

Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Štěpán Havránek

3D akční hra v podivném městě

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the bachelor thesis: Mgr. Tomáš Balyo

Study programme: Computer Science

Specialization: Programming

Prague 2013

I am grateful for all the support I received. I would like to thank my supervisor
Mgr. Tomáš Balyo for the help and guidance he has given me. Then I would like
to thank Ing. Josef Smutný for introducing me to the basics of programing and
algorithms at the high school.

I declare that I carried out this bachelor thesis independently, and only with
the cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act

No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that the
Charles University in Prague has the right to conclude a license agreement on the use
of this work as a school work pursuant to Section 60 paragraph 1 of the Copyright
Act.

In Prague, May 24, 2013 signature

Název práce: 3D akční hra v podivném městě

Autor: Štěpán Havránek
Katedra / Ústav: Katedra teoretické informatiky a matematické logiky

Vedoucí bakalářské práce: Mgr. Tomáš Balyo, Katedra teoretické informatiky
a matematické logiky

Abstrakt: Práce se zabývá návrhem a následnou implementací real-time akční hry
ve světě, který se nedá popsat klasickým třídimensionálním reálným lineárním
vektorovým prostorem. Tato počítačová hra ovšem používá 3D zobrazování. Práce
popisuje celý průběh vývoje: použití různých známých i vlastních technik, algoritmů
a datových struktur. Při návrhu implementace různých částí také popisuje
rozhodování mezi různýmy způsoby a rozebírá i ty nakonec nepoužité. Součástí díla
jsou i umělé bytosti obývající město v tomto prostoru. Dále je zde i protihráč, který
se snaží plánovat své kroky tak, aby zabránil hráčovi město obsadit a snaží se
to udělat sám.

Klíčová slova: real-time akční hra, 3D hra, umělá inteligence, plánování

Title: 3D action game in a bizzare city

Author: Štěpán Havránek

Department / Institute: Department of Theoretical Computer Science
and Mathematical Logic

Supervisor of the bachelor thesis: Mgr. Tomáš Balyo, Department of Theoretical
Computer Science and Mathematical Logic

Abstract: This thesis deals with a conception and implementation of a real-time
3D action game. This game is placed in a bizzare surrounding that is not a subset
of an ordinary real three-dimensional linear space. The work presents the whole
game implementation process. It goes through various sets of techniques, algorithms
and data structures used or considered during the development. It also describes
different ways of solving specified problems and the choices between them.
Moreover there are artificial beings situated in the town inside the surrounding.
The player’s goal is to capture the whole city. There is also an opponent,
who systematically plans his tasks and tries to possess the city as well.

Keywords: real-time action game, 3D game, artificial intelligence, planning

Contents

Contents ... 1
Introduction .. 1
1. The Game .. 2

1.1. Detail Description and Rules ... 2
1.2. Similar Games .. 3

2. Implementation ... 5
2.1. Program Architecture for Real-time Game .. 5
2.2. Space and the Game World .. 6

2.2.1. Problem Analysis and Basic Geometry.. 6
2.2.2. Testing for Collisions ... 7
2.2.3. Game Objects in Bizzare Space ... 7
2.2.4. Space Partitioning .. 9

2.3. Town Generator ... 11
2.3.1. Town-graph .. 11
2.3.2. Quarter Generator .. 11
2.3.3. Path Finding ... 13

2.4. Boxes, Tools and Action-objects ... 15
2.5. People ... 16

2.5.1. Object Human .. 16
2.5.2. Reflexes .. 17
2.5.3. Tasks .. 18
2.5.4. Post-reflexes ... 19

2.6. Opponent .. 19
2.6.1. Task Planning ... 20

2.7. Rendering and Playing ... 22
2.7.1. Player ... 22
2.7.2. Rendering ... 22

2.8. Settings, Xml Configurations and Menus .. 23
3. User Documentation ... 23

3.1. System Requirements ... 23
3.2. Installation .. 24
3.3. Start and Settings ... 24
3.4. Gameplay ... 25
3.5. End of the Game .. 30

Conclusion ... 30
Attachments.. 31
Bibliography ... 32
List of Pictures ... 33
List of Tables.. 33

1

Introduction

There are many action games with 3D graphical visualisation. The main

reason to start using synthetized 3-dimensional space was to bring more realistic

feeling from the game to the player. Nowadays developers and designers are trying

to make better and better simulations of our planet or real situations in real places

using 3D graphics. The aim of this thesis is different from these ideas. We are not

trying to display on the screen the same picture you can see when you turn off your

computer and go outside. We bring the player a game situated in a space which does

not follow basic physical laws of our world. It can be fun but it mainly improves

the player’s imagination and abstract thinking.

Imagine a game that may look like a classical 3D. It looks like you are

in an ordinary town, but parts of the game map are connected to each other

as a generic graph. In this game you can go straight until you reach your first

position, but you do not come from the back of your original stand at all.

For example you can come from the right or from any other direction. And this is

the setting of our game.

Player’s goal will be to occupy the entire town. He must go to all of the town

quarters and capture them one by one. His opponent has exactly the same goal.

Because of that both players leave quarters, they have captured, guarded by their

friends. The one, who first gets oriented and understands the map and gets all parts

of the town to his property, wins

This thesis mainly describes implementation of the whole action game

situated in the introduced town. We will begin with description of our software

project architecture based on Microsoft XNA Game studio [1]. Then we will go

through real-time programming issues, data representation, used algorithms

or modified versions of well-known algorithms for our specific case. The last part

of programming part will be implementation of AI for player’s opponent. During

this part we will also point out several areas for further development.

The last part of this work contains user documentation for our product.

The reader will find out how to set up and, of course, play the game.

2

1. The Game

1.1. Detail Description and Rules

The city we are playing in is divided into separate quarters. Each

of the quarters has its unique name (ex. Downtown). Some of these quarters are

connected to some of the others. Together they form a graph. The town graph is

always connected, but there can be a quarter with degree only 1 (see Picture 1).

Picture 1 Town quarters make a graph

Every quarter has somewhere inside a flag or an empty flagpole. The flag

indicates who owns the particular quarter. Your flag means that this quarter is in your

property. Otherwise the quarter can belong to your opponent or to nobody. Either

way you should try to capture the quarter which is not yours. The game begins with

one quarter owned by the player and one opponent’s. The rest of town is without

an owner. The goal of the game is to capture all the quarters in the town. When any

of the players has reached this goal, the game is over.

Do not worry about the quarters you have captured. Your guards will

gradually appear there. They have only one duty – look after your quarter. When

an enemy comes into this quarter, he becomes a target for your guards. The number

of guards per one quarter is limited and if you capture opponent’s quarter, his guards

will stay until you or your guards kill them. We limit the sum of player’s

and enemy’s guards. So if you capture a quarter full of enemy guards, your guard

would not appear until you kill at least one of the other.

How to kill somebody? You can always use your hands, but it is not

recommended. Killing a person with bare hands is not practical, so we came up

New Land

Little Troy

DowntownCzech Quarter

Old York

3

with guns. There are lots of gun types you can use. We define four categories of gun

availability:

1. For everybody

2. For guards

3. For players

4. Only boxed ones

Guns from the first category are held by everyone (including walkers)

at the beginning of the game. The ones from the fourth category are available only

in boxes which are, if you are lucky, lying on the streets. Note that not only you can

take guns from boxes. Your opponent will do it too. The ones from second and third

category are simply in the default inventory of the guards and the players.

Since you have guns and your enemies have guns too, it is necessary to use

them. You should kill all the enemy guards in the quarter you are going to capture.

Then you can safely raise your flag. You will need to kill your opponent several

times. Because when one of the players gets killed, he will lose all of his quarters

except one, if he has at least one. The killed player will appear alive in the only

quarter, he has, over again. If he does not have any quarter, he will show up in some

empty one. If you lose your quarters by getting shot, your guards will stay there.

Only new ones do not appear anymore.

1.2. Similar Games

There are already games that have something similar with our game. Some

of the ideas and rules were inspired by existing games and our game combines their

elements together.

Our town, composed from the quarters our way, can be alternatively

described as a set of quarters with some kind of portals in the streets. If you enter one

of the portals, you will appear in another quarter in front of the corresponding portal.

On suchlike portals is based a game named Portal [6]. This game developed by Valve

is running on the legendary Half Life engine. It combines action and logic game

elements. Portal is a first person shooter (FPS) game and it takes place in ordinary

3D space (characters are inside a factory). What is put as an extra in this game is

a “portal-gun”. You have a gun that shoots magic windows on the walls, but you can

have simultaneously opened only two these windows (blue and orange in Picture 2).

So if you try to shoot a third window on the wall, one of the original windows

4

disappears. These two windows make together a pair of corresponding portals – if

you walk into one of them, you will come out from the other one. Moreover you can

throw things through the portals. The goal of this game is to use this portal-gun

to solve variety of puzzles inside the factory and survive. Our game actually uses

more than one pair of corresponding portals.

Picture 2 Portal gameplay

The idea of quarter capturing and guard generating in our game evokes

similarity with at least two games that mutually are not similar at all. The older one is

a robot war strategy called Z [7]. This game, released in 1996, brings up a map

divided into parts represented by a flag and some kind of factory. During

the gameplay you lead your units to capture the flags. The related factories, you have

already captured, produce new units for you. The second game using similar concept

is the continuator of a well-known series – the GTA: San Andreas [8]. Except

the large campaign this game offers, there is a possibility to move freely inside

the entire map. During one concrete stadium of the campaign, the town (town covers

almost the whole map) is splitted into parts that are dominated by various gangs.

Much like in our game, the occupied town quarter is guarded by the gangsters.

The player is a member of one of the gangs too. Sometimes one gang assaults

a quarter owned by another gang. Usually if the player does not come to help

to defend the endangered quarter, the quarter will be taken over by the enemy gang.

The same attack can be initialised by the player too.

5

2. Implementation

2.1. Program Architecture for Real-time Game

Programming real-time applications is a discipline different to other types

of software development. High emphasis is placed on an early response to user input

and apparent continuity of episodic process. In other words the game must be able

to react and compute its routine at least twenty five times per second.

The frequency 25Hz is the frame-rate value that human eye perceives as continuous

motion. For example the European standard for television broadcasting (PAL) uses

this frequency [9]. Since the process has to be fast we need to do some calculations

only approximately or asynchronously. We will use both of these techniques in our

game.

Now let’s take a look how to make a game architecture for our software. We

adopt practices from XNA [1]. XNA libraries provide prepared process model

for the whole game (see the model diagram in Picture 3). First we need to initialize

our components, then load all needed content. Content loading can be very slow so

we should do it before the actual game begins. After loading the main game loop

comes. The main game loop is an endless cycle between updating the game logic and

drawing the scene. As soon as the game logic decides the game is over, we break

the main loop, unload loaded content and do whatever we want. For example we exit

the whole application or restart it.

Picture 3 Game life cycle diagram

It is good to have this process distributed into separate components.

A component model improves the clarity of the whole solution. We have several

smaller modules running according to the diagram metioned in Picture 3: Town,

Player, Opponent. Moreover the town component distributes these operations

into quarters and quarters into walkers, flying bullets, etc. In other words this model

allows us to divide computations between components which represent logical parts

in our game. Actually this is the idea of object-oriented programming. In the next

Unload contentGame start Game endInitialize Load content Update

Draw

6

chapters we describe these objects and components and we will keep the same

terminology as we are using in our game source codes which are attached to this text.

2.2. Space and the Game World

2.2.1. Problem Analysis and Basic Geometry

Before we begin modelling the bizzare surrounding as it was defined, we will

prepare some basic building elements. We assemble the world hierarchically

and up to specific level we can ignore that the result will not be placeable into

standard three-dimensional vector space. Moreover on the lowest levels we consider

only two dimensions. The third, height, will be added later in and only in selected

functionalities, because we do not need it everywhere. Finally the two-dimensional

processing will be faster and that is very important to us.

On the lowest level of the space hierarchy we define the following basic

geometrical elements: line segment, triangle and convex quadrangle1. Everything

in our space will be based on the quadrangles. Or more precisely, every object

in the game has its projection into two-dimensional space as a quadrangle (visualised

in Picture 4). The quadrangle is representing the object’s floor projection (ground-

plan). These quadrangles are used for collision detection between objects.

Picture 4 Robot and its quadrangle projection (red)

1 Convex quadrangle (in sources called Quadrangle) is the basic structure in our game architecture.

We will often refer it in the implementation chapter. Elements line segment and triangle are only

auxilary.

7

2.2.2. Testing for Collisions

Quite often we need to check if two objects are in collision or not.

For example if a bullet hits a man. To get this information we take their quadrangle

projection and compute the collision. Our way to do that is to split the quadrangles

into two triangles and check them for collisions. This division creates four

subprocesses. Now the last thing we need to do to detect the collision is to compute

whether two triangles collide. This is simple: we split the triangles into three line

segments and find out if any of them is crossing any line segment from the second

triangle. This check has to be done for all the three line segments against all

the other, so it requires nine subprocesses. We must not forget that, if there is

a triangle inside another one, it counts as a collision too. Since we know that borders

off these triangles do not collide, at least one of the vertices of the first triangle inside

the second triangle indicates that the entire first triangle is inside the second.

Deciding if a point is inside a triangle is little bit tricky. We connect the tested point

with all triangle vertices by vectors. Then we calculate angles between all the vector

pairs. The tested point is inside the triangle if and only if sum of the angles equals

to 2𝜋 [5]. Moreover if we do not find the first triangle inside the second, we must test

whether the second is inside the first.

2.2.3. Game Objects in Bizzare Space

Considering the game logic, the use of quadrangles is not the best way

to represent objects in the game. A quadrangle is defined by four points and it can be

little bit confusing if we imagine that we have prepared a 3D-object (ex. robot)

and we want to insert it into the game. Should we every time somehow adjust

the 3D-object to quadrangle we have already defined by for corners? No, using

quadrangle in this case would mean that every 3D-object in the game needs to define

the position of the base four corners. A better way is to add a next level into space

hierarchy. We present the game-object2. Game-object is a structure ready to be used

with 3D-objects and it is still simple enough to be in two-dimensional space.

For work with varied 3D-objects we will use their block shaped bounding box with

edges parallel to the axes of three-dimensional space. The bottom base of this cuboid

is a rectangle. And this rectangle is represented by the game-object. The game-object

2 Game-object (in sources GameObject) is the next important component of the game architecture.

8

carries information about its position, size and azimuth (rotation). The right question

here is: what is the position? Is it information about xy-coordinates in simplified two-

dimensional space? Or are we now in our bizzare world and position is some kind

of description of location in there. The second option is right. The game-object,

as the name says, describes the base of every object in the game. So it has to carry

full information about location in our result surrounding.

Now it is time to figure out how to represent our bizzare space. After all, what

are our technical capabilities? We can display set of objects variously transformed

by position in three-dimensional linear space, azimuth, scale and some projection

parameters on the screen. So somehow we need to use classical three-dimensional

space. The idea is to split our bizzare space into parts which separately are vector

spaces. The position of a game-object is specified by the concrete part of the world

and a coordinate vector from linear space of the particular part. Now it is clear why

we can use only classical linear space on lower levels of abstraction.

The game-object holds basic information about everything in the game. It

also provides projection into quadrangles: it takes vector space coordinates from

position, size and azimuth and calculates four corners. Now we can implement many

of game-object derivations: spatial-objects which are carrying 3D-objects, or flat

ground objects and plates for work with only textures instead of 3D-objects

(the implemented objects’ relations are shown in Picture 5).

Picture 5 Space objects hierarchy

Quadrangle
+Corners: [Vector2D]

Game-object
+Position: PositionInTown
+Size: Vector2D
+Azimuth: Real

Spatial-object
+Height: Real
+VerticalPosition: Real
+Model: Object3D

Ground object
+VerticalPosition: Real
+Texture: Texture

Plate
+Corners: [Vector3D]
+Texture: Texture

9

Now we need to decide how to split our bizzare space into separate linear

spaces. In the first chapter we learned that our bizzare space actually is a town

with the quarters connected to each other as a generic graph. The reason, why is our

surrounding so unrealistic, is the fact that the town-graph can be non-planar.

The largest part which is still linear space is exactly the town-graph vertex. So we

use division by the quarters. Thus a position is defined by a pair of vector and quarter

identifer.

From the description above it is clear that we can correctly compute

the collision between two game objects only if they are in the same quarter. This

should not be a problem at all. All we have to do is to conceive game logic to avoid

inter-quarter collisions.

2.2.4. Space Partitioning

There are many objects we need to test for collision against each other

in the town quarter. Collision detection has to be run during every update. We cannot

afford to miss the fact that two objects have non-empty intersection. Our naive

approach, check for collisions all object in the quarter against each other, has

quadratic complexity.

𝑇(𝑛) 𝜖 𝜃(𝑛2)

Is this good enough? Actually we do not need to test collision between two objects

that are located across the whole quarter from each other. So the idea is to test

the collision only between objects that are close together. We need to divide objects

into groups by their position inside the quarter.

One well-known technique deals with this problem. It is called space

partitioning. There are data structures like BSP Trees or Quadrant Trees used

in space partitioning [2]. These techniques are based on search trees. In every node

the space is divided into 𝑘 parts and each part is recursively handled by one child-

node. Leaf nodes of the search tree contain objects that are located in the area

specified by all the nodes above the leaf in the tree (see Picture 6). The advantage

of this data structure is that leaves do not have to be in the same depth. When you

need to test collision, you know that only objects from the same leaf can be

in collision. Because two objects from different leaves are not in the same part

of the space. However moving objects are the weakness of this structure. If the object

changes its location and gets out of the area defined by its leaf, it is not easy to find

10

a new leaf that the object belongs to. It takes logarithmical time – when you go

through the tree into the deepest leaf, but we are creating real-time game and we

need these calculations to be fast. We want to search for the right area for an object

in constant time.

Picture 6 Scene represented by BSP Tree

From space partitioning trees we take over the idea of dividing the quarter

into areas of objects close to each other, but we will not build any trees at all. We

create parts of fixed size formed into a squared grid (see Picture 7). The part

the specified object belongs to is simply calculated as the position in the quarter

divided by the grid size. Similar partitioning would be the result of Quadrant Trees

with evenly distributed objects. Now with our data structure and evenly distributed

objects the collision test of all objects in the quarter takes about 𝑘(𝑛
𝑘

)2 = 𝑛
2

𝑘
 where

𝑘 is number of grid fields. Do we have evenly distributed objects? We generally use

collision detection to avoid two objects to intersect, for example a person cannot go

through a building, or a flying bullet kills people. Thus we do not have the objects

exactly evenly distributed, but our game logic approximately lays them out so.

Moreover this data structure has to avoid us to test collision between two objects far

away from each other. If we have a lot of objects close together, we probably want

to test them for collisions.

l1

l2

l2

l1

11

Picture 7 Scene represented by grid partitioning

2.3. Town Generator

After the content is loaded but before the game starts, we need to create

the world where our game will take place. Our game, because of its specific rules,

has not any prebuilt maps. For every game instance we will create the whole scene

from scratch.

2.3.1. Town-graph

The only input is the number of quarters (𝑛) that will be in our town. We

prepare an empty non-oriented graph with 𝑛 vertices. Into this graph we add edges.

Because we want to have this graph connected (one component), we insert a path

which contains all vertices first. Without loss of generality we can join by edge

always the two vertices which are next to each other in our data representation. It

does not matter how we have the vertices ordered. We just need them joined. Also

it is not needed to have them in a cycle, so we don’t do a cycle – only simple path

of length 𝑛. The resulting graph could be a regular output, but the game with only

this type of map would be boring. We want to add some extra edges into our graph.

We just go through all potential edges and use a pseudo-random number generator

to decide whether to add the edge to the graph or not. Now we have a graph

describing our town. The vertices represent quarters and the edges are joining streets

between them.

2.3.2. Quarter Generator

Now it is time for creating every single quarter. The only input for quarter

generating procedure is its degree – the number of neighbouring quarters.

The quarter is placed into a rectangle. First we decide where the interfaces

l1

l2

12

(connections to nearby quarters) will be. We are choosing from top, right, bottom

or left side of the rectangle. Then we prepare the road and sidewalk network. Every

segment of the road is lined with sidewalk. We start with the “border” road

of the quarter (visualised in Picture 8) – smaller rectangle around the quarter formed

by road and sidewalk.

Picture 8 Town quarter with border streets

To the border road we connect interface roads like in Picture 9.

Picture 9 Town quarter with interface roads (quarter with degree 4)

Inside the border road rectangle we have an empty space. Using a pseudo-random

generator we will with some probability cross the rectangle by a road and split it

into two empty rectangles. This we can recursively iterate. Now we have the road

network done (example of road network in Picture 10).

Picture 10 Town quarter with inner road network

Since we have roads inside the quarter we can start putting in buildings

and decoration objects. At first we build the border buildings, fences and walls. It is

necessary to prevent the player from getting out of the quarter. So we put these types

13

of barriers around the border road and the interface roads with no spaces between

the barriers. The result would look like the map in Picture 11.

Picture 11 Town quarter with border buildings, fences and walls

Then we have empty rectangles inside the road network. These we fill with buildings

with spaces between them (see filled quarter in Picture 12). Or we do not. We use

the random number generator to decide whether to fill the empty space by buildings.

Picture 12 Complete town quarter with inner buildings

2.3.3. Path Finding

We have done all the quarters and its interfaces are joined – every interface

has a pointer to its opposite interface situated in the nearby quarter. We analyse now

sidewalks and roads inside the quarters. We build a graph that will show paths

through the town to future humans. Vertices of this graph are located on the sidewalk

and edges are between those which are reachable without collision with building. We

specially add interface vertices too. These we connect to the vertices from

the opposite interface. This whole town path-graph must be connected so we have

to go somewhere through the road, but never through any building.

The main role of the town path-graph structure will be path finding.

Whenever the structure gets two vertices, it must find the shortest path between

them. That is why we implement the classical A* algorithm [3]. We need a good

heuristic for this graph search algorithm. There are two categories of heuristics

for A* algorithm. Using 𝑉 set of vertices, 𝐸 set of edges, ℎ:𝑉 → ℝ heuristic,

14

𝑑:𝑉 × 𝑉 → ℝ real shortest path length, 𝑝:𝐸 → ℝ edge price (length) the heuristics

are:

• Admissible: ∀𝑣 ∈ 𝑉: ℎ𝑡𝑎𝑟𝑔𝑒𝑡(𝑣) ≤ 𝑑(𝑣, 𝑡𝑎𝑟𝑔𝑒𝑡)

• Monotone: ∀𝑣,𝑤 ∈ 𝑉, (𝑣,𝑤) ∈ 𝐸:ℎ𝑡𝑎𝑟𝑔𝑒𝑡(𝑣) ≤ 𝑝(𝑣,𝑤) + ℎ𝑡𝑎𝑟𝑔𝑒𝑡(𝑤)

Because our graph generally has cycles, we need the heuristic to be not only

admissible but it has to be monotone too. A* commonly uses distance in Euclid

metrics. However our space does not even theoretically satisfy the triangle inequality

axiom. We can use Euclid metrics if the target and the ranked vertex are in the same

quarter. If they are not, without non-trivial computations we don’t know how far it is.

The best lower estimate is the distance between two interface path-graph vertices –

those from opposite quarters. This distance is constant (𝑙𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒). We have chosen

it in the town generation process (see Picture 13).

Definition (our heuristic):

ℎ𝑡𝑎𝑟𝑔𝑒𝑡(𝑣) = 𝑒𝑢𝑘𝑙𝑖𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑣, 𝑡𝑎𝑟𝑔𝑒𝑡) ⟺ 𝑣, 𝑡𝑎𝑟𝑔𝑒𝑡 are in the same quarter

ℎ𝑡𝑎𝑟𝑔𝑒𝑡(𝑣) = 𝑙𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 ⟺ 𝑣, 𝑡𝑎𝑟𝑔𝑒𝑡 are in different quarters

Observation: The above defined heuristic is admissible and monotonous.

Proof: The Euclid distance is admissible because there is no shorter path

than the straight line. The price of an edge is actually the Euclid distance

between two points in the quarter. So thanks to the triangle inequality axiom

the monotone definition is satisfied. When the target is in another quarter, the path

just has to go through an quarter interface. So the 𝑙𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 constant is a valid lower

estimate. If we select the neighbour vertex 𝑤 from the same quarter, the edge price

cannot be negative 𝑝(𝑣,𝑤) ≥ 0 and the heuristic is the same

ℎ𝑡𝑎𝑟𝑔𝑒𝑡(𝑤) = 𝑙𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 . If we select 𝑤 from another quarter, the (𝑣,𝑤) edge is right

the interface one (visible in Picture 13), so 𝑝(𝑣,𝑤) = 𝑙𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒. And because

the heuristic in vertex 𝑤 cannot be negative, the monotone definition is satisfied

in this case too. ∎

Picture 13 Two opposite quarter interfaces with the path-graph vertices connected by edge of

constant length

15

2.4. Boxes, Tools and Action-objects

In the previous chapter we have built the world: quarters, streets

and buildings. Before we create virtual beings or something like that, we need

to prepare some kind of interactive content for them.

We will start with tools. Tools will be a generic entity in our game that

a human can handle. First we need boxes. Boxes react to collision other way than

other non-active content does. Bullet will destroy the box and human will unpack it

and take whatever will be there. We make two types of boxes for our game: toolbox

and healbox. Healbox is simple, there is some kind of medicine and the human which

takes it, will be healed. Toolbox contains a variation of tools.

Tool is generally held by a human and it can do some kind of action.

The only way we use the tool abstraction is for guns, but we leave the tool concept

prepared for future additions. Each tool has a pointer to its holder so it can take

position, azimuth or something else. It also has a “do action” method.

Gun is derived from tool. Gun is instance of specific gun-type. The Gun-type

is a simple data record for technical specification of the gun. It carries information

about range, damage specification or standard bullet capacity. Gun, the instance, has

information about charged ammo and of course its gun-type. The action of the gun is

to shoot. The gun reads position and azimuth of its holder and puts bullets

in the space. How to represent a bullet? First option is to simulate actual bullet

object, small piece of metal flying through the town, test its collisions and travelled

distance and decide its fate. Problems of this approach are mainly accuracy

of the simulation and computer performance. Accuracy: do not forget that we have

episodic model of the entire game. Every tick the bullet will move discreetly. What if

the hit object is narrower than the one-tick bullet move distance? We will not get

to know that the bullet had to hit it. Automatic weapons evoke the performance

problem. Well, two doses and we have too many bullets to handle. Better solution

for bullet simulation is to assume that the bullet flight is one episode moment

and simulate the trajectory by one object. The impact can be calculated in one

moment and the object can be shown for example for few milliseconds.

When we put one single object instead of the whole bullet flight we will get

a set of objects the bullet goes through (by collision detection). We must decide

16

which one will stop the bullet and which will be affected. Our decision is that

the first solid objects in the way will be affected and stops the bullet. How to choose

the right one from the colliding set? We have no information about bullet

intersections with the objects. We only know that it is not null. We will use a very

generic technique to deal with this issue. We can simply make an object (quadrangle)

that will simulate the flight of the bullet to a specific distance. And this object we can

test for collisions. To find the first hit object we use the bisection method. We start

with the gun’s range as length of the simulating object (bullet’s flying range)

and take the set of colliders that we got from space partitioning collision system.

Now we recursively truncate the length and search for the end of the flight until only

one collider will remain. This is the first hit object.

Second interactive content are active-objects. These are special objects with

the ability to do something based on human3 impulse. Active-objects are defined

by description of an action they can do and distance from which it can be started.

The active-object checks for humans in its neighbourhood and sends them

information about action availability. Based on this notification humans can start

and then end the action. Start of the action and its end are separated because we

want to consider actions with duration in our game.

The only implemented action-object derivate is the quarter flag. We need it

as partial objective for capturing the quarter. Flag has simple meaning. Player’s task

is to hang his flag on the pole. It takes more than one moment. The flag measures

time between human starts and stops the action and if it is enough, it notifies

the quarter about ownership change. We also draw a progress bar on the screen

during this action.

2.5. People

2.5.1. Object Human

Game-object human has already been mentioned. We have prepared

interactive content for humans. Now it is time to implement the humans. Human is

a much more complicated game-object than those previously described. As it was

3 Human is one of the most complicated game-object derivations. It can move, use tools, etc. In

chapter 2.4 it is presented as an interactive content user. Fully it is described in its own chapter (2.5).

17

written above, human is a tool holder. He can perform tool action and make

the action-object do its action. The next information carried by human is the list of

his enemies. They can naturally be only humans. Finally we cannot forget his health

state information.

2.5.2. Reflexes

Let’s go straight to the human behaviour. We need the human to perform

human acting in our game. We put the main effort into every update logic. Every

moment the human must decide what to do.

The first things we need to consider are reflexes. Reflexes have the highest

priority for deciding what to do in this one moment. We will program two of them:

balk reflex and shot reflex. As a help in reflex implementation we prepare view cone

(illustrated in Picture 14). View cone is a special quadrangle that can be calculated

from human’s position and specified view distance. View cone collides with objects

seen by the human.

Picture 14 Human and his view cone

If the human sees his enemy, the way is clear and he is in striking distance, he

shoots. If the way is not clear or the enemy is too far from the human, he makes

a move toward the enemy. That is the shot reflex.

If something appears inside the view cone, human must go around it. We use

a simple step aside. For this reflex quiet small view cone is sufficient. We cannot

forget that human can make only one move per episode, so if any reflex moves

with the human figure, other reflexes or other move-decisions are forbidden in the

same update.

18

2.5.3. Tasks

Next move-decision after the reflexes is scheduled moving – tasks. Human

has a queue of tasks that he needs to accomplish. Actually we implement it as

a linked list with pointers to the first and to the last item. In future we will need

to add a task with the highest priority – add it to the top of the list.

Task is an abstraction for human to act his role in the game. The task has two

basic features. It and only it determines whether it is completed and the second

ability is leadership. Task can lead its holder to its goal. Concrete implementations

of these functionalities depend on the type of the task. We implement several types

in our game. The basic type is the move-task. It finds the nearest path-graph4 vertices

for the starting position and the destination and then searches for the shortest path

through the town between those two vertices. After these calculations the task leads

the holder through the waypoints until he reaches the destination. Then is the task

completed. This navigating mechanism is used by other task types too.

Superstructure of the move-task is infinity move-task. It collects several move-tasks

and repeats them in infinite loop. This type of task never says that it is complete. We

usually give the infinity move-tasks to quarter guards or walkers. The quarter will

look more interesting, if there is some movement. Next type of task is kill-task.

Every tick the holder is navigated toward the target and if he is in striking distance,

he shoots. Actually the shooting is already solved by holder’s reflex, so the kill-task

is technically only move-task with dynamic destination. Kill-task is complete when

the target dies. We also implement action object task. This type navigates the holder

to specified action-object and then makes him perform the action-object’s action.

After that is the task complete. The last type of task is special. Temporary task is

a container for another task and it also contains a validity predicate. Every update it

performs update of its inner task. In every request about completeness the predicate

is evaluated and if it is not true anymore, the task returns “complete”. Otherwise it

returns the result of request from the inner task. The temporary task concept allows

us to perform a task only as soon as some condition is true.

Back to the human update process. Human picks the top task from the list

and checks whether it is complete. If it is, the task is discarded and the next task is

4 The path-graph or the town path-graph is structure built in chapter 2.3 for path-finding needs. Do not

confuse it with the town-graph which only describes which quarters are connected together.

19

taken instead. Now it is time to call update process of the selected task. It will move

with the human and our behaviour stuffed in the human update process is at the end.

2.5.4. Post-reflexes

All that remains now are post reflexes. Post reflexes are actions without direct

behaviour impact. They are only logic computations. At first, human cannot stand his

enemies in the same quarter. So if there are enemies in the same quarter, human gets

new temporary task to kill them with the highest priority. This temporary task will be

valid until they are still in the same quarter. This post reflex is suppressed if the

human has already kill-task or temporary kill-task to do in this quarter. We need this

in case of the situation when the human is reaching his target and one of his enemies

enters the same quarter. The human does not have to leave his target – he would put

his own life in danger.

We need just one more post reflex. After human moves it is necessary

to check collisions in the quarter. If he hits a box, he takes it. If he hits a building, he

goes back and so on.

2.6. Opponent

The opponent5 is a specialised extension of human. We use the same logic

for reflexes, task solving and post reflexes. What we put as an extra for opponent is

task planning. Opponent plans his tasks to win the game and then he acts like

an ordinary human.

We add only two post reflexes to the opponent. First is the actual task

planning which is needed if the opponent has empty task’s list or after timeout

elapsed. Plan needs revisions during time because opponent is situated in a stochastic

space – the planner does not consider other humans behaviour and does not mainly

know what the player will do. Second added post reflex is flag checking. Like

an ordinary human checks for enemies in his quarter the opponent checks if he can

capture the flag in the quarter he is located in. Of course we add this action object

task to the opponent only if he already has no other task in this quarter.

5 The opponent is a term for software component which represents the AI player.

20

2.6.1. Task Planning

The most interesting thing in opponent’s program is the task planner. Because

of stochastic space we cannot have optimal plans and we need to plan tasks during

the game play, so we need to do this fast. Due to these factors we choose forward

planning and we will generate only partial (short) plans – for the near future.

For planning – graph searching we need game states which are represented

by vertices of searched graph and operations as edges. The game state contains

description of whole city seen by the opponent at one moment. It has information

about quarter ownership – which quarters are owned by whom and for how long,

opponent’s position, his health and about his potential damage ability (see

description of game state in Picture 15). Every single state must be evaluable. We

prepare a procedure that converts a given state into a number indicating its quality

for the opponent. In the evaluation the opponent’s quarters are good and naturally

the quarters owned by the player are bad. From the length of the time for which

a person holds the quarter we calculate the number of guards in the quarter

and multiply it by the quarter quality index. Health and damage are included

in the state quality calculation too.

Picture 15 Game state structure schema

Transitions between states in planed simulation are controlled by operations.

Operation is a procedure that simulates accomplishment of some task and changes

the input game state into the assumed output state. Operation types are based on task

types. We implement action operation; especially flag capture operation, operation

for killing the player and take box operation (operation types diagram is in Picture

16). Every operation calculates time that is needed for it and prepares game state,

like it can be after computed time elapses. Then it adds its own specific impact – for

example turns quarter ownership into opponent’s or grows opponent’s damage

ability. If we add some new task types, action objects or tool types in the future, it is

Game state
+QuarterStates: [(Owner, Time)]
+Position: PositionInTown
+Damage: Real
+Health: Real

+Evaluate(): Real
+GetAvailableOperations(): [Operation]

21

necessary to take account here and add appropriate operations. Without operations

the opponent will not use the new content that we have added.

Picture 16 Operation types schema

We must add a procedure that will return available actions for a specified

game state. Here we put causal conditions. Without potential damage it is not

possible to go kill somebody, and so on.

Now we have everything for a planning process. Forward planning is simple

graph searching [4]. We start at the current game state and after considering all

available operations we search recursively the new created states. We are looking

for a state with the best quality. Potentially the best state is the one with

all the quarters owned by the opponent, but this searching has to be as fast

as possible. We said that partial plan will be sufficient. How to search for only partial

plan? We specify constant length of the partial plan and search for the best with this

length (depth in the searched tree), but this would be still too slow. The number

of available operations is the branching factor of the search tree and it’s always

greater or equal to the number of free quarters. For example when we search

for a plan of length 5 and there will be 9 free quarters, health and tool boxes to take

and ability of killing the player, the search tree has potentially 512 = 244140625

nodes. It is definitely not possible to do this operation in a regular update process

of the opponent. After all it is not necessary to have results from planning in the

same update process, in which it started. Thus we run the planner asynchronously.

Task planning is a separated operation, so it is not necessary to implement a lot

of synchronisation primitives. The only part that shares memory with the main thread

of our game is saving the plan into the task list. Thus using the task list is the only

one part of the opponent implementation which needs synchronisation.

Operation
+CreateTask(): Task
+Operate(current:GameState): GameState

Action object operation
+UsedActionObject: ActionObject

Capture flag operation Kill player operation Take box operation

22

2.7. Rendering and Playing

2.7.1. Player

Player6 game-object is, like the opponent, derivate of human. We reuse

mechanisms like holding and using tools, control action objects, and so on. What we

definitely suppress is the update procedure. The entire human’s behaviour is not

desired here. Player’s acting is controlled only by the user of our software. Actually

it is much easier to implement player’s update process then the human’s. All we need

to do is check for pressing any of keys that are set as game control and based

on the caught ones (detected pressed keys) call relevant behaviour from human’s part

of the player’s code. For example pressed key W moves the player one step forward

– the “step forward” procedure is already defined in the human’s implementation.

We also calculate difference of mouse cursor position and rotate the player.

2.7.2. Rendering

Since we have defined the world our game is situated in, we have not

answered the question about drawing it on the screen. It would be easy if we had

an ordinary vector space. We would transform every object by set of matrices by its

position and rotation then by view and projection matrix and render it on the screen.

When we want to calculate absolute position of an object from another quarter

by transformation of its position according to quarter interfaces connection, we find

out that the object has more than one possible result position. One for each walk

through the town graph from camera’s quarter to the object’s quarter. This is not

the right way to do the drawing. Next reason why we should not draw all the objects

in the town is the software performance.

First we can draw the quarter where player is located. There is no possibility

of doing it wrong. And the remaining quarters? In the quarter generating process we

determined that the quarter is bordered by buildings. There is practically no view

of other quarters except places near the interfaces. So we make a decision that only

one neighbour quarter will be drawn. We simply choose the nearest interface in our

quarter and draw the quarter from opposite interface. If the interface streets are long

6 In this chapter the player (in sources class Player) is term for special game-object that transmits

the user’s control into the game process.

23

enough, this method works fine. We just must not forget that the opposite quarter has

to be drawn transformed so that it fits together with our quarter.

2.8. Settings, Xml Configurations and Menus

It is a frequently used fashion to prepare some opened parameters in software

product that can be set by user. Most of the games use graphical user interface (GUI)

made right inside the game. They are using the game’s uniform graphical design

and are in full screen mode. We decided that for us classical windows will be

enough. We use windows forms and controls for game menu and settings. This is

uniform with the whole operating system environment.

Before starting the game we show the user windows with settings tabs

and a button for the game beginning. In the video settings tab we let him choose

screen resolution and set whether he wants to run our game in full screen mode.

Controls tab should contain mouse sensitivity track bars, possible choose of mouse

inversion and settings of control keys. In the game tab we let the user set the number

of quarters in the town. We must think about our implementation of town generation

and set minimal and maximal value to this option because of the performance.

Next level of configuration is “modding”. These are changes in the game that

do not require code modifications and new compilation. We support it by adding xml

configuration files. We prepare files with gun types. They will describe types of guns

with all their properties that are used in the gun implementation. Second xml will

determine used content like 3D models or sounds. So a more experienced user can

change what he will see or hear during the game. “The modder” should know that he

does these changes only at his own risk. Of course we must make our own versions

of these files and add to our game some default content, because without it the game

would be not able to run at all.

3. User Documentation

3.1. System Requirements

To run this software you need an IA-32 (x86) or IA-32e (AMD64) computer.

Minimal CPU frequency is 2.2GHz and you should have at least 2GB RAM

installed. Dual-core processor is recommended. You need a 3D graphic accelerator

supported by Microsoft DirectX and having at least 256MB of graphic RAM. We

24

support the Microsoft Windows XP or higher operating system with .Net framework

4.5 or newer and Microsoft DirectX installed. This software does not support any

UNIX operating system with Mono framework at all.

3.2. Installation

There is an Install folder on the attached CD. Look for the setup.exe file,

which is situated in this folder. Running the setup.exe will show you the installation

wizard. It is a standard .Net tool used by many other applications. Your computer

will be checked for the needed libraries and if some of them are missing, the wizard

will offer you to download the right versions. Then you will go through a fast

installation of this game. At the end you will get a shortcut in your Start > All

Programs menu.

You can uninstall this software using the common Windows practice: remove

it in Programs and Features wizard located in Control Panel.

3.3. Start and Settings

First thing, that will show after you run the software is the Main menu

window. Here you can set up various options. The Main menu window is divided

into three tabs: Game, Video, Controls. These tabs represent groups of the options

by their meaning. In the Game tab you can set:

• Number of quarters in the town

• Number of first-aid kits inside one quarter

• Number of gun-boxes inside one quarter at the beginning of the game

The Video tab allows you to decide if the game will run inside a window or if it will

be in full-screen mode. Here you can also specify graphic resolution. The resolution

can be selected from the table of prepared values in the combo-box or you can easily

write your own special value into it. You only need to fill the field according

to the pattern (WIDTHxHEIGHT).

If you want to set the controls of the game, go to the Controls tab.

The Controls tab is splitted into the Mouse part and the Keyboard part. Like in any

other 3D game you can set sensitivity of the mouse and invert both axes. Mouse

buttons have their functionalities fixed: left button shoots; the wheel’s rotation

changes the selected gun and the right button performs a secondary action if it is

25

available. Next you can specify what keys you want to use to control the game

(for list of the controls you can see Picture 17).

Picture 17 The main menu window with Controls tab selected

There is one more keyboard control that cannot be set in the main menu

window. It is a cheat for „God-mode“. When you swich into the God-mode, you are

imortal. The magic key combination is to press left Ctrl and left Alt keys

simultaneously. This is only for the purpose of testing. Do not abuse it for

the ordinary gaming.

After all the settings you wanted are done, press the Play! button and wait

for the game to prepare the town.

3.4. Gameplay

At the beginning of the game you are located somewhere inside the only one

quarter you own. There are no guards at this moment. They will appear during

the time – it is like you have just captured this quarter. Both of the players (you

and your opponent) have their property marked by their personal colour. Your colour

is blue and the opponent has yellow. Both of the players have parts of their bodies

26

coloured with their personal colour. Similar are the robots that are doing the guarding

for you (example of opponent’s colour used on the robot’s body is in Picture 18).

Picture 18 Your opponent and his quarter guard

Picture 19 Gameplay and boxes on the sidewalk

Except the view of the town you can also see your status panel and the targeting

cross on the screen during the gameplay (in Picture 19). The status panel is always

located in the upper left corner and it tells you your percentage of health. It also

informs you about the currently selected gun and available ammo.

27

First of all you should check the schematic map of the town you are playing

in. Press and hold the town-map key (by default N) for showing the town map. Here

you can see which quarters are connected together, which are owned by whom

and in which quarter are you or your opponent located. This figure (visible in Picture

20) will disappear after releasing the town-map key.

Picture 20 Town-map shown during the gameplay

On the town map the town-graph is shown. The quarters are represented by black

coloured vertices. The quarters connected together have a green edge between them.

If the quarter is owned by the player or his opponent, the corresponding vertex is

inside an owner’s color circle (blue or yellow). There is also always an arrowed sign

that shows in what quarter is currently the player and his opponent located. If they

are in the same quarter, there will be only one arrow (the second is beneath).

Second gadget that can help you to get oriented is the current quarter map.

You can see it by pressing the quarter-map key (by default M). This is not only

a graph schema, but it is a real map (visualised in Picture 21). The map shows you

the roads, sidewalks, buildings, the quarter flag and the location of the player.

28

Picture 21 Quarter-map shown during the gameplay

Everything on the map is drawn on a green background. The green color means that

there is only a grass and nothing else or you cannot even get there. Brown coloured

are buildings and walls, which means that you cannot go through. The shades of grey

stay for the roads and for the sidewalks. The most important things, this map shows,

are positions of you (naturally the blue point) and of the quarter’s flag (white circle

with black dot inside).

There is one more thing you will certainly appreciate. The roads that are

connecting two quarters togehter are labeled by roadsigns (like in Picture 22).

The roadsign tells you where you are going using this road and furthermore in whose

property the opposite quarter is. The roadsign changes its background color

according to the corresponding quarter owner. Unowned quarters have green

roadsigns.

29

Picture 22 The navigating roadsigns

Now it is time to play the game already. Every time you need to make

a decision whether you are going to capture another quarter or rather go to kill your

opponent. You should also check your status panel and consider searching for a gun

or a healing box (you can see the boxes in Picture 19). Always watch your opponent!

He can show up any time and shoot you in the back. He does not wait for anything,

so while you are discovering the town, he is on his way to capture the next quarter

or he is preparing to kill you. Do not worry; you will be informed about his activities

by dialog messages on the top of the screen.

There are five types of guns defined in the basic gun set in the game:
Table 1 Available gun types and parameters

Type Damage [%] Range [m] Shoot timeout [ms] Needs ammo

Fists 5 0.5 800 No

Pistol 40 100 600 Yes

AK47 30 80 130 Yes

Sniper rifle 100 300 1400 Yes

When you come very close to a quarter flag available for capturing (it’s not

yours), an action indicator will show up. The action indicator is displayed

in the lower left corner as a red circle with white exclamation mark inside.

This means that you can perform a secondary action – it is capturing the flag in this

case. Press and hold the right mouse button until a blue progress-bar will reach 100%

30

of the width. Then you can release the button. Congratulations, you have now

captured the quarter (captured flag in Picture 23).

Picture 23 The flag inside the quarter owned by the player

You can watch a yellow progress-bar while your opponent is capturing a flag too.

This means that you can quickly react and capture it for yourself before the guards

will show up. Moreover the dialog messages inform you precisely about just

captured quarters.

3.5. End of the Game

The game ends when all the quarters have the same owner. The game will

close and a window, telling you who won, will show up. After that you can exit

the application completely or configure a new game and play again.

Conclusion

This thesis has brought in a new computer game idea. This game may seem

crazy or confusing to somebody, but that is why it is so interesting. We came up with

solutions based on known techniques transformed for our purposes. We took

the reader through the real-time game programming mechanisms in general and

described the whole implementation of our idea. We introduced the software

architecture of the bizzare surrounding and the behaviour of artificial beings inside it.

The result software is a usable game that most likely cannot be compared with any

31

top game titles, but it is original and fun. Other benefits of this work can be

the possibility of configuration and source codes prepared and documented for future

development.

There are lots of areas that we can extend, append or modify. For example

the game would deserve better and more sensational content – 3D objects, sounds,

animations and so on. Then the rendering part should be more sophisticated: using

advanced lights, visual effects – use all the advantages that nowadays GPUs have.

Another way to improve this game is to add more interactive content. Define more

guns or extend the tools and action-objects concepts – to add other types of tools

or action-objects. The next further development can for example add a multiplayer

mode. Either only network game for more players, or more and better AIs

in a cooperation or death-match mode. Finally, the most interesting improvement

could be an extension of the bizzare city definition. Our space is theoretically

equivalent to an orientable arbitrary surface. Our map is in fact a polygonal

representation of such surface. So the natural extension could be supporting non-

orientable surfaces too. That would create special interfaces between the quarters

which would mirror your view. Your left hand would be simply on the right side and

conversely. This would be definitely fun.

Attachments

The attached CD contains:

• Electronic version of this text

• Documented source codes of our game

• The game installation files

32

Bibliography

[1] Microsoft Developer Network: XNA Game Studio,

[2013-03-09] at http://msdn.microsoft.com/en-us/library/bb401006.aspx

[2] Josef Pelikán: Datové struktury pro prostorové vyhledávání,

[2013-05-16] at http://cgg.mff.cuni.cz/~pepca/lectures/pdf/2d-06-datasurvey.pdf

[3] Stuart J. Russell and Peter Norvig, 2010, Artificial Intelligence: The modern

approach, 3rd ed. Upper Saddle River, New Jersey: Prentice Hall,

ISBN-13: 978-0-13-604259-4

[4] Malik Ghallab, Dana Nau and Paolo Traverso, 2004, Automated Planning

Theory and Practice. San Francisco: Morgan Kaufmann,

ISBN-13: 978-1-55860-856-6

[5] Games++ forum: Collision detection Vertex-in-triangle check, [2013-04-02]

at http://www.gamespp.com/algorithms/CollisionDetectionTutorial.html

[6] Valve Software: Portal (Electronic Arts, Steam, 2007), [2013-05-16]

at http://www.valvesoftware.com/games/portal.html

[7] The Bitmap Brothers: Z (Eon Digital Entertainment, 1996), [2013-05-16]

at http://www.bitmap-brothers.co.uk/our-games/past/z.htm

[8] Rockstar North: GTA: San Andreas (Take-Two Interactive, 2004), [2013-05-16]

at http://www.rockstargames.com/sanandreas/

[9] International Telecommunication Union: Recommendation ITU-R BT.470-6

[2013-05-18] at http://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.470-6-

199811-S!!PDF-E.pdf

http://msdn.microsoft.com/en-us/library/bb401006.aspx
http://cgg.mff.cuni.cz/~pepca/lectures/pdf/2d-06-datasurvey.pdf
http://www.gamespp.com/algorithms/CollisionDetectionTutorial.html
http://www.valvesoftware.com/games/portal.html
http://www.bitmap-brothers.co.uk/our-games/past/z.htm
http://www.rockstargames.com/sanandreas/
http://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.470-6-199811-S!!PDF-E.pdf
http://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.470-6-199811-S!!PDF-E.pdf

33

List of Pictures

Picture 1 Town quarters make a graph ... 2
Picture 2 Portal gameplay .. 4
Picture 3 Game life cycle diagram ... 5
Picture 4 Robot and its quadrangle projection (red) .. 6
Picture 5 Space objects hierarchy .. 8
Picture 6 Scene represented by BSP Tree .. 10
Picture 7 Scene represented by grid partitioning ... 11
Picture 8 Town quarter with border streets .. 12
Picture 9 Town quarter with interface roads (quarter with degree 4) 12
Picture 10 Town quarter with inner road network ... 12
Picture 11 Town quarter with border buildings, fences and walls 13
Picture 12 Complete town quarter with inner buildings .. 13
Picture 13 Two opposite quarter interfaces with the path-graph vertices

connected by edge of constant length ... 14
Picture 14 Human and his view cone ... 17
Picture 15 Game state structure schema... 20
Picture 16 Operation types schema .. 21
Picture 17 The main menu window with Controls tab selected 25
Picture 18 Your opponent and his quarter guard ... 26
Picture 19 Gameplay and boxes on the sidewalk ... 26
Picture 20 Town-map shown during the gameplay.. 27
Picture 21 Quarter-map shown during the gameplay ... 28
Picture 22 The navigating roadsigns .. 29
Picture 23 The flag inside the quarter owned by the player 30

List of Tables
Table 1 Available gun types and parameters ... 29

	Contents
	Introduction
	1. The Game
	1.1. Detail Description and Rules
	1.2. Similar Games

	2. Implementation
	2.1. Program Architecture for Real-time Game
	2.2. Space and the Game World
	2.2.1. Problem Analysis and Basic Geometry
	2.2.2. Testing for Collisions
	2.2.3. Game Objects in Bizzare Space
	2.2.4. Space Partitioning

	2.3. Town Generator
	2.3.1. Town-graph
	2.3.2. Quarter Generator
	2.3.3. Path Finding

	2.4. Boxes, Tools and Action-objects
	2.5. People
	2.5.1. Object Human
	2.5.2. Reflexes
	2.5.3. Tasks
	2.5.4. Post-reflexes

	2.6. Opponent
	2.6.1. Task Planning

	2.7. Rendering and Playing
	2.7.1. Player
	2.7.2. Rendering

	2.8. Settings, Xml Configurations and Menus

	3. User Documentation
	3.1. System Requirements
	3.2. Installation
	3.3. Start and Settings
	3.4. Gameplay
	3.5. End of the Game

	Conclusion
	Attachments
	Bibliography
	List of Pictures
	List of Tables

