
Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Miroslav Kratochvíl

Implementation of cryptosystem
based on error-correcting codes

Katedra softwarového inženýrství

Supervisor of the bachelor thesis: RNDr. Jakub Yaghob, Ph.D.

Study programme: Informatika

Specialization: Obecná informatika

Prague 2013

Dedicated to everyone who was not afraid to sacrifice late night and early morning
to run out and contribute to chaos.

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In date signature of the author

Název práce: Implementation of cryptosystem based on error-correcting codes

Autor: Miroslav Kratochvíl

Katedra: Katedra softwarového inženýrství

Vedoucí bakalářské práce: RNDr. Jakub Yaghob, Ph.D.

Abstrakt: Cílem práce je prozkoumat možnosti implementace uživatelsky přívě-
tivého a praktického kryptosystému založeného na algoritmech neohrozitelných
kvantovými počítači. Předpokládá se co nejširší nasazení kryptografie založené
na samoopravných kódech (McEliece kryptosystém) a zachování podobnosti s
existujícími kryptografickými aplikacemi (GnuPG).

Klíčová slova: šifrování, digitální podpis, samoopravné kódy, postkvantová
kryptografie

Title: Implementation of cryptosystem based on error-correcting codes

Author: Miroslav Kratochvíl

Department: Katedra softwarového inženýrství

Supervisor: RNDr. Jakub Yaghob, Ph.D.

Abstract: The goal of this thesis is to present the problem of implementation of
user-friendly and practical cryptosystem based on algorithms that are intractable
by quantum computing. Resulting software is expected to use code-based
cryptography (McEliece-based cryptosystems) to the highest possible extent
while maintaining similarity with already-existing cryptographical applications
(GnuPG).

Keywords: encryption, digital signatures, error-correcting codes, post-quantum
cryptography

Contents

Introduction 3
Motivation and goals . 3
Related and similar work . 4

Similar software . 4
Related research . 5

Acknowledgments . 5

1 Code-based cryptography 7
1.1 Error-correcting codes . 7

1.1.1 Linear codes . 9
1.1.2 Algebraic codes . 10
1.1.3 Binary Goppa codes . 15

1.2 McEliece cryptosystem . 17
1.2.1 Modern variants . 19

1.3 Quasi-dyadic Goppa codes . 19
1.3.1 FWHT in QD-McEliece 21

1.4 Improving cryptographic properties of the scheme 22
1.4.1 Improving original McEliece 22
1.4.2 Removing the plaintext indistinguishability requirement

from modern McEliece variants 23
1.5 Niederreiter cryptosystem . 23
1.6 Other code-based cryptographic primitives 24
1.7 Colex ranking . 25

2 Post-quantum digital signatures 27
2.1 Code-based digital signatures . 27

2.1.1 Short history . 27
2.1.2 CFS signature scheme . 28
2.1.3 Practicality of CFS . 29

2.2 Hash-based digital signatures . 29
2.2.1 Lamport one-time signature scheme 29
2.2.2 Merkle trees . 30
2.2.3 Efficient Merkle tree traversal 32
2.2.4 Practicality of FMTSeq signature scheme 32
2.2.5 Replacement of signature-intensive routines 33

1

3 Implementation of the cryptosystem 35
3.1 Overall structure . 35
3.2 Mathematical primitives . 36

3.2.1 Binary data . 36
3.2.2 Finite field calculations . 36
3.2.3 Polynomials . 37
3.2.4 McEliece implementations 37
3.2.5 FMTSeq implementation 37
3.2.6 Miscellaneous tools . 38

3.3 Keys and algorithms . 39
3.3.1 Algorithm abstraction . 39
3.3.2 Keys and KeyID . 39
3.3.3 Message . 40

3.4 Interface . 40
3.4.1 User interface . 40
3.4.2 sencode . 40

3.5 Reference guide for the software 41
3.5.1 Requirements . 41
3.5.2 Installation . 42
3.5.3 Quick usage tutorial . 42

3.6 Evaluation of resulting software 43
3.6.1 Comparison with existing cryptosystems 43
3.6.2 Possible improvements . 46

Conclusion 49
Further development and open questions 50
Disclaimer . 50

Bibliography 51

2

Introduction

Modern cryptographic algorithms and protocols have become an undisposable
part of virtually all recent communication technologies. Asymmetric cryptog-
raphy, widely used in encryption and authentication schemes, is in most cases
based on some of the hard RSA-related number-theoretic problems like integer
factorization or discrete logarithm computation. This thesis aims to explore and
implement asymmetric cryptography schemes that are constructed using differ-
ent trapdoor problems — main target is the cryptography based on assumptions
from error-correcting codes theory, namely the intractability of syndrome decod-
ing problem. It will be shown that schemes derived from this theory are not only
a viable alternative for modern schemes, but outperform them in many interesting
ways.

Motivation and goals

As stated above, practically all modern asymmetric cryptography is based on
some assumptions from number theory. In 1997, Shor [Sh97] has presented
an algorithm that performs integer factorization on quantum computers in
polynomial time, and while recent development in the field of quantum computer
construction has only allowed mathematicians to run the computation on very
small numbers (as of May 2013 the largest number ever factored using Shor’s
algorithm was 21), there is no reason to believe that the quantum computers will
not eventually grow big enough to allow actual RSA modulus factorization.

Main goal of this thesis is therefore to implement a software package that
would allow anyone to securely encrypt and authenticate data using algorithms
that cannot be broken by possible advances in quantum computing. Software
is expected to take an user-friendly form of UNIX shell tool, possibly similar to
[GPG] or related packages, and make use of code-based cryptography (based on
intractability of syndrome decoding problem, as stated for example in [LGS12])
to the highest practical extent.

Note that there are also several other branches of post-quantum1 cryptosys-
tems:

• Hash-based cryptography is used in this thesis as a replacement for code-
based signature scheme, which is found to be too slow for practical usage.
For details, see Chapter 2.

1this term broadly encompasses classical-computing-based cryptography without algorithms
that could be broken by quantum computers

3

• Lattice-based cryptography [Lat] is a good candidate for post-quantum
cryptosystems, but the algorithm for encryption, called NTRUEncrypt, is
patented (see [NPat]) and currently unavailable for general limitless usage.
Related digital signature algorithms (notably NTRUSign) are known to
contain serious security weaknesses [NSig].

• Multivariate quadratic equation (MQ-based) algorithms were considered as
candidates for post-quantum digital signatures, but most of the attempts to
produce a secure signature scheme have been broken as well — for details,
see [Cz12].

Because of those problems, this thesis does not aim to explore nor implement any
possible alternatives with lattice- and MQ-based algorithms.

Second goal of the thesis is to document author’s exploration of the topic,
especially to present a condensed but practical bottom-up construction of all
mathematical necessities needed to work with code-based cryptography.2

Due to the nature of cryptographic research needed, questions of actual
security of the software, especially cipher trapdoor usage, security and effectivity
of padding schemes, choice of hash algorithms, key sizes, related cryptosystem
parameters and communication protocols used, are left open, because the difficulty
of making any serious assumptions in that direction effectively takes them out of
the scope of this thesis. From the other side, if there is no significant mistake
in the implementation, author is currently not aware of any practical attack or
security vulnerability that could cause failure of used security guarantees.

Related and similar work

Similar software

While there are lots of quality scientific publications about the topic, to the best
of author’s knowledge there is currently no software package that would provide
general post-quantum code- or hash-based cryptography in an user-friendly way.

Only current software implementations of McEliece-like cryptosystems known
to the author are:

• The “original” archived Usenet message from anonymous prometheus@uucp
dated 1991, available at [Prom91] that contains implementation of
McEliece with fixed parameters, providing (considering also recent decoding
improvements) the attack security of around 258. The source code is not
supplied in a very programmer-friendly form3, and is quite unthinkable to
be used in any modern software.

• FlexiProvider library [FP] provides Java implementation of McEliece and
Niederreiter cryptosystems including many used padding schemes and
conventions for the programs compatible with FlexiProvider API.

2Thesis assumes that the reader has some previous experience with linear and abstract
algebra.

3It is actually obfuscated into a rectangle of symbols.

4

• HyMES [HM], a project of INRIA SECRET team and the usual McEliece
scientific testing platform, is available online. It is not meant for any
practical use other than testing and benchmarking.

To the best of author’s knowledge, there is currently no publicly available
implementation of Quasi-Dyadic McEliece.

Although cryptographic schemes based on same ideas as hash-based digital
signatures implemented in this thesis are already used in several software
protocols (notably BitCoin, DirectConnect file-sharing and Gnutella, see [TTH]),
author was not able to find any software that would allow users to directly create
actual hash-based digital signatures.

Related research

Due to the simplicity of implementing the hash-based signature schemes, there
has not been much presented research on the topic — the paper [NSW05] that
describes the digital signature scheme used by this thesis already provides more
than sufficient insight into implementation details.

On the other hand, thanks to the challenges involved, implementation of
McEliece-based systems has attracted many researchers:

• PhD thesis of Bhaskar Biswas [Bis10] is an excellent resource that is
conceptually similar to this thesis — author presents in-depth description
of construction of the HyMES software (see above).

• Many authors focus on performance of various parts of McEliece cryptosys-
tems, especially for working on memory-constrained devices. Best examples
of those are [Hey09] that implements very efficient McEliece on FPGA-like
devices, and [Str10] that primarily addresses small, smartcard-like embed-
ded devices.

• Bachelor thesis of Gerhard Hoffman [Hof11] is the only work that explores
implementation of the quasi-dyadic McEliece scheme (also used by this
thesis). The implementation is done atop HyMES, but is not publicly
accessible.

Author is not aware about any research considering implementations of used
padding schemes (Fujisaki-Okamoto padding, see Chapter 1).

Acknowledgments
I am very grateful for help from Rafael Misoczki and Gerhard Hoffmann
— the quasi-dyadic variant of McEliece cryptosystem probably could not be
implemented without their explanations.

5

6

Chapter 1

Code-based cryptography

The whole notion of code-based cryptography was established by Robert J.
McEliece in 1978 by developing the original McEliece asymmetric cryptosystem
[McE78]. Because of several disadvantages when compared to RSA-like systems,
it received quite little attention until early 2000’s when Shor’s algorithm was
developed.

This chapter is meant as an introduction to the mathematical and structural
background of the cryptosystem, overview of recent development, common
applications, derived cryptosystems and related algorithms.

Where not stated otherwise, the reference for facts and details of this chapter
is the excellent book [MWS77].

1.1 Error-correcting codes
Generally speaking, the whole practice of error correction is a method to encode
a word into a codeword, usually by changing structure and adding redundancy,
and to decode the possibly damaged codeword (sometimes called received word —
transmitting information over error-producing (“noisy”) channels is the original
purpose of error-correcting codes) back into the original word, even if some parts
of the codeword got changed during transfer, or are missing.

The code is mathematically defined as a set of all possible codewords, usually
a subset of some vector space. Although it is possible to define a code over any
vector space, for practical purposes only the binary codes over vector spaces over
GF(2) finite field will be considered and defined here:

Definition 1. GF(2) is a finite field of elements {0, 1} intuitively isomorphic to
Z2.

c is called a word of length n if c ∈ GF(2)n.
Code C of length n is a subset of all possible words of length n, e.g. C ⊆

GF(2)n.
c is a codeword of code C if c ∈ C.

When transferring information, the smallest possible (atomic) error flips a
single “bit” of the codeword vector. For measuring codeword qualities and error
counts it is useful to define the concept of Hamming distance.

Definition 2. Hamming weight of word c is equal to the number of non-zero
components of c, and written as |c|.

7

Sender Receiver

Encoding ⊕

Error
vector

Error
correction Decoding

Figure 1.1: Transfer of a word over a noisy channel, with bit errors and error
correction

Words a and b of equal length have Hamming distance d if d = |a− b|.1

Hamming distances provide an useful way to look on codes. Observe that if c
is a codeword and r is a received word that was changed by e single-bit-flipping
errors, Hamming distance of c and r is at most e.

Assume that there exists some upper limit n on how many bits can get flipped
in the codeword during transfer. If a received word is closer to some codeword
than n (e.g. they have lower or equal Hamming distance), it is possible that this
codeword was also the original transmitted codeword. Moreover, if the distance
is larger than n, the codeword could not have been transmitted in the first place,
because it would need to receive more than n errors.

The code can be arranged so that for every possible received word there is
only one codeword with the distance less or equal to n, for the purpose that
the original transmitted codeword can be found deterministically (because there
is only single possibility). Such code is then called a n-error correcting code.
Definition of the structure is, for simplicity, done using codeword distances:

Definition 3. Minimum distance of code C is defined as min {|a− b|; a, b ∈ C ∧ a 6= b}.
Code is called n-error-correcting if it has minimum distance at least 2n+ 1.

This gives a simple method to reliably transfer messages over a noisy channel
that creates at most n errors: Define a bijective mapping between all possible
messages and the codewords of n-error-correcting code. Map the message to a
codeword and transmit it. On a receiving side, find a codeword closer than n to
the received word2 and map it back to the message.

1Used notation of distance is intentionally similar to metric distances. In binary case, one
can equivalently write |a+ b|, |b− a|, or expressing it most computationally precisely |a⊕ b|.

2With slight variation, this simple approach is called “Nearest neighbor algorithm”. For a
received word, decoder evaluates all possible words within given Hamming distance (such words
form an imaginary “ball” around the received word), and returns the one which is a codeword.

8

1.1.1 Linear codes

Definition 4. Code is called linear if any linear combination of its codewords is
also a codeword.

Linear codes have many useful properties. Because the codewords are closed
on linear combinations, the code is a proper vector subspace, and therefore has
dimension (usually marked k) and can be represented as a span of some basis that
contains k codewords. Such code can encode 2k messages, as bijective mapping
between messages and codewords is very easy to construct using linear algebra:
Basis written as a row-matrix forms a generator matrix of k rows and n (code
length) columns, and is converted to an echelon form. Messages are represented as
vectors of GF(2)k, and are transformed to codewords using simple matrix-vector
multiplication. Conversion back to the message is even easier — because the
generator matrix was in the echelon form, first k bits of a (corrected) codeword
are the original message.

Linear code of dimension k and length n is usually marked as a (n, k)-code.
Similarly, if such code has a minimum distance d, it is labeled as a [n, k, d]-code.3

For example, Hamming codes are linear — the ubiquitous 7-bit one-error-
correcting Hamming code can be represented as linear [7, 4, 3]-code with following
generator matrix:

G =

1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

Notice the echelon form — when computing a codeword from message word

m as c = mT · G, first four bits of c will be the same as original message, thus
reconstruction of message from received and repaired codeword is trivial.

For example, if one wants to encode message 0101, the codeword after
multiplication is 0101110. Left four bits of a codeword are called data bits, right
three bits are called redundancy or checksum bits.

Definition 5. Call H a parity-check matrix of (n, k)-code C if

∀c : c ∈ C ⇐⇒ H · c = 0n−k

e.g. if the null space of H is exactly C.

Observe that the parity-check matrix has exactly n− k rows and n columns.
Every code possesses many parity-check matrices related via basis change, as
changing the basis does not modify null space. Code generated by the parity-
check matrix is usually called dual code.

Using some linear algebra, one can easily construct a convenient echelon-form
parity-check matrix from generator matrix and vice versa:

Theorem 1. G = (Ik|A) is a generator matrix of a (n, k)-code if and only if
H = (AT |In−k) is a parity-check matrix of the same code.

While quite fast for single-error correction, for correcting t errors in a code of length n it runs
in time O(

(
n
t

)
), which is too slow for any practical values of t.

3Some authors even use [n, k, t]-code labeling, where t is the number of errors the code can
correct.

9

Proof. Any codeword generated from G must belong to null space of H, therefore
H(uG)T = HGTuT = oT , for all u, equivalently HGT = O.

Substitute G = (Ik|A) and H = (B|In−k):

(B|In−k)(Ik|AT) = B + AT = O

Clearly, B = AT .

For example, above Hamming [7, 4, 3]-code possesses following parity-check
matrix:

H =

1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 1 1 1 0 0 1

One can easily check that multiplying codeword 0101110 from the example with
H results in zero vector.

Moreover, almost any parity-check matrix, even in non-echelon form can be
used to construct a workable echelon-form code generator:

Theorem 2. If H = (L|R) is a parity-check matrix of linear code C and R is
invertible, C possesses a generator matrix in form G = (I|LT (RT)−1).

Proof. Similarly as in previous theorem, substitute into HGT = O, getting

(L|R)(Ik|XT) = L+R ·XT = O

Solution of that equation is XT = R−1L, therefore G = (I|X) =
(I|LT (RT)−1).

Note that if R is not invertible, one can permute columns of H to get an
invertible R. That is always possible, because H generates (n − k)-dimensional
space (which is a null space of the k-dimensional space generated by G), and
therefore must have n− k linearly independent columns.

Linearity also gives us an useful tool to find a minimum distance of the code:

Theorem 3. Linear code has a minimum distance at least d if and only if it has
no non-zero codeword with Hamming weight less than d.

Proof. Forward implication is trivial — as zero vector is a codeword, there must
be no codeword closer than d to it: |c− 0| ≥ d =⇒ |c| ≥ d.

Backward implication is proven indirectly: If linear code has minimum
distance less than d, there exist two distinct codewords a and b which form the
minimum distance, so that 0 < |a−b| < d. Because the code is linear, it must also
contains codeword c = a−b, which has Hamming weight 0 < |c| = |a−b| < d.

1.1.2 Algebraic codes

The basic trouble of the construction of linear codes is to find a code that has
the largest possible minimum distance, but still possesses some good systematic
structure so that decoding can be performed by some better algorithm than
exhaustively searching for the nearest neighbor.

There exist many algebraic approaches to the problem, most interesting for the
purpose of this thesis belong to the subclass of alternant codes called Goppa codes.

10

For definition and work on alternant codes, one must use several mathematical
structures — larger finite fields GF(2m), polynomials, and several decoding
algorithms.

This section defines the necessary primitives to show practicality of alternant
codes, notably the simplicity of constructing alternant code for target error
correction capability. Best reference with more details about all types of codes
can be found in [MWS77].

GF(2m) finite fields

Large finite fields needed for algebraic code construction can be created as
splitting fields from smaller and simpler finite fields. While the construction
described here is applicable for construction of any GF(q) where q is a prime
power (e.g. p is prime, m ∈ N and q = pm), for simplicity this thesis only
considers binary case.

Suppose a finite field of 2m elements is needed. Let GF(2m) be a set of all
polynomials of degree less than m over GF(2):

GF(2m) =

{
m−1∑
i=0

aix
i | a ∈ GF(2)m

}
Observe that such elements are trivial to convert to m-element vectors over

GF(2). They now certainly form an additive group — addition of polynomials
does a simple “xor” on their coefficients, and one can easily see that every element
is additively invertible (moreover, every element is an additive inversion of itself,
because a⊕ a = 0).

Forming a multiplication group is a little harder: the constructed field is not
closed on simple polynomial multiplication. For this reason, every multiplication
of the polynomials is done modulo some fixed irreducible polynomial over GF(2)
of degree m.

Definition 6. Polynomial is irreducible over a field if it is not a product of two
polynomials of lower degree in the field.

Choosing an irreducible polynomial of given degree over GF(2) is not very
hard. Simplest method is just trying all possible polynomials and running some
irreducibility test until one is found (see [PBGV92]).

Theorem 4. If p(x) is an irreducible polynomial of degree m, then every nonzero
polynomial a(x) of degree less than m has an unique inverse a(x)−1 that satisfies

a(x) · a(x)−1 ≡ 1 mod p(x)

Proof. Start with the uniqueness — observe the products a(x) · b(x) where a(x)
runs through all non-zero polynomials with degree smaller than m, and b(x)
is some fixed polynomial also with degree smaller than m. All these products
are distinct modulo p(x). Consider, for contradiction, that some product is not
unique:

a1(x)b(x) ≡ a2(x)b(x) mod p(x)

or equivalently,
(a1(x)− a2(x))b(x) ≡ 0 mod p(x)

11

which would mean that p(x) divides (a1(x)−a2(x)) or b(x). Because a1(x), a2(x)
and b(x) are non-zero and of smaller degrees than p(x), the only possibility is to
set a1(x) = a2(x).

Because all products are distinct, they are just a “permuted” set of all original
polynomials a(x). Specially, for chosen b(x) exactly one a(x) satisfies that
a(x)b(x) ≡ 1 and a(x) = b(x)−1.

As with all finite fields, multiplicative group of the elements is cyclic.
Basically, that means that all elements except zero can be expressed as xn

mod p(x) where n ∈ {0, 1, . . . , 2m − 2}, and zero can be defined as x−∞.
This has a practical value for implementation of multiplication arithmetic on
computers: while multiplying the polynomials “by definition” is comparatively
slow (it needs O(m) bit shift and xor operations), precomputing simple logarithm
and exponentiation table for all field elements gives a quick way for multiplication,
as for all non-zero a and b

a · b = exp(log(a) + log(b) mod 2m − 1)

which can be performed in O(1).
Inversion of nonzero element can be performed in similar manner, because

1 = x0 = x2
m−1 = xa · x2m−1−a for all a ∈ {0, . . . , 2m − 2}:

a−1 = exp(2m − 1− log(a))

For decoding of Goppa codes, one must also be able to compute square roots
of the elements:

√
xn =

{
x

n
2 if n is even

x
n+2m−1

2 otherwise

Polynomial operations and irreducibility

For creation of splitting fields (both GF(2m) from previous section, and larger
polynomial fields for construction of Goppa codes), one has to be able to
determine the irreducibility of polynomial fast. Factoring by brute force is not
very fast, therefore following result is used in a more sophisticated algorithm:

Theorem 5. Every irreducible polynomial of degree n from polynomial ring T [x]
where T is a finite commutative field divides the polynomial x|T |n − x.

Proof is a result of finite field algebra, and because it is somewhat out of scope
of this thesis, it is omitted and can be seen in [GaPa97].

This is used in Ben-Or algorithm that tries to find irreducible factor of a(x)
by trying to compute the greatest common divisor (using standard euclidean
algorithm) with all x|T |i − x for all i ∈ {1, . . . , deg(a(x))/2}. The algorithm is
very efficient for generating of irreducible polynomials — the basic idea is that
when testing a random polynomial for irreducibility, there is higher probability
that it will have small-degree factor. Ben-Or algorithm filters out small-degree
factors first, which makes the irreducible polynomial construction provably faster
(for explanation see [GaPa97]).

Definition 7. Polynomial p(x) is called monic if its highest-order nonzero
element coefficient is 1, e.g. pdeg(p)−1 = 1.

12

Algorithm 1 The Ben-Or irreducibility test.
Input: Monic polynomial a ∈ GF(q)[x]
Output: Either “a is irreducible” or “a is reducible”
p← 1
for i = 1→ deg(a)/2 do

p← p · xq mod a
if gcd(a, p) 6= 1 then
return “a is reducible”
end if

end for
return “a is irreducible”

Using the same method as with creation ofGF(2m) from previous section, it is
also possible to construct a polynomial finite field GF(2m)[x] mod p(x) exactly
if polynomial p(x) is irreducible.

While some computations in this field are trivial to do by hand (addition and
additive inversion is done element-wise on base field), log and exp value tables
tend to be too large for practical parameters (for construction of Goppa codes,
degree of p(x) will usually get to hundreds). Multiplication is therefore carried
out “by hand” by traditional polynomial multiplication algorithm modulo p(x) (in
time O(deg(a)2)). Division (and inversion) and square roots must have separate
implementations.

Inversion in the field is done by the extended euclidean algorithm (which can
be slightly modified to also provide full-scale division without the need to invert
in the first step and multiply the result later — it basically saves half of the
execution time.)

Algorithm 2 Division of polynomials in GF(2m)[x] mod p(x)

Input: Polynomials p ∈ GF(2m)[x] and a, b ∈ GF(2m)[x] mod p(x).
Output: Polynomial c so that b(x)c(x) = a(x) mod p(x)
r0 ← p
r1 ← b mod p . Euclidean algorithm sequence
s0 ← 0
s1 ← a mod p . Modified Bézout coefficient that results in c
while deg(r1) ≥ 0 do

q0, q1 ← DivMod(r0, r1)
r0 ← r1
r1 ← q1
t← s1
s1 ← s0 − (q0 · s1) mod p
s0 ← t

end while. r0 is now scalar and is invertible only using GF(2m) ops. return
s0 · (r0)−1

13

Vandermonde matrix

Definition 8. Matrix constructed from sequence a in form

Vdm(a) =

1 a1 a21 a31 . . . an−11

1 a2 a22 a32 . . . an−12

1 a3 a23 a33 . . . an−13
...

...
...

1 an a2n a3n . . . an−1n

is called a Vandermonde matrix.

Theorem 6. Vandermonde matrix has determinant
∏n−1

j=1

∏n
i=j−1(ai − aj).

Proof. By row matrix operations, the Vandermonde matrix can be converted to
smaller form without changing the determinant:

Vdm(a) =

1 0 0 . . . 0
0 (a2 − a1) (a2 − a1)a22 . . . (a2 − a1)an−22

0 (a3 − a1) (a3 − a1)a23 . . . (a3 − a1)an−23
...

...
...

0 (an − a1) (an − a1)a2n . . . (an − a1)an−2n

After removal of top-left border and application of determinant multiplicativity
rules, one gets

|Vdm(a)| = |Vdm(a2...n)| ·
n∏

i=2

(ai − a1)

Final formula is then obtained by induction.

Vandermonde matrices are a very useful tool for code construction. For more
details about them, see [MWS77].

Alternant codes

Alternant codes are typically defined as a restriction of GRS4 codes, but since
there is no intention to work with GRS codes alone in this thesis, definition is
done directly:

Definition 9. For parameters r, n, α ∈ GF(2m)n where αi are all distinct and
y ∈ GF (2m)n where all yi are non-zero, alternant code is defined as

A(α, y) =
{
c ∈ GF(2m)n | HcT = 0

}
where H is a parity check matrix of form

H = VdmT (α) diag(y) =

1 1 1 . . . 1
α1 α2 α3 . . . αn

α2
1 α2

2 α2
3 . . . α2

n
...

...
...

αr−1
1 αr−1

2 αr−1
3 . . . αr−1

n

y1 0

y2
y3

. . .
0 yn

4Generalized Reed-Solomon

14

One can easily convert an alternant code to equivalent binary code by
constructing a binary parity-check matrix: every element from GF(2m) can be
split into m binary elements which are written on m successive rows of the binary
matrix. The resulting matrix is called trace matrix.5

Note that the order of how the rows are expanded or permuted after expansion
does not matter for any actual computation or code structure. For various
purposes it is viable to exploit this to some extent — best example is the co-
trace construction that preserves quasi-dyadic matrix structure: binary matrix is
constructed as a stack of partial binary matrices, n-th of which contains n-th bits
of binary representations of GF(2m) elements.

Theorem 7. Minimum distance of alternant code is r + 1.

Proof. Since alternant codes are linear, all nonzero codewords of the code must
have hamming weight at least r + 1.

Suppose there is a nonzero codeword c with |c| ≤ r. Since it is a codeword,
Hc = VdmT (α) diag(y)c = 0. Because diag(y) is diagonal and invertible, c
and b = diag(y)c have the same hamming weights. Because any r columns
of VdmT (α) are linearly independent (because of Vandermonde determinant is
nonzero), equation VdmT (α)b = 0 has no nonzero solution for |b| ≤ r.

1.1.3 Binary Goppa codes

Goppa codes were first introduced in 1970 by V. D. Goppa in [Gop70]. Following
section defines the binary variant of the code, and shows proof of minimum
distance and an example of syndrome decoding algorithm used to correct the
errors.

Definition 10. Given a polynomial g over GF(2m) of degree t and sequence L
of n distinct elements of GF(2m) where ∀g(Li) 6= 0, binary Goppa code Γ(L, g)
is a code of length n that satisfies

c ∈ Γ(L, g) ⇐⇒
n∑

i=1

ci
x− Li

≡ 0 mod g

. If g is irreducible, the code is called irreducible binary Goppa code.

The sum from definition is traditionally called syndrome function and written
as S(c), the sequence L is code support. Notice that if the code is irreducible, L
can contain all elements of GF(2m) since for all g(Li) 6= 0.

There are several methods to construct a parity check matrix of Goppa code.
A matrix over polynomials over GF(2m) can be constructed as

H =

(
1

x− L0

mod g,
1

x− L1

mod g, . . . ,
1

x− Ln−1
mod g

)
H satisfies the condition for being a parity-check matrix, since (∀c)c ∈
Γ(L, g) ⇐⇒ Hc = 0 from definition. Thanks to the polynomial coefficient

5Note that the vectors of the original matrix columns and traced columns behave absolutely
same under addition, so there is no need to compute or multiply GF(2m) elements when, for
instance, computing the codeword syndromes.

15

additivity, it can then be expanded to a matrix over GF(2m) by writing
polynomial coefficients on separate rows, and finally traced to a binary parity-
check matrix.

Second method to construct the matrix is more complicated and shown
completely for example in [EOS06]. The result is interesting though — it clearly
shows that Goppa codes are indeed a subclass of alternant codes, have minimum
distance at least t + 1, and also that alternant decoding algorithms can be used
to correct bt/2c errors.

H ′ =

gt 0 0 · · · 0
gt−1 gt 0 · · · 0
...

...
...

g1 g2 g3 · · · gt

 · VdmT (L) ·

1

g(L0)
1

g(L1)
...

1
g(Ln)

Better and very important result about actual minimum distance of Goppa

codes can be obtained as follows:

Theorem 8. Let Γ(L, g) be an irreducible binary Goppa code. The minimum
distance of such code is at least 2 deg(g) + 1.

Proof. For codeword c, define an error locator polynomial σc ∈ GF(2m)[x]:

σc =
∏
ci=1

(x− Li)

Its formal derivative is
σ′c =

∑
ci=1

∏
cj=1∧j 6=i

(x− Lj)

After substitution into the syndrome function one obtains

σcS(c) ≡ σ′c mod g

σc is invertible modulo g, because for all elements of L holds g(Li) 6= 0 and
therefore gcd(g, σc) = 1. Using that, the equation can be rewritten as

σ′c
σc
≡ S(c) mod g

and again from definition of Goppa codes

c ∈ Γ(L, g) ⇐⇒ σ′c ≡ 0 mod g

Observe a function

GF(2m)[x]→ GF(2m)[x], f(x) =
n∑

i=0

fix
i 7→ (f(x))2 =

n∑
i=0

f 2
i x

2i

The function is a ring homomorphism, and its image, GF(2m)[x2] is a set of
polynomials called perfect squares of the ring GF(2m)[x]. σ′ is a perfect square,
because from definition of formal derivation

σ′ =
n∑

i=1

iσix
i−1

16

and thanks to properties of GF(2m), iσi = 0 for each even i.
Now, because g is irreducible6, the equation can be rewritten as

c ∈ Γ(L, g) ⇐⇒ σ′c ≡ 0 mod g2

From this, one can directly bound the Hamming weight of any nonzero
codeword:

|c| = deg(σc) ≥ 1 + deg(σ′c) ≥ 2 deg(g) + 1 = 2t+ 1

Syndrome decoding

Decoding algorithm for Goppa code syndromes can basically be constructed from
above proof, simply by solving the equation system to get σc from S(c) and g(x).
The algorithm is as follows:

1. Compute ν =
√
S−1(c)− x. This works for all nonzero syndromes (in which

case there are no errors and algorithm can easily return correct result).

2. Compute a and b so that a = bν mod g, but still deg(a) ≤ bdeg(g)
2
c and

deg(b) ≤ bdeg(g)−1
2
c. This can be achieved by using extended euclidean

algorithm on ν and g and stopping it “in the middle”. Detailed explanation
can be found in [EOS06].

3. Error locator polynomial can be now constructed as σ = a2 + x · b2.

4. Factoring the error locator polynomial will bring linear factors (x − Li)
where Li are the code support values corresponding to error positions. If
a non-linear or squared linear factor is found, the decoding failed and the
original word was damaged by more than t errors.

Note that factoring σ may be the most time-consuming step, especially if using
the “dumb” trial-zero-finding algorithm that just evaluates σ for all possible Li,
and especially if the code length is far greater than t (which is the usual case).
Berlekamp trace algorithm for polynomial factorization, as defined in [Ber70], is
usually the simplest and fastest choice for most setups.

1.2 McEliece cryptosystem
McEliece algorithm is an asymmetric encryption algorithm developed by Robert
J. McEliece in 1978 [McE78]. Its operation is specified for parameters n,m, k, t
as follows:

Key pair generation • Generate a random Goppa [n, k]-code over GF(2m)
capable of correcting t errors, with generating polynomial g, support
L and generator matrix G.

6it actually suffices that g is separable, e.g. consisting only of linear factors

17

• Generate a random permutation over n elements represented by matrix
P .
• Generate a random invertible binary matrix S of size k.
• Compute G′ = SGP . Publish tuple (G′, t) as a public key.
• Securely store (g, L, S, P) as a private key.

Encryption • Generate random binary vector e of size n with hamming
weight t.
• For plaintext message m represented as a binary vector, compute

ciphertext as c = mTG′ + e and send it to the owner of private key.

Decryption • Compute c′ = cP−1.
• Apply error correction of stored code on vector c′, obtaining c′′.
• Retrieve the plaintext message as m = c′′S−1.

To understand the principle of McEliece, observe how the message would be
consecutively modified by being multiplied by S, G and P matrices:

First, multiplication by S “scrambles” the message to the form that is, if S
was random-enough7, indistinguishable from random vector without knowledge
of S. Notice that if the scrambled message is modified by bit errors, simple
multiplication by S−1 yields a random vector (e.g. for error vector e, the result
is m⊕

∑
ei=1 S

−1
i∗ , to retrieve message in such case, one would need to guess the

position of all error bits).
Next, scrambled message is multiplied by G, thus adding redundancy bits and

converting it to codeword of the Goppa code. After adding t errors to this form
of the matrix, the scrambled message is “protected” by the bit errors from being
unscrambled, and the errors can be easily removed only by decoding the Goppa
code, which requires the knowledge of g and L.

Matrix P has the purpose of hiding the structure of SG, which would otherwise
easily reveal the S and G matrices (if G was in the echelon form, S would be
the left square of the SG and G could be easily retrieved by inversion). If the
columns are permuted, there is no way for attacker to guess which of them would
belong to the echelon part of G, thus making the Gaussian elimination approach
effectively impossible).

Basic properties of the cryptosystem are now apparent:

• Plaintext length is exactly k bits, ciphertext is n bits long.

• Key generation takes O(n3) binary operations. Most of the time is usually
consumed by the inversion of matrix S and multiplication of matrices.

• Encryption has complexity O(n2) and is algorithmically simple, using only
matrix-vector multiplication and some kind of generator of random bit
vector.

• Decryption has complexity O(ntm2) which is, for practical parameters,
roughly equivalent to O(n2).

7Didn’t have any apparent structure or passed some good randomness test, anyone can
choose.

18

• Public key has size n · k bits.

First parameters suggested by McEliece, n = 1024, k = 644,m = 10, t = 38,
were designed for attack complexity around 280 (although now broken by a more
effective attack to around 258) and provide a scheme with public key size around
80kBytes.8

1.2.1 Modern variants

Research of the cryptosystem brought several interesting conclusions.
First, consider the role of matrix S: It actually serves as a kind of a symmetric

cipher that converts any plaintext to a vector that is indistinguishable from a
random vector, so that the added bit errors can have the needed destructive
effect on plaintext readability. Note also that not much happens if S somehow
leaks from the key — attacker can get the permuted G matrix, which alone is
still unusable for finding the original g and L code parameters. Using actual
symmetric cipher that could be more effective against simple linear-algebraic
analysis could also bring more security. Therefore, it seems reasonable to remove
whole S matrix from the whole process:

• It is not needed for protection of key trapdoor,

• it is the source of the general slowness of key generator, and

• if removed, the public key can be effectively stored in k(n− k) bits instead
of nk, making it about 3 times smaller for usual parameters.

Modern variant of the McEliece cryptosystem would therefore publish only
right part of the echelon form of G. Function of S would be supplied by any
symmetric cipher, and function of P (permuting the rows of G) could be replaced
by basis change of the H space.

Second conclusion is the simple possibility of attacking the trapdoor. If anyone
would ever encrypt the same message m more times using the same public key
to obtain ciphertexts c1, c2, attacker could easily compute the compound error
position vector e′ = c1 ⊕ c2 = e1 ⊕ e2. With high probability, this vector would
have around 2t ones, giving the attacker a very good hint on guessing the error
positions. While this is still not sufficient for practical attack, availability of third
such ciphertext makes the error correction trivial in almost linear time.

1.3 Quasi-dyadic Goppa codes

The most annoying problem of McEliece scheme is the need to handle big matrix
data — the most efficient system based on general Goppa codes available still
takes O(n3) time to generate the keys (which is basically a result of Gauss-Jordan
elimination that is needed to produce the generator matrix) and key size is O(n2).

While the cost of key generating algorithm can be ignored to some extent,
storage requirements for a common keyring are quite demanding — public key

8At the time, this was just too much compared to RSA.

19

of a keypair that provides attack complexity around 2100 has size around 0.5
megabytes, growing to approximately 4.5 megabytes for 2256.9

The best approach for reducing the key size is to make the parity check (and
therefore also the generator matrix) that has some non-random structure, so
it can be easily compressed. Such property is in direct conflict with McEliece
cryptosystem requirements (generator matrix should be indistinguishable from a
completely random one), which brought two interesting results:

• Most (nearly all) attempts to produce a lightweight compressible parity-
check matrix have been broken. Those include cyclic, quasi-cyclic, LDPC10,
generalized BCH and GRS-based McEliece.

• Separate security reduction proof is required for such cryptosystem.

The first scheme that resisted cryptanalysis and provided the needed security
reduction proof was that of Misoczki and Barreto published in [MiBa10], using
the so-called quasi-dyadic Goppa codes.

Definition 11. Every square matrix of size 1 is dyadic.

If A and B are dyadic matrices, matrix
(
A B
B A

)
is also dyadic.

Observe that to be able to retrieve the whole dyadic matrix, one only
needs to store one of its columns or rows (and remember which one it was),
because all other rows and columns are only dyadically permuted always by the
same permutations. Effectively, for matrix of size n this gives a nice n-times
compression factor. For simplicity, whole dyadic matrix “generated” by first row
a is usually written as ∆(a).

In the paper, Misoczki and Barreto show that it is easily possible to construct
a Goppa code with dyadic parity check matrix. The algorithm is simple – basically
it fills first row of the matrix with several randomGF(2m) elements, computes the
rest from equations that need to be satisfied for the matrix to be of Goppa code,
and then check whether the result is actual Goppa code (by computing g and
checking uniqueness of all support elements), possibly retrying until eventually a
Goppa code parity check matrix is found. For detailed description, see Algorithm
2 from the article [MiBa10].

Using the co-trace construction the matrix is then expanded to binary
form. For clarity, following example shows the co-trace construction for GF(24)
elements over (4,4)-matrix:

9key size for 2256 security level is computed for parameters around n = 8192, t = 250 that
have been suggested by several authors

10Low Density Parity Check matrix code. It has a low number of 1’s per column.

20

a b c d
b a d c
c d a b
d c b a

 7→

a0 b0 c0 d0
b0 a0 d0 c0
c0 d0 a0 b0
d0 c0 b0 a0
a1 b1 c1 d1
b1 a1 d1 c1
c1 d1 a1 b1
d1 c1 b1 a1
a2 b2 c2 d2
b2 a2 d2 c2
c2 d2 a2 b2
d2 c2 b2 a2
a3 b3 c3 d3
b3 a3 d3 c3
c3 d3 a3 b3
d3 c3 b3 a3

Note that for the Goppa codes, the matrices are usually not square, but have

height t. The result can still be stored in pretty small space (only first lines of
each dyadic block are needed).

Conversion to generator matrix must be again done using only dyadicity-
conserving operations on whole blocks. Advantage is that the matrix does actually
never need to be expanded into full scale, everything can be computed using only
first rows of dyadic blocks.11

Decoding is, for simplicity (especially to avoid converting syndromes to
canonical Goppa syndrome-function results) done using alternant decoder
working with g2(x) polynomial and the same support. Proof of equivalence of
the codes and description of alternant decoding can be found in [Hof11].

Using all those properties to construct QD-McEliece scheme brings very good
results:

• Encryption and keypair generation are several orders faster (the im-
provements are respectively from O(n2) to O(n log n) and from O(n3) to
O(n log n)).

• Public key size is O(nm) or basically O(n log n). For a scheme with attack
complexity of 2256 the size is only around 16 kilobytes, which makes the key
storage very practical.

1.3.1 FWHT in QD-McEliece

Dyadic matrices have one more beneficial property: they can be multiplied
in O(n log n) time using a Fast Walsh-Hadamard Transform algorithm that
only operates on first rows of the matrices. This not only speeds up the
encryption and keypair generation, but also saves much memory for encryption
operations because the matrices do not need to be expanded (possibly making
implementation easier on embedded hardware).

11Description of how Gauss-Jordan elimination is done using FWHT on quasi-dyadic matrices
is largely out of scope, and can be seen in source code of the software part of this thesis

21

The best available description of FWHT transform with usage for QD-matrix
multiplication can be again found in [Hof11]. This thesis only defines FWHT and
its usage for matrix multiplication.

Definition 12. Let’s mark t(x) a function that performs FWHT on vector x. If
size of x is 1, t(x) 7→ x. If size of x is a multiple of 2 and x1, x2 are the first and
second half of x, then t(x1, x2) 7→ t(x1 + x2), t(x1 − x2).

Notice that the FWHT is basically a divide-and-conquer algorithm working
in O(n log n).

Multiplication of square dyadic matrices with first rows a and b of size n is
done as follows:

∆(a) ·∆(b) = ∆

(
t(t(a) } t(b))

n

)
Note that all computation is done lifted to Z, } denotes element-by-element
vector multiplication, and division by n is done as integer division with rounding
down.

Observation of dyadicity also shows a really simple way to tell whether a
dyadic matrix is invertible or not: If it has an even number of 1’s in first row, it
is singular. If the number of 1’s is odd, then the matrix regular, and its inversion
is the same matrix.

1.4 Improving cryptographic properties of the
scheme

1.4.1 Improving original McEliece

To solve the problem from described in Section 2.2.1 that compromises the original
McEliece scheme when the same message is ever encrypted twice, several padding
schemes have surfaced. Most notable of those is a Kobara-Imai scheme described
in [KI01].

Another attack can be performed when adversary wants to remove the added
errors from any message and is able to determine whether the owner of private key
has succeeded decoding the code: He simply flips two random bits of the message
at a time and sends the modified message to the decoder. If he determines that
decoding failed, he knows that either both bits weren’t flipped by errors, or both
were and decoder refused to accept message with t − 2 errors. If he determines
that decoding succeeded (for example when the owner of the private key replies
with any kind of reasonable answer), he is sure that one of the flipped bits was an
error bit and the second was not. Positions of full t errors can be easily recovered
in n− 1 attempts, simply trying to flip i-th and i+ 1-th bit at i-th attempt.

For this purpose, the padding adds two improvements:

• Message text is padded with a random string so that there is only an
extremely tiny probability that any message is ever repeated.

• Error positions are not random, but determined from the plaintext using a
hash function. Owner of the private key refuses the message whenever the
error positions differ from what the hash function says.

22

Schematically, given classical McEliece encryption function E, decryption
D, cryptographically secure hash function h that maps message space to error-
vector space, message m and one-time random vector r, encryption is done as
c = E(m+r, h(m+r)), while decryption is done as (m+r, e) = D(c) and accepted
only if e = h(m+ r).

It should be noted that Kobara and Imai proved that such padding establishes
indistinguishability of the message under adaptive chosen-ciphertext attack12,
which is a strong security property with many interesting implications.

1.4.2 Removing the plaintext indistinguishability require-
ment from modern McEliece variants

The problem of both the “modern” McEliece scheme that uses only echelon form
of G and the QD-McEliece scheme is that if the plaintext known not to be
indistinguishable from a completely random vector, it is usually easy to remove
the errors by hand and retrieve the plaintext. For illustration, encrypting the
word “this is plaintext” with QD-McEliece would most probably result in
something like “tbis$iw plbintektG3D6” — data part of the codeword can be
easily “decoded” by average human.

For this purpose, Fujisaki and Okamoto suggested a combination of symmetric
cipher and McEliece cryptosystem in a padding scheme published in [FO99]:
Asymmetric encryption is only used to encrypt the symmetric key, and the
message encrypted by this symmetric key is then appended to the block of the
asymmetric cipher. Similar error-guessing protection as in previous case is used
as well.

Schematically, similarly as in Kobara-Imai scheme but with functions Es

and Ds that provide symmetric encryption and decryption, the padding can be
described as follows:

• Encrypt as c = E(r, h(r +m)) + ES(m, r).

• Decrypt by splitting the message c into (a, b) blocks with asymmetric and
symmetric part. Compute (r, e) = D(a) and m = DS(b, r). Accept message
m if e = h(r +m).

Similarly to Kobara-Imai scheme, Fujisaki-Okamoto scheme provides CCA2-
IND property of the cipher. Moreover, it is quite practical — if the symmetric
encryption function is good and some simple plaintext padding that prevents
leaking information about plaintext length is added, one can pretty easily encrypt
arbitrarily long messages (which has been a general problem with block-based
McEliece encryption — for example, in case of Kobara-Imai the ciphertext is
around two times as big as plaintext, while in Fujisaki-Okamoto scheme, the
sizes are (asymptotically) the same).

1.5 Niederreiter cryptosystem
Niederreiter cryptosystem is a “dual” variant of McEliece [Nie86]. The idea is
to encode information as an error vector and transfer its syndrome, which the

12this long name is commonly shortened to CCA2-IND

23

attacker still cannot decode without knowledge of corresponding code.

Keypair generation • Generate a random Goppa [n − k]-code capable of
correcting t errors with parity check matrix H indistinguishable from a
random matrix. Generate a random invertible matrix S of (n−k) rows,
and a random permutation over n elements represented by matrix P .

• Compute H ′ = SHP , publish (H ′, t) as a public key.

• Securely store (g, L, S, P) as a private key.

Encryption • Encode message m as a binary vector e of length n that
contains exactly t 1’s.

• Compute ciphertext as c = H ′e.

Decryption • Compute c′ = cP−1,

• Run syndrome decoding as if c′ was a syndrome of some message,
obtaining an error vector c′′

• Compute e = c′′S−1.

• Decode message m from e, using same method as in encryption.

While Niederreiter cryptosystem is very fast and quite efficient, it is not widely
used for several reasons:

• There is a known attack that distinguishes a parity-check matrix of Goppa
code (effectively the public key of Niederreiter cryptosystem) from a
completely random matrix in polynomial time [Fau11], which contradicts
the setup of the cryptosystem.

• Although the cryptosystem itself is extremely fast, the need to prepare
plaintexts that have exact hamming weight either requires some kind of
memory or CPU-intensive ranking function such as colex ranking. Simpler
and faster approaches usually do not effectively cover whole possible
combination space, thus greatly decreasing information rate of the cipher.

• To the best of author’s knowledge, there are no plaintext padding schemes
or CCA/CCA2-resistant schemes for Niederreiter that would cope with the
requirement of constant-weight plaintext vector.

1.6 Other code-based cryptographic primitives

Three more schemes that use hardness of syndrome decoding problem as an
security guarantee exist:

• FSB (Fast Syndrome Hash) is a SHA-3 candidate fast secure hash
function with security reduction to syndrome decoding and easily variable
parameters. For details see [Aug08].

24

• SYND is a stream cipher or random stream generator that uses syndrome
decoding to ensure randomness of the generated stream. SYND is very
interesting from the point of generator speed (the only faster widely used
stream cipher is RC4) and provable security (breaking the keystream can
be reduced to decoding a syndrome without knowledge of the underlying
code). See [GPLS07].

• Stern identification scheme is used as a zero-knowledge proof protocol for
ensuring identity of communication partners. See for example [Ste94].

1.7 Colex ranking
In several places, most notably for the Fujisaki-Okamoto padding scheme a
ranking function is needed to convert vectors of exact weight to numbers and
back. Most authors suggest [PQCSlides] to use the computationally simplest
ranking function: the colex ranking.

Thorough investigation of algorithm for colex ranking and unranking can be
found for example in [Rus], for this purpose only a simple description will be
sufficient:

Definition 13. Ranking function assigns any k-element subset of the set of n
elements an unique number 0 ≤ a <

(
n
k

)
.

Unranking function is inverse of ranking function.
Two k-element subsets A and B of an set with strict linear ordering <

are said to be in co-lexicographical order if, for the sequences a and b of
their elements sorted in ascending order, there exists index i that ai < bi and
(∀j)j > i =⇒ aj = bj.

For example, subsets of size 3 from set N are in following colex order: {1, 2, 3},
{1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 5}, {1, 3, 5},

The ranking function r is pretty easy to construct:

r(a1, a2, . . . , ak) =
k∑

i=1

(
ai − 1

i

)
Unranking requires an algorithm:

• For input rank r cycle with i from k to 1.

• In each step find smallest p so that p ≥ i and
(
p
i

)
≥ r. Update r = r−

(
p−1
i

)
,

set ai = p.

• Output (a1, a2, . . . , ak).

Problematic part of colex ranking and unranking is the need to compute
tremendous amounts of combination numbers. Most authors recommend
precomputing a table of binomial coefficients that moves the algorithm to (almost)
O(n) time complexity, but the cache consumes enormous amount of memory even
when caching only the numbers with reasonable usage probability.

A little slower, but significantly more space-efficient approach exploits the
fact that both algorithms only use combination numbers that form a “path” in

25

two-dimensional space for dimensions n and k (nice image of the situation can be
seen in [Rus], Figure 4.2). Because “neighbor” combination numbers are easy to
compute (using only one long multiplication and division), computing the whole
path in correct order takes only 2(n+ k) long operations, which is acceptable for
most situations.

26

Chapter 2

Post-quantum digital signatures

2.1 Code-based digital signatures
To produce a full code-based cryptosystem similar to GnuPG, one needs to
effectively compute digital signatures. This section briefly introduces available
concepts of code-based signatures, observes their properties and suggests a viable
signature scheme for the implemented cryptosystem.

2.1.1 Short history

The main difference of code-based signature schemes from RSA-like cryptosys-
tems is that the McEliece encryption function is generally not invertible – given
a random word not generated by actual encoding process, there is an overwhelm-
ingly low probability that it can actually be decoded. Observe, for example,
the very rough estimate of probability of successful decoding a random word by
Goppa code with commonly used parameters [1024, 694, 33]:

Pdecodable =
2694 ·

∑33
i=1

(
694
i

)
21024

.
=

2694 · 69433

21024

.
= 2−315

Because there are no “interesting functions” other than encoding and decoding
that can be run on the actual Goppa codes, most derived signature schemes target
some way to workaround the decoding improbability.

Some notable attempts are following:

• First publicly-available attempt, the Xinmei scheme [Xin90] was considered
broken one year after [AW92].

• Hamdi signature scheme [Ha06] is based on constructing a large error-
correcting code from smaller blocks (with much denser codeword spaces),
which are in turn permuted and scrambled like matrix G′ = SGP in the
original McEliece cryptosystem. Using some knowledge of hidden block
structure, the scheme is susceptible to simple diagonalization attack that
reveals small G matrices [Ha09].

27

Some attempts tried to emulate the signature scheme using identification
protocols based on Stern identification scheme (most notably the [CGG07]). Such
schemes, while provably secure, generally suffer from the signature size: The
signature is basically a transcript of multiple Stern identification attempts with
random choices of the parties based on the bits of signed message, but because
Stern scheme consumes quite a bit of bandwidth and in one turn it provides
only 2

3
assurance that the identified party is indeed the one with private key, the

transcript is usually as big as megabytes, which is just too much for practical
signatures.

2.1.2 CFS signature scheme

CFS is named for authors Courtois, Finiasz and Sendrier [CFS01]. The authors
chose not to differentiate from the original McEliece trapdoor and use decoding
inversion as signature, thus easily guaranteeing security. The low probability of
success of decoding is solved as follows:

• If the decoding fails, the message to be signed is modified in some simple
way (e.g. there is a counter appended to the message, or several random
bits are flipped) so that the verifier can easily see that the modification was
really done to the original message.

• Used Goppa code parameters are modified to preserve security butmaximize
the density of decodable syndromes. That is most easily done by reducing
the minimum distance of the code to the lowest possible value. (Instead,
for conserving security, one must greatly increase code dimension.)

The scheme can be applied both to McEliece and Niederreiter cryptosystems
– authors suggest using the Niederreiter variant for the fact of smaller public keys
and much smaller signature size (in the article, signature of scheme that provides
280 attack complexity based on a Goppa code with m = 16 and t = 10 can be
packed using a ranking function to around 120 bits). The obvious problem of
CFS is larger size of public keys (resulting from the increased m parameter) and
the time needed to sign a message (the time complexity is O(t!))

For illustration, public key size of above described scheme is around 10MB
and signature takes tens of seconds. Unfortunately, CFS security was greatly
compromised by subsequent development in the field, and current parameters are
several times worse.

Although there have been attempts to reduce the size and cost of CFS,
most notably the quasi-dyadic CFS variant from [BCMN11]1 that, with some
modifications, achieves signatures in under a second with still-workable public
key size (tens of megabytes), none has provided a signature scheme thinkable for
general usage in current environments.

1QD compression is not as great for CFS as for general McEliece, the obvious problem is
that the “size reduction factor” based on t can not ever get high enough. Moreover, for QD to
work, t needs to be a power of 2, which either greatly reduces parameter choice, or calls for
sub-dividing the t-sized blocks which reduces compression to greatest power of 2 dividing t —
for example, with t = 12 the compression factor is only 4.

28

2.1.3 Practicality of CFS

If there is no major breakthrough in non-deterministic decoding, CFS will not be
usable on generally available computers for quite a some time, especially not for
the parameters that would resist quantum computer attacks using Grover search:

Generally, the biggest problem with CFS is that to increase security (which
depends exponentially on parameters t and m) one must also exponentially
increase some part of the cryptosystem, be it the signature time (which is
O(m2t!)) or key size (which is O(2mmt)).

For this inability to efficiently increase cryptosystem parameters, this thesis
states that CFS in current state is impractical and seeks to replace it with some
other post-quantum digital signature scheme.2

2.2 Hash-based digital signatures
For the purpose of building the cryptosystem software, hash-based signatures
have been selected instead of code-based cryptography. Although it breaks the
nice “code-based” pattern of the whole software, limiting users with unworkable
key sizes or signature times was perceived as more serious software flaw than
addition of relatively simple FMTSeq scheme.

All hash-based signature schemes are based on one-way functions instead of
trapdoor ones known from other signature schemes, traditionally using a one-time
signature scheme based on provably uninvertible hash function3.

FMTSeq signature scheme, as defined in [NSW05], is based on Merkle-tree
extension of one-time signature scheme to a signature scheme with higher, but
still limited number of signatures. This section describes all levels of the structure.

2.2.1 Lamport one-time signature scheme

Security of Lamport one-time signature scheme is based on invertibility of hash
functions — general idea is that the private key is some set of random strings,
public key is some set of random hashes, and the signer proves the knowledge
of private key by revealing some subset of the private key that is chosen by
the signed message. Verifier can then easily see that the revealed subset in the
message hashes piece-by-piece to the public key, and compares that the subset
that signer made public is indeed the subset that was chosen by the message,
thus making sure that it was indeed the message that the signer wanted to sign.

In original Lamport scheme, the subsets are generated from the binary
representation of the message (or message hash); and the published secrets are
chosen from a set of secrets that correspond respectively to all possible 0’s and
1’s in the message. The scheme is then defined as follows:

Setup For signing a n-bit message, signer generates two sets of random strings
A and B of elements a1, . . . , an, b1, . . . , bn and chooses a cryptographically

2Actually, the choice is simple — hash-based digital signatures are the only post-quantum
signatures known to the author that seem to be both efficient and not broken.

3The greatest advantage of this fact is that instead of trapdoor functions that are relatively
scarce and easily breakable, there is plenty of readily available and cryptographically secure
hash functions!

29

secure hash function h. Using some authenticated channel, he publishes
h(a1), . . . , h(an), h(b1), . . . , h(bn).

Signature For each i-th bit in the message, if the bit is zero, append ai to the
signature, otherwise append bi. Publish the secrets as a signature.

Verification Split signature into s1, . . . , sn. For each i-th bit of the message,
verify from public key that if the bit is zero that h(si) = h(ai), or otherwise
that h(si) = h(bi). If all bits can be verified, the signature is valid.

After signature, private key should never be used to sign any other message
again: Seeing both signatures would very probably give the attacker an
information about both ai and bi for some i, allowing him to easily derive
signatures with any chosen bit value on i-th position. (Note that in real situations
when messages themselves are hashes, only around log2(n) produced signatures
will completely reveal the secret key, allowing the attacker to sign anything.)

Attacking the scheme requires inversion of underlying hash function:

• If the attacker wanted to derive a signature from public key, he would need
to invert one hash function for every zero and one in the message.

• To produce “related” signature, e.g. to produce a signature of message m
from a valid signature of message m′ where m and m′ have exactly one
bit flipped on i-th position, attacker would need to remove i-th secret of
original bit value, and compute a new secret s for the other bit value only
from the knowledge of h(s). This again requires hash inversion.

2.2.2 Merkle trees

Definition 14. Merkle tree for sequence of strings S = (s1, s2, . . . , s2n) is defined
as a binary tree where all leafs have depth n, i-th leaf from “left” has an associated
value h(si), and all other nodes have associated value h(l + r) where l and r are
values of left and right child.

Merkle trees can be used to extend any one-time signature scheme to some
fixed number of signatures:

Setup Generate 2n one-time signature scheme secret and public keys into
sequences S and P . Store S for later usage. Construct a Merkle tree
from sequence P and publish the hash value associated with the root node.
Set i = 0.

Signature Increase i by 1. Take i-th one-time signature secret and produce a
one-time signature of the message and publish it along with i-th public key.
To prove that one-time signature keys were already generated before the
Merkle root was published in Setup phase, also publish i and authentication
path neighbors (see below) in the Merkle tree.

Verification Verify one time signature. Hash the public key successively with all
authentication path neighbors and check that result is the same as published
root node value. If both checks passed, accept the signature.

Concept of authentication path and neighbors is simple, and, among other
features of Merkle trees, by far most easily explained using an image.

30

PK

Figure 2.1: Merkle tree path illustration. Squares are public keys of one-
time signatures, PK is public key of the whole scheme. Arrow denotes hash
function application. Black nodes are authentication path, diamond nodes are
authentication neighbors needed for verifier to reconstruct hash path to verify
that he gets exactly PK from black-square one-time public key.

Signature size improvement

Because original Lamport signatures tend to be a little (but not restrictively)
long, there is also a natural need to shorten them. Simple and very effective
approach that effectively reduces signature size by around 60% in common case
is described in the FMTSeq paper:

First, do not produce Merkle signature from separate Lamport signature,
public key and authentication path. Instead, squash the Lamport signature and
public key together into one string — where either ai or bi is to be revealed,
there is no need to also publish h(ai) or h(bi). This removes one third of original
signature size.

Second third is removed by modifying the Lamport scheme: Instead of having
two sets of secrets A and B for zeroes and ones respectively, only produce one
set of secrets for 1’s (call it S). Compute and publish all subsecret hashes as
usual. When signing a message, for each i-th bit either append si if the bit is
1, or h(si) if the bit is 0. Verifier hashes all signature parts where the message
is 1 and compares the result with public key, accepting the signature if both are
exactly same.

This scheme has a small drawback: From a valid signature of a message that
contains at least one bit with value 1, attacker can easily compute a signature for
the same message with 0 at corresponding position only by hashing one part of
the signature.

The drawback is fixed using the fact that attacker can not “flip” a 0-bit to
1-bit because that would require hash inversion — message is padded in such
way that flipping any 1-bit to 0-bit would also require flipping 0 to 1 elsewhere.
Simplest method to achieve this is to append a binary representation of the count
of zeroes in the original message — whenever someone flips a bit in the message,
count of zeroes increases, which in all cases flips at least one 0 to 1.

Resulting signature size is therefore |h| · (n + dlog2(n)e) instead of original
|h| · 3n.

31

2.2.3 Efficient Merkle tree traversal

Main efficiency consideration when working with Merkle signatures is the fact that
to provide a signature, one needs to quickly determine the values of the nodes
near the authentication path. This can be problematic — caching the whole
tree would require enormous amount of memory (basically the count of cached
node values would be twice the amount of signatures Merkle tree was designed to
produce), and computing them is very slow (in naive case it is almost equivalent
of generating the whole hash tree again, which involves at least 2n+1 hash function
calls and is generally slow). FMTSeq was the first scheme that showed practical
method to improve the situation by subdividing the tree to layers and subtrees:

Authors suggest that on each level of the tree, some values next to
authentication path are still cached and precomputed, and after each signature
is generated, the precomputed structure is updated, while layering concept
enables efficient block-like cache management and prediction of what needs to be
computed. In resulting scheme, cache updates are performed after each signature
is done with a very good bound on how long can the cache update take – resulting
update time and consumed cache space is almost negligible when compared to
values needed to produce and store the signature. Details about implementation
are out of scope of this thesis and can be found in FMTSeq paper.

2.2.4 Practicality of FMTSeq signature scheme

With several other considerations and improvements, FMTSeq scheme can get
extremely efficient, requiring only kilobytes of cache storage and being several
orders of magnitude faster than other signature schemes:

• Having a properly seeded cryptographically secure random number gener-
ator saves one from storing the private keys. Simplest possible method is
implemented in the software attached to this thesis: to get i-th secret key,
join a secret value (common for all keys) with some representation of i and
use the result to seed some standardized random number generator (simple
padded RC4 is used for this thesis).

• Signature calculation and verification is extremely fast when compared to
currently used signatures. Even asymptotically, for given security level
2n, FMTSeq signs and verifies signatures in around O(n2) time and space.
RSA-based cryptosystems usually operate in O(n3).

• There is no good method do efficiently decrease the time needed to initially
generate the public key, time is bound to be linear with the design count
of the signatures produced. Solutions are possible with some advanced key
management: For example, a small sacrifice of signature length can be used
to produce signature scheme with squared signature count — sign some
other FMTSeq public key with a “master” key, and use the lower-level key
to produce signatures from a triplet of lower level public key, lower level
message signature, and “master” signature of the lower level public key.

32

2.2.5 Replacement of signature-intensive routines

From all this perspectives, FMTSeq us still not a viable option for interactive
and online applications, especially for cases like SSL/TLS server and client
authentication.

Given the CCA2-IND-secure and very efficient McEliece scheme that
was described in previous chapter, one can easily replace common online
authentication and identification routines.

Note that while following algorithms are illustrational, provided only for
demonstration and should not be reproduced in practice without proper analysis,
to the best of author’s knowledge there is no significant security flaw that would
completely rule out the possibility to use them for identification purposes.

In all cases, h denotes some suitable cryptographically secure hash function,
and E,D respectively denote CCA2-IND scheme encryption and decryption from
previous chapter.

Identification of peer using a pre-existing channel

Challenge Challenger sends a = E(r) where r is some random string of sufficient
length.

Identification Identifier returns b = h(D(a)), thus proving he has a decryption
key and at the same time refusing to function as a decryption oracle.

Verification Challenger accepts if b = h(r).

Authenticated question/answer protocol through insecure channel

Question Challenger sends a = E(r, q, P) where r is sufficiently long random
string, q is a question, and P is the public key of challenger.

Identification and answer Answering side calculates (r, q, P) = D(a). It can
look up whether owner of P is sufficiently privileged to receive the answer
and return b = EP (h(r), A(q)) where EP is encryption for public key P and
A is an answer-generating function.

Verification (v, d) = D(b), answer in d is authenticated if h(r) = v.

Symmetric key exchange with client/server authentication

Client Use previous protocol to send a question r1 consisting of random string.

Server Using the same protocol, answer with r2 which is some other random
string.

Both sides Symmetric key is h(r1 + r2).

33

34

Chapter 3

Implementation of the cryptosystem

This chapter gives an overview of detailed structure and interfaces of the software
implementation carried along with this thesis.

3.1 Overall structure

Software is meant to be an UNIX tool, ideologically compatible with the “design
preimage” GnuPG [GPG] to the highest possible extent.

The programming language of implementation was chosen to be C++ for
several reasons:

• Intensive data-crunching that happens when e.g. generating keys is usually
best implemented as close to hardware as possible. C++ gives excellent
coverage of both low-level programming needed for performance, and high-
level access to structured data which is needed to keep the implementation
“clear” and readable.

• Thanks to C++ STL library, memory allocation and similar bothersome
programming work could be left for compiler to do correctly. That greatly
simplified the implementation details, leaving more space and time for
actual software.

• Many algorithms that are largely out of scope of this thesis (namely hash
function implementations) but are needed for cryptosystem to actually work
have readily available effective implementations in C or C++ available
online for free.

• Programs in C/C++ are a kind of “UNIX standard”, do not have any
dependencies on compilers or large nonstandard run-time libraries, and can
be made easily portable to other platforms.

Overall structure of the implementation is shown on the figure.

35

algorithm

messagePRNG keyring

actionsmain

options

sencode

base64, envelope

I/O

algos_enc

QD-McEDecoding

Math Primitives

algos_sig

FMTSeqHash functions

Figure 3.1: Internal organization of codecrypt

3.2 Mathematical primitives

3.2.1 Binary data

All binary data (binary vectors and matrices) are stored in a specialization of STL
library container std::vector<bool> which provides both bit-packing (needed
to save memory) and very simple access to individual bits.

Class bvector extends std::vector<bool> to provide mathematical opera-
tions and conversion to other data types. Binary matrices are extended similarly
from std::vector<bvector>.

Only drawback of using the STL vector container to store binary data is
a certain performance penalty for many operations. Single bit operations are
needed to unpack and pack underlying words (which can get unnecessarily
slow, but cannot be directly avoided), and STL provides no interface for doing
operations in any other way. The best example of the problem is function
bvector::add() that could use platform XOR instructions to add vectors word-
by-word instead of bit-by-bit, speeding the process several times.

Because of the fact that this drawback did not bring up any performance
bottleneck in final implementation, it was decided not to add redundant
complexity at least until this becomes a serious problem.

3.2.2 Finite field calculations

Finite fields are represented as class gf2m and their elements are stored as simple
integers in uint.

gf2m has one main purpose — to store (and serialize) the generating
polynomial of finite field, and provide fast table-lookup-calculations in them.

While most of the functionality is already described in Chapter 1, there is
an interesting observation on the speed of finite field calculations that has been

36

already made by several authors: As the log/antilog lookup tables are accessed
extremely frequently in a random order, one can easily measure a performance
drop that happens whenever the finite field is large enough for the lookup tables
not to fit into CPU cache.1 For this purpose, it is suggested not to work with
very large finite fields; usually the m = 18 that fills around 2MB of CPU cache
is the upper practical limit.

3.2.3 Polynomials

Polynomials are represented in class polynomial, which is an extension of
std::vector<uint>, or “a vector of finite field elements”. Apart from common
mathematical operations, there are also implementations of Ben-Or algorithm
and polynomial ring inversion.

3.2.4 McEliece implementations

There are three main McEliece-based cryptosystems implemented:

• The classical, impractical but working McEliece is represented in namespace
mce. As with all other ciphers, the namespace contains a function
mce::generate() that fills the contents of supplied mce::privkey and
mce::pubkey with new keys generated according to parameters. Public
key structure then provides encryption and signature verification functions,
private key provides decryption and signing.

The common pattern of having a namespace for cipher algorithm that
contains generate(), privkey and pubkey, with priv/pub-keys exporting
encryption and signature functions and functions that report available
sizes of plaintext/ciphertext/hash/signature blocks has proven to be a very
useful interface for subsequent implementation of larger structures atop such
cryptographic primitives.

The original McEliece cryptosystem is actually not used anywhere in the
program as it is quite impractical when compared to other algorithms. The
source code is meant mostly as a working reference for the inner structure
of the cryptosystem.

• Niederreiter cryptosystem is implemented in namespace nd. Although not
used anywhere else in the program, it contains source code that can be used
to (very slowly) produce the “original” CFS signatures.

• Quasi-dyadic McEliece is implemented similarly in namespace mce_qd.

3.2.5 FMTSeq implementation

FMTSeq (and also several other parts of the software) calls for implementation of
many different hash functions. For the purpose of resulting software, those have
been imported from various program pieces available online. For simpler usage,

1This is only a parameter choice suggestion — actual measurement is not a part of this
thesis.

37

all hash algorithms were wrapped in classes that are derived from functor class
hash_func:

• RIPEMD-128 is in class rmd128hash, providing 128-bit hashes,

• Tiger hash func is tiger192hash, for 192-bit hashes,

• SHA-2 variants SHA-256, SHA-384 and SHA-512 reside in sha256hash,
sha384hash and sha512hash providing their respective hash sizes.

Hash functions are always used in pairs: one that provides collision and
inversion resistance for creating message digest and one that does not need to
provide collision resistance for hashing the nodes of Merkle tree2. The actual
pairs were set as

• RIPEMD-128 for tree hashes and SHA-256 for message digest, for 2128

attack complexity,

• Tiger hash and SHA-384 for 2192,

• SHA-256 with SHA-512 for 2256.

FMTSeq itself is contained in a similar package as other algorithms, in
namespace fmtseq. The only notable difference is that the signature algorithm
actually changes the private key after each signature (which is from the nature of
FMTSeq algorithm), so it needs special attention when called from other program
parts.

3.2.6 Miscellaneous tools

• Generators of random numbers have been wrapped in virtual class prng.
This simplifies the injection of generator primitive into various parts of the
code, while also opening possibility to quickly change implementations of
the actual generator.

• For the purpose of symmetric encryption that is needed for Fujisaki-
Okamoto padding scheme, RC4 cipher was implemented in class arcfour.
Implementation is notable for the fact that underlying RC4 permutation
can be extended to any size using a template argument, which, for example,
provides an interesting possibility to play with 16-bit-block RC4.3

• RC4 implementation is connected with /dev/[u]random operating system
facilities in class arcfour_rng to provide a reliable random data source.

2see [NSW05] for explanation of security requirements on the functions
3Generally, usage of RC4 cipher is discouraged because its simplicity makes it extremely

prone to be used in insecure way [WikiRC4]. For purposes of this software, all problematic
requirements that would diminish security of RC4 (especially bad key management and not
discarding the beginning of the generated stream) are easily handled correctly, so there is no
need to unnecessarily implement anything more complex.

38

3.3 Keys and algorithms

PGP-like cryptography requires to strongly formalize the concepts of public
and private keys, algorithms and user identities. For purposes of this thesis,
abstractions of algorithm identifier and public key identifier are used.

3.3.1 Algorithm abstraction

In this context, “algorithm” formalized in abstract class algorithm is a tool that

• has an associated name, so that it can be easily decided what algorithm is
suitable to work with given keys or usable to decrypt/verify a message,

• can report features that it can provide (e.g. encryption chain and/or digital
signature chain)

• can, provided with matching keys, eventually securely encrypt/decrypt or
sign/verify messages in arbitrary format.

Emphasized words “securely” and “arbitrary” basically imply that the
algorithm must be a finalized version of the cryptosystem resistant to all kinds
of attacks (not limited to attacks on underlying cipher security).

At the time of writing this thesis, the software has 6 algorithms available:

• FMTSEQ128-SHA256-RIPEMD128, FMTSEQ192-SHA384-TIGER192 and
FMTSEQ256-SHA512-SHA256 for FMTSeq signatures providing respectively
128-bit, 192-bit and 256-bit security,

• MCEQD128FO-SHA256-ARCFOUR, MCEQD192FO-SHA384-ARCFOUR and
MCEQD256FO-SHA512-ARCFOUR for QD-McEliece encryption with Fujisaki-
Okamoto padding with the same three levels of security.

Both groups of algorithms provide a simple but effective padding scheme that
protects against finding low-weight hash function collisions in case of FMTSeq,
and almost all variants of chosen-ciphertext and chosen-plaintext attack in case
of QD-McEliece.

3.3.2 Keys and KeyID

KeyID is an 256-bit identifier of each pubkey. It is defined as a result of SHA-256
hash applied to the sencode (see below) representation of the public key and has
following purposes:

• It globally identifies given public key (e.g. the user) similarly to RSA Key
IDs.4

• It can serve as a fingerprint, easily verifying the authenticity of keys.
4Hash collision chance, e.g. chance that two randomly generated different keys get the same

KeyID, is absolutely minimal, at least when compared to 32-bit RSA Key IDs. For a broader
image on what would be needed to produce a collision on 256-bit hash, compare the amount to
the number of atoms in all observable universe, which is estimated to be around 2270.

39

• It is contained in encrypted or signed message to specify the exact
decryption or verification key.

For simplicity reasons, the software stores the keys as “keypairs” and
“pubkeys” (there is intentionally no private-key-only storage, because some used
cryptosystems it may be hard to derive the public key again (namely FMTSeq
takes quite a time) and there is no reason to use the private key separately from
public — private key owner will always need to have the public key to give it to
other users). User can assign a name to any of those to easily remember who it
belongs to or what it should be used for.

3.3.3 Message

Messages are abstracted as two separate classes: encrypted_msg and signed_msg.
Those two give access to generalized encryption and signing functions using only
algorithms and keys from keyring, and are easily serializable to actual messages
meant to be sent and received.

3.4 Interface

3.4.1 User interface

User interface of the software is very closely based on the GnuPG command-line
usage — using similar command-line options, users can

• encrypt, decrypt, sign and verify messages, for various users,

• manage the keyring (generate keys, view, export, import and delete them),

• set and use common names of the keys for easier access,

• redirect input and output to files or standard input/output,

• set various formatting flags, like ascii-armoring the input and output.

• view help for all options using ccr --help.

Apart from command-line options, user can set the environment variable
CCR_DIR to the directory in that the software will search public and private
keyrings.

3.4.2 sencode

Sencode is a data serialization format used for storage and transfer of structured
data in the software. It is a simplified variant of the bencode encoding (see
[Bencode]) that is most notably used for encoding .torrent files5.

Sencode can be used to encode unsigned integers and byte strings, and to join
those using lists:

5name “sencode” comes from the fact that it is like bencode, but instead of lists and
dictionaries the common inner format usually looks like s-expressions

40

Integer is encoded as string iXXXXe where XXXX is replaced by decimal
representation of the integer.

Byte string is encoded as N:BBBBB where N is a decimal integer denoting the
length of the string, and BBBBB are the string data of length exactly N bytes.

List is encoded as s...e where dots are replaced by concatenated list content.
Sencode has two main advantages that led it for usage with the cryptosystem:

• The mapping between structured data and corresponding sencode string
is bijective. This eliminates all forms of possible formatting inefficiency
(as known from XML and other formats) and simplifies key comparison at
storage. Moreover, knowing that the same data will have the exactly same
sencode format everywhere allows to securely construct aforementioned
KeyID just as a hash of the sencode representation of the key.

• It can store binary data directly as byte strings, making binary matrix or
vector storage very efficient.

• Its extreme simplicity removes need for any cumbersome data format
specifications, which had a great simplifying impact on the development.

Nearly every data-holding object in the software has .serialize() and
.unserialize() methods that convert it to/from sencode tree representation.
Using that, construction of actual communication protocols is extremely easy —
messages are just serialized and string-encoded representations of encrypted_msg
and signed_msg classes; disk storage and exported keys are similarly just sencode
representations of the keyring object.

3.5 Reference guide for the software

For practical reasons, the software produced with this thesis was named
“codecrypt” and given UNIX name ccr.6 This section roughly describes how
to install and use it on UNIX-like operating system.

3.5.1 Requirements

To compile codecrypt, user needs some recent version of a C++ compiler
toolchain with standard libraries (or STL-compatible replacement). Any recent
(2013) version of [GCC] or [Clang] is almost certainly sufficient.

Because of colex ranking algorithm, codecrypt uses the GNU Multiple
Precision library [GMP] to compute combination numbers. All GNU-based
systems are very likely to have GMP already installed, as it is used by many
other software packages.

Packaging scheme used for codecrypt requires that some version of GNU
Make is present on compiling system (at least for convenient compilation).

6For it is hard to work with a software piece without a name.

41

3.5.2 Installation

codecrypt is currently distributed only in the form of source code which can be
obtained online from GitHub git repository, or from .tar.gz package.

To clone codecrypt source from GitHub and prepare it as a package, run
following commands:

$ git clone git://github.com/exaexa/codecrypt.git codecrypt
$ cd codecrypt
$./autogen.sh

Archives with prepared sources can be found either on optical media attached
to this thesis, or online at http://e-x-a.org/codecrypt/files/.

After preparing the source, “standard” installation procedure can be used to
install the software to any system:

$./configure
$ make

make install-strip # as privileged user

Codecrypt should now be available for all users of the system in the form of
ccr command.

If the user does not have needed software installation privileges, he can also use
codecrypt by using the configure option --prefix and setting the environment
variable PATH accordingly.

3.5.3 Quick usage tutorial

Users of codecrypt are advised to read ccr --help thoroughly. Following
sequence of commented commands should demonstrate the similarity to GnuPG
and give some basic insight into how codecrypt works:

#list available algorithms
ccr -g help

#create a keypair for signing
ccr -g fmtseq128 --name "John Doe"
#create a keypair for encryption
ccr -g mceqd128 --name "John Doe"

#watch the generated keys
ccr -K
ccr -k

#export own pubkeys for friends
ccr --export -a -o my_pubkeys.asc -F Doe

#see what public keys are in ascii-encoded file
ccr --import -na < friends_pubkeys.asc

42

http://e-x-a.org/codecrypt/files/

#import the keys from the file and rename them to a better name
ccr -i -R friends_pubkeys.asc --name "Friendly Frank"

#encrypt and sign the file for Frank
ccr -se -r Frank < Document.doc > Message_to_frank.ccr

#decrypt and verify the reply
ccr -dv -o Decrypted_verified_reply.doc < Reply_from_frank.ccr

#explicitly rename public keys
ccr -m Frank -N "Unfriendly Frank"

#delete keys of everyone who is unfriendly
ccr -x Unfriendly

3.6 Evaluation of resulting software

3.6.1 Comparison with existing cryptosystems

To determine how the software performs, it was chosen to compare it from several
perspectives with GnuPG package that — with some margin and a very simple
point of view — does basically the same things: key generation, encryption and
signatures.

Features like standard-compatibility or availability of high-level key handling
operations (GnuPG provides automated certification, trust management, key
expiration, compression and other helper tools) are not compared because those
are simply not implemented in codecrypt.

Comparison is done in two steps: theoretical side-by-side comparison of used
cryptosystem speeds and key sizes, and practical measurement of real time and
space needed to run common cryptosystem operations.

For practical measurement, all operations were performed on parameters
designed to provide around 2128 attack complexity. For codecrypt, that
means usage of FMTSEQ128-SHA256-RIPEMD128 algorithm for signing and
MCEQD128FO-SHA256-ARCFOUR algorithm for encryption. GnuPG is, accordingly
to parameter choice guidelines available at [NIST800-57], run with DSA-3072
signatures and RSA-3072 encryption.

For each cryptosystem, following measurements were done:

• time of encryption key generation and resulting key size,

• time of signature key generation and resulting key size

• encryption of small message (1kB of random data) with resulting message
size,

• the same for large message (1MB of random data)

• signature of small message (1kB of random data) with resulting signature
size,

43

• again the same for large (1MB) message.

All time measurements have been averaged from multiple attempts, discarding
results that were visibly affected by some other variable (the time differed more
than 20% from original average value).

Tests were performed on commonly available hardware (Intel Core Duo2
CPU) on a fairly standard Linux distribution, with both GnuPG and codecrypt
compiled by GCC version 4.7.2, with compile flags -O2 --fomit-frame-pointer
-march=core2. Last available version of GnuPG (2.0.19) was used for testing.

Theoretical comparison

Following table compares growth rates of all important cryptosystem parameters.
Where not indicated, values have been taken from work referenced at algorithm
description.

Property GnuPG codecrypt

Encryption

keygen time O(n4) O(nt)

public key size O(n) O(nm)
.
= O(n log n)

encryption time O(n2) O(n log n)

decryption time O(n2) O(nmt)
.
= O(n log n)

message size O(n) O(n)

attack complexity O(en
1
3) [NIST800-57] O(2

mt
2)

Signatures

keygen time O(n4) O(2hn)

public key size O(n) O(n)

encryption time O(n2) O(n+ h)

verification time O(n2) O(n+ h)

message size O(n) O(n+ h)

signature count O(2n) (basically ∞) O(2h)

attack complexity O(2
n
2) [Rho] O(2

n
2)

Parameters n, m and t in the table have meaning that depends on described
cryptosystem:

• In GnuPG column, n is the bit-length of RSA modulus or DSA prime
number.

• in codecrypt encryption, n, m and t parameters are the Goppa code
parameters respectively of code length, size of GF(2m) and error correction
capability.

44

• in codecrypt signatures, n is the count of message bits that are being signed,
and h is the depth of FMTSeq hash tree.

Observation of the table clearly shows advantages and disadvantages of used
cryptosystems: Biggest advantage of codecrypt algorithms is the speed of all
operations except key generation time for FMTSeq, which is linearly dependent
on the design signature count. Slight disadvantage is the encryption key size,
which is several times larger than its RSA counterpart, and limited but easily
expandable count of possible signatures.

Biggest disadvantage of GnuPG algorithms is their asymptotic complexity
when one needs to scale security parameters. The worst is the key generation
time — while quite reasonable for standard security parameters, to achieve 2256

attack complexity, [NIST800-57] implies that 15360-bit RSA keys are needed.
Generating keys for such parameters takes a prohibitively big amount of time.

Practical comparison results

Table of practical measurement comparison is organized to lines with single
tests. Each of them contains the exact UNIX shell commands used to do the
measurement, and average value of the measurement.

time utility is used for measuring time, and only reported user time is
counted — system time is not taken into measurement as it heavily depends
on underlying operating system implementation, and real time is influenced
by too much events (especially speed of I/O operations) to provide satisfactory
measurements. Moreover, in case of interactive input, real time is completely
unusable as a metric, because it mostly depends on speed of the user.

Key and message sizes were measured by piping the command output into
|wc -c, which reports the size in bytes.

Random messages for encryption and signing were generated from standard
UNIX random data device, using head -c $SIZE /dev/urandom and piping the
output into tested software.

45

codecrypt GnuPG

Encryption
Key generator ccr --gen-key mceqd128 -N enc 260ms 1951ms gpg –gen-key

Public key size ccr -p -F enc 4196B 1693B gpg –export enc

1kB encrypted size ccr -e -r enc 1826B 1489B gpg -e -r enc

1kB encryption time -“- 13ms 10ms -“-

1MB encrypted size -“- 1049kB 1049kB -“-

1MB encryption time -“- 335ms 101ms -“-

1kB decryption time ccr -d 52ms 130ms gpg -d

1MB decryption time -“- 372ms 200ms -“-

Signatures
Key generator ccr --gen-key fmtseq128 -N sig 13930ms 3813ms gpg –gen-key

Public key size ccr -p -F sig 107B 1352B gpg –export sig

signature size ccr -s -b signature 4653B 96B gpg -s

1kB signature time -“- 10ms 140ms -“-

1MB signature time -“- 165ms 173ms -“-

1kB verification time ccr -v -b signature 4ms 14ms gpg -v

1MB verification time -“- 231ms 27ms -“-

As seen in the table, codecrypt is only unnoticeably worse for encryption
than GnuPG. Speed problems with encryption and decryption of 1MB messages
are a result of quite ineffective implementation of raw-data-processing primitives,
profiling showed that much of the time needed for encryption and decryption was
spent in conversions among various internal data formats and sencode.

For simplicity, detached signatures were used to measure the digital signature
performance – signature size is then easily determined from the detached file.
Apart from the disadvantages resulting from aforementioned inefficiencies of
FMTSeq (most notably the key creation time and signature size) codecrypt
signatures seem to be extremely time-efficient when signing (which is supported
by observations of asymptotic complexities), only suffering from the same
implementation inefficiencies as encryption when working with signatures of large
files.

3.6.2 Possible improvements

codecrypt, although working correctly, is far from being an optimized software
package. There are several parts of the program that could benefit from extra
research:

• Decryption of McEliece cryptosystem is, as seen in previous comparison,
noticeably slower than encryption. Profiling determined that the slowness
is caused mostly by the volume of computation needed for determining
the syndrome from the codeword. Although some constant speedup could
probably be achieved (most probably by finding a method to effectively
cache the parity check matrix, saving O(nt) multiplications in GF(2m)),
the decryption speed can be considered sufficient (it is still faster than RSA
decryption) and this thesis does not aim to optimize any further.

46

• bvector class could be based on something that supports much faster word-
by-word binary operations instead of manually unpacking boolean values
from words that are hidden by STL implementation.

• Time needed to generate the FMTSeq keys is the most objectionable part
of software performance. Profiling has revealed that much of it is spent only
by computing hash functions and moving too much data around. Choosing
some faster suitable hash functions could be very helpful for some cases.
Unnecessary large data moves should be correctable by using smarter design
and allocation of data objects.

• There are many small inefficiencies that result from attempts to create
easily comprehensible code from limited amount of programmer time, most
notably unnecessary data moves, copies and allocations when manipulating
with STL objects. These are the only major cause of slowness of
manipulating with larger data chunks from comparison above, and should
be addressed before the software ever reaches some “production” stage.

47

48

Conclusion

This thesis has explored the possibilities of implementing post-quantum code-
based cryptosystem. Resulting software, called codecrypt, connects all
theoretical and practical knowledge gained, and brings following results and
conclusions:

• By implementing all requirements that were stated in Introduction, it is the
first generally available software package known to author that allows users
to use quantum-computing-resistant algorithms for encryption and digital
signatures. Chapter 3 presents general instructions on how to work with the
software, potential users of the software can also easily adapt to usage of
codecrypt if they have any previous knowledge of how very similar GnuPG
software works.

codecrypt is, in current state, equipped with several algorithms that
provide encryption and digital signatures with attack complexity ranging
from 2128 to 2256. There is, to the best of author’s knowledge, no quantum-
computing algorithm that would diminish the security of the schemes
except Grover search [Lom02]. Low asymptotic complexities (summarized
in chapter 3) guarantee that all used cryptographic primitives can be very
easily expanded to double the bit security, thus removing the effect of Grover
search.

• As stated in introduction, a condensed but complete and easily readable
description of internal algorithms used as encryption and signature
trapdoors of codecrypt was presented in chapters 1 and 2 of this thesis.

• Using the software implementation, this thesis proves that post-quantum
code-based encryption implementation is possible and highly practical. In
chapter 3, it was shown that used encryption primitive easily outperforms
currently used algorithms in several ways (notably encryption speed and
scalability of design attack complexity), while staying comparable or only
irrelevantly worse in other aspects.

• Post-quantum code-based signatures are possible and the experimental
implementation of CFS cryptosystem works1, but, as stated in Chapter
2, is highly impractical in any current form.

• From the software implementation, thesis finds that general post-quantum
digital signatures are possible and highly practical using the FMTSeq

1although not directly accessible from the software, CFS implementation can be found in
namespaces of mce and nd encryption primitives

49

signature scheme. Only really significant drawback of the scheme is limited
number of signatures that can be performed using one generated private
key. In chapter 2, this thesis suggests several methods to overcome this
drawback.

• As can be seen in chapter 3, in comparison to GnuPG, codecrypt greatly
simplifies most of the concepts used, which makes it easily modifiable for
experimental purposes. Given the non-standardized but coherent and easily
comprehensible structure, adding or testing possible new cryptographic
algorithms in full-scale user-friendly environment is made very easy.

Further development and open questions
Development of the software package showed several points that might be viable
as starting points for future research and work. Basically, there are three main
possibilities of expanding the codecrypt software further:

• Standardization. Interoperability with ASN.1, OpenPGP, or other similar
protocols could greatly increase the usability of the software.

• Creating a socket-security library based on assumptions from codecrypt.
SSL and TLS protocols today provide a very significant building block of
Internet security, therefore building a post-quantum alternative of those is
important for the same reasons that motivated this thesis.

• In a recently published paper [Mis12], implementation of McEliece
encryption atop MDPC2 codes is described. Involved algorithms are much
less complex and relatively faster than those for QD Goppa codes, while
maintaining small public key size. If not proven insecure, MDPC is a good
candidate for implementation of another possible encryption trapdoor.

Disclaimer
Author of the thesis has not received any significant formal training regarding
cryptography, it is therefore strongly advised not to rely on codecrypt for any
application where security would matter without carrying out own verification of
assumptions used to build it.

2codes with Medium-Density Parity-Check matrix

50

Bibliography

[Sh97] Shor, Peter W. Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer. SIAM J. on Computing, 1997.
Pages 1484–1509.

[LGS12] Landais, Gregory, and Sendrier. CFS Software Implementation. Cryp-
tology ePrint Archive, Report 2012/132, 2012.

[GPG] http://www.gnupg.org/

[Lat] http://en.wikipedia.org/wiki/Lattice-based_cryptography

[NPat] http://grouper.ieee.org/groups/802/15/pub/Patent_Letters/15.
3/ntru%2015.3.pdf

[NSig] http://en.wikipedia.org/wiki/NTRUSign

[Cz12] Czypek, Peter. Implementing Multivariate Quadratic Public Key Signa-
ture Schemes on Embedded Devices. Diploma Thesis, Chair for Embedded
Security, Ruhr-Universität Bochum, 2012.

[Prom91] http://www.eccpage.com/goppa_code.c

[FP] http://www.flexiprovider.de/#PQCProvider

[HM] https://www.rocq.inria.fr/secret/CBCrypto/index.php?pg=hymes

[TTH] http://en.wikipedia.org/wiki/Merkle_tree#Tiger_tree_hash

[Bis10] Biswas, Bhaskar. Implementational aspects of code-based cryptography.
Diss. PhD thesis, École Polytechnique, Paris, France, 2010.

[Hof11] Hofmann, Gerhard. Implementation of McEliece using quasi-dyadic
Goppa codes. Bachelor thesis, 2011.

[Hey09] Stefan Heyse. Code-based cryptography: Implementing the McEliece
scheme in reconfigurable hardware. Diploma thesis, Ruhr Universität
Bochum, 2009.

[Str10] Falko Strenzke. How to implement the public key operations in code-based
cryptography on memory-constrained devices. Cryptology ePrint Archive,
Report 2010/465, 2010.

[McE78] R. J. McEliece, A Public-Key Cryptosystem Based On Algebraic Coding
Theory. DSN Progress Report 42-44, 1978.

51

http://www.gnupg.org/
http://en.wikipedia.org/wiki/Lattice-based_cryptography
http://grouper.ieee.org/groups/802/15/pub/Patent_Letters/15.3/ntru%2015.3.pdf
http://grouper.ieee.org/groups/802/15/pub/Patent_Letters/15.3/ntru%2015.3.pdf
http://en.wikipedia.org/wiki/NTRUSign
http://www.eccpage.com/goppa_code.c
http://www.flexiprovider.de/#PQCProvider
https://www.rocq.inria.fr/secret/CBCrypto/index.php?pg=hymes
http://en.wikipedia.org/wiki/Merkle_tree#Tiger_tree_hash

[MWS77] MacWilliams, Sloane. The Theory of Error-Correcting Codes. North-
Holland mathematical library, 1977.

[PBGV92] Preneel, Bosselaers, Govaerts, Vandewalle. A software implementation
of the McEliece public-key cryptosystem. Proceedings of the 13th Symposium
on Information Theory in the Benelux, Werkgemeenschap voor Informatie-
en Communicatietheorie, 1992. Pages 119–126.

[GaPa97] Gao, Panario. Tests and constructions of irreducible polynomials over
finite fields. Foundations of Computational Mathematics. Springer Berlin
Heidelberg, 1997. Pages 346–361.

[Gop70] Goppa, V. D. A New Class of Linear Correcting Codes. Probl. Peredachi
Inf., 6:3, 1970. Pages 24–30.

[EOS06] Engelbert, Overbeck, Schmidt. A Summary of McEliece-type Cryptosys-
tems and their Security. TU-Darmstadt, Department of Computer Science,
Cryptography and Computer Algebra group, 2006.

[Ber70] Berlekamp, Elwyn R. Factoring polynomials over large finite fields.
Mathematics of Computation 24.111, 1970. Pages 713–735.

[MiBa10] Misoczki, Barreto. Compact McEliece Keys from Goppa Codes. Escola
Politéctnica, Universidade de Sao Paulo, Brazil, 2010.

[KI01] Kobara, Imai. Semantically secure McEliece public-key cryptosystems-
conversions for McEliece PKC. Public Key Cryptography. Springer Berlin
Heidelberg, 2001.

[FO99] Fujisaki, Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. Advances in Cryptology–CRYPTO’99. Springer Berlin
Heidelberg, 1999.

[Fau11] Faugère, J-C., et al. A distinguisher for high rate McEliece cryptosystems.
Information Theory Workshop (ITW), 2011 IEEE. IEEE, 2011.

[Aug08] Augot, Daniel, et al. Sha-3 proposal: FSB. Submission to NIST 2008,
pages 81–85.

[GPLS07] Gaborit, Philippe, Lauradoux, Sendrier. Synd: a fast code-based
stream cipher with a security reduction. Information Theory, 2007. ISIT 2007.
IEEE International Symposium on. IEEE, 2007. Pages 186–190.

[Ste94] Stern, Jacques. A new identification scheme based on syndrome decoding.
Advances in Cryptology–CRYPTO’93. Springer Berlin Heidelberg, 1994.

[PQCSlides] Slides on post-quantum cryptography by Paulo S. L. M. Barreto
available from http://www.larc.usp.br/~pbarreto/PQC-4.pdf

[Rus] Ruskey, Frank. Combinatorial generation. Working Version (1j-CSC
425/520) (2003). Pages 66–68.

52

http://www.larc.usp.br/~pbarreto/PQC-4.pdf

[Nie86] Niederreiter, Harald. Knapsack-type cryptosystems and algebraic coding
theory. Problems of control and information theory 15.2, 1986. Pages 159–
166.

[WikiRC4] Wikipedia article on RC4 cipher, http://en.wikipedia.org/wiki/
Rc4

[Bencode] Wikipedia article on bencode, http://en.wikipedia.org/wiki/
Bencode

[GCC] http://gcc.gnu.org/

[Clang] http://clang.llvm.org/

[GMP] http://gmplib.org/

[Xin90] Xinmei Wang. Digital signature scheme based on error-correcting codes.
Electronics Letters 26, 1990. Pages 898–899.

[AW92] Alabbadi, Wicker. Cryptanalysis of the Harn and Wang modification of
the Xinmei digital signature scheme. Electronics Letters 28, 1992. Pages
1756–1758.

[Ha06] Hamdi, Harari, Bouallegue. Secure and fast digital signatures using BCH
codes. IJCSNS International Journal of Computer Science and Network
Security 6(10), 2006. Pages 220–226.

[Ha09] Hamdi, Bouallegue, Harari. Weakness on Cryptographic Schemes based on
Chained Codes. 2009 Third International Conference on Network and System
Security, IEEE, 2009. Pages 574–581.

[CGG07] Cayrel, Gaborit, Girault. Identity-based identification and signature
schemes using correcting codes. WCC. Vol. 7. 2007. Pages 69–78.

[CFS01] Courtois, Finiasz, Sendrier. How to achieve a McEliece-based digital
signature scheme. Advances in Cryptology—ASIACRYPT 2001. Springer
Berlin Heidelberg, 2001. Pages 157–174.

[BCMN11] Barreto, Paulo SLM, et al. Quasi-dyadic CFS signatures. Information
Security and Cryptology. Springer Berlin Heidelberg, 2011.

[NSW05] Naor, Shenhav, Wool. One-time signatures revisited: Have they become
practical? Cryptology ePrint Archive, Report 2005/442, 2005.

[NIST800-57] Barker, Barker, Burr, Polk, Smid. Recommendation for Key
Management — Part 1: General. NIST Special publication 800-57, 2007.

[Rho] http://en.wikipedia.org/wiki/Pollard%27s_rho_algorithm_for_
logarithms

[Lom02] Lomonaco, S. J. Grover’s quantum search algorithm. Proceedings of
Symposia in Applied Mathematics. Vol. 58, 2002.

[Mis12] Misoczki, et al. MDPC-McEliece: New McEliece variants from moderate
density parity-check codes. IACR Cryptology ePrint Archive, 409, 2012.

53

http://en.wikipedia.org/wiki/Rc4
http://en.wikipedia.org/wiki/Rc4
http://en.wikipedia.org/wiki/Bencode
http://en.wikipedia.org/wiki/Bencode
http://gcc.gnu.org/
http://clang.llvm.org/
http://gmplib.org/
http://en.wikipedia.org/wiki/Pollard%27s_rho_algorithm_for_logarithms
http://en.wikipedia.org/wiki/Pollard%27s_rho_algorithm_for_logarithms

54

	Introduction
	Motivation and goals
	Related and similar work
	Similar software
	Related research

	Acknowledgments

	Code-based cryptography
	Error-correcting codes
	Linear codes
	Algebraic codes
	Binary Goppa codes

	McEliece cryptosystem
	Modern variants

	Quasi-dyadic Goppa codes
	FWHT in QD-McEliece

	Improving cryptographic properties of the scheme
	Improving original McEliece
	Removing the plaintext indistinguishability requirement from modern McEliece variants

	Niederreiter cryptosystem
	Other code-based cryptographic primitives
	Colex ranking

	Post-quantum digital signatures
	Code-based digital signatures
	Short history
	CFS signature scheme
	Practicality of CFS

	Hash-based digital signatures
	Lamport one-time signature scheme
	Merkle trees
	Efficient Merkle tree traversal
	Practicality of FMTSeq signature scheme
	Replacement of signature-intensive routines

	Implementation of the cryptosystem
	Overall structure
	Mathematical primitives
	Binary data
	Finite field calculations
	Polynomials
	McEliece implementations
	FMTSeq implementation
	Miscellaneous tools

	Keys and algorithms
	Algorithm abstraction
	Keys and KeyID
	Message

	Interface
	User interface
	sencode

	Reference guide for the software
	Requirements
	Installation
	Quick usage tutorial

	Evaluation of resulting software
	Comparison with existing cryptosystems
	Possible improvements

	Conclusion
	Further development and open questions
	Disclaimer

	Bibliography

