Most human genes are composed of coding sequences (exons) that are interrupted by non-coding sequences (introns). After gene transcription into pre-mRNA, these introns have to be removed in a process called splicing. Splicing is mediated by a very complex and dynamic complex called the spliceosome, which consists of five small nuclear ribonucleoprotein particles (snRNPs) and numerous additional splicing proteins. Each particle contains single small nuclear RNA and a set of specific proteins. SnRNPs are assembled by a stepwise process that takes place both in the nucleus and the cytoplasm and final maturation steps occur in nuclear Cajal bodies. The mature snRNPs interact with pre-mRNA in an ordered pathway and form the spliceosome that catalyzes two trans-esterification reactions leading to intron excision and exons ligation. Subsequently, the spliceosome disassembles again into individual snRNPs that have undergone diverse conformational and compositional transformations during splicing. Thus, before the particles can participate in another round of splicing they have to go through recycling to recover their original form. However, currently the recycling phase of the splicing cycle is surrounded by more questions than answers. The purpose of this work is to discuss latest findings that shed some light on snRNP after-splicing regeneration.