associated with higher dimensional primaries.
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Level 2π2V(Ψ) n1
ψ nεψ nσψ

2 0.74917 0.73370 0.89339 ± 0.73942
4 0.72656 0.72213 0.48762 ± 0.77824
6 0.71933 0.71585 0.72112 ± 0.80182
8 0.71596 0.71401 0.62984 ± 0.81011

10 0.71404 0.71216 0.70480 ± 0.81679
12 0.71280 0.71154 0.66492 ± 0.82018
14 0.71193 0.71065 0.70130 ± 0.82331
16 0.71129 0.71035 0.67919 ± 0.82517
18 0.71080 0.70983 0.70060 ± 0.82699
20 0.71043 0.70978 0.69080 ± 0.82815
∞ 0.70663 0.70688 0.70433 ± 0.83935

Expected 0.70711 0.70711 0.70711 ± 0.84090

Table 5.2: Boundary coefficients for the two solutions on the σ-brane. Extrapo-
lated and precise values are mentioned.

Using computer code, the procedure can be performed to higher levels. With
our code, we managed to hit the level 20 consisting of 29,772 fields. The boundary
coefficients of the solution are listed in the table 5.2 below and in the figure 5.2.

In the table, linear extrapolation in 1/L is performed to find the value, where
the coefficients converge. We can see very good agreement with the analytical
results since the first coefficient n1

ψ differs only by 0.03 % and the biggest dis-
sagreement can be again found in the field with the highest conformal weight nεψ,
where the difference from the correct value is 0.4 %.

Thus, we have found numerically the solutions with following boundary state
coefficients:

Energy(∞) n
1(∞)
Ψ n

ε(∞)
ψ n

σ(∞)
ψ

0.70663 0.70688 0.70433 ±0.83935
(5.28)

5.2.2 Solutions on the 1-brane and ε-brane

The search for solutions on the 1-brane is more difficult. The boundary energy
of the original D-brane is 1√

2
and the only configuration with lower energy is

the tachyon vacuum. Therefore, we have to look for marginal or positive energy
solutions.

On this brane, we have only one relevant boundary operator c1|0〉. Equation
of motion truncated to the level 0 with the only one field c1|0〉 leads only to the
tachyon vacuum. To find a new solution, one has to move to the level L = 2. At
this level the truncated string field has following form

|Ψ〉 = tc1|0〉+ uLR−2c1|0〉+ vLI−2c1|0〉+ wL′gh−2c1|0〉. (5.29)

When solving the equations of motion, we find only following complex solution

t = 0.03383− 0.31239i, u = 1.19000 + 0.52640i,

v = 0.02453− 0.04242i, w = 0.02532− 0.12323i. (5.30)

Notice that the non-diagonal primary LR−2 − 51LI−2 is excited.
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Figure 5.3: Decreasing imaginary part of the energy for the solution found on the
1-brane. It disappears completely at level L = 14.

Level Energy Im/Re

2 1.59267 + 0.72688i 0.78840
4 1.41414 + 0.20152i 0.43838
6 1.28579 + 0.07668i 0.30746
8 1.21160 + 0.03054i 0.22100

10 1.16345 + 0.01007i 0.15222
12 1.12943 + 0.00123i 0.07487
14 1.10568 0
16 1.09045 0
18 1.07936 0
20 1.07084 0
22 1.06405 0

Table 5.3: The energy and the imaginarity coefficient of the solution with positive
energy on the 1-brane.

Although the solution looks pretty wild at the first sight, we find that it
is stable under level truncation. The imaginary part of the solution is getting
smaller as the level increases increase and surprisingly it disappears completely
at level 14. We were able to evaluate the solution up to level 22 and the data are
shown in the tables 5.3, 5.4 and the figure 5.4.

The last column shows the ratio between the imaginary and real part of the
solution1. The energy of the solution is close to one, so its the most likely inter-
pretation is a σ-brane. The components of boundary state do roughly agree with
the expected values, but the agreement is not very good. Therefore, we would like
to make an extrapolation to infinite level to see whether we can expect correct
convergence. The dependence of the real part of energy and the invariants on
level are plotted at figures 5.4. One can immediately see that the behavior of
the invariants changes drastically at level 14. The best we can do is a linear fit
using data from levels 14 to 22. Since the raw invariant nεψ is oscillating, we have

1This ratio is computed as
∑

i Re[ti]/
∑

i Im[ti], where ti are the components of the string
field. It is not an invariant quantity, but it gives a good idea how big the imaginary part of the
solution is.
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Level n1
ψ nεψ nσψ

2 1.06048− 0.18455i −9.73471− 5.23904i −0.34358− 0.97082i
4 0.96290− 0.14267i −0.66854 + 1.99191i −0.36976− 0.56423i
6 0.92262− 0.11378i −3.86207− 0.37376i −0.38933− 0.39436i
8 0.90480− 0.08685i −0.57514 + 0.82266i −0.37217− 0.28194i

10 0.89256− 0.06174i −2.48552 + 0.00261i −0.37629− 0.19232i
12 0.88510− 0.03109i −0.56951 + 0.24561i −0.36891− 0.09399i
14 0.91469 −1.93951 −0.26607
16 0.93044 −0.95087 −0.20633
18 0.93918 −1.69824 −0.17497
20 0.94538 −1.04849 −0.15003
22 0.94994 −1.55407 −0.13398
∞ 1.01265 −1.26593* 0.10153

Expected 1 −1 0

Table 5.4: Boundary coefficients for the the solutions on the 1-brane. The coef-
ficient labeled by ∗ corresponds to the value obtained using Padé-Borel approxi-
mation.

to modify it first by Padé-Borel approximation to suppress the oscillations. The
approximated point are shown in the the table below.

Level nεψ PB L nεψ PB

4 −4.36484− 0.74899i 14 −1.38446
6 −2.90862− 0.10512i 16 −1.38544
8 −1.88644 + 0.33130i 18 −1.37157
10 −1.57741 + 0.24252i 20 −1.35608
12 −1.43600 + 0.26176i 22 −1.33856

(5.31)

The extrapolated values of energy and components of the boundary state are:

Energy(∞) n
1(∞)
Ψ n

ε(∞)
ψ n

σ(∞)
ψ

0.9908 1.0127 −1.2659 0.1015
(5.32)

The energy and n1
Ψ are approximately 1% away from the expected value, which

is quite good agreement. The other two invariants nεψ and nσψ are more off the
correct value. However, the reliability of the extrapolations is not very good due
to small amount of points in the extrapolation. More data will be needed to make
precise conclusion.

5.3 Algorithm details

In this section, we will discuss details of the algorithm used to perform compu-
tations to the higher levels.

First of all, we need to construct a string field. It consists of three sectors:
the ghost sector, the Ising sector, and the rest sector. The ghost sector consists
of L′gh descendants of the state c1|0〉. The rest sector is a subsector of the matter
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Figure 5.4: Convergence of the coefficients in the boundary state ||σ〉〉 correspond-
ing to the solution found on the 1-brane.

sector with conformal weight c = 25.5 and consists of the vacuum |0〉 and its
descendants. The Ising sector is a bit more difficult. If the field is living on the 1-
brane or on the ε-brane, only |0〉 with its descendants is present in this sector, but
if we are interested in solutions on the σ-brane, we need to include both 1 and ε
Verma modules. Truncated field is then constructed as appropriate combination
of states from these three sectors with the use of the Siegel gauge restriction,
twist symmetry, SU(1,1) symmetry, and projecting the null states out.

Next step consist of the computation of the action of Virasoro generators Ln
with positive mode n on the states constructed above in each sector. In the case
of the ghost sector, also action of the ghost current j is needed to be computed.
This procedure is easily performed using commutation relations of jm and Ln.
The resulting state is always a state constructed in the previous step multiplied
by some constant. The number labeling the resulting state and the multiplier
have to be stored in the memory.

Using previously computed actions of Ln on the states, one can find two-
vertices in each sector simply finding BPZ-conjugate state and computing overlap
with these conjugate states. Note that fields from different levels has vanishing
BPZ-product.

Another needed ingredient is the 3-vertex. In the case of primary fields in-
sertions, they have been computed previously from the knowledge of structure
constants and definition of 3-vertex. The other vertices can be obtained using
conservation laws. Not all vertices for all combinations of fields are needed to be
stored due to its symmetry. If i is a positive integer labeling fields in given sector,
only vertices 〈i, j, k〉 for i ≥ j ≥ k are needed to be stored. All the other com-
binations are the same up to relative sign depending on the level of the inserted
fields. We can also use subsector factorization of the correlator. The 3-vertex
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can be computed as a product of vertices in each sector. This factorization saves
memory dramatically but it slows the algorithm down since the evaluation of
3-vertex takes the most time during the computation.

First of all, we have to compute the coefficients in conservation laws for all
the needed L−ns. With this knowledge the manipulation is similar to the one
in the previous chapter. Going to the next level gives us fields from the lower
levels after application of some conservation laws and 3-vertices can be computed
recursively.

The computation of the coefficients for the Ellwood invariants is straightfor-
wardly implemented using conservation laws.

In the procedure that makes the result for the boundary state more precise,
the Newton method can be conveniently used. The solutions can be easily found
at the lower levels, but general solution at higher levels cannot be found since it
would correspond to solving enormous system of quadratic equations with many
non-physical solutions. Since we have a solution at some low level, we can use
its coefficients as the starting point for the Newton method that converge to the
new, more precise, truncated solution.

If we label the coefficients in front of the basis states in the string field by xi,
the SFT action has generally form

S({xi}i) =
1

2

∑

i,j

Aijxixj +
1

3

∑

i,j,k

Bijkxixjxk, (5.33)

where Aij and Bijk are the 2- and 3-vertices computed previously. Equations of
motion can be found as an extreme of this action

fk({xi}i) =
∑

i

Aikxi +
∑

i,j

Bijkxixj = 0, (5.34)

where we have assumed without the loss of generality A and B to be symmetric.
The solution to this set of equations can be found iteratively using

x
(n+1)
i = x

(n)
i −

∑

j

M−1
ij ({x(n)

i })fj({x(n)
i }), (5.35)

where fj({x(n)
i }) can be easily computed plugging above and we have denoted

Mij({x(n)
k }) =

∂fi
∂xj

. (5.36)

Specially, in the case of our quadratic system, we find from the equation (5.34)

Mij({x(n)
k }) = Aij + 2

∑

k

Bijkxk. (5.37)

The iterated solution is then readilly computable from the knowledge of the 3-
and 2-vertices encoded in the coefficients A and B.

The iteration procedure stops when the wanted precision is achieved. In the
case of our program the procedure stops if |x(n+1) − x(n)| < 10−12 or the number
of iterations exceeds 20.

From the knowledge of the solution we can compute Ellwood invariants as
combinations of the coefficients xi with the use of the conservation laws.
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5.4 Double Ising model

Let us move to the case of double Ising model. Tensor product of the original
Ising model boundary states remains to be a boundary state in the doubled Ising
model. In the following, we will restrict ourselves on these products. Finding
other boundary states would be more difficult since complex solutions have to
be analyzed and higher-weight primaries taken into account. Their convergence
is getting worse and many difficulties would emerge as will be evident from the
later discussion.

Starting with a background given by ||σ〉〉⊗ ||σ〉〉, we look for a solution to the
equations of motion. Clearly, solutions in each subsector that we have found in
the previous section remain to be solutions and they correspond to ||1〉〉 ⊗ ||σ〉〉,
||ε〉〉 ⊗ ||σ〉〉, ||σ〉〉 ⊗ ||1〉〉, and ||σ〉〉 ⊗ ||ε〉〉. Ellwood invariants goes in the same
fashion as in the case of the single Ising model and they are only multiplied by
±1 or 0, which correspond to the appropriate multiplication with ||σ〉〉. Looking
at the table 3.4 we can see that these solutions correspond to the condensation
into the fractional D1-brane in the orbifold picture.

Solution 1 2 3 4

|BΨ〉 ||1〉〉 ⊗ ||1〉〉 ||1〉〉 ⊗ ||ε〉〉 ||ε〉〉 ⊗ ||1〉〉 ||ε〉〉 ⊗ ||ε〉〉
c1|0〉 0.23926 0.23926 0.23926 0.23926
c1|ε(1)〉 -0.16828 0.16828 -0.16828 0.16828
c1|ε(2)〉 -0.16828 -0.16828 0.16828 0.16828
c1|ε(1)ε(2)〉 -0.11836 0.11836 0.11836 -0.11836

Table 5.5: Coefficients for the new D-branes found in the doubled Ising model at
level one with the identification of corresponding boundary state.

If we look for the action for the field truncated to the level one

|ψ〉 = tc1|0〉+ ac1|ε(1)〉+ bc1|ε(2)〉+ cc1|ε(1)ε(2)〉, (5.38)

we can easily find

V(t, a) = −1

2
t2 − 1

4
(a2 + b2) +

1

3
K3t3 +K2t(a2 + b2) +

2

K
abc+

1

K
tc2. (5.39)

From this truncated action the orbifold picture is apparent if we compare it with
the action derived in [64] for an open string field living between parallel D-branes.

A the level one, new four solutions can be found. Their coefficients differ only
by relative sign and they are mentioned in the table 5.5. Picking up one of the
solutions and performing the computation up to the level 16, we find results from
the table 5.6. Comparing the listed coefficients with the one obtained simply by
tensor multiplication of the boundary states 5.1, this four new solutions can be
interpreted as ||1〉〉 ⊗ ||1〉〉, ||1〉〉 ⊗ ||ε〉〉, ||ε〉〉 ⊗ ||1〉〉, and ||ε〉〉 ⊗ ||ε〉〉in double Ising
model and their boundary states can be found simply by change of signs in some
Ellwood invariants.

The extrapolated values have been obtained from the last eight coefficients.
In the case of oscillating invariants Padé-Borel approximation has been used and
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Figure 5.5: Convergence of the boundary state coefficients for the new solution
found on the σ ⊗ σ-brane. In the case of n1ε

Ψ , nεεΨ, and nεσΨ , Padé-Borrel approx-
imation has been used to suppress oscillations. The black points correspond to
the approximated values in this case.
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Level 2π2V(Ψ) n11
Ψ n1ε

Ψ n1σ
Ψ nεεΨ nεσΨ nσσΨ

2 0.60317 0.58024 0.28858 0.48785 -1.15740 -0.48785 0.61593
4 0.54447 0.53344 0.26231 0.53601 1.54237 0.81851 0.63243
6 0.52870 0.51879 0.41792 0.55168 -0.75631 0.29982 0.66158
8 0.52138 0.51333 0.37867 0.55949 1.25240 0.62768 0.66279

10 0.51714 0.50931 0.43869 0.56491 -0.38660 0.44261 0.67291
12 0.51435 0.50741 0.41674 0.56832 1.05267 0.59137 0.67384
14 0.51237 0.50559 0.44966 0.57120 -0.16680 0.49358 0.67917
16 0.51095 0.50544 0.42829 0.57314 1.64889 0.57983 0.67975
∞ 0.50021 0.49748 0.46636∗ 0.58607 0.43794∗ 0.58094∗ 0.69734

Exp. 0.5 0.5 0.5 0.59460 0.5 0.59460 0.70711

Table 5.6: Convergence of the boundary coefficients of the new solutions found
in the double Ising model. ∗ labels coefficients that have been found using Padé-
Borel approximation as in the previous section.
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Figure 5.6: Real and imaginary part of the energy of the complex solution found
on the σ⊗ σ-brane. We predict that the imaginary part vanishes above the level
23 from the linear extrapolation.

extrapolated data obtained with this approximation are labeled by ∗. In the
case of double Ising model a bit bigger disagreement emerges. In the case of
nεεΨ coefficient, it is about 16 %. The convergence is still good enough to surely
interpret the solution. We can see that the oscilations grow with increasing
conformal weight.

The solution shown in the table above can be interpreted as ||1〉〉 ⊗ ||1〉〉 as
can be checked comparing the boundary state coefficients. From the relations
σ ⊗ σ =

√
2 cosX/

√
2 and 1

2
(ε ⊗ 1 + 1 ⊗ ε) = cos

√
2X we can see that the

nonzero coefficient nεεΨ and vanishing difference n1ε
Ψ −nε1Ψ = 0 is in correspondence

with the statement that the position of the corresponding lumps is 0 or πR
respectively. The lump profile can be easily drawn and the solution corresponds
to the condensation of the original centered bulk D0-brane that interacts with its
mirror image into the fractional D0-brane placed at the orbifold singularity.

Finally, we will discuss a complex solution found in the double Ising model
that does not correspond to any of the above D-branes obtained as tensor multi-
plication of the Ising model boundary states. Moreover, it is conjectured not to
be a solution corresponding to some integer combination of these solutions and
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Level n11
ψ n1ε

ψ n1σ
ψ

2 1.87205− 0.65873i 2.76933− 24.0032i 1.72340− 0.58336i
4 1.41624 + 0.13575i −9.42168− 11.0881i 0.46075− 0.78530i
6 1.30925 + 0.02542i −12.08010− 0.76995i 0.37338− 0.45259i
8 1.29759− 0.06266i −11.07330− 4.54310i 0.31235− 0.31617i

10 1.27567− 0.09428i −6.22506− 1.08487i 0.28629− 0.23494i
12 1.26520− 0.10277i −6.28963− 1.34765i 0.26587− 0.18755i
14 1.24770− 0.10742i −4.00383 + 0.14905i 0.25303− 0.15626i
∞ 1.21095 2.65083∗ 0.13665

Level nεεψ nεσψ nσσψ

2 −7.4107 + 48.6651i −1.72340 + 0.58336i −3.06497− 0.44089i
4 34.2795− 22.1599i 9.52807 + 7.02241i −2.23681 + 2.32752i
6 3.0951 + 54.2758i −2.37738 + 5.62347i −0.22515 + 3.16732i
8 28.1975− 54.5559i 5.13751− 0.27363i −0.45171 + 2.77718i

10 −23.8878 + 44.0841i −1.94025 + 1.20794i −0.15413 + 2.28524i
12 32.2743− 33.9938i 2.54769 + 0.14870i 0.01053 + 1.98463i
14 −29.0102 + 26.4553i −1.28572 + 0.33440i 0.14835 + 1.73229i
∞ −3.3499∗ −0.68618∗ 0.32273

Table 5.7: Boundary state coefficients of the complex solution in the double Ising
model. The other coefficients that are not mentioned are n1ε

ψ = nε1ψ , n1σ
ψ = nσ1

ψ ,
and nσεψ = nεσψ . It does not seems to be a solution corresponding to some integer
combination of the nine D-branes discussed above. We conjecture the solution
to be bulk D1-brane. To give precise interpretation, we would have to perform
computations to higher levels and probably find Ellwood invariants for primary
states with higher weights.

we conjecture that it corresponds to bulk D1-brane. In the figure 5.6, the real
and imaginary part of the energy is mentioned. From the linear regression, we
see that the imaginary part disappears above the level 23. We have performed
extrapolation of the real part of the energy with the use of quadratic function to
get better agreement with the coefficient n11

ψ . The extrapolated value is 1.25404.
The Ellwood invariants computed for this solution are shown in the table 5.7.
One may guess from the energy of this solution that it should correspond to some
combination of fractional D0-brane and fractional D1-brane. Looking at corre-
sponding boundary states, nσ1

ψ and n1σ
ψ of the combined boundary states is not

equal for any of these boundary states. We conclude that the solution is not the
combination of fractional D0-brane and fractional D1-brane since these coefficiens
equal in our solution. Precise interpretation of this solution would need higher
level computations and inclusion of the higher-weight Ellwood invariants. We
can also expect that convergence of the Ellwood invariants change dramatically
after the complex part disappears and it is not easy to make predictions.
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Conclusion

We have reviewed basics of the Ising model and discussed briefly methods used
to solve it. We have also argued that lattice models can be described by means
of CFT if we are at the critical point. In the case of two dimensions, CFT
provides classification of universality classes of lattice models with central charge
c ≤ 1, where all unitary theories have been found. Conformal invariance gives
constraints on the correlators of the fields present in the theory. If the theory is
defined in two dimensions, conformal group becomes infinitely dimensional and
the restrictions on the theory big enough to solve the model. Arbitrary correlator
can be computed using sewings of 3-point amplitudes.

Boundary problems in two-dimensional CFT are reviewed and brief comments
on sewing constraints are given. CFT approach to SFT is set up and method of
level truncation and generalized Ellwood invariants are discussed.

String field theory and the Ellwood conjecture allows us to classify all BCFTs,
i.e. find all boundary states of the theory. From each solution to SFT equations
of motion we can construct a boundary state. The new method avoids solving
difficult set of sewing constraints since it is believed that the equations of motion
provide consistent solutions automatically.

Boundary states can be constructed numerically by means of level truncation.
The only ingredient we need is the knowledge of structure constants in one BCFT
background and all the other boundary states can be then constructed. Unlike
RG methods limited by the g-theorem, boundary states with higher energy can
be constructed.

We give details of the computations from our paper [1] in preparation and
key statements are supported by pictures, graphs, and tables. The Ising model
SFT is constructed and new solutions of the equations of motion are found in
this theory numerically up to the level 20 and 22 respectively. Corresponding
boundary states are constructed and agree quite well with analytical results.

We discuss the double Ising model and its duality with the free boson on an
orbifold. We compare their spectra and find some of the boundary states using
level truncation method again. Correspondence between double Ising model D-
branes and free boson D-branes is clarified on the lower levels.

We conclude that level truncation and generally methods commonly used in
SFT can be efficiently used in CFT and statistical physics.

Still many open questions remain. Let us list some of them. First of all, appli-
cation of the methods for other minimal models to find boundary states would be
interesting. Even more interesting are the questions concerning boundary states
in folded models for higher minimal models that have not been yet understood.
Tensor products of the simple boundary states still remain to be boundary states,
but the solution for the most general boundary states. The application to the
non-minimal model theories can be also interesting.

More fundamental questions are following. How can boundary and bulk-
boundary structure constants on the new D-brane be extracted from SFT and
are they also so easily computable? How are the sewing constraints encoded in
the SFT equations of motion?

In the case of the Ising model, finding the solution analytically would probably
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lead to a huge progress in SFT and hopefully the solution will be found soon.
Also, it would be nice to complete our SFT level-truncation construction of Ising
model boundary states by finding the solution for 1-brane on ε-brane (and vice
versa). The solution to this problem would complete our discussion on the Ising
model boundary states obtained by means of level truncation.

In the double Ising model much more open questions remain. Finding and
classifying solutions of string field theory corresponding to all boundary states
has not been done here. The procedure has been hinted showing that at finite
truncation level there are additional (complex) solutions that may in the infinite
level limit converge to some new real D-brane solutions. There is a problem with
convergence of the solutions and also with the convergence of higher Ellwood
invariants, which only rarely converge if we get above conformal weight 1 of
corresponding primary operator. Making the convergence better and accessing
higher levels would enable us to find new solutions.
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