
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Štěpán Poljak

Conceptual Modeling of Business
Artifacts and their Implementation as

Active XML

Department of Software Engineering
Malostranské náměst́ı 25
Prague, Czech Republic

Supervisor of the master thesis: Mgr. Martin Nečaský, Ph.D.

Study programme: Informatics

Specialization: Software systems

Prague 2013

I would like to thank to my supervisor Mgr. Martin Nečaský, PhD. for his sug-
gestions, thorough notes, provided related research material and text corrections.
I would also like to thank to Mgr. Jakub Malý for his willingness to answer my
questions regarding eXolutio.

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In date Štěpán Poljak

Název práce: Konceptuálńı modelováńı business artefakt̊u a jejich implementace
v Active XML
Autor: Štěpán Poljak
Katedra: Katedra Softwarového Inženýrstv́ı
Vedoućı diplomové práce: Mgr. Martin Nečaský, Ph.D.

Abstrakt: V předložené práci se zabýváme konceptuálńım modelováńım business
artefakt̊u a jejich implementaćı v Active XML. Business artefakty jsou kĺıčové
entity business proces̊u, které se v pr̊uběhu těchto proces̊u vyv́ıj́ı v rámci svého
životńıho cyklu. Pro popis životńıho cyklu existuje v́ıce možných metod. V naš́ı
práci vycháźıme z nově vznikaj́ıćı metody zvané Guard-Stage-Milestone meta-
model a zabýváme se otázkou, jak vhodně využ́ıt a rozš́ıřit současný framework
pro modelováńı XML schémat tak, aby podporoval modelováńı business artefakt̊u.
Zároveň se zabýváme návrhem vhodné reprezentace business artefakt̊u pomoćı Ac-
tive XML. V neposledńı řadě se zabýváme otázkou, jak přeložit vytvořený model
do navržené reprezentace v Active XML tak, aby bylo možné okamžitě demon-
strovat funkčnost navrženého modelu. D̊uležitou součást́ı práce je implementace
navrženého rozš́ıřeńı do frameworku pro konceptuálńı modelováńı a implemen-
tace prototypového systému pro spouštěńı Active XML reprezentaćı přeložených
model̊u. Práce také detailně uvád́ı čtenáře do jednotlivých použitých koncept̊u
a představuje podobný existuj́ıćı př́ıstup k reprezentaci artefakt̊u pomoćı Active
XML.

Kĺıčová slova: Active XML, business artefakty, konceptuálńı modelováńı

Title: Conceptual Modeling of Business Artifacts and their Implementation as
Active XML

Author: Štěpán Poljak

Department: Department of Software Engineering

Supervisor: Mgr. Martin Nečaský, Ph.D.

Abstract: In the present work we study conceptual modeling of business artifacts
and their implementation in Active XML. Business artifacts are key conceptual
entities of business processes that develop in their lifecycle during these process-
es. There are several possible methods for definition of artifact lifecycles. In this
work, we make use of emerging method called Guard-Stage-Milestone meta-model
and we study the question on how to appropriately use and extend current frame-
work for conceptual modeling of XML schemas in order to support modeling of
business artifacts. We also deal with the issue of design of suitable representation
of business artifacts using Active XML. Last but not least, we study the question
how to translate defined model into proposed Active XML representation, so that
it was possible to immediately use and demonstrate functionality of defined model.
Important part of this work is an implementation of proposed extension and a pro-
totype implementation of system for execution of Active XML representations of
translated models. The present work also introduces the reader in individual used
concepts and describes similar existing approach for Active XML representation
of business artifacts.

Keywords: Active XML, business artifacts, conceptual modeling

Contents

1 Introduction 4
1.1 Introduction and motivation . 4
1.2 Aim of this thesis . 5
1.3 Organization of this thesis . 6

2 Business Artifacts and Guard-Stage-Milestone meta-model 7
2.1 Motivation for Business Artifacts 7
2.2 Informal description . 10

2.2.1 Business artifacts . 11
2.2.2 Information model . 11
2.2.3 Lifecycle model . 12
2.2.4 Milestones . 13
2.2.5 Stages . 13
2.2.6 Guards . 14
2.2.7 Sentries . 14
2.2.8 Tasks . 14
2.2.9 Events . 15
2.2.10 Prerequisite-Antecedent-Consequent rules 16
2.2.11 Artifact Service Center . 18

2.3 Formal description . 19
2.3.1 Artifact types and GSM model 19
2.3.2 Artifact snapshots and pre-snapshots 21
2.3.3 Processing an incoming event 22
2.3.4 Prerequisite-Antecedent-Consequent rules 23

3 Active XML framework 24
3.1 Introduction and motivation . 24
3.2 AXML description and principles 25

3.2.1 AXML document . 25
3.2.2 Service call activation . 27
3.2.3 Merging service results . 28
3.2.4 Continuous services . 28
3.2.5 XQuery parameters . 28
3.2.6 Intentional parameters and results 28
3.2.7 Lazy query evaluation . 29

3.3 AXML prototypical implementation 30
3.3.1 Software components . 30
3.3.2 AXML peer . 31
3.3.3 Known limitations . 31

3.4 AXML Artifact model . 32

4 Conceptual model for XML 34
4.1 Model-Driven-Architecture . 34
4.2 Other approaches to XML data modeling 35
4.3 XSem . 36

1

4.3.1 PIM schema . 38
4.3.2 PSM Schema . 39
4.3.3 PSM Class . 39
4.3.4 PSM Association . 39
4.3.5 PSM Attributes . 39
4.3.6 PSM Content model . 40

4.4 eXolutio . 40

5 Executable model analysis and design 42
5.1 Artifact evolution . 42

5.1.1 Processing b-step . 43
5.1.2 XML representation . 44
5.1.3 Rule representation . 45
5.1.4 Rules precondition . 46
5.1.5 Immediate effect . 47
5.1.6 Tasks . 47
5.1.7 Service calls location . 48
5.1.8 Service calls activation and termination 50
5.1.9 Comparison with AXML Artifact model 53

5.2 Selected approach . 55
5.2.1 Continuous calls approach 55
5.2.2 Pure query approach . 57

5.3 User interface . 58
5.3.1 How to create forms . 59
5.3.2 How to extract data from forms 59

6 Exolutio modeling analysis and design 61
6.1 GSM concrete example . 61
6.2 Artifact information model to PIM schema 65
6.3 Artifact information model to PSM schema 67
6.4 Stages, milestones, tasks and events 71

6.4.1 Adding GSM schemas . 73
6.5 Sentries . 74

6.5.1 Lower abstraction approach 75
6.5.2 Higher abstraction approach 76
6.5.3 Status change events . 76
6.5.4 External events . 77
6.5.5 Mapping sentries to lifecycle 78
6.5.6 Event parameters . 79
6.5.7 Definition in the APSM schema 80
6.5.8 Context switch extension 81
6.5.9 Invariant preserving rules 83
6.5.10 PAC rules ordering . 83

6.6 Incoming event binding . 84
6.7 Outgoing binding . 85
6.8 Definition of incoming events . 86
6.9 Specification of service calls . 86

6.9.1 Updating APSM schema 86
6.10 Generating XQuery from PAC rules 88

2

6.11 Generation overview . 90

7 Artifact Service Center Architecture 93
7.1 Overview . 93
7.2 Main components . 94

7.2.1 ArtifactManager . 94
7.2.2 Messages . 96
7.2.3 Processing incoming event 97
7.2.4 Processing incoming event by the query 98
7.2.5 Outgoing event . 98

7.3 UI and ArtifactServlet . 99
7.3.1 Actions . 100

8 Testing, experiments and evaluation 102
8.1 Implementation . 102
8.2 Testing . 102
8.3 Evaluation . 102

9 Conclusion 107
9.1 Main contribution . 107
9.2 Future work . 108

9.2.1 GSM visualization for lifecycle models 108
9.2.2 Artifact data distribution 108
9.2.3 Optimization in artifacts representation 108

10 CD contents 110

Bibliography 113

3

1. Introduction

1.1 Introduction and motivation

Business process modeling is a crucial part in describing, structuring and under-
standing the business operations of the enterprise. As such, it is becoming more
and more important to model business processes effectively. Nowadays there are
many business process modeling paradigms and probably the most widely used
are activity-centric approaches based on activity flows. Popular representative
in this category is Business Process Modeling Notation defined by OMG [29].
Work-flow based approaches describe primarily the functional aspects of business
operations and focus on sequencing of individual activities into the overall pro-
cess. This makes it relatively easy to understand the structure of the business
processes and how these processes progress over time. However, the same cannot
be said about the data that these business processes use and produce. The reason
for this is that work-flow based approaches consider the data aspects merely as a
secondary issue, usually only in a context of single activities. This makes it hard
to understand the structure of the data and how they change during the business
process.

Artifact-centric approaches provide a possible solution to this problem. These
approaches consider data aspects as an integral part of business operations by fo-
cusing on key conceptual entities that are central points of business operations,
so called business artifacts. These artifacts contain both information and lifecy-
cle model. Artifact-centric model is described using interactions between these
artifacts, specifying how these artifacts evolve during the business operations and
describing activities and tasks associated to these artifacts.

Guard-Stage-Milestone meta-model is an emerging artifact-centric approach
to modeling business processes introduced by IBM Research [7]. It is however
an abstract model and therefore it does not strictly specify how its information
and lifecycle model should be implemented. But if we want to represent artifacts,
we have to think about their concrete representation. A promising approach is
to realize artifacts information model with XML, because XML is a data format
that is highly portable, extensible and widely used nowadays. It is also a pop-
ular exchange format that solves the problem with heterogeneity of distributed
systems, so web services usually communicate by exchanging XML documents
using SOAP protocol. XML is suitable for artifact data representation, because
it enables us to easily represent objects using hierarchy.

Using XML as a realization of an artifact information model, we must define
XML schema that defines this information model. The area of effective modeling
of XML schemas is a subject for research itself. Currently, there is an interesting
approach, called Conceptual model for XML. This approach is based on model
driven architecture. It allows us to model XML on a level independent on target
platform, then derive concrete XML formats based on this level and finally auto-
matically generate XML Schemas based on these models, which greatly supports
evolution of XML schemas. This model is implemented in a tool eXolutio, so we
could use this tool to define information model of business artifacts. However
we also need to define the lifecycle models of business artifacts, but eXolutio is

4

currently only data oriented and does not have a support for modeling of busi-
ness processes. For this reason we want to extend eXolutio in order to support
modeling of business artifact lifecycles. This way, eXolutio would provide a way
to connect abstract GSM model with the world of XML.

We said that artifact lifecycle model defines how the artifact evolves over
time. Since we want to realize the artifact information model using XML, it
makes sense to represent changes to the information model using XQuery. Also,
artifact-centric model specifies concrete tasks related to the artifact instances.
These tasks can have many forms and it often happens that they have a form of
a web service invocation. This means that we have a combination of XML data
and web services that operate over these data. Fortunately, there already exists
a framework that combines XML with web services, called Active XML. This
framework is centered around XML documents, which are valid XML documents
that can contain embedded service calls. When these service calls are invoked,
their results can enrich the original XML document. As a result of these obser-
vations, it seems promising to define business artifact-centric models using XML
conceptual model in eXolutio and implement these models using Active XML.

1.2 Aim of this thesis

As we described, combination of the GSM model, Active XML and eXolutio
conceptual modeling seems promising, because it allows us to bring the GSM
models into the world of XML. Therefore, the aim of this thesis is to connect
these three approaches into one single framework. This goal is composed from
three main parts:

Propose Active XML representation At first, we need to propose a suit-
able implementation for abstract GSM models using Active XML. We need to
analyze how business artifacts from abstract GSM model can be mapped into
concrete XML representation and how to use Active XML to implement evolu-
tion of business artifacts. Also, we need to analyze how to implement a system
on top of Active XML that would manage and execute concrete Active XML
representation and demonstrate the functionality of defined model.

Propose eXolutio extension Next we need to analyze how to connect eX-
olutio conceptual modeling with definition of GSM information models. More
or less in parallel, we need to analyze how to extend eXolutio to support defi-
nition of GSM lifecycle models and design an extension that would allow us to
automatically generate proposed Active XML representation from defined GSM
model.

Implementation Finally, we need to implement proposed extensions into eX-
olutio and implement an execution system on top of Active XML.

5

1.3 Organization of this thesis

The rest of this thesis is organized as follows. In Chapter 2 we introduce busi-
ness artifacts and artifact-centric modeling and then we describe Guard-Stage-
Milestone meta-model in detail and provide deeper motivation for this modeling
approach. In Chapter 3, we describe Active XML framework and its current pro-
totypical implementation. We also describe related existing approach to connect
business artifacts with Active XML, called AXML Artifact Model. In chapter 4,
we describe Conceptual model for XML and provide basic overview of eXolutio,
a prototypical tool for conceptual modeling that implements concepts described
in chapter 4.

In chapter 5, we analyze and design possible representations of GSM model
and business artifacts in Active XML and discuss what we require from such ex-
ecutable representation. Building on that, in chapter 6 we analyze how to extend
eXolutio to support modeling of business artifacts using Guard-Stage-Milestone
model and how to generate defined models into an executable representation from
chapter 5. In chapter 7 we describe concrete implementation of executable system
that would complement and execute generated executable representation, called
Artifact Service Center.

6

2. Business Artifacts and
Guard-Stage-Milestone
meta-model

This section provides an introduction to business artifacts, business artifact-
centric modeling and Guard-Stage-Milestone meta-model. We first informally
describe the topic and we provide formal foundations in the following section.

2.1 Motivation for Business Artifacts

Business artifact centric modeling is a new promising approach for defining busi-
ness process models. Nowadays there are many other business process modeling
paradigms, and probably the most widely used are activity-centric approaches
based on activity flows. These approaches describe mainly the functional aspects
of business operations and focus on sequencing of activities into the overall pro-
cess. The problem is that they pay only secondary attention to data aspects
and usually consider data only in a context of single activities, for instance as
inputs and outputs of these activities or they ignore data aspects altogether. The
problem that comes from considering data only as the secondary-citizens in the
modeling process is that we do not have the complete view over the information
model and its evolution during the execution of business operations. This can
lead to problems when dealing with change, as indicated by many authors [3].
Authors also argue that activity-centric approaches are too restrictive by focusing
primarily on what should be done, instead of what can be done, which results to
inflexible work-flows, errors and inefficiencies.

The paper [3] describes this as context tunneling. The problem is that work-
flow systems concentrate on the control flow of activities in order to achieve some
business goals, but move to the background the context, the data related to the
entire process and provide only the information that is needed for executing a
specific task in a single activity. The context tunneling can be avoided by pro-
viding all information available. The paper describes case handling approach,
which is a method that focuses on knowledge intensive business processes. Case
handling is based on case files that contain all the relevant information to suc-
cessfully complete the case. It also associates activities to this data that can or
must be performed in order to complete the case. But unlike the work-flows the
case handling permits more freedom in how the processing of case files is orga-
nized, because there is no control flow to determine how these activities have to
be performed. Instead the knowledge worker who is responsible for a particular
case actively decides on how the goal of that case is reached and the case handling
system only assists him.

Artifact-centric modeling is closely related to the case handling, because both
approaches have strong emphasis on the key conceptual entities [4] and both
addresses the problem by promoting the conceptual business entities to become
first-class citizens in a business operation model. Artifact-centric modeling is
based on the notion of business artifacts, also called business entities with lifecy-

7

cles (BEL). These are key conceptual entities that are central point of business
processes. Artifact-centric modeling describes business process in terms of in-
teractions between these artifacts and how the business operations change these
artifacts. An artifact type contains both information model that specifies all of
the business-relevant data about entities of that type and lifecycle model, that
specifies how the entity evolves through the business process by responding to
incoming events and invoking tasks. When the artifacts are created, they usually
have only few attributes defined and as they evolve and move through their life-
cycle, these attributes are updated and more attributes are filled. An important
premise is that at any point in the processing, all business-relevant information
about an artifact instance should be stored in that instance. “This implies that
relevant information about an artifact instance is never hidden in the instance’s
current position in an activity flow” [9]. Artifact existence can span for several
years [10, page 5]. For example the financial application described in [12] uses
business artifact Financial Deal that represents a loan from one party to another
secured by some collateral. This artifact instance can progress through activities
like checking on the borrower and the collateral, completing negotiations and a
contract, and managing the periodic payments until termination of the contract.

Business artifacts were first described in [1] and “since 2003 IBM Research has
been developing meta-models, methods, tools, user-centric paradigms, and other
technologies in support of the artifact-centric paradigm” [2]. IBM also applied
the artifact-centric modeling in many real customer projects, see for example [5].
The team also develops the Barcelona prototype engine that supports the GSM
meta-model. GSM and Barcelona prototype are being used by the EU-funded
Artifact-Centric Service Inter-operation (ACSI) project [6].

FSM lifecycle model First works on artifact-centric models were based on fi-
nite state machines (FSM) to define artifact lifecycles. In FSM lifecycle approach,
each machine state represents a possible stage in the artifact lifecycle and each
state transition can have associated tasks that are started when the transition
occurs. Transitions have associated conditions and when these conditions are
satisfied, the transition occurs. Conditions can refer to changes in artifact infor-
mation model or to externals events that artifact can receive. These events can
be sent either by user or machine. The paper [2] recommends that conditions
associated to transitions between artifact stages should be focused on the min-
imal business requirements needed to pass between them. Complex conditions
should be specified at the level of associations. Associations are constraints on
tasks that determine precedence relationships among the tasks and which tasks
are invoked when the state transition occurs.

GSM lifecycle model More recent papers have introduced the Guard-Stage-
Milestone (GSM) meta-model [4, 7, 8] that is the evolution of previous research
on business artifacts. The GSM meta-model lifecycles are much more declarative
than the finite state machine variants. Unlike previous work, that assumed that
services must be performed in sequence, in GSM meta-model services and other
aspects may be running in parallel. The GSM meta-model also supports hierarchy
of activities.

8

The paper [7] discusses that the foundation of the research leading to GSM
has been to create a meta-model for specifying business processes that:

• “Will help business-level stakeholders to gain insight into and understanding
of their business operations.

• Is centered around intuitively natural constructs that correspond closely to
how business-level stakeholders think about the operations of their business.

• Can provide a high-level, abstract view of the operations, and gracefully
incorporate enough detail to be executable.

• Can support a spectrum of styles for specifying business operations and pro-
cesses, from the highly prescriptive (as found in for example BPMN) to the
highly descriptive (as found in Adaptive Case Management systems).

• Can serve as the target into which intuitive, informal, and imprecise spec-
ifications of the business operations (for example in terms of business sce-
narios) can be mapped.” [7]

The core of the operational semantics is based on the rules inspired by Event-
Condition-Action (ECA) rules. These rules specify how the artifacts evolve over
the time and define conditions that determine when the activities start, when they
terminate and how the business relevant objectives are achieved or invalidated
during the business processes. This declarative approach provides greater flexi-
bility when dealing with business changes then imperative approaches found in
finite state machines variants. The operation semantics is centered around GSM
Business steps (B-steps) that corresponds to the smallest unit of business-relevant
change that can occur to a GSM system and they represent to the processing of
single incoming event. The semantics focuses on how this incoming event changes
the snapshot (description of all relevant aspects of a GSM system at a given mo-
ment of time).

The semantics for B-steps has three equivalent formulations: [4]

Incremental This corresponds to the incremental application of the ECA rules
and provides an intuitive way to describe the operational semantics of a GSM
model and provides a natural, direct approach for implementing GSM.

Fix-point This provides a concise top-down description of the description of
the effect of a single incoming on an artifact snapshot. This is useful for develop-
ing alternative implementations for GSM, and optimizations of them, something
especially important if highly scalable, distributed implementations are to be
created.

Closed-form : This provides a characterization of snapshots and the effects
of incoming events using what is essentially a first-order logic formula. This
permits the application of previously developed verification techniques to the
GSM context.

9

2.2 Informal description

We will now describe the GSM meta-model. As we said earlier, the GSM meta-
model is a data-centric approach, which is the main contrast to traditional activity-
based approaches. We will now illustrate simple business process example, first
specified using Business Process Model and Notation and later using Guard-Stage-
Milestone meta-model.

Example The following example describes a simple business process for a cash
withdrawal. Customer comes to the bank, fills a withdrawal request form, comes
to the reception desk and submits the form to the receptionist. The receptionist
checks client identity and confirms that declared bank account exists. If not,
the withdrawal is refused. Otherwise receptionist checks if balance of the client
account is higher than requested monetary amount. If not, the withdrawal is
refused. Otherwise, client account is updated and cash is delivered.

Figure 2.1: Withdrawal business process using BPMN

The figure 2.1 shows the withdrawal process using BPMN. We can see that
this model focuses on activities and flows between them. The figure 2.2 shows
(almost) the same withdrawal process using GSM meta-model. We can see that
this model considers both activities, shown in the top part of the figure, and
data aspects, shown in the bottom part of the figure. As this figure indicates,
flows between activities are not specified by explicit lines, like in BPMN, but by
declarative rules. These rules describe under which conditions individual activ-
ities start or terminate. This also intuitively implies that the conditional flows,
specified using diamond gateways in BPMN, are described by declarative rules
as well in GSM meta-model. Many visualization concepts used in BPMN have
different meaning in GSM meta-model. We will now focus on core constructs of
the GSM meta-model.

10

Figure 2.2: Withdrawal business process using GSM meta-model. Process has one
artifact, Withdrawal Request. Top part shows artifact lifecycle model and bottom
part shows artifact information model. Information model is further divided into
two parts. Blue attributes correspond to actual data attributes, green attributes
correspond to status attributes and record artifact progress.

2.2.1 Business artifacts

Business artifacts are core modeling constructs in the GSM meta-model. Every
business artifact corresponds to a single business-relevant conceptual entity that
is central point of some business operations and that evolves as it moves through
these operations. Business artifact considers both data and functional aspects of
business operations and as such it contains both information model and lifecycle
model. Business artifact has an associated artifact type and unique identity.

2.2.2 Information model

Information model represents the data aspects of the business artifact. Infor-
mation model contains all relevant information about an artifact instance that
are necessary during the business operations and for their successful completion.
This information can be further divided into two set of attributes.

11

Data attributes are pure business relevant data that represent information
about business itself and how it is being affected by the artifact instance. Example
of business data can be customer name, order price and so on. Data attributes
can be simple values or complex values having the record or collection type. These
record and collection attributes can be arbitrarily nested.

Status attributes contain information about which business relevant objec-
tives assigned to the artifact are already achieved and what activities related to
this artifact instance are currently in progress. These status attributes therefore
record the progress in the artifact lifecycle.

2.2.3 Lifecycle model

Lifecycle model specifies how an artifact instance evolves as it moves through
business operations. The core three components of lifecycle model are, as the
meta-model name suggests, stages, milestones and guards. It specifies relation-
ships between these components and uses ECA inspired rules to define how stages
and milestones are changed over the time. Shortly speaking, stages represent ac-
tivities, milestones are business objectives related to these activities and guards
are condition on when stages become active. We will describe these three com-
ponents in more detail.

Figure 2.3: Example of information and lifecycle model (source [7])

An example of an artifact model is depicted in Figure 2.3. This figure shows
both information model and lifecycle model. Information model is shown in the
bottom of the figure and is divided into data attributes and status attributes. We
can see that it has simple attributes and complex attributes as well. Lifecycle
model is shown in the top of the figure. It contains stages, which are depicted as
rounded-corner rectangles. As can be seen, stages can be nested. Milestones are
shown as circles associated to single stage and guards are shown as diamonds also
associated to single stage. Guard with diamond symbol with the cross inside is

12

special kind of guard, bootstrapping guard and we will describe it later. Labels
in the picture shows propositions for conditions on guards.

2.2.4 Milestones

Milestone corresponds to named business relevant objective, or goal, that can be
achieved in respect to artifact instance. Milestone is always attached to exactly
one stage, although the authors describe a variation in paper [13] where mile-
stones are top level elements not associated to only single stage. Milestone can
be either achieved or invalidated. This information is recorded in corresponded
status attribute in the information model as a Boolean attribute that indicates if
milestone is currently achieved. Information model also contains status attribute
that holds the timestamp when the milestone last changed.

Milestone and stages are associated in their effect on each other. When mile-
stone is achieved, the parent stage closes, because the purpose of the stage has
been achieved. Similarly, when the stage opens, all associated milestones are
invalidated, because if the activity is started, the goals are clearly not achieved.
The expression that specifies the condition when milestone becomes achieved or
invalidated are called sentries. Milestone conditions should be disjoint, meaning
that only one can be true at any given time which mirrors the intuition that stage
should achieve one of its objectives.

2.2.5 Stages

Stage corresponds to named activity that is related to business artifact instance.
Stages support hierarchy and enable dividing the overall work into logically asso-
ciated units. There are two types of stages, complex and atomic. Complex stages
contain one or more children stages. Atomic stages cannot have children stages,
but are placeholders for tasks, the units of business-relevant work, which we will
describe later. Atomic stages can contain one or more tasks, depending on task
types. Stages can be either active or inactive. This information is recorded in
corresponded status attribute in the information model as a Boolean attribute
that indicates if stage is currently active.

There is a relationship between stage and its children stage. When some stage
is inactive, all children stages must be inactive as well. This can be memorized as
simple rule no activity in closed stages. Similarly, when stage opens, all children
stages can open as well if some of their guards become true. Each stage has
at least one associated milestone that specifies under which conditions the stage
goals are achieved and stage closes. Stage have also one or more associated guards.

When an atomic stage contains a task, the fact the stage closes does not
necessarily mean that the reason for closing the stage is task termination [10].
Consider some atomic stage S with task T. Stage S opens and launches task T.
Then some milestone of stage S that is not related to task T becomes achieved, so
stage S closes and become inactive, although task T did not terminated. Closing
the stage means that task T will be aborted, if possible, or alternatively its result
will be ignored. This can happen for example if a manager decides that processing
that contains this task should be canceled and sends event to the system that
requests the cancellation [7]. Stage that can be canceled can have for example

13

milestone canceled, that refers to cancellation event.

2.2.6 Guards

Guard specifies under which condition associated stage becomes active. When the
guard becomes true, the associated stage is opened. Guard is always associated to
single stage. Guards unlike milestones and stages do not have names, because as
authors state in [7], “business-level stakeholders do not typically refer to guards”.
There is also one special kind of guard, called bootstrapping guard. This is a guard
that specifies the condition when corresponding artifact instance is to be created.
Each artifact must have exactly one bootstrapping guard that can be associated
with some top level stage. The guard has a form of an expression, called sentry,
or strictly speaking, guard is a sentry.

2.2.7 Sentries

Sentry is a condition expression that is used in guards and milestones. Sentry
has a form on ξ if ϕ, where either ’on’ part or ’if’ part can be omitted. ξ is
called event expression and refers to one external event or to one event represent-
ing change in artifact status attributes. ϕ is a condition that refers to artifact
information model and does not involve any event occurrence expression. It is
important to say, that sentry can refer not only to events and attributes of asso-
ciated artifact instance, but also to any other artifact instance that is related to
the associated artifact. Also, events can reference parameters of incoming events.
The guards of a stages and milestones should be disjoint.

2.2.8 Tasks

Task corresponds to a unit of business-relevant work that is meaningful to the
whole business process for two reasons. First, it represent measurable steps in
the progress to achieve business relevant goals. Second, they enable the divi-
sion of the business process into collection of identifiable services that can be be
subject to administrative organization structures, IT infrastructures, customer-
visible status, etc. [11, page 4]. Tasks are sometime called business services [11,
page 4] to point out the close correspondence with the services used in Service
Oriented Architectures and web services in general.

Tasks represent the actual work that is performed in connection to the GSM
model. This work is performed by individual actors, which are either human or
automated machines. The actual details of executing particular tasks are not
covered by the model, because as authors state in paper [8], similarly to most
BPM, case management and workflow systems, the GSM meta-model is intended
to support the management of business-related activities, but not the details of
their actual execution.

Tasks are invoked by artifact instances when the atomic stage containing the
task opens. When a task is invoked, the artifact instance provides input data
from its information model, and when the task terminates the task output data
is written into the artifact instance information model.

Tasks may be essentially non-deterministic, but they may have associated
post-conditions that captures a business policy. Human tasks can for example

14

request user to fill necessary data or make approval and submit the information
back to the system.

When tasks are executed they can make change to the data of one or more
business artifacts. These changes should be transactional, so the task should have
restricted exclusive access over involved artifacts for the duration of the service.
[11, page 4]

The meta-model considers five categories of tasks: [8, 7]

• Assignment of attribute values

• Invocation of one-way or two-way external services

• Request to send response to an incoming two-way service call

• Request to send an event to one or more entity instances

• Request to create a new entity instance

Sending a message to another artifact instance is actually performed with the
help of ASC that acts as an intermediary. The artifact sends the message to the
ASC in a first step b1 and ASC then routes the message to the target artifact
instance in a second step b2. In this case, it makes sense to have step b2 happen
immediately after the step b2 [4, page 29].

Human tasks

We will take closer look to the human tasks. Tasks performed by humans are
refered to as human services and are usually considered long-running, because
they require human interaction. During their execution, the human service can
have capability to receive other incoming events. These events may rise from dif-
ferent stages than task parent stage, because GSM meta-model allows parallelism
between stages. Human services can also have an option to invoke save actions
during the processing to save current progress for later continuation, but without
closing the parent stage.

2.2.9 Events

Events are a used to trigger the sentries in guards and milestones. We consider
two types of events:

External events External events are events sent from the environment to ar-
tifact instances. They are also called incoming events. These events can:

• Originate from outside of the system

• Originate from another artifact instance

• Correspond to the termination of a computational task

15

When some event arrives to the system, it is inserted to the queue of in-
coming events and later processed. External events are processed one at a time.
Paper [13] studies possibility for parallel processing of these events, because serial
processing can sometime be a bottleneck.

We can refer to incoming events within sentries in following ways:

• E.onEvent() is fired when incoming event E occurs.

• T.onComplete() is fired when currently active task T completes.

Internal events Internal events correspond to the changes in artifact status
attributes. They are generated when milestones are achieved or invalidated and
when stages are opened or closed. We refer to them within sentries in following
ways:

• S.opened() is fired when a stage S opens and becomes active. This can
happen if one of its guards become true and parent stage is active.

• S.closed() is fired when a stage S closes. This can happen when one of
its milestones become achieved or when parent stage becomes inactive and
closes.

• M.achieved() is fired when a milestone M becomes achieved and changes its
value from false to true. This can happen when one of milestone sentries
become true.

• M.invalidated() is fired when a milestone M becomes invalidated and changes
its value from true to false. This can happen if milestone sentry is satisfied
or when associated stage opens.

Events have a unique name and an associated artifact type. Incoming events
also have a payload. Event occurrence can be relevant to more than one instance.

Outgoing events

Formal model also considers another type of events, called outgoing events. They
correspond to task opening events that artifacts produce when some atomic stage
opens and task inside that stage starts during process of incorporating one incom-
ing event. Outgoing events are sent from artifact instances to the environment
after the process of incorporating incoming event is completed. We can consider
one outgoing event type for each task type, because outgoing event always signals
that some task starts. They are also called generated events, because they are
generated during incoming event processing.

2.2.10 Prerequisite-Antecedent-Consequent rules

Prerequisite-Antecedent-Consequent (PAC) rules are fundamental part of artifact
lifecycle. They declaratively specify how artifact evolves over time. PAC rules are
derived from explicitly defined sentries of guards and achieving and invalidating
sentries of milestones, so the modeler does not write them explicitly and defines

16

only individual sentries. These sentries specify the conditions that are used as a
antecedent parts of corresponding PAC rules. The consequent and prerequisite
parts of the rule are derived automatically from sentry type.

Guard rules Rules derived from guard sentries have action that causes opening
of the associated stage. This corresponds to setting stage activity status attribute
to true and set its timestamp of most recent change to current logical timestamp.

Milestone rules Rules derived from milestone achieving (resp. invalidating)
sentries have action that causes achieving (resp. invalidating) of the associated
milestone. This corresponds to setting milestone status attribute to true (resp.
false) and set its timestamp of most recent change to current logical timestamp.

Rules that specify the lifecycle cannot be fired in an arbitrary order. They
must be applied in an order based on a topological sort, which ensures that
processing terminates and satisfies desirable principles. We require two principles
to be followed:

Toggle once principle This states that through the incremental applica-
tion of PAC rules, each status value attribute can change at most once during
that construction. Note that if the incremental computation of a B-step did not
satisfy Toggle once principle, then a given status attribute might change values
inside the B-step, but those changes would not be visible from the starting and
ending snapshots of the B-step [4].

Inertial principle This states that if a status attribute changes during a
B-step, then there should be a justification for that change that is visible by
examining only the starting and ending snapshots of the B-step [4].

We will present this in the example, borrowed from [10].

Example Consider figure 2.4. Suppose that stages S1 and S2 are open, m1 and
m2 are false and A = 20. Now we start processing of a new incoming event e.
Suppose that we go by the numbers in the figure:

1. Milestone m1 becomes achieved, because incoming event is e.

2. Guard g3 becomes satisfied, because m1 is true and m2 is false.

3. Stage S3 becomes opened, because its guard became satisfied.

4. Milestone m2 becomes achieved because incoming event is e and A > 10.

This results in incorrect state. We have m1 and m2 true, which means, that
condition of g3 should not be satisfied. But it is satisfied, which is a contradiction
with what we would expected when looking only at the start and the end of the
processing and considering only end values of attributes. This violates inertial
principle.

17

Figure 2.4: Example of information and lifecycle model (source [10])

2.2.11 Artifact Service Center

Artifact Service Center (ASC) is a container that manages related artifact types
and their associated instances. In paper [7] they name this component BEL
Service Center (BSC), where BEL stands for business entity with lifecycle. ASC
has many important purposes.

Inter-artifact communication ASC enables communication between man-
aged artifact instances. An artifact instance can send a message to another
artifact instance by sending a message to the ASC, which then routes it to ap-
propriate artifact instance.

External communication ASC ensures communication between managed ar-
tifact instances and external environment. This means primarily the ability to
invoke two-way service calls and send one-way messages against the environment.
This way ASC shields artifacts from concrete technologies used for implementa-
tion of service calls. ASC can also receive incoming events and route them to
appropriate artifact instances for processing. Environment can also request ASC
to create new artifact instances.

Human performers ASC supports interaction between human performers and
managed artifact instances. This interaction can be provided by user interface or
by exposing appropriate service operations. Human performers can send events
to the system that are routed to target artifact instances, they can see their status
of artifact instances and execute human services.

Ad-hoc queries ASC supports ad-hoc queries against the data store that holds
the artifact instances. Human performers can access all information stored in
artifact instances (within their privileges).

As described in [7], in practical implementations ASC acts as an SOA-service
that interacts with external environment exclusively using service calls. These
can be specified both using REST and WSDL.

18

2.3 Formal description

This section provides formal description of the Guard-Stage-Milestone meta-
model. The main source is [4], because it provides detailed formal description
from the authors of the GSM meta-model and presents the version of meta-model
that supports multiple artifact types, multiple artifact instances and structured
attribute, so it can focus on artifact interactions. Another detailed source for
formal description of the GSM meta-model is paper [10], which defines restrict-
ed version of the GSM meta-model that considers only one artifact type, one
artifact instance and simple attribute types. This restriction makes the presenta-
tion simpler to understand and provides good introduction to formal foundation.
As authors state, this restriction does not fundamentally compromise the appli-
cability of the results. Formal definitions in this section are always cited from
[4].

2.3.1 Artifact types and GSM model

Before going further, we must first introduce supported data types and their do-
mains. GSM meta-model supports primitive types, record types and collections
of both primitive and record types. Record types are complex structures com-
posed from primitive types and possibly from other records that can be arbitrarily
nested. Primitive types include arbitrary scalar types, for example Boolean, in-
teger, real and they also include two specific types: EVENT that ranges over all
incoming event types and TIMESTAMP that ranges over logical timestamps.
GSM meta-model also considers for each artifact type set IDR of identifiers for
artifact instances of this artifact type. All these domains are extended with the
null value, denoted by symbol ⊥. We will further use the set TYPES of all
permitted types for artifact attributes, which contains all previously described
types.

Definition An artifact type has the form (R, x,Att, Typ, Stg,Mst, Lifecycle)
where the following hold:

• R is the name of the artifact type and it is often used to refer to an artifact
type (R, x, Att, Typ, Stg, Mst, Lifecycle) itself.

• x is the context variable of R that ranges over the IDs of instances of R.
This variable is used in the logical formulas in Lifecycle.

• Att is the set of attributes of this type. This set is further spitted into the
set of attributes Attdata and set of status attributes Attstatus

• Typ is the function Typ : Att→ TYPES that assigns a type to each data
attribute.

• Stg is the set of stage names.

• Mst is the set of milestone names.

• Lifecycle is the artifact lifecycle model.

19

We use IDR to denote the type of IDs of artifact instances of R. There are
further restrictions for an artifact type:

• The sets Att, Stg and Mst are pairwise disjoint.

• The set Att must include special attribute ID that holds unique, immutable,
not null identifier of the artifact instance.

• Att must include two attributes to hold information about most recent
incoming event that affected this artifact instance.

– Attribute mostRecentEventType of type EVENT holds the type of
this event.

– AttributemostRecentEventT ime of type TIMESTAMP holds the most
recent logical timestamp in which the event processing occurred.

• The set Attstatus must include two attributes for each milestone m ∈ Mst
that hold information about status of the milestone m.

– Attributem of type Boolean indicates whether milestonem is currently
true or false.

– Attribute mmostRecentUpdate of type TIMESTAMP holds the most recent
logical timestamp in which the value of milestone m changed.

• The set Attstatus must include two attributes for each stage s ∈ Stg that
hold information about activity of the stage s.

– Attribute s of type Boolean indicates whether stage s is currently
active or inactive

– Attribute mmostRecentUpdate of type TIMESTAMP holds the most recent
logical timestamp in which the activity of stage s changed.

We already described concepts like guards, milestones and stages in informal
description. Now we describe a lifecycle model of an artifact.

Definition : Let (R, x,Att, Typ, Stg,Mst, Lifecycle) be an artifact type. The
lifecycle model L of R has structure (Substages, Task,Owns,Guards,Ach, Inv)
and satisfies the following properties.

• Substages is a function from Stg to finite subsets of Stg, where the relation
(S, S ′)|S ′ ∈ Substages(S) creates a forest. The roots of this forest are called
top-level stages, and the leaves are called atomic stages. A non-leaf node is
called a composite stage.

• Task is a function from the atomic stages in Stg to tasks

• Owns is a function from Stg to finite, non-empty subsets of Mst, such that
Owns(S) ∩ Owns(S ′) = ∅ for S 6= S ′. A stage S owns a milestone m if
m ∈ Owns(S).

• Guards is a function from Stg to finite, non-empty sets of sentries. For
S ∈ Stg, an element of Guards(S) is called a guard for S.

20

• Ach is a function from Mst to finite, non-empty sets of sentries. For mile-
stone m, each element of Ach(m) is called an achieving sentry of m.

• Inv is a function from Mst to finite sets of sentries. For milestone m, each
element of Inv(m) is called an invalidating sentry of m.

If S ∈ Substages(S ′), then S is a child of S ′ and S ′ is the parent of S.

Intuitively, a GSM model is a set of all artifact types. We describe this
formally.

Definition A GSM model is a set Γ of artifact types with form (Ri, xi, Atti,
Typi, Stgi, Msti, Lifecyclei), i ∈ [1..n], that satisfies the following:

• Distinct type names: The artifact type names Ri are pairwise distinct.

• No dangling type references: If an artifact type IDR is used in the
artifact type Ri for some i ∈ [1..n], then R = Rj for some (possibly distinct)
j ∈ [1..n].

2.3.2 Artifact snapshots and pre-snapshots

Artifact snapshots intuitively relate to concrete state of single artifact instance.
These states can change as a result of incorporating some external event. There-
fore the GSM meta-model defines the concept of snapshots to describe the states
before and after the event processing. These states must satisfy some important
invariants, that we will describe later. On the other hand, incorporating single
incoming event is always composed from multiple internal steps where each step
results in new artifact state. However, it is not guaranteed that these invari-
ants are always satisfied in these intermediate states during the incoming event
processing. This is why the concept of pre-snapshot is defined as well. We now
formally define the pre-snapshot.

Definition Let Γ be a GSM model, and (R, x,Att, Typ, Stg,Mst, Lifecycle) be
an artifact type in Γ. In this context, an artifact instance pre-snapshot of type
R is an assignment σ from Att to values, such that for each A ∈ Att, σ(A) has
type Typ(A). Note that σ(A) may be ⊥ except for when A = ID.

We will use ρ = σ(ID). Now, when A is an attribute of R, then ρ.A refers to
the value σ(A). We call this the path expression and it can be chained, if A is of
some artifact type as well.

Core aspects of relationship between stages and milestones are captured in the
following three GSM Invariants, which apply to artifact instance pre-snapshots.
Invariant GSM-3 is assumed to be maintained by properties of the milestones
themselves.

GSM-1: Milestones are false for active stage If stage S owns milestone
m and if ρ.activeS = true, then ρ.m = false.

GSM-2: No activity in closed stage If stage S has substage S ′ and ρ.activeS =
false, then ρ.activeS′ = false.

21

GSM-3: Disjoint milestones If stage S owns distinct milestones m and m′

and ρ.m = true, then ρ.m′ = false.

Definition An artifact instance snapshot of type R is an instance pre-snapshot
σ of type R that satisfies the three GSM Invariants.

Artifact instance snapshots represent artifact state in particular time. Se-
quence of these snapshots compose an artifact instance. This instance corresponds
to a single conceptual entity that evolves as it moves through some business pro-
cesses.

Definition An artifact instance of R is a sequence δ1, ... , δn of snapshots of
type R such that δ1(ID) = δ2(ID) = ... = δn(ID).

We now define a pre-snapshot of an artifact model. Intuitively, this is a set
of artifact pre-snapshots.

Definition A pre-snapshot of Γ is an assignment Σ that maps each type R of Γ to
a set Σ(R) of pre-snapshots of type R, and that satisfies the following structural
properties:

• Distinct ID’s: If δ and δ′ are distinct artifact instance pre-snapshots oc-
curring in the image of Σ, then δ(ID) 6= δ′(ID).

• No dangling references: If an artifact instance ID ρ of type IDR occurs
in the value of a non-ID attribute of some pre-snapshot in Σ(R′) for some
R′ in Γ, then there is a pre-snapshot δ in Γ(R) such that δ(ID) = ρ.

Definition Snapshot of Γ is a pre-snapshot Σ of Γ such that each artifact in-
stance pre-snapshot in the image of Σ is an instance snapshot.

2.3.3 Processing an incoming event

When an incoming event occurs, it must be incorporated into current snapshot.
This is called GSM business step, or shortly B-step. B-step is denoted (Γ, e, t, Γ′,
Gen), where Γ is a previous snapshot, e is an incoming event, t is a logical times-
tamp greater than all logical timestamps occurring in Γ, Γ′ is next snapshot and
Gen is a set of generated outgoing event occurrences, which usually correspond
to task opening events.

B-step is composed from two phases. In the first phase, event payload is incor-
porated into information model of affected (or created) instances and attributes
mostRecentEventType and mostRecentEventTime are updated. This is called an
immediate effect. Immediate effect does not change any status attribute and it
does not fire sentries. It is denoted ImmEffect(Γ, e, t). In the second phase, event
is incorporated into guards, milestone achieving sentries and milestone invalidat-
ing sentries. This is done by incremental application of PAC rules, changing in
sequential steps the initial pre-snapshot Γ1, that resulted from immediate effect,
into final pre-snapshot Γn = Γ′, until no PAC rule can be applied to Γn. These
computational steps are called micro-steps and their ordering is very important,
as was described in section 2.2.10. At the termination of a B-step, a set of gener-
ated events Gen is sent to the environment. An entire B-step is always considered
to happen in single logical time t.

22

Rule Description Prerequisite Antecedent Consequent
PAC1 Guard: if on E(x) if ϕ(x)

is a guard of S. Include term
x.activeS′ if S′ is parent of
S.

¬x.activeS on E(x) if ϕ(x) ∧ x.activeS′ +x.activeS

PAC2 Milestone achieving sen-
try: If S has milestone m
and on E(x) if ϕ(x) is an
achieving sentry for m.

x.activeS on E(x) if ϕ(x) +x.m

PAC3 Milestone invalidating
sentry: If S has milestone
m and on E(x) if ϕ(x) is
an invalidating sentry for
m.

x.m on E(x) if ϕ(x) −x.m

PAC4 Guard invalidating mile-
stone: If S has mile-
stone m and has guard
on E(x) if ϕ(x) of S, where
E(x) is not -x.m, and where
¬x.m does not occur as a
top-level conjunct in ϕ(x).
Include term x.activeS′ if S′
is parent of S.

x.m on E(x) if ϕ(x) ∧ x.activeS −x.m

PAC5 Achieving milestone
closes stage: If S has
milestone m.

x.activeS on + x.m −x.activeS

PAC6 Closing stage closes child
stage: If S is child stage of
S′.

x.activeS on − x.activeS′ −x.activeS

Figure 2.5: Rules categories

2.3.4 Prerequisite-Antecedent-Consequent rules

We described PAC rules informally in section 2.2.10. Formally, each rule has
prerequisite, antecedent, and consequent part. There are six rule categories.
Three categories are explicit rules, derived from sentries from lifecycle models
defined by a designer. Other three categories are invariant preserving rules, these
focus on preserving the invariants GSM-1 and GSM-2. Rules evaluation must be
done in precise topological order. Formal description for rules ordering algorithm
is presented in [4].

23

3. Active XML framework

This section provides introduction and description of Active XML (AXML). First
we introduce it and provide motivation for this technology. Then we describe its
main aspects in principles. Lastly, we briefly describe its prototypical implemen-
tation.

3.1 Introduction and motivation

Active XML is a framework for distributed data and service integration [14].
It is centered around AXML documents, which are valid XML documents that
contain not only static XML data, as ordinary XML documents, but also dynamic
parts, which can incorporate new data into the document or provide updates for
current one. Dynamic parts are realized using web service calls. They are specified
declaratively using special XML elements that are embedded in the document.
They can be activated and once this happen, the call to respective web service is
invoked and its result is incorporated into the document. Using this approach the
AXML document can evolve over time and integrated data from various sources.

We will now describe the motivation for Active XML. Nowadays, as more and
more applications move on the web, data integration must deal with many prob-
lems, mostly interoperability and heterogeneity of different sources [14], because
these sources may be often implemented in different programming languages and
different platforms. Also, there is a problem with very large scale of the web.
Fortunately, there are already technologies to address each of these problems,
namely XML, standardized web services and peer to peer architectures.

XML XML addresses heterogeneity problem. It is a semi-structured, self de-
scribing data exchange format promoted by W3C [18] and is highly portable,
extensible and widely used. XML is supported by many programming languages
and there are many tools for its processing.

Web services Standardized web services based on SOAP [17] and WSDL [16]
addresses interoperability problem. SOAP is a protocol specification for exchang-
ing structured information that relies on XML . WSDL is an XML based language
for describing network services as a set of endpoints operating on messages.

Peer to peer architecture Peer to peer architecture is a decentralized archi-
tecture that is based on independent and autonomous nodes. Each peer can acts
both as a server and a client.

Authors believe that combining peer to peer architecture with XML and stan-
dardized web services in one framework provides a proper ground for data inte-
gration on the web [14].

24

3.2 AXML description and principles

We will now describe the main principles of AXML. AXML framework is based
on AXML documents that can be distributed among several peers, called AXML
peers. Figure 3.1 shows distribution and communication among peers. Every
AXML peer has a repository of AXML documents and defines a set of AXML web
services. Framework distinguishes true AXML peers, which are peers that contain
AXML documents and AXML engine and classic, non AXML peers. AXML peer
communicates with external world exclusively using web services.

Figure 3.1: AXML data distribution (source [19])

AXML peer can act both as a client and a server. By invoking web service
calls embedded in its documents and integrating results of these calls into the
documents, peer acts as a client. Peers can also define own web services that
query or update its documents. By defining and exposing these web services,
accepting requests, executing them and sending responses, peer acts as a server.

Communication does not have to occur only among true AXML peers. As
figure 3.1 suggests with peer p3, AXML peer can invoke web services on any peer,
not only on true AXML peer. Similarly, web services exposed by true AXML peer
can be invoked from any peer, not only from true AXML peer.

3.2.1 AXML document

We said in the introduction, that AXML document is an ordinary XML document
where some data are specified explicitly, exactly the same way as in classic XML
documents and some data are given intentionally, using embedded service calls
and denoted using special, but still classic valid XML elements. We will now
present example of AXML document and describe embedded calls.

25

<books>
<book>

<isbn>25098540</isbn>
<title>Dumb Witness</title>
<sc service="getReviews@books.com">

25098540
</sc>
<review>

<rating>99</rating>
<comment>...</comment>

</review>
<author>A.Christie</author>

</book>
<sc service="getBook@books.com">

<genre>detective</genre>
<origin>UK</origin>

</sc>
</books>

(a) Before activation, code form

<books>
<book>

<isbn>25098540</isbn>
<title>Dumb Witness</title>
<sc service="getReviews@books.com">

1420925644
</sc>
<review>

<rating>99</rating>
<comment>...</comment>

</review>
<author>A.Christie</author>

</book>
<sc service="getBook@books.com">

<genre>detective</genre>
<origin>UK</origin>

</sc>
<book>

<isbn>1420925644</isbn>
<title>The Sign of the Four</title>
<sc service="getReviews@books.com">

1420925644
</sc>
<author>A.C.Doyle</author>

</book>
</books>

(b) After activation, code form

book

books

title author

Dumb Witness A. Christie

getBooks@books.com

getReviews@books.com

0425098540

0425098540

isbn

review

rating comment

99 ...

genre origin

detective UK

(c) Before activation, tree form

book

books

title author

Dumb Witness A. Christie

getBooks@books.com

getReviews@books.com

0425098540

0425098540

isbn

review

rating comment

99 ...

book

title

The Sign of the Four A.C.Doyle

getReviews@books.com

isbn

1420925644

author

1420925644

genre origin

detective UK

(d) After activation, tree form

Figure 3.2: AXML document example both as a document and a tree

26

Figure 3.2 shows an example AXML document in its code and tree represen-
tations. Left side represents document before activation and right side represents
the same document after activation of service call getBook@books.com. XML code
contains sc elements to denote embedded service calls. Attribute service of sc el-
ement provides information necessary to invoke the service, namely its name and
endpoint. Child nodes of sc element represent arguments for the service call. We
note here that the code uses simplified syntax for expressing embedded service
calls to make the demonstration easier.

Our example contains list of books, where each book contains unique ISBN,
title, author and list of reader reviews. Some books are given explicitly, con-
cretely book “Dumb Witness”, while other books can be obtained from service
getBooks@books.com that returns most popular books for current day, according
to genre and origin as specified by service input parameters. See left side of our
example. We declare that we want most popular book with genre “detective
story” written by author from “United Kingdom”. Right side shows result doc-
ument after service call terminates. AXML document was enhanced with new
book element for the book “The Sign of the Four”. New element is inserted as a
sibling node of the service call element. Note that original service call element is
not removed. This is an important feature, since we can later re-activate the call
and obtain up-to-date results.

We described what happens after activation of embedded service call. But
we did not say when this activation actually happens. As we will see, embedded
calls have many features including specification of when to activate the calls, how
to integrate their results, how to deal with parameters and many others. We will
describe them now in closer look.

3.2.2 Service call activation

Each embedded call can include specification on when the respective call should
be invoked. This is called frequency. Frequency can be for example every day,
only when needed, after some interval and so on. Embedded call can also specify
for how long the response of the service call remains valid. This is called validity.
Validity can be for example zero duration, some positive duration or infinity.
As authors state in [14], combination of frequence and validity of calls allows
to capture different styles of data integration, like warehousing, mediation and
their combination. For example setting validity to zero means that client will use
response data only to serve one specific request that needs the data and after
request is served, it will automatically remove them. This is like mediator style,
where data are not stored but obtained when needed [20]. On the other way,
setting validity to infinity means that client will archive call responses forever
and will not automatically remove them. Only application itself could control
the data deletion.

We can quickly illustrate this in our example 3.2. We could specify frequency
for call getBook@books.com to “every day” and validity to seven days, which
means storing a history of most popular books for each of last seven days. Client
caches these books and each day it removes the oldest book element.

27

3.2.3 Merging service results

We said that when client invokes embedded service call, its result are integrated
into the document when the service call returns. There are many options how
to integrate these results. This integration actually rises two questions: where to
put the result and how to deal with previous service call results, if any. Simplest
option is to put result data as a sibling of sc element that corresponds to the
invoked embedded call. This can be either before calling sc element, or after it.
Result can either be appended behind previous results, or replace the previous
result, if any. Authors however investigate an option to integrate data using ID-
based data fusion [15]. This option relies on fact that both DTD and XML Schema
allow to promote some attributes to be unique identifiers for their elements. Then,
if some service call result contains element with ID that exists in the document,
then the result element can be merged with such element.

3.2.4 Continuous services

Sometime it is desirable when client does to receive only single answer, but entire
stream of answers. This is common technique in subscription systems, where
subscription system pushes new data to the subscriber. This is implemented in
AXML as a continuous service. When client activates such continuous call, first a
subscription is a made at a service provider. Service provider then subsequently
returns individual results. These results are integrated into the documents of the
client in an analogous way to normal service call.

3.2.5 XQuery parameters

We said that parameters are expressed as child elements of the service call. In
our example in figure 3.2 we have embedded call to getReviews@books.com, that
gets reviews for the book based on its parameter that corresponds to unique book
ISBN. See that this ISBN value is the same as value of ISBN element of the parent
book element. AXML allows us to specify input parameters as XQuery expres-
sions. With this approach, when service call is activated, its parameters are first
populated by evaluating the specified query. Since the query can return multi-
ple results for each of the service call parameters, the service call is invoked for
each combination of parameters evaluation. This can greatly reduce the amount
of embedded sc elements, for example if we would like to invoke the same web
service for each book element in the document.

In our example 3.2 we could use this XQuery parameters and write instead
of static ISBN the query getReviews@books.com(../isbn/text()). This is very
useful, because we do not have to explicitly write the ISBN parameter, which
results in less typing, reuse and less errors, because change in ISBN value is
automatically propagated to getReviews service call.

3.2.6 Intentional parameters and results

XQuery parameters are powerful way to define input parameters with respect to
peers documents. But we can also use input parameters that contain embedded
service calls. Moreover, embedded service calls can be included in service results

28

as well. This enables a declarative service composition. These parameters and
results are called intentional. Note that service composition can be recursive,
because embedded service calls in parameters can return another service calls.
The question around intensional parameters is when to invoke the service calls
embedded in parameters. There are intuitively two alternatives.

First alternative is that client invokes them first, prior to invoking the par-
ent service call, incorporates their results into the parameters and when input
parameters contain no embedded service calls, client finally invokes the parent
service call.

Second alternative is that server invokes these parameters. Client ignores them
and invokes the parent service call without dealing with intentional parameters,
and so server receives the service call with parameters containing embedded calls.
It is now up to server to invoke these service calls and incorporate their results
into the parameters. After that, server processes the call, which now corresponds
to local computation. This variant allows to push computation on the server.

Similar case is with intentional results. When server processes service call and
service result contains embedded service calls, it can either invoke them before
answering to client or leave this up to client. When server leaves the invocation
up to the client, the client, strictly speaking, does not get the actual information
he requested, but he get the way how to obtain it which means that he can reuse
it later to get more results or update his current results. This variant allows to
push computation on the client. Authors illustrate this with a convenient
quotation in paper [20]:

“Give a man a fish and you feed him for a day. Teach a man to
fish and you feed him for a lifetime”.

We can see this scenario in our example 3.2. Client invoked the service
getBook@books.com and he got in result not only static information about a
book, but also an embedded service call that he can use to obtain reviews for
this book. Clearly, list of all reviews for one book can be quite large, so it is up to
the client whether he invokes the call to get reviews or not. This prevents sending
potentially unnecessary data to the client and saves traffic. Client can also use
the call to update its current reviews, because embedded call can be re-invoked
many times.

This service composition brings potential problems with security, as authors
state in many papers. For example, intentional parameters could contain em-
bedded call to some malicious web service and this way client could push this
malicious service call to the server. Similarly, server could return in intentional
results a call to malicious server and push this malicious call to the client.

To conclude this section, we note that although AXML supports this service
composition, authors state in [15, page 5] that AXML framework is not primar-
ily a framework for service composition, but a framework for data integration
using web services. The focus is on data, not on workflow and process-oriented
techniques.

3.2.7 Lazy query evaluation

We described in section 3.2.2 how frequency can specify when an embedded
service call should be called. The frequency however does not have to mean that

29

the call should be invoked whenever the frequency says so. AXML actually allows
to specify a mode of an embedded service call, that is either immediate or lazy.
In immediate mode, the call is activated when it expires according to frequency.
In lazy mode, the service call is invoked only when its result are really needed,
this can happen for example if someone queries the AXML document and service
call results should be contained in this document. This lazy mode prevents from
invoking unnecessary service calls.

We can illustrate lazy mode in our example 3.2, picture d. Suppose there
is a query /books/book[author =′ A.C.Doyle′]/reviews. This query surely does
not involve first book element, so service call getReviews@books.com for this book
would not need to be invoked, event if its frequency was already expired. On the
other hand, second book element is included in result of this query, so its service
call to get reviews would have to be invoked, if its frequency was expired.

Lazy query evaluation is researched in much closer look in paper [19]. Authors
introduce methods based on query analysis and rewriting that find the sequence
of service call invocations that are needed to evaluate given query for AXML
data.

3.3 AXML prototypical implementation

Currently AXML has two major versions of prototypical implementation. First
version used Apache Axis for web services, Apache Tomcat 4.0 and authors own,
X-OQL query processor, because as authors state in [21], “no XQuery processor
existed when the project was started”. More recent version 2.0 was released in
November 2007. This version replaces previous one. We will now focus only on
AXML 2, because in our thesis we use this most recent version.

3.3.1 Software components

Active XML distribution Apache Axis 2 for web services, Apache Tomcat 5.5 and
eXist XML database [22]. This means that this time new version uses XQuery
processor contained in eXist distribution.

Figure 3.3: Software components in AXML (source [22])

Figure 3.3 shows software components in AXML and their possible config-
uration. Active XML engine and Axis 2 compose a web application and this
application is deployed in the Tomcat web server. Web application uses eXist
database and this database has for each peer one separate collection of documents
that represents peers repository. The most expensive configuration is shown in
part 1, where every peer has its own web application and own database.

30

3.3.2 AXML peer

Each peer has an AXML engine, which provides a database access and manages
and evaluates AXML documents that are stored in the eXist database.

As we said in section 3.2, each peer acts as a client. This is assured by pro-
viding web interface for accessing, evaluating and optimizing AXML documents
[22]. Peer also acts as a server by defining and exposing web services. It has these
services:

Algebra web services Algebra web services enable distributed data manage-
ment. These services are used by optimax, a module that optimizes and evaluates
AXML documents. ReceiveOperator is responsible for preparing results from in-
voked web services, since service call responses are redirected to this service.
SendOperator can send data to specified address by calling respective Receive-
Operator. NewNodeOperator allows to install new AXML documents into peers
repository, or append new elements to specified address in the document. If new
document is created, it is immediately evaluated.

MaterializationService Materialization service allows evaluation of AXML
documents. Method evaluate evaluates entire document in a depth-first manner.
So when a service call has intentional parameters, as described in subsection
3.2.6, these parameters are evaluated first. The ordering of execution can be
explicitly overridden. Method evaluateNode is similar to evaluate, but evaluation
starts in specified node. Method activate will activate a specified service call but
will not automatically activate intentional parameters, unless their activation is
explicitly requested using activation order constraints.

GenericQueryService Generic query service is used to execute input query
over the database using method executeGenericQuery. Method applyQuery can
be used to apply a query defined in another AXML document and provides a way
to push data into another document [22]. Method continuousQuery gets a query
and parameter streams and executes the input query over the database with each
item from the stream.

DummyStreamService Dummy stream service only streams back a result of
an input query.

ContinuousService Continuous web service can be used to call other web
services in a continuous way. It receives a stream as a parameter and for each
item from a stream, the service calls the specified web service and returns the
result.

3.3.3 Known limitations

Current AXML distribution does not contain all the theoretical features described
in the section 3.2. Most importantly, the activation frequency and validity is not
implemented, so there is only one option, which is call the web service whenever
needed. Also lazy query evaluation for AXML document is not implemented,

31

which is confirmed from Active XML mail conference archive [23]. Also, more
complex merging strategy based on ID-fusion is not implemented.

3.4 AXML Artifact model

There already exists an approach that connects business artifacts and Active
XML. It is called AXML Artifact Model and is described in paper [32]. Authors
propose an approach, where “artifacts are XML documents that evolve in time
due to interactions with their environment, it means human users or web services”
[32].

AXML Artifact model is based rather on earlier business artifact-centric mod-
eling approaches where lifecycles are modeled using finite state machines and it
does not seem to be very convenient for GSM model that supports stage hierarchy
and parallelism within single artifact instance, as authors of GSM meta-model
state in [4]: “The AXML Artifact model supports a declarative form of artifacts
using Active XML as a basis. The approach takes advantage of the hierarchical
nature of the XML data representation used in Active XML. In contrast, GSM us-
es milestones and hierarchical stages that are guided by business considerations.”

<plant artID="plant02">
...
<webOrder artID="wo3">

<client>
<name>Sue Leroux</name>
<address> ... </address>

</client>
<order> ... </order>
<order> ... </order>
<creditApproval artID="wo3-ca">
...
</creditApproval>
<fun funID="?warehouseOrder" />
<fun funID="?comm" />

</webOrder >
...
</plant>

Figure 3.4: AXML Artifact example

In AXML Artifact model, the state of an artifact is an AXML document.
Figure 3.4 show an example of such document, it contains a webOrder arti-
fact. This artifact has a subartifact creditApproval. Artifact has function nodes
?warehouseOrder and ?comm, which will be later activated in order to create
the warehouseOrder and communication sub-artifacts that will then work con-
currently. AXML Artifact model uses function guards to control the call. There
are four types of guards:

• Call guard that controls call activation

• Argument query that computes call arguments

• Return guard that controls call return

• Result query that computes call result

32

These guards are implemented using continousCall and continousQuery [33].
We can ilustrate usage of call guard using a continuousCall embedded in a docu-
ment. ContinuousCall specifies a service address that will be called and a query
that corresponds to call condition. This condition query can return method name
with parameters for every data that satisfy the condition. Then, when continu-
ousCall is activated, it evaluates the query condition and calls returned method
with returned data on specified service for each result of the condition query.

<items>
<item>

<name>Monitor</name>
<ordered />

</item>
<item>

<name>Keyboard</name>
</item>
<item>

<name>Mouse</name>
</item>

</items>
<sc method="continuousCall" id="MakeOrderCall">

<endpoint>OrderService</endpoint>
<data>

for $item in /items/item where not($item/ordered)
return
<MakeOrder>{$item}</MakeOrder>

</data>
</sc>

Figure 3.5: AXML Artifact continuous call

Figure 3.5 shows an example of continuous call. When sc node with id
“MakeOrderCall” is activated, it evaluates the query and for each item element
that does not have ordered child element, it calls method MakeOrder at service
OrderService. In our example, it will call the method MakeOrder twice, once for
item Mouse and once for item Keyboard.

33

4. Conceptual model for XML

Conceptual model for XML, so-called XSem, is an approach to modeling XML
schemas based on principles of Model-Driven-Architecture (MDA). It was intro-
duced by Martin Necasky in [27] and later in [28]. XSem connection with MDA
is its characteristic feature that distinguishes it from other approaches to XML
data modeling and that implicates many useful qualities. Before we describe it
further, we will briefly describe the MDA in general.

4.1 Model-Driven-Architecture

Model-Driven-Architecture is a software design approach to developing software
systems defined by the Object Management Group [25]. It was introduced to
increase the efficiency of software development. It is a based on an idea that
system under construction should be developed in a top-down approach, which
means that the system is firstly described in an abstract high-level representation
that enables to concentrate on conceptual aspects of the application domain and
relationships between them. This representation is called Platform-Independent-
Model (PIM for short), because it is independent on target platform and imple-
mentation language which means that it can be understood by several stakehold-
ers, most importantly domain experts that can analyze and design the model
using their knowledge of the problem domain and analysis of user requirements.
This is very important, because domain experts can have strong knowledge of the
problem domain, but do not need to know other areas of software construction,
like programming, testing etc and can focus on integrating user requirements into
the model. Since the model is rather abstract, also business level stakeholders can
intentionally read and use to the model because model provides much better un-
derstanding then lower level technologies. This helps to clarify the understanding
between stakeholders involved. Also changes in the requirements can be repre-
sented by changes in the model. Importantly, models can be validated before
the system implementation starts, or during the construction when changes are
involved.

Model is further used during system implementation, where implemented sys-
tem respects the concepts from the model or it can be even, at least partially,
generated from the model. Earlier approaches, that first appeared in 1980s under
name Model-Driven-Development were based on this idea [24]. Simply put, they
expected that in a first step we draw a diagram that represents an aspect of the
system under construction and in a second step we use that diagram directly to
help generate or implement that system. This is also called forward engineering.
Back then, there were great expectation, but the success was unfortunately not
so great. The models were not a particularly pleasant or convenient expression of
the problem at hand. Also there was a lot of generated code, and mistakes in the
system would tend to be corrected by fixing the generated code, which however
breaks the link between model and solution and heavily decrease the gain of the
approach. This leads to following observations [24].

• Model must be readily apparent to people familiar with the domain. The
model language must be designed to fit the intended purpose.

34

• Generation process must be efficient, and it must be straightforward to
remedy errors in it and to customize it.

• Developers must see that model will help them to get their work done and
adopt it.

MDA exploits three concrete models in the software development process. A
top level model is a computation independent model (CIM), that focuses on the
environment of a system and on requirements. It can be transformed to the PIM.
In this thesis, we do not work with CIM. We already described the PIM. PIM
captures conceptual aspects of the application domain. This model however does
not say anything about how the system will be represented in target platform.
This is where Platform-Specific-Model (PSM) comes into play. PSM is derived
from PIM and defines how the data is represented in a target data model. Because
it is platform specific and it must capture concrete implementation details, there
must be a special PSM for each target data model. We can see a PSM diagram
as a mapping between conceptual diagram and target data model schema. This
derivation can be either automatic, semi-automatic or manual. Unlike PIM,
PSM will only make sense to a developer who has knowledge about the specific
platform.

4.2 Other approaches to XML data modeling

The strong emphasis on MDA distinguishes XSem from other approaches to XML
data modeling. Authors state in [28] that current approaches are not satisfactory
for several reasons.

ERbased Approaches ER-based approaches are inspired by ER diagrams
used in conceptual modeling for relation databases. There are entity types that
model real world concepts and associations that model relationships between
them. One approach is called EER, and it is extended ER with constructs that
adds constructs specific for DTD. Similarly, there is an approach called XER that
add constructs for XML schema. These aproaches hovewer do not apply MDA,
because since XML schema constructs are incorporated in conceptual schema,
designers must think how data will be represented in XML schema during def-
inition of conceptual model. But in conceptual level the designer should model
independently of the target platform. Also, there is no relation between XML
schemas and for two different XML formats designer must create two conceptual
diagrams.

UML UML-based approaches use UML diagrams for conceptual model. There
are classes that model real world concepts and associations that model relation-
ships between them. This approach is used in Enterprise Architect. Because
UML class diagrams itself cannot express the XML format, they are extended
with profiles that guide the translation to XML format. Problem is that PSM
derivation is only automatic. There can be many PSM schemas based on the
same PIM schema that have different representation, so it mus be the designer
who decides how the PSM schema should look like and tool should only assist

35

him. Automatic derivation cannot know how the target structure should look
like, so if designer needs more PSM schemas for one PIM schema, he must model
more PIM schemas [28].

XML Schema Visualization XML Schema visualization focuses on visual
representation of XML Schema constructs. It does not consider MDA at concep-
tual model at all, so it faces mentioned problems like dealing with change since
create schemas do not have correspondence to conceptual entities.

4.3 XSem

We already said that Xsem is based on principles of MDA and focuses on modeling
XML schemas. It uses UML class diagrams extended with additional features.
XSem considers PIM and PSM levels, where PIM models real-world concepts
from the application domain and PSM models these concepts in the platform
specific formats. This means that PSM schemas are derived from PIM schemas.
Because we described that PSM is always specific to target platform in which
we develop the system and since Xsem focuses on modeling XML schemas, it
makes an intuitive sense that PSM schemas model concrete XML formats. The
main feature of XSem is that PIM and components are formally related with
PSM components. There can be multiple PSM schemas that are all derived
from the same PIM schema, each for one concrete XML format that is used
in the system. Concepts from PIM schema have their interpretation in PSM
schemas and similarly concepts in PSM schema are mapped to the concepts in
PIM schema. This is useful when we need to model the same concept from PIM
schema in more XML formats that are used in different situations. This reflects
the real life scenario where for example two messages use the same concept from
PIM schema, but their XML representation is different.

This connection between model concepts and multiple interpretations has
many advantages. The fact that PSM schemas are linked to the same PIM
schema has a great benefit when dealing with change, because we can see where
the change needs to be propagated and most importantly, in some cases this prop-
agation can be automatic. So when user changes associations, classes, attributes
and others, these changes can be automatically propagated to interrelated com-
ponents. This connection also helps to understand the semantics behind XML
documents.

36

Figure 4.1: PIM schema for book

(a) PSM schema for message with book cat-
alog

(b) PSM schema for message with
book details

Figure 4.2: PIM schema for book domain and related PSM schemas

Example Consider figure 4.1. We have PIM concept Book that has properties
title, associated concept Author, publisher, price, rating and description. When
considering the message send from the server to the client for the purpose of single
book presentation, the message could contain PSM concept for Book that contains
all the properties. On the other hand, when sending the book catalog with list
of books, it is sufficient to provide for example only book title and author. Both
messages use the same PIM concept, but their XML representations are different.

This propagation can actually occur at many levels. XSem considers evolu-
tion on five levels [26], as shown in figure 4.3. The extensional level contains

37

actual XML documents. The logical level contains XML schemas that describe
the XML formats. The operation level contains queries over XML documents in
respect to the XML format. The platform-independent level contains conceptu-
al schemas that we have already described. The platform-specific level contains
also already described PSM schemas. Components from one level are always con-
nected with components from upper level and from lower level, which allows the
propagation of the change to all affected places. The platform-independent and
platform-specific levels are called conceptual levels. The remaining three levels,
the schema, operational and extensional, containing the actual files representation
in the system, are called logical levels.

Figure 4.3: Five-level evolution architecture (source [26])

4.3.1 PIM schema

PIM schemas are visualized using UML class diagrams. These diagrams are
simplified, because some features are unnecessary for XML data modeling, for
example class operations. Most important constructs are classes, class attributes
and associations. A PIM schema is shown in a non-hierarchical layout.

PIM Classes

PIM classes are core constructs of the PIM. They represent real-world conceptual
entities. Classes have a name and can have attributes. Classes can be connected
using associations. See figure 4.1, where classes are shown as a rectangles. Book
is an example of a class.

PIM Attributes

PIM attribute models property of some real-world conceptual entity. Therefore
PIM attribute is attached to concrete class. Attribute has a name, data type,
optional default value and cardinality. See figure 4.1, where attributes are shown
inside classes. Book property title is an example of an attribute.

PIM Association

PIM association models some relationship between real-world conceptual entities.
Therefore PSM association connects PIM classes. Association have optional name

38

and has cardinality in both ends. See figure 4.1, where associations are shown as
links between classes. For example association between classes Book and Review
specifies that each book can have zero or many reviews and each review has
exactly one book. PIM associations can be self-referenced. Each association end
can contain only one PIM class.

4.3.2 PSM Schema

PSM schemas are also visualized using UML class diagrams. In this case UML
diagrams are extended with additional constructs that provide better support for
XML modeling. These constructs have their own visualized form for better read-
ability. Because PSM schema represents XML, it used hierarchical structure and
has the form of forest. PSM constructs are derived from PIM components and this
connection is remembered. Thanks to this changes can be automatically prop-
agated to affected components, although not all changes are propagated. PSM
schema can be directly translated into XML Schema. This process is automatic
and unambiguous, as described in [28].

4.3.3 PSM Class

PSM class models representation of some PIM class in XML format. Some PSM
classes can hovewer exist without any related PIM class and be used just as a
container. PSM class has a name, optional attributes and optional associations.
Class name can be different from interpreted PIM class name. Class can have
at most one parent association. Classes are only constructs that can be both
top roots or leafs. One special class must always exist in each PSM schema,
called PSM schema class. When PSM schema is translated to XML, an instance
of a PSM class is modeled as a sequence of elements representing its content.
This sequence is enclosed in an XML element with the name from the parent
association.

4.3.4 PSM Association

PSM association connects PSM classes and PSM content models. It have optional
name and cardinality in both ends. Each association end can contain only one
PSM class or PSM content model.

4.3.5 PSM Attributes

PSM attributes are attached to concrete PSM classes. They can be either derived
from PIM attributes of represented PIM class or they can stand alone, which
means that they have no counter part in PIM model. PSM attribute has a
name, data type, cardinality and optional default value. Attribute name can be
different from represented PIM attribute. PSM attribute has also an XML form
that specifies whether in XML format it will be translated as XML element or
XML attribute.

39

4.3.6 PSM Content model

PSM content model enables to model XML schema constructs sequence, choice
and set. Content models are visualised using rounded rectangles. They have
always parent and child associations. Hence, they cannot be top level or leaf
nodes.

4.4 eXolutio

We will now briefly describe eXolutio, an experimental tool that implements
conceptual modeling for XML. We can divide eXolutio modeling into multiple
steps. These steps need not to be sequential, they can overlap when designer
decides to change previously defined concepts.

Figure 4.4: Exolutio PIM and PSM schema modeling. From left we can see PIM
schema, then derived PSM schema. Below PIM schema, we can see generated
XML Schema.

1. PIM Schema At the very first step, designer must define the PIM schema,
where he defines real-world conceptual entities of the problem domain using
classes, associations, class attributes, content models and other constructs
that we have already described.

40

2. PSM Schema From this PIM schema, designer can later derive multiple
PSM schemas, where he defines concrete XML representation of the con-
cepts from the PIM schema. Constructs from PSM schema can represent an
interpretation of another construct from PIM schema, in this case eXolutio
maintains a connection between these constructs. This connection enables
propagation of changes between associated concepts.

3. XML Schema generation Finally, designer can generate XML Schemas
from PSM schemas. Generated XML schema is specified by PSM schema
unambiguously as described in [28]. Designer can also generate sample
XML documents based on this PSM schema and he can also validate these
documents against the schema.

4. OCL constraints Another significant feature is support for defining OCL
constraints against the PIM and PSM schemas. OCL constraints against
PSM schema can be transformed into Schematron schema, which provides
more detailed control over XML document than the XML Schema alone.
This particular feature will be very important for us later.

Figure 4.5: Exolutio OCL constraints and generated Schematron schema. In right
side we can see OCL constraint against the PSM schema from figure 4.4 which
states that for each item holds that item price is equal to price of corresponding
product multiplied by its amount. In left side we can see Schematron schema
generated from OCL constraints.

Figures 4.4 and 4.5 shows described features of eXolutio.

41

5. Executable model analysis and
design

We will now analyze how to represent business artifacts in an executable model,
by which we mean concrete Active XML representation that can be executed
and demonstrated. After that, when we have a suitable representation, we will
analyze how to extend eXolutio to support definition of business artifacts and
generation of these artifacts into proposed representation.

Proposed representation will be composed from one or multiple Active XML
documents along with necessary XQuery code designated for operations over these
documents. But such active documents alone are still merely static, unless they
are evaluated in Active XML framework using Active XML engine. So, after cre-
ating concrete representation, we must execute it inside Active XML framework.

In addition to this, there must be also another system that corresponds to
the functionality of Artifact Service Center, which was described in more detail
in section 2.2.11. We will develop this system as a web application on top of
Active XML and use it to execute generated Active XML representations. These
representations will be internally managed using Active XML framework under-
neath. As described in section 2.2.11, this system will be also responsible for
communication with external world, communication with human performers, re-
ceiving incoming events and processing these events. Such event processing will
be performed using Active XML framework. Many operations of this web appli-
cation will be performed with respect to generated Active XML representation.
For example, exposed web service for receiving incoming events must depend on
concrete model definition. Actual implementation of this system will also depend
on proposed Active XML representation.

5.1 Artifact evolution

In this section, we will analyze artifact evolution in an executable model. We must
analyze what exactly we need from an executable model, how it should behave
and what problems we need to solve. We are talking about artifact evolution,
but what does this evolution exactly mean in our context? Generally, it means
making changes and updates to an artifact information model. These changes
can happen as a consequence of incorporating single incoming event into the
system and by execution of artifact tasks. Both incorporation of incoming events
and invocation of artifact tasks are driven by predefined lifecycle, specified using
guards, milestones, stages and declarative rules. These concepts together specify
the evolution of the system. We can imagine the evolution as a repetition of
following steps:

1. Incoming event arrives to the ASC system and system eventually starts its
processing.

2. Processing incorporates an immediate effect of an incoming event and up-
dates information model.

42

3. Processing evaluates applicability of individual rules in predefined order
and if some rule becomes applicable, it is fired. Firing a rule can either
open a stage, close a stage, achieve a milestone or invalidate a milestone.
Opening a stage can generate a request for task invocation, if opened stage
is atomic. These requests are collected during event processing. Then
evaluation continues. Processing terminates when there are no applicable
rules left.

4. When the processing terminates, system invokes tasks for generated re-
quests. Invoked tasks can make changes to information model during their
execution and as a result of their termination, which corresponds to another
external event.

Figure 5.1 illustrates these steps.

Receive external

event

Initiate event

processing

Apply immediate

effect

Evaluate rules

Found a rule to fire?

Fire applicable

rule

Terminate event

processing

no

yes

Invoke opened

tasks

Figure 5.1: Evolution of business artifacts in an executable model

This means that we have to implement particular mechanisms that will be
responsible for realization of previously described steps. Our idea is that we have
a system that correspond to Artifact Service Center described in chapter 2.
This system manages artifact instances and enables communication with external
world. So, our executable model must be able to store business artifact instances,
create new business artifact instances, receive external events, queue them for
processing in correct order, initiate event processing, update information model
of business artifacts, evaluate PAC rules and invoke services that correspond to
tasks. We will now analyze these requests.

5.1.1 Processing b-step

We will start with b-step processing, concretely rules evaluation, because it is
one of the most important part of an executable model, since it realizes the
lifecycle model in practice. We will discuss it together with information model
XML representation because as we will see soon, these two concepts are highly
connected.

Rules evaluation is the second part of an external event processing, right after
application of an immediate effect. Since we implement information model of

43

business artifacts with XML, an intuitive approach is to implement rules evalu-
ation with XQuery. This has a great advantage, because with XQuery we can
implement all three parts of PAC rules, which are preconditions, conditions and
actions. It is because XQuery is suitable for both read-only and update queries
over the XML document, where the first is useful for evaluation of conditions and
preconditions and the second is useful for realization of actions. Another very
important reason to choose XQuery is that eXolutio already contains support
for OCL constraints over PSM schemas and capability to generate Schematron
schema based on these constraints. Schematron uses XQuery expressions, so eX-
olutio can internally generate XQuery expressions from OCL constraints, we only
need to adjust it for our needs.

Therefore, our goal is to have a XQuery code that corresponds to rules con-
ditions, actions and evaluation. This code traverses PAC rules in topological
order that must satisfy order described in chapter 2, evaluates their conditions
and once it finds an applicable rule, it immediately fires it. Firing a rule means
updating information model, concretely changing values of corresponding status
attributes. Note that firing rule really changes only status attributes, while data
attributes are consistent during entire rules evaluation. Which status attributes
are changed depends on rule category (guard, milestone achieving sentry, mile-
stone invalidating sentry). Firing rule can also generate a request to start a task,
if firing rule opens an atomic stage. So, our rules evaluation will evaluate indi-
vidual rules and fire applicable ones until no rule is applicable, and then return
set of generated requests to start a task.

Consider we have a following sentry, related to the customerOrder artifact.

guard(customerOrder.sendToManufacturer):
on self.productCodeSet.achieved() if manufacturerID = 5

We can see that it has only the condition part specified, there is no precon-
dition and action part. This is because these parts are automatically derived,
since they are based only on rule category and target status attribute (stage or
milestone). This rule defines under which condition stage sendToManufacturer
of artifact customerOrder opens. The rule is relevant to every artifact instance
of customerOrder type. So, how to translate the rule into XQuery evaluation?
To see this, we must first shortly discuss information model XML representation.

5.1.2 XML representation

We said that we want to represent business artifacts with XML. Because we use
Active XML and Active XML uses native XML database, our business artifacts
will be eventually stored in this database. We only need to think about concrete
representation. Representation for data attributes will highly depend on model
definition created by the designer. But information model must also contain sta-
tus attributes to record artifact progress through its lifecycle. Status attributes,
unlike data attributes, should not be explicitly defined in the information mod-
el by the designer, because they can be derived from the lifecycle model. This
means that we have to find a way how to represent status attributes in target
XML realization. As we will see later, this issue is closely connected with PAC

44

rules evaluation and for this reason, we will discuss this issue together with PAC
rules.

We can now discuss how to realize status attributes effectively with respect
to rules evaluation. Using XQuery to evaluate rule conditions means that we
should take care when defining artifacts XML representation with respect to
performance. Rules evaluation happens quite often, almost every time when
external event is incorporated and it can process large amount of data, so it is
suitable to use such XML representation of the information model that supports
higher performance when testing rules condition. Of course, a great part of
information model representation is in designers hands, because it is only up
to him to specify this realization and associations between artifacts in eXolutio.
This however applies only for data attributes, which designer explicitly defines on
business artifacts. On the other way, status attributes are derived from lifecycle
model, so it depends on concrete executable model implementation how to realize
them in XML representation, meaning how will they look like and where to put
them in artifact XML realization.

<customerOrder>
<customerOrderID>1</customerOrderID>
<productCode>2</productCode>
<customer>

...
</customer>
<manufacturerID>3</manufacturerID>

<milestone name="ProductCodeSet"
status="true" time="1" />

<stage name="SendToManufacturer"
active="true" time="2" />

</customerOrder>

(a) Stage and milestone names are specified
using attribute value

<customerOrder>
<customerOrderID>1</customerOrderID>
<productCode>2</productCode>
<customer>

...
</customer>
<manufacturerID>3</manufacturerID>

<ProductCodeSet
status="true" time="1" />

<SendToManufacturer
active="true" time="2" />

</customerOrder>

(b) Stage and milestone names are
specified using element names

Figure 5.2: Two among many possibilites of status attributes realization

We illustrate this in figure 5.2, which shows only two of many possibilities.
First approach uses attributes to distinguish individual status attributes, while
second uses element names for the same thing. This distinction is very important,
because rules evaluation will very often search status attributes by name and
inspect their values. So, we have to find out which alternative is more friendly
for this. Because we use eXist native XML database, we can follow optimization
guidelines in [31] and see that eXist indexes elements by default, so searching by
element name will be potentially much faster then searching by attribute value.

5.1.3 Rule representation

Now, when we know how the information model XML realization will roughly
look like, we can discuss rule realization. So, if we suppose that we have all cus-
tomerOrder artifact instances in file artifacts.xml, the XQuery realization could
be like this:

45

for $artifact in doc(’artifacts.xml’)/artifacts/customerOrder
where
$artifact/productCode/@status eq ’true’
and $artifact/productCode/@time eq $now
and $artifact/manufacturerID eq ’5’

return (
update value $artifact/sendToManufacturer/@status with ’true’,
update value $artifact/sendToManufacturer/@update with $now,
generate-task-request(’sendToManufacturer’, $now)

)

Figure 5.3: Rule realization

This XQuery representation corresponds to the behavior of evaluating and
applying one concrete rule. It iterates over customerOrder artifacts, evaluates
conditions and if some artifact satisfies the conditions, the update part of the code
changes status attributes of the artifact and generates request to start associated
task. We can also see how condition part tests status attributes and finds them by
name, which will be very frequent scenario. This realization is rather simplified
and in later implementation, much more code will be necessary, but this should
give a good initial overview of the realization look. Also, concrete realization will
highly depend on the XML representation of artifacts.

Each such rule realization could be encapsulated within unique XQuery func-
tion with name that is derived from rule essence and that clearly associates the
function and the rule, in this case for example CustomerOrder-SendToManufacturer-
Guard. Having functions for each rule, we could then evaluate rules in correct
order from some function.

declare function local:evaluate-rules($now as xs:integer) as empty() {
evaluate-CustomerOrder-SetProductCode-Guard($now),
evaluate-CustomerOrder-ProductCodeSet-Achiever($now),
evaluate-CustomerOrder-SendToManufacturer-Guard($now),
(: here follow functions for remaining rules :)

}

Figure 5.4: Rules evaluation realization

Again, the realization is simplified. We will later analyze rules evaluation in
more detail.

5.1.4 Rules precondition

We know from section 2.3 that every rules has a precondition which must be eval-
uated with respect to initial snapshot of B-step processing. However as individual
rules are fired, information model is changed and initial snapshot is transformed
into different pre-snapshot. This means that preconditions of the rules cannot
be evaluated during rules evaluation, but they must all be evaluated before we
change the model by applicable firing rules. On the other hand, preconditions are
dependent only on one status attribute, depending on rule category. Therefore to
achieve the same result without iterating over artifacts twice, we will add new at-
tribute to milestones and stages, called stableStatus. This stableStatus attribute
will have the same value during entire B-step processing and only at the end of
B-step processing its value will be updated to match actual status value. Now,
rules preconditions will not evaluate against real status attributes, but against
these stableStatus attributes in order to evaluate against the initial snapshot.

46

5.1.5 Immediate effect

Rules evaluation is only one step of external event processing. Another important
step is an application of immediate effect. Immediate effect makes changes to the
information model, so it will be implemented using XQuery as well. As we know
from chapter 2, immediate effect must incorporate event payload into information
model and set mostRecentEventType and mostRecentEventType to all affected
artifact instances. Setting mostRecentEventType and mostRecentEventType is
rather straightforward, but incorporating event payload is more intricate. We
will analyze it in following section.

5.1.6 Tasks

We will now discuss how to realize task processing in our executable model.
Because tasks usually correspond to external web service invocations, we will use
web services to implement task processing. Some tasks however do not correspond
to web services, for example an assignment task. Nevertheless, such tasks can be
also implemented as web services, only with difference that such web service calls
will be always call to a local web service. This will simplify our analysis and as we
will see, it is also suitable, because Active XML provides web services to execute
generic query over our documents. Such generic queries can easily implement any
custom assignment task.

We have chosen Active XML for artifacts implementation, so we must find a
proper representation in this framework. Active XML is centered around XML
documents. These documents can contain embedded service calls. Activation of
embedded service calls can enrich the document with the service call result. We
can see that this is analogous to artifact tasks, which also perform some actual
business relevant work and enrich artifact information model. Hence an intuitive
approach is to put tasks directly into XML documents in a form of embedded
service calls.

Let A be an artifact type, TasksA be a set of all tasks owned by artifact A.
Let ArtInstancesA be a set of all artifact instances of type A. Then, create an
embedded service call for each item in ArtInstancesA × TasksA and place it in
the XML document.

<customerOrder>
<customerOrderID>1</customerOrderID>
<productCode>2</productCode>
<customer>

<firstname>Alice</firstname>
<lastname>Carter</lastname>

<address />
</customer>
<manufacturerID>3</manufacturerID>

<!-- status attributes ommited here -->

<sc method="customerOrderSetProductCode@workflowService" />
<sc method="customerOrderSendToManufacturer@workflowService" />

</customerOrder>

Figure 5.5: Embedded service calls for artifact tasks

An immediate problem is where to put these embedded calls and when to
activate them?

47

5.1.7 Service calls location

We know that when embedded call returns, its result is inserted into the document
either as a sibling of the sc node or somewhere else in the document if more
complex merging strategy is specified. So in case of sibling insertion, we should
place sc nodes into the location where the call result should be inserted. This is
straightforward if result contains for example only the product code, where we
just place sc node as a sibling of the productCode node. When the service call
terminates, its result updates or replaces current productCode. Unfortunately,
task can generally provide a result that breaks this simple merging strategy.
There are at least following problematic scenarios:

• Result is composed from nodes that are not located together in one place
in the document, but are spread across the document. This means that sc
node cannot be a sibling of all these nodes together.

• Result contain nodes that have no representation in the document. This
means that inserting it into the document would make the document invalid
against the schema.

• Result contain nodes that have similar representation in the document, but
contain only restricted set of child nodes. This means that inserting it into
the document could make the document invalid against the schema, or at
least unintentionally delete some child elements.

<customerOrder>
<productCode>5</productCode>
<manufacturerID>6</manufacturerID>

</customerOrder>

Figure 5.6: Nodes productCode and manufacturerID are not siblings in artifact
XML document, so it is not possible to put sc node for this task as a sibling
of both nodes. Moreover, node customerOrder has no representation in artifact
XML document, so inserting it into the document would make the document
invalid against the schema.

<customer>
<address>

<city>Prague</city>
<postcode>11000</postcode>
<street>Malostranske namesti 25</street>

</address>
</customer>

Figure 5.7: Node customer has similar representation in artifact XML document,
but both representation have different set of child nodes. Result contains node
customer that has only address child, so directly inserting it into the document
could replace customer firstname and lastname.

We could potentially solve these problems by designing artifact XML schema
in order to fit all task results or design task results to fit artifact XML schema, but

48

generally, it would not be possible. Also, it would be very hard to incorporate any
changes, because artifact representation and task result representation would be
very tightly coupled. Finally, many tasks can be implemented as external services
and we might have no control of their interface.

For this reason, we must use more complex merging strategy. Active XML
theoretically provides also merging strategy based on ID-fusion, but this is not
applicable as well, because we probably do not want each element to have its ID
and even if it had, it would still not solve the problem that individual parts of
the call result can be spread across the document. Therefore, we must have an
individual merging strategy for each task result. This strategy would be some
predefined procedure that would take the task result and merge it with the doc-
ument. Naturally, this merging strategy will be implemented using XQuery. We
will further call this an event binding, because it binds task output parameters
to information model representation.

We will enable the designer to define task output binding for each artifact
task. This binding will be realized in the form of XQuery function, that will
accept task result and artifact data and it will update this artifact data with
data from the task result. Figure 5.8 illustrates this.

declare function binding:CustomerOrder_SetProductCode(
$artifact as node(), $message as node()) as empty() {
update value $artifact/produtCode with $message/customerOrder/productCode/text()

};

Figure 5.8: Example of event binding

However, Active XML does not directly provide such merging strategy for
service call returns. On the other way, Active XML provides two mechanisms
that could help us - declarative service composition and generic query service.
Combining these two concepts, we can have one sc node for real service call and
parent sc node calling generic query service for merging process. Figure 5.9
illustrates this.

<sc method="executeGenericQuery">
<query>

let $result := <sc method="customerOrderSetProductCode" />
let $artifact := doc("artifacts.xml")//customerOrder[id=1]
return binding:customerOrderSetProductCode($result)

</query>
</sc>

Figure 5.9: AXML Query handler node

It works as follows. Framework requests evaluation of sc node for execute-
GenericQuery. Because this sc node depends on sc node for customerOrderSet-
ProductCode, first sc node for customerOrderSetProductCode is evaluated. Its
result is then used for sc node for executeGenericQuery, which does the merging.
We will call this parent node a handler node, because it handles the processing
of child task termination.

Input parameters We described how service result must be merged into the
document. Similarly, when task starts and corresponding embedded service call

49

is activated, we must provide input parameters for the call, if it requires any.
These input parameters bring along the same issues that we described in result
merging, because input parameters can contain data that need to be obtained
from different parts of the document. This can be again achieved using service
composition, where child sc node is a call to generic query service that obtains
input data from the document and parent sc node is a call to requested service.

We were now talking about call activation and termination, but when does
this happens and how?

5.1.8 Service calls activation and termination

We will now analyze when to activate embedded service calls and how to control
their termination. A direct approach would be to activate service call when
corresponding task should be started as a result of opening an atomic stage
during b-step. However, we said that tasks are started after the b-step finally
terminates, so we cannot activate these calls immediately, we have to wait for b-
step termination. When b-step terminates, we can activate at once all embedded
calls that correspond to tasks that should be started. We must activate these calls
at once, because we know that GSM stages and their tasks can run in parallel.
But this brings a problem, because Active XML framework does not provide
an option to activate set of embedded calls - it can either activate all calls in
the document or only a single call in the document. We can solve this by first
disabling calls that should not be activated (mark them as disabled) and then
activating entire document. This solves the activation problem, but what about
termination?

Embedded service call terminates when the service call returns a response,
but this can happen virtually anytime. But we know that every task termination
is considered by the system as an external event that must be incorporated in
concrete B-step. So it should not happen, that one task terminates, corresponding
b-step starts and another task terminates during the B-step and starts another
B-step. Only one B-step can be processed at time. Similarly, some request event
could arrive into the system during the B-step. Therefore, we must have some
mechanism that queues external events, including task termination events and
that allows to start corresponding B-step only when no other B-step is currently
being processed.

There is also another problem with task termination. Imagine following sce-
nario:

1. External event is received and b-step processing starts

2. Processing B-step opens two atomic stages, so two tasks t1 and t2 should
be later started

3. Processing B-step ends, so system activates two embedded calls for tasks t1
and t2.

4. First task t1 terminates and B-step processing starts

5. Processing B-step opens another atomic stage, so another task t3 should be
later started

50

6. Processing B-step ends, so system should activate another embedded call
for task t3.

However, service call for task t2 is still running, so Active XML document
is still being evaluated. This is because when Active XML document evaluation
starts, the evaluation terminates after all activated calls terminate as well. Before
that we cannot activate any embedded call or evaluate the document. We must
wait for previous evaluation termination. But this very limits the parallelism that
GSM model supports, especially if we start some long running service. We can
see that we have two problems with this approach:

1. B-steps interleaving. Problem: When one task terminates during ongoing
b-step processing, it immediately starts another B-step processing. Con-
sequence: We need to guarantee that when one task terminates during
ongoing B-step processing, it does not initiate another interleaving B-step
processing.

2. Tasks synchronization. Problem: When one b-step processing starts mul-
tiple tasks, no other B-step processing can be initiated before all started
tasks terminate. Consequence: We need to enable processing of another
B-step without waiting for termination of all started tasks.

To solve the problem with B-steps interleaving, we have two options:

1. Invoke embedded service calls asynchronously

2. Use handler node that delays task termination

Invoke embedded service calls asynchronously

We could invoke embedded service calls asynchronously to solve the interleaving
problem. Unfortunately, Active XML supports only synchronous calls. However,
we can create a workaround. From embedded service call we do not invoke the
real requested service, but our custom wrapper service, which asynchronously
invokes the requested service and immediately returns, which terminates embed-
ded service call, but does not terminate the task. Task is still running within
asynchronous call. When asynchronous service call returns as well, our wrapper
service routes this information to the system as an external event. Only then
the task really terminates. This way, we can always control the termination and
external event processing. This means that we do not need the handler nodes,
because we do not require that Active XML automatically starts handler service
when child embedded call terminates. We queue external events and start event
processing ourselves. Figure 5.10 illustrates this.

51

<customerOrder>
<customerOrderID>1</customerOrderID>
<productCode>2</productCode>
<customer>

<firstname>Alice</firstname>
<lastname>Carter</lastname>

<address> ... </address>
</customer>
<manufacturerID>3</manufacturerID>

<!-- status attributes -->

<sc method="startTwoWayService@utilityService">
<request>customerOrderSetProductCode</request>
<service>workflowService</service>

</sc>

<sc method="startTwoWayService@utilityService">
<request>customerOrderSendToManufacturer</request>
<service>workflowService</service>

</sc>
</customerOrder>

Figure 5.10: Asynchronous invocation

We must note here that this asynchronous invocation of embedded service
calls is not the same as realization of synchronous and asynchronous task, so
asynchronous invocation does not mean that we support only asynchronous tasks.
When synchronous task is invoked, it is considered to be terminated when the
corresponding service call terminates. When asynchronous task is invoked, it
is considered terminated as soon as corresponding service call is invoked. We
can easily simulate this asynchronous embedded calls, because all that matters is
when we return external event to the system. The fact that embedded service call
has already terminated does not mean anything, what is important is external
return event.

Use handler node to signal task termination

We can use handler node that is very similar to query handler node. But in
this case, handler node does not immediately incorporate task termination event
into information model, but it only signals task termination to the system using
determined web service. System then creates external event corresponding to task
termination event, queues this event for later processing and starts corresponding
b-step processing when it is appropriate.

52

<customerOrder>
<customerOrderID>1</customerOrderID>
<productCode>2</productCode>
<customer>

<firstname>Alice</firstname>
<lastname>Carter</lastname>

<address />
</customer>
<manufacturerID>3</manufacturerID>

<!-- status attributes -->

<sc method="signalTwoWayServiceTermination@utilityService">
<sc method="customerOrderSetProductCode@workflowService" />

</sc>

<sc method="signalTwoWayServiceTermination@utilityService">
<sc method="customerOrderSendToManufacturer@workflowService" />

</sc>
</customerOrder>

Figure 5.11: Using handler nodes to signal task termination

We can see that these two approaches are somewhat opposite. The handler
approach is more consistent with Active XML, because it calls real web services
and solves the problem using service composition, but it requires lot of additional
XML code in the document, which makes it less understandable. Unfortunately,
it does not solve the synchronization problem, because activated embedded calls
are active until web service call really terminates. On the other hand, with asyn-
chronous invocation approach, the embedded service call immediately terminates
and so it does not block any subsequent b-step processing. Therefore, it seems
to be more suitable.

Another problem with this approach is that because service calls are part of
the document, they must be defined in document XML Schema. This needs to
be taken into account when generating XML Schema from eXolutio. However,
since service results are merged using binding query anyway, it is not necessary
to put these calls into the same document with business artifacts. We could put
them in different document so that we do not violate the document schema.

We have seen that using embedded service calls directly in the same document
with artifacts may pose a problem. We could put calls into another file, but the
problem would not come away, because the another file would have the same
problem with parallelism and document evaluation. Strictly speaking, to avoid
this, we would have to put each task call into its own XML file, but managing
task calls spread across many documents would be harder and impractical and it
would also lack the meaning of embedded service calls.

5.1.9 Comparison with AXML Artifact model

We will now look at AXML Artifact model that we described in section 3.4.
This model represents artifacts in XML documents and uses embedded service
calls to implement evolution of business artifacts. Embedded calls are guarded
using queries that control under which conditions can be the guarded service
call invoked. If we imagine an embedded service call as a task, we can say that
these call guards are similar to our GSM stage guards, because similarly like our
GSM stage guards they control task, respectively service call activation. However,

53

semantics of these guards is different then ours and it may bring problems that
we have described earlier.

Suppose we have a document with more embedded calls, implementing AXML
Artifact model. Suppose we consider call guards to be an implementation of GSM
stage guards. Call guards are evaluated when corresponding continuousCall is ac-
tivated, which can be done explicitly (activate this call) or implicitly when evalu-
ating entire document or when evaluating parent call. So, in our case, to perform
complete rules evaluation, we would have to evaluate entire document, which
would evaluate individual embedded calls and therefore evaluate call guards.

1. When call guard is satisfied, then corresponding service call is immediately
invoked. But we can never start some task as soon as associated stage guard
is satisfied, we must always wait until current b-step terminates and only
then start generated tasks. This could be solved by not calling real service,
but calling wrapper service instead and this wrapper service would call the
real service when appropriate.

2. When embedded service call returns, its result is immediately incorporated
into the document. But we need to handle task termination as an external
event that must be eventually sent to the system and processed when appro-
priate, because it must not interleave with current b-step processing. This
could be solved by termination handler, that we have previously described.

3. When we evaluate an entire document, the order of embedded call acti-
vations is not determined, so evaluation of individual call guards is not
determined as well. But we need to strictly follow topological order of
guards evaluation. This could be solved by using ordering constraints on
individual calls, which is a feature that AXML supports.

4. When some call guard is satisfied, it only invokes corresponding service
call. But we need to also update an information model, concretely record
change of stage activity into corresponding status attributes. This could be
solved by calling wrapper service that would first call generic query service
to update an information model and then invoke real service. This generic
query service would not interleave with another one, because in paragraph 3
we have described that individual embedded calls are ordered and processed
one by one.

5. Call guards actually correspond only to such GSM stage guards that protect
atomic stages with task inside, because call guards watch only embedded
service calls. But we need also guards for composite stages. This can be
solved by flatting the model into atomic stages only, which might not be
a problem actually, because it is done only at an implementation level.
So, at design level, designer still thinks about composite stages, but at
implementation level, the composition is flatten into atomic stages. Of
course, it is not straightforward, for example we need to preserve invariant
rules (PAC6 for example).

Example For example, suppose that we have stage S1 with child stages S2

and S3 and milestone m1, all S1, S2 and S3 are active, and we have a rule:

54

achieve(m1) : on AbortEvent.onEvent()

This means that on event AbortEvent, m1 becomes achieved, so S1 becomes
closed, so by PAC6, S2 and S3 becomes closed as well. So, if we flatten the
model, we have to preserve such behaviour and AbortEvent must still close
both S1 and S2.

6. Call guards do not correspond to milestone achieving sentries and inval-
idating sentries. But we need to evaluate these rules as well in order to
update milestone status attributes. This could be solved by adding ad-
ditional embedded service calls, which call guards would correspond to
milestone achieving sentries and invalidating sentries. Satisfying such call
guards would invoke only generic query service to update milestone status
attributes.

We can see that we could adjust AXML Artifact model to fit our needs. Only
problem with this approach is that it could be less efficient. Topological order of
rules evaluation would be implemented using dependencies between activations
of embedded service calls, so any time the document would be evaluated, Active
XML framework would have to create entire dependency graph. In previous ap-
proach, where entire rules evaluation was expressed using XQuery, the evaluation
order was strongly determined. Also, each status attributes update would be im-
plemented as individual call to generic query service, while in previous approach
all updates were performed inside the same query.

5.2 Selected approach

We have analyzed possible representation of business artifacts. Based on this
analysis, we will implement concrete approaches. We have already described a
naive approach with embedded service calls. We will also implement following
two approaches.

5.2.1 Continuous calls approach

We can take an inspiration from AXML Artifact model and exploit its idea of the
call guard implemented as continuous call. But instead of using the call guard as
an evaluation of corresponding rule, we separate complete rules evaluation into a
standalone query, similarly as we did in the first approach. Call guards of these
continuous calls would only check if corresponding task should be started, which
would be already recorded as a result of rules evaluation.

First we introduce concept of task activation. Task activation consist of task
name, artifact name, artifact ID and filled parameters. It is created during rules
evaluation to signal task opening event. Its XML representation is shown in figure
5.12. This structure can contain additional data, for example logical timestamp
when the task was opened. There is analogous representation in the ASC system.

55

<taskActivation>
<taskName>ShipOrder</taskName>
<artifactID>1</artifactID>
<artifactClass>CustomerOrder</artifactClass>
<inputParameters>

<date>15.1.2013</date>
<customer>Alice</customer>

</input>
</inputParameters>

Figure 5.12: Task activation represented in XML

In following text, by task category we mean one of starting two-way service,
starting human service and sending one-way message. We now describe individual
concepts in the approach. This approach uses one continuous call for each task
category. Possible alternative is to have one continuous call for each possible task
from the model. The behavior will be the same.

Documents

• We have one document with business artifacts, called BA document. This
document contains information models for all existing business artifact in-
stances.

• We have one document with generated task opening events, called TASK
document. This document contains all task opening events that were gen-
erated in most recent B-step processing.

Service calls

1. We have one web service in the ASC, called DelegationService, which has
one operation for each task category. This operation gets task activation as
a parameter and it asynchronously invokes corresponding web service op-
eration with corresponding input parameters (both read from task activa-
tion parameter). These three operations are startTwoWayService, startHu-
manService and sendOneWayMessage.

2. We have one embedded call to executeGenericQuery operation of Generic-
QueryService web service in the BA document. This call invokes the query
for immediate effect and rules evaluation.

3. We have one embedded continuous call in the BA document for each task
category. All these calls depend on the embedded call from bullet 2, so they
can be activated only after that embedded call terminates. Each continuous
call has as the first parameter an endpoint of the ASC system web service
that realizes corresponding task. As the second parameter, continuous call
has a query that returns sequence of wrapped task activations for each
opened task corresponding category. Task activations are wrapped in parent
element that corresponds to one of the ASC system operations from bullet
1, as shown in figure 5.13. As a consequence, continuous call invokes the
web service at specified endpoint for each item of this sequence.

56

for $event in doc("/Peer/events.xml")/taskActivations/twoWayServiceCalls
return (
<startTwoWayService>
{$event}

</startTwoWayService>
)

Figure 5.13: Task activation from continuous call

B-step processing

1. Incoming event is received by the ASC system and eventually selected for
processing.

2. ASC system requests evaluation of business artifacts document using oper-
ation evaluate of MaterializationService provided by Active XML.

3. Active XML loads embedded calls in business artifacts document and cre-
ates activation tree based on embedded calls dependencies.

4. Because in this case all continuous calls depend on call for rules evaluation,
Active XML calls executeGenericQuery operation of GenericQueryService
query that performs immediate effect and evaluate rules.

5. Rules evaluation can open several tasks. Evaluation query records task
activations for each opened task into the TASK document.

6. When rules evaluation terminates, operation executeGenericQuery termi-
nates and Active XML invokes in parallel all three continuous calls. Every
continuous call executes described query to get sequence of task activations
and it invokes corresponding call for each task activation.

7. ASC system asynchronously invokes corresponding web service from given
task activation and immediately terminates.

8. When invoked web service terminates, ASC system creates new incoming
event corresponding to task termination adds it into the processing queue.

5.2.2 Pure query approach

We said that all opened tasks can be started only after b-step finally terminates.
Therefore, another approach can be to not use embedded service calls at all and
invoke service calls directly from the ASC system, using Java code.

Documents

• We have one document with business artifacts, called BA document. This
document contains information models for all existing business artifact in-
stances.

• We have one document with generated task opening events, called TASK
document. This document contains all task opening events that were gen-
erated in most recent B-step processing.

57

Service calls

In this approach, there are no embedded service calls and no delegation web
service for signaling from Active XML.

B-step processing

1. Incoming event is received by the ASC system and eventually selected for
processing.

2. ASC system starts a query that performs immediate effect and evaluate
rules. Started query gets incoming event as a parameter. This query is
called using executeGenericQuery operation of GenericQueryService pro-
vided by Active XML.

3. Rules evaluation can open several tasks, or in other words, generate several
task opening events. Evaluation collects these task opening events and
returns them when it terminates.

4. When rules evaluation terminates, operation executeGenericQuery termi-
nates and Active XML returns result of the query to the ASC system.

5. ASC system asynchronously invokes corresponding web service for each
task opening event and waits for service termination without blocking other
processing.

6. When invoked web service terminates, ASC system creates new incoming
event corresponding to task termination adds it into processing queue.

5.3 User interface

The main purpose of the user interface in our prototype is to demonstrate that the
implemented core system works. This means that it must show how the artifacts
progress through their lifecycle in response to new incoming events so that the
user can check that this progress correctly matches the expectations according to
the model specification.

We note here that the core system could actually exist without any user
interface, because it is able to communicate with outside world exclusively via
web services which provide operations to submit new workflow events and to query
the status of the artifacts. Knowing this we could test the system with some web
service testing tool, for example SoapUI, by first invoking the operation to submit
new workflow event and then invoking the operation to query the artifacts status
and check the result. However the user interface is easier to work with on the fly,
is more readable and provides better demonstration.

We work on the assumption that an incoming event usually updates some
artifact data, fires some rules and produces new outgoing events, like task opening
events. For these reasons the user interface is primarily designed to have three
main functionalists:

58

• Display the current artifacts status. Show the list of artifact instances
and for each show artifact name, data attributes and their values, achieved
milestones, active stages, enabled human tasks and enabled incoming one-
way messages.

• Display the history of events and fired rules in the system. Show
the list of events that occurred in the system and for event each show the
rules that were fired during the processing of this event.

• Post new incoming events to the system. Enable the user to sub-
mit new events corresponding to the human task response, create call or
incoming one-way message. For each possible event create a form that has
a structure matching the event payload.

5.3.1 How to create forms

The problem with forms for incoming events is caused by the fact that the system
is generated from the model specification so the forms depend on the model.
Suppose that we have in model one PSM schema for each possible incoming
event. This means that we can either:

1. Create all forms by hand to suit the model specification. This is very hard to
maintain, because when the model changes we must not forget to propagate
every single change from the model to the forms.

2. Generate the HTML forms directly from model specification together with
the rest of the system. This is easy to maintain, because when the model
changes, the forms will be regenerated.

3. Generate the forms on the fly by the user interface from xml schemas. This
is easy to maintain, because when the model changes, the xml schemas will
be regenerated.

We have chosen the option 2, to generate forms directly from the model,
because it is more efficient than option 3 and there is no need to generate forms
on the fly. The form generator creates only simple forms composed from inputs
with type ‘text’, because this was sufficient for the examples.

5.3.2 How to extract data from forms

The user interface communicates with the core system via web services, so when
the user submits the form for an event, then before calling the web service we must
transform the data from the submitted form to the XML data that represents
the message for the web service. This XML data must also match corresponding
XML schema.

When the user submits the form the data are stored in the request parameter
map. We can create the XML data from this map if we use a suitable naming
convention for the parameters, which allows us to determine the original hierarchy
of the nodes.

59

The convention is: The name of the input element is composed from the values
separated by dot and a number at the end. Each value from the left to the right
represents name of associations on the path from the root to the text node that
this element represents. For example:

<data>
<person>

<firstname>...</firstname>
<lastname>...</lastname>

</person>
<address>

<city>...</city>
</address>

</data>

(a) XML representation that needs to be
created from the form

data.person.firstname.1
data.person.lastname.2

data.address.city.3

(b) Input names representation to
enable later XML contruction

The order number is very important, because without it we could not re-
construct the XML to match XML schema in case where ordering is important
between siblings.

60

6. Exolutio modeling analysis
and design

We now know how to represent GSM model using XML and Active XML frame-
work. We must now analyze how to represent the GSM model in eXolutio and how
to generate it into our executable model. First we show on a concrete example
how we can define information models of business artifacts using conceptual XML
modeling, which is currently supported in eXolutio. During this example, we will
point out the GSM modeling concepts that eXolutio cannot express nowadays
and that we will need to add later. Mostly, these are concepts related to lifecycle
models of business artifacts, since eXolutio is currently merely data-oriented. So
by extending eXolutio with additional features that would support these con-
cepts, we would allow the user to model business artifacts and use XML formats
for their representation, while taking advantage of conceptual XML modeling.

6.1 GSM concrete example

We now show a concrete GSM example borrowed from [30] and slightly modified.
This example models process of purchasing a product. The process starts when
customer sends an order to the manufacturer. This order contains information
about one concrete product that the customer wants to buy. When manufactur-
er receives the order, he researches individual items that compose the product,
creates a work order artifact and assigns all researched items to the work order.
Because each item has its supplier, manufacturer creates multiple manufacturer
orders, where each one groups all items that belong to the same supplier. Then he
sends the material orders to the suppliers. Suppliers then ship the items and send
material orders back to manufacturer. When all material orders are delivered,
manufacturer can assemble the product and ship it to the customer along with
an invoice. During entire processing before delivering the product, the customer
can cancel his order. If he cancels after the delivery, the product is delivered and
customer must pay full price. Also supplier can reject a material order before de-
livering the items. Then manufacturer must process rejected items again, create
new material order for alternative supplier and send this order to him.

61

Figure 6.1: Customer order lifecycle model (source [30]

1. guard(CPOInitializing): on CreateCall.onEvent()

2. guard(CPOSettingProductCode): if not(initialized) and not(productCodeSet)

3. guard(CPOSendingToManufacturer): on productCodeSet.achieved()

4. guard(CPOCancelling): on EventCancel.onEvent() if not(shippedToCustomer)
and initialized and not(cancelled)

5. guard(CPOResearching): on initialized.achieved()

6. guard(CPOProcessing): on workOrder.assembled.achieved()

7. guard(CPOShippingToCustomer): on EventShip.onEvent()
if workOrder.assembled

8. achieve(sentToManufacturer): on SendToManufacturer.completed()

9. achieve(productCodeSet): on SetProductCode.completed()

10. achieve(initialized): on sentToManufacturer.achieved()

11. achieve(MPOsSent): on Ship.completed()

12. achieve(shippedToCustomer): on shipped.achieved()

13. achieve(cancelled): on Cancel.completed()

14. achieve(customerConfirmed): on SendConfirmation.completed()

15. achieve(initializingCancelled): on Cancel.completed()

16. achieve(researchingCancelled): on Cancel.completed()

17. achieve(shippingCancelled): on Cancel.completed()

62

customerOrderID: int
productCode: string
manufacturerID: int
customer: record(

firstname: string
lastname: string
shippingAddress: record(

city: string
postcode: string
street: string
number: string

)
)

Figure 6.2: Customer order information model (data attributes only)

Figure 6.3: Work order lifecycle model (source [30]

1. guard(WOAddingLI): on CreateCall.onEvent()

2. guard(WOCreatingLI): on EventCreateLI.onEvent() if not(WOFilled)

3. guard(WOCreatingMPOs): on EventCreateMPO.onEvent() if LICreated

4. guard(WOSendingMPOs): on MPOsCreated.achieved()

5. guard(WOAssembling): if materialOrder->forAll(m | m.shippedToManufacturer)
and materialOrder->size() > 0

6. achieve(LICreated): on CreateLI.completed()

7. achieve(WOFilled): on CreateMPO.completed()

8. achieve(MPOsCreated): on CreateMPO.completed()

9. achieve(MPOsSent): on SendMPOs.completed()

10. achieve(assembled): on Assemble.completed()

63

11. invalidate(MPOsCreated): if lineItem->exists(l : LineItem | l.MPORejected)

12. invalidate(MPOsSent): if lineItem->exists(l : LineItem | l.MPORejected)

workOrderID : int
customerOrderID : int
manufacturerID: int
lineItems: collection(int)
materialOrders: collection(int)

Figure 6.4: Work order information model (data attributes only)

Figure 6.5: Material order lifecycle model (source [30]

1. guard(MPOFilling): on CreateCall.onEvent()

2. guard(MPOAddingLI): on EventAddLI.onEvent() if not(readyToSend)

3. guard(MPOSending): on readyToSend.achieved()

4. guard(MPOShipping): on sent.achieved()

5. guard(MPORejecting): on EventRejectMPO.onEvent()
if sent and not(shippedToManufacturer)

6. achieve(LIAdded): on AddLI.completed()

7. achieve(readyToSend): on parent.SendMPOs.completed()

8. achieve(sent): if lineItem->forAll(l | l.toLineItem().sentToSupplier)

9. achieve(shippedToManufacturer):
if lineItem->forAll(l | l.shippedToManufacturer)

10. achieve(MPORejected): on RejectMPO.completed()

11. achieve(rejectedBySupplier): on MPORejected.achieved()

64

materialOrderID : int
workOrderID : int
supplierID: int
lineItems: collection(int)

Figure 6.6: Material order information model (data attributes only)

Figure 6.7: Line item lifecycle model (source [30]

1. guard(LIPurchasing): on CreateCall.onEvent()

2. guard(LISending): on materialOrder.readyToSend.achieved()
if not(purchased)

3. guard(LIShipping): if purchased and not(shippedToManufacturer)

4. achieve(sentToSupplier): on SetToSent.completed()

5. achieve(purchased): on sentToSupplier.achieved()

6. achieve(MPORejected): if materialOrder.MPORejected

7. achieve(shippedToManufacturer): on SetToShipped.completed()

lineItemID : int
workOrderID : int
materialOrderID: int
componentCode: string

Figure 6.8: Line item information model (data attributes only)

Now when we have a concrete representation in the GSM model, we can
create analogous representation in eXolutio. We start with the information model,
because eXolutio is data-oriented, which means that transforming an information
model into it will be naturally simpler than lifecycle model. The overall modeling
process that we want to achieve is depicted in figure 6.9.

6.2 Artifact information model to PIM schema

We can follow steps described in section 4.4. So, we first define a PIM schema
based on our GSM model example. It can look for example like schema in figure

65

Define PIM

schema

Define Artifacts

schema

Generate AXML

Derive GSM

schema

Define user PAC

rules

Define event

bindings

Define service

properties

Figure 6.9: Creating Guard-Stage-Milestone model process

6.10. Notice that our conceptual schema contains not only classes for artifacts,
like customer order or work order, but also classes for record attributes of these
artifacts, like customer and address. This is because we define real-world con-
cepts in the PIM schema and both customer and address are real-world concepts.
These concepts are completely independent on a target platform and actual im-
plementation.

Algorithm Artifact schema to PIM schema. Let S be an artifact schema.

• For each artifact type R in schema S, create new PIM class CpimR in PIM
schema.

• For each relation between two artifact types R1 and R2, create new associ-
ation between corresponding PIM classes CpimR1 and CpimR2.

• For every primitive data attribute in artifact type R, create new PIM
attribute ApimA in corresponding PIM class CpimR.

66

Figure 6.10: PIM schema for the example GSM information model

• For every structured data attribute type A that occurs in artifact types R1,
R2, ..., Rn, create one PIM class CpimA and associate it with corresponding
PIM classes CpimR1, CpimR2, ..., CpimRn. For every primitive type in this
structured attribute, create new PIM attribute in class CpimA. For every
structured attribute, follow the same procedure, but append new PIM class
as a child of class CpimA.

6.3 Artifact information model to PSM schema

In a next step, we have to define how our artifacts will be represented in a target
platform, which in our case is XML. Therefore we must define one or more PSM
schemas to represent concrete XML formats for our artifacts. But this is where
some questions arise.

Problem PSM schema partition Should we have a separate PSM schema for
every artifact type, so that every artifact type would have its own XML format
? Or should we have a single PSM schema for an entire artifact schema, so that
all artifacts would share only a single XML format?

An answer to this question is related to a correspondence with lifecycle mod-
eling, so we will reason about it later. For now, let us suppose that we choose
a single PSM schema for an entire artifact schema. We call this special PSM
schema an APSM schema. This schema defines how conceptual entities from
PIM schema are structured into PSM classes and what are the associations be-
tween them. In this schema we also declare which PSM classes represent artifacts
and which classes are plain PSM classes.

Figure 6.11 shows one of many alternatives how to define the PSM schema
based on the PIM schema. We say ’one of many alternatives’, because it is

67

completely up to the designer how the concrete XML format should look like,
since the derivation process is not automatic for the reasons that we have already
described in chapter 4. Designer defines the PSM schema manually and eXolutio
only assists him. We will call this PSM schema for artifacts information model
an APSM schema.

Figure 6.11: PSM schema for the example GSM information model, based on
PIM schema from figure 6.10. This schema exploits XML data hierarchy to
express parent child relationships.

PSM classes with green header represent artifacts, while other classes repre-
sent ’merely’ artifacts data. We can see that every artifact type has one concrete
PSM class that represents artifact starting boundary in the document tree. We
will call this an artifact PSM class, or APSM class for short. This APSM class
unambiguously marks where the artifact is located in the document. Secondly,
this APSM class can have many other child PSM classes that represent artifact
structured data. For example, customer order artifact has a single PSM class with
green header and one child PSM class for customer record attribute and another
grandchild PSM class for address record attribute. Along with PSM classes for
data attributes, an artifact class can have another child APSM classes for child
artifacts.

We will declare some PSM class to be an APSM class by assigning new lifecycle
model to this PSM class. From that moment this PSM class will be an APSM class
and will represent an artifact in the final system. A structure of an artifact related
to this APSM class is composed from this PSM class and all descendants of this

68

PSM class except those that are themselves APSM classes and their descendants.
If some APSM class A has another APSM class B as an descendant, then class
B is represents a child artifact of the artifact A and all its descendants are part
of child artifact B.

We can now think about another question when looking in the PSM schema
in figure 6.11. The example GSM model contains two artifacts that both have
an association with the third artifact. Speaking concretely, both the work order
and material order artifacts contain an association with the line item artifact.
This is not a problem in the GSM model, since both parent artifacts contain
only ID of child line item artifact. On the other hand, XML representation
supports artifact hierarchy, so one artifact can entirely contain another child
artifact. The difference is that in the GSM model, both work order and material
order artifacts have shared association with line item artifact (aggregation),
while in our XML representation, they have exclusive association with the line
item artifact (composition). Clearly, the line item artifact can be completely
contained in at most one parent artifact only. We have following options:

1. Duplicate child artifact data in every parent artifact. We note here that we
would have to duplicate not only artifact real business data, but also status
attributes for milestones and stages. This is very inefficient both in space
and artifact evolution, because every change would have to be done multi-
ple times. Also, it would break an attempt to efficiently maintain unique
identity for each artifact. For example, if we wanted to use xsd:id type for
an artifact identifier, we would immediately face the problem, because val-
ues of this type must be unique in an entire XML document. So, if we had
multiple representations for the same artifact instance in the document, all
with the same ID, we would have to use a different type. An advantage of
xsd:id type however, at least in eXist database, is that values of this type
are automatically indexed, which provides very fast way to look-up corre-
sponding element [31]. Since we evaluate PAC rules using XQuery over the
document, fast lockup is surely important.

2. Do not use child artifacts at all, so that every artifact would stand alone
and other artifacts would only have its ID, like in the GSM model. This
approach however omits an advantage of XML data hierarchy and tends
to be rather a XML representation of a relational model. This approach is
shown in figure 6.12.

3. Permit only one child relationship for every artifact type. So, if one ar-
tifact instance needs to be shared between multiple parent artifacts, only
one parent artifact would contain child artifact representation and another
parent artifacts would only contain the child artifact ID to reference the
child artifact. This way we keep an advantage of XML data hierarchy while
still being able to represent child artifacts. This approach is shown in figure
6.11.

We can see that there is only one APSM class for the line item artifact
that has a complete representation. This is the APSM class LineItem.
On the other hand, the APSM class MaterialOrder has only reference
representation in the child PSM class LineItemRef. This PSM class has

69

the same PIM interpretation as the PSM class LineItem and it contains an
identifier for the artifact instance that it refer to. Using this representation
means that the material order artifact has the child artifact line item that
is defined in different place in the document with the same identifier.

In OCL expressions, we can then refer from the PSM class MaterialOrder
to the PSM class LineItem using following expression:

context MaterialOrder inv:
self.lineItem.toLineItem().componentID = ’5’.

This feature is already implemented in eXolutio. It requires that both
LineItemRef and LineItem PSM classes must have the same not null PIM
interpretation, which can be easily satisfied, because there is no reason
for LineItemRef to have different PIM interpretation. Referencing is rep-
resented in generated XQuery using join on the PSM attributes that both
PSM classes have the same. Therefore there must be at least one such PSM
attribute. In our case, it is straightforward to use for this artifactID.

Figure 6.12: PSM schema for the example GSM information model, based on
PIM schema from figure 6.10. This schema does not exploit XML data hierarchy
and individual artifacts stand alone.

As we said, concrete XML representation of artifacts information model de-
pends on designer consideration. Therefore, there is no direct algorithm to derive
the PSM schema for artifact information models. We must only ensure that all
PIM classes, associations and attributes will be represented in the APSM schema

70

as well, or in other words, that we do not lose any information. We do not strict-
ly define how individual primitive attributes and structured attributes should
be represented. We only require that every APSM class has the PSM attribute
artifactID and that every artifact has only one complete representation.

We successfully represented the artifact information models in the PIM and
PSM schema and therefore also defined the XML format for the information
models. We can now use eXolutio generation feature to automatically generate
XML Schema from the PSM schema, as well as sample XML documents. But
what we need next is realization of GSM lifecycle model. Lifecycle model contains
stages, tasks, milestones, guards and sentries, but none of these concepts currently
exists in eXolutio, so we have to add new features to support them.

6.4 Stages, milestones, tasks and events

In this section we will analyze how to represent stages, tasks, guards and mile-
stones. Stages and milestones require two representations: first they must be
specified within lifecycle model that shows artifact stages, stages hierarchy, mile-
stones and association of milestones to stages. But stages and milestones must
be also represented in the information model, using status attributes that record
for each stage whether it is active and when this activity last changed and for
each milestone whether it is true and when its value last changed. In contrast,
guards do not need to be represented in information model, because there are no
status attributes that correspond to them.

For stages and milestones, there are several options how to add them in the
PSM schema.

Explicit definition We can let designer define status attributes on the PSM
classes explicitly. This means that designer itself would add the status attributes
on the PSM classes. This has a major drawback - anytime designer changes the
lifecycle model, he must manually propagate the changes into the information
model and change status attributes as well. The same applies for the opposite
direction - when designer changes stage or milestone in information model, he
must manually propagate the changes into lifecycle model. This results in needless
work and possible errors.

Design time propagation We can let designer define stages and milestones
only in the lifecycle model and propagate respective status attributes to the infor-
mation model. So anytime user changes milestone or stage in the lifecycle model,
this change will be automatically and immediately propagated to the information
model. This solves problems with explicit definition approach in one direction.
But there is still the problem with opposite direction, when designer changes sta-
tus attribute in the information model. We could prevent this by making these
status attributes to be read-only, so that designer could not change them and
therefore no changes would need to be propagated from the information model.
This approach needs to make changes and additions to current PSM modeling
implementation, to support read-only attributes and propagation between lifecy-
cle and information model. The propagation itself is partially implemented - it

71

is similar to relation between PIM and PSM concepts, where for example a PIM
class can have a PSM class interpretation in a PSM schema and changes in the
PIM class are propagated to the PSM class.

Generation time propagation Previous approach propagated changes from
the lifecycle model immediately. Similar approach is to propagate changes in
generation time. This means that change in information model is not propagated
immediately once it occurs, but it is dynamically added later during generation
process by inspecting defined lifecycle model. Therefore status attributes will be
contained in the result, but will not be visible in the information model during
design time. This might not be a problem however, since status attributes are
still contained in the lifecycle model, so it is clear what milestones and stages an
artifact has. An advantage of this approach is that there is no need to implement
immediate propagation between the lifecycle and information model and there is
no need to implement concept of read-only attributes. On the other way, designer
cannot reason about status attributes by looking only at the information model
and must inspect the lifecycle model as well.

Lifecycle model must include specification of guards, milestones, stages, tasks,
milestones and sentries. Since guards are only a sentries without name, we can
represent them only using rules. We must now think if it is possible to represent
the lifecycle model using PSM concepts. Lifecycle representation must satisfy
following requirements:

1. Specify milestones, stages, tasks and guards.

2. Specify for each stage which stage is its parent, if any.

3. Specify for each milestone which stage owns it.

4. Specify for each task which stage owns it.

5. Specify for each guard which stage owns it.

Stage hierarchy can be seen as a forest of stages. Similarly, a PSM schema is
a forest of PSM classes. This can suggest a naive approach to use a PSM schema
to represent artifact lifecycle. Stage is represented as a PSM class. All milestones
and tasks that this stage owns are represented as attributes of the class. Child
stages are represented as child PSM classes. Guards need not to be represented,
because they are represented within rules. This way we get an ability to express
all mentioned requirements, because PSM classes naturally support hierarchy and
attributes ownership. Also, we do not have to implement new visualization.

Figure 6.13: A naive approach to model GSM lifecycle

72

This naive approach has several disadvantages. Many constructs in PSM
schema have no sense in GSM schema, for example content models, generalization,
association cardinality and many others. Also, a stage although modeled as PSM
class is naturally not an interpretation of some PIM class. The same holds for
milestones and tasks. Therefore, several commands and features related to PSM
modeling are needless for GSM modeling. Moreover, this approach is not easily
extensible, because adding new features would require changing PSM schema
implementation. Therefore, it is better to provide new modeling capabilities to
model lifecycles.

6.4.1 Adding GSM schemas

We have decided to add new modeling capabilities to model GSM lifecycles.
Since reusing PSM schemas has some advantages, we could create modeling that
would reuse similar concepts - class hierarchy, associations between classes and
visualization of these concepts. This means that the visualization will not be
exactly the same as in original GSM meta-model, but it would be able to express
the same semantics.

Illustration of proposed GSM schema is shown in figure 6.14. Rectangles
with rounded corners are stage classes that represent stages and plain rectangles
are task classes that represent tasks. Associations between two stage classes and
between stage classes and task classes correspond to stage hiearchy. Stages can
be either composite and have one or more child stages, or atomic and have only
a child task. Tasks must always have exactly one parent stage. Milestones are
represented as stage class attributes. Only guards are missing, because they
will be specified using sentries. This representation along with sentries fully
implement lifecycle specification.

Figure 6.14: GSM schema for material order from the example GSM information
model

Algorithm Lifecycle model to GSM schema. Let S be an artifact schema.

73

• For each artifact type R from schema S, create new GSM schema SgsmR.

• For each artifact stage S from artifact type R in schema S, create new GSM
stage class CgsmS in the GSM schema SgsmR.

• For each child stage Schild of stage Sparent, represented by the GSM stage
classes CgsmSparrent and CgsmSchild, create new GSM association from the
GSM stage class CgsmSparrent to GSM stage class CgsmSchild in the GSM
schema SgsmR.

• For each milestone M of stage S represented by GSM stage class CgsmS,
create an GSM attribute AgsmM in the GSM class CgsmS in the GSM
schema SgsmR.

• For each artifact task T of stage S from artifact type R in schema S, create
new GSM task class CTgsmT in the GSM schema SgsmR.

• For the child task T of stage S, represented by the GSM stage classes
CTgsmT and CgsmS, create new GSM association from the GSM class
CgsmS to CTgsmT in the GSM schema SgsmR.

6.5 Sentries

We will start with sentries and associated PAC rules. When designing PAC rules
modeling, the goal is to preserve as much already implemented functionality from
eXolutio as possible while also enable designer to write sentries in the language
very close to OCL variation from original GSM materials. We must note here,
that we want to allow the designer to write only sentries, not entire PAC
rules, which means that designer would not write prerequisites and actions, but
only conditions for sentries.

We can immediately notice that sentries look very similar to sentry expres-
sions used in eXolutio to define constraints against PSM schemas. Unfortunately,
deeper look reveals that these OCL expressions could resemble only one part of
the sentry, an if-condition expression, but not an on-condition expression. The
if-condition expression is very close to eXolutio OCL expressions, but the on-
condition expression has no direct equivalent. Also, there is no on keyword and
semantics of if keyword is different - in OCL if keyword is used as if A then B
else C. Unfortunately, this means that in current implementation we are unable
to represent both on-condition and if-condition together in one OCL expression.
Therefore, we have to find a way how to extend eXolutio to support the on-
condition expressions and full sentry definition.

At first, we have to decide against which schema the sentries will be defined?
Because sentries specify constraints over an information model, it makes an intu-
itive sense to define them against the APSM schema. On the other hand, sentries
also specify constraints on status change events and external events and these
are defined in lifecycle model. Because eXolutio currently supports constraint
expressions against PSM schemas and we want to build on current implementa-
tion, we will specify sentries against the APSM schema and find a way how to
reference lifecycle constructs from sentries as well.

74

We can now finally explain our decision to use only a single APSM schema
to define information model of all related artifacts, instead of using individual
PSM schema for every single artifact. This is because we always need to specify
PAC rules, implemented using OCL constraints over single PSM schema. Since
every PAC rule is not generally restricted only to a single artifact, but it can
reference all related artifacts as well, we must define all related artifacts in one
APSM schema together. When using multiple schemas, we would need to heavily
re-implement current OCL expressions capabilities.

6.5.1 Lower abstraction approach

We said that current expressions can specify only if-condition. A direct approach
how to solve this problem is to taking advantage of on-condition semantics and
define event expressions using separated form. Remember that in section 2.3 we
described how an event is incorporated:

External event If sentry has a form on E.onEvent(), where E is an exter-
nal event type, then it is applicable in time t if mostRecentEventType = E and
mostRecentEventTime = t

Status change event If sentry has a form on S.opened(), where S is a stage
name, then it is applicable in time t if Sstatus = true and Stime = t

Therefore, we could substitute an external event expression on E.onEvent()
with mostRecentEventTime = ’E’ and mostRecentEventTime = now(). Similarly
for status change event, we could substitute an expression on S.achieved() with
Sstatus = true and Stime = now()

The problem is, however, where to get the value now(). We know that rules
are evaluated when incorporating an effect of single incoming event and it always
happens in concrete logical time. Therefore, now() is not a static value, but it
corresponds to system logical time. To solve this, we could extend modeling and
translation of eXolutio expressions to support new construct for now() expression.
This actually means only automatically adding the now() function to every APSM
class prior the OCL parsing and defining XQuery translation for this function.
This function would take no argument and return an integer. During XQuery
generation, we would need to generate $now variable instead. This variable would
correspondence to $now variable introduced in section 5.1.3.

This approach would walk around the need for on and if keyword to distin-
guish between on-condition and if-condition. However forcing designer to use this
long syntax every time he wants to express event expression is unnecessarily ver-
bose, error prone and provides lower level of abstraction than original sentries.
For example, designer would need to ensure that he always defines this walk-
around expression in one piece, which cannot be assured automatically, since it
contains two sub-expressions connected with and keyword. Also, designer would
need to ensure that he does not define more than one walk around expression,
because only one on-condition is permitted.

Therefore, it would be better to directly implement support for on-condition
expressions and allow user to define on-condition expressions with higher level

75

of abstraction. This would also clearly divide the on-condition expression and
if-condition expression of the rule, because on-condition expression starts with
on keyword and if-condition expression starts with if keyword, so unlike in pre-
vious approach, there is strict distinction. The goal is to support more abstract
on-condition expressions defined in section 2.2.9. On the other hand, lower
abstraction approach requires smaller changes in current implementation.

6.5.2 Higher abstraction approach

Current eXolutio implementation uses a parser generator ANTLR to define gram-
mar for reading and parsing OCL expressions. Exolutio specifies lexer that con-
structs an Abstract Syntax Tree (AST for short) and parser that reads it and
creates an internal eXolutio representation of OCL expressions. To support our
event expressions, we must extend lexer and parser and add new eXolutio classes
for internal representation. An advantage of using full event expression form,
instead of rewriting, is that we do not have to modify current grammar rules, but
only provide new ones, because we do not need to modify functionality of current
OCL expressions. We will now illustrate this.

6.5.3 Status change events

Suppose that we have a sentry on S.opened() if ϕ(x). We could similarly illustrate
this on any other status change event, without loss of generality. We can see that
on and if keywords unambiguously divide the on-condition expression and if-
condition expression. The if-condition expression does not need new functionality,
since it defines constraints over the information model exactly the same way as
plain OCL expression, without any additional constructs. Sure, it also needs
to define constraints for milestone and stage status attributes, but if we add
these status attributes into the information model, then this would represent
no problem. Since both expressions are strictly divided, we can extend existing
grammar with new rule that corresponds to this sentry, representing the forms on
S.opened() if ϕ(x), on S.opened() and if ϕ(x). Similarly for other status change
events.

New grammar rule will reuse existing grammar rule for general OCL expres-
sion to specify the if-condition expression. To illustrate this, let oclExpression be
this existing rule, then new grammar rule can be sentry: on eventExpression when
oclExpression. We will not use if word to specify if-condition, because if word is
already used in OCL and using it in sentry would require non trivial changes in
existing grammar rules. For this reason, it is much easier and convenient to use
when word instead. This does not create any confusion or impractical notation,
because when word is often used in this context as well, for example in JBoss
Drolls rule based engine [34].

We can now turn to on-condition expression. The on-condition expression is
composed from status attribute specification and operation call on this attribute.
Operation call represents concrete event type, so it is one of achieved, invalidated,
opened, or closed. Status attribute specification refers to a status attribute in
information model. Because status attributes are represented in APSM schema
as well, the status attribute specification in on-condition is actually a property

76

call OCL expression, which already exists in current OCL implementation, so
we can reuse it. We note here that on-condition expressions could be related
to status change events of another artifacts, for example child artifacts, so it is
not sufficient to consider only artifact within context. Fortunately, if we have a
corresponding association in APSM schema between these artifacts, then property
call expression can handle this as well.

6.5.4 External events

We have described a solution for status change event expressions. But what about
external event expressions? Unfortunately, these events are slightly different from
status change events. This is because status change events always correspond to
some status attribute and this attribute is always represented in the information
model and therefore in the APSM schema as well, so we can use property call
expressions to reference these status attributes from sentries. Existence of status
attributes in the information model is implied directly from GSM meta-model.
On the other hand, external events have no such representation in information
model, so we cannot reference them this way. We could solve this by adding these
event attributes to the APSM schema as well. Fortunately, if we look in figure
6.15 from paper [7], we can see that authors of the GSM meta-model consider
also an alternative variantions of GSM meta-model where event attributes are
represented in the information model as well, which can be useful for recording
information related to corresponding external events. So, we will include event
attributes for external events into information model, into PSM schema. Thanks
to this we will be able to reference them from sentries the same way as we reference
status change events.

Figure 6.15: Another example of GSM information model (source [7])

Another option how to represent on-conditions for external events is to use
an alternative sentries notation instead, used in materials from authors in [13].
There, for an event called Event1, instead of writing Event1.onEvent(), the on-
condition is writen as Event1(). Fortunately, this is just a plain operation call
OCL expression. With this approach, we would not need to represent event
attributes in APSM schema, but similarly as with now() function, only automat-
ically add function for every required event into appropriate APSM class prior to
OCL parsing. We have chosen first approach, because it is used in more materials

77

and we do not mind with having event attributes in target XML representation, it
is even useful for simpler insight into the artifact evolution, which is an advantage
in a prototypical implementation.

6.5.5 Mapping sentries to lifecycle

Described solution allows designer to define conditions for sentries, but we must
also associate sentries to individual stages and milestones, or in other words,
specifying whether sentry is a guard sentry, milestone achieving sentry or mile-
stone invalidating sentry. We will use a term gsm rule to denote triple (sentry,
sentry mapping, sentry type). Note that this gsm rule is still not actual PAC
rule, because it has neither prerequisite nor consequent part.

We could write sentries directly into the lifecycle model visualization, as com-
ments associated to milestones and guards, as shown in figure 2.2 and 2.3. We
call this a visualized form of a sentry. Alternatively, we could define them sepa-
rately and text only, similarly like current OCL constraints are defined. We call
this a stand-alone form of a sentry.

From our experience, visualized form is better with smaller models, because
sentries are visually closer to the associated constructs, so it is easy to see concrete
conditions for guards and milestones. This approach is however inconvenient for
larger models, because greater amount of visualized sentries makes the model less
clear. Stand-alone form is in contrast better for larger models, because all related
sentries are in one place and in a well arranged way. We conclude that it would
be best if a modeling tool supported both approaches and user would decide
himself which one to use for each individual guard and milestone. For example,
the stand-alone sentries would be used for most of the guards and milestones
and user could use the visualized sentries to point out the important ones, or the
high-level ones. Therefore, we see this stand-alone sentries as a standard way and
visualized sentries as rather a modeling facilitation. For this reason, since we are
implementing only a prototype, we will use only stand-alone form for gsm rules.

To associate sentries with guards and milestones, we will use status attributes
and we will introduce new special keywords to specify concrete sentry type. We
will use keyword guard for guard sentries, achieve for milestone achieving sentries
and invalidate for milestone invalidating sentries. This keyword will be followed
by the status attribute name to specify concrete guard or milestone. We use stage
name for guards here instead of guard name, because as we have said earlier,
guards do not have names and since every guard is associated with exactly one
stage, it is safe to use the name of the stage instead. This is true even in case when
there are multiple guards for one stage, because we do not need to distinguish
between individual guards in modeling phase (we will however need to distinguish
between them during generation phase when sorting gsm rules).

• Guard sentry for stage S of artifact A:
context A guard(S): on E(x) when ϕ(x)

• Achieving sentry for milestone m of artifact A:
context A achieve(m): on E(x) when ϕ(x)

• Invalidating sentry for milestone m of artifact A:
context A invalidate(m): on E(x) when ϕ(x)

78

We use a keyword context to specify concrete artifact under which the sentry
is defined. The context keyword defines the base for references within the OCL
constraints, which in our case is concrete APSM class that corresponds to some
artifact. Context can be relevant for multiple OCL constraints, in our case sen-
tries, so using this we provide very similar notation to the notation from original
papers, where sentries are also specified within concrete context artifact.

It is important to remind here the difference between an APSM class and plain
PSM class. An artifact can be composed from many PSM classes, but there is
always one APSM class for each artifact, which is the predecessor to descendant
classes that only represent artifact data. This distinction is important, because
only APSM class can be used as the context PSM class for sentries related to
this artifact, that means that associated sentries have initial constraint context
in this class. For sentries, the context class must always be the APSM class.

We will need a new grammar rule to represent gsm rules. This grammar
rule will exploit new keywords guard, achieve and invalidate. To specify con-
crete milestone or stage for which the sentry is defined, we will again reuse an
existing property call OCL expression. This expression will reference associat-
ed status attribute in the APSM class for context artifact from the information
model. Finally, we will need a new grammar rule to represent a constraint con-
text block, which is a single context with multiple associated sentries. Thanks
to this, existing OCL grammar rules will not be in a conflict with new grammar
rules, since new grammar rules will only reuse existing OCL grammar rules and
simultaneously introducing new necessary constructs.

Exolutio sentries example

We can now show an example how to model sentries in eXolutio. Figure 6.16
shows fragment of sentries for customer order artifact.

context CustomerOrder

guard(CPOInitializing): on CreateCall.onEvent()
guard(CPOSettingProductCode): when initialized = false and product-
CodeSet = false
guard(CPOSendingToManufacturer): on productCodeSet.achieved()
guard(CPOCancelling): on EventCancel.onEvent() when shippedToCus-
tomer = false and initialized = true and cancelled = false
guard(CPOResearching): on initialized.achieved()
guard(CPOProcessing): on workOrder.assembled.achieved()
guard(CPOShippingToCustomer): on EventShip.onEvent() when workO-
rder.assembled = true

Figure 6.16: Sentry definitions in eXolutio for customer order from the example

6.5.6 Event parameters

At this moment we are able to define sentries against an artifact schema, including
on-conditions that can refer to status change and incoming event occurrence.

79

However, an incoming event occurrence can also have associated parameters and
what we need is a possibility to refer to these parameters as well. These event
parameters constitute an event message and format of this message should be
defined in a PSM schema, designed for this purpose. This is exactly in agreement
with conceptual modeling, where we have one PIM schema and multiple PSM
schemas for associated messages. So, together with one APSM schema for artifact
information models, we will define for each incoming event its own PSM schema
describing the event message format.

For example, suppose we have an event type ApproveOrder with parameters
vote of type Boolean and person of type string. We can imagine format of corre-
sponding input message as a PSM class ApproveOrder with two attributes vote
and person. Now, we would like to have a sentry where we would refer to vote
and person parameters as in figure 6.17.

context CustomerOrder guard(ApprovalStage):
on ApproveOrder.onEvent() when ApproveOrderMessage.vote = true and
ApproveOrderMessage.person = ’Manager’

Figure 6.17: Example sentry for event parameters

As we know from our previous analysis, this sentry is an extended OCL ex-
pression attached to the APSM schema. The problem is, that this APSM schema
knows nothing about the type ApproveOrderMessage, because this type is de-
fined in different PSM schema for event message. Strictly speaking, because
constraint context starts in a class CustomerOrder, the ApproveOrderMessage

class should have been attached as a child of the CustomerOrder class by an
association ApproveOrderMessage. We can think of two possible ways.

6.5.7 Definition in the APSM schema

We can define the PSM class for ApproveOrderMessage directly in the APSM
schema, under the PSM class for CustomerOrder. Actually, the PSM class would
not have to be directly under the PSM class for CustomerOrder, since we can
adjust the path during parsing, but the idea is the same, having the message
format in the APSM schema. We can think of two possible ways how to achieve
this:

1. Designer creates an appropriate PSM schema for ApproveOrderMessage and
then manually adds exactly the same ApproveOrderMessage class under
CustomerOrder class in the APSM schema. In this case however, it makes
no sense to have a separate PSM schema for ApproveOrderMessage, because
designer would have to maintain the message event format in two places.
So, designer creates PSM class for ApproveOrderMessage only in APSM
schema. The problem is, that this approach significantly increases the size
of APSM schema, since every possible event type would have to be defined
in APSM schema, so it would be harder to focus on the primary thing that
APSM schema should represent, the artifacts information model. Also, this
approach slightly breaks the idea of conceptual modeling, where we have

80

multiple PSM schemas associated to the same PIM schema, since in this
case there would be only one PSM schema, our APSM schema.

2. Designer creates an appropriate PSM schema for ApproveOrderMessage,
but does not add corresponding PSM class to the APSM schema. This
class will be added automatically during generation process, prior parsing
sentries and will be automatically derived from corresponding PSM schema
for event message. Unfortunately, such process is far from being trivial. In
case of single PSM class this is easy, it would mean to only clone the PSM
class from message PSM schema and add it to APSM schema, but message
PSM schema can be generally much more complex. It can contain multiple
classes, associations, generalizations, structural representatives and all these
together makes the cloning process significantly more difficult. Moreover,
some PSM classes from message PSM schema can be already defined in the
APSM schema, but have different structure, or in other words, there can be
a name collision. We could solve this by cloning the message PSM schema
with different namespace. Another option how to automatically add the
ApproveOrderMessage class to the APSM schema would be to implement
new feature that would allow to import one PSM schema into another PSM
schema.

We must note here, that this approach also implicates that generated XML doc-
ument for business artifacts would contain XML data for these event messages
as well and similarly generated XML schema would contain definition for these
event messages as well. This is inappropriate for two reasons. First, it makes the
generated XML Schema more complex and therefore harder to understand and
secondly and most importantly, we would not have individual XML Schemas for
individual event messages.

6.5.8 Context switch extension

We can define the PSM class for ApproveOrder only in the message PSM schema
and extend sentry parsing to support references to different PSM schemas. This
means switching constraint context inside the expression. This way, we could let
the APSM schema to focus only on artifact information models and specify event
messages separately, clearly divided from the APSM schema. This would also be
more consistent with the idea of conceptual modeling.

For presented reasons, we choose an alternative with parsing extension. Again,
our goal is to extend parsing in a way that does minimal changes to current
implementation. We would like to have a mechanism to switch current constraint
context inside one sentry expression to different PSM class in different PSM
schema. We have three important requests for this context switch:

1. The context switch must have clear start and end boundaries. We must
unambiguously specify where the context switch starts and where it termi-
nates, so that we know to what constraint context we map the expressions
in any given time.

2. We want to support not only simple equality expressions, like in figure 6.17,
but generally all OCL expressions that are otherwise available and make it

81

possible to use them in the switched constraint context as well. These are
for example expressions like forAll, exists and many others.

3. We want to support comparison between properties from the switched PSM
schema and properties from the APSM schema, which means in other words,
to support comparison between event parameters and data from schema in-
formation model. This is very useful, because we will often need to compare
event parameters to current status of schema information model, not only
to literal values or other message parameters.

We start with request 1. We can add new keywords to declare switch bound-
aries, for example switchStart and switchEnd, but the problem is that this context
switch can generally appear anywhere in the OCL expression, so it would require
to add this keywords to existing grammar rule for general OCL expression, which
is a kind of change that we want to avoid.

Alternatively, we can solve this by using operation call OCL expression.
Operation call OCL expression accepts list of general OCL expressions as param-
eters, so we can use these expressions in parameters to define constraints with
respect to switched schema and use operation call parentheses as a signal to start
and terminate context change. To distinguish whether an operation call repre-
sents context change or is an ordinary operation call, we use operation call name.
If it corresponds to event name, we switch the context to the PSM schema with
the same name and set constraint context to the first child of PSM schema class,
which corresponds to event message root class.

Figure 6.18 illustrates this. An entire expression inside the operation call is
evaluated with respect to switched context. This operation call returns Boolean
type, so it is possible to use it anywhere in the if-condition where ordinary oper-
ation call with this return type is permitted. Figure 6.18 illustrates this, where
we first define constraints in switched context and the result of this constraint is
used as a left operand of an equality expression.

context CustomerOrder guard(ApprovalStage):
when ApproveOrderMessage(vote = true and person = ’Manager’)
and filled = true

Figure 6.18: Example sentry for event parameters with context switch

This alternative does not require a change in existing grammar rules, but only
adding extensions to parsing. Unlike changing grammar rules, such change can be
easily incorporated and clearly separated, since it can be implemented in different
method and called only when explicitly requested (for example, by setting the
flag for mode to the parser). It also immediately satisfies request 2 as well.

Request 3 is more intricate. We want to compare properties from the message
PSM schema against the APSM schema, so operation call must return concrete
type of referenced property from switched context. For example, suppose that
we have a data attribute requiredPerson in the CustomerOrder artifact and we
want to specify that value of the person parameter is equal to this requiredPerson
attribute from information model. Figure 6.19 illustrates this.

82

context CustomerOrder guard(ApprovalStage):
when ApproveOrderMessage(person) = requiredPerson

Figure 6.19: Example sentry for event parameters with context switch returning
property from switched context

However, returning an arbitrary type from this operation call is not possible,
because if returned type was unknown for the APSM schema, then returned
property could not be compared with data attribute from the APSM schema.
To solve this, we must map returned property type to corresponding type from
the APSM schema only if we know for sure that this type exists in the APSM
schema. This can be guaranteed only for standard XSD primitive types, because
these types will be always the same in both PSM schemas. Moreover, it can
be guaranteed for collections of these types. For any other type, we must map
returned property type to xsd:any.

6.5.9 Invariant preserving rules

Designer defines sentries for stages and milestones and these are used to generate
corresponding rules from categories PAC1, PAC2 and PAC3. However, as we
know from section 2.3.4, to ensure correct rules evaluation, we must also generate
invariant preserving rules from categories PAC4, PAC5 and PAC6. Fortunately,
invariant preserving rules can be derived and generated automatically from GSM
schemas, because all the necessary information to derive these rules is already
contained in associations between stages and milestones. So, designer does not
have to write these rules by hand.

We will create OCL representation of these rules directly, because it would be
inefficient to parse them from text representation without bringing any advantage.
During generation process, we will merge these invariant preserving rules with
user defined rules and use this merged set as an input for further processing.

Apart from generating invariant rules, we must also generate preconditions
for each rule. These preconditions are necessary as well to ensure correct rules
evaluation. Similarly as with invariant preserving rules, these preconditions can
be automatically derived and generated from GSM schemas.

6.5.10 PAC rules ordering

We now have the specification for sentries, but these represent only the partial
fragment of an artifact evolution. Complete evolution semantics is specified using
PAC rules, which can be automatically derived from the sentries in the lifecycle
model. Sentries already specify the condition part and the mapping to concrete
milestones and stages. When we have this information, we can unambiguously
assign the sentry to corresponding PAC rule, this is defined in the rules table in
section 2.3.4. So, we can use sentry condition as the condition part of the rule
and derive the precondition and action parts of the rule from the lifecycle model
and sentry mapping.

These rules must be sorted in the topological order to ensure correct semantics
as described in section 2.3.4. As we have described in the executable model

83

analysis, we will later translate these rules into XQuery and also generate the
XQuery code that will evaluate these rules, so we must ensure that this code
will evaluate individual rules in the correct topological order. We could first
translate the rules into XQuery and sort these translated rules later, but it would
be unnecessarily harder. Sorting of the rules depends on the properties used in
the rules and associations between them, so it is best to do it when we have the
rules parsed in OCL representation, so that we can easily traverse through the
rules and inspect them. If topological sort of the rules does not exist, then the
generation process cannot continue because this means that designer must first
correct the rules.

6.6 Incoming event binding

As we said in formal analysis for the GSM meta-model, when an incoming event
is incorporated into the artifact schema, the first step is to process an immedi-
ate effect. This process changes mostReventEventType and mostRecentEvent-
Time attributes and changes the values of data attributes of directly affected
artifact instances. Changing mostRecentEventType and mostRecentEventTime is
straightforward and it always depends only on the event type and current log-
ical time. On the other hand, changing data attributes can require individual
strategy for every event type, because event parameters do not generally have
to correspond directly to some attributes from the information model. In other
words, an event message can have absolutely different structure than any data
attribute in the information model.

We described this problem in section 5.1.7 in the context of an executable
model. From a modeling point of view, this also corresponds to division between
definition of event messages and schema information model, where the schema
information model is specified with the APSM schema, while individual event
messages are specified with their own PSM schemas. All these PSM schemas and
APSM schema are based on the same PIM schema, but they can specify different
realization of PIM concepts. Naturally, if we want to generate an executable mod-
el from eXolutio, we need to explicitly specify mapping between event parameters
and artifact information model, because it must be clear how an incoming event
changes artifact data attributes.

In section 5.1.7 we said that in an executable model this binding will be
XQuery function, like in figure 5.8. It is only the question how to define this
function in the modeling process. We could let the designer to write explicitly
this function explicitly for every event type, but it would be very error prone
to write binding function for every event by hand. It would be easier to use if
designer would merely specify the merging strategy, assign it to the event and
eXolutio would then generate appropriate function. Figure 6.20 illustrates an
example for incoming binding.

84

<binding event="{event type}" artifact="{artifact type}">
<definition>

<replaceValue node="customer/firstname"
with="CustomerInfo/firstname/text()" />

<replaceValue node="customer/lastname"
with="CustomerInfo/lastname/text()" />

</definition>
</binding>

Figure 6.20: Definition for an incoming event binding

The easiest way would be to write the definition directly in XQuery, because
eXolutio would only take this definition and use it as a function body. Unfortu-
nately, the version of eXist database used in Active XML distribution does not
support standard XQuery Update Facility and uses its own update syntax that
is different from the standard one. Although we could use this eXist syntax in
the binding definition, we want to shield the designer from actual implementa-
tion technologies. For this reason, we will enable the designer to provide update
definition in XML that will mirror syntax of standard XQuery Update Facility.
This definition will be parsed and transformed into eXist XQuery code. This is
much easier task then parsing standard XQuery code and transforming it into
eXist code.

User-friendliness We note here that this approach is only for the purpose of
our prototype, so that we are able to easily define the binding. In real application,
it would be more appropriate to assist the designer with some GUI editor that
would automatically obey the PSM schema for message event. This is however
outside the scope of this thesis.

6.7 Outgoing binding

Outgoing binding is similar to incoming binding, except that the direction is
different - from artifact data to event message. This binding is used when the
system generates some outgoing event, for example when task opens that contains
two way service call. This service call may contain parameters that need to be
set by data from the source artifact.

The situation is little different from incoming binding. In incoming binding
we have data in the event message and data in target artifact and we need to
merge data from event message into the artifact. But in case of outgoing binding,
we have only artifact data, because event message is empty. For this reason we do
not use XQuery update for outgoing binding, but rather message definition, where
we write the event message with the structure it should have. Data that needs to
be inserted into the message are written as XPath expressions that refer to the
artifact data. Naturally, defined structure for an event message must conform
to the XML Schema generated from corresponding PSM schema for this event
message. Figure 6.21 illustrates an example for outgoing binding.

85

<binding event="{event type}" artifact="{artifact type}">
<WorkOrder>

<manufacturerID>$artifact/manufacturerID/text()</manufacturerID>
<customerOrderID>$artifact/artifactID/text()</customerOrderID>

</WorkOrder>
</binding>

Figure 6.21: Definition for an outgoing event binding

Again, the same note with user-friendliness as in previous section applies
here. Although in this case, we could at least assist the designer with the binding
definition writing, because this binding definition must obey associated PSM
schema and therefore associated XML Schema as well, which can be used for
binding validation. So, we could first generate all XML Schemas for all outgoing
event types and then allow the designer to put binding definitions into separate
files, one for each event type and validate these files against corresponding XML
Schemas. Moreover, if the designer used some XML editor with on the fly schema
validation, it would automatically give him even better guidance with the writing.
We will not use this feature in our prototype, but it could be easily incorporated.

6.8 Definition of incoming events

When we want to refer to incoming events occurrences inside sentry expressions,
we must first know what is the set of all possible incoming events. This set must
be defined somewhere. So far, it is neither in the APSM schema nor in the GSM
schemas. However, we said that we will create one PSM schema for every event
message type. So, we could use all PSM schemas to define the set of all incoming
events. Another possibility would be to use events defined in bindings file. No
alternative has clear advantages, so we choose second alternative.

6.9 Specification of service calls

When there is a task that contains call to two-way service, we must have the
specification of this service call, otherwise we would have no clue how to exe-
cute the task in generated executable model. We need specification of endpoint,
namespace and operation for the web service call. This is not a part of the GSM
model, but it must be specified if we want to generate the system from the model.
We will define these properties along with event bindings and load them prior
generation process.

6.9.1 Updating APSM schema

We can now continue with analysis from section 6.4. We said that we need to
propagate lifecycle information from GSM schemas to APSM schema. We will use
generation time propagation approach, so prior the generation process, we will
add new PSM constructs for stages and milestones to relevant APSM classes.
We will also add new PSM constructs for event attributes. In case of stages and
milestones, we will not add only new PSM attributes for status and timestamp,
but we will add entire PSM class that will contain these two attributes. Also,

86

we will not add new classes directly as children classes of corresponding APSM
classes, but we will first create wrapper parent classes for them, in order to clearly
distinguish between data attributes, status attributes and event attributes.

Algorithm Updating APSM schema. For each artifact type Ri, let CapsmRi be
corresponding APSM class from the APSM schema.

1. Adding status attributes class. For each artifact type Ri, create PSM
class Capsm− statusRi as a child of the APSM class CapsmRi with associ-
ation named statusAttributes. This class will contain status attributes
for stages and milestones associated to artifact type Ri.

2. Adding stage attributes. For each stage Sj of artifact type Ri, add
new PSM class as a child of the PSM class Capsm − statusRi with as-
sociation named as the name of the stage Sj and add to this class three
PSM attributes named status of type Boolean, update of type Integer and
stableStatus of type Boolean.

3. Adding milestone attributes. For each milestone Mj of artifact type
Ri, add new PSM class as a child of the PSM class Capsm− statusRi with
association named as the name of the milestone Mj and add to this class
two PSM attributes named status of type Boolean, update of type Integer
and stableStatus of type Boolean.

4. Adding event attributes class. For each artifact type Ri, create PSM
class Capsm− eventsRi as a child of the APSM class CapsmRi with asso-
ciation named eventAttributes. This class will contain event attributes
associated to artifact type Ri.

5. Adding event attributes. For each incoming event type Ej of artifact
type Ri, add new PSM class as a child of the PSM class Capsm− eventsRi

with association named as the name of the event type Ej and add to this
class one PSM attribute named update of type Integer.

Because every milestone and stage status attribute is contained in the wrapper
statusAttributes class, we need to take this into account when parsing sentries.
This is not a problem actually. Ordinarily, during OCL parsing, when a property
path item is encountered, new property call expression pointing to that property
is returned. For example, when there is a path:

customerOrder.customer.name

and parser encounters property path item name, it returns new property call
expression pointing to property name with source expression pointing to its prede-
cessor, in this case customer property, which can be again a property call expres-
sion. So, in case of milestone and stage related properties, we can return proper-
ty call expression with one additional path item, pointing to statusAttributes

class, if we know that parsed property is actually some stage or milestone. For-
tunately, this information is already known from GSM schemas. For example,
when there is a path:

87

customerOrder.shipped

and parser encounters property path item shipped, which will be property
for milestone, it first creates new property call expression pointing to property
statusAttributes with source expression pointing property customerOrder and
then returns new property call expression pointing to property shipped with
source expression pointing to property statusAttributes.

The same idea can be used for event attributes. We use this extension for pur-
pose, to demonstrate that concrete milestone and stages XML realization could
be independent of sentry definition, if necessary. It is also useful to clearly distin-
guish between data, event and status attributes in generated XML representation.

We will also add PSM attribute type to every status attribute, to add infor-
mation whether it is attribute for stage and milestone. This is rather for testing
purposes and it is not necessary.

6.10 Generating XQuery from PAC rules

When all rules are sorted, we can translate them to XQuery. For each rule
we generate one XQuery function that contains the condition evaluation for the
rule and also associated actions that must be performed if corresponding rule is
fired. Also, we generate the wrapper function that calls these functions in the
topological order that was obtained in previous section.

Before we can process to actual translation, we must transform rule expres-
sions from higher abstraction syntax into standard OCL syntax, so that we can
use existing implementation for translation OCL expressions into XQuery. This
is because rule itself is not standard OCL expression, but it is a composition of in-
dividual OCL expressions for rule property mapping, precondition, on-condition
and when-condition. This implicates that each rule translation is divided into
multiple sub-translations, where each part is translated individually. We must
divide rule to these parts:

On-condition On-condition is optional for rule. If rule has no on-condition,
then we generate only value true() instead, because empty on-expression is always
true. If on-condition is not empty, we must first transform it to standard OCL
expression. The form of this expression depends on event kind. If it is status
change expression, then we must translate it to two OCL expressions. First ex-
pression will compare status of the attribute and second will compare the update
time of the attribute. For example, the condition ShipStage.achieved() will be
replaced with ShipStage.status = true and ShipStage.update = now() and then
translated.

When condition When condition is standard OCL expression, but still it can-
not be immediately translated to XQuery. We must extend milestone and stage
expressions to refer to status attribute. For example, consider that we have fol-
lowing expression:

88

ShipStage = true

This condition states that stage named ShipStage must be active. This means
that we are actually referring to status sub-property of this stage status property.
So we need to generate this in target XQuery code:

xs:boolean(ShipStage/@status) = true()

In order to use standard generation mechanisms from OCL to XQuery, we
first extend the original expression to:

ShipStage.status = true

This OCL expression can be directly translated into presented XQuery code.
We do this for every sub-expression of the original if-condition where the property
is the status property that represents some milestone or stage. We extend each
such property to the status sub-property. When we replace all occurrences, we
translate the updated expression to XQuery.

Precondition Every rule has a precondition. Precondition is standard OCL
expression that could be directly translated. It always refers to either a milestone
or a stage attribute of the artifact and has the form property = value. This
property refers to wrapper status attribute, so it must be extended the same way
as described in paragraph for when condition.

Action Rule action specifies operations that are performed if rule condition is
satisfied, that means, when rule is fired. The set of operations depends on rule
category. In every case, the milestone or stage attribute is updated and new
event is added to the set of generated events. If rule category is a guard, then
also related stage opens and if this stage is atomic, it starts a task that is inside
the stage, so operation to start this task is also generated. Starting task means
calling function that sets task as active. Similarly, rules PAC5 and PAC6 closes
related stage and this ends task that is inside the stage, if there is some that is
active.

Event guard Event guard is an optimization in rules evaluation. It comes from
the observation that we do not need to evaluate each rule for each artifact if we
know for sure that the condition will evaluate to false. One case where we can be
sure about this is when rule has an event condition that refers to some concrete
event and we evaluate the rules with context that does not contain this event.
For example, suppose we have a rule:

context Order guard(ShipStage): on EventShip.onEvent()

89

Rule evaluation is implemented as a for loop over possibly affected artifact
instance where on-condition constitue a predicate:

for $artifact in doc(’/Peer/artifacts.xml’)//Order
[xs:boolean(lifecycle/mostRecentEvent/@type) eq ‘EventShip’ and
[xs:integer(lifecycle/mostRecentEvent/@time) eq $now]

Consider that we start rules evaluation due to an incoming event EventOrder.
Since current event occurrence is EventOrder, we know for sure that the condition
in the loop evaluates to false for each Order artifact. This is why we can add
guard expression that allows evaluating the loop expression only if the event guard
condition is true.

6.11 Generation overview

In this section we summarize the generation of AXML system from eXolutio.
Figure 6.22 illustrates the overall process.

Parse user

PAC rules

Generate invariant

PAC Rules

Update Artifact

schema

Generate Schema stage model

from GSM schemas

Merge invariant

and user PAC rules

Sort PAC rules in

topological order

Generate XQuery

from PAC rules

Parse XML Bindings file Generate Schema task

model from bindings file

Schema stage model matches bindings?

no

no

yes

Topological order exists?

yes

Generate rest

Figure 6.22: Generating AXML system from eXolutio

1. Generate schema stage model. Processing starts by creating schema
stage model, an abstract representation that holds all the necessary infor-
mation about stages and milestones and their associations. This model
is derived from GSM schemas and it is used during an entire generation
process.

90

2. Parse event bindings. We load and validate the binding file that specifies
incoming and outgoing bindings for all event types in the system. It also
specifies service properties for tasks that correspond to invocation of two-
way service or sending one-way message.

3. Generate schema task model. Parsed binding file is used to create
schema task model, an abstract representation that holds all the necessary
information about event bindings and service properties. This schema is a
part of schema stage model, because these two are frequently used togeth-
er. Schema task model must be validated against schema stage model to
verify that it contains the same set of artifacts and the same set of tasks.
Otherwise this is considered to be an error and generation cannot continue.

4. Extend artifact schema. When schema task model and schema stage
model are created and successfully validated, we need to extend the APSM
schema so that it contains all the necessary information about stages, mile-
stones and incoming events. This is very important because we want to
refer to stages, milestones and incoming events from sentries and invariant
preserving rules. We update the APSM schema for each stage, milestone
and incoming event type. This update cannot be done with eXolutio com-
mands, because each command execution causes view of user interface to
repaint and with too many commands the update would be too slow. In-
stead, we add new items directly to appropriate collections and remove
them after the generation.

5. Generate user defined rules With updated APSM schema we can parse
sentries and create corresponding user defined PAC rules. This parsing will
frequently consult schema stage model and schema task model in order to
check if currently parsed property refers to some milestone, stage or event
attribute or if it is only an ordinary data property.

6. Generate invariant preserving rules We generate invariant preserving
rules automatically from GSM schemas.

7. Merge PAC rules We merge together generated invariant preserving PAC
rules and user define PAC rules for further processing.

8. Sort PAC rules in topological order We sort PAC rules in topological
order to ensure correct evaluation. If such topological order does not exist,
we must terminate the generation process.

9. Generate XQuery from PAC rules When rules are sorted, we can gen-
erate XQuery code for their evaluation.

10. Generate other files and code We also generate many other necessary
files and code:

• XML Schemas for event messages from PSM schemas. These schemas
are used for validation of incoming event messages in the ASC.

91

• XML document for initial artifact templates. These templates are nec-
essary when new artifact instance needs to be created and inserted into
the business artifacts document. Template file contains initial XML
representations of artifact information models, one for each artifact
in the model. Initial representations are generated from the APSM
schema. For each artifact, generator translates corresponding APSM
class into XML, taking into account also all children PSM classes,
except those that already belong to some child artifact.

• HTML forms for event messages. These forms are used in the ASC
user interface to submit incoming events into the ASC by human per-
formers. Forms are generated from corresponding PSM schemas for
event messages.

• Workflow web service and operations for incoming events. These op-
erations are used to receive incoming events in the ASC. For each
incoming event type, generator creates one web service operation that
accepts corresponding event message as a parameter.

• XQuery utility functions. These functions are used to work with arti-
facts, for example for creating new artifact, finding concrete artifact,
obtaining artifact information and so on. These functions are generat-
ed to provide better query performance, because generated functions
can take into account concrete element names in target XML repre-
sentation and element names are automatically indexed.

92

7. Artifact Service Center
Architecture

In this section we present the high level architecture of the Artifact Service Center.

7.1 Overview

The architecture of the Artifact Service Center is shown in the figure 7.1. It is
based on Active XML architecture, which is made up from a following component:

• Web server, currently Apache Tomcat 5.5.

• XML database, currently eXist.

• Axis2 web service engine.

• Active XML service calls execution engine.

Apache Tomcat Client PC

ArtifactServiceCenter

<<Web application>>

ContainerUtilityService

<<component>>

ContainerWorkflowService

<<component>>

ArtifactService

<<component>>

Active XML Peer

<<Web application>>

Web browser

Exist Database

<<database system>>

WS-SOAP

<<protocol>>

Artifact Servlet

<<JSP Pages>>

WS-SOAP (only for testing)

<<protocol>>

Axis2

<<artifact>>

AXML

<<artifact>>

HTTP

<<protocol>>

WS-SOAP (only for testing)

<<protocol>>

Procedure call

Procedure call

Figure 7.1: Deployment diagram of the Artifact Service Center

93

We extend this architecture with new web application, Artifact Service Center,
that implements new functionality and creates wrapper around Active XML.
We deploy this application to the same web server as Active XML. These two
applications are loosely coupled and ASC does not modify Active XML at all.
They see each other as a black-box and communicate only via web services. There
are two general rules for communication:

1. ASC never access XML database directly, but always uses Active XML as
a mediator.

2. External environment never access Active XML directly, but always uses
ASC as a mediator.

The ASC application is composed from three main parts. The most important
is the core component, ArtifactManager, that creates a wrapper around Active
XML by providing an interface for managing business entities. It also assures
correct semantics of operations when managing the artifacts, like events ordering,
synchronization and others. Second important part are web services, that provide
access to the ArtifactManager from external environment. Third part is user
interface that enables human performers to submit their action and sent events
to the system.

Communication between ArtifactManager and web services uses direct pro-
cedure calls. Different situation is communication between user interface and
ArtifactManager. User interface does not communicate directly with Artifact-
Manager, but it uses web services for communication. It is important to mention,
that this is only for testing purposes in our prototype, because in real situation
the user interface could communicate with ArtifactManager using direct proce-
dure calls, providing that both components are in the same web container, which
is a case of our prototype. But we use this style to show that ASC is able to
communicate with the external environment exclusively by exposed web services.
Communication between ArtifactManager and Active XML is only using web
services that Active XML provides in its default implementation.

7.2 Main components

In this section we describe main components of the system.

7.2.1 ArtifactManager

ArtifactManager is the core component of the system. This component works
as the mediator between Active XML and the rest of the system by providing
an interface for managing business artifacts and their lifecycle. Also, it helps to
assure correct semantics of operations when working with business artifacts, like
events ordering and synchronization. To assure this semantics, there must always
be only one ArtifactManager for each ArtifactServiceCenter and Active XML
Peer. For this reason, ArtifactManager is implemented as a singleton using the
Enum Singleton Pattern.

94

IArtifactManager

<<interface>>

+enqueueIncomingEvents()

+getEnabledHumanServices()

+getEnabledTriggerMessages()

+getArtifactInstances()

+getArtifactSchemaStatus()

+getHumanServiceTaskData()

+getMostRecentEvents()

+startTwoWayService()

+startHumanService()

+sendOneWayMessage()

+executeNamedQuery()

ArtifactOutgoingEventProcessor

IArtifactOutgoingEventProcessor

<<interface>>

+sendOneWayMessage()

+startHumanService()

+startTwoWayServiceAsynchronously()

+startTwoWayServiceSynchronously()

AxmlRequestQueue

+addAxmlArtifactRequest()

+processAxmlRequest()

AxmlRequestResponse

+requestMessage: OMElement

+responseMessage: OMElement

IncomingEventList

+takeResult()

+putResult()

ArtifactManager

IncomingEvent

<<interface>>

+taskName: string

+fullTaskName: string

+eventCategory: string

+parameters: OMElement[*]

*

TwoWayServiceReturnEventCallback

+onMessage()

+onFault()

+onError()

+onComplete()

Figure 7.2: A prototype of the Job Information dialog

Figure 7.2 shows ArtifactManager class and most important related classes.
The ArtifactManager contains three categories of operations.

First category contains lifecycle operation scheduleExecuteIncomingEvents for
receiving incoming events that originated from external world. This method
accepts incoming events, creates a request message that will be later send to
Active XML for event processing and adds this message along with incoming
events to the request queue.

Second category are lifecycle operations for reacting to outgoing events that
originated from ActiveXML during processing of incoming event. That means
task opening events. These operations are startTwoWayService for processing
invocation of given two-way service, startHumanService for processing invoca-
tion of given human service and sendOneWayMessage for processing sending
one-way message. ArtifactManager delegates processing of these events to IAr-
tifactOutgoingEventHandler, because how these events are actually processed is
not important for the core system. This copies the semantics of the GSM model,
where how task are processed is not the responsibility of the model. All that the
core system needs is to get back the response when these tasks ends. Also, IAr-
tifactOutgoingEventHandler can be the extension point where custom processing
can occur. For example, it is not strictly necessary to call external web services
using Axis2, only because Active XML uses Axis2. Different technologies could be
used when providing custom implementation of IArtifactOutgoingEventHandler.
Also, processing human service can actually be implemented as simple notifica-
tion of associated human performer, for example by sending him a message or

95

e-mail that new task associated to him has started.
Third category are operations that query information about artifact schema

status, artifact instance details, task instance details and most recent events.
These operations only invoke predefined queries stored in Active XML. They are
primarily designed for user interface to provide it with necessary data. Therefore
in real implementation the list of operations in this category and their implemen-
tation will always be application specific and will depend on the requirements for
user interface. These operations are getArtifactSchemaStatus to get information
about state of entire artifact schema, getHumanServiceTaskData to get informa-
tion about concrete human task instance, getMostRecentEvents to get the list of
most recent events that occurred in the system and getArtifactData to get details
about concrete artifact instance. Now there are prepared classes for communica-
tion like ArtifactShortDescription that contains only active stages and achieved
milestones, but there could be a case where more information is necessary and
then new classes can be added.

7.2.2 Messages

There are two types of messages in the ASC. Messages for communication be-
tween external world and the ASC and messages for communication between the
ASC and Active XML. We will refer to them as external messages and internal
messages. This distinction is done on purpose, because we want to point out
the major difference between these two types of messages that would occur when
developing the real application.

Internal messages are core system messages that must always have the same
structure because there is a contract between the ASC and Active XML that both
sides understand. XQuery code in Active XML that performs event processing
expects all messages to have this predefined structure to correctly read the event
payload and event meta-data like event name, event category, source artifact id,
source artifact class and others. All these data are necessary in our implementa-
tion of BA-GSM model and we always need this data no matter what application
we develop on top. We do not assume to change the core system and processing
queries, so we also do not assume to change the structure of internal messages.
We only expect to change the values of event meta-data and event payload. Of
course if we decided to change the core system, we could change the structure of
these messages as well.

External messages are messages of the system that is implemented on top of
the core system and are used for communication between external world and ASC
via web services. They are part of external interface of the implemented system.
When developing the application, we expect that this messages will be application
specific and their specification will depend on application needs. When we change
the application, we will probably change these messages as well but we will not
change the structure of internal messages, because the core system remains the
same.

96

7.2.3 Processing incoming event

Incoming event is an event that originates in external world and is received by the
ASC. This can be either human service return, two-way service return, create call
or incoming one-way message. This event can be sent to the system either via web
service or directly to ArtifactManager. This depends on the kind of the event.
Two-way service return event is always sent directly to the ArtifactManager,
because it is created automatically by the system when the service call ends.
Human service return events, incoming one-way-messages and create calls are
usually sent via web service, because these are usually sent from user interface
by human user. But they can be also send directly to ArtifactManager. We will
describe how event is sent via web service operation.

The event originates in user interface. User fills event form that contains data
for event payload. When he submits the form, the event is sent to the ASC via web
service operation. The ASC has a web service ContainerWorkflowService that
has for each human service return event, each incoming one-way message and each
create call one operation to receive this event. This event name is a concatenation
of artifact class name and operation name. When the event is received, it is
transformed to the message in the format that is used for communication with
Active XML. This is one of:

• HumanServiceReturnEvent for return from human service.

• IncomingOneWayMessageEvent for incoming one way message.

• CreateChildArtifactEvent for request to create child artifact instance.

• CreateRootArtifactEvent for request to create root artifact instance.

• TwoWayServiceReturnEvent for return from two-way service call.

• OneWayMessageSentEvent for confirmation of sending one-way message.

This message is then sent to the ArtifactManager with method scheduleExe-
cuteIncomingEvents. However it cannot be sent immediately to the Active XML
for processing, because Active XML could be processing another event at the
moment and only one event can be processed at any time. For this reason Arti-
factManager contains linked blocking queue, which contains all incoming unpro-
cessed events. When ArtifactManager receives an event, it first inserts it into this
queue where it waits for processing. ArtifactManager then processes events from
this queue on another thread. This thread always waits until previous event is
fully processed and after that it takes another event from the queue and sends it
to the Active XML.

Processing event with Active XML is always done in two steps. We use two
steps for optimization reason related to XQuery compilation.

In the first step ArtifactManager only sends event to the Active XML via web
service GenericQueryService and operation executeGenericQuery. This operation
gets query that will be executed in the database. We use query that only calls
function insert-event-list that is declared in insertModule.xq. This function only
inserts the event to the list of received events in events.xml.

97

In the second step we tell Active XML to start processing the event it just
received. This is again done via web service GenericQueryService and execute-
GenericQuery. We use query that only calls function process-event-list-final that
is declared in module main.xq. This function starts processing of the event. When
processing ends, this query returns a list of outgoing events that were generated
during processing of the event.

7.2.4 Processing incoming event by the query

Actual processing of an incoming event is done by XQuery code inside Active
XML. Incoming event is sent to Active XML and processed with function process-
event-list. This function takes event that was previously inserted to the unpro-
cessed event list in events.xml and starts its processing. The processing is always
the same. Apply immediate effect and then evaluate PAC rules. In order to
apply immediate effect the query must find affected artifact(s). Which artifacts
are affected depends on event type.

1. If it is CreateRootArtifactEvent, then it must first create new artifact. Af-
fected artifact is the created artifact.

2. If it is CreateChildArtifactEvent, then it must first find parent artifact.
Parent artifact ID is part of the event, so the query finds the parent artifact
by this ID. Then it creates child artifact inside parent artifact. Affected
artifact is the created artifact.

3. If it is TwoWayServiceReturnEvent, OneWayMessageSentEvent or when
it is HumanServiceReturnEvent, then there is exactly one affected artifact
that already exists. Artifact ID is part of the event, so the query finds the
artifact by this ID.

4. If it is IncomingOneWayMessageEvent, then there may be many affected
artifacts that already exist. Artifact IDs are part of the event, so the query
finds the artifacts by this IDs.

If the event is task completion event, which is either HumanServiceReturn-
Event, TwoWayServiceReturnEvent or OneWayMessageSentEvent, the query al-
so deactivates the task.

When the query finds affected artifact, it can apply immediate effect. It sets
most recent event of the artifact. Then it needs to do the binding. All bindings
function are in file binding.xq, which was generated from eXolutio. It needs to
determine which binding function to use. Because every event is associated with
exactly one artifact class, the concatenation of artifact class name and event name
is unique identifier that determines appropriate binding. After binding is done,
the PAC rules evaluation is started.

7.2.5 Outgoing event

Outgoing event always originates in ASC. It can be two-way service call event,
human service call event and outgoing one-way message event. Outgoing event is
created during processing of some incoming event in Active XML. This processing

98

can create entire set of outgoing events. Further processing depends on Active
XML representation mode.

Pure query approach

When the event processing ends, this set of outgoing events is returned to ASC
as a query result. This is because event processing is actually a call to exe-
cuteGenericQuery operation of GenericQueryService that executes query that
processes incoming event and returns new outgoing events as a result.

ArtifactManager takes this set of outgoing events and for each one of them it
calls handler method of IArtifactOugoingEventHandler. This handler is supposed
to be overridden if necessary depending on application needs. We describe here
default implementation.

Human service call For human service call event it only logs the event, be-
cause the human service was already set as started in a query during event pro-
cessing in Active XML. It is now up to the user to perform the human task and
submit response to the system. In real application the handler method could also
notify the user who is assigned to this task about new event. For example it could
send him a message through the system or send him an email.

One-way message call For one-way message call event it invokes the service
call with settings obtained from ServicePropertiesMapper. It must obtain service
namespace, method and URL. It immediately returns.

Two-way service call For two-way service call event it also invokes the service
call. Service call is invoked in asynchronous way so that it does not block other
tasks. It accepts the callback that should be called when the service call returns.
This is necessary because the return event represents new incoming event that
must be eventually propagated back to the system for processing. When the
service call ends, the callback is called. It creates message TwoWayServiceRe-
turnEvent that represents two way service return event and sends it directly
to ArtifactManager via method scheduleExecuteIncomingEvents. Thanks to this
method the event will be processed as an incoming event when the system is
ready. Note that this is the case when incoming event is sent directly via Arti-
factManager and not send via web service. This is because the event originated
in the system itself.

Continuous calls and naive approach

In case of naive approach, opened tasks are started directly from Active XML,
as described in section 5.2.1.

7.3 UI and ArtifactServlet

As we said before, user interface is designed primarily for testing purposes to
demonstrate that the core system works. It is implemented with standard HTTP
servlet and JSP technologies.

99

It provides two basic pages: home page that shows current artifact schema
status and edit page that allows user to edit and send events to the core system.

The servlet communicates with the core system via web services that provide
all necessary data. We will refer to these web services as utility service and
workflow service.

1. ContainerWorkflowService is used to submit workflow events to the core
system. These are human task response events, incoming one way messages
and create calls.

2. ContainerUtilityService is used to obtain information about current artifact
schema status, information about tasks and event history.

Servlet uses both POST and GET methods. POST method is used for save
actions to submit events to the core system and GET method is used for view
and edit actions.

7.3.1 Actions

There are three kind of actions related to the artifacts that we can do in user
interface. We can view artifact data, edit incoming events and send these events
to the core system.

The servlet uses URL patterns to decide which action is appropriate. The
pattern is:

workspace/ARTIFACT/ACTION/EVENT CATEGORY/EVENT NAME

View action View action means that we want to view detailed information
about concrete artifact. When servlet recognizes the view action, it contacts the
core system via utility web service operation getArtifactData that returns the
artifact data. Artifact instance is specified by its class and ID. Example:

workspace/CustomerOrder/view?artifactID=1

Edit action Edit action means that we want to create and edit event that we
will later submit to the core system. To edit an event, the user interface displays
HTML form that represents the event message. User can fill the form data and
then send it to the core system.

When servlet recognizes the edit action, it can either directly render the form
or first contact the core system. This depends on the event category. Forms
that represent create call events and one-way message events can be rendered
immediately, because they do not require any additional data. One the other way,
human task response events must first load data from the core system, because
the human task can contain input parameters. And even if task did not contain
any input parameters, the user interface would not know that. So in case of
human response event, the servlet first contacts the core system with web service
operation getHumanServiceTaskData and then renders the form using obtained
data. Event is specified by its name, category, artifact class and ID. For example:

100

workspace/CustomerOrder/edit/human/SetProductCode?artifactID=1

Save action Save action means that we want to submit event to the core sys-
tem. When servlet recognizes save action, it submits appropriate event to the
core system via web service. The save action must always follow from edit ac-
tion, where user filled the form for the event that he wants to send to the core
system. This means that the data from the form must be first transformed into
XML representation that is sent in SOAP message. The name of the opera-
tion is uniquely identified by the event. For example this uniquely identifies the
operation CustomerOrderSetProductCode

workspace/CustomerOrder/save/human/SetProductCode

No action No action means that we want to render home page that shows
current artifact schema status. When servlet recognizes no action, it loads cur-
rent schema status from the core system with web service operation getArti-
factSchemaStatus. It also loads history of most recent events in the system with
web service operation getMostRecentEvents.

/Container/workspace

This is default home page that shows current artifact schema status.

101

8. Testing, experiments and
evaluation

8.1 Implementation

We implemented an extension into eXolutio based on analysis and design provided
in chapter 6. This extension supports working with GSM models, concretely:

• Modeling. Definition of GSM model using conceptual modeling, definition
of artifact lifecycles and definition and import of event bindings and service
properties including their validation against model definition.

• Generation. Generation of defined GSM model into Active XML represen-
tation, including derivation of invariant preserving rules and rules ordering
to ensure evaluation correctness. Generated representation is integrated
into source code of an executable system and as such can be subsequently
edited or compiled and deployed.

• Execution. Deployment of an executable system with generated Active
XML representation into Tomcat application server directly from eXolutio.
Functionality can be then demonstrated using web browser and manual
progress through model workflow, or using automated tests for example
models.

8.2 Testing

We proposed and implemented three Active XML representations described in
chapter 5: a naive approach, continuous calls approach and pure query approach.
When application is starting, it reads from property file which representation to
work with. It is important for expected representation to match actual repre-
sentation generated from eXolutio, because for naive approach, eXolutio must
generate embedded service calls into business artifacts document.

We implemented helper testing project, called ArtifactCenterTests. It is a sim-
ple web service client that reads scenario from the XML file and invokes workflow
web services against ArtifactServiceCenter according to that scenario. Scenario
is a sequence of incoming event messages along with web service operation that
should be called. Calling sequentially scenario items corresponds to progress in
model workflow and provides automatic testing. Figure 8.1 shows one call item
from the customer order scenario. Same functionality could be achieved for ex-
ample with SoapUI. We also created test cases in Selenium UI to test the system
from user interface.

8.3 Evaluation

We can now reason about response time for one incoming event processing in
comparison between three Active XML representations that we analyzed in this

102

<call method="CustomerOrderSendToManufacturer" wait="2000">
<TaskResponse>

<artifactID>1</artifactID>
<CustomerOrder>

<manufacturerID>manufacturer1</manufacturerID>
</CustomerOrder>

</TaskResponse>
</call>

Figure 8.1: Customer order scenario test call item. This item states that test will
first wait 2000 ms and then call a method CustomerOrderSendToManufacturer on
the ContainerWorkflowService with message starting from element TaskResponse.

thesis. Intuitively, this is related with amount of service calls that event pro-
cessing must perform in order to process an incoming event, including starting
opened tasks and handle their termination.

• With pure query approach, when an incoming event is set for processing, it
is processed by Active XML with one call to executeGenericQuery opera-
tion. This operation performs B-step processing and returns set of outgoing
events. For every event, the ASC invokes one web service call. Therefore
for n outgoing events, there is n+1 calls in total.

• With continuous call approach, when an incoming event is set for process-
ing, it is processed by Active XML with one call to evaluate operation.
This operation invokes executeGenericQuery to apply immediate effect and
to evaluate rules. Then it invokes continuousCall for every opened task,
which transitively calls processing operation in the ASC to invoke service
asynchronously. Therefore for n outgoing events, there is 2n+1 calls in
total.

• With continuous call approach, when an incoming event is set for processing,
it is processed by Active XML with one call to evaluate operation. This
operation invokes executeGenericQuery to apply immediate effect and to
evaluate rules. Then it invokes one embedded service call for every opened
task, which transitively calls processing operation in the ASC to invoke
service asynchronously. Therefore for n outgoing events, there is 2n+1 calls
in total.

We can see that continuous call approach and naive approach need more
service calls, but these additional calls are not very costly. This is because Active
XML performs embedded service calls as local operation calls for those services
that are located in the same peer. So in our case, additional embedded service
calls only invoke local web services using local operation call.

Additional factor is that as more embedded service calls are used in the XML
document, the more time Active XML framework needs to load them from the
document, create an activation dependency graph and evaluate them in proper
order. On the other hand, when invoking corresponding web services from the
ASC directly as in pure query approach, there is no need to load and order
embedded service calls. However, such loading and ordering does not need to
be costly for continuous call approach, because in our case there are only few
embedded service calls and their dependencies are simple. In naive approach

103

Action Pure query Continuous call
CustomerOrder.CreateCall 2404 4761
CustomerOrder.SetProductCode 640 6121
CustomerOrder.SendToManufacturer 422 6168
CustomerOrder.CreateWO 514 4745
WorkOrder.EventCreateLI 407 6167
WorkOrder.CreateLI 327 7744
WorkOrder.EventCreateLI 422 7541
WorkOrder.CreateLI 343 8073
WorkOrder.EventCreateLI 437 7825
WorkOrder.CreateLI 327 8147
WorkOrder.EventCreateMPO 421 7962
WorkOrder.CreateMPO 313 8072
MaterialOrder.EventAddLI 484 7915
MaterialOrder.AddLI 328 8166
MaterialOrder.EventAddLI 312 7744
MaterialOrder.AddLI 329 6278
MaterialOrder.EventAddLI 313 6308
MaterialOrder.AddLI 328 8056
MaterialOrder.SendMPOs 328 7793
LineItem.SetToSent 469 7822
LineItem.SetToSent 374 12725
LineItem.SetToSent 390 7810
LineItem.SetToShipped 468 8383
LineItem.SetToShipped 329 10335
LineItem.SetToShipped 313 7899
WorkOrder.assemble 390 8080
CustomerOrder.EventShip 344 8009
CustomerOrder.Ship 406 8321

Figure 8.2: Average response times for CustomerOrder model (in milliseconds).

however, there will be great amount of embedded service calls and more will be
added over time, so loading and ordering will be slower.

We measured response times for processing of one incoming event for individ-
ual workflow operations using Active XML representation. We measured on two
models.

For first measurement we used CustomerOrder model, which is defined in
chapter 6. We performed eight runs, always starting with empty document for
business artifacts. We measured for pure query approach and for continuous call
approach. Table 8.2 and shows average measured values.

For second measurement we used Questionnaire model, which is used in at-
tached tutorial. We performed eight runs, always starting with empty document
for business artifacts. We measured for pure query approach and for continuous
call approach. Tables 8.3 show averages measured values.

In the pure query approach, we can see that first workflow operation is always
slower (first row in both tables). This is caused by initial compilation of XQuery
code that is used for rules evaluation and event bindings. This code is usually
quite large, in both models it has about 2500 lines in total. This code is cached
after first usage, so following response times are smaller.

Continuous call approach is currently much slower than pure query approach,
because processing embedded service calls requires generally great amount of
time. This is probably due to prototype implementation of Active XML frame-

104

Action Pure query Continuous call
Questionnaire.CreateCall 1785 4446
Questionnaire.EventAddQuestionAnswer 357 6550
Questionnaire.CreateQuestionAnswer 620 6567
QuestionAnswer.CreateQuestion 346 6185
Question.EventAddAnswer 287 7459
Question.AddAnswer 321 6991
Question.PublishQuestion 273 7062
Questionnaire.EventAddQuestionAnswer 266 7254
Questionnaire.CreateQuestionAnswer 356 7502
QuestionAnswer.CreateQuestion 315 7360
Question.EventAddAnswer 269 7442
Question.AddAnswer 294 6975
Question.EventAddAnswer 268 7679
Question.AddAnswer 256 7374
Question.PublishQuestion 262 7439
Questionnaire.EventQuestionnaireDefined 267 7620
Questionnaire.EventAddParticipant 251 7635
Questionnaire.AddParticipant 270 6149
Questionnaire.EventParticipantsSelected 381 6434
QuestionAnswer.AnswerMultipleChoiceQuestion 285 12783
QuestionAnswer.CommintAnswer 354 7455
QuestionAnswer.AnswerMultipleChoiceQuestion 291 7084
QuestionAnswer.CommintAnswer 406 7350

Figure 8.3: Average response times for Questionnaire model (in milliseconds).

work, because we also noticed slower responses in Active XML examples from
the distribution. To verify this, we tested how long it takes for Active XML to
evaluate one embedded call in the document with multiple embedded calls. The
testing document contained sequence of embedded calls to operation getVersion
of service Version, which is a sample web service included in Axis 2. This oper-
ation returns Axis version. We created seven different Active XML documents
with 1, 2, 5, 10, 20, 40 and 80 embedded calls. An example for document with
two embedded calls is shown in figure 8.4. Test always stored the document
into the database and then evaluated only one of the embedded calls. Table 8.5
shows measured values. We can see that as more embedded calls are in the doc-
ument, the longer the evaluation of single embedded call takes. However, most
of the time was spent in loading the document into the document manager and
obtaining the calls, not in actual call invocation.

105

Number of embedded calls Evaluation time
1 754
2 890
5 1599
10 3039
20 7267
40 21816
80 91105

Figure 8.5: Average response times for evaluation of one embedded call in Active
XML document with multiple embedded calls. Times are in milliseconds.

<example>
<axml:sc axml:id="1">

<axml:return>
<axml:append/>

</axml:return>
<axml:ws-soap

endpoint="http://127.0.0.1:6969/Peer/services/Version">
<getVersion:getVersion/>

</axml:ws-soap>
</axml:sc>
<axml:sc axml:id="2">

<axml:return>
<axml:append/>

</axml:return>
<axml:ws-soap

endpoint="http://127.0.0.1:6969/Peer/services/Version">
<getVersion:getVersion/>

</axml:ws-soap>
</axml:sc>

</example>

Figure 8.4: Tested AXML document with two embedded calls

We expect that these times would be much smaller in non-prototype im-
plementation. To conclude, we believe that continuous call approach and pure
query approach could be both used interchangeably, under important assumption
of smaller response times in non-prototype Active XML implementation. Naive
approach is unsuitable due to described factors.

106

9. Conclusion

In this thesis, we presented an approach to connect Guard-Stage-Milestone mod-
el with Conceptual model for XML to enable conceptual modeling of business
artifacts using Active XML as a basis. We analyzed and proposed possible rep-
resentations of business artifacts in an executable model using Active XML and
discussed the limitations of Active XML when using it for an implementation of
the GSM models. We also presented how the Conceptual model for XML can be
useful for definition of the information models of business artifacts and analyzed
how to extend eXolutio to support definition of GSM models including an auto-
matic generation of prototypical executable system that would demonstrate the
functionality of the model. Finally, we implemented the mentioned extensions to
eXolutio and implemented executable system on top of Active XML, that can be
used as a basis for generated models from eXolutio. Finally, we performed ex-
periments by modeling concrete GSM models in eXolutio, generating them into
executable system and walking through workflow according to the model.

We began with introducing the artifact-centric approach to business process
modeling in chapter 1. We pointed out the difference with traditional workflow
approaches and described a motivation for this modeling paradigm. In chapter 2,
we described the GSM meta-model and business artifacts and presented formal
foundations, which we needed in later chapters. This chapter also indicated what
problems we need to solve when designing XML realization for business artifacts.
Chapter 3 described the Active XML framework and presented related approach,
called AXML Artifacts.

Chapter 4 described the Conceptual model for XML, introduced the concept
of model driven architecture and discussed its advantages. We started our anal-
ysis in chapter 5, where we analyzed and designed possible representations of
business artifacts in an executable model. We proposed three alternatives how to
realize artifacts evolution using Active XML and discussed their advantages. In
chapter 6, we analyzed and designed how to extend eXolutio to support definition
of GSM models and analyzed how to generate these models automatically to our
executable model from chapter 5. In chapter 7, we described concrete implemen-
tation for Artifact Service Center system that executes generated representations
using Active XML framework, based on analysis and design from chapter 5. In
chapter 8, we evaluated individual representation approaches.

Implementation of eXolutio with integrated extensions is available in attached
CD along with three model examples. These models can be translated to exe-
cutable Active XML representation into attached Active XML distribution and
used for demonstration or further reused and edited.

9.1 Main contribution

The main contribution of our work is introducing business artifacts into the world
of XML using model driven architecture, by a combination of conceptual XML da-
ta modeling and business artifact modeling into one modeling framework. Design-
er can define information models of business artifacts in the platform independent
level, specify final XML representation in the platform specific level and define ar-

107

tifact lifecycles and declarative rules using concepts from Guard-Stage-Milestone
meta-model. He can also define PSM schemas for incoming event messages that
are used in the model. Putting all this together, designer can finally generate
executable Active XML representation of the model, immediately deploy it and
inspect functionality of the model. Designer can also reuse and extend generated
representation to build his own application based on business artifacts.

9.2 Future work

9.2.1 GSM visualization for lifecycle models

For the purpose of our prototype, we used our custom visualization for lifecycle
models that is different from the visualization used in the original GSM lifecycles,
although it can express the same basic concepts that are necessary for us. Unlike
the original visualization, it does not support visualized attachment of sentries
to guards and milestones and it does not support flow-macros. However, these
are both advanced and rather syntactic sugar concepts and lifecycle models can
be equally defined without them. Nevertheless, it would be nice to support the
original visualization for lifecycle models, at least for basic concepts, in order to
maintain the appearance consistency.

9.2.2 Artifact data distribution

Currently, an entire artifact information model is contained in one peer. Since
Active XML supports data distribution, it would be interesting to extend eXolutio
modeling to define some data attributes to be external, located in different peer.
This would make sense for example for data that are already located in different
peer and accessible through web services. Of course, obtaining such data when
needed can be modeled as concrete task instead, but this approach can be useful
for data that needs to be used frequently in multiple different tasks and needs to
be always up to date. This is where Active XML would be very helpful, because
it would always update this data in the document prior the rules evaluation. This
could be better with Active XML lazy query evaluation, so that data would be
updated only when really necessary. However, current prototype Active XML
representation does not support lazy query evaluation.

9.2.3 Optimization in artifacts representation

Currently, all artifact instances are stored in the same XML document in gener-
ated Active XML representation. This means that as this document grows over
time, the rule evaluation must process greater amount of business artifact in-
stances, although there can be artifact instances that are not relevant to current
rules evaluation. This is strongly connected to dependency between artifact in-
stances across different business process instances. For example, customer order
artifact from our example in chapter 5 has child artifacts and all these artifacts
are relevant during rules evaluation, but other customer orders, that correspond
to another ordering business process instance, might not. This is however not a
general case, because designer can always create a new rule that would depend

108

on another customer order instances. A direct approach would be to inspect de-
fined rules and decide if there are any dependencies and if not, artifacts can be
placed in different documents. But this immediately brings a problem with rules
evolution, for example when designer adds a new rule that would depend on both
divided instances. Since these two artifacts would be already placed in different
documents, rules evaluation would need to take this into account and be able to
evaluate over multiple documents.

109

10. CD contents

The attached CD contains the following filesystem structure with the related
artifacts of this work:

• Code

– Exolutio - this folder contains source code of eXolutio with integrated
extensions.

– ArtifactServiceCenter - this folder contains source code for Artifact
Service Center. This source code contains also Eclipse project file.

• Bin

– Exolutio - this folder contains an installer of eXolutio with integrated
extensions.

– ActiveXML - this folder contains used version of Active XML distribu-
tion.

– Ant - this folder contains Apache Ant.

• Samples - this folder contains samples of business artifact models. Every
model is in own folder containing eXolutio project file and event bindings
file.

• thesis.pdf - PDF version of this thesis.

• tutorial.pdf - PDF version of user tutorial.

110

Bibliography

[1] A. Nigam and N. S. Caswell. Business artifacts: An approach to opera-
tional specification. IBM Systems Journal, volume 42, issue 3, pages 428–445.
IBM Corp., Riverton, NJ, USA, 2003. ISSN 0018-8670.

[2] K. Bhattacharya, R. Hull and J. Su. A data-centric design methodology
for business processes. Handbook of Research on Business Process Modeling,
2009. ISBN 1605662887.

[3] W. M. P. van der Aalst and M. Weske. Case handling: a new paradigm
for business process support. Data and Knowledge Engineering, volume 53,
issue 2, pages 129–162. Elsevier Science Publishers B. V., Amsterdam, The
Netherlands, 2005. ISSN 0169-023X.

[4] R. Hull et al. A formal introduction to business artifacts with guard-
stage-milestone lifecycles, Version 0.8, May, 2011. Draft IBM Research in-
ternal report, available online at http://researcher.watson.ibm.com/

researcher/view_page.php?id=1710.

[5] K. Bhattacharya, N. S. Caswell, S. Kumaran, A. Nigam and F. Y.
Wu. Artifact-centered operational modeling: Lessons from customer engage-
ments. IBM Systems Journal, volume 46, issue 4, pages 703–721. IBM Corp.,
Riverton, NJ, USA, 2007. ISSN 0018-8670.

[6] Artifact-centric service interoperation. http://www.acsi-project.eu.

[7] R. Hull et al. Introducing the guard-stage-milestone approach for specify-
ing business entity lifecycles. In Proceedings of the 7th international confer-
ence on Web services and formal methods (WS-FM’10). Lecture Notes in
Computer Science. Springer-Verlag, Berlin, Heidelberg, 2010. ISBN 978-3-
642-19588-4.

[8] R. Hull et al. Business artifacts with guard-stage-milestone lifecycles: Man-
aging artifact interactions with conditions and events. In Proceedings of the
5th ACM international conference on Distributed event-based system (DEBS
’11), pages 51-62. ACM, New York, NY, USA, 2011. ISBN 978-1-4503-0423-
8.

[9] IBM Research: Richard Hull Profile Page. http://researcher.watson.

ibm.com/researcher/view_person_subpage.php?id=1710

[10] E. Damaggio, R. Hull and R Vaculin. On the equivalence of incremen-
tal and fixpoint semantics for business artifacts with guard-stage-milestone
lifecycles. Journal Information Systems, volume 38, issue 4, pages 561-584.
Elsevier Science Ltd., Oxford, UK, UK, 2013. ISSN 0306-4379.

[11] R. Hull. Artifact-centric business process models: Brief survey of research
results and challenges. In Proceedings of the OTM 2008 Confederated Inter-
national Conferences, CoopIS, DOA, GADA, IS, and ODBASE 2008. Part
II on On the Move to Meaningful Internet Systems (OTM ’08), pages 1152-
1163. Springer-Verlag, Berlin, Heidelberg, 2008. ISBN 978-3-540-88872-7.

111

http://researcher.watson.ibm.com/researcher/view_page.php?id=1710
http://researcher.watson.ibm.com/researcher/view_page.php?id=1710
http://www.acsi-project.eu
http://researcher.watson.ibm.com/researcher/view_person_subpage.php?id=1710
http://researcher.watson.ibm.com/researcher/view_person_subpage.php?id=1710

[12] T. Chao et al. Artifact-based transformation of IBM Global Financing: A
case study. In Proceedings of the 7th International Conference on Business
Process Management (BPM), pages 261-277. Springer-Verlag, Berlin, Hei-
delberg, 2009. ISBN 978-3-642-03847-1.

[13] Y. Sun, R. Hull, R. Vaculin. Parallel Processing for Business Artifacts
with Declarative Lifecycles. On the Move to Meaningful Internet Systems:
OTM 2012, pages 433-443. Lecture Notes in Computer Science. Springer,
Berlin, Heidelberg, 2012. ISBN 978-3-642-33606-5.

[14] S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo and R. Weber.
Active XML: Peer-to-Peer Data and Web Services Integration. In Proceedings
of the 28th international conference on Very Large Data Bases (VLDB ’02),
2002.

[15] S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo and R. Weber.
Active XML: A Data-Centric Perspective on Web services, 2002.

[16] D. Booth and C. K. Liu. Web Services Description Language (WSDL)
Version 2.0 Part 0: Primer. W3C, June 2007. http://www.w3.org/TR/

wsdl20-primer.

[17] N. Mitra and Y. Lafon. SOAP Version 1.2 Part 0: Primer (Second Edi-
tion). W3C, April 2007. http://www.w3.org/TR/soap12-part0.

[18] Extensible Markup Language (XML). T. Bray, J. Paoli, C. M. Sperberg-
McQueen, E. Maler and F. Yergeau. Extensible Markup Language
(XML) 1.0 (Fifth Edition). W3C, September 2006. http://www.w3.org/

TR/REC-xml.

[19] S. Abiteboul et al. Lazy query evaluation for Active XML. In Proceedings
of the 2004 ACM SIGMOD international conference on Management of data,
pages 227-238. ACM New York, NY, USA, 2004. ISBN 1-58113-859-8.

[20] S. Abiteboul, O. Benjelloun and T. Milo. The Active XML project: an
overview. The VLDB Journal volume 17, issue 5, pages 1019-1040. Springer-
Verlag, New York, Secaucus, NJ, USA, 2008. ISSN 1066-8888.

[21] The Active XML team. Active XML Primer. ftp://ftp.inria.fr/INRIA/
Projects/gemo/gemo/GemoReport-307.pdf.

[22] A. Ghitescu and E. Taroza. Active XML Documentation Version 2.1.4,
2008. http://webdam.inria.fr/axml/axmlv2/resources/axmldoc.pdf/.

[23] I. Manolescu. Re: Lazy Query Evaluation is available?. 27 Feb 2008. Acces-
sible at http://mail-archive.ow2.org/activexml/2008-02/msg00016.

html.

[24] S. Cook. Domain-Specific Modeling. http://msdn.microsoft.com/en-us/
library/bb245773.aspx.

[25] Object Management Group. http://www.omg.org.

112

http://www.w3.org/TR/wsdl20-primer
http://www.w3.org/TR/wsdl20-primer
http://www.w3.org/TR/soap12-part0
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
ftp://ftp.inria.fr/INRIA/Projects/gemo/gemo/GemoReport-307.pdf
ftp://ftp.inria.fr/INRIA/Projects/gemo/gemo/GemoReport-307.pdf
http://mail-archive.ow2.org/activexml/2008-02/msg00016.html
http://mail-archive.ow2.org/activexml/2008-02/msg00016.html
http://msdn.microsoft.com/en-us/library/bb245773.aspx
http://msdn.microsoft.com/en-us/library/bb245773.aspx
http://www.omg.org

[26] M. Necasky and I. Mlynkova. On Different Perspectives of XML Data
Evolution. Proceedings of the 2009 20th International Workshop on Database
and Expert Systems Application (DEXA ’09), pages 422-426, IEEE Comput-
er Society, Washington, 2009. ISBN: 978-0-7695-3763-4, ISSN: 1529-4188.

[27] M. Necasky. Conceptual Modeling for XML, Ph.D. thesis. 2008.

[28] M. Necasky, I. Mlynkova, J. Klimek and J. Maly. When conceptual
model meets grammar: A dual approach to XML data modeling. Data and
Knowledge Engineering, volume 72, pages 1-30, 2012. ISSN: 0169-023X.

[29] Object Management Group. Documents Associated With Business Process
Model And Notation (BPMN) Version 2.0, 2011. http://www.omg.org/

spec/BPMN/2.0.

[30] ACSI - Artifact-Centric Service Interoperation. The core ACSI artifact
paradigm: artifact-layer and realization-layer, Deliverable 1.1, 2011.
http://www.acsi-project.eu/deliverables/D1.1_The_core_ACSI_

artifact_paradigm.pdf.

[31] W. M. Meier, L. J Olsson. Tuning the Database, 2011. http://cdi.uvm.
edu/exist/tuning.xml.

[32] S. Abiteboul, P. Bourhis, B. Marinoiu, and A. Galland. AXART
- Enabling Collaborative Work With AXML Artifacts. Proceedings of the
VLDB Endowment, volume 3, issue 1-2, pages 1553-1556, 2010. ISSN 2150-
8097.

[33] P. Bourhis. Dell Supply Chain in Active XML 2.1.4. http://www.labri.
fr/perso/anca/docflow/meeting19-05-08_files/bourhis-dell.pdf.

[34] JBoss Community. Drools Expert. http://www.jboss.org/drools/

drools-expert.html.

113

http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0
http://www.acsi-project.eu/deliverables/D1.1_The_core_ACSI_artifact_paradigm.pdf
http://www.acsi-project.eu/deliverables/D1.1_The_core_ACSI_artifact_paradigm.pdf
http://cdi.uvm.edu/exist/tuning.xml
http://cdi.uvm.edu/exist/tuning.xml
http://www.labri.fr/perso/anca/docflow/meeting19-05-08_files/bourhis-dell.pdf
http://www.labri.fr/perso/anca/docflow/meeting19-05-08_files/bourhis-dell.pdf
http://www.jboss.org/drools/drools-expert.html
http://www.jboss.org/drools/drools-expert.html

	Introduction
	Introduction and motivation
	Aim of this thesis
	Organization of this thesis

	Business Artifacts and Guard-Stage-Milestone meta-model
	Motivation for Business Artifacts
	Informal description
	Business artifacts
	Information model
	Lifecycle model
	Milestones
	Stages
	Guards
	Sentries
	Tasks
	Events
	Prerequisite-Antecedent-Consequent rules
	Artifact Service Center

	Formal description
	Artifact types and GSM model
	Artifact snapshots and pre-snapshots
	Processing an incoming event
	Prerequisite-Antecedent-Consequent rules

	Active XML framework
	Introduction and motivation
	AXML description and principles
	AXML document
	Service call activation
	Merging service results
	Continuous services
	XQuery parameters
	Intentional parameters and results
	Lazy query evaluation

	AXML prototypical implementation
	Software components
	AXML peer
	Known limitations

	AXML Artifact model

	Conceptual model for XML
	Model-Driven-Architecture
	Other approaches to XML data modeling
	XSem
	PIM schema
	PSM Schema
	PSM Class
	PSM Association
	PSM Attributes
	PSM Content model

	eXolutio

	Executable model analysis and design
	Artifact evolution
	Processing b-step
	XML representation
	Rule representation
	Rules precondition
	Immediate effect
	Tasks
	Service calls location
	Service calls activation and termination
	Comparison with AXML Artifact model

	Selected approach
	Continuous calls approach
	Pure query approach

	User interface
	How to create forms
	How to extract data from forms

	Exolutio modeling analysis and design
	GSM concrete example
	Artifact information model to PIM schema
	Artifact information model to PSM schema
	Stages, milestones, tasks and events
	Adding GSM schemas

	Sentries
	Lower abstraction approach
	Higher abstraction approach
	Status change events
	External events
	Mapping sentries to lifecycle
	Event parameters
	Definition in the APSM schema
	Context switch extension
	Invariant preserving rules
	PAC rules ordering

	Incoming event binding
	Outgoing binding
	Definition of incoming events
	Specification of service calls
	Updating APSM schema

	Generating XQuery from PAC rules
	Generation overview

	Artifact Service Center Architecture
	Overview
	Main components
	ArtifactManager
	Messages
	Processing incoming event
	Processing incoming event by the query
	Outgoing event

	UI and ArtifactServlet
	Actions

	Testing, experiments and evaluation
	Implementation
	Testing
	Evaluation

	Conclusion
	Main contribution
	Future work
	GSM visualization for lifecycle models
	Artifact data distribution
	Optimization in artifacts representation

	CD contents
	Bibliography

