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Abstract

The goal of this master thesis is to analyze impact of shocks in oil prices to
automobile industry stock prices and returns. We decompose oil price shocks
on oil supply shocks, aggregate demand shocks and oil-specific demand shocks
and assess their individual impacts on these stock prices/returns. This is done
using the vector autoregression (VAR) methodology which allows us to com-
pute impulse responses, that is the reaction paths on the individual shocks.
In addition to linear VARs we also employ threshold VAR models in order to
capture nonlinearities in impulse responses and besides the aggregate automo-
bile stock price index we compute these nonlinear impulse responses also for
some selected individual car producers. We think that this analysis have two
different uses. First, it can be beneficial to stock market investors. Second,
it can be used by policymakers in countries such as Slovakia and the Czech
Republic, which are relatively heavily dependent on automotive industry.
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VAR
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Abstrakt

Cieľom tejto diplomovej práce je analyzovať dopad šokov v cenách ropy na ak-
cie automobilových firiem. V práci rozkladáme šoky v cenách ropy na ponukové
ropné šoky, šoky agregátneho dopytu a špecifické ropné dopytové šoky a skú-
mame ich vplyv na ceny spomínaných akcií. Našim hlavným nástrojom je
metóda známa ako vektorová autoregresia (VAR), ktorá nám umožňuje vypočí-
tať reakčné krivky (impulse responses) cien automobilových akcií na jednotlivé
šoky. Okrem lineárnych VAR modelov používame aj nelineárne VAR modely,
ktoré nám umožňujú zachytiť asymetrie v reakčných krivkách. Naviac, tieto
asymetrické reakčné krivky počítame okrem agregátneho indexu cien automo-
bilovýh akcií aj pre ceny akcií niekoľkých jednotlivých autovýrobcov. Mys-
líme si, že takáto analýza má význam pre dve skupiny ekonomických aktérov.
Po prvé, pre investorov na akciových trhoch, po druhé, pre navrhovateľov
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hospodárskej politiky v krajinách ako Slovensko a Česká republika, ktorých
priemysel je relatívne úzko napojený na automobilových výrobcov.
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Chapter 1

Introduction

In this master thesis we aim to provide analysis of impact of oil price shocks
on stock prices of automotive firms. The relationship between oil price changes
and automotive stock prices is very often limited to statement of a kind that
increase in oil price have to cause decrease in price of these stocks as oil is a
main component of automobile fuel, hence driving a car is more expensive and
therefore demand for automobiles decreases. Also, oil supply or oil production
shocks (including political shocks or shocks encompassed by political and ter-
rorist risk) are most often identified as the main oil price-driving factor. We
chose, however, quite different approach in this master thesis. We will decom-
pose shocks to oil price into three main shocks, that is supply shocks, demands
shocks, and oil price specific shocks. Subsequently will analyze impact of each
of these particular shocks to stock prices of automotive companies using a vec-
tor autoregression and impulse response econometric methods. The main value
added of this thesis, however, rests on the use of a threshold VAR model. Em-
ploying this kind of a non-linear model in our analysis we will examine possible
asymmetric effects of the mentioned shocks in oil prices on automotive stock
prices.

We think that the close study of this phenomenon can be beneficial to two
different groups of economic agents. First, dependencies between movements
of crude oil price and automobile stock prices (and hence also returns) can be
important for investors in these stocks. Second group consists of policymakers
of small open economies, whose industry is relatively heavily oriented on car
production. Typical representatives of these countries are Slovakia and the
Czech Republic. We think that conclusions of this thesis can be helpful for
policy-setting in case of oil price shocks.
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The structure of this master thesis is as follows; Chapter 2 summarizes
existing literature on the given topic, Chapter 3 describes a theoretical frame-
work used in the thesis, Chapter 4 describes dataset used for the VAR analysis,
Chapter 5 provides results of econometric analysis, Chapter 6 proposes ideas
for further research, and finally Chapter 7 concludes.



Chapter 2

Review of literature

To my best knowledge there is none paper or study that deals solely with
impact of oil price shocks on stock prices of automobile firms in a way which
is discussed in this thesis. However, there are several studies which analyze
impact of oil price shocks on stock market (both stock prices and dividends)
and other variables (especially macro-variables such as GDP or inflation).

The idea to decompose shocks in oil prices on supply shocks, demand shocks
and oil-specific demand shocks come was already used in a paper by Kilian
(2009). He analyzes the impact of these shocks on the U.S. real GDP growth
and CPI inflation. The main tool for purposes of their analysis is a VAR-like
model (or a “near-VAR model", (Kilian 2009, p. 12)), which is based on esti-
mation of a fourvariate VAR model and regressing stock prices on estimated
residuals from this model to obtain coefficients for impulse responses. To sim-
ulate the three types of shocks on the U.S. economy Kilian used oil production
(proxy of oil supply shocks), oil prices (proxy of oil-specific demand shocks),
index of global real economic activity (proxy of aggregate demand shocks), and
a series describing “exogenous shocks to crude oil production driven by political
events in OPEC countries” (Kilian 2009, p. 5). The last variable summarizes
events such as Persian Gulf War, Iranian Revolution or terrorist attacks on
tanker ships in Persian Gulf area. Quite interesting is also composition of the
index of global real economic activity which acts as a proxy of demand shocks.
Kilian in his paper dismissed use of traditional proxies of global real economic
activity based on the global GDP or a global index of industrial production
(such as published by IMF). As the main reasons he gives problems with fre-
quency and availability of these time series on one hand (especially for emerging
and small economies), and problems with construction of these time series on
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the other hand (e.g. not constant contribution of particular countries to global
real economic activity). Therefore he introduced his own measure based on a
global index of dry cargo single voyage freight rates.1 The results presented
in the paper indicate that especially political oil price shocks and oil-specific
demand shocks negatively influence U.S. real GDP growth. The evidence for
U.S. CPI inflation is more ambiguous, however, also in this case the oil-specific
demand shocks show significant (in this case positive) influence. Kilian calls
these shocks also precautionary demand shocks.

In the paper Kilian & Park (2009) authors examined impact of similar
shocks as were described in the previous paper on U.S. stock market, that is on
real stock prices (or rather real stock returns) of various industrial sectors and
aggregate stock prices as well as on dividend growth. Similar VAR-like model
is used as in Kilian (2009). The only difference is that authors omitted political
supply shocks variable, so oil production supply now comprises of both political
and non-political supply shocks. Also this study shows significant impact of oil
prices on the U.S. economy. Again, most significant impact show oil-specific
demand shocks (shocks in precautionary demand for oil) followed by aggregate
demand shocks. According to the provided evidence, aggregate demand shocks
tend to increase stock returns for 11 months while oil-specific demand shocks
lower stock returns for more than 12 months. On the other hand, impulse
responses show that oil supply shocks have very little influence on the stock
returns (and this influence is not even statistically significant). Kilian and Park
interpret this in a following way: “the apparent lack of a systematic relation-
ship between oil production disruptions and real U.S. stock returns is consistent
with the view that much of the systematic effect of exogenous political events in
the Middle East operates not through physical cutbacks of crude oil production
but rather through shifts in precautionary demand driven by concerns about the
future availability of oil supplies” (Kilian & Park 2009, p. 11). The examined
industry sectors include energy sector, automobile sector, retail sector, trans-
portation sector, chemical sector and many others (“industries that a priori are
most likely to respond to disturbances in the crude oil market”, p. 18). The
impulse response analysis of automobile sector shows similar patterns as im-
pulse responses of aggregate stock returns. Oil supply shocks seem to have no
significant effect on stock returns, aggregate demand shocks tend to increase
stock returns for 10 months and precautionary demand shocks tend to decrease
stock returns for more than 12 months (also this impulse response is statisti-

1Single voyage freight rates of various commodities including grain, oilseeds and iron ore.
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cally significant on 10% level for the whole 12 months unlike the response to
aggregate demand shock which is significant only for first 5 months).

Sadorsky (1999) in his journal article uses a “quasi-nonlinear” VAR model
to analyze asymmetric effects of oil prices on real stock returns (S&P 500 index
returns deflated by U.S. consumer price index). He also estimated volatility of
oil prices using a GARCH model and incorporated this volatility to the VAR
model. First, Sadorsky reports impulse responses obtained from a linear VAR
model. Response of real stock market returns to a 1 standard deviation shock
in oil prices show quite different results compared to Kilian & Park (2009).
An oil price shock is negative for first 14 months, but statistically significant
only for first two months. However the difference is most likely caused by a
different dataset and also by the different methodology (Kilian & Park (2009)
reports accumulated impulse responses with bootstrapped confidence intervals
while Sadorsky (1999) reports normal impulse responses with confidence in-
tervals obtained by Monte Carlo simulation). Further in his paper Sadorsky
continues with analysis of asymmetric shocks. His quasi-nonlinear VAR model
is composed as follows. All variables are used exactly as in the linear VAR
model except oil prices. This variable is divided into two variables, first con-
taining positive values and zeros (represents positive oil price shocks), second
containing negative values and zeros (represents negative oil price shocks). As
an inference tool for this analysis Sadorsky used variance decomposition of
forecast errors. He found out that “positive shocks explain more of the fore-
cast error variance. . . than do negative shocks” (Sadorsky 1999, p. 17). The
model which uses oil price volatility instead of oil prices shows that the volatil-
ity significantly affect stock returns. Nonlinear model for oil price volatility is
constructed similarly as for the oil prices. In this case positive volatility shocks
explain a larger part of the forecast error variance in stock returns than do
the negative oil price volatility shocks. Sadorsky therefore proved that oil price
shocks and oil price volatility shocks do indeed have asymmetric impact on real
stock returns.

Lee & Ni (2002) in their paper also examine an impact of oil price shocks
on the U.S. economy throughout the period 1959-1997. Their variables of in-
terest are U.S. macro-variables such as industrial production, aggregate price
level and various interest rates as well as industry-level data. Industry-level
data comprise of production and price. Among others (e.g. petroleum refin-
ery industry, chemical industry) they include automobile industry data. Lee
and Ni use a block-recursively identified structural VAR model in a way that
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the U.S. macroeconomic variables are not contemporaneously affected by the
industry-level data (so the block of macro-variables is identical for all industrial
sectors). Using the impulse response analysis for inference authors show that
a one standard deviation shock to oil price negatively affect the U.S. industrial
production with a peak after about 16 months. Yet, this result have to be
considered as ambiguous because Lee and Ni do not provide any confidence
intervals for the impulse responses. Output of automobile industry also de-
creases immediately after an oil price shock. After about 19 months the output
increases. Price in automobile industry also reacts negatively to an oil price
shock, however after about 12 months the price is again increasing. Confidence
intervals are already provided for this part, therefore it can be seen that parts
of responses where industry-level variables start to increase are not significant.

Nonlinear relationships of (real) oil price shocks are examined in the study
Kilian & Vigfusson (2011a).2 Although this paper does not directly deal with
impact of oil price shocks on stock market, it introduces powerful techniques
and tools of nonlinear VAR methodology, therefore the procedures described
in this paper will be widely followed in the subsequent chapters of this thesis
which deal with nonlinear VAR. In fact, the main purpose of this paper is not
to examine nonlinear effects but rather comment procedures of construction of
impulse responses from nonlinear VAR models (aimed at capturing nonlinear
effects of oil price shocks on U.S. macroeconomic variables, such as real output
or unemployment) in contemporaneous economic literature and propose a cor-
rect solution for this problem. Kilian and Vigfusson first argue against a use
of censored VAR models, that is against using only positive oil price shocks
for estimation (because of contemporaneous opinion that only positive oil price
shocks are relevant for the U.S. economy). They show that if a real data gener-
ating process of oil price shocks on the U.S. macro-variables is not symmetric
than linear VAR models yield spurious estimates. Such results can be also
obtained using censored, seemingly nonlinear, VAR models.3 Further, authors
criticize implementation of linear impulse response methodology on nonlinear

2Kilian and Vigfusson strongly recommend use of real oil prices: “. . . we follow [an earlier
paper of Kilian] in specifying the net increase in the real price of oil rather than the nominal
price. . . because the real price is the economically relevant measure of the price of oil” (Kilian
& Vigfusson 2011a, p. 32)

3Net oil price increases as a measure of oil price were developed by Hamilton. If we
consider monthly data, then net oil price increase is defined as “the maximum of (a) zero
and (b) the difference between the log-level of the crude oil price for the current month and
the maximum value of the logged crude oil price achieved in the previous 12 (or alternatively
36) moths” (Kilian & Vigfusson 2011a, p. 3).
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VAR models, which is observable in several papers. Using simple examples
they show that impulse responses computed in such way tend to overestimate
impact of the oil price shocks on the macro-variables of interest. Finally, Kilian
and Vigfusson describe technique of nonlinear impulse response calculation and
also introduce tests for asymmetries.



Chapter 3

Methodology

3.1 Linear model

For the first part of our analysis we will use a classic linear VAR model.1 Three
basic steps can be identified in a VAR estimation procedure: model selection,
model estimation and model diagnostics.

There are two most imperative issues regarding the selection of a VAR
model. First, it is a concern in what form to use chosen time series in the
estimation process. In other words, one has to check if a VAR in levels, VAR
in differences or a Vector Error Correction Model (VECM, VEC model) should
be used. In general, we can say that latter two processes are just extensions of
a VAR in levels process. However, checking for cointegrating relationships in a
dataset is very important because by differencing, in case of non-stability, we
may lose some important information about a long term relationship between
time series.2 The second issue is about the lag length (order) of a model.

Before we will describe how to deal with these issues, let us first define the
three VAR models subtypes in order to introduce notation for further reasoning.
Let yt be vector of dependent (endogenous) variables, then in our case this

1Linear VAR methodology follows econometric textbooks Brooks (2008), Hamilton (1994),
Lütkepohl (2005), and Tsay (2010). In addition to these classical textbooks we also use
documentation for R software Pfaff (2008).

2“Note that simply taking first differences of all variables eliminates the cointegration term
which may well contain relations of great importance for a particular analysis. Moreover, in
general, a VAR process with cointegrated variables does not admit a pure VAR representation
in first differences” (Lütkepohl 2005, p. 248).
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vector has a form:

yt =


y1,t

y2,t

y3,t

y4,t

 =


oil supply

real economic activity
oil price

stock price

 . (3.1)

Then the reduced forms of the models are defined as follows:

yt = ν +

p∑
i=1

Aiyt−i + ut (3.2)

∆yt =

p∑
i=1

Ai∆yt−i + ut (3.3)

∆yt = νt + Πyt−1 +

p−1∑
i=1

Ai∆yt−i + ut (3.4)

where (3.2) is VAR in levels of order p, (3.3) is VAR in differences of order
p and (3.4) is a VECM corresponding to a VAR(p) process, µ0 is a vector of
intercept terms, Ai, i = 1, . . . , p are matrices of coefficients, Π is a matrix of
cointegrating relationships and ut are vectors of reduced error terms or reduced
white noise innovations with following properties: E(ut) = 0, E(utu

′
t) = Σu is a

variance-covariance matrix and for all s 6= t, E(utu
′
s) = 0. Further, νt is deter-

ministic term that may take form of an intercept (νt = ν0) or of an linear trend
νt = ν0 + ν1t. This intercept and linear trend can be both restricted and unre-
stricted, so there are five modifications of a VECM: no deterministic term, re-
stricted intercept, unrestricted intercept (causing linear drift), restricted trend
and unrestricted trend (can cause quadratic trend).3

The procedure of determination of order of a VAR process is same for stable
and unstable processes.4 Throughout the VAR literature there are two methods
of order determination used: information criteria minimization method and
likelihood ratio test method. Regarding the former method, we will use the
Akaike criterion, the Hannan-Quinn criterion and the Schwarz criterion (also

3See e.g. Lütkepohl (2005) for further information on deterministic terms in a cointegrated
VAR process

4Here by stable processes we mean VAR in levels processes and by unstable processes we
mean VAR in differences and VECM processes. The issue of stability will be discussed more
closely later in this chapter.
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called Bayesian criterion) given by the following equations, respectively:

AIC(m) = ln |Σ̂j,u(m)|+ 2k′

T
(3.5)

HQ(m) = ln |Σ̂j,u(m)|+ 2 ln lnT

T
k′ (3.6)

SC(m) = ln |Σ̂j,u(m)|+ lnT

T
k′ (3.7)

where m is the lag order for which we are evaluating the information crite-
ria, |Σ̂u(m)| is a determinant of a variance-covariance matrix of reduced form
innovations ut estimated via OLS equation-by-equation method (which is the
commonly used method for reduced VAR estimation), k′ = K + K2m is total
number of parameters to be estimated (we have K equations in the system
and in each equation there are m lags of K endogenous variables) and T is
total number of observations. The information criteria work in a way that with
the increasing number of lags in a system the first term decreases while the
second term increases, so there is a penalization for using too many lags. In
order to find the proper number of lags we have to minimize the criteria, in
other words, we choose such number of lags for which a value of a particular
information criterion is minimal. A proper number of lags also depends on a
frequency of data. Also note that if we want to determine a lag order of a
VECM and the criteria select a VAR of order p as a right model, we should
use a VECM with p− 1 differenced terms for each endogenous variable as this
VECM corresponds to a VAR(p) process (Lütkepohl 2005, p. 327). The lag
order determination using the likelihood ratio test is the second possible ap-
proach for lag order determination. Rationale behind likelihood ratio test is
that it tests the joint hypothesis that some number of lags in all equations (of
some unrestricted model) is jointly equal to zero (so we can use the restricted
model). Likelihood ratio test is specified by the following equation:

LR = T (ln |Σ̂r| − ln |Σ̂ur|), (3.8)

where T is the total number of observations adjusted for first p observations,
|Σ̂r| is determinant of estimated variance-covariance matrix of reduced form in-
novations of a restricted model and |Σ̂ur| is determinant of estimated variance-
covariance matrix of reduced form innovations of an unrestricted model. In this
test the null hypothesis says that we can restrict the coefficients to zero. The
LR test statistic is asymptotically distributed as χ2 with degrees of freedom
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equal to the total number of restrictions. Therefore, if we haveK equations and
we have want to restrict last q parameters (in other words, lags) to zero, then
the test statistic from equation (3.8) is asymptotically distributed as χ2(K2q).
The definition of the likelihood ratio test statistic alone indicates main disad-
vantage of this approach, which allows only pairwise comparison across models
with different orders. A strategy when using this test is, therefore, start with
the upper bound of lag order, let us denote it M , and continue to lower orders.
Because we are dealing with monthly data and we have total observations of
223, we set M = 12, so in the marginal case we will have to estimate a VAR
model with K + K2M = 4 + 4212 = 196 parameters. Also, model of order 12
should be sufficiently long to capture any seasonal patterns in the data. In our
opinion these two facts imply that in our case any higher upper bound of max-
imum lag order would be contra-productive and also dangerous that it would
cause we will end up with more parameters to estimate than is the number of
observations.

To decide whether the individual time series are cointegrated and whether
we should use VECM, we have to first test if the time series are non-stationary,
in other words if they have a unit root. In order to test for stationarity we use
two tests, the Augmented Dickey Fuller (ADF) test and Kwiatkowski-Phillips-
Schmidt-Schin (KPSS) test. Let us have time series xt, t = 1, . . . , T we want
to test for a unit root. Then ADF equation with an optional intercept and an
optional time trend is specified as follows:

∆xt = a0 + a1t+ ψxt−1 +
k∑
i=1

αi∆xt−i + et. (3.9)

Under the null hypothesis ψ = 0, which means that there is a unit root in the
time series (so it is non-stationary). However, the t-statistic is not compared
to the classical Student distribution tables but to Dickey-Fuller distribution
tables. The latter unit root test, KPSS test, is a Lagrange multiplier type test.
Consider following decomposition of a time series:

xt = ξ + rt + et, (3.10)

where again xt is a time series we want to test for unit roots, ξ is a deterministic
term and rt = rt−1 + vt is a random walk. Test statistic of the KPSS test is



3. Methodology 12

given as:

LM =
T∑
t=1

S2
t

σ̂2
e

, (3.11)

where St =
∑t

i=1 ê
2
i , t = 1, . . . , T , êt being residuals from the regression given

by (3.10), and σ̂2
e is the estimate of the error variance from the same regres-

sion. Contrary to the ADF test, the null hypothesis is now no unit root (i.e.
stationarity) and we use critical values published in Kwiatkowski et al. (1992)
to evaluate the test.

Now, let us recall the vector yt = (y1,t, y2,t, y3,t, y4,t)
′. Assume that yi,t ∼

I(1) for i = 1, 2, 3, 4, that is the time series yi,t are integrated of order 1.
Further, assume that there is a nonzero vector β = (β1, β2, β3, β4)

′, such that:

β′yt = β1y1,t + β2y2,t + β3y3,t + β4y4,t = vt, (3.12)

where for the disturbances vt holds vt ∼ I(0), thus they are stationary. Then
we say that time series yi,t, are cointegrated of order C(1, 1, 1, 1) and the vector
β is called cointegrating vector. The definition of cointegration implies that
this vector is not uniquely given as the property specified by (3.12) holds even
if the vector β is multiplied by any nonzero constant. Interpretation of coin-
tegration follows from properties of vt and (3.12). Because of stationarity the
disturbances vt are required to have a constant mean around which they are
permitted to oscillate with a time invariant variance. Therefore, the long-term
relationship between variables yi,t is given by the mean of vt. The variables can,
for a short period, left this equilibrium, but they will inevitably return to it (in
order the cointegration relationship to be preserved). This property is known
as the error correction. In a system of variables there can arise more situations,
that is more cointegration relationships, than it is described by (3.12). In this
case the cointegration vector β becomes matrix of cointegration vector (let us
still keep the notation β) and thus cointegration relationships have following
form:

β′yt =

β
1
1 β1

2 β1
3 β1

4

β2
1 β2

2 β2
3 β2

4

β3
1 β3

2 β3
3 β3

4



y1,t

y2,t

y3,t

y4,t

 =


v1,t

v2,t

v3,t

v4,t

 = vt, (3.13)
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where vt ∼ I(0). Simple matrix multiplication then yields:

β1
1y1,t + β1

2y2,t + β1
3y3,t + β1

4y4,t = v1,t (3.14)

β2
1y1,t + β2

2y2,t + β2
3y3,t + β2

4y4,t = v2,t (3.15)

β3
1y1,t + β3

2y2,t + β3
3y3,t + β3

4y4,t = v3,t (3.16)

Equations (3.14) to (3.16) imply that, in our case, for 4 variables there can
be totally up to 3 cointegration relationships and thus equally as many coin-
tegrating vectors. In the cointegration literature the two most widely used
procedures to test variables for cointegration are Engle-Granger procedure and
Johansen procedure. For purposes of VECM estimation we need to determine
the number of cointegrating vectors. Johansen procedure is designed exactly in
this way therefore we will use this approach for purpose of this master thesis.
To explain the mechanism of Johansen procedure let us recall the specification
of a VEC model given by (3.4). In this equation we can rewrite the matrix Π

in a following way:
Π = αβ′. (3.17)

We call the Πyt an error-correction term (or a matrix of adjustment coefficients
and cointegrating vectors) and α a vector of adjustment coefficients which gov-
ern the speed of adjustment to a long term equilibrium. Now, let r be rank
of matrix β, so r = rk(β). Then also rk(α) = r, and rk(Π) = r, for r holds
condition 0 ≤ r ≤ K − 1. The Johansen procedure determines the number of
cointegrating vectors by testing the rank of matrix Π by employing the so called
trace and maximum eigenvalue test statistics given by following equations

λtrace(r) = −T
K∑

i=r+1

ln(1− λ̂i) (3.18)

λmax(r + 1) = −T ln(1− λ̂r+1) (3.19)

where λ̂i is the i-th largest eigenvalue of the matrix Π. Under the null hypothe-
sis rk(Π) ≤ r, r = 1, . . . , K−1. The Johansen procedure starts with r = K−1

and continues until we are able to reject the null hypothesis for r cointegrating
vectors. Rejecting the null hypothesis for K − 1 cointegrating vectors in favor
of K cointegrating vectors corresponds to stationarity of original data and thus
VAR in levels can be used. On the other hand, not rejecting the null hypothe-
sis for r = 0 corresponds to no cointegration relationship in the data and thus
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VAR in differences can be used. In order to evaluate the test critical values
from Engle & Yoo (1987) are used.

Next step after establishing lag order and cointegration order is estimation.
As it was mentioned before, reduced form of both the VAR in levels and VAR
in differences can be estimated via OLS equation-by-equation method. This
is, however, not true for the VECM, which will be estimated by Johansen
maximum likelihood method.5 In order to achieve that the shocks in a VAR
process will not be explosionary, the process has to be stable.6 A VAR(p)

process is stable if roots of a reverse characteristic polynomial

det(IKp − Φz) = det(IK − Φ1z − · · · − Φpz
p) (3.20)

do not lie inside and on the complex unit circle. Further, Granger causality
will be tested using reduced form models.7 Assume a VAR(p) process given by
(3.2), then

y1,t =φ1,0 + Φ11,1y1,t−1 + Φ12,1y2,t−1 + Φ13,1y3,t−1 + Φ14,1y4,t−1 + · · ·

+ Φ11,py1,t−p + Φ12,py2,t−p + Φ13,py3,t−p + Φ14,py4,t−p + u1,t (3.21)

is the first equation of this system. The variable y2,t does not Granger-cause y1,t
if coefficients at all lags of y2,t are equal to zero, formally if Φ12,1 = · · · = Φ12,p =

0. Granger causality is tested using simple F-test. If the data are cointegrated
and estimated by a VEC model corresponding to a VAR(p) model, then a
var(p + 1) model is fitted and used for Granger causality tests; this approach
is called lag-augmented test.

Similarly to univariate models, after we fit a VAR or VEC model, we are in-
terested if the residuals are a white noise process. As Lütkepohl (2005, p. 157)
states, the procedures of VAR or VECM estimation “may be interpreted as
methods for determining a filter that transforms the given data into a white
noise series”. The innovations ut were defined as uj,t N(0,Σu, E(utu

′
s) = 0 for

all s 6= t, which implies that we have to check the residuals of a fitted model for
autocorrelations and normality in order to evaluate their whiteness. For the
former issue we will use a multivariate version of Portmanteau test. The Port-

5For its complexity the method is not discussed here. For more information on VAR and
VECM estimation see e.g. Lütkepohl (2005).

6Condition similar to stationarity condition in univariate models. Integrated and cointe-
grated processes are unstable by definition.

7Granger causality is used in the “oil shocks context” e.g. in Hamilton (1983).
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manteau test statistic for the joined significance of the residual autocorrelations
up to lag h is as follows:

Qh = T
h∑
i=1

tr(Ĉ ′iĈ
−1
0 ĈiĈ

−1
0 ), (3.22)

where Ĉi = 1
T
ÛFiÛ

′, Û = (û1, dots, ûT ) and Fi = [Ii : 0] is i × T matrix
for i = 1, . . . , h. Under the null hypothesis the autocorrelations are equal to
zero and the test statistic is asymptotically distributed as χ2(K2(h− p)) for a
VAR(p) model and as χ2(hK2 −K2(p− 1)−Kr) for a VECM corresponding
to a VAR(p) model, where r is number of cointegrating vectors. Normality of
residuals is tested using multivariate Jarque-Bera test, which compares skew-
ness and kurtosis of residuals to the theoretical moments of normal distribution.
Consider ût, P̂ P̂ ′ = Σ̂u, and

ŵt = (ŵ1t, . . . , ŵKt)
′ = P̂−1ût (3.23)

b̂1 = (b̂11, . . . , b̂K1)
′ (3.24)

b̂2 = (b̂21, . . . , b̂K2)
′ (3.25)

where b̂k1 = 1
T

∑
t ŵ

3
kt, b̂k2 = 1

T

∑
t ŵ

4
kt, for k = 1, dots,K. Then Jarque-Bera

test statistics are

λ̂s = T b̂′1b̂1/6 ∼ χ2(K) (3.26)

λ̂k = T (b̂2 − 3K)′(b̂2 − 3K)/24 ∼ χ2(K) (3.27)

λ̂sk = λ̂s + λ̂k ∼ χ2(2N) (3.28)

The null hypotheses of these tests are normality. These test statistics and their
asymptotic distributions are same for VAR as well as for VEC models. Also, as
Choleski decomposition is used in this test, the variables ordering matters for
this test.8 In this point we have to emphasize that we expect the null hypothesis
to be strongly rejected. One reason is the typical heavy-tailed nature of the
financial data, which should be reflected especially by the kurtosis test.

An estimated VAR or VEC model includes many parameters, of which
many is often insignificant, therefore we will draw our inference from impulse
responses. For a VAR in level models to allow for instantaneous interactions
between variables we will use orthogonalized impulse responses. Consider de-

8The issue of variables ordering will be discussed in following paragraphs.
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composition Σu = WΣεW
′, where Σε is a diagonal matrix with positive ele-

ments and W is a lower triangular matrix with unit diagonal. These matrices
can be computed using Choleski decomposition Σu = PP ′, further by defin-
ing W = PD−1, Σε = DD′, diag(D) = diag(P ). Let A = W−1, then after
premultiplying (3.2) by A yields after some adjustments:

yt = A∗0yt + A∗1yt−1 + · · ·+ A∗pyt−p + εt, (3.29)

yt = (IK − A∗0)−1A∗1yt−1 + · · ·+ (IK − A∗0)−1A∗pyt−p + (IK − A∗0)−1 εt, (3.30)

where A∗0 = (IK −A) with diag(A∗0) = 0, A∗i = AAi, i = 1, dots, p and εt = Aut

with E(εt ε
′
t) = Σε. Equation (3.30) shows that a one standard deviation shock

in εit is represented by an instantaneous effect (IK − A∗0)−1D = P , as diag(D)

elements are standard deviations of εt. This can be related to a moving average
(MA) representation of a VAR(p) process defined as:

yt = µ+
∞∑
i=0

Θiwt−i, (3.31)

where Θi = ΦiP , Φi are impulse response matrices from a canonical MA rep-
resentation, wt = P−1ut and the variance-covariance matrix Σw = IK .9 Co-
efficients Θi are orthogonal impulse responses and Θ0 = P is a matrix of in-
stantaneous effects. The Choleski decomposition used in orthogonal impulse
responses construction causes that the variables ordering is important. Recall,
A is a lower triangular matrix with unit main diagonal. Therefore, assuming
ordering of the vector yt given by (3.1), such structure of this matrix imposes
following restrictions on instantaneous effects among the dependent variables:

(i) global oil production is independent of shocks in any other endogenous
variable within a month,

(ii) global real economic activity responds only to shocks in global oil pro-
duction within a month,

(iii) oil price responds only to shocks in global oil production and global real
economic activity within a month,

9Canonical MA representation of a VAR(p) process is defined as

yt = µ+

∞∑
i=0

Φiut−i, Φ0 = IK ,

and can be derived using backshift polynomials (see e.g. Lütkepohl (2005)).
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(iv) automobile stock prices respond to shocks in any of the previous variables
within a month.

The rationale behind this ordering is that, first, oil supply is considered as the
most sticky variable as the adjustments of oil production are quite time con-
suming and costly process. Second, similarly as in Kilian & Park (2009), we
assume that the global real economic activity will not be affected by oil-specific
demand shocks and shocks in automobile stock prices within a month.10 Third,
oil price is not significantly affected by automobile stock prices shocks within a
month as the oil price is determined by development in many other industrial
sectors. Finally, automobile stock prices respond to shocks in all variables in-
stantaneously as the automobile industry is sensitive to oil market changes and
the demand for automobiles is also sensitive to current and expected economic
activity.

Although integrated and cointegrated VAR processes do not have so straight-
forward MA representation as stable VAR processes, we are able to derive im-
pulse responses for them. Both (3.3) and (3.4) are nothing else than adjusted
and rearranged (3.2). Consider therefore this form. Each VAR(p) process can
be written as a VAR(1) process, assume that this form is defined in a following
way:

Yt = AYt−1 + Ut. (3.32)

Suppose that the h-step forecast in time t and actual value in time t + h are
defined by following expressions, respectively:

Yt(h) = AhYt, (3.33)

Yt+h = AhYt + Ut+h + AUt+h−1 + · · ·+ Ah−1Ut+1. (3.34)

The forecast error is hence defined as:

Yt+h − Yt(h) = Ut+h + AUt+h−1 + · · ·+ Ah−1Ut+1. (3.35)

Now consider matrix J = [IK : 0 : · · · : 0] of dimensions K × Kp. If we
10Kilian (2009, p. 13) argues the restriction on oil-specific demand shocks for global real

economic activity “. . . is consistent with the sluggish behavior of global real economic activ-
ity. . . ”. Further, we assume that the automobile industry and thus shocks in automobile
stock prices do not have such ability (in the sense of importance of automobile industry for
the global economic activity) to significantly affect this variable within a month.
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premultiply (3.35) by the matrix J we get:

yt+h − y(h) = ut+h + Φ1ut+h−1 + · · ·+ Φh−1ut+1, (3.36)

where Φi = JAiJ ′, for which a relation Φi =
∑i

j=1 Φi−jAj, i = 1, 2, . . . holds.
As Lütkepohl (2005, p. 263) states, “the elements of the Φi = (φjk,i) matrices
may represent impulse responses just as in the stable case, more precisely, φjk,i
represents the response of variable j to a unit forecast error in variable k, i
periods ago”. In the same way as it was done for stable VAR processes can
be derived also orthogonal impulse responses for integrated and cointegrated
processes.

3.2 Nonlinear model

In this Section we will use a nonlinear (threshold) VAR model to capture possi-
ble asymmetric response of car producers stock prices to positive and negative
shocks.

In related literature authors distinguish between two major sources of asym-
metries in responses of macroeconomic variables such as consumption of energy-
intensive durables. First, there are several direct channels to this phenomenon.
Edelstein & Kilian (2009) as well as Kilian & Vigfusson (2011b) identify four
direct channels. As the oil price increases real income of consumers decreases
which is translated into diminishing demand for energy-intensive durables.
“Second, changing energy prices may create uncertainty about the future path
of the price of energy, causing consumers to postpone irreversible purchases of
durables” (Edelstein & Kilian 2009, p. 2). The third channel is related to pre-
cautionary savings as consumers tend to smooth their consumption and save
in “good times” for cases of possible future adverse development (Edelstein and
Vigfusson mention especially fear from unemployment). Finally, consumption
of durables that are complementary to other durables in energy use decline more
rapidly than of other durables. Although Edelstein and Kilian, and Kilian and
Vigfusson applied this rationale on durable goods, it is relatively trivial to ad-
just their reasoning for automobile sector. First, in terms of price elasticity of
demand, cars can be regarded for a luxury good whose demand (and thus also
related stock price) is very sensitive to gasoline price (hence also to oil price).
However, we presume that a response to a positive oil price shock11 is of much

11Here by positive oil price shocks we mean shocks that cause positive response of oil price,
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larger magnitude than a response to the same shock, just with an opposite sign.
This can be explained by the consumption smoothing of non-luxury goods and
the existence of uncertainty. Because consumers tend to increase savings, they
will not immediately increase consumption of luxury (energy-intensive) goods
by the same amount as was the cut of consumption. Uncertainty about future
oil prices contributes to this gradual increase of consumption. Further, Edel-
stein & Kilian (2009), and Kilian & Vigfusson (2011b) identify also “indirect”
causes of asymmetries in durables consumption. The rationale of this second
channel lies in production adjustment across different industrial sectors. More
preciously, as an increase in energy prices causes decrease of demand of energy-
intensive durables, production of these durables is also reduced and respective
sources, that is capital and labor, are transferred to more profitable uses. More-
over, Edelstein and Kilian, and Kilian and Vigfusson stress that similarly to
the reallocation of sources between industrial sectors the reallocation can also
take place within one industrial sector. In this case capital and labor are re-
allocated from production of goods that is relatively more energy-intensive to
goods that is relatively less energy-intensive. Edelstein & Kilian (2009, p. 2)
then sum up that “the uncertainty effect and the reallocation effect necessarily
generate asymmetric responses of macroeconomic aggregates to energy price in-
creases and decreases, they amplify the response to unexpected price increases
but dampen the response to unexpected energy price decreases”. These conclu-
sions can be important especially to small open economics such as Slovakia or
the Czech Republic whose industry is, especially in case of Slovakia, heavily
oriented on car production and hence even little downswings in car demand
can cause substantial problems in these countries. On the other hand, the oil
price downswing and hence the car demand upswings do not bring comparable
positive effects. Even an intra-sectoral reallocation limited to automobile in-
dustry can be potentially dangerous if a countries’ car production facilities are
oriented on production of the relatively more fuel-intensive, or in other word
luxury, cars. For this very reason we will analyze impact of oil price shocks
(that is supply, demand and oil-specific demand shocks) on the aggregate in-
dex of stock prices of car producers as well as on stock price of individual car
producers. Using the individual approach we will try to show differences in
impacts of the three oil price shocks between luxury car producers (producers
of relatively more fuel-intensive cars) and producers of what can be called as

that is negative oil supply shocks, positive aggregate demand shocks and positive oil-specific
shocks.
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people’s cars (relatively less energy-intensive cars).
As we mentioned before many studies, for example Hamilton (2010), Edel-

stein & Kilian (2009), Kilian & Vigfusson (2011b), Kilian & Vigfusson (2011a)
or Park & Ratti (2008), employ net oil price increases as a measure of positive
oil price shocks. In case of monthly data a (three-year) net oil price increase is
defined as

ẋt = max{0, xt −max{xt−1, . . . , xt−36}}, (3.37)

where xt is price of oil. These studies further use censored-like models in order
to compute impulse responses. Kilian & Vigfusson (2011a) uses following model

xt = b10 +

p∑
i=1

b11,ixt−i +

p∑
i=1

b12,iyt−i + ε1t

yt = b20 +

p∑
i=0

b21,ixt−1 +

p∑
i=1

b22,iyt−i +

p∑
i=0

g21,iẏt−1 + ε2,t

(3.38)

where xt is oil price, x̂t is net oil price increase and yt is a macroeconomic
variable of interest. They stress that residuals of this bivariate model are
uncorrelated, hence it can be estimated via traditional OLS method (Kilian &
Vigfusson 2011a, pp. 17-18).

Different model for nonlinear VAR modeling proposes paper Lo & Zivot
(2001) and Tsay (1998), where the authors use threshold VAR and VECM
processes for their analysis.12 We can apply their methodology on our case in
a following way. Let us consider a following model

∆yt =

α1 + Φ1
1∆yt−1 + · · ·+ Φ1

p∆yt−p + ε1t if ∆y3,t−1 ≤ 0

α2 + Φ2
1∆yt−1 + · · ·+ Φ2

p∆yt−p + ε2t if ∆y3,t−1 > 0
(3.39)

where εt are serially uncorrelated normal innovations with zero mean and a
variance-covariance matrix Σ. According to Tsay (1998), if threshold value is
known for Σ holds following

Σ̂ =
ε′ ε

T − (np+ 1)
. (3.40)

Notice that in a setting as presented in (3.39) the model is self-exciting, that
is the state determining variable is the variable y3 and the decisive value of the

12In addition to these two references, more theory on nonlinear VAR models can be found
in Granger et al. (2011).
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state determining variable is that in the previous period. Finally, an advantage
of this model is that it is integrated in the tsdyn package for R statistical
software.13 Note that while the model is written with difference operators for
the all elements of the vector yt, we will use variable real_ea in levels, that is
we will treat it as stationary.

Similarly as for the linear analysis, also in nonlinear analysis we will draw
our inference from impulse responses. Because of the nonlinear nature of model
(3.39) the computation of impulse responses is not so straightforward as in the
case of linear VAR models. For nonlinear models the MA representation is also
of nonlinear nature, therefore it cannot be used for computation of impulse
responses (see Equation (3.31) for the orthogonalized MA representation and
the related footnote for the canonical MA representation). Because of this
inconvenience the impulse response function for the nonlinear model have to
be computed from the definition. Koop et al. (1996) defines impulse response
function in a following way. Let yt = F (tt−1, . . . , yt−p) + Ht εt where F is a
known function (in our case nonlinear VAR process), Ht is a random matrix
and function of {yt−1, . . . , yt−p and let Ωt−1 be a set containing information
necessary to compute the forecast of yt (these are yt−1, . . . , yt−p in our case).
Further, let ωt−1 be a representation of Ωt−1 and let yt+n be a forecast of yt for
time t+n. Now, assume that an expectation of yt+n conditional on εt and Ωt−1

exist. Then an impulse response function for n periods ahead, which considers
that a shock of magnitude δ occurred at time t in εt is given as

I(n, δ, ωt−1) =E[yt+n| εt = δ, εt+1 = 0, . . . , εt+n = 0, ωt−1]−

− E[yt+n|| εt = δ, εt+1 = 0, . . . , εt+n = 0, ωt−1]
(3.41)

Contrary to the linear impulse responses, we will compute nonlinear impulse
responses for a maximum horizon of one year, hence n = 1, . . . , 12. Rather
atheoretical approach to this methodology is presented and utilized most no-
tably in Edelstein & Kilian (2009), Kilian & Vigfusson (2011a) and Kilian &
Vigfusson (2011b).14 Especially Kilian & Vigfusson (2011a) describes in detail
the whole process and thereafter summarizes it into few simple steps, which
we will use also in our thesis. Thus, the necessary steps to obtain asymmetric
impulse responses are as follows (Kilian & Vigfusson 2011a, pp. 18-19):

13In addition to already mentioned literature, we also used documentation of the tsdyn
package, Di Narzo et al. (2011), in order to compose the threshold VAR model.

14In addition to these “energy” VARs, this approach is also employed in fiscal VARs, for
example in Afonso et al. (2011).
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(i) Estimate a nonlinear VAR(p) model. Take p consecutive values of yt
(note that yt is a 4 × 1 vector so in fact take p consecutive values of
yj, j = 1, 2, 3, 4). These values are nothing else than a one particular
representation of Ωt−1, let us denote it ωit−1.

(ii) Take the estimated coefficients from the estimated VAR model and fix
them. Further, based on ωit−1 simulate (forecast) values yj,t+n for j =

1, 2, 3, 4 and n = 1, . . . , 12. Without loss of generality let us assume that
we want to compute response to an impulse of magnitude δ in time t in
oil supply, that is ε1t = δ. Then the values are simulated in a following
way. First, values yt+n are simulated with εt and εt+n drawn from their
empirical distributions. Second, another set of values yt+n is computed
setting ε1t = δ while ε2t, ε3t and ε4t as well as all later innovations, that
is εt+n, are drawn from their marginal distributions.

(iii) Compute differences between these two paths, as Kilian & Vigfusson
(2011a) puts it, for the automobile stock returns variable, that is compute
yδ4,t+n − y4,t+n, for n = 1, . . . , 12 where yδ4,t+n is a realization with a shock
while y4,t+n is a realization without the shock.

(iv) Repeat steps (ii) and (iii) a sufficient number of times, let us denote it m
as Kilian and Vigfusson, and compute average across this m. Result of
the averaging is the response of y4,t+n for n periods ahead to an impulse
of magnitude δ. This response is, however, conditional on chosen ωt−1.

To make the responses more robust, that is not conditional on the chosen
history represented by ωt−1, we will use also unconditional responses in addition
to the conditional ones. According to Kilian & Vigfusson (2011a) unconditional
impulse response function, denoted I(n, δ), can be obtained by averaging the
conditional impulse response function across all ωt−1, which can be written as

I(n, δ) =

∫
I(n, δ, ωt−1) dωt−1 (3.42)

To prove that the automobile stock prices (or returns) indeed exhibit an
asymmetric behavior with respect to oil price shocks we have to test for the
symmetry in the model. For the censored-like model a simple slope test based
on Mork (1989) or Kilian & Vigfusson (2011a) can be used. For the model
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described by Equation (3.38) we would use an F-test for the null hypothesis

H0 : g21,i = 0, (3.43)

for i = 0, . . . , p. For our two-state threshold model we will use an asymmetry
test proposed in Hansen (1999) for univariate models and further adjusted
for multivariate models in Lo & Zivot (2001). Null hypothesis in this test is
linearity, that is we test a linear VAR model against an alternative of a TVAR
model, in our case with two regimes. The test statistic of this test is classical
likelihood ratio test statistic

LR = T (ln(|Σ̂|)− ln(|Σ̂th|) (3.44)

where |Σ̂| and |Σ̂th| are determinants of the estimated variance-covariance ma-
trices of the linear and the two regimes threshold VAR models, respectively.
On the other hand the distribution of the test statistic is not so trivial and has
to be bootstrapped as proposed in Hansen (1997).



Chapter 4

Description of data

Employing the VAR model we will decompose oil price shocks on three com-
ponents. This implies that in addition to stock prices automotive firms we will
use following time series; crude oil price as a measurement of oil price specific
shocks (or shocks to precautionary demand of crude oil), global crude oil pro-
duction as a proxy of supply shocks, and finally a global real economic activity
index which should introduce demand shocks into the model. In addition to
these main time series, an aggregate price index is used for the purpose of de-
flating nominal stock prices as well as nominal crude oil prices. All time series
are used in the monthly frequency and cover the period January 1994-July
2012.

4.1 Crude oil prices

Examining the literature that deals with oil price shocks effects on macroeco-
nomic variables or on stock market one can find various measures of oil prices.
One common feature of all these measures throughout the literature is that the
authors use real prices. For example, Hamilton (1988) utilizes PPI of fuels,
on the other hand, Mork (1989) emphasizes a use of refiners acquisition cost
because of misleading properties of PPI measure during 1970s caused by regula-
tion issues. Also Kilian (2009) and Kilian & Park (2009) use oil price measured
as refiners acquisition cost of imported crude oil, which is subsequently deflated
by the U.S. CPI. From this point of view is very interesting the study Ramey
& Vine (2010), which uses oil prices (measured as PPI and refiners acquisi-
tion cost) as well as gasoline prices (measured as CPI of gasoline). However,
because of availability of the data the nominal global crude oil prices could
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be preferred compared to some local real representations of oil prices (as is
the price measured as PPI). Further, because the scope of our study are real
shocks, the nominal prices can be deflated using some price index. According to
this reasoning three measures of crude oil prices can be used for our purposes,
being West Texas intermediate light crude oil, Brent sweet light crude oil and
U.S. refiner acquisition cost of crude oil. West Texas intermediate light crude
oil price (WTI) is quoted on the New York Mercantile Exchange (NYMEX).
Brent sweet light crude oil price can be regarded for a “European counterpart”
to WTI, which is quoted on the IntercontinentalExchange (ICE).

Figure 4.1: WTI crude oil price. Nominal price (red line) is measured
in U.S. dollars per barrel, real price (blue line) is measured
in June 2005 U.S. dollars per barrel.

Source: U.S. Energy Information Administration and author’s computations.

Figures Figure 4.1, 4.2 and 4.3 show the nominal as well as the real crude oil
prices measured as WTI, Brent and refiners acquisition cost, respectively. All
crude oil price time series were originally downloaded as nominal. Because all
of the prices are originally measured in U.S. dollars, we decided to deflate them
using the U.S. consumer price index for all urban areas.1 As a base period is
chosen June 2005, so the real prices are reported in June 2005 U.S. dollars per
barrel.

1WTI, Brent and refiners acquisition crude oil prices can be found on the website of
the U.S. Energy Information Administration, http://www.eia.gov/petroleum/data.cfm#
prices. The U.S. CPI time series for all urban areas is downloadable from the website of
the Federal Reserve Bank of St. Louis, http://research.stlouisfed.org.

http://www.eia.gov/petroleum/data.cfm#prices
http://www.eia.gov/petroleum/data.cfm#prices
http://research.stlouisfed.org
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Figure 4.2: Brent crude oil price. Nominal price (red line) is measured
in U.S. dollars per barrel, real price (blue line) is measured
in June 2005 U.S. dollars per barrel.

Source: U.S. Energy Information Administration and author’s computations.

Auxiliary lines in the figures enable us look at the behavior of oil prices
during the most important events that could be called by the abstract notion
(oil price) shocks, or in other words they show timing of events that are generally
known to have some impact on oil prices. All three price measure begin with a
relatively calm period. The prices were stable until 1996 when all three plots
show a significant downturn, which hits its trough in 1998 M8. As emphasized
by Kilian (2009, p. 4) the 1996 (or 1998) oil price shocks, can be assigned to
the Asian financial crisis (1997 M7-1999/20002) and they are realizations of
demand shocks. With the end of the crisis prices return to pre-crisis level and
also surpassed them. The next significant events that affected oil prices was
recession in the early 2000s and also political grievances marked by 9/11 in the
plots. Further, a small hike in oil price can be seen in the beginning of 2003.
This price increase can be understood as a reaction to the worsening political
situation in Iraq and as an anticipation of Iraq War which began three months
later. In 2005 two events can be identified that could have an impact on the
crude oil price. First, Hurricane Katrina struck the Gulf of Mexico in August,
followed by Hurricane Rita in September. Kilian (2009, p. 4) points out that
while the reduction in the U.S. crude oil production was relatively minor in

2Dating based on R.J. Barro. Economic growth in East Asia before and after the financial
crisis. NBER working paper, no. 8330, 2001.
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Figure 4.3: Crude oil prices measured as refiners acquisition cost.
Nominal price (red line) is measured in U.S. dollars per
barrel, real price (blue line) is measured in June 2005
U.S. dollars per barrel.

Source: U.S. Energy Information Administration and author’s computations.

terms of the global production, these events cause decrease in U.S. refining
capacity (from 17.150 million barrels per day in July 2005 to 15.747 million
barrels per day in October 2005 as documented by the U.S. Energy Information
Administration). Such a decrease in demand for crude oil caused decrease in
the price of crude oil. A minor instability in oil price could have been also
introduced by the Lebanon War (Israel-Hezbollah War) in 2006. However, by
far the greatest fluctuations in oil price were caused by the events related to the
global Financial Crisis of 2007. The highest spike in June 2008 shows inflation
of the bubble, while the subsequent trough in December 2008 signify its burst.
Finally, fluctuations in crude oil price which began in 2010 represent events
known as Arab Spring, that is a chain of revolutions in several Arab countries.
Especially, the Libyan Civil War, which began in February 2011, could have had
a significant impact on global oil prices as Lybia was listed as the 29th largest oil
producer in the World by the U.S. Energy Information Administration. Also,
an uncertainty about Israeli reaction concerning the Iranian nuclear program
surely contributed to fluctuations in the crude oil price.
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4.2 Index of global real economic activity

A global real economic activity time series will introduce a measure of global
demand shocks into a VAR model. Various economic indicators can be used
as a measure of the real economic activity, especially the global real GDP or
a global index of industrial production. However, we decided to follow the
papers Kilian (2009) and Kilian & Park (2009) in this matter and use the
index of global real economic activity as designed in the former paper.

The main reason for implementing this measure of the real economic activity
is that it is, in addition to the fact that it was used in several papers for
similar purposes as is the goal of this thesis, publicly accessible and free of
charge.3 However, as it is emphasized in Kilian (2009), there are also several
imperfections of the above mentioned conventional economic activity proxies,
which makes this index preferable. On the account of global GDP method,
Kilian sees the main problem in the data availability. He also argues against
other indexes based on value added methodology. Along with the mentioned
data availability problem, Kilian challenges aggregation methods, or in other
words, weights used to compose such indexes.4 Further, his last argument about
the value added measures is their problematic relationship to global activity on
commodity markets. An increase in the global economic activity as documented
by the value added measure can be caused, for example, both by industrial
sector or services sector. It is straightforward that the services sector use
commodities in much lower quantities than industrial sector. Consecutively, the
value added measure would indicate a positive demand shock, while demand of
commodities would in fact remain unchanged. On the other hand, the industrial
production method suffers with similar problems.

The index of global real economic activity is composed of single voyage
freight rates for various commodities (e.g. grain, coal, iron). The freight rates
are also measured for different trade routes in U.S. dollars per metric ton. The
composed time series is finally deflated using U.S. CPI and linearly detrended.5

Figure 4.4 shows the plot of the index with highlighted main events that affected
3The index of global real economic activity time series can be downloaded on the

personal website of professor Lutz Kilian, http://www-personal.umich.edu/~lkilian/
paperlinks.html. The whole time series covers the period 1968 M1-2012 M8.

4“. . . it is not straightforward to properly weight each country’s contribution to global, real
economic activity . . .To make matters worse, the relative importance of individual countries
for global economic activity is shifting over time” (Kilian 2009, p. 6).

5More on construction and rationale behind the index of global real economic activity in
Kilian (2009).

http://www-personal.umich.edu/~lkilian/paperlinks.html
http://www-personal.umich.edu/~lkilian/paperlinks.html


4. Description of data 29

crude oil price throughout the monitored period. As it can be seen, (political)
events which are believed to bear main impact on the supply of crude oil, have
almost none or only very limited effect on global economic activity. On the
contrary, events which heavily affected the global economic activity caused also
significant distortions in the crude oil price. Relatively stable business cycle is
present in the data until 1995, when the economic activity peaked. Another
major disruption coincides with the Asian financial crisis. The global economic
activity hit its trough in 1998. Subsequently, a short period of prosperity
followed peaking in 2000, followed by a recession that hit several developed
countries and, as Kilian (2009, p. 11) states, whose trough coincides with 9/11.
However, the heaviest disruptions caused the Financial Crisis of 2007 and the
subsequent prolonged global recession or economic stagnation.

Figure 4.4: Index of global real economic activity, deflated using
U.S. CPI and linearly detrended, 2005 M6=1.

Source: Personal website of professor Kilian and author’s computations.

4.3 Global crude oil production

Above we introduced crude oil prices and index of global real economic activity,
which will simulate specific price demand shocks and global demand shocks,
respectively. In addition to these, global oil production will simulate supply
shocks in our VAR model, including supply shocks caused by natural disasters
as well as by political supply shocks (e.g. decreased in production due political
events in Middle East). Figure 4.5 shows the global crude oil production mea-
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sured in millions of barrels pumped per day, averaged by month and Figure
4.6 shows monthly changes in global crude oil production. We can see that oil
supply reductions coincide in fact with all highlighted events. However, it is
questionable if these reductions occurred as a direct cause of these events or
as a cause of oil price hikes. As it was indicated in Chapter 2, Kilian (2009)
suggests that the precautionary demand shocks precede supply shocks, in other
words the political uncertainty and tension preceding the actual political event
affects the oil price before the actual event takes place. Even if this is true
for the oil price-supply relationship, we could conclude that at least the falls
of production due to the hurricanes Katrina and Rita could be perceived as
“direct” supply shocks. The graphs suggest that by far the most significant
reductions in oil production occurred during the Financial Crisis of 2007 and
Libyan civil unrest of 2011.

Figure 4.5: Global crude oil supply production in millions of barrels
pumped per day, averaged by month.

Source: U.S. Energy Information Administration and authors’s computations.
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Figure 4.6: Monthly changes in global crude oil production.

Source: U.S. Energy Information Administration and authors’s computations.

4.4 Automobile industry stock prices

The automobile industry stock prices time series act as the time series of main
interest. The VAR analysis should reveal how shocks in all preceding time series
influence the behavior of these prices. In our analysis we will study impacts of
shocks on an aggregate time series as well as on its determinants. These deter-
minants will represent individual automobile manufacturers. We expect that
oil price shocks will have different effect on individual manufacturers because
of differences in fuel consumption by their products.

As an aggregate time series representing automobile industry we composed
an equal weighted portfolio (or rather an equal weighted index) composed of
stock prices of major global car manufacturers. Totally there are 18 car manu-
facturers included in the index.6 The index is constructed as follows: first, time
series of individuals car manufacturers, which we downloaded using Reuters
Wealth Manager database, are converted to U.S. dollars using correspondent
exchange rate time series. Similarly as the oil prices, also stock price time series
of all car manufacturers are deflated by CPI for all urban areas. Subsequently,

6See Appendix A for the list of included car producers and for more detailed information
on its construction. The index prices will also be called automobile stock prices, interchange-
ably.
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the first value of the equal weighted index is computed using a following formula

real_asp1 =
100

18

18∑
i=1

seriesi,2
seriesi,1

, (4.1)

where real_asp stands for real automobile stock prices, seriesi,1 is the first
value in time of stock prices of i-th car manufacturer, hence the 0th value of
the index is is assumed to be 100. Next, all further index values are calculated
using equation

real_aspt =
real_aspt−1

18

18∑
i=1

seriesi,t+1

seriesi,t
, (4.2)

for t = 2, . . . , 223. After correspondent number of repetitions an equal weighted
index of real automobile stock prices is obtained. The resulting index is plotted
in Figure 4.7. Similarly as for the previous time series, the graph of the index

Figure 4.7: Prices of equal weighted stock index composed of major
car producers. Deflated to U.S. dollars of June 2005.

Source: Reuters Wealth Manager and authors’s computations.

exhibits largest fluctuations shortly after the beginning of Asian financial crisis,
in the early 2000s and during the global Financial Crisis of 2007.

For the analysis of individual time series we will use real stock returns of car
producers Audi, BMW, KIA, and Hyundai (similarly as before, the nominal
prices are deflated to June 2005 U.S. dollars). Plots of these stock returns are
depicted in Figure 4.8.
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Chapter 5

Empirical results

5.1 Results of linear analysis

Following the methodology outlined in the previous chapter, our first task is
to examine the time series for unit roots. Even before that, we transform all
variables except the global real economic activity (because of the fact that it
includes negative values) into natural logarithms. Nonstationarity of all time
series in our dataset is suggested already by their plots, which shows clear trends
(Figures 4.1, 4.4, 4.5, and 4.7). These graphical tests are further supported by
ADF and KPSS tests, which also indicated unit roots present in the data.

Table 5.1: Unit root tests for levels. Notation l_oil_sup, real_ea,
l_real_wti, and l_real_auto stand for (logarithms) oil
supply, real economic activity, real WTI prices, and real
automobile stock prices, respectively.

Variable ADF KPSS
p-value LMKPSS 5% crit. value

l_oil_sup 0.377 4.116 0.463
real_ea 0.044 1.31 0.463
l_real_wti 0.656 3.823 0.463
l_real_auto 0.652 3.339 0.463

Source: author’s computations.

Recall that the null hypothesis of the ADF test is presence of a unit root while
the opposite is true for the KPSS test. Table 5.1 shows some very interesting
results. While the KPSS test suggest that all time series are nonstationary at
the 5% level of significance, according to ADF test the global real economic
activity is slightly stationary on the same level of significance. This finding
does not at all corresponds to the construction of this variable which is, as
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Table 5.2: Unit root tests for variables in first differences. Note that
all variables except the real global economic activity are in
logarithms.

Variable ADF KPSS
p-value LMKPSS 5% crit. value

∆l_oil_sup < 0.01 0.076 0.463
∆real_ea < 0.01 0.078 0.463
∆l_real_wti < 0.01 0.031 0.463
∆l_real_asp < 0.01 0.037 0.463

Source: author’s computations.

Kilian (2009) states, already detrended. On the other hand, unit root tests for
differenced variables indicate that all of them are stationary at the 5% level.
Because the of unit roots test for the global real economic activity is peculiar
we will treat it first as nonstationary and subsequently we will use it as a
stationary variable and compare the two results.

If the global real economic activity is nonstationary, we have all endogenous
variables nonstationary, what implies that one or more cointegrating relation-
ships can be present in the data. However, we have to determine a VAR lag
order before employing the Johansen procedure. First, information criteria are
used with the maximum lag order set tom = 12 lags. Table 5.3 summarizes the
results yielded by the criteria. As we can see the result is ambiguous because

Table 5.3: VAR order selection using information criteria method.

IC suggested order
AIC 4
HQ 2
SC 1

Source: author’s computations.

of different performance of different criteria. Therefore, we continue with like-
lihood ratio test. Initially, the orders of unrestricted and restricted models are
set to 4 and 3, respectively. The likelihood ratio fails to reject null hypothesis
about simpler model, so the testing procedure have to continue. In our case
the test rejects null hypothesis for a restricted model with 1 lag of endoge-
nous variables (p-value = 1.087 × 10−6). We believe, however, that one lag is
too few to capture all the dependencies in the data, therefore we will continue
our analysis for a VAR(4) model (as it is suggested by the AIC), while the
final model will depend on performance of the given model with respect to the
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whiteness of residuals.1 Finally, with determined lag order we can approach
to cointegration tests. Table 5.4 shows that, according to the both tests of

Table 5.4: Johansen test for rank of cointegration.

Hypothesis λtrace 5% crit. value λmax 5% crit. value
r ≤ 3 4.27 9.24 4.27 9.24
r ≤ 2 11.55 19.96 7.28 15.67
r ≤ 1 23.02 34.91 11.47 22.00
r = 0 59.16 53.12 36.14 28.14

Source: author’s computations.

Johansen procedure, there is one cointegration relationship among the time
series. In maximum eigenvalue and trace test we included an intercept term
into cointegration relationship, which corresponds to a VECM with restricted
constant (no constant term in VAR process and constant term in cointegration
term), which we think corresponds best to the nature of our data. To summa-
rize the lag order selection procedure and the Johansen procedure, the results
suggest the use of a VECM with one cointegrating vector and 3 lags of first-
differenced endogenous variables. Checking the whiteness of residuals should
show the adequacy of a given model. For the above outlined VEC model we
are unable to reject hypothesis about serially correlated residuals and their nor-
mality (for example the p-value for the joint test for residuals autocorrelation
at lag 20 is 0.0244 so we reject the null hypothesis about no serial correlation in
residuals at the 5% level). We stated earlier in the text that we expect normal-
ity to be rejected given the nature of financial data (distributed according to
heavy-tailed distributions). Although we also think that no serial correlation in
residuals is not so important for model which should assess impact of oil price
shocks on car manufacturers stock, prices rather than provide explanation of
variance in these stock prices (hence residual autocorrelations in such a model
would suggest existence of some important variable that is not included in the
model), we decide to augment our model with additional lags. Thus, instead of
VECM with three lags of variables in first differences we will use a model with
5 lags; a VEC model of this lag length corresponds to a VAR(6) process and
thus it should cover all seasonal effects during the year. In compliance with
results of the Johansen procedure we keep the number of cointegration vectors
fixed to 1. The estimated model can be found in Appendix B. Even using the
augmented model we are unable to achieve normality of residuals. P-values for

1Although, the VAR(1) model could be very convenient for predictions for which more
parsimonious models are used.
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skewness, kurtosis and the combined Jarque-Bera test statistics are as follows:
p-value(λ̂s) = 0.0002, p-value(λ̂k) = 2.2×10−16, and p-value(λ̂sk) = 2.2×10−16.
However results for serial correlations tests are much improved by the augmen-
tation; they are summarized in Table 5.5. From this table we can see that at

Table 5.5: Test for autocorrelation in VECM residuals.

Lag
20 25 30 35

p-value 0.0798 0.1455 0.1252 0.2605
Source: author’s computations.

a given lags we are unable to reject the null hypothesis about autocorrelations
equal to zero at the 5% level of significance. As we emphasized before, the
estimated matrices Γi include a lot of insignificant coefficients, also the whole
model comprises of so much coefficients that their interpretation would be very
confusing, hence we will continue with the interpretation of the cointegration
relation, Granger-causality and impulse responses.

The cointegration relation, i.e. the long-run co-behavior, estimated by the
model is depicted in Figure 5.1. Most evident extremes on the graph correspond
to Asian financial crisis and to Financial crisis of 2007 with the preceding
growth and the succeeding recovery period. Equations (5.1) and (5.2) represent
estimated cointegrating relation normalized to the first and the fourth variable
(that is oil supply and automobile stock prices), respectively.

y1t − 0.001y2t − 0.371y3t + 0.383y4t − 4.901 = 0 (5.1)

y4t + 2.609y1t − 0.004y2t − 0.969y3t − 12.786 = 0 (5.2)

Looking at Equation (5.2) we could conclude that e.g. a 1 percentage point
increase in the WTI price per barrel of crude oil, all things being equal, results
in an increase of 0.969 percentage points of automobile stock price. This,
however, may not be true because of the presence of differenced terms in the
model. The true effects will be shown by impulse responses.

Because the corresponding VAR process to our VEC model is a VAR(6)

process, we use a VAR(7) process to test the Granger-causality. First, we are
interested if the first three variables, that is the global oil production, the global
real economic activity, and the real WTI crude oil price, do Granger-cause the
real automobile stock price. Using an F-test we get p-value = 1.572× 10−5 for
this test. Such result allows us to strongly reject the null hypothesis about no



5. Empirical results 38

Figure 5.1: Cointegration relation.

(a) Cointegration relation including the constant term.

(b) Cointegration relation without the constant term.

Source: author’s computations.
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Granger-causality between the given variables on the 5% level of significance. In
other words, we determined that oil supply, global demand, and oil price indeed
affect, in some way which we do not know yet, behavior of automobile stock
prices and, therefore, using these variables we are able to explain some portion
of variation in these stock prices. Let us now test the Granger-causality in the
opposite way, that is if the automobile stock prices Granger-cause the other
three variables. This time we obtained p-value = 0.6281. Such result shows
that the automobile stock price alone does not have, according to our model,
a significant effect on the block of variables consisting of global oil production,
global real economic activity and real oil price. This seems only logical as the
automobile industry, despite its unquestionably high importance for particular
economies, does not have have a sufficient strength to exert significant impact
on global price or supply of oil given the wide spectrum of use of oil.

Finally, we compute orthogonalized impulse responses, which allow for in-
stantaneous effects between variables. Figure 5.2 shows estimated impulse re-
sponses. Also 95% confidence interval is depicted on all graphs in order to
evaluate significance of responses. In Figure 5.2(a) we can see response to a
one standard deviation shock in global oil supply. Real automobile stock price
reacts immediately by upward movement and positive response persists with
little fluctuations until the 4th month, since when the response starts to decline.
After that the response is negative. However, we can see that the 95% confi-
dence interval covers both negative and positive values on the graph, implying
that the response to oil supply shock is statistically not different from zero at
the 5% level of significance. Reaction to an aggregate demand shock, plotted
in Figure 5.2(b), also shows instantaneous positive effect on automobile stock
prices followed by a decrease almost to negative values. The automobile stock
price starts to increase again in the 5th month since the impulse. The response
to an aggregate demand shock is also not significant on the 5% level for the
whole 24 months. Most striking result brings the response to an oil-specific
demand shock. As Figure 5.2(c) shows, oil-specific demand shock of magni-
tude one standard deviation causes large positive response in automobile stock
price. The response is not instantaneous and not even significant for the first
6 months, but since the first month after the shock the automobile stock price
starts to rise at a quite rapidly increasing pace (convex curvature for at least
first 7 months). This increase is stopped in the 12th month after which the
automobile stock price is still increasing, although with a decreasing pace. The
response to an oil-specific demand shock is significant between 6th and 16th
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month. Obtained result is completely different from that presented by Kilian
& Park (2009), where automobile oil price reacted with a significant decrease
to an oil-specific demand shock. We believe the main reason of this crucial dif-
ference between findings presented in the study from Kilian and Park and our
own findings lies in selection of different time periods. Authors Kilian and Park
analyze the data covering period 1975 M1-2005 M9.2 Notice the movement of
real automobile stock price and real WTI price in Figure 5.3.

Figure 5.3: Development of real automobile stock price (red line) and
real WTI crude oil price (blue line). Both variables are in
logarithms.

Source: U.S. Energy Information Administration, Reuters Wealth Terminal and author’s
computations.

While the first part of the plot, that is approximately until 2004 M1, shows
plenty of examples of counter-movement of the two time series, in the second
part of the plot covering the pre-Crisis economic growth, Financial Crisis and
the subsequent recovery period, the oil price and the automobile stock price ex-
hibit strong positive co-movement, driven by increasing (during the pre-Crisis
boom and post-Crisis recovery) as well as decreasing (after the bust) aggregate
demand. To not isolate this co-movement only on the “second period”, the
co-movement is also present in the “first period” as well. Recall that this co-
movement is also supported by cointegration relation represented by Equation

2They also use CPI-deflated refiners acquisition cost of crude oil as a measure of real
oil price and real stock returns used by Fama and Frech publicly accessible at http://
mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html as a measure
of automobile stock prices. However, as we also showed in Section 4.1, there are almost none
differences between various measures of oil price and we think that a different measure of
automobile stock prices should not bias results is such substantial way. Therefore, we believe
that different measures of oil price and automobile stock price could not substantially change
results of the VAR analysis.

http://mba.tuck. dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck. dartmouth.edu/pages/faculty/ken.french/data_library.html
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5.2. Also the fact that we employed the VEC model which utilize the cointegra-
tion relationships in the data contributed to the difference between this thesis
and the paper Kilian & Park (2009). Finally, Figure 5.2(d) depicts plot of im-
pulse response function to a shock in automobile stock price. Although this is
not an oil price-affecting shock and hence not a scope of this thesis, we can see
that the shock is positive and strongly significant. Subsequently, we compute
also cumulative impulse responses, plotted in Figure 5.4, to assess cumulative
impact of different shocks. Similarly as for the normal impulse responses also
cumulative impulse response for a one standard deviation oil supply shock is
not significant on the 5% level of significance (Figure 5.4(a)). The same is also
true for the one standard deviation shock in global aggregate demand (Fig-
ure 5.4(b)). Figure 5.4(c) shows the gradual increase in the automobile stock
price after an oil price shock of magnitude one standard deviation. As we ar-
gued before, the automobile stock price increases first with an increasing pace,
hence the cumulative impulse response function is convex on this interval. Af-
ter the 7th month the increase is approximately constant or slightly decreasing.
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Let us now treat the real economic activity variable as stationary, that
is I(0). In this case we will transform all remaining variables into first log-
differences and fit a VAR(12) model. This will be done for two reasons: a) the
twelve lags will allow us to cover all dependencies throughout a year, b) it will
allow us a direct comparison with the model of Kilian & Park (2009) so we
will be able to assess if the positive effect of real oil price shock on automobile
stock prices is restricted only to model which allows for cointegration or it is
also present in shorter-term relations (as the cointegration describes long-term
relations) between these variables.

After estimating this VAR(12) with variable suspicious for a unit root it is
imperative to test the stability of the VAR process.3 In our case the stability
condition is not violated as all of the eigenvalues of matrix A lie inside the unit
circle which is equivalent to roots of the reverse characteristic polynomial larger
than 1 in modulus (see Figure 5.5). Further, we have to test the adequacy of

Figure 5.5: Stability test.

Source: author’s computations.

the VAR(12) model by testing normality and serial correlation of residuals.
Similarly as for the VEC model, normality is strongly rejected with p-values
for skewness, kurtosis and Jarque-Bera test statistics being p-values = 0.0005,
p-valuek = 2.2 × 10−16 and p-valueJB = 2.2 × 10−16, respectively. On the
other hand, autocorrelation test are quite favourable for our model; they are

3Earlier we emphasized that the integrated VAR process is assumed to be originally
unstable by definition. However, now we seemingly ignore that the variables are already in
differences and we seemingly treat the VAR model as in levels. Thus, if the stability analysis
indicated that the system is unstable, we would be forced to transform the variables further,
into the second differences and thus ensure the stability.
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summarized in Table 5.6. The table shows that for the first two lags the

Table 5.6: Test for autocorrelation in VAR residuals

Lag
25 30 35 40

p-value 0.043 0.032 0.147 0.21
Source: author’s computations.

autocorrelations are only marginally significant, while for the other two lags
we cannot reject the null hypothesis about no serial correlation in residuals
at the 5% level of significance. Taking into consideration these results and
the earlier stated fact that for the purpose of our analysis we do not need
perfectly uncorrelated residuals, we can use this model further on. Hence, we
can continue with testing the Granger-causality. Especially, we want to know if
oil production, global real economic activity and real oil price do Granger-cause
automobile stock returns variable. For this setting the test returns p-value =

1.837 × 10−5 so the null hypothesis about no Granger-causality between the
given set of variables and automobile stock returns is strongly rejected on the
5% level. Finally, Figures 5.6 and 5.7 show orthogonalized and cumulative
impulse responses to one standard deviation shocks.

Regarding the oil supply shock, we can see approximately the same pattern
as before, that is the nonsignificant response. Different behavior exhibits a re-
sponse to an aggregate demand shock. For, approximately, the first 9 months
is the orthogonalized response quite volatile. In this period there are significant
decreases of the automobile stock returns in the 4th and 7th month after the
shock interrupted by a significant increase in the 6th month. Between the 9th
and 13th month is the response significantly positive on the 5% level. There-
after it oscillates around the zero line and is statistically not different from zero
on the 5% level. The initial oscillation and later significant increase in the au-
tomobile stock returns is reflected also by the cumulative response. According
to it the automobile stock returns can respond to an aggregate demand shock
by an increase of almost 6% for the first 15 months. While these conclusions
are still in line with those of Kilian & Park (2009) results given by response
to an oil-specific demand shock are completely opposite. The orthogonalized
impulse response shows only two regions with significant automobile stock re-
turns increases, around the 8th and 10th month, and even a significant decrease
starting in the 15th month. However the cumulative response shows us much
better the positive effect of an oil-specific demand shock on the automobile
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stock returns. From the 2nd month on the response is positive and showing
quite rapid increase in the returns. Between the 7th and 16th month is the
increase in returns significant on the 5% level of significance. The response
also shows that for the first 15th months after the shock, the automobile stock
returns can increase by approximately 6%.

To summarize this section, we were able to prove the proposition of Kilian
& Park (2009) that oil price shocks are transferred to macroeconomic variables
through the oil-specific demand shocks. However, we found that during the
period we analyzed there is a reverse relationship between these shocks and
the automobile stock prices/returns compared to that of Kilian and Park. This
reverse relationship is confirmed by two models out of which the first describes
long-term behavior of variables while the second describes rather cyclical be-
havior of used variables. We believe that the strong positive co-development of
oil price and automobile stock price/returns, which seems to be in contradic-
tion with the common sense (as the rising oil prices should mean a fall of car
demand and hence a decrease of automobile stock price/returns) is a specific
property of examined time period. Unlike any other period before, this period
is characteristic by high economic activity (which proved to be a bubble) driven
by low interest rates and excessive monetary expansions followed by bust and
deep recessions with subsequent recovery attempts, during which the oil price
as well as automobile stock price/returns exhibit similar behavior.
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5.2 Results of non-linear analysis

For the nonlinear analysis we use a threshold model described by Equation
(3.39) with p = 12, that is with 12 lags. We use this model in order to allow
direct comparison with results of linear analysis as well as with results published
in Kilian & Park (2009). Also, the number of lags is chosen to account for
cyclical effects throughout a whole year. Using the estimated model we are
able to compute the Hansen’s threshold test.4 Because of complexion of the
test we first find the data-generating VAR process for our variables using the
information criteria method. According to Akaike information criterion, the
data-generating process is a VAR(3) process. Finally, using this result the
Hansen’s test returns p-value for the LR test statistic lower than 0.01, so the null
hypothesis about linearity is strongly rejected at the 5% level of significance.

After the proof of a presence of non-linearity in the VAR process we can
approach to simulations of impulse responses using the procedure outlined in
Chapter 3.2. As it was already stated earlier, we compute impulse responses for
12 months ahead. Further we set the number of simulations (repetitions) for
each history m = 200, thus for each history we simulate 200 paths of length 12.
Then by averaging across all histories, whose total number is 210 in our case,
we can compute the unconditional impulse responses (Figure 5.8).5 In Figure
5.8(a) we can see responses of automobile stock returns on oil supply shocks
of magnitude +1SD, +2SD, -1SD and -2SD. The plot shows that responses
to positive oil supply shocks are approximately mirror image of negative oil
supply shocks. Therefore, the response can be considered for symmetric in sign.
Situation is more complicated if we consider “symmetry in magnitude”. Notice
that e.g. in month 7 we can see that +2SD response is more than twice the
+1SD response, hence the positive responses are not symmetric in magnitude.

Similar reasoning can be also applied on the negative responses. For exam-
ple in the 1st month since the shock the -2SD response is more than twice the
-1SD response and there is even an intersection of the -2SD and -1SD responses
in month 1. Thus the responses to oil supply shocks are symmetric in sign but
not in magnitude, if we account for different intercepts and slope coefficients for
negative and positive oil price growth. In the case of aggregate demand shocks
are the results very similar. Figure 5.8(b) shows that responses to positive and
negative shocks are approximately symmetric in sign but not in magnitude.

4Estimated model can be found in Appendix D.
5For all nonlinear impulse response plots we use template inspired by impulse response

plots in Afonso et al. (2011).
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For example in the 5th month since the shock is the -2SD response much more
than twice the -1SD response. In the same month the +2SD response is less
than twice the +1SD response, although the differences are quite small.

On the other hand, results for oil-specific demand shocks, shown in Figure
5.8(c), are much more different compared to the two previous shocks. Now we
can clearly see that the responses are not symmetric in sign nor in magnitude.
Most interesting parts of the plot are first 2 months, where +2SD, +1SD and
-1SD shocks seem to have very similar impact on the automobile stock returns,
and the last 5 months, where similar reasoning can be applied especially for
the +2SD and +1SD responses (these seem to have almost identical paths
in this period). Notice also the whole paths of +2SD and +1SD responses.
They, again, show that automobile stock returns react positively to positive
oil-specific demand shocks, especially after the 5th month after the shock.

Using slightly adjusted procedure for unconditional impulse responses we
can easily compute impulse responses in state of decreasing oil prices or in
state of increasing oil prices. Construction of the model (3.39) implies that by
state of decreasing (increasing) oil prices we mean all histories for which holds
condition ∆y3,t−1 < 0 (∆y3,t−1 > 0), therefore we call these histories negative
(positive). Similarly as for the unconditional impulse responses, we simulated
200 paths for each history. Figure 5.9 shows computed impulse responses for
both the positive and the negative histories for all three oil price shocks. A
closer look at Figures 5.9(a) and 5.9(b) reveals only slight differences between
the responses to oil supply shocks in the two different states. Most notable
is the much deeper decrease of automobile stock returns in case of positive oil
price changes. Results are similar also for the aggregate demand shocks. Again,
we can see only minor differences between responses of automobile stock returns
in both states (Figures 5.9(c) and 5.9(d)). Finally, Figures 5.9(e) and 5.9(f)
shows responses to oil-specific demand shocks for the two kinds of histories.

As we emphasized before, we estimate also impulse responses of individ-
ual car producers in order to asses existence of differences between producers
of luxury cars and less luxury cars. As representatives of the first group we
choose stock returns of companies BMW and Audi. This selection is connected
to the goal of our thesis, which is to assess impacts of oil price shocks on coun-
tries heavily involved in automobile production, especially on Slovakia and the
Czech Republic. Production of Audi Q7 is located in Bratislava’s Volkswagen
factory.6 Concerning the BMW, this car producer plans to open a new factory

6According to http://sk.volkswagen.sk/sk.html.

http://sk.volkswagen.sk/sk.html
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in the Central Europe and potential candidates are exactly Slovakia and the
Czech Republic.7 The latter group includes stock returns of KIA (produced in
Slovakia) and Hyundai (produced in the Czech Republic). For all these series
we use exactly the same methodology as for the aggregate automobile stock
returns, that is a threshold VAR(12) model from which unconditional impulse
responses are computed with 200 repetitions for each history. The initial shocks
again set to +2SD, +1SD, -2SD and -1SD. Results are summarized in Figures
5.10 and 5.11. In this case we use cumulative impulse responses in order to
more easily resolve differences between the two groups. Comparing the results
for oil supply shocks we can see that for the first 6 months are the responses
for luxury car producers quite similar; positive oil supply shock causes increase
in stock returns and vice versa. There is no similar patter between KIA and
Hyundai stock returns; in this case responses of KIA stock returns much more
resemble responses of stock returns of producers from the first group. In case
of aggregate demand shocks is the situation almost opposite. Stock returns of
both KIA and Hyundai react positively on positive aggregate demand shocks
and negatively on negative demand shocks. For BMW and Audi stock returns
are the responses much more volatile. The only common reaction takes place
between the 4th and 6th month when stock returns of both firms react positively
to positive aggregate demand shocks (opposite is true for negative aggregate
demand shocks). However, if we notice vertical axis for these two shocks we can
see that oil supply shocks and aggregate demand shocks have much greater in-
fluence on stock returns of the second group (with values reaching even ±15%)
than on the first group (maximum effects around ±4%). Of utmost interest
are the responses to oil-specific demand shocks (Figures 5.10(e), 5.10(f), 5.11(e)
and 5.11(f)). First of all, they do not confirm our earlier conclusions about pos-
itive responses to positive precautionary demand shocks. Second, they do not
even show specific patterns for each group; both for the stock returns of luxury
car producers and car producers of less luxury cars respond stock returns neg-
atively to positive precautionary demand shocks. Yet, from the plots we can
see that in all four plots the responses are not “symmetric in sign”.

7Sources: http://de.auto.de/magazin/showArticle/article/102303/
BMW-denkt-ueber-neues-Werk-nach, http://www.nachrichten.at/nachrichten/
wirtschaft/BMW-will-Werk-in-Osteuropa-bauen-Slowakei-im-Rennen-um-Standort;
art15,1087291#ref=rss, http://hnonline.sk/ekonomika/
c1-59537540-slovensko-je-v-hre-o-zavod-bmw.

http://de.auto.de/magazin/showArticle/article/102303/BMW-denkt-ueber-neues-Werk-nach
http://de.auto.de/magazin/showArticle/article/102303/BMW-denkt-ueber-neues-Werk-nach
http://www.nachrichten.at/nachrichten/wirtschaft/BMW-will-Werk-in-Osteuropa-bauen-Slowakei-im-Rennen-um-Standort;art15,1087291#ref=rss
http://www.nachrichten.at/nachrichten/wirtschaft/BMW-will-Werk-in-Osteuropa-bauen-Slowakei-im-Rennen-um-Standort;art15,1087291#ref=rss
http://www.nachrichten.at/nachrichten/wirtschaft/BMW-will-Werk-in-Osteuropa-bauen-Slowakei-im-Rennen-um-Standort;art15,1087291#ref=rss
http://hnonline.sk/ekonomika/c1-59537540-slovensko-je-v-hre-o-zavod-bmw
http://hnonline.sk/ekonomika/c1-59537540-slovensko-je-v-hre-o-zavod-bmw
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Chapter 6

Possible extensions

Given the nature of data we use in our analysis, probably the most interesting
extension or correction applicable to our models is to incorporate non constant
variance of our variables into the models. First inspiration for such an extension
comes directly from plots of financial time series used in our models, that is
real WTI price changes and real automobile stock returns, plotted in Figure
6.1. In these two graphs we can clearly see areas with clustered high volatility,
for example in periods of crises (early 2000s or 2007 and subsequent years), as
well as periods of clustered low volatility, for example around the year 2005.1

Second inspiration is in residuals from our models, e.g. in case of residuals from
the VAR(12) model in differences depicted in Figure 6.2, we can see that the
volatility clustering problem is still present in these residuals. In other words,
the residuals still include some information which we were unable to extract
using our models. As it is known, this is caused by the fact that the VAR
models work with innovations with variance constant in time.

The first option how to account for non constant volatility is to incorporate
the volatility in form of a variable directly into a VAR model. Such approach is
already used in the study Sadorsky (1999) as well as in Lee et al. (1995). It uses
volatility of oil prices estimated using GARCH methodology. This volatility is
then censored and only the positive values are then incorporated into the VAR
model, which should analyze impact of volatility increases on macro variables
of choice. However, the study Kilian & Vigfusson (2011b) concludes that there
are several problems with censored models. Therefore, we would emphasize
not to censor the estimated GARCH volatility, but to include it, uncensored,
into a nonlinear (threshold) model and thus allow for nonlinear effects. The

1Similar patterns of volatility clustering can be also seen on time series plots of individual
car makers’ stock returns in Chapter 4, Figure 4.8.
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Figure 6.1: Real WTI price changes and real automobile stock re-
turns.

(a) Real WTI price changes.

(b) Real automobile stock price changes.

Source: Reuters Wealth Manager, U.S. Energy Information Administration and author’s
computations.
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previous approach would allow us to study impact of oil price volatility shocks
on automobile stock returns. We think that interesting can be also studying
impact of classical oil price shocks on volatility of automobile stock returns. In
a most simple way this can be done by estimating the volatility of automobile
stock returns by an appropriate GARCH model and use it in a VAR model in
place of automobile stock returns.

To model the non constant volatility preserved in residuals one should use
a multivariate GARCH (MGARCH) model. To sketch this approach, suppose
that ut = (u1t, u2t, u3t, u4t)

′ are our residuals from a VAR model. Then we
assume that they follow a process

ut = Σ
1
2

t|t−1 εt, (6.1)

where εt ∼ (0, I4) is independent and identically distributed white noise and
Σ

1
2

t|t−1 is the conditional variance-covariance matrix of ut. Then, according to
Lütkepohl (2005), an MGARCH(p,q) model for ut can be defined as follows

vech(Σ
1
2

t|t−1) = γ0 +

q∑
j=1

Γjvech(ut−ju
′
t−j) +

m∑
j=1

Gmvech(Σ
1
2

t−j|t−j−1), (6.2)

where Γj and Gj are coefficient matrices and vech is half-vectorization operator.

Also another approach, not so closely related to the methodology we used
in our thesis, would be to analyze the co-movement of oil prices and automo-
bile stock prices using wavelet analysis. This method would include designing
a wavelet and subsequently, using continuous wavelet transform, computing
wavelet coherence. Similarly as it is done in the study Vacha & Barunik (2012)
for crude oil prices, heating oil prices, gasoline prices and natural gas prices,
such approach should reveal if and on which frequencies are the oil prices and
automobile stock prices “correlated”.



Chapter 7

Conclusion

In this master thesis we studied impact of oil price shocks on automobile stock
prices and returns. We used decomposition of oil price shocks on oil supply
shocks, aggregate demand shocks and oil-specific demand shocks and employ-
ing the vector autoregression methodology we computed impulse response func-
tions, which acted as our main tool of inference. First, we used classical linear
VAR approach, in which we used a VECM and a VAR in differences models.
Both of these models confirmed findings of previous studied, that is that oil
supply shocks are translated especially via oil-specific demand shocks into the
macro variables. However, in our case the direction of impulse responses was
totally different compared to other studies, as a positive oil-specific demand
shock caused a significant increase in automobile stock prices and returns. We
think that this is caused by strong co-movement of oil prices and automobile
stock prices during the chosen period and especially during periods closely
linked to the recent Financial Crisis. By these closely linked periods we have
in mind the unhealthy growth period preceding the Crisis, the period of Crisis
itself, and period of stagnation which followed the Crisis.

In the second part of the thesis we employed nonlinear (threshold) VAR
model. Using impulse response functions computed from definition (because of
nonexistence of Wold’s decomposition for nonlinear VAR models) we searched
for asymmetries in impulse response functions. Indeed, we found that especially
responses to oil-specific demand shocks show signs of asymmetries in sign as well
as in magnitude. Subsequently, we also analyzed impulse response functions of
individual car producers. We used two criteria for selecting the car producers;
first, we used stock returns of car producers with factories in Slovakia and
the Czech Republic in order to show possible impacts on economies of these



7. Conclusion 61

two countries in case of oil price shocks, second we selected two producers
of relatively luxury cars and two producers of relatively less luxury cars in
order to find some patterns characteristic for these two groups. The most
interesting finding is that the individual car producers’ stock returns do not
respond positively to positive oil-specific demand shocks. Although, we found
asymmetries also in responses of stock returns of individual car producers, the
only indication of difference in responses of the two groups we found is in case of
responses to aggregate demand shocks; for luxury car producers the responses
to these shocks are much more erratic or volatile than it is for the responses of
less luxury car producers.

In the last chapter we also outlined possible future extensions for our
methodology as well as completely new methodology, which we think is very
suitable for further analysis of co-movement of oil prices and automobile stock
prices.
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Appendix A

Index of car manufacturers

Index of car manufacturers’ stock prices is composed of stock of following car
produders (in alphabetical order):

Audi
BMW
Daihatsu
Daimler
FIAT
Honda
Hyundai
Isuzu
KIA
Mazda
Mitsubishi
Nissan
Peugeot
Suzuki
Toyota
Volkswagen
Volvo
Yamaha



Appendix B

Estimated VEC model

Figure B.1: Estimated linear VEC model, output from R. Standard
errors are in parentheses, parameter estimates marked by
*, **, *** are significant on the 90%, 95% or 99% level of
significance, respectively.



Appendix C

Estimated VAR in differences
model

(a) Equation 1. (b) Equation 2.

(c) Equation 3. (d) Equation 4.

Figure C.1: Estimated linear VAR in differences model, output from
R. Standard errors are in parentheses, parameter esti-
mates marked by *, **, *** are significant on the 90%,
95% or 99% level of significance, respectively.



Appendix D

Estimated TVAR model

Figure D.1: Estimated low regime coefficients of TVAR model for ag-
gregate automobile stock prices, output from R. Standard
errors are in parentheses, parameter estimates marked by
*, **, *** are significant on the 90%, 95% or 99% level of
significance, respectively.



D. Estimated TVAR model V

Figure D.2: Estimated high regime coefficients of TVAR model for ag-
gregate automobile stock prices, output from R. Standard
errors are in parentheses, parameter estimates marked by
*, **, *** are significant on the 90%, 95% or 99% level of
significance, respectively.
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