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jinými zájmy, narušitele. Je naznačeno, že za normálńıch okolnost́ı neńı narušitel

schopen zp̊usobit nic významného. Abychom tomu předešli a zvýšili jeho šance na

úspěch, zavád́ıme nový parametr — d̊uvěryhodnost. Zkoumáme, jakým zp̊usobem

měńı celkové chováńı. Ukazujeme, že zvýšená d̊uvěryhodnost narušitele zvyšuje

jeho vliv na ostatńı. To poté zp̊usobuje, že naivńı jedinci jsou v́ıce ochotni jej

následovat. Ukazujeme, že za vhodných podmı́nek se nakonec narušitel může stát

t́ım, kdo vede skupinu.
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Title: Disruption of movement or cohesion of groups through individuals

Author: Jǐŕı Vejmola
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Abstract: Just a few of informed and like-minded individuals, guides, are needed

to lead otherwise naive group. We look at some of the possible changes that can be

caused by the presence of another informed individual with different intentions,

an intruder. It is implied that he cannot cause anything significant under normal

circumstances. To counter that and to increase his chances of success we intruduce

a new parameter — credibility. We explore how it changes the overall behaviour.

We show that by applying it to the intruder his influence over others increases.

This in turn makes naive individuals more willing to follow him. We show that

if the right conditions are met he can eventually become the one who leads the

group.
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Introduction

It is always interesting to see what group effort can bring forth. Even more so

when there is no direct or continuous supervision. When everyone is just doing

what they should or what is expected of them. Be it a swarm of insects, flock of

birds, herd of animals, shoal of fish or just a work of nature itself. Whether it

is about building some kind of a structure, moving towards a goal or solving a

difficult problem. The results usually surprise upon successful completion or even

during the progress.

Especially movement of these groups is quite a sight to behold. Moving as a

single unit with a will of its own. Reacting to the environment and other outside

disturbances. All the while taking into account individual needs and decisions of

its members. There are usually no dedicated leaders. Instead the ones leading or

controlling the whole group change over time based on current needs or other

circumstances. Additionally, there is no rule saying that the ones in control have

to be members of the group. On the contrary, their influence over the group might

be much higher then that of regular members. Be it a predator that is about to

feast on its prey, a herding dog keeping the herd in a designated area, or just some

environmental obstacle. All of these things effectively affect the group’s further

actions. Some more than others but they are hardly ever ignored completely.

Affecting or disturbing the movement of groups using outside sources seems

rather easy even without much research. They are just of higher priority to deal

with than the need to check against others. Animals flee from predators and

avoid obstacles as long as they feel that it will increase their chances of survival

and safety. But can we do the same from inside the group? Can an individual, a

member of a group, influence others in a similar way the outsiders do? Is it just

a futile effort of said individual while in presence of others? The answer is not as

clear because it depends on many factors. Things like presence of other influential

individuals, conflicts of interest, outside disturbances, group size, overall spatial

position in a group and many more parameters affect the outcome.

Before we can continue there is another issue. The question about the need

to research these inside disturbances. Surely in a large enough group an effort of

a single individual might not have much weight. It might be futile to even try to

do something. Thinking about whole subgroups instead of individuals might be

better in many cases. That is all true. But even one individual might be able to

affect the whole group. We can see it as a “random error” in a system. Depending

on the system it can be either insignificant or it can result in dire repercussions.

Another way to look at it is whether its actions are intentional or unintentional.
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Is it actively trying to sabotage the progress? Is it trying to guide the rest to the

correct path? Or is it just some abnormality? An unfortunate mistake? There are

many cases where doing things covertly and with caution is much better approach

than letting everyone know about the circumstances. And in these cases we want

to know our chances of success and how to improve them. Or contrary to that,

how much freely can one act before the others take notice? There are many things

to consider but even one individual has some power.

In our work we presume specific starting conditions. The group is made up of

uninformed majority, informed minority and one individual with intentions dif-

ferent from others. The nature of their intentions with the group is not important

here. It does not matter if they want the group to return to the corrent path or

lure it to its doom. We simply observe how effective they are in their effort. Will

they be swayed by others and abandon their goal? Will they give up and follow

their own path? Will they succeed in persuading others? And to what extent if

yes? These are the question we try to answer.

Earlier works suggest most of the answers to our questions. Informed minority

can lead others [15, 30, 59]. Conflicts of interest can be resolved [12]. Uninformed

individuals help with extremist opinions [16]. Therefore we are adding another

parameter to the mix: social status, or credibility as we call it. Surely not all

members of a group can be equal. There are bound to be some that are viewed

differently for one reason or another. But will it really make a difference? That

is another thing we are trying to find out.

There are many actions a group can perform when it acts according to swarm-

ing behaviour. Movement is just one of them. One that is easily observed and

reproduced and that has been studied for some time now. Our work tries to shed

some light on events when these “random errors” are concerned. Or at the very

least confirm previous findings. Different environments require different compli-

ance to the rules. This heavily influences the importance of “random errors”.

Distributed systems in general are designed to handle them. However there are

still domains where even one such error might bring the whole system down. If

we twist our views a little we can look at Game of Life [25]. When one of its cells

behaves differently than others it might completely change the direction of the

evolution depending on its location.

We study specific situations under specific conditions. In no way can we ac-

complish to find a general rule applicable to a wide variety of situations. But

maybe we can at least point out a way for further research. Be it a path to follow

or even one to avoid.
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Example

This example is meant to make things a little more specific. There is default

setting from which we start and then two different scenarios. Those describe how

the herd can be disrupted by either outside or inside sources.

Default Setting: The Herd

There is a herd of sheep. Majority of its sheep are naive without any pref-

erence or not much interest to pursue their goal. Then there are some older

sheep that know the way to the source of food and basically lead the rest.

We ignore potential conflicts of interest and assume that they are already

resolved. Therefore the whole herd goes towards one goal. The herd will most

likely remain at the goal area when they arrive there. Additionally we as-

sume that no individual sheep will leave the herd by itself under current

conditions. That is, no fragmentation will occur.

First Scenario: The Predator

The herd moves as usual when suddenly a predator appears. It can be a wolf

trying to prey on the sheep or a herding dog trying to keep the sheep in

check. That is of no importance. The herd will flee away from the predator

once it gets close enough. Or rather, the nearest sheep will react first once

they notice the predator and the rest of the herd will follow.

In this case the predator is of higher priority than food. The predator be-

comes the one who controls the movement of a herd. Even if he does not

actually lead the herd he still at least restricts its actions. The herd’s normal

movement is disrupted by the presence of the predator and in certain cases

it may fragment into smaller groups.

Second Scenario: The Intruder

The herd moves as usual but somewhere inside it there is an intruder. It

can be a sick or confused sheep that thinks that it is better to go another

way. Or a sheep with more information about current environment and the

knowledge of a better source of food. It can be a “wolf in sheep’s hide” trying

to lure others away and prey on them. Again, the intention of this intruder

is of no importance. It does not matter it he wants to help the herd, bring it

harm, or if it does not really care about the outcome. We just need to know

that it is perceived by others as a regular member of the herd. A sheep like

any other.

There are now more options that can occur. The intruder might be persuaded

by others to follow them which is not desired. Or it can end up being ignored

by others and break out of a group. The herd would in that case basically

3



return to default setting. Another possibility is changing the route while the

goal remains the same. There is also a very small chance that it would take

control of the herd. The last option is fragmentation of a herd when the

intruder leaves the group with some sheep following it. All of these options

are affected by many parameters of both the intruder and those of other

sheep; like social status, zones of awareness, speed and more.

The default setting or its variations were already studied so there would not be

much benefit in studying it again. Although the first scenario is quite interesting

there does not seem to be that much need to research it more. The usage of

herding dogs or horses to control herds of cattle, sheep or other animals suggests

at least basic understanding of this subject. The second scenario is the most

interesting out of these options and not that thoroughly studied. It is the focus

of our work.

Goals

Here we present three questions as our goals. We try to provide satisfactory

answers to them through the results of this work.

1. Can one individual take control over already guided group?

When there is a conflict of interest between two subgroups, even the smaller

one can emerge victorious and lead the group. Is it true even if the smaller

one contains only one individual? It might be so but the presence of naive

individuals returns the favor to the informed majority. We try to either

confirm this or at least expand upon current knowledge.

2. When fragmentation occurs, is the intruder more prone to split

alone or in a group?

In most circumstances, we want the group to remain cohesive without any-

one splitting away from it. Not always is the result as we desire. When there

is one individual attempting to achieve his own goals, fragmentation might

become even more frequent. But how many will he take with himself if he

manages to split from the group?

3. How does higher social status of the intruder affect possible out-

comes?

Being recognized by others as someone of higher importance and being more

influential should change things up in some way. But is it enough to make

a difference if just one individual is “special”? Does it still comply with

swarm behaviour? We believe there was not much research done in regards
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to social status. We examine the effects of its inclusion on the performance

as a whole and when it is applied to previous goals.

Summary

This concludes the Introduction. Next follows Chapter 1 that covers related in-

formation; specifically topics and literature survey. It should provide basic under-

standing of the discipline. After that comes description of the model in Chapter 2.

It delves deeper into its rules and goes into greater detail about our addition of

credibility. Chapter 3 describes how we conducted our experiments; from the

tools and specific phases to individuals parameters. Chapter 4 gives an overview

of data representation and the results of each experiment phase. Finally, in Con-

clusion we discuss the results in relation to our goals and various possibilities for

future work. After bibliography and lists of tables and figures come attachments.

Attachment A provides a brief summary of our simulation tools. Attachment B

contains additional graphs and tables of statistical data that would otherwise

clutter the main text. The last one is Attachment C that contains the structure

of accompanied DVD.
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1. Background

The main theme of this thesis is swarm behaviour. While it is a part of artificial

life as well as artificial intelligence, it is also largely related to biology. We should

therefore explain some things first before going further with the core of our work.

We also mention similar works in greater detail. Some of them were very helpful

sources of inspiration for us.

1.1 Related Topics

In this section we give a brief overview of a few topics closely related to swarm

behaviour. The first is swarm intelligence and some of its properties as it can

be considered the main discipline of our work. Then the boids model which was

the first computer simulation of swarm behaviour. Lastly artificial life and some

notable simulators. There are other related topics which could provide further

insight but these should suffice as an introduction.

1.1.1 Swarm Intelligence

“Swarm intelligence is the discipline that deals with natural and ar-

tificial systems composed of many individuals that coordinate using

decentralized control and self-organization. In particular, the disci-

pline focuses on the collective behaviors that result from the local

interactions of the individuals with each other and with their envi-

ronment.”

Marco Dorigo and Mauro Birattari, 2007 [19]

The expression was introduced by Gerardo Beni and Jing Wang in 1989 [4]. It

is mainly inspired by biological systems. The individuals follow simple behavioral

rules while locally interacting with others. Intelligent behaviour of the system

then emerges as a result of these interactions. As a result, the system is capable

of much more complex tasks than the individuals themselves.

Agent-Based Model

Swarm intelligence system is an example of agent-based model which is a subset of

multi-agent systems. Each agent is an autonomous entity defined by its behavioral

rules, parameters and local perception of the environment. Definition of a goal is

optional and not always needed. Some of the properties of this model as described
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by Filippo Castiglione [6] include spatial landscape, evolution over time, and both

discrete or continuous time and space. Agent-based models are also known as

individual-based models.

There are many different tools available to use, like Breve [5], JADE [35],

MASON [47], NetLogo [54], Repast [60], Swarm [65], and many more. Finding the

most suitable tool might be difficult. Fortunately Robert Allan [1] and Cynthia

Nikolai with Gregory Madey [55] made surveys to ease this process. In recent

years, researchers started to take advantage of graphics processing units [22, 45].

This allows them to realize simulations of much larger scope while reducing its

time complexity.

Emergence

Emergence is a concept of properties, functions, behaviours or patterns arising

from interaction of a number of relatively simple entities. The arising systems are

usually much more complex than the entities who created them. Emergence is

interdisciplinary—being used as a principle in philosophy, science, art, religion,

and others. It is viewed with small differencies in each of them. In swarm in-

telligence, it is closely related to self-organization. Various people came up with

different definitions [13, 27] but the basic idea remains the same.

Nature itself is full of emergent structures and behaviours. For example,

snowflake crystal patterns, termite mounds, ripple patterns in sand dunes or

water, hurricanes, swarming of animals, inner working of ant colonies and many

more.

Stigmergy

Stigmergy is one of the key concepts in the field of swarm intelligence. It is a

form of self-organization, a mechanism of indirect coordination between agents.

The principle is that actions of agents leave traces in the environment which

then stimulates or reinforces the usage of subsequent actions. This leads to emer-

gence of a seemingly systematic activity. It allows even extremely simple agents

to collaborate and produce complex structures without any sort of planning or

control.

The term was introduced by French biologist Pierre-Paul Grassé in 1959 who

was studying termites [28]. It is derived from the Greek words stigma meaning

“mark, sign” and ergon meaning “work, action”.
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Algorithms

Swarming behaviour inspired the creation of many different algorithms, usually

used for optimization as metaheuristics. They can be divided into two goups

based on their approach. The Lagrangian approach is an agent-based model and

works with individual agents. The Eulerian approach is a hydrodynamic approach

modelling the oveall dynamics. It works with the density of the swarm.

Among the most well known are Ant Colony Optimization and Particle Swarm

Optimization. Ant Colony Optimization was proposed by Marco Dorigo in 1992

[18]. The basic idea is finding the best path on a weighted graph. It was inspired

by foraging behaviour of ants. Particle Swarm Optimization was developed by

James Kennedy and Russell Eberheart in 1995 [37]. It is based on bird flocking

behaviour. Particles representing solutions move in the search space towards the

locally best particle. Other algorithms include for example Stochastic Diffusion

Search [53], Self-Propelled Particles [67], Artificial Bee Colony Algorithm [36],

Magnetic Optimization Algorithm [66], Krill Herd Algorithm [24] and more.

1.1.2 Boids

The boids model was developed by Craig Reynolds in 1986 [61]. It was originally

meant as a new method to realize flock motion in computer animation as available

alternatives were insufficient. In the basic flocking model boids follow three simple

steering rules, also shown in figures 1.1a to 1.1c:

• Separation: Steer to avoid crowding local flockmates.

• Alignment: Steer towards the average heading of local flockmates.

• Cohesion: Steer to move towards the average position of local flockmates.

The resulting steering force is calculated as a weighted sum of all parts. Hi-

erarchical approach is also possible. Additionally, each boid only percieves other

boids that are in its neighbourhood which is defined by distance and angle, see

figure 1.1d. There can be different neighbourhood for each of the basic steering

rules. More steering behaviours mentioned by Reynolds [62] are listed in table 1.1.

Basic implementation of the boids model has an asymptotic complexity of

O(n2) which becomes a problem for very large groups. It also goes against the

nature of locality because everyone checks everyone else, not just those in vicinity.

This problem can be solved by using spatial data structures or parallel simula-

tion. Since its introduction, the boids model was used and extended in many

simulations of swarm behaviour. The name boid comes from bird-like or bird-oid.
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Behaviour Description

Alignment Steering towards the average heading of local flockmates.

Arrival Same as Seek but slowing down to stop as it gets closer
to the target.

Cohesion Steering to move towards the average position of local
flockmates.

Containment Variation of Path following. Steering to remain within a
certain region.

Evasion Steering away from a moving target.

Flee Steering away from a static target.

Flocking Combination of Separation, Cohesion and Alignment.

Flow field following Steering to align with a local tangent of a flow field.

Leader following Steering to follow another moving individual while stay-
ing out of his way.

Obstacle avoidance The ability to maneuver by dodging around obstacles.

Offset pursuit Same as Pursuit but tries to pass near the target, not
into it.

Path following Steering along a predetermined path.

Pursuit Steering towards a moving target.

Seek Steering towards a static target.

Separation Steering to avoid crowding local flockmates.

Unaligned collision
avoidance

Keeping individuals from running into each other. Avoid-
ing moving objects.

Wall following Variation of Path following. Maintaining a certain offset
from a “wall”.

Wander Random steering.

Table 1.1: Common steering behaviours.
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(a) Separation (b) Alignment (c) Cohesion

(d) Neighbourhood

Figure 1.1: Basic steering rules and neighbourhood for boids. Pictures taken from

http://www.red3d.com/cwr/boids/.

1.1.3 Artificial Life

“Artificial life is the study of artificial systems that exhibit behavior

characteristic of natural living systems. It is the quest to explain life in

any of its possible manifestations, without restriction to the particular

examples that have evolved on earth. This includes biological and

chemical experiments, computer simulations, and purely theoretical

endeavors. Processes occurring on molecular, social, and evolutionary

scales are subject to investigation. The ultimate goal is to extract the

logical form of living systems.”

Christopher Langton, 1987 [41]

Throughout history people were fascinated with the idea of artificial life and

how to create it. There are more than a few examples in fiction, like Ovid’s

Pygmalion, Mary Shelley’s Frankenstein, Carlo Collodi’s Pinocchio, Rabbi Loew’s

Golem and many others. One of the first people closer to computer science to

approach artificial life was John von Neumann who constructed the first self-

replicating automata [68].

It was not until 1987 when Christopher Langton organized the first “Workshop

on the Synthesis and Simulation of Living Systems”, otherwise known as Artificial

Life I, and in doing so helped in founding of artificial life as a discipline we know

today. He was interested in the field even before this and continued with his

involvement [39, 40, 42, 43]. There are three main approaches: soft from software,

hard from hardware and wet from biochemistry. Artificial life is often abbreviated

ALife or A-Life.
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Game of Life

The Game of Life, or simply Life, is a cellular automaton and a zero-player game.

It was invented in late 1960s by John Conway and published by Martin Gardner

[25]. Since then it has attracted much interest in both scientific and amateur

communities. It takes place on an infinite two dimensional grid of cells which can

be alive or dead. Each cell has eight neighbours and its state is determined by a

set of rules which are described in table 1.2. All cells are updated simultaneously

at discrete time steps or generations starting from initial configuration called

“seed”.

There are many patterns with different complexity of behaviour. Among the

basic ones are:

• Still life: stable with no changes

• Oscillator: repeats itself after a certain period

• R-Pentomino: studied extensively by Conway, does not end quickly but

stabilizes

• Glider: moves across the environment

• Glider gun: grows indefinitely, generates gliders

• Puffer train: produces objects while moving

Representation Rule

1. death by under-population Any alive cell with fewer than two live neigh-
bours dies.

2. sustainable life Any alive cell with two or three live neighbours
remains alive.

3. death by over-population Any alive cell with more than three live neigh-
bours dies.

4. birth Any dead cell with exactly three live neigh-
bours becomes alive.

Table 1.2: Rules of the Game of Life and their representation.

Tierra

Tierra is a computer simulation developed by ecologist Thomas S. Ray in the early

1990s [58]. It simulates open-ended evolution of computer programs which com-

pete for central processing unit time and memory access. The programs evolve

through mutation, self-replication and recombination. Contrary to the conven-
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tional computer models of evolution there is no fitness function, only survival or

death.

Ray used Tierra to explore basic processes of evolutionary and ecological dy-

namics. The results were more than successful as he could observe things like

competitive exclusion and coexistence, host/parasite density dependent popula-

tion regulation, the effect of parasites in enhancing community diversity, evolu-

tionary arms race, punctuated equilibrium, and the role of chance and historical

factors in evolution.

1.2 Other Works

Most of the works about swarming come from biology related fields. They focus

on all sorts of its aspects. For example underlying mechanics [30, 44, 59], decision-

making [9, 10], conflicts of interest [11, 12], and group size [29, 32], to name a few.

Some works deal specifically with human crowds [21, 31, 46] or certain animals

[2, 3, 38]. There are also lots of works that summarize others while adding their

own thoughts or findings [14, 63, 69].

Apart from the focus of a work the next biggest difference between them is

probably how their experiments and observations are conducted. The first option

is to work with living creatures, be it fish, birds, ants, bees, or any other. This

is usually limited to a specific species unless more of them are actually required.

Depending on the goals and other circumstances we can either observe the crea-

tures in their natural environment or under laboratory conditions. However, it is

not always possible or desirable to use living creatures.

The second option is to use a model simulating certain behaviour. Even in this

case there are lots of different possibilities and models to suit various needs. From

simple spatial models to more complex underlying equations and mechanics. Most

parameters are often set to reflect a certain species while others are observed to

see what effect they have. As technology moves forward it allows for more robust

and precise simulations. Together with the knowledge obtained from “natural”

experiments the results only get more believable.

We selected a few works which we believe are closely related to our own. We

give a brief summary containing information like basic goals, obtained results,

and used methods. Each of them is listed under a theme that we think represents

it well as a whole.
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1.2.1 Informed Minority

In 2000, Stephan Reebs published a paper about foraging movements of fish

schoals and the possibility of them being led by informed minority [59]. The

important thing to note is that he used living fish for his experiments, specifically

a schoal of 12 golden shiners, Notemigonus crysoleucas. He trained them to expect

food at a specific time period of day in the same location. After that he combined

the trained fish with naive ones in ratios of 5:7, 3:9, and 1:11 to observe the

resulting behaviour.

The results were satisfactory. While naive-only shoals mainly remained in

the “safe zone” and did not go towards the food the situation changed when at

least one trained fish was present. The effect was stronger when the number of

experienced fish was greater. Thus it showed that even small informed minority

can lead the whole group.

1.2.2 Decision-Making

Further insight into leadership and decision-making was brought by Couzin at al.

in 2005 [15]. They based their research around attributes that might affect the

performance of group leadership. These included group size, number or proportion

of informed individuals, transfer of information, and various additional knowledge,

like who is informed or how good is one’s information compared to others.

To show these things they used a simple spatial model. Each individual had

two neighbourhoods, a smaller one for separation of higher priority and larger one

for cohesion and alignment when there was no one to separate from. Informed

ones had the knowledge of desired direction and a degree of assertiveness which

determined their own preference over the one of their neighbours. There were

some modifications for specific tasks when necessary, for example updating one’s

assertiveness depending on others.

They found out that only a small proportion of informed individuals is re-

quired to successfully guide a group. What is more, the larger the group the

smaller the proportion of informed ones is needed. Furthermore, there does not

have to be any explicit transfer of information between individuals for leadership

to emerge. When there are more informed subsets with different preferences the

result depends on their respective sizes and quality of their information. Overall

this paper was very successful and it became one of the most cited sources in

related fields of study.
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1.2.3 Conflict of Interest

Although self-organizing groups can be led by their informed members there are

bound to be cases when opinions differ and a consensus needs to be made. These

conflicts of interest are the main focus of a paper by Conradt et al. from 2009 [12].

They used a spatial model based on Couzin’s one [15] to determine how certain

behavioral parameters affect the outcome.

The individuals were divided into two subgroups, where the majority was ei-

ther big and contained about 80% of all individuals or it was small and had only

one more member than the minority. Each of the subgroups prefered either of

the two distinct targets in opposite directions. In other words, there was no unin-

formed individual. Additionally, members of the same subgroup shared behavioral

parameters: movement speed, social attraction range, and degree of assertiveness.

All of them could have one of three different values. The simulations were done

for every combination of group size and parameter values.

First thing the results showed was that having additional knowledge, like

parameter values of other subgroup, does not help much in accomplishing one’s

goal. Another one is that there is no sure way to get everything. There are trade-

offs. While increasing one’s own degree of assertivenes increases their leading

rate it also increases fragmentation risk. The outcome is dependent on priorities

of subgroups and their individuals but generally there are four different ones.

Fragmentation and leading by majority are those that one would expect. Then

there is leading according to “need” when the group is guided by those for which

reaching their target is most crucial. The last one is leading according to “social

indifference” when the group is guided by those for which group cohesion is least

important.

1.2.4 From Naivety to Democracy

Informed individuals are able to guide a group. The ones with stronger desires

might become leaders even if they are in minority and everyone alse has an opinion

of their own. However, what if there are some uninformed individuals? How do

they affect the outcome? Do they affect it at all? It is probably a common thing

to occur but up until 2011 there was not much research done in regards to it.

Couzin et al. took it upon themselves to shed some light on these circumstances

[16, 17].

To do so they used a variety of different approaches. The first was a spatial

model based on the one they used in 2005 [15]. The second was an adaptive

network model. It was inspired by voter model by Holley and Liggett [33] and

built on a modeling approach proposed by Huepe et al. [34]. The third was a
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convention model based on a convention game described by Young [71]. The last

one was an experiment with schooling fish for which golden shiners, Notemigonus

crysoleucas, were used.

Once again they confirmed that informed minority is able to take control over

informed majority if there are no other agents present. However with the pres-

ence of uninformed individuals the situation changed as the opinionated minority

could no longer enforce their decisions on others. They showed that uninformed

individuals help in acquiring equal representation of preferences and by doing so

they promote democratic outcome.
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2. Model

A properly defined model is needed before we can conduct any experiments. We

introduce its basic features to get a general idea about it. We also mention how

certain things work specifically in our case to not cause any misunderstandings.

We then inspect movement rules in more detail. We should know what makes

agents move the way they do. Finally, we explore credibility as it is an important

addition to our work. We look at the reasons for using it and show how it is

included in the model.

We implemented the model as part of our custom toolset called Muragatte

[52] which is described in Attachment A.

2.1 Description

We use a spatial model based on Couzin et al.’s [15]. It has been used with

some modifications in other works [12, 16] from which we also take inspiration.

Moreover, it is easy to understand. Since it is tried out and proved to work we

can focus on more important things in our research.

The behaviour of each agent is determined by movement rules. Although those

are same for all agents there are still some differencies depending on current

situation and the agents themselves. However, there is no direct communication

between agents. They cannot tell which ones are informed and which are not.

Or even what is their target. The only information they are able to obtain is

current position and direction of their neighbours and only them. There is another

parameter they have access to but more about it is mentioned later.

2.1.1 Modifications

We have made a few modifications to the model to suit our needs. The first minor

one was the use of 2-dimensional space. By its definition the original model is

suitable for both 2-dimensional and 3-dimensional space but we decided for fewer

dimensions. There does not seem to be any negative effects in doing so. On the

contrary, it made various things easier for us. With fewer dimensions we do not

need as much time and space for our computations and the optional visualizations

are more understandable.

The next set of changes is related to movement rules. Informed individuals in

the original model have knowledge about the direction to the target. We however

use target’s position. It allows for better navigation of agents since they can

locate their target from anywhere. Another minor change is that we explicitly
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define agent’s behaviour when he has no neighbours. Uninformed ones just wander

around. They walk randomly until they find a neighbour. Informed ones head

straight to their target. The exact movement rules are detailed later.

The last notable change is the addition of social status, or credibility as we

call it. It determines how much an agent influences others when the alignment

steering rule is applied. In other words, the higher one’s degree of credibility is

the more strongly is his direction decision heard by his neighbours. We focus on

it in more detail later in this chapter.

2.1.2 Basic Elements

We use various terms that should be quite familiar and already known. However

there can be a lot of variations in their exact definition. Therefore, here we present

their meaning in our model.

Neighbourhoods

Each agent has two neighbourhoods:

• Zone of Attraction (ZOA) It is defined by social attraction range ρ

and angle of awareness β. Neighbours from this zone are used by steering

rules of cohesion and alignment. Alternatively, we refer to it as Field of

View.

• Zone of Repulsion (ZOR) It is defined by repulsion range α and angle

of awareness β. Neighbours from this zone are used by steering rule of

separation. Alternatively, we refer to it as Personal Area.

On all occasions ρ > α and 0◦ < β ≤ 180◦. Figure 2.1 shows the relations.

Target

Target is an environmental objects or a place that informed agents might try to

reach. It is defined by its position g of x–y coordinates. It can be either a point

in space or a circular area of defined size. All targets are completely ignored by

naive agents even if they have them in sight. Informed agents react only to their

own target. Alternatively, we refer to it as Goal.

Agent

Agents are entities acting according to movement rules which are detailed later.

They have a size of 1 body length which is the main measurement unit in the

model. When in group, we generally divide them into three categories. Naive

17



Figure 2.1: Agent’s neigbourhoods

agents are uninformed. They do not recognize any target and cannot actively

seek them. Unless they have at least one neighbour they just wander around.

Guides are members of informed subgroup who share the same target. They form

a majority of all informed agents. They should be the most likely to lead the

group. Intruders are all other informed agents that do not share their target with

guides. Apart from the rules the agents are defined by a couple of parameters

which are summarized in Table 2.1.

Parameter Symbol Description

Position c The x–y coordinates.

Direction v Unit vector representing angle.

Speed s The distance one moves at each full
step.

Degree of Assertiveness ω Preference of oneself over group.

Degree of Credibility η Social status, see Section 2.3.

Maximum Turning Angle θ How much can one turn at each full step.

Zone of Attraction ZOA See Neighbourhoods.

Zone of Repulsion ZOR See Neighbourhoods.

Target g Optional. The x–y coordinates of target
if it is specified.

Table 2.1: Parameters defining an agent. The presence of an index, like ci, denotes
that the parameter value is for specific agent. Otherwise, the value is the same
for all agents.
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Group

Two agents are in a group as long as at least one of them is in the other’s zone of

attraction. By repeatedly applying this rule we get the whole group. When the

agent’s zone of attraction is full the agents always see each other. Otherwise, an

agent might be part of a group even if he does not see anyone else. Figure 2.2

illustrates various cases.

Main group is a group with the most members, the biggest one. There can

be only one main group at any time even if there are others that share the same

highest number of members. The system decides which one of them it should be.

Stray agent is an agent that is not a member of any group.

(a) β = 180◦, not in group (b) β = 180◦, not in group (c) β = 180◦, in group

(d) β < 180◦, in group (e) β < 180◦, in group (f) β < 180◦, not in group

Figure 2.2: Grouping variants. (a) Agents are too far from each other. (b) Agents
do not see each other even though their neighbourhoods intersect. (c),(d) Agents
see each other. (e) One agent see the other one while he is not aware of him. (f)
Agents do not see each other but they would if β was bigger.

2.2 Movement Rules

Movement rules make up the core of these kinds of models. They determine

the behaviour of individual agents and therefore the whole system. We let them

proceed in three stages. The first one is for desired direction which is based on

current situation and the agents themselves. The second one is adjusting which is

more or less the same for all agents. The third one is movement itself where the

agents just move according to new values. Now follows a short informal summary

of an agent’s behaviour during each step. For the exact process see Figure 2.3.
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For start, an agents checks for anyone too close so that he can get away

from them. If there is no one like that he looks for other neighbours.

If he has some he attempts to remain with them. Informed agents

additionally combine it with their desire to reach their target. When

they have no neighbours they either just randomly wander around in

case they are uninformed or head straight to the target when they are

informed. After this come adjustments due to environment, their own

parameters, and noise. At last, the agent moves to a new position.

initialize d;
if anyone in ZORi then

d← KeepDistance(i) ; // See Equation (2.1)

else if anyone in ZOAi then
d← Socialize(i) ; // See Equation (2.2b)

else
d← SeekOrWander(i) ; // See Equation (2.3)

end
d← StayInArea(i, d) ; // See Equation (2.4)

d← ProperTurn(i, d) ; // See Equation (2.5)

d← ApplyNoise(i, d) ; // See Equation (2.6)

UpdateMovement(i, d) ; // See Equations (2.7a) and (2.7b)

Figure 2.3: Updating an agent according to movement rules. Applies to specific
agent i.

Desired Direction

Keeping Distance

The highest priority for all agents is to be separated far enough from others.

When an agent i has any neighbours j in his zone of repulsion he will only think

about getting away from them. Each agent tries to keep minimum distance α

and up to angle β between himself and other agents. This behaviour remains

the same whether the agent is informed or uninformed. If there are not any

nearby neighbours the agent uses other means to determine his desired direction

di(t+ ∆t).

di(t+ ∆t) = −
ZORi∑
j 6=i

cj(t)− ci(t)
|cj(t)− ci(t)|

(2.1)

j ∈ ZORi, j 6= i . . . agent i not included

ck(t), k ∈ {i, j} . . . position of agent k at time t
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Socializing with Others

Not always will an agent have neighbours in zone of repulsion. In those cases

he turns his attention to his zone of attraction with social attraction range ρ

and angle of awareness β. His next action is dependent on his neighbours within

it. First, he determines social component ei which is a combination of cohesion

and alignment towards his neighbours j. In the case of alignment, agent’s own

direction is also accounted for.

Uninformed agents use social component directly as their desired direction.

On the other hand, informed ones weight it against their target in position gi.

Weighting is done through their degree of assertiveness ωi. At 0 an agent com-

pletely ignores his target. At 1 an agent tries to find a compromise between the

two. As it goes past 1 an agent is more in preference with reaching his target.

ei(t+ ∆t) =

ZOAi∑
j 6=i

cj(t)− ci(t)
|cj(t)− ci(t)|

+

ZOAi∑
k

vk(t) (2.2a)

k ∈ ZOAi . . . both agent i and his neighbours j are included

vk(t) . . . direction of agent k at time t

di(t+ ∆t) =


ei(t+ ∆t)

|ei(t+ ∆t)|
+ ωi

gi − ci(t)
|gi − ci(t)|

if informed

ei(t+ ∆t) if uninformed

(2.2b)

ωi . . . degree of assertiveness of agent i

gi . . . position of agent i’s target

Without Companions

When an agent has no neighbours in either of his zones his behaviour de-

pends on his knowledge about target. Informed agents just go straight to their

target since there is nothing else to disturb them. On the other hand, uninformed

agents just wander around. That is done by applying a wandering component Π.

It rotates their current direction by a sum of a random angle from uniform dis-

tribution, ranged (−θ∆t, θ∆t), and a random angle from gaussian distribution,

centered on 0, with standard deviation of 10◦.
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di(t+ ∆t) =


gi − ci(t)
|gi − ci(t)|

if informed

vi(t) + Π if uninformed

(2.3)

Π . . . wandering component, a random angle to rotate by

Final Adjustments

Containment

The first adjustment is to remain inside the operating space if the area is

closed, like an aquarium. An agent tries to avoid the wall only when he faces it

and is closer than ρ towards it. He does so by adding avoidance component d⊥i to

his desired direction. d⊥i is a unit vector perpendicular to agent’s desired direction

di(t+ ∆t) and opposite the wall.

d̂i(t+ ∆t) =


di(t+ ∆t)

|di(t+ ∆t)|
+ d⊥i if wall ahead and closer than ρ

di(t+ ∆t) otherwise

(2.4)

d⊥i . . . avoidance component, a perpendicular of di(t+ ∆t)

Turning

The second adjustment is to comply with one’s own maximum turning angle

θ∆t. There is no change as long as the angle between current direction and desired

one does not exceed θ∆t. Otherwise, desired direction is taken as current direction

rotated by θ∆t towards desired direction.

d̄i(t+ ∆t) =

{
d̂i(t+ ∆t) if 6

(
vi(t), d̂i(t+ ∆t)

)
≤ θ∆t

vi(t)± θ∆t otherwise
(2.5)

6 (a, b) . . . angle between vectors a and b

θ∆t . . . agent’s maximum turning angle per time step ∆t

Noise

The final adjustment is the addition of noise Σ which is done by rotating (ad-

justed) desired direction by a random angle. It is taken from a circular-wrapped

gaussian distribution, centered on 0, with standard deviation σ = 0.01 radians.
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d′i(t+ ∆t) = d̄i(t+ ∆t) + Σ (2.6)

Σ . . . noise, small random angle to rotate by

Moving Forward

The last stage during a step is to update the agent according to newly obtained

data. First we set new direction by normalizing a desired direction with adjust-

ments. Then we can move the agent to his new position. Speed si and time step

∆t determine how far will an agent move.

vi(t+ ∆t) =
d′i(t+ ∆t)

|d′i(t+ ∆t)|
(2.7a)

ci(t+ ∆t) = ci(t) + vi(t+ ∆t)si∆t (2.7b)

si∆t . . . speed of agent i per time step ∆t

2.3 Credibility

Individuals differ from one another. No one is the same as someone else. Everyone

is unique to some extent. Age, gender, experience, knowledge, impression; these

are just a few attributes contributing to it. Even if we do not intend to or mean to

we treat and react to each other differently. It should not be considered inherently

as a bad thing but actually as something natural. It is one of the things that form

relationships between individuals. What does all of this have to do with swarming

behaviour? Actually a lot. At least if we consider natural groups.

For example, there is a large variety of individuals in migrating animals: large

and small, young and old, male and female, children and parents, or even different

species. In especially large groups, not all members would be related to each other.

The opposite is much more probable. Animals with strong family ties would most

likely stick to those of their own while keeping track with the group. Others might

rely on their leader, an alpha male or female. Children would keep close to their

parents. All kinds of different subgroups and their resulting relationships would

be present.

This does not occur as much in artificial models because most models expect

individuals to be virtually the same or with minimal differences. That is under-
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standable as experiments are possibly easier to carry out and reproduce. Even

in models that tackle with distinct subgroups there are usually only changes in

basic attributes like speed or social attraction range. In other words, only existing

attributes and parameters are changed. We do not deny their effect on the whole

performance but we cannot consider it being related to relationships either. It

does not really affect others as much or as directly as it could.

We use this opportunity to change that. In many relationships there is some-

one with an upper hand, someone superior to others. Credibility, charisma, au-

thority, importance, seniority, social influence, social status, etc. There are many

words and terms we can use to describe it but the general meaning stays the same.

Influence over others. For the ones who follow it determines how much they can

trust others and depend on them. For the ones who are followed it determines how

much attention their decisions get. But how significant is its presence? To what

extent does it affect the whole system? A research of its own would be necessary

to cover it thoroughly. The focus and scope of our work does not allow us to do

so. Our coverage is more of an introduction to the subject with some suggestions.

Of course, this is not exactly something completely new. Social influence is

thoroughly researched in the field of social psychology. We can find many examples

in there that encourage us to use credibility as a parameter with which to extend

the model. Stanley Milgram showed in his experiment that people are susceptible

to obedience in front of an authority figure [49]. Robert Cialdini defined six key

principles of influence [7]: reciprocity, commitment and consistency, social proof,

authority, liking, and scarcity. He and Noah Goldstein also contributed to the field

of conformity [8]. Another related and interesting concept is minority influence

which describes how majority can be affected to behave according to minority

[51]. Although most of these works focus on humans it should still be applicable

to other species as well. At least to some extent.

2.3.1 Reason for Extension

We should have at least a basic understanding about what credibility means for

us. But why do we need it? Why are we extending our model with it? One of the

main reasons was to bring something new to the research, to obtain new results.

We did not want to just reproduce previous ones under the guise of a different

purpose. That would be meaningless and counter-productive. So we looked at

possible solutions to our little problem. We wanted something with explainable

foundations that would make sense and be reasonable to include. Thus we came

up with credibility.

We demonstrate our reasoning for this on two examples:
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Example 1

Within a group G there are individuals A, B, and C. Individual A is gen-

erally regarded as a leader and the whole group counts on him. They will

follow him no matter what. On the other hand individual B is basically a

stranger who has just recently joined the group. Nobody trust him yet to give

his choice much weight. Individual C is highly regarded by subgroup S. His

influence over them is even higher than that of A’s. Each of these individuals

is trusted or respected on a different level. Now imagine that something un-

expected happens. The reaction of the group should differ greatly depending

on which one of them changes their behaviour first.

Example 2

A lesson at school is filled with various students and a teacher. Even though

the teacher is an authority not all students will react the same way when

he gives them an assignment to do. The studious ones would properly note

it down with all the details. Others might take a brief note or take it into

consideration. There might even be those who would outright ignore it be-

cause they just do not care. However our focus should be on those who did

not pay any attention or misheard but still want to know what is going on.

They should ask someone who can provide them with reliable information

even though they would normally not interact with them. Close friends are

useless if they did not pay attention either or if they like to fool us.

2.3.2 The Place in a Model

Being determined about the use of credibility and understanding what it stands

for is only half way to solve the problem. There is still the issue of incorporat-

ing it into the model. There are many different ways to do so; some of which

are discussed later. The final decision was quite easy to make due to our own

restrictions. First, we wanted to keep it simple so that it does not feel intrusive

in the model. Second, we already had a prototype implementation of the model

that was working and we did not want to make huge changes to it. Overall, we

wanted it to be easy to comprehend.

The degree of credibility η we ended up with affects how agents perceive the

direction vector of their neighbours during alignment steering. Each agent has

his own value that stays the same for the duration of simulation. It does not

have any direct connection with cohesion of agents but it can still affect it. The

degree of credibility basically puts the weight behind an agent’s suggestion of

what direction to take. Another solution would be necessary if direction vectors

v were not guaranteed to be unit vectors.
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The following equation replaces Equation (2.2a) from movement rules. In the

alignment component the direction vectors vj of all neighbours found in zone of

attraction are multiplied by their respective degree of credibility ηj before being

summed together. After that, a plain direction vector of current agent is added

as well. Agents do not apply their own degree of credibility because it represents

how they are perceived by others.

ei(t+ ∆t) =

ZOAi∑
j 6=i

cj(t)− ci(t)
|cj(t)− ci(t)|

+

ZOAi∑
j 6=i

ηjvj(t) + vi(t) (2.8)

ηj . . . degree of credibility of agent j

Default value for the degree of credibility is 1 with which it appears as if it was

not applied at all. When the value grows from 1 up so should an agent’s influence

over others in relation to alignment. As it goes closer to 0 the agent’s direction

should be taken less and less into account and he should be completely ignored

when it equals 0. Negative values should suggest taking the opposite direction.

Please note that we were focusing on values greater or equal to 1. Values lesser

than 1 were not tested or even used and their effect is mostly assumed based on

equations.

2.3.3 Variety of Usage

The way we have used credibility and incorporated it into our model is just one

of many. Surely it is not the only one. It might not even be the correct one since

we based it more on our intuition than on proper scientific foundations. Therefore

here we discuss what are some of the other possibilities, or rather properties, of

credibility.

Global versus Local

Credibility is global when it is seen by everyone the same way. Whenever it is

applied it is done under the same conditions no matter for which agents it is

meant. This is also true in our case. It is easy to do and keep track of.

It is local when each agent might be regarded differently by other agents. For

most he is just one of the lot, for a selected few he is a leader. Some might even

ignore him. It is probably more closer to nature than the global approach. As

an example, everyone in the group would depend on elders but children would

depend even strongly on their parents.

Generally, we can call it familiarity. It more clearly represents additional ties
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between individual agents and subgroups.

Static versus Dynamic

With static approach the credibility is applied in the same manner at all times

during a simulation. In the most trivial case it might be just a numerical value

like in our model. In other cases it might depend on the agent that is asking.

The approach is dynamic when the degree of credibility changes over time or

depending on various circumstances. It might be based on number of following

agents, succeeding or failing in reaching a goal, providing valuable information,

and so on. It might get really complex. The main restriction we have here is the

model we use and what it allows us to do.

With some stretch we can also call static and dynamic approaches long-term

and short-term respectivelly.
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3. Experiments

All of the experiments were done in our custom simulation toolset Muragatte [52]

which is more covered in Attachment A. It was run on Windows 7 Professional

with Service Pack 1 on ASUS F3JP notebook (Core2Duo processor @ 1.83 GHz,

2 GB). In this chapter, we discuss values of various parameters and the structure

of our experiments.

3.1 Parameter Space

Parameters can be divided into two groups. The first group defines experiments

in general. They are the same for all experiments. The second group is composed

of parameters we observe. They are different based on concrete experiment. We

need to set values for both the defining ones and the observed ones. Most of these

values are based on earlier works [12, 15, 16]. However, not all of them are directly

copied. We made minor changes or decided on our own values when we felt it was

necessary. There are also new parameters in our model and their values had to

be somehow set as well. Our specific decisions are discussed in their respective

sections. Additionally, we also define values of parameters that were used by our

toolset to initialize and run the experiments.

3.1.1 General Setting

Starting Conditions

All experiments are performed in the same closed area of width 200 and height

150. There are two targets, a primary one for guides and a secondary one for

intruder, both of which are circles with diameter of 5. They return uniformly

distributed random position from inside of them when it is requested. All agents

start at uniformly distributed random position inside a spawning area which is a

square of size 3. They start with uniformly distributed random direction covering

the full range of 〈−180◦, 180◦〉. Figure 3.1 further details the structure.

Length

Each experiment was run for 2500 steps with 200 replications and time per step

∆t = 0.1. More replications would be difficult to do due to hardware limitations.
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Figure 3.1: Environmental area used in experiments

Counts

Group sizes were multiples of 10 in the range from 10 to 100. There were always 5

guide agents and 1 intruder agent. An exception to this are reference experiments

in which there was no intruder or even no guides. Table 3.4 shows all the cases.

3.1.2 Agent Setting

Shared

All agents regardless of their type have speed s = 1, turning angle θ = 115◦, angle

of awareness β = 180◦, repulsion range α = 1.5 and social attraction range ρ = 7.

Please note that the distance from one agent to another element, be it also an

agent or a target, is measured from the center of the one asking to the bounding

circle of the other element. In the case of repulsion range it means that agents

try to maintain a free space of minimum distance α′ = 1 between themselves. We

slightly increased the value of social attraction range ρ from the one used in other

works [15, 16] to decrease number of fragmentations. We did not use higher values

because they produced undesirable behaviour which is illustrated in Figure 3.2.
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(a) Ref: Naives, ρ = 7 (b) Ref: Guided, ρ = 7 (c) With Intruder, ρ = 7

(d) Ref: Naives, ρ = 10 (e) Ref: Guided, ρ = 10 (f) With Intruder, ρ = 10

Figure 3.2: Inappropriate behaviour with high social attraction range ρ for N =
50. Intruder’s parameters in (c) and (f) are ω = 0.5 and η = 1. (a)–(c) shows ρ as
it was used in experiments. (d)–(f) shows faulty behaviour when ρ is increased.
The whole group remains in a stable state and does not really move even if there
are informed individuals. This behaviour was the same for other group sizes except
for N = 10, N = 20 and partially N = 30.

Specific

Degree of assertiveness ω, degree of credibility η and target are dependent on

agent type. Table 3.1 gives a summary of those values. Experiments were done

for all combinations of intruder’s assertiveness and credibility. The values of cred-

ibility were based on following assumptions:

• ηnormal = 1 base value

• ηhigh = 2 slightly higher than normal but not by much

• ηvery high = 5 should rival guides in influence

• ηextra high = 20 much higher than guides

Type Assertiveness ω Credibility η Target

Naive 0.1 1 —
Guide 0.5 1 Primary
Intruder {0.5, 1, 3} {1, 2, 5, 20} Secondary

Table 3.1: Agent specific parameters
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3.1.3 Application Setting

Seeds

It is important to get results out of experiments but it is even more important

to be able to reproduce them. Defining a specific seed value is necessary for

that when using randomization of any sort. Our simulation tool runs batches of

experiments based on group size so we only needed ten of them. The exact seed

value for each group size is shown in Table 3.2.

N Seed N Seed

10 120130207 60 620130208
20 220130207 70 720130208
30 320130207 80 820130208
40 420130207 90 920130209
50 520130207 100 1020130209

Table 3.2: Seeds used in experiments

The Rest

Table 3.3 summarizes other setting for the application. The definition of scene,

species, and styles were loaded from their respective files that were provided.

Experiment Output

Runs 200 Save History No
Length 2500 Take Snapshots Yes
FOV Range 7 Snapshot Scale 5
FOV Angle 180 Snapshot Alpha 32

Table 3.3: Summary of used MuragatteThesis setting. Parameters are listed as
they appear in the application.

3.2 Progress

We divide all the experiments into a few types or stages as we go through them

towards our goals. They differ in group composition, as is shown in Table 3.4,

and some parameter values. The whole structure is as follows:

1. Reference These experiments consist of two subtypes: Naives and Guid-

ed. Both of them are without any intruders. In this sense they are sort of

a starting point and the basic source to compare against. They were also
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used to determine whether groups behave as they should when parameter

values were being set. Figure 3.2 provides an example of this.

(a) Naives A trivial case with only naive individuals. It is expected that

they remain mostly cohesive and move randomly inside the area.

(b) Guided Some of the naive individuals are replaced with guides.

Apart from cohesion the group is expected to move towards the guides’

target instead of moving randomly.

2. No Credibility There is an intruder instead of one naive individual.

Credibility is set to ηnormal = 1 for all individuals which makes it the same as

if it would not be used at all. Only intruder’s degree of assertiveness changes

its value to ωmedium = 0.5, ωhigh = 1, and ωvery high = 3. To some extent this

is also partially a reference for further experiments because previous works

[12, 15, 16] suggest either minimal disruption by intruder for lower degrees

of assertiveness or their splitting from group at higher levels.

3. With Credibility These are the main portion of our experiments that

utilize the addition of credibility into the model. There are the same con-

ditions as before but now even intruder’s degree of credibility goes through

different values. It is gradually increased from ηnormal = 1 to ηhigh = 2,

ηvery high = 5, and ηextra high = 20. We expect to see some changes when

compared to previous cases. Both in regards to how a group fragments and

towards which target it moves.

Overall there are 12 sets of experiments per group size which makes it 120

experiment sets in total.

Type # of Guides # of Intruders # of Naives

Ref:Naives 0 0 N
Ref:Guided 5 0 N − 5
Normal 5 1 N − 6

N ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}

Table 3.4: Group composition for various experiments. Normal ones cover cases
both with and without credibility.
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4. Results

All data that we got from experiments were processed using R v2.15.0 [56]. It was

used to create all the various graphs and to compute other statistical values found

in Attachment B. Visualizations such as the ones from Figure 3.2 were produced

by our tools. The original output data and all visualizations in higher resolution

are available on accompanied DVD [64]. The important thing to note is that the

results capture only the end state of simulations. Anything that happened during

its run is ignored. Naming conventions are covered by Table 4.1.

MTE s n-g-iac

a =


if i = 0

M ω = 0.5

H ω = 1

V ω = 3

c =



if i = 0

N η = 1

H η = 2

V η = 5

X η = 20

s . . . total number of agents
n . . . number of naive agents
g . . . number of guides
i . . . number of intruders
a . . . intruder’s assertiveness
c . . . intruder’s credibility

Table 4.1: Naming conventions for visualizations and experiments. For example
MTE 40 35-5-0 applies for guided reference of size 40 and MTE 70 64-5-1MV
applies for regular experiment of size 70 with ω = 0.5 and η = 5.

4.1 Data Representation

This section is meant to give an overview of how to interpret our specific data

representations. Some processing of original output data is required in most of

them so we go through that briefly as well.

Fragmentation

We divide fragmentation into three cases. The first one is for general situations

when there is more than one group or at least one stray agent. The second one

is for situations when the intruder ends up being alone as a stray agent. The

third and last option is for situations when there is more than one group and the

intruder is part of any of them. However, it does not account for any stray naive

agents or guides. The first option is usually a sum of the other two and it is also

the only one used for reference experiments. Each run of all experiments receive

one logical value for each of these cases. These values are then used for further

statistical computations. Unfortunately, with our tools we cannot further specify

when the fragmentation occured. There is a major difference between breaking

up anytime halfway through and right after start when the group is stabilizing.
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Target Distance

For this we take the minimum distance between the main group and the targets

based on experiment type. Both targets are considered for experiments with the

intruder while only primary target is considered for guided reference experiments.

It is skipped for naives reference type. Just like with fragmentation we do not

work with the distances themselves but create new logical values based on them.

For each target we consider two states: at and near. A group is at target when

at least one of its members has it at least partially in their field of view. A group

is near target if it is not at target, the minimum distance to it is less than the

minimum distance to the other target and less than half the distance between

both targets. To include some information about the intruder himself, table B.11

covers minimum, median, and maximum of absolute distances between him and

his target. Again, only the end state is taken into account. We do not know if a

group reached its prefered target but left it in the remaining time.

Intruder Group Size

There are three cases of interest regarding group size when the intruder is present.

The first one is when no fragmentation occurs and the group remains cohesive.

The second one is when the intruder ends up alone while ignoring any other groups

and stray agents. The third one is when fragmentation occurs and the intruder

is part of any group. Among them, the last one deserves to be inspected further

because the size of said group might differ greatly. We show the distribution of

these sizes aggregated by 10% for each total group size in Figures B.3 to B.12.

They are accompanied by tables showing the data for other cases as well. We

should note that all of the results related to this are only in Attachment B and

the main text contains none of it.

Layered Visualizations

Also refered to as layered snapshots, these images are supposed to show the end

state of groups and their movement up to that point. Everything takes place

inside the environmental area that is shown in Figure 3.1. It is a compilation of

snapshots of individual runs where each layer is applied unto the others with some

transparency level. This helps in highlighting frequently taken paths or positions.

Each agent is visualized at his end position with his zone of attraction and a track

of his movement from start to end. Naive agents are yellow, guides are blue, and

intruders are red.
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4.2 Reference

Both naive and guided groups serve as a good starting point for further exper-

iments. They provide us with default behaviours against which to compare the

rest. Figures 4.1a to 4.1c show how naive groups move randomly through the

area. There does not seem to be much change when the group size increases. On

the other hand, from Figures 4.1d to 4.1f we can see that the group is actually

led towards the target. Contrary to naive groups the number of individuals does

matter. As it increases the group takes more detours and loses its focus.

(a) Naives, N = 10 (b) Naives, N = 50 (c) Naives, N = 100

(d) Guided, N = 10 (e) Guided, N = 50 (f) Guided, N = 100

Figure 4.1: Layered visualization: naives & guided

Although visualizations might be pleasant to the eyes while giving a rough idea

about the group’s movement they cannot provide any more information. That

is even more true when there are layers upon layers and the individual cases

are impossible to tell apart. From Figure 4.2 we can see that groups fragment

more frequently as their size increases. There is no fragmentation for low enough

numbers, like N = 10 and N = 20, but as the size grows so does the chance for

it to happen. It tops at 33% for naive group at size N = 100. The presence of

guides does not make it much different. In fact, the proportion of guided groups

that split is slightly lower in most cases even if it is almost insignificant.

35



20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Group size

P
ro

po
rt

io
n 

of
 g

ro
up

s 
th

at
 s

pl
it

● ●
● ●

●
●

●

●

● ●

●

Ref:Naive
Ref:Guided

Figure 4.2: Fragmentation of naive and guided groups

We do not take naive groups into account for distance from targets because

they just wander around without any specific goal. There is no drive for them to

reach it and it is more of a coincidance when it actually happens. However, guided

groups are different. We expect them to move towards the target and they do so

with more or less difficulties. With the group increasing in size the proportion of

groups that reached the target and even those who got near enough decreases as

can be seen in Figure 4.3. We suspect two things to be the main cause of this.

The first is fragmentation because we only check for status of the main group.

It is possible for the main group to have no guides after splitting and therefore

not going towards the target. The second case is the number of guides which

remains the same for all sizes. They might have more difficulty in persuading

naive individuals as their numbers increase.
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Figure 4.3: Guided groups reaching their target

4.3 No Credibility

Things become a little more interesting when the intruder is present. At this stage

we leave his degree of credibility η at its default value and change his degree of

assertiveness ω instead. By comparing Figure 4.4a to Figure 4.1e we can see

that the movement became less spread out and more focused while the intruder

remains with the group. At higher levels of assertiveness the overall movement

does not change much but the intruder leaves the group by himself. He does so

either throughout the course of the simulation or close to the start as is apparent

from Figures 4.4b and 4.4c respectively. Similar behaviour was observed for other

group sizes as well.

(a) ω = 0.5 (b) ω = 1 (c) ω = 3

Figure 4.4: Layered visualization: assertiveness. N = 50, η = 1
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Further inspection of fragmentation reveals quite interesting results. With

inconsiderable exceptions there is basically no case of the intruder splitting alone

when his degree of assertiveness is at medium level. The situation completely

changes when we increase it to high level. Most fragmentations are the result of

the intruder splitting alone away from the group in what makes 63.5% at lowest

for N = 90 and 79% at highest for N = 10. On the other hand, the intruder

splits with a group even less than both references for sizes N ≥ 50 and a little

more than them for lower sizes. Both of these cases are covered by Figure 4.5 on

left and right respectively. Very high level is similar to high one in shape with

both types of intruder’s fragmentation being a little more frequent. For details

see Figure B.1.
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Figure 4.5: Changes in fragmentation based on assertiveness

With the inclusion of intruder the group now has two options where to go.

However it does not seem to change much in comparison with guided reference.

It manages to reach the primary target a little more frequently but it is not by

much. Although the group gets near the secondary target a few times it is not

anything major. It does not even affect the primary one. One of the reasons might

be that the intruder actually is not part of the group most of the time. Figure 4.6

shows only the case with high degree of assertiveness because the differences in

the other two levels are not significant enough. For details see Figure B.2.

38



20 40 60 80 100

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Group size

P
ro

po
rt

io
n 

of
 g

ro
up

s 
th

at
 r

ea
ch

ed
 e

ith
er

 ta
rg

et

Ref At Target
Ref Near Target

At Primary
Near Primary

At Secondary
Near Secondary

Figure 4.6: Reaching targets with an intruder. ω = 1, η = 1

4.4 With Credibility

Finally, we get to the main part of the experiments when credibility is included

as well. Leaving it at default value and changing only assertiveness determined

mainly if and when the intruder leaves the group. But the more we raise it the

more group members are willing to follow him. The intruder’s increased influence

over others starts to show. This is especially visible for higher degrees of as-

sertiveness. From comparison between Figures 4.7a and 4.7b we can see that the

route towards primary target is not as straightforward as it used to be when the

intruder’s influence rivals that of guides. Additionally, individuals start to sway

towards the secondary target. It is even better when the intruder is at his best

in Figure 4.7c. At this point he actually manages to take control a fair number

of times as the secondary target seems to be prefered.

(a) η = 1 (b) η = 5 (c) η = 20

Figure 4.7: Layered visualization: credibility in general. N = 50, ω = 3
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Other behaviours worth mentioning were observed for medium degree of as-

sertiveness. For lower group sizes of N ≤ 30 the increasing degree of credibility

stabilized the whole group. It became less spread out and more focused. However

that was not the case when the group size grew bigger. The intruder no longer

supported the guides and attempted to take control instead. A sample of these

behaviours is captured by Figure 4.8.

(a) N = 30, η = 1 (b) N = 30, η = 20

(c) N = 80, η = 1 (d) N = 80, η = 20

Figure 4.8: Layered visualization: credibility at medium assertiveness. ω = 0.5

It is not as apparent from visualizations alone but degree of credibility changes

the way the intruder splits away from the group. In Figure 4.9 we can see a nice

transition of his behaviour from default value to the highest. At a default normal

value of η = 1 the intruder mostly ends up as a stray agent while being in

group in only a few cases. With increasing credibility he has a company more

frequently and spends less time alone. At the highest degree of credibility η = 20

he even stops splitting alone when the group is big enough. There is still more to

observe in relation to group size. We can see that fragmentation rate decreases

for group sizes up to N = 40 and then it mainly increases slowly. Other than that

Figures B.3 to B.12 show that the distribution of the size of intruder’s company

after fragmentation gradually more and more resembles Gaussian curve.

But not only size matters. Looking at the overall picture in Figure B.1 we

can see that degree of assertiveness is just as important in determing credibility’s

effect. With medium degree of assertiveness there is almost no sign of intruder

ending up alone. Even splitting with others mostly resembles reference groups for

all degrees of credibility except for the highest one. This is in complete contrast

to cases with higher assertiveness.
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Figure 4.9: Changes in fragmentation based on credibility

Using credibility seems to have a positive effect on reaching targets and Fig-

ure 4.10 finally shows results we were hoping for. As credibility grows so does

the group’s interest in the secondary target. More precisely, it seems to sway

those who were otherwise undecided or just not close enough before. The real

treat comes with the highest degree of credibility η = 20. With increasing group

size the shift in preferences becomes more and more apparent. Primary target is

reached much less frequently. Although the secondary target does not achieve the

same level of popularity as the primary one when the credibility is lower it is still

a great accomplishment. Also, contrary to other cases it seems that most groups

actually reach either target instead of being too far.

With the exception of its highest value, the usage of credibility even improves

the chances to reach the primary target. This is mostly happening for medium

assertiveness of ω = 0.5, as we can see in Figure B.2, but it still applies for

other values as well to a lesser extent. At first sight it might be a little surprising.

However when we think about it a little more we can see the cause to be probably

the intruder himself. There is no guarantee that majority of individuals will follow

him when the group fragments or that they will even do so if he does not have

high enough influence over them. Additionally, if he does not split away from the

group he might involuntarily strenghten the drive of others to follow guides.
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Figure 4.10: Changes in reaching targets based on credibility
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Conclusion

At the beginning, we have made a few goals, or questions, for ourselves towards

which we wanted to find some answers. With results at our disposal we are able

to do so. Although we already briefly went through them, it was just a general

observation. Here we present them directly in relation to said questions. Addi-

tionally, as we conclude our work we can see the outcomes of our many decisions.

Not all of them turned out for the better, but that just allows us to reflect upon

them. There are countless possibilities where to take this further using what we

learned and our imagination. We mention a few of them later in this chapter.

Discussion

We have come across various results. Some of them were expected and some of

them turned out as we hoped for. However we can also see that the parameters

cover quite a great range with even larger gaps between values. We can say that

we went for extreme values. That in itself certainly had an effect on how the

results turned out. We had our reasons for it. The main one was that we wanted

to explore this great range to find a case that would bring satisfying results. Of

course, there are some disadvantages as well. For example, we lost the chance to

identify specific thresholds when the behaviour changes or to do some fine-tuning

of parameters to receive better results.

Now, how do the goals relate to this work? Why did we choose them? Contrary

to most of other works that consider whole subgroups we focus on one individual

alone, the intruder. The power of one should not be as effective as that of many but

it is more interesting because of it. By taking control over the group he disrupts its

original movement. Group’s original cohesion is disrupted if his presence changes

how it usually fragments. Thanks to previous works there are not many surprises

under normal circumstances. That is why we added credibility and why we are

interested in the changes it might cause.

Can one individual take control over already guided group?

Before answering we should explain the question so that there are no misunder-

standings. For start, we consider only guided groups. Those are groups of any

size consisting of an informed minority determining the group’s destination and

the rest of naive members. We do not expect just about anyone to be able to

succeed. The individual must be informed about a target different from that of

those guiding the group. Finally, to take control means to persuade the majority
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of the original group to follow the one interfering with guides.

Back to the question. The short answer is no, he cannot. At least in our cir-

cumstances which were similar to those in some of the other works [16]. They used

mostly groups instead of individuals but given the results it only intensifies the

futility of one’s efforts. Therefore this answer does not really come as a surprise.

Its main role was to confirm what was already known and to prepare the ground

for other possibilities.

To elaborate on this further there are generally two possible outcomes. The

defining factor is degree of assertiveness ω of the individual. Up to its certain

threshold value he remains with the group behaving like the others. His intentions

are not important enough for him to abandon the advantages of being in a group.

When it goes past that threshold he leaves the group alone to pursue his own

goals. The higher it is the earlier he will leave. Other individuals are not inclined

to follow him and the cases when they do are rather rare.

When fragmentation occurs, is the intruder more prone to split alone

or in a group?

We cannot always prevent groups from fragmenting even if there is no outside

force causing it. There were no obstacles or any other such elements in our ex-

periments that would deliberately try to divide the group. And yet groups still

fragmented with increasing frequency as they grew in numbers. It did not mat-

ter if there are only naive individuals or some informed ones as well. All the

individuals remained cohesive as one entity only when there were 10 or 20 of

them.

Identifying cases when the intruder ends up alone is quite easy. We can see it

even from visualizations. The other case becomes a little more complex. How do

we separate cases when the intruder breaks away from the group and takes some

of the individuals with himself from when the group just fragments? We took a

simple approach. We ignore this difference and consider both of these the same.

Therefore we basically consider only three options. The first is no fragmentation

which does not happen that much. The second is intruder ending up alone. The

third one is everything else except stray agents other than intruders.

So which one of the latter two happens more often? We touched upon this

briefly in previous goal. It depends on intruder’s degree of assertiveness ω. There

is not much change at lower values while he stays with the group from when

there is no intruder. But majority of fragmentation is due to the intruder leaving

the group alone as we increase it beyond the threshold. The higher the degree of

assertiveness is the higher the probablity of it happening. Furthermore, the other

fragmentations are still present and even for small group sizes for which there
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were previously none. Also contrary to medium assertiveness their amount is not

increasing with size but it remains similar across all of the sizes.

How does higher social status of the intruder affect possible outcomes?

In other words, does the inclusion of credibility in the model change anything?

Does it have any effect? Yes it does, as we can say with satisfaction upon seeing

the results. And in more ways than just one. At the beginning we were not really

sure about what to expect. We hoped for satisfactory results and tried to set the

parameters in a way we believed would make it more possible but there was still

some uncertainty left. Fortunately we can now inspect these changes instead of

repeating old news while declaring this a failure or a wrong way to go.

The intruder’s efforts have little to no effect on the whole group when he is

just another one of the masses. His chances to take control over it are almost non-

existent. However this changes when he is considered as someone more important,

when his credibility is higher than that of others. Little by little he starts by

influencing those undecided and continues to persuade even the rest. The higher

his credibility the more successful he is. It becomes even easier with increasing

number of naive individuals and his own assertiveness. We can say that under

suitable conditions one individual with high enough credibility is able to take

control over a group. And in the worst case, his influence is at least significant

enough to ensure some change.

Fragmentation is affected in a similar sense. For medium degree of assertive-

ness the inclusion of credibility does not make much difference. The group splits

slightly more frequently as it increases but nothing more. Higher assertiveness

shows more interesting behaviour. With gradually increasing credibility the in-

truder ends up much less alone and more in company of others. The probabilities

of both of these slowly approach each other while completely swapping in the

end. Moreover, the intruder stops ending up alone when there is a sufficient num-

ber of naive individuals and his credibility is high enough. This is most likely a

consequence of his high influence. The others follow him even if he does not care

about them and follows his own goals.

As we can see the addition of credibility does exactly what it was intended to

do. It gives the individual an influence. It makes him more visible to others and

his voice is heard more clearly. He becomes important. Where he was previously

unable to even change the course of group’s movement he is now the center of

attention. Where he was previously splitting away alone he is now followed by the

majority. It certainly adds another layer to the whole set of interactions between

individuals. But it is not as simple as it seems. Credibility would not be as effective

by itself if it was not for other parameters. The most apparent of them seem to
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be group size and individual’s degree of assertiveness. There might more but it

was not our goal to identify them.

The bigger the group the greater the effect. Even if it might be different for

much larger sizes of thousands and more we still see it happening on numer-

ous occasions for sizes we covered. The naivety of most group members is most

likely closely related to it. At least as far as our model and its implementation

are concerned. Group size might not be as relevant as it is if most of the group’s

members were informed. So in our case naivety in numbers makes it easier for one

individual to influence them. That in itself is an interesting observation because

Couzin et al.’s previous work [16] suggests the opposite. They note how it pro-

motes democracy and inhibits opinionated minority. However with high enough

credibility applied the minority becomes a majority in the eyes of uninformed

masses.

When the individual intends to influence others it is better for him if they

are naive and in sufficient numbers. However, he also needs to know what to do.

He needs a determination to follow his goal. Otherwise he might only support

someone else. In this sense, credibility by itself is sort of like a double-edged

sword. And one’s degree of assertiveness determines how sharp its edges are. It

tells which edge is to be used. How do they relate to each other? When the indi-

vidual has high credibility but low assertiveness he simply follows those around

him and strenghtens their decisions. On the other hand, low credibility and high

assertiveness only makes him leave the group. Simply put, the individual needs

to be intent on following his own goals first and foremost to be able to persuade

others to accept his opinions. If he is not he just becomes a puppet promoting

the goals of others.

Overall Impressions

We have shown that while a normal individual cannot do much to disrupt the

whole group, he becomes able to do so when he is acknowledged by others. Just

one influential member of a group can determine its behaviour when the con-

ditions are in his favour. In other words, a normal random error occuring in a

system might not be of much significance. However there is still some possibility

that it might lead to unforseen consequences if the error turns out to be not as

normal as we thought. There is still a lot of things to improve upon or to do

better but we believe that we have accomplished our goals and the purpose of

this work. We have shown that credibility plays a major part in the resulting

behaviour if it is accounted for.

Although we are satisfied in general, we still have one concern. That is the

possibility of the intruder becoming an actual leader. The majority of the most
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satisfactory results were observed for outlying values. Credibility far higher than

the normal one. Assertiveness highly promoting one’s own goals and almost ig-

noring the group. Is it reasonable to use these values? Are not we just somehow

creating a leader? It might seem that we contradict ourselves with this. We want-

ed to make him influential enough to take control. We wanted him to overrule

others. But we still want the group to behave like a swarm, a decentralized system

of locally interacting individuals. The intruder does not directly command those

around him but his word might have such a significance to them that it might

get very close to it. For this reason we find it questionable but at the same time

we are unable to form a definite answer.

Future Work

There still exist several ways to improve the work presented in this thesis, as

well as several possibilities to reconsider the approach or point of view. These

can serve as an inspiration for future research which we outline briefly in this

section. The most integral part are the simulation tools we developed and used.

Since we made them to allow for more general usage we lost the opportunity to

get better and more precise results. This limited us in what we could work with.

Directly related to this is data representation which we tried to make simple and

comprehensible at the same time. Another thing that we touched only briefly is

statistical processing of data. There could certainly be done more stuff than just

the basic summary we did. Mainly dependency of various parameters would be

really good to have.

Nevertheless, it can still be used as a starting point for further research. One

way to do so is to expand upon the current setting. The experiments would

certainly benefit from being done in dedicated tools with better output. It would

really help if we could observe the behaviour in greater detail; like being able

to work with data from the middle of the experiment and not only the end.

The results would be more accurate. The overall scope of experiments could be

increased. We explored just the most important parameters and a few of their

values with large gaps between them. These gaps could be filled and other values

added. Parameters that had static values could be explored as well. There is a

lot of room to find dependencies, thresholds and to do some fine-tuning. We have

shown what is possible under specific conditions but those are not the only ones.

Another way for further research is straightforward. We have introduced cred-

ibility into the model and then we have shown that its presence does make a

difference. But we have only scraped the surface of it and there is more than one

way to take it after this. For one thing, it could be implemented differently. We
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used a certain approach which was based mainly on mathematics. It might be

interesting to push it towards more natural foundations. We have used it on only

one individual but it can be applied to others as well. It could create sort of a

hierarchy or a caste system in a group. Also similarly to other parameters we

tried only a few values and the observed changes were rather abrupt. It would

be good to find specific thresholds. Surely, there are even more possibilities to

explore and things to try with it. We hope that others will find it interesting and

research it further.

48



Bibliography

[1] Allan, R. J. (2010). Survey of agent based modelling and simulation tools.

Science & Technology Facilities Council.

[2] Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cis-

bani, E., Giardina, I., Orlandi, A., Parisi, G., Procaccini, A.,

Viale, M., & Zdravkovic, V. (2008). Empirical investigation of starling

flocks: a benchmark study in collective animal behaviour. Animal behaviour,

76(1):201–215.

[3] Beekman, M., Fathke, R. L., & Seeley, T. D. (2006). How does an

informed minority of scouts guide a honeybee swarm as it flies to its new

home?. Animal Behaviour, 71(1):161–171.

[4] Beni, G., & Wang, J. (1989). Swarm Intelligence in Cellular Robotic

Systems. Proceedings of NATO Advanced Workshop on Robots and Biological

Systems, Vol 102.

[5] Breve Website. http://www.spiderland.org/breve/.

[6] Castiglione, F. (2006). Agent based modeling. Scholarpedia, 1(10):1562.

[7] Cialdini, R. B. (2001). Influence: Science and practice (4th ed.). Boston:

Allyn & Bacon. ISBN 0-321-01147-3.

[8] Cialdini, R. B., & Goldstein, N. J. (2004). Social influence: Compliance

and conformity. Annual Review of Psychology, 55:591–621.

[9] Conradt, L., & Roper, T. J. (2003). Group decision-making in animals.

Nature, 421(6919):155–158.

[10] Conradt, L., & Roper, T. J. (2005). Consensus decision making in an-

imals. TRENDS in Ecology and Evolution, 20:449–456.

[11] Conradt, L., & Roper, T. J. (2009). Conflicts of interest and the evolu-

tion of decision sharing. Philosophical Transactions of the Royal Society B:

Biological Sciences, 364(1518):807–819.

[12] Conradt, L., Krause, J., Couzin, I. D., & Roper, T. J. (2009).

“Leading According to Need” in Self-Organizing Groups. The American Nat-

uralist, 173(3):304–312.

[13] Corning, P. A. (2002). The re-emergence of “emergence”: A venerable

concept in search of a theory. Complexity, 7(6):18–30.

49

http://www.spiderland.org/breve/


[14] Couzin, I. D., & Krause, J. (2003). Self-organization and collective be-

havior in vertebrates. Advances in the Study of Behavior, 32:1–75.

[15] Couzin, I. D., Krause, J., Franks, N. R., & Levin, S. A. (2005). Ef-

fective leadership and decision-making in animal groups on the move. Nature,

433:513–516.

[16] Couzin, I. D., Ioannou, C. C., Demirel, G., Gross, T., Torney,

C. J., Hartnett, A., Conradt, L., Levin, S. A., & Leonard, N. E.

(2011). Uninformed Individuals Promote Democratic Consensus in Animal

Groups. Science, 334:1578–1580.

[17] Couzin, I. D., Ioannou, C. C., Demirel, G., Gross, T., Torney,

C. J., Hartnett, A., Conradt, L., Levin, S. A., & Leonard, N.

E. (2011). Supporting Online Material for Uninformed Individuals Pro-

mote Democratic Consensus in Animal Groups [16]. Science, 334:1578–1580.

http://www.sciencemag.org/cgi/content/full/334/6062/1578/DC1.

[18] Dorigo, M. (1992). Optimization, Learning and Natural Algorithms. PhD

thesis [in Italian]. Dipartimento di Elettronica, Politecnico di Milano, Milan,

Italy.

[19] Dorigo, M., & Birattari, M. (2007). Swarm intelligence. Scholarpedia,

2(9):1462.

[20] DotNetZip Website. http://dotnetzip.codeplex.com/.

[21] Dyer, J. R. G., Ioannou, C. C., Morrell, L. J., Croft, D. P.,

Couzin, I. D., Waters, D. A., & Krause, J. (2008). Consensus decision

making in human crowds. Animal Behaviour, 75:461–470.

[22] Erra, U., Frola, B., Scarano, V., & Couzin, I.D. (2009). An efficient

GPU implementation for large scale individual-based simulation of collective

behavior. High Performance Computational Systems Biology. 51–58.

[23] Extended WPF Toolkit Website. http://wpftoolkit.codeplex.

com/.

[24] Gandomi, A. H., & Alavi, A. H. (2012). Krill Herd: a new bio-inspired

optimization algorithm. Communications in Nonlinear Science and Numer-

ical Simulation.

[25] Gardner, M. (1970). Mathematical games: The fantastic combinations of

John Conway’s new solitaire game “life”. Scientific American, 223(4):120–

123.

50

http://www.sciencemag.org/cgi/content/full/334/6062/1578/DC1
http://dotnetzip.codeplex.com/
http://wpftoolkit.codeplex.com/
http://wpftoolkit.codeplex.com/


[26] Germer, T., & Strothotte, T. (2008). The Orthant Neighborhood

Graph: A Decentralized Spatial Data Structure for Dynamic Point Sets. In

Computer Vision and Computer Graphics: Theory and Applications, 21:41–

55. Berlin Heidelberg: Springer-Verlag.

[27] Goldstein, J. (1999). Emergence as a construct: History and issues. Emer-

gence, 1(1):49–72.
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A. Environment

To conduct all of the experiments we first needed to implement the model. But

not just any environment would be sufficient enough for us. There was an option

to use one of the many toolsets that are readily available and we even considered

it. However, we had a few requirements we were expecting it to meet and other

limitations we had to follow. That together with our desire to improve on our

own coding skills ultimately made us decide to create our own toolset from the

ground up.

A.1 Specification

The toolset is implemented in C# under .NET 4.0 framework. Graphical user

interface is written in WPF. Microsoft Visual Studio 2010 is used as development

environment. It is being developed for Windows operating system and there is no

cross-platform compatibility planned. Third party libraries are used for visualizing

and randomization. Other might be added if the need arises. The name of the

toolset is Muragatte.

The key features are as follows:

• Customization The toolset should provide enough options to run a

variety of different experiments even beyond the scope of this thesis and its

model.

• Repeatability We should be able to repeat any experiment using the

same starting settings and get the same results.

• Save/Load We should be able to save the completed experiment along

with its settings and anything else needed so that we can load it later to

rerun or review it.

• Visualization The toolset should provide visualizations of simulations

and it should allow for at least partial customization of the overall look.

Apart from various third party libraries the toolset is expected to consist of

five parts:

• The Core Library. The foundation for everything else. The model and

its variations. Controls the simulation itself.

• The Visual Library. Visualization capabilities and its customization.

• The Tool Application. Main interface to work with experiments. Exten-

sive settings available. More generalized.
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• The Batch Application. Simplified interface to run a set of experiments

with similar setting.

• The Sandbox Application. Interactive realtime simulations. Mainly for

testing. Not that important.

A.2 Implementation

From the start we intended for the toolset to be more general in scope. Although

it was not the best decision in regards to the thesis we believed we could get a

piece of software that could be used for a variety of tasks and not just the one we

needed. It was basically an investment to the future that might not even come.

Since we deal with swarming behaviour we took an agent-based model approach

towards the implementation. Among other things, it allowed us to keep the model

logic and the system logic separated.

We ended up using a few third party libraries in various parts of the toolset.

DotNetZip [20] made it easier for us to work with ZIP files which were utilised

in some of the output. Extended WPF Toolkit [23] provided us with many useful

WPF controls to make better graphical user interface. RandomOps [57] was used

for its implementation of mt19937 variant of Mersenne Twister algorithm [48] as

the pseudo-random number generator. WriteableBitmapEx [70] was included to

handle drawing of visualizations.

A.2.1 The Core (MuragatteCore)

It handles the inner workings together with other foundations to have a functional

simulation. The simulation is run in discrete steps at which all elements are

updated to new state according to their rules. The elements cover both agents

and other objects like obstacles, targets, centroids, etc. Agents are representations

of specific model implementations. There is a variety of steering rules available to

build upon as well as a few agents of different behaviour. Every element operates

inside a region of defined size and continuity. The system can keep a history of

all previous states of elements which can then be used for visualization or the

computation of results.

The performance of the system is largely influenced by the data structure the

elements are stored in since there is a lot of interaction going on. At the latest

version there is only a simple list structure available which results in the com-

plexity of O(n2). We originally considered using Orthant Neighbourhood Graphs

proposed by Germer and Strothotte [26] but we ultmately decided against it.

There were a few reasons for it. First was the lack of other reference materials.
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Second was the effort and time needed to integrate it into our system both of

which would be better used elsewhere. Finally there was a questionable gain in

performance for the relatively small scope of our intended experiments. We sim-

ply werent’t sure that the advantages in proximity search would overweight the

constant need for structure maintenance. Although unused, the remnants of its

incomplete implementation are still left in the source code. We did not consider

other options since we thought the simple list structure would suffice.

A.2.2 The Visual (MuragatteVisual)

It provides the interface for visualization of simulation. Its capabilities were main-

ly inspired by SwarmVis [50]. The customization options include scale of the scene,

colors of both background and various elements and effects, and shape of elements

among other things. The scene is drawn in layers depending on what is enabled

in the order of environmental objects (like targets or obstacles), neighbourhoods

(only field of view), tracks (complete path from start), trails (a few previous po-

sitions), agents, and centroids (an average of each group). Every element can also

be highlighted. Furthermore, the selection of elements and effects to draw can be

done both individually and by a selection filter of species/type or group. It also

allows to save customized snapshots in PNG file format.

A.2.3 The Tool (MuragatteResearch)

It is the most integral part of the toolset for communication with user. Its base

working unit is an experiment which is a simulation from The Core encompassed

in a pack with other customization options. Apart from the simulation related

options the most important ones for experiment are length, number of runs, and

seed for pseudo-random number generator. The seed is used to ensure repeata-

bility of experiments because randomization is used both at initialization and for

noise at each simulation step. Only one experiment is active and worked on at a

time. The available operations include creation, saving, loading, editing, running,

reviewing of results and visualizing.

Creation and modification of experiments is done through editor windows

each of which is dedicated to different task. The top one is for experiment itself.

It contains the main options and also serves as a starting point to go to oth-

ers. Styles editor determines the visual look of elements. Scene editor is for the

environmental area and its objects. Species which provide further granularity to

element types have their own editor as well. Lastly there is an archetype editor.

An archetype is a definition for a group of agents of the same origin. We basically

define one agent and how many of his copies should be made. Although only pre-
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defined archetypes/agents can be used they should allow for more than enough

customization.

It allows a great freedom in what experiments can be made but on the other

hand the results are quite lacking. They are a basic summary containing infor-

mation about experiment as a whole, each of its runs, and each of its steps. At

all of those levels it says how many groups and stray agents there were, a litt-

tle summary about main group, and that of selected archetypes. It gives some

information but it is not very useful for specific scenarios.

The output consists of a few things. Settings of both the whole experiment

and its parts can be saved into XML files. For completed experiments, part of the

results can be saved in a couple of TXT files and the whole history can be saved

into one ZIP file per run, or instance as it is called internally. Each of these ZIP

files then contains a TXT file for every step with status of all elements at that

point.

For more details see user manual [64].

A.2.4 The Batch (MuragatteThesis)

It was abandoned and almost comletely dropped out of the toolset in the early

stage of development. At the time it felt better to merge its functionality into The

Tool. However it was reintroduced with some changes in the final stages because

The Tool became too general. Mainly its handling of results was insufficient and

almost unsuitable in regards to the thesis. Therefore it was reimagined as more

focused and specialized on experiments and our needs. It provided three main

features. First were the results. We mostly did them from scratch getting only

what was really important and using the ones from The Tool as an occasional

reference. We also added layered visualizations. The second was heavily simplified

initialization to just a few options. The third was running the experiments in

batches based on group size. It was used to conduct the experiments.

A.2.5 The Sandbox (MuragatteSandbox)

It was mainly used in the beginning phases of development as a stand-in and

a testing interface. This treatment continued up until there was a functional

prototype. After that any work on it was discontinued and it was effectively

abandoned. Although it would be a welcome addition to the toolset as a whole

it was not really required as far as the thesis was concerned. There was actually

no work done towards its intended features. Apart from occasional updates to

related stuff it remained in the state it was left in. Usage is not recommended.
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A.3 Performance

For the purposes of this thesis we use revision 72 of the toolset which is also its

latest version at the time of writing this. Although it is not the final version and it

is thus incomplete, all the major features are implemented. It has not been tested

for all the possibilities and the issues related to it but it is functional enough to

fulfil our needs. We have not encountered any serious problems while using it to

run the experiments. The only issue we encountered was most likely related to

hardware limitations as it did not occur again under less demanding setting or

on more powerful hardware. For details on known issues see user manual [64].

Please note that the simulation can be quite demanding in regards to both

processing time and memory space. The bigger the scope, or more specifically the

number of agents, the more noticeable it is. A slowdown can also occur while play-

ing visualizations with additional effects enabled. Certain customization setting,

like scale or color transparency, can slow it down as well. The overall experience

may vary depending on used hardware.

A.4 Output

MuragatteThesis saves results to a text file with default extension ∗.DAT. The

first line of the file contains headers. Each line after that stands for one entry

– one run of an experiment. Each column stands for one attribute. Table A.1

explains the meanings and possible values for all columns. The last line is usually

incomplete when an experiment is cancelled. For details on other output options

see user manual [64].
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Label – Description
– Possible Values [ Experiment Values ]

Run – Sequential number of experiment’s run.
– x ≥ 0 with maximum based on initialization [ 0 ≤ x ≤ 199 ]

N – Total number of agents.
– based on initialization where x ≥ 6 [ 10, 20, 30, . . . , 100 ]

N.n – Number of Naive agents.
– N −N.g −N.i

N.g – Number of Guides.
– 0 or 5

N.i – Number of Intruders.
– 0 or 1 [ always 0 if N.g = 0 ]

Assert – Intruder’s degree of assertiveness.
– 0 (only if N.i = 0), 0.5, 1, 3

Cred – Intruder’s degree of credibility.
– 0 (only if N.i = 0), 1, 2, 5, 20

Groups – Number of groups at the end of simulation.
– 1 ≤ x ≤ bN/2c

Strays – Number of stray agents at the end of simulation.
– 0 ≤ x ≤ N

Size – Main group’s size at the end of simulation.
– dN/2e ≤ x ≤ N

Size.g – Size of a group containing the majority of Guides at the end of
simulation.

– 0 if N.g = 0 3 ≤ x ≤ N otherwise

Size.i – Size of a group containing the Intruder at the end of simulation.
– 0 if N.i = 0 1 ≤ x ≤ N otherwise

Dist.g – Minimum distance between main group and Guides’ target. Ab-
solute distance between centers of target and the nearest agent.

– ≥ 0.000

Dist.i – Minimum distance between main group and Intruder’s target. Ab-
solute distance between centers of target and the nearest agent.

– ≥ 0.000

IDist – Distance between the Intruder and his target at the end of simu-
lation. Absolute distance between centers.

– 0.000 if N.i = 0 ≥ 0.000 otherwise

Table A.1: File format description for results output of MuragatteThesis applica-
tion. Experiment Values further specify the result values of our experiments. All
attributes have an integer value with the exception of Assert, Dist.g, Dist.i, and
IDist. Distance values might contain ’,’ instead of ’.’ as a floating point symbol.
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B. Additional Result Details

The following tables list mean values of relevant criteria in the range of 0–1.

It represents a percentage of 0–100% of groups that satisfy required conditions.

Their standard deviations and 95% confidence intervals are listed as well. An

exception to this are Tables B.7, B.10 and B.11 and part of Table B.2 that show

minimum, median and maximum values of absolute distances between agents and

target in question.

B.1 Naive & Guided

Naive Guided
Size Mean ±SD ±CI Mean ±SD ±CI

10 0 0 0 0 0 0

20 0 0 0 0 0 0

30 0.005 0.071 0.01 0.015 0.122 0.017

40 0.02 0.14 0.02 0.025 0.157 0.022

50 0.06 0.238 0.033 0.045 0.208 0.029

60 0.095 0.294 0.041 0.075 0.264 0.037

70 0.145 0.353 0.049 0.14 0.348 0.049

80 0.2 0.401 0.056 0.185 0.389 0.054

90 0.275 0.448 0.062 0.275 0.448 0.062

100 0.33 0.471 0.066 0.285 0.453 0.063

Table B.1: Fragmentation statistics: reference

At Near Distance
Size Mean ±SD ±CI Mean ±SD ±CI Min Median Max

10 0.635 0.483 0.067 0.365 0.483 0.067 0.101 6.543 37.325

20 0.485 0.501 0.07 0.5 0.501 0.07 0.237 9.790 95.744

30 0.355 0.48 0.067 0.53 0.5 0.07 0.353 12.805 129.639

40 0.335 0.473 0.066 0.47 0.5 0.07 0.208 16.889 141.645

50 0.29 0.455 0.063 0.425 0.496 0.069 0.147 25.876 175.979

60 0.235 0.425 0.059 0.405 0.492 0.069 0.469 29.997 164.433

70 0.205 0.405 0.056 0.34 0.475 0.066 0.127 43.343 162.419

80 0.175 0.381 0.053 0.35 0.478 0.067 0.429 47.413 185.580

90 0.13 0.337 0.047 0.345 0.477 0.066 0.321 54.456 171.781

100 0.155 0.363 0.051 0.325 0.47 0.065 0.314 53.663 164.061

Table B.2: Target distance statistics: guided
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B.2 Fragmentation

●Ref:Naive
Ref:Guided
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Figure B.1: Fragmentation comparison
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ω = 0.5 ω = 1 ω = 3
Size Mean ±SD ±CI Mean ±SD ±CI Mean ±SD ±CI

η
=

1

10 0 0 0 0.075 0.264 0.037 0.135 0.343 0.048

20 0 0 0 0.04 0.196 0.027 0.1 0.301 0.042

30 0.01 0.1 0.014 0.045 0.208 0.029 0.105 0.307 0.043

40 0.035 0.184 0.026 0.03 0.171 0.024 0.13 0.337 0.047

50 0.04 0.196 0.027 0.04 0.196 0.027 0.16 0.368 0.051

60 0.095 0.294 0.041 0.05 0.218 0.03 0.13 0.337 0.047

70 0.125 0.332 0.046 0.05 0.218 0.03 0.15 0.358 0.05

80 0.18 0.385 0.054 0.09 0.287 0.04 0.155 0.363 0.051

90 0.3 0.459 0.064 0.11 0.314 0.044 0.12 0.326 0.045

100 0.32 0.468 0.065 0.13 0.337 0.047 0.185 0.389 0.054

η
=

2

10 0 0 0 0.12 0.326 0.045 0.215 0.412 0.057

20 0 0 0 0.04 0.196 0.027 0.16 0.368 0.051

30 0.015 0.122 0.017 0.035 0.184 0.026 0.135 0.343 0.048

40 0.04 0.196 0.027 0.035 0.184 0.026 0.2 0.401 0.056

50 0.04 0.196 0.027 0.045 0.208 0.029 0.2 0.401 0.056

60 0.11 0.314 0.044 0.03 0.171 0.024 0.2 0.401 0.056

70 0.145 0.353 0.049 0.08 0.272 0.038 0.185 0.389 0.054

80 0.19 0.393 0.055 0.095 0.294 0.041 0.27 0.445 0.062

90 0.27 0.445 0.062 0.125 0.332 0.046 0.190 0.393 0.055

100 0.26 0.44 0.061 0.11 0.314 0.044 0.23 0.422 0.059

η
=

5

10 0.005 0.071 0.01 0.265 0.442 0.062 0.4 0.491 0.068

20 0.015 0.122 0.017 0.09 0.287 0.04 0.275 0.448 0.062

30 0.02 0.14 0.02 0.075 0.264 0.037 0.28 0.45 0.063

40 0.025 0.157 0.022 0.095 0.294 0.041 0.25 0.434 0.061

50 0.085 0.28 0.039 0.105 0.307 0.043 0.26 0.44 0.061

60 0.105 0.307 0.043 0.12 0.326 0.045 0.31 0.464 0.065

70 0.15 0.358 0.05 0.18 0.385 0.054 0.33 0.471 0.066

80 0.225 0.419 0.058 0.145 0.353 0.049 0.355 0.48 0.067

90 0.3 0.459 0.064 0.23 0.422 0.059 0.31 0.464 0.065

100 0.28 0.45 0.063 0.245 0.431 0.06 0.355 0.48 0.067

η
=

2
0

10 0.06 0.238 0.033 0.565 0.497 0.069 0.585 0.494 0.069

20 0.03 0.171 0.024 0.295 0.457 0.064 0.415 0.494 0.069

30 0.02 0.14 0.02 0.255 0.437 0.061 0.29 0.455 0.063

40 0.085 0.28 0.039 0.205 0.405 0.056 0.25 0.434 0.061

50 0.13 0.337 0.047 0.22 0.415 0.058 0.37 0.484 0.067

60 0.265 0.442 0.062 0.31 0.464 0.065 0.365 0.483 0.067

70 0.3 0.459 0.064 0.27 0.445 0.062 0.45 0.499 0.07

80 0.3 0.459 0.064 0.455 0.499 0.07 0.41 0.493 0.069

90 0.375 0.485 0.068 0.4 0.491 0.068 0.495 0.501 0.07

100 0.475 0.501 0.07 0.495 0.501 0.07 0.525 0.501 0.07

Table B.3: Fragmentation statistics: intruder in group
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ω = 0.5 ω = 1 ω = 3
Size Mean ±SD ±CI Mean ±SD ±CI Mean ±SD ±CI

η
=

1

10 0 0 0 0.79 0.408 0.057 0.825 0.381 0.053

20 0.005 0.071 0.01 0.755 0.431 0.06 0.86 0.348 0.049

30 0 0 0 0.675 0.47 0.065 0.8 0.401 0.056

40 0 0 0 0.715 0.453 0.063 0.795 0.405 0.056

50 0 0 0 0.735 0.442 0.062 0.78 0.415 0.058

60 0 0 0 0.7 0.459 0.064 0.765 0.425 0.059

70 0 0 0 0.69 0.464 0.065 0.725 0.448 0.062

80 0.005 0.071 0.01 0.665 0.473 0.066 0.73 0.445 0.062

90 0 0 0 0.635 0.483 0.067 0.79 0.408 0.057

100 0 0 0 0.645 0.48 0.067 0.72 0.45 0.063

η
=

2

10 0 0 0 0.65 0.478 0.067 0.72 0.45 0.063

20 0 0 0 0.72 0.45 0.063 0.75 0.434 0.061

30 0 0 0 0.69 0.464 0.065 0.735 0.442 0.062

40 0 0 0 0.69 0.464 0.065 0.68 0.468 0.065

50 0 0 0 0.66 0.475 0.066 0.68 0.468 0.065

60 0 0 0 0.7 0.459 0.064 0.66 0.475 0.066

70 0.005 0.071 0.010 0.605 0.49 0.068 0.69 0.464 0.065

80 0 0 0 0.545 0.499 0.07 0.62 0.487 0.068

90 0 0 0 0.55 0.499 0.07 0.66 0.475 0.066

100 0 0 0 0.575 0.496 0.069 0.625 0.485 0.068

η
=

5

10 0 0 0 0.52 0.501 0.07 0.48 0.501 0.07

20 0.005 0.071 0.010 0.565 0.497 0.069 0.535 0.5 0.07

30 0 0 0 0.475 0.501 0.07 0.46 0.5 0.07

40 0 0 0 0.425 0.496 0.069 0.495 0.501 0.07

50 0.005 0.071 0.010 0.395 0.49 0.068 0.475 0.501 0.07

60 0 0 0 0.355 0.48 0.067 0.45 0.499 0.07

70 0 0 0 0.33 0.471 0.066 0.395 0.49 0.068

80 0 0 0 0.36 0.481 0.067 0.4 0.491 0.068

90 0 0 0 0.3 0.459 0.064 0.365 0.483 0.067

100 0 0 0 0.265 0.442 0.062 0.35 0.478 0.067

η
=

2
0

10 0 0 0 0.25 0.434 0.061 0.3 0.459 0.064

20 0 0 0 0.055 0.229 0.032 0.085 0.28 0.039

30 0 0 0 0.01 0.1 0.014 0.035 0.184 0.026

40 0 0 0 0 0 0 0.02 0.14 0.02

50 0 0 0 0 0 0 0 0 0

60 0 0 0 0 0 0 0.005 0.071 0.01

70 0 0 0 0.005 0.071 0.01 0.005 0.071 0.01

80 0 0 0 0 0 0 0.005 0.071 0.01

90 0 0 0 0 0 0 0.005 0.071 0.01

100 0 0 0 0 0 0 0.005 0.071 0.01

Table B.4: Fragmentation statistics: intruder alone
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B.3 Target Distance
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Figure B.2: Target distance comparison
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ω = 0.5 ω = 1 ω = 3
Size Mean ±SD ±CI Mean ±SD ±CI Mean ±SD ±CI

η
=

1

10 0.655 0.477 0.066 0.635 0.483 0.067 0.73 0.445 0.062

20 0.455 0.499 0.07 0.465 0.5 0.07 0.49 0.501 0.07

30 0.355 0.48 0.067 0.45 0.499 0.07 0.37 0.484 0.067

40 0.315 0.466 0.065 0.39 0.489 0.068 0.325 0.47 0.065

50 0.36 0.481 0.067 0.32 0.468 0.065 0.28 0.45 0.063

60 0.24 0.428 0.06 0.295 0.457 0.064 0.285 0.453 0.063

70 0.235 0.425 0.059 0.22 0.415 0.058 0.2 0.401 0.056

80 0.215 0.412 0.057 0.26 0.44 0.061 0.2 0.401 0.056

90 0.185 0.389 0.054 0.185 0.389 0.054 0.18 0.385 0.054

100 0.19 0.393 0.055 0.135 0.343 0.048 0.175 0.381 0.053

η
=

2

10 0.665 0.473 0.066 0.625 0.485 0.068 0.66 0.475 0.066

20 0.53 0.5 0.07 0.505 0.501 0.07 0.52 0.501 0.07

30 0.385 0.488 0.068 0.45 0.499 0.07 0.385 0.488 0.068

40 0.38 0.487 0.068 0.33 0.471 0.066 0.38 0.487 0.068

50 0.355 0.48 0.067 0.305 0.462 0.064 0.345 0.477 0.066

60 0.305 0.462 0.064 0.315 0.466 0.065 0.255 0.437 0.061

70 0.28 0.45 0.063 0.2 0.401 0.056 0.22 0.415 0.058

80 0.19 0.393 0.055 0.235 0.425 0.059 0.195 0.397 0.055

90 0.2 0.401 0.056 0.195 0.397 0.055 0.215 0.412 0.057

100 0.175 0.381 0.053 0.215 0.412 0.057 0.17 0.377 0.053

η
=

5

10 0.745 0.437 0.061 0.68 0.468 0.065 0.67 0.471 0.066

20 0.545 0.499 0.07 0.52 0.501 0.07 0.425 0.496 0.069

30 0.355 0.48 0.067 0.39 0.489 0.068 0.4 0.491 0.068

40 0.385 0.488 0.068 0.31 0.464 0.065 0.335 0.473 0.066

50 0.36 0.481 0.067 0.3 0.459 0.064 0.305 0.462 0.064

60 0.355 0.48 0.067 0.325 0.47 0.065 0.24 0.428 0.06

70 0.28 0.45 0.063 0.23 0.422 0.059 0.21 0.408 0.057

80 0.27 0.445 0.062 0.155 0.363 0.051 0.205 0.405 0.056

90 0.19 0.393 0.055 0.26 0.440 0.061 0.23 0.422 0.059

100 0.27 0.445 0.062 0.185 0.389 0.054 0.175 0.381 0.053

η
=

2
0

10 0.875 0.332 0.046 0.54 0.5 0.07 0.51 0.501 0.07

20 0.48 0.501 0.07 0.26 0.44 0.061 0.215 0.412 0.057

30 0.36 0.481 0.067 0.215 0.412 0.057 0.19 0.393 0.055

40 0.33 0.471 0.066 0.245 0.431 0.06 0.215 0.412 0.057

50 0.33 0.471 0.066 0.21 0.408 0.057 0.155 0.363 0.051

60 0.29 0.455 0.063 0.21 0.408 0.057 0.175 0.381 0.053

70 0.28 0.45 0.063 0.18 0.385 0.054 0.13 0.337 0.047

80 0.275 0.448 0.062 0.155 0.363 0.051 0.14 0.348 0.049

90 0.21 0.408 0.057 0.18 0.385 0.054 0.15 0.358 0.05

100 0.2 0.401 0.056 0.1 0.301 0.042 0.1 0.301 0.042

Table B.5: Target distance statistics: at primary target
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ω = 0.5 ω = 1 ω = 3
Size Mean ±SD ±CI Mean ±SD ±CI Mean ±SD ±CI

η
=

1

10 0.345 0.477 0.066 0.365 0.483 0.067 0.27 0.445 0.062

20 0.525 0.501 0.07 0.505 0.501 0.07 0.495 0.501 0.07

30 0.58 0.495 0.069 0.445 0.498 0.069 0.505 0.501 0.07

40 0.505 0.501 0.07 0.43 0.496 0.069 0.45 0.499 0.07

50 0.415 0.494 0.069 0.415 0.494 0.069 0.425 0.496 0.069

60 0.43 0.496 0.069 0.41 0.493 0.069 0.33 0.471 0.066

70 0.325 0.47 0.065 0.43 0.496 0.069 0.395 0.49 0.068

80 0.385 0.488 0.068 0.345 0.477 0.066 0.36 0.481 0.067

90 0.32 0.468 0.065 0.36 0.481 0.067 0.305 0.462 0.064

100 0.375 0.485 0.068 0.39 0.489 0.068 0.29 0.455 0.063

η
=

2

10 0.335 0.473 0.066 0.375 0.485 0.068 0.34 0.475 0.066

20 0.44 0.498 0.069 0.475 0.501 0.07 0.445 0.498 0.069

30 0.56 0.498 0.069 0.465 0.5 0.07 0.535 0.5 0.07

40 0.445 0.498 0.069 0.45 0.499 0.07 0.47 0.5 0.07

50 0.41 0.493 0.069 0.475 0.501 0.07 0.39 0.489 0.068

60 0.39 0.489 0.068 0.395 0.49 0.068 0.365 0.483 0.067

70 0.395 0.49 0.068 0.43 0.496 0.069 0.385 0.488 0.068

80 0.345 0.477 0.066 0.36 0.481 0.067 0.36 0.481 0.067

90 0.31 0.464 0.065 0.315 0.466 0.065 0.395 0.49 0.068

100 0.335 0.473 0.066 0.285 0.453 0.063 0.3 0.459 0.064

η
=

5

10 0.255 0.437 0.061 0.32 0.468 0.065 0.305 0.462 0.064

20 0.43 0.496 0.069 0.455 0.499 0.07 0.515 0.501 0.07

30 0.56 0.498 0.069 0.45 0.499 0.07 0.46 0.5 0.07

40 0.47 0.5 0.07 0.47 0.5 0.07 0.4 0.491 0.068

50 0.42 0.495 0.069 0.45 0.499 0.07 0.415 0.494 0.069

60 0.34 0.475 0.066 0.375 0.485 0.068 0.34 0.475 0.066

70 0.445 0.498 0.069 0.365 0.483 0.067 0.315 0.466 0.065

80 0.345 0.477 0.066 0.315 0.466 0.065 0.34 0.475 0.066

90 0.385 0.488 0.068 0.27 0.445 0.062 0.29 0.455 0.063

100 0.27 0.445 0.062 0.295 0.457 0.064 0.275 0.448 0.062

η
=

2
0

10 0.11 0.314 0.044 0.395 0.49 0.068 0.335 0.473 0.066

20 0.47 0.5 0.07 0.51 0.501 0.07 0.46 0.5 0.07

30 0.56 0.498 0.069 0.395 0.49 0.068 0.355 0.48 0.067

40 0.43 0.496 0.069 0.355 0.48 0.067 0.305 0.462 0.064

50 0.35 0.478 0.067 0.275 0.448 0.062 0.255 0.437 0.061

60 0.315 0.466 0.065 0.24 0.428 0.06 0.255 0.437 0.061

70 0.315 0.466 0.065 0.24 0.428 0.06 0.22 0.415 0.058

80 0.28 0.45 0.063 0.27 0.445 0.062 0.19 0.393 0.055

90 0.345 0.477 0.066 0.23 0.422 0.059 0.245 0.431 0.06

100 0.29 0.455 0.063 0.235 0.425 0.059 0.21 0.408 0.057

Table B.6: Target distance statistics: near primary target
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ω = 0.5 ω = 1 ω = 3
Size Min Med Max Min Med Max Min Med Max

η
=

1

10 0.251 6.218 36.758 0.19 7.184 30.855 0.273 5.756 40.122

20 0.258 10.325 109.187 0.398 10.413 110.378 0.455 9.832 89.234

30 0.382 12.782 145.235 0.245 10.822 152.936 0.172 12.555 138.195

40 0.093 18.912 129.448 0.172 14.34 130.312 0.074 18.176 162.723

50 0.166 21.033 140.645 0.034 22.938 191.06 0.082 27.053 153.543

60 0.083 33.916 156.705 0.209 24.394 172.431 0.557 32.798 156.267

70 0.25 37.455 164.529 0.339 31.498 171.203 0.006 38.79 168.134

80 0.215 37.353 168.05 0.245 36.367 170.879 0.179 39.935 178.845

90 0.246 45.755 185.97 0.422 42.656 171.89 0.23 48.213 171.1

100 0.161 39.294 186.302 0.259 46.451 164.746 0.636 53.721 188.169

η
=

2

10 0.068 6.357 32.259 0.295 6.912 34.461 0.139 6.045 38.242

20 0.126 8.77 90.378 0.214 9.144 88.472 0.201 9.218 72.98

30 0.259 12.216 84.091 0.177 10.651 121.537 0.361 12.131 111.063

40 0.142 13.343 139.026 0.21 19.512 168.605 0.074 13.916 118.73

50 0.341 20.5 165.817 0.201 18.966 156.323 0.116 14.937 164.903

60 0.293 24.473 179.261 0.352 22.007 150.498 0.337 30.339 165.329

70 0.223 25.465 156.124 0.189 34.42 179.179 0.214 35.907 175.141

80 0.318 41.847 172.896 0.388 33.656 162.52 0.375 38.925 173.974

90 0.33 43.605 186.484 0.322 43.687 170.944 0.235 33.684 173.561

100 0.498 44.931 171.201 0.172 44.567 174.603 0.431 49.877 187.039

η
=

5

10 0.173 4.549 33.186 0.285 6.309 39.038 0.4 6.369 97.463

20 0.074 8.602 111.305 0.021 9.381 96.638 0.118 10.793 88.51

30 0.171 12.769 134.303 0.096 13.059 100.486 0.165 11.866 135.344

40 0.363 12.028 116.153 0.545 17.812 103.439 0.116 16.552 137.492

50 0.145 16.07 115.065 0.288 21.756 160.031 0.361 20.729 156.807

60 0.201 20.108 175.284 0.34 19.703 139.988 0.457 33.703 177.778

70 0.245 22.69 145.877 0.038 33.956 164.879 0.561 39.46 159.682

80 0.125 32.529 186.275 0.319 45.224 172.365 0.348 35.486 184.27

90 0.132 35.248 161.324 0.225 39.413 187.343 0.511 41.748 171.125

100 0.215 40.577 168.351 0.223 47.29 185.369 0.366 51.606 163.926

η
=

2
0

10 0.037 2.628 94.928 0.378 8.752 97.265 0.166 9.073 101.427

20 0.25 9.726 93.772 0.183 18.703 103.278 0.107 22.774 114.094

30 0.393 12.48 135.863 0.172 29.173 108.649 0.305 36.195 109.273

40 0.233 16.098 116.883 0.082 28.925 167.197 0.268 38.417 113.134

50 0.22 18.085 129.823 0.295 42.808 135.132 0.384 55.523 129.18

60 0.176 26.198 163.821 0.211 49.285 163.857 0.153 46.858 142.624

70 0.488 27.59 137.946 0.522 55.1 148.287 0.515 56.129 133.935

80 0.549 30.005 186.988 0.4 51.62 182.103 0.454 61.193 169.562

90 0.189 36.206 179.913 0.48 51.65 131.355 0.593 56.005 190.696

100 0.243 44.61 185.147 0.436 59.337 186.227 0.614 59.385 181.675

Table B.7: Target distance statistics: from primary target
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ω = 0.5 ω = 1 ω = 3
Size Mean ±SD ±CI Mean ±SD ±CI Mean ±SD ±CI

η
=

1

10 0 0 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0.005 0.071 0.01

30 0.005 0.071 0.01 0 0 0 0.005 0.071 0.01

40 0.015 0.122 0.017 0.01 0.1 0.014 0 0 0

50 0.005 0.071 0.01 0.01 0.1 0.014 0.005 0.071 0.01

60 0.005 0.071 0.01 0.005 0.071 0.01 0.01 0.1 0.014

70 0.005 0.071 0.01 0.01 0.1 0.014 0.015 0.122 0.017

80 0.005 0.071 0.01 0.015 0.122 0.017 0.02 0.14 0.02

90 0.01 0.1 0.014 0.015 0.122 0.017 0.02 0.14 0.02

100 0.02 0.14 0.02 0.035 0.184 0.026 0.02 0.14 0.02

η
=

2

10 0 0 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0 0

30 0 0 0 0.02 0.14 0.02 0.015 0.122 0.017

40 0 0 0 0.015 0.122 0.017 0 0 0

50 0.005 0.071 0.01 0.005 0.071 0.01 0.005 0.071 0.01

60 0.015 0.122 0.017 0.03 0.171 0.024 0.015 0.122 0.017

70 0.025 0.157 0.022 0.03 0.171 0.024 0.04 0.196 0.027

80 0.035 0.184 0.026 0.03 0.171 0.024 0.03 0.171 0.024

90 0.015 0.122 0.017 0.02 0.14 0.02 0.04 0.196 0.027

100 0.01 0.1 0.014 0.035 0.184 0.026 0.05 0.218 0.03

η
=

5

10 0 0 0 0 0 0 0.015 0.122 0.017

20 0 0 0 0.01 0.1 0.014 0 0 0

30 0.01 0.1 0.014 0.04 0.196 0.027 0.04 0.196 0.027

40 0.005 0.071 0.01 0.04 0.196 0.027 0.05 0.218 0.03

50 0.035 0.184 0.026 0.04 0.196 0.027 0.025 0.157 0.022

60 0.03 0.171 0.024 0.06 0.238 0.033 0.055 0.229 0.032

70 0.01 0.1 0.014 0.065 0.247 0.034 0.075 0.264 0.037

80 0.04 0.196 0.027 0.1 0.301 0.042 0.065 0.247 0.034

90 0.035 0.184 0.026 0.06 0.238 0.033 0.08 0.272 0.038

100 0.085 0.28 0.039 0.09 0.287 0.04 0.085 0.28 0.039

η
=

2
0

10 0.005 0.071 0.01 0.025 0.157 0.022 0.08 0.272 0.038

20 0 0 0 0.07 0.256 0.036 0.155 0.363 0.051

30 0.015 0.122 0.017 0.165 0.372 0.052 0.185 0.389 0.054

40 0.06 0.238 0.033 0.16 0.368 0.051 0.21 0.408 0.057

50 0.065 0.247 0.034 0.205 0.405 0.056 0.285 0.453 0.063

60 0.105 0.307 0.043 0.22 0.415 0.058 0.21 0.408 0.057

70 0.065 0.247 0.034 0.285 0.453 0.063 0.335 0.473 0.066

80 0.1 0.301 0.042 0.215 0.412 0.057 0.335 0.473 0.066

90 0.09 0.287 0.04 0.215 0.412 0.057 0.25 0.434 0.061

100 0.125 0.332 0.046 0.24 0.428 0.06 0.25 0.434 0.061

Table B.8: Target distance statistics: at secondary target
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ω = 0.5 ω = 1 ω = 3
Size Mean ±SD ±CI Mean ±SD ±CI Mean ±SD ±CI

η
=

1

10 0 0 0 0 0 0 0 0 0

20 0.02 0.14 0.02 0.02 0.14 0.02 0.005 0.071 0.01

30 0.035 0.184 0.026 0.045 0.208 0.029 0.045 0.208 0.029

40 0.045 0.208 0.029 0.09 0.287 0.04 0.065 0.247 0.034

50 0.11 0.314 0.044 0.08 0.272 0.038 0.105 0.307 0.043

60 0.115 0.32 0.045 0.075 0.264 0.037 0.08 0.272 0.038

70 0.155 0.363 0.051 0.11 0.314 0.044 0.11 0.314 0.044

80 0.11 0.314 0.044 0.08 0.272 0.038 0.045 0.208 0.029

90 0.11 0.314 0.044 0.135 0.343 0.048 0.14 0.348 0.049

100 0.11 0.314 0.044 0.115 0.32 0.045 0.145 0.353 0.049

η
=

2

10 0 0 0 0 0 0 0 0 0

20 0.025 0.157 0.022 0.005 0.071 0.01 0.035 0.184 0.026

30 0.05 0.218 0.03 0.025 0.157 0.022 0.05 0.218 0.03

40 0.105 0.307 0.043 0.085 0.28 0.039 0.055 0.229 0.032

50 0.125 0.332 0.046 0.09 0.287 0.04 0.07 0.256 0.036

60 0.115 0.32 0.045 0.1 0.301 0.042 0.145 0.353 0.049

70 0.13 0.337 0.047 0.155 0.363 0.051 0.1 0.301 0.042

80 0.14 0.348 0.049 0.145 0.353 0.049 0.135 0.343 0.048

90 0.115 0.32 0.045 0.15 0.358 0.05 0.07 0.256 0.036

100 0.145 0.353 0.049 0.155 0.363 0.051 0.135 0.343 0.048

η
=

5

10 0 0 0 0 0 0 0.005 0.071 0.01

20 0.025 0.157 0.022 0.015 0.122 0.017 0.06 0.238 0.033

30 0.065 0.247 0.034 0.095 0.294 0.041 0.085 0.28 0.039

40 0.11 0.314 0.044 0.15 0.358 0.05 0.155 0.363 0.051

50 0.13 0.337 0.047 0.17 0.377 0.053 0.145 0.353 0.049

60 0.165 0.372 0.052 0.135 0.343 0.048 0.235 0.425 0.059

70 0.135 0.343 0.048 0.22 0.415 0.058 0.2 0.401 0.056

80 0.19 0.393 0.055 0.245 0.431 0.06 0.165 0.372 0.052

90 0.19 0.393 0.055 0.205 0.405 0.056 0.215 0.412 0.057

100 0.165 0.372 0.052 0.21 0.408 0.057 0.21 0.408 0.057

η
=

2
0

10 0.01 0.1 0.014 0.04 0.196 0.027 0.075 0.264 0.037

20 0.04 0.196 0.027 0.15 0.358 0.05 0.17 0.377 0.053

30 0.055 0.229 0.032 0.21 0.408 0.057 0.26 0.44 0.061

40 0.165 0.372 0.052 0.22 0.415 0.058 0.255 0.437 0.061

50 0.22 0.415 0.058 0.28 0.45 0.063 0.27 0.445 0.062

60 0.165 0.372 0.052 0.295 0.457 0.064 0.31 0.464 0.065

70 0.255 0.437 0.061 0.245 0.431 0.06 0.26 0.44 0.061

80 0.24 0.428 0.06 0.235 0.425 0.059 0.27 0.445 0.062

90 0.205 0.405 0.056 0.27 0.445 0.062 0.215 0.412 0.057

100 0.21 0.408 0.057 0.28 0.45 0.063 0.32 0.468 0.065

Table B.9: Target distance statistics: near secondary target

73



ω = 0.5 ω = 1 ω = 3
Size Min Med Max Min Med Max Min Med Max

η
=

1

10 62.568 94.117 110.597 64.828 95.758 114.929 67.038 97.313 122.104

20 17.022 91.131 114.907 23.307 95.015 124.196 8.148 97.518 116.783

30 4.829 84.671 141.99 14.672 91.171 189.274 8.926 91.297 155.989

40 0.535 85.738 158.575 4.66 89.2 156.32 20.008 91.719 187.295

50 0.351 81.173 145.168 0.711 83.837 169.174 9.006 88.449 166.991

60 2.632 82.15 159.292 7.153 87.125 163.917 0.894 88.4 169.523

70 3.94 79.438 188.566 0.999 84.833 179.334 1.04 89.378 183.547

80 2.118 80.041 148.979 5.528 84.965 188.216 1.32 86.394 158.784

90 1.08 82.514 183.726 0.725 78.38 188.38 0.481 84.998 180.227

100 0.771 76.954 186.711 0.713 82.374 164.448 1.179 81.965 167.524

η
=

2

10 65.962 93.079 118.536 63.029 95.216 117.318 61.304 97.984 121.999

20 11.323 91.695 120.458 47.901 95.828 122.074 24.316 94.279 116.445

30 10.733 87.882 112.629 0.687 91.821 161.937 4.969 92.39 126.464

40 9.729 87.017 143.793 3.812 83.69 167.47 14.35 87.668 131.496

50 8.062 80.891 171.625 2.763 84.874 149.994 0.88 84.319 166.599

60 2.88 78.365 161.043 0.579 81.245 168.308 0.463 82.296 184.805

70 1.148 75.782 145.258 0.495 75.98 169.412 0.924 86.736 167.005

80 0.809 78.061 172.296 0.617 79.307 169.824 0.336 81.496 158.592

90 4.165 84.237 179.547 1.025 83.052 172.682 0.472 80.6 185.147

100 4.065 74.524 166.503 0.393 82.39 172.586 0.316 75.899 180.299

η
=

5

10 64.759 94.535 117.179 55.797 95.98 118.739 1.699 96.444 119.104

20 17.488 89.484 114.463 0.826 91.275 116.023 14.373 91.423 115.511

30 4.933 86.414 170.032 0.237 84.191 119.516 0.427 90.606 122.572

40 6.742 83.102 114.122 0.646 78.487 120.178 1.169 78.032 170.122

50 0.956 79.84 133.403 0.311 72.038 145.72 0.427 79.297 168.32

60 0.721 75.573 178.718 0.107 72.687 173.994 0.326 71.105 159.54

70 3.559 74.061 159.313 0.758 66.27 161.387 0.521 69.428 182.614

80 0.274 71.023 173.218 0.266 60.163 176.199 0.366 76.521 182.252

90 0.637 73.6 171.793 0.319 69.998 161.174 0.153 64.703 174.782

100 0.321 74.552 166.849 0.241 65.917 184.181 0.356 65.547 181.524

η
=

2
0

10 3.363 95.719 106.451 1.154 94.506 119.72 0.605 94.298 115.591

20 14.736 87.624 113.745 0.866 77.511 111.469 0.215 70.7 115.254

30 1.564 82.665 114.394 0.497 62.392 111.003 0.185 52.717 114.989

40 0.898 72.721 116.549 0.088 56.911 139.497 0.324 47.594 129.946

50 0.167 69.154 136.131 0.259 42.708 157.328 0.164 34.385 149.338

60 0.506 70.564 170.304 0.154 40.788 165.018 0.213 38.602 156.491

70 0.664 61.74 156.076 0.379 36.784 123.039 0.347 29.43 174.738

80 0.54 63.73 172.925 0.556 49.895 177.41 0.065 27.906 158.653

90 0.48 63.118 181.857 0.507 43.626 139.55 0.162 43.356 178.215

100 0.366 56.874 177.916 0.296 39.626 154.704 0.151 35.873 171.192

Table B.10: Target distance statistics: from secondary target
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ω = 0.5 ω = 1 ω = 3
Size Min Med Max Min Med Max Min Med Max

η
=

1

10 63.335 95.103 112.327 0.064 1.858 108.734 0.064 1.501 101.146

20 21.965 94.43 122.805 0.137 1.544 120.667 0.166 1.579 115.247

30 12.822 88.144 156.512 0.037 2.084 132.33 0.145 1.590 118.481

40 5.45 91.085 162.321 0.077 1.676 105.764 0.116 1.612 105.949

50 12.585 87.385 145.168 0.11 1.807 130.27 0.095 1.667 113.229

60 12.483 87.925 176.041 0.162 2.205 162.52 0.125 1.662 112.514

70 14.638 85.523 198.392 0.124 2.629 170.018 0.081 1.619 115.059

80 14.204 87.703 169.436 0.02 4.812 125.646 0.07 1.852 109.971

90 7.505 89.806 187.766 0.211 4.328 160.664 0.19 1.486 121.971

100 5.797 85.74 200.725 0.152 12.113 155.607 0.076 1.730 117.627

η
=

2

10 67.861 94.058 119.346 0.143 3.05 112.589 0.195 1.874 112.274

20 16.439 93.706 125.204 0.046 1.817 119.657 0.227 1.606 118.999

30 17.813 91.675 122.294 0.276 1.904 117.597 0.024 1.784 117.978

40 12.603 91.828 147.233 0.046 2.343 115.211 0.086 1.833 118.393

50 11.522 88.831 172.988 0.138 2.144 135.451 0.154 1.692 109.6

60 6.053 85.308 172.434 0.173 2.117 144.263 0.054 1.856 106.059

70 1.041 83.225 153.591 0.08 8.101 172.379 0.093 1.778 123.734

80 1.311 87.133 172.296 0.068 19.06 139.867 0.235 2.17 159.781

90 12.313 91.207 177.141 0.274 20.51 182.401 0.122 1.969 153.986

100 9.215 84.197 170.164 0.083 17.498 144.403 0.093 2.17 185.955

η
=

5

10 67.229 96.017 119.566 0.144 7.544 109.464 0.08 2.483 104.723

20 23.998 92.487 123.064 0.213 25.447 117.91 0.133 2.151 118.954

30 17.846 90.183 123.112 0.069 31.336 120.402 0.039 2.967 118.564

40 11.766 90.856 122.133 0.143 22.137 128.279 0.209 3.045 117.2

50 3.55 84.769 133.403 0.062 27.23 121.151 0.192 3.598 119.441

60 3.344 81.721 183.413 0.238 31.209 130.614 0.196 4.784 136.323

70 13.632 82.334 199.767 0.108 30.327 131.518 0.15 8.686 136.3

80 3.564 76.403 195.528 0.186 24.831 186.977 0.05 4.381 146.006

90 2.147 81.654 188.768 0.184 45.352 166.197 0.214 13.396 167.328

100 3.349 81.84 160.242 0.2 36.354 167.566 0.165 13.877 150.307

η
=

2
0

10 3.251 96.582 108.7 0.052 3.472 116.145 0.137 1.853 100.598

20 19.24 92.208 117.876 0.171 58.901 108.664 0.178 14.29 113.844

30 7.753 87.838 120.596 0.057 42.305 117.404 0.254 24.395 120.753

40 2.248 81.02 119.399 0.349 52.207 120.475 0.549 29.352 121.496

50 1.66 75.649 145.837 0.568 35.541 131.94 0.559 21.773 122.601

60 8.313 72.334 160.828 0.749 33.173 121.945 0.36 27.114 126.033

70 3.415 65.422 169.757 1.053 33.855 124.121 1.407 19.747 113.361

80 8.367 68.359 190.45 0.778 35.291 199.259 1.096 21.147 133.938

90 5.84 64.631 165.238 2.177 41.785 130.476 0.885 25.283 123.967

100 3.193 55.062 169.392 1.289 26.521 134.771 1.813 23.629 124.14

Table B.11: Target distance statistics: intruder from his target
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B.4 Intruder Group Size
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Figure B.3: Intruder group size comparison, N = 10

Alone In Group No Frag.
Mean ±SD ±CI Mean ±SD ±CI Mean ±SD ±CI

ω
=

0
.5 η = 1 0 0 0 0 0 0 1 0 0

η = 2 0 0 0 0 0 0 1 0 0

η = 5 0 0 0 0.005 0.071 0.01 0.995 0.071 0.01

η = 20 0 0 0 0.06 0.238 0.033 0.94 0.238 0.033

ω
=

1 η = 1 0.79 0.408 0.057 0.075 0.264 0.037 0.135 0.343 0.048

η = 2 0.65 0.478 0.067 0.12 0.326 0.045 0.23 0.422 0.059

η = 5 0.52 0.501 0.07 0.265 0.442 0.062 0.215 0.412 0.057

η = 20 0.25 0.434 0.061 0.565 0.497 0.069 0.185 0.389 0.054

ω
=

3 η = 1 0.825 0.381 0.053 0.135 0.343 0.048 0.04 0.196 0.027

η = 2 0.72 0.45 0.063 0.215 0.412 0.057 0.065 0.247 0.034

η = 5 0.48 0.501 0.07 0.4 0.491 0.068 0.12 0.326 0.045

η = 20 0.3 0.459 0.064 0.585 0.494 0.069 0.115 0.32 0.045

Table B.12: Intruder group size statistics, N = 10
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Figure B.4: Intruder group size comparison, N = 20

Alone In Group No Frag.
Mean ±SD ±CI Mean ±SD ±CI Mean ±SD ±CI

ω
=

0
.5 η = 1 0.005 0.071 0.01 0 0 0 0.995 0.071 0.01

η = 2 0 0 0 0 0 0 1 0 0

η = 5 0.005 0.071 0.01 0.015 0.122 0.017 0.98 0.14 0.02

η = 20 0 0 0 0.03 0.171 0.024 0.97 0.171 0.024

ω
=

1 η = 1 0.755 0.431 0.06 0.04 0.196 0.027 0.205 0.405 0.056

η = 2 0.72 0.45 0.063 0.04 0.196 0.027 0.24 0.428 0.06

η = 5 0.565 0.497 0.069 0.09 0.287 0.04 0.345 0.477 0.066

η = 20 0.055 0.229 0.032 0.295 0.457 0.064 0.645 0.48 0.067

ω
=

3 η = 1 0.86 0.348 0.049 0.1 0.301 0.042 0.04 0.196 0.027

η = 2 0.75 0.434 0.061 0.16 0.368 0.051 0.09 0.287 0.04

η = 5 0.535 0.5 0.07 0.275 0.448 0.062 0.19 0.393 0.055

η = 20 0.085 0.28 0.039 0.415 0.494 0.069 0.49 0.501 0.07

Table B.13: Intruder group size statistics, N = 20
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Figure B.5: Intruder group size comparison, N = 30

Alone In Group No Frag.
Mean ±SD ±CI Mean ±SD ±CI Mean ±SD ±CI

ω
=

0
.5 η = 1 0 0 0 0.01 0.1 0.014 0.985 0.122 0.017

η = 2 0 0 0 0.015 0.122 0.017 0.98 0.14 0.02

η = 5 0 0 0 0.02 0.14 0.02 0.98 0.14 0.02

η = 20 0 0 0 0.02 0.14 0.02 0.98 0.14 0.02

ω
=

1 η = 1 0.675 0.47 0.065 0.045 0.208 0.029 0.28 0.45 0.063

η = 2 0.69 0.464 0.065 0.035 0.184 0.026 0.275 0.448 0.062

η = 5 0.475 0.501 0.07 0.075 0.264 0.037 0.45 0.499 0.07

η = 20 0.01 0.1 0.014 0.255 0.437 0.061 0.73 0.445 0.062

ω
=

3 η = 1 0.8 0.401 0.056 0.105 0.307 0.043 0.095 0.294 0.041

η = 2 0.735 0.442 0.062 0.135 0.343 0.048 0.13 0.337 0.047

η = 5 0.46 0.5 0.07 0.28 0.45 0.063 0.26 0.44 0.061

η = 20 0.035 0.184 0.026 0.29 0.455 0.063 0.665 0.473 0.066

Table B.14: Intruder group size statistics, N = 30
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Figure B.6: Intruder group size comparison, N = 40

Alone In Group No Frag.
Mean ±SD ±CI Mean ±SD ±CI Mean ±SD ±CI

ω
=

0
.5 η = 1 0 0 0 0.035 0.184 0.026 0.965 0.184 0.026

η = 2 0 0 0 0.04 0.196 0.027 0.955 0.208 0.029

η = 5 0 0 0 0.025 0.157 0.022 0.975 0.157 0.022

η = 20 0 0 0 0.085 0.28 0.039 0.915 0.28 0.039

ω
=

1 η = 1 0.715 0.453 0.063 0.03 0.171 0.024 0.255 0.437 0.061

η = 2 0.69 0.464 0.065 0.035 0.184 0.026 0.275 0.448 0.062

η = 5 0.425 0.496 0.069 0.095 0.294 0.041 0.475 0.501 0.07

η = 20 0 0 0 0.205 0.405 0.056 0.79 0.408 0.057

ω
=

3 η = 1 0.795 0.405 0.056 0.13 0.337 0.047 0.075 0.264 0.037

η = 2 0.68 0.468 0.065 0.2 0.401 0.056 0.12 0.326 0.045

η = 5 0.495 0.501 0.07 0.25 0.434 0.061 0.255 0.437 0.061

η = 20 0.02 0.14 0.02 0.25 0.434 0.061 0.73 0.445 0.062

Table B.15: Intruder group size statistics, N = 40
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Figure B.7: Intruder group size comparison, N = 50

Alone In Group No Frag.
Mean ±SD ±CI Mean ±SD ±CI Mean ±SD ±CI

ω
=

0
.5 η = 1 0 0 0 0.04 0.196 0.027 0.96 0.196 0.027

η = 2 0 0 0 0.04 0.196 0.027 0.955 0.208 0.029

η = 5 0.005 0.071 0.010 0.085 0.28 0.039 0.91 0.287 0.04

η = 20 0 0 0 0.13 0.337 0.047 0.86 0.348 0.049

ω
=

1 η = 1 0.735 0.442 0.062 0.04 0.196 0.027 0.225 0.419 0.058

η = 2 0.66 0.475 0.066 0.045 0.208 0.029 0.295 0.457 0.064

η = 5 0.395 0.49 0.068 0.105 0.307 0.043 0.5 0.501 0.07

η = 20 0 0 0 0.22 0.415 0.058 0.775 0.419 0.058

ω
=

3 η = 1 0.78 0.415 0.058 0.16 0.368 0.051 0.06 0.238 0.033

η = 2 0.68 0.468 0.065 0.2 0.401 0.056 0.12 0.326 0.045

η = 5 0.475 0.501 0.07 0.26 0.44 0.061 0.265 0.442 0.062

η = 20 0 0 0 0.37 0.484 0.067 0.63 0.484 0.067

Table B.16: Intruder group size statistics, N = 50
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Figure B.8: Intruder group size comparison, N = 60

Alone In Group No Frag.
Mean ±SD ±CI Mean ±SD ±CI Mean ±SD ±CI

ω
=

0
.5 η = 1 0 0 0 0.095 0.294 0.041 0.905 0.294 0.041

η = 2 0 0 0 0.11 0.314 0.044 0.89 0.314 0.044

η = 5 0 0 0 0.105 0.307 0.043 0.89 0.314 0.044

η = 20 0 0 0 0.265 0.442 0.062 0.735 0.442 0.062

ω
=

1 η = 1 0.7 0.459 0.064 0.05 0.218 0.03 0.25 0.434 0.061

η = 2 0.7 0.459 0.064 0.03 0.171 0.024 0.27 0.445 0.062

η = 5 0.355 0.48 0.067 0.12 0.326 0.045 0.525 0.501 0.07

η = 20 0 0 0 0.31 0.464 0.065 0.69 0.464 0.065

ω
=

3 η = 1 0.765 0.425 0.059 0.13 0.337 0.047 0.105 0.307 0.043

η = 2 0.66 0.475 0.066 0.2 0.401 0.056 0.14 0.348 0.049

η = 5 0.45 0.499 0.07 0.31 0.464 0.065 0.24 0.428 0.06

η = 20 0.005 0.071 0.01 0.365 0.483 0.067 0.63 0.484 0.067

Table B.17: Intruder group size statistics, N = 60
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Figure B.9: Intruder group size comparison, N = 70

Alone In Group No Frag.
Mean ±SD ±CI Mean ±SD ±CI Mean ±SD ±CI

ω
=

0
.5 η = 1 0 0 0 0.125 0.332 0.046 0.875 0.332 0.046

η = 2 0.005 0.071 0.01 0.145 0.353 0.049 0.85 0.358 0.05

η = 5 0 0 0 0.15 0.358 0.05 0.85 0.358 0.05

η = 20 0 0 0 0.3 0.459 0.064 0.695 0.462 0.064

ω
=

1 η = 1 0.69 0.464 0.065 0.05 0.218 0.03 0.26 0.44 0.061

η = 2 0.605 0.49 0.068 0.08 0.272 0.038 0.315 0.466 0.065

η = 5 0.33 0.471 0.066 0.18 0.385 0.054 0.49 0.501 0.07

η = 20 0.005 0.071 0.01 0.27 0.445 0.062 0.72 0.45 0.063

ω
=

3 η = 1 0.725 0.448 0.062 0.15 0.358 0.05 0.125 0.332 0.046

η = 2 0.69 0.464 0.065 0.185 0.389 0.054 0.125 0.332 0.046

η = 5 0.395 0.49 0.068 0.33 0.471 0.066 0.275 0.448 0.062

η = 20 0.005 0.071 0.01 0.45 0.499 0.07 0.545 0.499 0.07

Table B.18: Intruder group size statistics, N = 70
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Figure B.10: Intruder group size comparison, N = 80

Alone In Group No Frag.
Mean ±SD ±CI Mean ±SD ±CI Mean ±SD ±CI

ω
=

0
.5 η = 1 0.005 0.071 0.01 0.18 0.385 0.054 0.815 0.389 0.054

η = 2 0 0 0 0.19 0.393 0.055 0.81 0.393 0.055

η = 5 0 0 0 0.225 0.419 0.058 0.775 0.419 0.058

η = 20 0 0 0 0.3 0.459 0.064 0.7 0.459 0.064

ω
=

1 η = 1 0.665 0.473 0.066 0.09 0.287 0.04 0.245 0.431 0.06

η = 2 0.545 0.499 0.07 0.095 0.294 0.041 0.36 0.481 0.067

η = 5 0.36 0.481 0.067 0.145 0.353 0.049 0.495 0.501 0.07

η = 20 0 0 0 0.455 0.499 0.07 0.545 0.499 0.07

ω
=

3 η = 1 0.73 0.445 0.062 0.155 0.363 0.051 0.115 0.32 0.045

η = 2 0.62 0.487 0.068 0.27 0.445 0.062 0.11 0.314 0.044

η = 5 0.4 0.491 0.068 0.355 0.48 0.067 0.245 0.431 0.06

η = 20 0.005 0.071 0.01 0.41 0.493 0.069 0.58 0.495 0.069

Table B.19: Intruder group size statistics, N = 80
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Figure B.11: Intruder group size comparison, N = 90

Alone In Group No Frag.
Mean ±SD ±CI Mean ±SD ±CI Mean ±SD ±CI

ω
=

0
.5 η = 1 0 0 0 0.3 0.459 0.064 0.7 0.459 0.064

η = 2 0 0 0 0.27 0.445 0.062 0.73 0.445 0.062

η = 5 0 0 0 0.3 0.459 0.064 0.7 0.459 0.064

η = 20 0 0 0 0.375 0.485 0.068 0.625 0.485 0.068

ω
=

1 η = 1 0.635 0.483 0.067 0.11 0.314 0.044 0.255 0.437 0.061

η = 2 0.55 0.499 0.07 0.125 0.332 0.046 0.325 0.47 0.065

η = 5 0.3 0.459 0.064 0.23 0.422 0.059 0.47 0.5 0.07

η = 20 0 0 0 0.4 0.491 0.068 0.6 0.491 0.068

ω
=

3 η = 1 0.79 0.408 0.057 0.12 0.326 0.045 0.090 0.287 0.04

η = 2 0.66 0.475 0.066 0.190 0.393 0.055 0.15 0.358 0.05

η = 5 0.365 0.483 0.067 0.31 0.464 0.065 0.325 0.47 0.065

η = 20 0.005 0.071 0.01 0.495 0.501 0.07 0.5 0.501 0.07

Table B.20: Intruder group size statistics, N = 90

84



0
2

4
6

8
10

0

2

6

8
7

12
13

12

4

0

ω = 0.5, η = 1, x = 64 200

0
2

4
6

8
10

12

0

3
4

5

9

11
12

7

1
0

ω = 0.5, η = 2, x = 52 200

0
2

4
6

8
10

0

2

4
5

13
12

7

12

1
0

ω = 0.5, η = 5, x = 56 200

0
5

10
15

20
25

0 1

7

13

22

27

14

8

3
0

ω = 0.5, η = 20, x = 95 200

0
1

2
3

4
5

2 2 2 2

3

5

4

5

1

0

ω = 1, η = 1, x = 26 200

0
1

2
3

4
5

3

0

1

4

1

5

4

3

1

0

ω = 1, η = 2, x = 22 200

0
2

4
6

8
10

7

1

6

3

7

13

2

8

2
1

ω = 1, η = 5, x = 50 200

0
5

10
15

20
25

0

5

14

25

18
15

11
8

3
0

ω = 1, η = 20, x = 99 200

0
5

10
20

30

31

0 1 1 1 2
0 1 0 0

0 20 40 60 80 100

ω = 3, η = 1, x = 37 200

0
5

10
15

20
25

26

0 1 1
3 2

6 7

0 0

0 20 40 60 80 100

ω = 3, η = 2, x = 46 200

0
5

10
20

30

32

0

8

3

9
7 6 5

0 1

0 20 40 60 80 100

ω = 3, η = 5, x = 71 200

0
5

10
15

20

2

5

14

20 20

16
14

10

3
1

0 20 40 60 80 100

ω = 3, η = 20, x = 105 200

Group size

F
re

qu
en

cy

Figure B.12: Intruder group size comparison, N = 100

Alone In Group No Frag.
Mean ±SD ±CI Mean ±SD ±CI Mean ±SD ±CI

ω
=

0
.5 η = 1 0 0 0 0.32 0.468 0.065 0.68 0.468 0.065

η = 2 0 0 0 0.26 0.44 0.061 0.74 0.44 0.061

η = 5 0 0 0 0.28 0.45 0.063 0.72 0.45 0.063

η = 20 0 0 0 0.475 0.501 0.07 0.525 0.501 0.07

ω
=

1 η = 1 0.645 0.48 0.067 0.13 0.337 0.047 0.225 0.419 0.058

η = 2 0.575 0.496 0.069 0.11 0.314 0.044 0.315 0.466 0.065

η = 5 0.265 0.442 0.062 0.245 0.431 0.06 0.485 0.501 0.07

η = 20 0 0 0 0.495 0.501 0.07 0.505 0.501 0.07

ω
=

3 η = 1 0.72 0.45 0.063 0.185 0.389 0.054 0.095 0.294 0.041

η = 2 0.625 0.485 0.068 0.23 0.422 0.059 0.145 0.353 0.049

η = 5 0.35 0.478 0.067 0.355 0.48 0.067 0.295 0.457 0.064

η = 20 0.005 0.071 0.01 0.525 0.501 0.07 0.47 0.5 0.07

Table B.21: Intruder group size statistics, N = 100
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C. DVD Contents

The structure and description of supplementary materials on accompanied DVD

(bold denotes folder, slanted denotes file):

• docs – Additional documents.

◦ prog guide.pdf – Programmer Guide for Muragatte toolset.

◦ user manual.pdf – User Manual for Muragatte toolset.

• experiments – The results of our experiments.

◦ data – Results of experiments used for thesis.

∗ Completed – Saved experiments with their histories. Empty.

∗ Experiments – The settings for all experiments.

∗ Settings – The settings for scene (scene.xml), species (species.xml)

and styles (styles.xml).

∗ Snapshots – Layered snapshot visualizations for the end state of

experiments.

∗ mte data.dat – The results output.

◦ sample – Results of experiments with just 10 runs.

∗ Same structure as data but contains saved experiments with their his-

tories in data/Completed.

◦ failed – Results of cancelled experiments showing inappropriate

behaviour for higher social attraction range.

∗ Same structure as data.

◦ mte data.dat – Main data file with experiment results.

◦ process.r – R script used to process data.

• tools – The tools we used to conduct experiments and process their

results.

◦ dotNetFx40 Full x86 x64.exe – .NET 4.0 Framework installer.

◦ muragatte r72 bin.zip – Muragatte binary files.

◦ muragatte r72 bin-tp.zip – Muragatte binary files with folder struc-

ture and settings files used in experiments.

◦ muragatte r72 src.zip – Muragatte source files.

◦ R-2.15.0-win.exe – R installer.

• vejmola thesis 2013.pdf – A pdf version of this thesis.
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