
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Rudolf Tomori

Resource limiting and accounting
facility for FreeBSD

Department of Distributed and Dependable Systems

Supervisor of the master thesis: Mgr. Martin Děcký

Study programme: Computer science

Specialization: Software systems

Prague 2013

I would like to thank to my supervisor Martin Děcký. He provided me with many
useful tips, suggestions and helpful insight during the course of this thesis.

I would also like to thank to the FreeBSD developer Edward - the author of
the racct/rctl framework in the FreeBSD kernel for being very supportive. I also
thank to the FreeBSD developer Konstantin for reviewing parts of my patches.

Finally, I wish to thank to Google for supporting students working on open-
source projects, my family and Janka for being patient with me while working on
this thesis.

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In date signature of the author

Název práce: Nástroj pro FreeBSD na měřeńı a limitováńı spotřeby systémových
zdroj̊u

Autor: Rudolf Tomori

Katedra: Katedra distribuovaných a spolehlivých systémů

Vedoućı diplomové práce: Mgr. Martin Děcký

Abstrakt: Tato práce analyzuje implementaci Linux cgroups subsystémů odpověd-
ných za limitováńı procesorového času a propustnosti diskových I/O zař́ızeńı.
Kromě př́ıstupu použitého v př́ıpadě Linux cgroups prezentujeme přehled a krátkou
analýzu daľśıch možných př́ıstup̊u k problému limitováńı procesorového času a
propustnosti diskových I/O zař́ızeńı.

Na základě téhle analýzy navrhujeme rozš́ı̌reńı frameworku racct/rctl, který je
součást́ı FreeBSD kernelu a je určen na měřeńı a limitováńı spotřeby systémových
zdroj̊u. Naše rozš́ı̌reńı umožňuje administrátor̊um a privilegovaným uživatel̊um
definovat limity na propustnost diskových I/O zař́ızeńı a procentuálńı limity na
procesorový čas pro vybraný proces, uživatele anebo FreeBSD jail.

Kĺıčová slova: FreeBSD, limitováńı spotřeby zdroj̊u, spotřeba CPU času, pro-
pustnost diskových zař́ızeńı

Title: Resource limiting and accounting facility for FreeBSD

Author: Rudolf Tomori

Department: Department of Distributed and Dependable Systems

Supervisor of the master thesis: Mgr. Martin Děcký

Abstract: This thesis analyses the implementation of the Linux cgroups subsys-
tems responsible for limiting CPU time and disk I/O throughput. Apart from
the Linux cgroups approach, an overview and short analysis of other possible
approaches to the problem of limiting CPU time and disk I/O throughput is
presented.

Based on the analysis, the thesis proposes an extension to the resource limiting
and accounting framework racct/rctl in the FreeBSD kernel. Our prototype im-
plementation of this extension provides features that enable the administrators
and privileged users to define disk I/O throughput limits and relative CPU time
limits for a particular process, user or FreeBSD jail.

Keywords: FreeBSD, resource limits, relative CPU time, disk I/O throughput

Contents

Introduction 3

1 Linux Control Groups 5
1.1 Introduction . 5
1.2 Cgroups hierarchies . 5
1.3 Cgroup resource subsystems . 5
1.4 Cgroup virtual file system . 6
1.5 Working with cgroups . 6
1.6 Using cgroups to set relative cpu time limits 7
1.7 Using cgroups to limit disk I/O throughput 8

2 The Linux kernel cgroups management 10
2.1 Introduction . 10
2.2 Interconnecting Linux tasks with cgroups 10
2.3 Iterating over tasks that are members of a specific cgroup 12

2.3.1 Associating the css set with tasks that reference it 12
2.3.2 Iterating the cgroups that are indirectly linked to a css set 13
2.3.3 Iterating the css sets that indirectly link a cgroup 15

2.4 Creating a new cgroup . 16
2.5 Moving the task to a different cgroup 16

3 The Linux CPU cgroup subsystem 17
3.1 Introduction . 17
3.2 The Linux CFS scheduler . 17

3.2.1 Overview of the CFS scheduler 17
3.2.2 Overview of the CFS data structures 17

3.3 The cgroup extension to the CFS scheduler 19
3.4 Enforcing the relative cpu limits using the cpu.shares tunable . . 24

3.4.1 The load weight of tasks and cgroups 24
3.4.2 Calculating the scheduling time-slice. 24

4 The Linux blkio cgroup subsystem 26
4.1 Introduction . 26
4.2 The Linux generic block layer . 26
4.3 The bio structure . 27
4.4 Interconnecting the bio structure with the blkio cgroup subsystem 28
4.5 Ensuring the blkio cgroup limits 30

4.5.1 The throtl data structure 30
4.5.2 Enqueuing the delayed bios. 32
4.5.3 Dispatching the delayed bios. 32

5 Analysis 33
5.1 Introduction . 33
5.2 Specifying the CPU usage limits 33

5.2.1 Hard versus soft CPU limits 33

1

5.2.2 Specifying CPU limits on uniprocessor and multiprocessor
architectures. 34

5.2.3 Specifying the CPU limits for different entities. 35
5.3 Implementing the CPU usage limits 35

5.3.1 Implementing the CPU limits at the scheduler level 35
5.3.2 Ensuring per-process CPU limits by manipulating the pro-

cess scheduling priority . 36
5.3.3 Implementing the hard CPU usage limits by the stop-and-

run technique . 37
5.3.4 Overview of the implementation approaches for imposing

CPU usage limits . 38
5.4 Specifying the block IO bandwidth limits 38
5.5 Implementing the block IO bandwidth limits 39

5.5.1 The Leaky bucket algorithm 40
5.5.2 The Token bucket algorithm 40

5.6 Integrating the prototype implementation within the FreeBSD kernel 41

6 Our prototype implementation 42
6.1 Introduction . 42
6.2 The relative CPU limits . 42

6.2.1 Implementation requirements 42
6.2.2 Integrating the tool within the FreeBSD kernel and espe-

cially the racct/rctl framework 42
6.2.3 Calculating the CPU usage percentage 44
6.2.4 Support for relative CPU limits specified per process groups 49
6.2.5 Simple evaluation of our prototype implementation 49

6.3 The block IO limits . 49
6.3.1 Implementation requirements 49
6.3.2 Integrating the block IO limits within the FreeBSD kernel 50
6.3.3 The token bucket algorithm 51
6.3.4 Implementation details . 51
6.3.5 Evaluating the block device IO bandwidth limits 52

Conclusion 54

Bibliography 55

Appendix A - Usage and examples 57

Appendix B - Building the prototype implementation 59

Appendix C - Benchmarks 60

Appendix D - Attachments 62

2

Introduction

The management of resources is a vital and one of the core functions of operating
systems. Let us quote the first sentence of the page about operating systems on
Wikipedia:

“An operating system (OS) is a collection of software that manages
computer hardware resources and provides common services for com-
puter programs.”

It is often the case that the operating system itself knows the best how the
resources should be managed to achieve the best overall system performance.
Sometimes, however, some specific behaviour is desired to limit the amounts of
allocated resources for some processes, users or possibly other operating-system
dependent entities.

The resource allocation management decisions are usually results of complex
algorithms that have evolved over time. Such algorithms may depend on user
defined configurables and thus give the users of the computer a possibility to
influence the resource allocation process. For example, considering the CPU time
a resource managed by the operating system, a user can influence the amount of
the resource allocated to a process by changing the process’s scheduling priority.

However, the meaning of the scheduling priority varies from operating system
to operating system. In fact, it varies from scheduler to scheduler and it can mean
different things even in the case of a single operating system - if the operating
system provides at least two schedulers to choose from. One such example is
FreeBSD. Of course, there are some probably generally-accepted guidelines con-
sidering the scheduling priority. For example, semantic increase of the scheduling
priority should increase the CPU time allocated to the process.

The relationship between the scheduling priority of a process and its allocated
CPU time by the scheduler is not straightforward and depends on many other
factors, mainly on other processes competing for the same CPU resource. As such,
this relationship can not be used to reliably hard-limit the amount of the CPU
time allocated to a process. One part of this thesis analyses possible approaches
to the problem of limiting the CPU time allocated to a process by the scheduler.
Apart from that, we also inspect the problem of enforcing the block IO bandwidth
limits in the operating systems. We propose our own solutions for the FreeBSD
operating system to these two problems.

To sum-up, these are the two core problems dealt with in this thesis:

1. The enforcement of the CPU time limits.

2. The enforcement of the block IO bandwidth limits.

In this thesis we firstly thoroughly examine the implementation of one possi-
ble approach to the problem of limiting resources in Linux - the Linux cgroups
approach. We start with the analysis of the Linux cgroups from the user’s point
of view. Later we delve into the implementation in the kernel space and analyse
the cgroups in general and how the CPU limits and the block IO bandwidth limits
are enforced in the kernel using the cgroups.

3

After the in-depth analysis of one specific resource-limits implementation -
that is of the Linux cgroups - we speculate later in the Analysis chapter about
other possible approaches and their possible advantages and disadvantages. Based
on this analysis, we choose the preferable implementation models that we think
suit the best the needs of the two core problems presented in this thesis.

Finally, we present a prototype implementation of the CPU limits and the
block IO bandwidth limits for the FreeBSD operating system. We also provide
on the attached DVD a QEMU1 image of a FreeBSD virtual machine where our
prototype implementation can be easily tested.

1QEMU is a generic and open source machine emulator and virtualizer. For more informa-
tion, see the http://www.qemu.org web page.

4

1. Linux Control Groups

1.1 Introduction

Linux Control Groups is a framework in the Linux kernel that evolved from a
patch set named process containers that was developed by Google engineer Rohit
Seth in September 2006. The development has then moved on to another Google
engineer Paul Menage. The process containers were later renamed to cgroups and
merged with 2.6.24 kernel.

Control Groups or cgroups provide a way for the computer administrator
to partition all running processes into hierarchically structured groups - cgroups.
The administrator groups together processes that share the same resource utiliza-
tion requirements into a single cgroup. He can then specify per-cgroup resource
limits.

1.2 Cgroups hierarchies

Cgroups are organized in hierarchical structures, where child cgroups inherit cer-
tain parameters from their parents. When a new process forks, it is inserted into
its parent process’s cgroup. The computer administrator creates cgroup hierar-
chies and defines how the processes are partitioned into individual cgroups that
form a single hierarchy. Every cgroup in hierarchy specifies resource management
information that are applicable to the processes in this cgroup.

Because the computer administrator can have different utilization require-
ments for different system resources, he can specify a separate cgroup hierarchy
for every available cgroup resource subsystem. Different resource subsystems may
share a single cgroup hierarchy if they require only a single partitioning scheme
of all processes.

1.3 Cgroup resource subsystems

Cgroups are merely a partitioning scheme for all running processes. They come
with some resource utilization meta-information, but they do not influence the
kernel system resource management on their own. On the contrary, the different
kernel resource subsystems access cgroup meta-information for the client process’s
cgroup container and provide access to the required system resource according to
that meta-information.

This implies that the individual kernel resource subsystems must be cgroup-
aware. Here follows a list of some of the cgroup-aware resource subsystems with
their brief descriptions:

cpu Allows us to specify the precedence weight for processes inside the cgroup
in case some of them compete with processes from other cgroups for CPU
time.

cpuacct Allows us to track the CPU usage information.

5

blkio Allows us to limit the input/output access for block devices.

cpuset Allows us to restrict all processes inside a cgroup to certain CPUs.

memory Allows us to specify the memory limits for processes inside a cgroup.

devices Allows us to limit the access to devices for processes inside a cgroup.

freezer Allows us to suspend/resume processes inside a cgroup.

net cls Allows us to assign a network class id to a cgroup that is propagated
with packets sent/received by processes inside the cgroup.

1.4 Cgroup virtual file system

Every cgroup hierarchy is associated and directly mirrored in an instance of the
cgroup virtual filesystem. These instances of the cgroup virtual filesystem serve as
a handle to users with sufficient privileges to manipulate the cgroup hierarchies
and assign the processes into the individual cgroups.

Every Cgroup is represented by a single directory in the cgroup virtual filesys-
tem hierarchy. And its position in the directory tree of the filesystem hierarchy
is determined by the cgroup position in the cgroups hierarchy. Various cgroup
parameters are stored as files in the directory representing the cgroup. Every
process that is a member of a cgroup has its process identifier listed in the tasks
file of the cgroup directory. Assigning a process to some cgroup is as simple as
adding the process identifier to the appropriate tasks file.

Because every cgroup hierarchy is associated with (possible more than one)
cgroup resource subsystems, we also have a mapping between the instance of the
cgroup virtual filesystem and cgroup resource subsystems. For different resource
subsystems, there are different kinds of meta-information needed to be stored
within the cgroup. This has the effect that directories representing cgroups in
different hierarchies contain different types of meta-information files.

1.5 Working with cgroups

Here we show a small example where we set a memory limit for our shell using
cgroups. We have already mounted different cgroup virtual file system hierarchies
for different resource subsystems:

rudo@rudo-laptop:/sys/fs/cgroup$ ls

cpu cpuacct devices freezer memory

Now we create a new cgroup inside the memory filesystem:

root@rudo-laptop:/sys/fs/cgroup# cd memory/

root@rudo-laptop:/sys/fs/cgroup/memory# mkdir restricted

6

Now we set the memory limit to 100kB and add our shell instance to the
restricted cgroup:

cd restricted/

echo 100k > memory.limit in bytes

echo $$ > tasks

Now, on our test-bed machine, we can observe that the shell stops working
properly because of the memory limit being set too low.

1.6 Using cgroups to set relative cpu time limits

The access of processes inside a cgroup to the CPU resource can be managed
by the cpu subsystem. For our purposes of relative cpu time limits, we take a
look at one cgroup configurable named cpu.shares. Here is the meaning of this
configurable as provided in the Red Hat Linux Resource Management Guide[4].

cpu.shares Contains an integer value that specifies a relative share of CPU time
available to the tasks in a cgroup. For example, tasks in two cgroups that
have cpu.shares set to 1 will receive equal CPU time, but tasks in a cgroup
that has cpu.shares set to 2 receive twice the CPU time of tasks in a cgroup
where cpu.shares is set to 1.

However, as we will see, there are some important details missing in this ex-
planation. Firstly, it is not always the case that the access of processes to the
CPU is proportional to the cpu.shares setting. Consider the following example
proposed by Greg Smith in a public internet forum. We perform the following
steps on our dual-core test-bed machine:

root@rudo-laptop:~# cd /sys/fs/cgroup/cpu

root@rudo-laptop:/sys/fs/cgroup/cpu# mkdir low high

root@rudo-laptop:/sys/fs/cgroup/cpu# echo 512 > low/cpu.shares

root@rudo-laptop:/sys/fs/cgroup/cpu# echo 2048 > high/cpu.shares

We have just created two cgroups in the cpu resource hierarchy. The one
named low will contain processes that should only receive half of the cpu time
of the other processes (The default value for the cpu.shares parameter is 1024).
And the other cgroup named high would contain processes that should get twice
the CPU time of normal processes and four times the cpu time of processes in
the low cgroup.

Now we will create two example processes and add each of them to the dif-
ferent cgroup:

root@rudo-laptop:/sys/fs/cgroup/cpu# yes low > /dev/null &

root@rudo-laptop:/sys/fs/cgroup/cpu# echo $! > low/tasks

root@rudo-laptop:/sys/fs/cgroup/cpu# yes high > /dev/null &

root@rudo-laptop:/sys/fs/cgroup/cpu# echo $! > high/tasks

7

Now if we take a look at the percentages of the cpu utilization of our two
processes, on our test-bed machine we see that the process in the low cgroup has
utilization 98.3% and the process in the high cgroup shows 99.0%. That is not
what we would normally expect after reading the previous explanation, given the
cpu.shares parameters being set to 512 and 2048, respectively.

We can go now one step further and start another process in the high cgroup:

root@rudo-laptop:/sys/fs/cgroup/cpu# yes high2 > /dev/null &

root@rudo-laptop:/sys/fs/cgroup/cpu# echo $! > high/tasks

Now, on our test-bed machine, if we inspect the cpu utilization percentages of
our processes, we can see that the process spawned by the command yes high2

has lower cpu usage than the process in the low cpu cgroup.
So now we see that we can not rely only on the cpu cgroup subsystem and

expect that processes in cgroups with high cpu.shares value will get more cpu
time than processes in cgroups with low-valued cpu.shares parameter.

To find out the explanation for this strange behavior, we must realize one
important detail that was missing in the previous explanation. And that is,
the value of the cpu.shares cgroup parameter is only taken into account by the
scheduler if there is active cpu contention for a single cpu.

What happened in our scenario, was this: The two processes yes low and yes

high got placed on separate cpu cores. That is why their cpu usage was almost
identical - they did not compete with each other for the cpu time. And later,
when we started another process in the high cpu cgroup, it got placed to the cpu
other than the yes low process. That is why it was possible for the process yes
high2 to have lower cpu utilization percentage than the process yes low.

If we restricted the processes in the previous example to run only on a single
cpu core, we would get the expected behavior.

1.7 Using cgroups to limit disk I/O throughput

Now we are going to show how computer administrators can use cgroups to limit
the block device I/O throughput. On our test-bed machine, we will limit the read
access to our hard drive. Limiting write access is similar with the only difference
being that you should use the blkio.throttle.write bps device cgroup parameter
instead of blkio.throttle.read bps device.

So we have the blkio hierarchy that contains only one root cgroup:

root@rudo-laptop:/sys/fs/cgroup# ls

blkio cpu cpuacct devices freezer memory

Now we add the limit of 1048576 bytes per second (1MB/s) for the read access
of our hard drive that is identified on our test-bed machine by major and minor
device numbers 8 : 0.

echo "8:0 1048576" > blkio/blkio.throttle.read bps device

8

We have just changed the configuration of the root cgroup for the blkio sub-
system. That means this setting will affect all processes on our machine, because
they all are members of this single root cgroup. (That is because this cgroup does
not contain any children cgroups and the cgroups in a single hierarchy must form
a partition of all processes.)

Now it is time to test our new configuration. The ifile is just some file on our
hard drive that we read:

root@rudo-laptop:/sys/fs/cgroup# dd if=/ifile of=/dev/null bs=4k count=1024

1024+0 records in

1024+0 records out

4194304 bytes (4.2 MB) copied, 4.10918 s, 1.0 MB/s

This result shows that our hard drive throughput in this operation was 1.0MB/s
and that is exactly the limit we have set.

9

2. The Linux kernel cgroups
management

2.1 Introduction

We are going to inspect the implementation of the Linux Control Groups in this
chapter. We will take a look at the kernel management of the control groups and
see the relevant kernel data structures.

2.2 Interconnecting Linux tasks with cgroups

In Linux, the terms task and process are used interchangeably. Every Linux
process is represented in the kernel by the struct task struct. As we can see
in its definition, there are two cgroup-relevant fields in this struct:

struct t a s k s t r u c t {
. . .

#ifde f CONFIG CGROUPS
struct c s s s e t r c u ∗ cgroups ;
struct l i s t h e a d c g l i s t ;

#endif
. . .
} ;

Every task in the system has a reference-counted pointer to the struct

css set structure. This structure contains an array of reference-counted point-
ers to the struct cgroup subsys state objects, one pointer for each registered
cgroup subsystem in the kernel.

struct c s s s e t {
. . .

struct c g r o u p s u b s y s s t a t e
∗ subsys [CGROUP SUBSYS COUNT] ;

. . .
} ;

And finally the struct cgroup subsys state objects, that store the per-
cgroup state for the respective cgroup subsystem, hold a pointer to the actual
struct cgroup structure and some additional subsystem state information.

struct c g r o u p s u b s y s s t a t e {
struct cgroup ∗ cgroup ;
atomic t r e f c n t ;
unsigned long f l a g s ;
struct c s s i d r c u ∗ id ;

. . .
} ;

10

The struct cgroup objects form a tree hierarchy, where every object has a
linked-list of its children, a linked-list of its siblings and a pointer to its single
parent:

struct cgroup {
. . .

struct l i s t h e a d s i b l i n g ;
struct l i s t h e a d c h i l d r e n ;
struct cgroup ∗parent ;

. . .
struct c g r o u p s u b s y s s t a t e

∗ subsys [CGROUP SUBSYS COUNT] ;
. . .
} ;

The struct cgroup object also stores an array of private pointers to the
struct cgroup subsys state objects. This is because a single cgroup hierarchy
may be shared by several subsystems. This situation is depicted in the figure 2.1:

Figure 2.1: A single cgroup hierarchy shared by two cgroup subsystems.

The situation in the figure 2.1 shows a single cgroup hierarchy consisting
of the parent cgroup and one child. This cgroup hierarchy is shared by two

11

cgroup subsystems. Every cgroup in this hierarchy has an associated struct

cgroup subsys state object for every subsystem that uses this hierarchy. These
subsystem state objects are also referenced from the struct css set objects.

There is no direct link from the struct task struct objects representing
processes in the kernel to the individual cgroups the process is member of. For
this, the pointers from the process’s struct css set need to be followed.

It might often be the case that several tasks in the system are members of the
same cgroups for all registered cgroup subsystems. In this case, they all share a
single struct css set object.

2.3 Iterating over tasks that are members of a

specific cgroup

As we already know, there is no direct link in the kernel between the task and
the cgroups the task is member of. To look up the tasks that are members of
a specific cgroup, we need to iterate over the struct css set objects that are
indirectly connected to the cgroup and then in the second phase we iterate over
the tasks that share the same struct css set object.

2.3.1 Associating the css set with tasks that reference it

We want to iterate over all the processes that share the same struct css set

object. Now, we will understand the meaning of the second cgroup-relevant field
in the struct task struct, namely the cg list field. This field serves as a
handle by which the struct task struct objects referencing the same struct

css set object are inserted into a double linked-list. This linked-list is anchored
in the tasks field of the struct css set structure.

Firstly, let us remind the important part of the struct task struct structure
representing a process in the kernel:

struct t a s k s t r u c t {
. . .

#ifde f CONFIG CGROUPS
struct c s s s e t r c u ∗ cgroups ;
struct l i s t h e a d c g l i s t ;

#endif
. . .
} ;

Now we can see the tasks field in the struct css set structure:

struct c s s s e t {
. . .

struct l i s t h e a d ta sk s ;
. . .

struct c g r o u p s u b s y s s t a t e
∗ subsys [CGROUP SUBSYS COUNT] ;

. . .
} ;

12

And the struct list head structure definition is quite simple:

struct l i s t h e a d {
struct l i s t h e a d ∗next , ∗prev ;

} ;

In the figure 2.2 we illustrate the tasks list that links the tasks pointing to
the same css set:

Figure 2.2: The task struct objects pointing to the same css set

2.3.2 Iterating the cgroups that are indirectly linked to a
css set

It is often necessary to iterate over all the cgroups that are linked with a single
struct css set object. To effectively solve this problem, the Linux kernel uses a
special data structure for associating cgroups with css sets and also for associating
css sets with cgroups.

struct c g c g r o u p l i n k {
struct l i s t h e a d c g r p l i n k l i s t ;
struct cgroup ∗ cgrp ;
struct l i s t h e a d c g l i n k l i s t ;
struct c s s s e t ∗cg ;

} ;

13

One struct cg group link object associates a single css set object pointed
to by the struct css set *cg field with one cgroup. This cgroup object is
referenced by the struct cgroup *cgrp field. However, we need to somehow
associate a single css set object with all the cgroups it indirectly links. To achieve
this, we just need a linked list of struct cg cgroup link objects.

Thus, all the struct cg cgroup link objects in this list point to the same
struct css set and each of them references a different cgroup. The struct

cg cgroup link objects are connected to a linked list via the struct list head

cg link list field. And this list is anchored at the struct list head cg links

member of the struct css set structure. This situation is show in the figure 2.3:

Figure 2.3: Cgroups indirectly linked to a css set

14

2.3.3 Iterating the css sets that indirectly link a cgroup

If we want to find the tasks that are members of a specific cgroup, we firstly need
to find all the struct css set objects that indirectly link the cgroup. If we know
how to do that, we can then iterate over all the tasks associated with the css sets
and thus find all the tasks that are members of the cgroup in question.

The problem of iterating over the css sets that are linked to a specific cgroup
is the opposite version of the problem dealt with in the previous paragraphs. It
is also solved in a similar fashion, using the struct cg group link objects. But
this time, the cg group link objects are connected to a double linked-list using
the struct list head cgrp link list field. This list is anchored at the struct
list head css sets field of the struct cgroup. This situation is shown in the
figure 2.4:

Figure 2.4: The css sets indirectly linked to a cgroup

15

2.4 Creating a new cgroup

Creating a new cgroup under a specified hierarchy is quite a straightforward
process. Firstly, the necessary struct cgroup object is allocated. Then, all the
cgroup subsystems that use the cgroup hierarchy are iterated, and for each of
them a new struct cgroup subsys state object is created and attached to the
new cgroup. This newly created cgroup is also properly inserted into the cgroup
tree data structure. After that the new directory representing the cgroup in the
attached cgroup filesystem is created and properly populated.

The new, just created cgroup contains no tasks at all. The exception to this
rule is the case when the new cgroup is the root cgroup of the hierarchy. In this
case, the cgroup is populated with all the running tasks in the system.

2.5 Moving the task to a different cgroup

When a task is moved to a different cgroup, the task is simply attached to a dif-
ferent css set object via its struct css set * cgroups member pointer. (With
the task struct being inserted into the tasks list of the new css set and removed
from the old one.)

The only problem is, how to find the appropriate css set - if it exists. If
it doesn’t, it is created. The css set is found using a hash table. All css sets
created in the kernel have pointers to them stored in an internal hash table. The
hash function is numerically computed from the pointers in the subsys array of
the css set. To find the desired css set, firstly a template array is constructed,
that contains pointers to the desired cgroup subsys state objects. This template
array is almost the exact copy of the subsys array of the old task’s css set. For
appropriate cgroup subsystems, however, the pointers are substituted and set to
point to the cgroup subsys state objects of the new cgroup.

Once the template array is constructed, the hash value of the array is com-
puted and the css set hash table is queried to find the linked list of the css set
objects stored under the computed hash value. This list is then linearly searched
to find the exact match.

In the following excerpt, we show how the hash function is computed and how
the hash value is used to index the hash table:

stat ic struct h l i s t h e a d ∗
c s s s e t h a s h (struct c g r o up s u b s y s s t a t e ∗ c s s [])
{

int i , index ;
unsigned long tmp = 0UL;

for (i = 0 ; i < CGROUP SUBSYS COUNT; i++)
tmp += (unsigned long) c s s [i] ;

tmp = (tmp >> 16) ˆ tmp ;
index = hash long (tmp , CSS SET HASH BITS) ;

return &c s s s e t t a b l e [index] ;
}

16

3. The Linux CPU cgroup
subsystem

3.1 Introduction

In this chapter we are going to explore the Linux scheduler. After a brief intro-
duction to the scheduler, we will inspect how it interconnects with the cgroups
and how the cgroups affect the scheduler’s behaviour when it comes to enforcing
the relative cpu limits.

3.2 The Linux CFS scheduler

The current Linux scheduler - The Completely Fair Scheduler was developed by
a Hungarian Linux hacker Ingo Molnár. The general approach of the scheduler
was inspired by Con Kolivas’s work on CPU scheduling and the scheduler was
incorporated into the kernel release Linux-2.6.23 in 2007.

3.2.1 Overview of the CFS scheduler

The scheduler tracks the CPU usage of a task in what it calls the task’s virtual
runtime. This is not meant to be the exact physical time the task spent on the
CPU. This runtime of a task is called virtual because it is normalised to take into
account the nice value of the task and the nice values of all the other running
tasks in the system.

To achieve the scheduling fairness among the tasks, the scheduler always
chooses the task with the lowest virtual runtime. Thus, the task with the high-
est need for the CPU is chosen. The tasks on a single CPU are organised in a
self-balancing red-black tree, with the virtual runtime as the key. This way, the
O(log(n)) bounds are imposed on the tree insertion and removal operations, with
n being the total number of running tasks on the CPU. This red-black tree forms
a sort of a timeline of future task execution.

The scheduler is quite radical in its design, when compared with traditional
Linux or BSD schedulers. There are no traditional arrays of run-queues, there is
no attempt to identify interactive processes and also the notion of a fixed time
slice window is gone. This is because the length of the time-slice for a task in
CFS is task-dependent and depends on the task nice value and its relation to the
nice values of the other running tasks.

3.2.2 Overview of the CFS data structures

The CFS scheduler organizes the runnable tasks in a per-CPU data structure
struct rq called runqueue, so that the CPU affinity is easily achieved. The
tasks are not referenced directly from this structure, instead, the struct rq

contains two pointers to runqueues of two scheduling classes in the kernel - the
real-time and the fair scheduling class.

17

The Linux scheduler can be viewed as a modular framework, with multiple
scheduling classes, that are sequentially ordered according to the priority of the
class. When the scheduler looks for the next task to run in the pick next task()

function, it sequentially iterates over the scheduling classes in the order of de-
creasing priority until it finds some class that can provide a runnable task. The
least priority scheduling class is the idle class. In this thesis, we are interested on-
ly in the fair scheduling class of the Linux scheduler. The tasks managed by this
scheduling class are stored in the struct cfs rq data structure. This runqueue
is directly referenced from the main per-cpu runqueue struct rq.

struct rq {
. . .

struct c f s r q c f s ;
struct r t r q r t ;

. . .
} ;

And the struct cfs rq contains the struct rb root tasks timeline field
that is the root node of the red-black tree of runnable tasks that we were dis-
cussing in the previous section. The tasks are inserted into this tree by their
struct sched entity member field.

struct c f s r q {
. . .

struct r b r o o t t a s k s t i m e l i n e ;
struct rb node ∗ r b l e f t m o s t ;

. . .
} ;

struct t a s k s t r u c t {
. . .

const struct s c h e d c l a s s ∗ s c h e d c l a s s ;
‘ struct s c h e d e n t i t y se ;

. . .
} ;

The sched entity objects contain the scheduling information relevant to the
task. For example, the u64 vruntime field stores the task’s virtual runtime.
These schedulable entities can be directly inserted into the red-black tree, because
they have the struct rb node run node field:

struct s c h e d e n t i t y {
. . .

struct rb node run node ;
. . .

u64 vruntime ;
. . .
} ;

In the figure 3.1, we display the overall picture we have so far, that shows a
few runnable tasks in the red-black tree of the CFS scheduler :

18

Figure 3.1: A few runnable tasks in the red-black tree of the CFS scheduler.

3.3 The cgroup extension to the CFS scheduler

The CFS scheduler fully supports cgroups. That means, the scheduler is aware
of the cgroup partitioning of runnable tasks into hierarchical groups. And the
scheduler treats the tasks in the same cgroup according to the tunables config-
ured via the cpu cgroup filesystem and according to the cgroup’s position in the
hierarchy.

We already know that the cgroups are represented in kernel by struct cgroup.
That is, however, only a general representation of the cgroup. The various con-
figurable cgroup parameters specific to the cpu subsystem (or other subsystems
as well) are stored elsewhere.

As we have already seen in the previous chapter, the struct cgroup con-
tains the subsys array that stores pointers to the struct cgroup subsys state

objects for all registered cgroup subsystems. For the cpu cgroup subsystem, this
cgroup subsys state object is extended by the struct task group object. And

19

that is where the various cgroup configurables for the cpu subsystem are stored.
For example, it contains the unsigned long shares field to store the cpu.shares
tunable of the cpu cgroup subsystem. The structure also contains the struct

task group *parent field to reflect the cgroup hierarchy. The situation is shown
in the figure 3.2:

Figure 3.2: The relationship between the task groups and the cgroups.

Here follows a short excerpt from the struct task group’s structure defini-
tion:

struct task group {
struct c g r o u p s u b s y s s t a t e c s s ;

#ifde f CONFIG FAIR GROUP SCHED
struct s c h e d e n t i t y ∗∗ se ;
struct c f s r q ∗∗ c f s r q ;
unsigned long sha re s ;

. . .
#endif
. . .

struct task group ∗parent ;
. . .
} ;

20

Please, note the se pointer, that points to the array of pointers to the objects
of type sched entity. And there is also the cfs rq pointer, that points to the array
of pointers to the cfs rq runqueues. Both of this arrays contain a single pointer
for every available CPU in the system. Now, we will finally understand how the
cgroups are treated by the scheduler.

For every available CPU, the task group has a pointer to a sched entity object.
If the task group is associated with a root cgroup, this sched entity object is
directly inserted into the red-black tree of the cfs runqueue of the main per-
processor runqueue struct rq. Thus, from the scheduler’s point of view, the
cgroups are simply sched entities that are treated in the similar way as normal
tasks. These sched entities just happen to represent a group of runnable tasks,
instead of representing only a single task.

Also, for every available CPU, the task group has a pointer to a separate cfs rq
runqueue. This runqueue stores the tasks of the cgroup that are running on this
CPU (and also possible sub-cgroups) in a red-black tree. These red-black trees
are organized exactly in the same way, as the main scheduler per-CPU red-black
tree. That is, the sched entity’s vruntime field is used as the key.

We already know that the sched entity objects can represent either a sin-
gle task, or a group of tasks that are members of the same cgroup. In case
the sched entity represents a group of tasks, the struct cfs rq *my q member
pointer of the structure points to the cfs rq runqueue where the individual mem-
ber tasks are stored. On the other hand, the struct cfs rq *cfs rq member
pointer of the structure points to the cfs rq runqueue (and thus the red-black
tree) on which this entity is to be scheduled. The sched entity objects also form
hierarchies via the struct sched entity *parent member field. In the follow-
ing excerpt, we show again the definition of the struct sched entity structure,
this time also with the new member fields we have just learned about:

struct s c h e d e n t i t y {
. . .

struct rb node run node ;
. . .

u64 vruntime ;
. . .

#ifde f CONFIG FAIR GROUP SCHED
struct s c h e d e n t i t y ∗parent ;
struct c f s r q ∗ c f s r q ;
struct c f s r q ∗my q ;

#endif
} ;

In the following figure 3.3, we see a task that is a member of a child cgroup. We
show how the task is enqueued into the runqueue of the cgroup’s task group. Note
that the task is not directly inserted into the scheduler’s runqueue, but instead the
hierarchical structures are used that mirror the structure of the cgroup hierarchy.

21

Figure 3.3: A task and its relationship to the scheduler’s data structures.

22

In the next figure 3.4 we show the missing part of the previous situation. We
can see how the main per-processor cfs rq runqueue connects with the sched entity
of the root cgroup’s taskgroup:

Figure 3.4: A task and its relationship to the scheduler’s data structures: The
missing part of the hierarchy

23

3.4 Enforcing the relative cpu limits using the

cpu.shares tunable

As we have seen in the first chapter, a privileged user can specify per-cgroup
relative cpu limits using the cpu.shares tunable of the cpu cgroup subsystem. We
also know that in the CFS scheduler, the scheduling time-slice window is not
a fixed value, but it is task-dependent. And this is actually the key, how the
relative cpu limits specified by cpu.shares value are imposed. The tasks that are
members of a cgroup with relatively high cpu.shares value will get longer time
slices and thus will get more cpu time when compared to the other tasks.

3.4.1 The load weight of tasks and cgroups

Now we need to understand the load weight of a sched entity object. If the
sched entity represents a single task, then the load weight of the task is determined
by the task’s nice value. It is defined in the kernel by the following table:

stat ic const int p r i o t o w e i g h t [4 0] = {
/∗ −20 ∗/ 88761 , 71755 , 56483 , 46273 , 36291 ,
/∗ −15 ∗/ 29154 , 23254 , 18705 , 14949 , 11916 ,
/∗ −10 ∗/ 9548 , 7620 , 6100 , 4904 , 3906 ,
/∗ −5 ∗/ 3121 , 2501 , 1991 , 1586 , 1277 ,
/∗ 0 ∗/ 1024 , 820 , 655 , 526 , 423 ,
/∗ 5 ∗/ 335 , 272 , 215 , 172 , 137 ,
/∗ 10 ∗/ 110 , 87 , 70 , 56 , 45 ,
/∗ 15 ∗/ 36 , 29 , 23 , 18 , 15 ,
} ;

The value in the comment tracks the nice value of the task. We can see that tasks
with lower nice value get higher load weight. The nice value zero, for example,
matches the load weight 1024. If the sched entity object represents a cgroup, then
its load weight is roughly1 the cgroup’s cpu.shares value.

3.4.2 Calculating the scheduling time-slice.

We will describe the idea how the time slice window of a task is calculated. The
corresponding function is implemented in the sched slice() routine of the CFS
scheduler. From the scheduler’s point of view, our task is simply a sched entity
object that is added to a red-black tree rooted in a cfs rq runqueue. Our example
task is a member of a child cgroup, therefore the task is not enqueued in the main
per-CPU cfs rq runqueue, but it is enqueued in the appropriate cfs rq runqueue
of the child cgroup’s taskgroup.

To calculate the length of the time slice window for our example task, we
will need to travel up the sched entity hierarchy until we get to the main per-
CPU scheduler red-black tree and its cfs rq runqueue. We begin with our task’s
sched entity that is enqueued in the child taskgroup’s cfs rq runqueue.

1In uniprocessor case, it is exactly the cgroup’s cpu.shares value. In SMP case, the value
is slightly biased by calculations based on the CPU load. See the calc cfs shares() and
update cfs shares() functions in kernel/sched/fair.c for more details.

24

Firstly, the time-slice length is set to an initial value. After that, We look at
the sched entity of our task and at the cfs rq runqueue where the sched entity is
enqueued. Now, we multiply the current time-slice length value by the load weight
of the sched entity and divide it by the overall load of the cfs rq runqueue. The
overall load of a cfs rq runqueue is the sum of load weights of the sched entities
it contains. Since we begin at the bottom of the hierarchy, the load weight of the
sched entity is the load weight of the task which is 1024, because our task has
nice value zero.

Now, we are going to move one step up in the sched entity hierarchy. Our
current sched entity is the sched entity of the child cgroup’s taskgroup. And our
current cfs rq runqueue is the cfs rq runqueue of the root cgroup’s taskgroup.
Again, we multiply the current scheduling slice length with the load weight of the
sched entity and divide it by the overall load of the cfs rq runqueue. This time,
the load weight of the sched entity is the cpu.shares value of the child cgroup.

We need to take one more step up in the hierarchy. Our current sched entity is
the sched entity of the root cgroup’s taskgroup. And our current cfs rq runqueue
is the main per-CPU cfs rq runqueue. Now, we perform the same calculation
according to the pattern in the previous steps. The calculation of the scheduling
time slice length is complete.

25

4. The Linux blkio cgroup
subsystem

4.1 Introduction

The Linux blkio cgroup subsystem is responsible for ensuring the cgroup limits for
block I/O access. We have seen in the first chapter how system administrators
can specify bandwidth limits for read and write access to block I/O devices. In
this chapter, we are going to look closely at the implementation how these limits
are enforced.

4.2 The Linux generic block layer

The blkio cgroup subsystem is implemented in the part of Linux kernel that is
known as the generic block layer. In the following figure, we show an overview of
kernel components involved in block I/O operations:

Figure 4.1: Kernel components involved in block I/O

Source: Understanding the Linux kernel [6]

The first kernel layer to handle read and write system calls is the VFS virtual

26

filesystem layer. This layer firstly looks into a disk cache named the page cache
to see if the requested data is already available in the main memory. If the data
is found in the cache, the slow access to the block device is avoided. If it is not
the case, the request is passed on to the mapping layer. This layer contains the
actual filesystem-specific routines to find the logical block numbers of the disk
blocks containing the requested data. After this step is performed, the Generic
block layer can start the actual block device I/O operation. The single block
I/O operation is represented in the kernel by struct bio. We will look at this
structure more closely later on in this chapter. The generic block layer submits
these bios to the IO scheduler layer that performs rescheduling of the block I/O
access requests to optimise the block device operation. Finally, the block device
driver is responsible for the actual data transfer between the block device and
the kernel.

One of the important implications of the fact that the block I/O throttling is
implemented in the generic block layer is that the throttling will take no effect if
the requested data is found to be present in the disk page cache. This is because
the VFS layer does not need to consult the lower block I/O layers in that case.
This can be easily proved by setting a cgroup limit for block device read access.
If a file is copied from the device for the first time, the read access to the file on
the device will be restricted according to the cgroups limits set. If, however, the
copy command is repeated, the cgroup blkio limits will take no effect because the
data will already be available in the page cache.

4.3 The bio structure

The struct bio is the core data structure of the generic block layer. It is a
command descriptor that stores the block device command parameters. Basically,
this data structure maps a contiguous set of disk sectors to an array of memory
segments. The memory segment defines the location in the main memory that is
used as the data source - in case of the write operation, or as the data destination
- in case of the read operation.

As we have already mentioned, the struct bio maps a contiguous set of
disk sectors to an array of memory segments. This allows to define compound
commands that can be efficiently handled by a single scatter-gather DMA transfer
- if such functionality is provided by the block device controller. If it is not the
case, the single bio can be handled by multiple device controller data transfers.

Now, we show an excerpt from the struct bio definition in the Linux kernel
sources:

struct bio {
s e c t o r t b i s e c t o r ;
struct b l o c k d e v i c e ∗bi bdev ;
unsigned long bi rw ;
unsigned short b i vcn t ;
unsigned int b i s i z e ;
struct b io vec ∗ b i i o v e c ;

. . .

27

#ifde f CONFIG BLK CGROUP
struct c g r o u p s u b s y s s t a t e ∗ b i c s s ;
. . .

#endif
. . .
} ;

The sector t bi sector parameter stores the address of the disk sector
where the read/write operation starts. The struct block device *bi bdev

identifies the block device on which the operation is to be performed. The
unsigned int bi size stores the number of bytes yet to be transferred in the
block device operation. Finally, the struct bio vec *bi io vec and unsigned

short bi vcnt parameters store the address and the length of the array of
the struct bio vec objects. Each such object defines a single segment in the
main memory. The direction of the command (read/write) is determined by the
unsigned long bi rw parameter.

If the blkio cgroup subsystem is enabled, the struct cgroup subsys state

*bi css parameter joins the bio with the blkio subsystem.

4.4 Interconnecting the bio structure with the

blkio cgroup subsystem

Firstly, let us remind how the general cgroup subsystem infrastructure looks from
the kernel point of view:

Figure 4.2: The general kernel cgroup subsystem infrastructure

28

In the figure, we see a task represented by the struct task struct and
how it references a css set object. For every available cgroup subsystem, the
css set object contains a reference to the struct cgroup subsys state object,
that in turn references the actual struct cgroup object. As we have also seen in
the chapter about the CPU cgroup subsystem, the struct cgroup subsys state

objects are extended in the OOP -fashion by subsystem-specific structures for
individual cgroup subsystems.

In the case of the CPU cgroup subsystem, the struct cgroup subsys state

objects were extended by the struct task group structure. See the chapter
about the CPU cgroup subsystem for more details. In the case of the blkio sub-
system, the struct cgroup subsys state structure is extended by the struct

blkcg structure, the so-called block cgroup.
Here, we show an excerpt from the definition of the block cgroup:

struct blkcg {
struct c g r o u p s u b s y s s t a t e c s s ;
. . .
struct r a d i x t r e e r o o t b l k g t r e e ;
. . .

} ;

This structure definition is quite simple. We are going to look at the radix
tree 1 data structure struct radix tree root blkg tree. Logical block devices
(which usually represent a real hardware block device) are represented in the
kernel by struct gendisk. Every gendisk object has a request queue associated
with it. The radix tree blkg tree of the blkcg structure stores associations between
the block cgroups and the request queues. These association objects are defined by
the struct blkcg gq data structure and are indexed in the tree by the request
queue identifier. They also store data for (at most two different) block cgroup
policies. That means, for a given block cgroup, there can be different block cgroup
policy specifications for separate request queues (and thus for separate logical
block devices). In this thesis, we are only interested in the throttling block cgroup
policy.

Now we can inspect the definition of the struct blkcg gq association ob-
jects that link a request queue with a block cgroup and store block cgroup policy
specifications:

struct blkcg gq {
struct r eques t queue ∗q ;
. . .
struct blkcg ∗blkcg ;
struct b l k g p o l i c y d a t a ∗pd [BLKCG MAX POLS] ;
. . .

} ;

In the case of the throttling block cgroup policy, the struct blkg policy data

structure is extended by the struct throtl grp structure. These throtl grp ob-
jects store the actual read/write IO limits set by the computer administrator via

1The Linux radix tree implementation is quite specific and can be thought of as a mapping
function from long to void*. For more details, see [7]

29

the cgroup interface. These objects also contain linked lists of struct bio block
device command descriptors that could not be processed immediately and their
dispatch to the lower kernel layers had to be delayed because of the limits set.

To sum up, a struct throtl grp object encapsulates the delayed struct

bio block device command descriptors and IO limits for a specific cgroup and a
specific logical block device. The logical block device is represented in this case by
its request queue.

Now we are going to inspect the struct throtl grp definition:

struct t h r o t l g r p {
struct b l k g p o l i c y d a t a pd ;
struct rb node rb node ;
unsigned long dispt ime ;
struct b i o l i s t b i o l i s t s [2] ;
u i n t 6 4 t bps [2] ;
. . .

} ;

The struct rb node rb node and unsigned long disptime members are
used by the algorithm that ensures the timely processing of the delayed bios.
We will inspect this algorithm in more detail in the next section. The struct

bio list bio lists[2] contains two lists of delayed bios - one for the read
direction and one for the write direction. The uint64 t bps[2] parameter stores
the limits in the bytes per second units for both IO directions.

We have now enough information to view the important structures of the
blkio cgroup subsystem infrastructure and the relationships between them. You
can inspect them in the figure 4.3.

4.5 Ensuring the blkio cgroup limits

4.5.1 The throtl data structure

When the kernel processes bios, it checks if processing the bio would exceed the
limits set in the respective throtl grp where the bio belongs. Should the limits
be exceeded, the bio is attached to the throtl grp’s list of delayed bios for later
processing.

The timely processing of the delayed bios is based on the throtl grp data
structures that store the throttled bios belonging to the same cgroup and to
the same logical block device. The request queue of the logical block device has
a reference to the struct throtl data data structure which contains a red-
black tree of the throtl grp objects with bios enqueued for delayed processing
and belonging to this block device. The tree is named tg service tree.

Thus, the tg service tree is a red-black tree of throtl grp objects. Every
throtl grp object in the tree represents a different cgroup but they all belong to
the same request queue and thus to the same logical block device. The throtl grp
objects in the tree are ordered by the disptime parameter that stores a suggested
dispatch time when the bios blocked on the throtl grp should be dispatched.

Now, let us have a closer look at the struct throtl data data structure
definition taken directly from the kernel sources:

30

Figure 4.3: The blkio cgroup subsystem infrastructure

struct t h r o t l d a t a {
struct t h r o t l r b r o o t t g s e r v i c e t r e e ;
struct r eques t queue ∗queue ;
unsigned int nr queued [2] ;
struct delayed work th ro t l work ;
. . .

} ;

We see here the tg service tree definition and a reference to the request queue
of the logical block device. The unsigned int nr queued[2] array stores the
overall count of read/write bios delayed on the request queue. And the throtl work
member connects the throtl data object with the underlying workqueue infrastruc-
ture that drives the timely processing of events. In the next figure 4.4 we show

31

the struct throtl data structure and its relationship to the struct gendisk

structure that represents a logical block device:

Figure 4.4: The throtl data structure and its relationship to the gendisk structure
representing a logical block device

4.5.2 Enqueuing the delayed bios.

If the kernel finds that processing the bio request would exceed the defined cgroup
blkio limits, it works as follows: Firstly, the bio is added to the list of the de-
layed bios for the read/write direction in the respective throtl grp. Then, the
whole throtl grp object is inserted (if it is not already there) into the associated
throtl data’s red-black tg service tree. Now, the dispatch time of the throtl grp is
(re)calculated and a new bio dispatch function invocation is scheduled accordingly
using the underlying kernel workqueue framework.

4.5.3 Dispatching the delayed bios.

Dispatching of the delayed bios starts when the underlying timer workqueue
framework fires up the dispatch invocation function. It works by removing the
throtl grps off the tg service tree and dispatching the bios stored there. The max-
imum number of bios dispatched at one time is limited by a constant value so
that the underlying block device can handle them. Because a single throtl grp rep-
resents here a single cgroup, this could lead to the situation where only bios from
one cgroup are processed and further processing would be temporarily blocked.
This is avoided by setting another constant limit on the maximum number of bios
processed from a single cgroup at one time. Read and Write bios are handled
with different priorities. The code tries to dispatch 75% reads and 25% writes
during one invocation of the deferred bio dispatch invocation function.

32

5. Analysis

5.1 Introduction

In this chapter we are going to analyse various possible approaches to the problem
of limiting the relative CPU usage and the block IO bandwidth. We will consider
the implications our analysis yields for the prototype implementation that will
be presented in the next chapter. In the previous chapters we have provided an
in-depth analysis how the Linux tackles the problem by employing cgroups. Now
we will briefly sketch other possible solutions and speculate over their advantages
and disadvantages.

We will start our analysis with the relative CPU usage limits. We will see
how these limits are best expressed and what exactly they mean. Then we will
analyse possible implementation approaches. The next part of this chapter will
deal with block IO limits. Again, we will firstly see how this limits could be
expressed and at which kernel layer they should be interpreted. An analysis of
possible implementation methods will follow.

5.2 Specifying the CPU usage limits

Before we start considering the implementation details of various possible ways
to enforce the CPU usage limits, we firstly need to make clear what these limits
actually mean. We will differentiate between the so called hard limits and soft
limits for the CPU usage.

When talking about the CPU limits in common computer architectures, we
will also look at how these limits should be interpreted for uniprocessor and multi-
processor architectures that both now have sound support in prevalent operating
systems and thus also in the FreeBSD.

Another important point to consider is the entity to which the limits are
applied. If it is just a single thread, a single process or a group of processes.

5.2.1 Hard versus soft CPU limits

Both hard and soft CPU limits are best defined by relative ratios. The ratio can
have the form of two numbers specifying the nominator and the denominator
values. Or in our opinion more conveniently and more user-friendly, it can be
specified by a single percentage value. For our purposes of specifying CPU limits,
both forms are interchangeable and the percentage value form will be preferred.

Hard CPU limits for a thread mean that the thread should never get more
relative CPU time than the specified percentage value. This is also true even if
the CPU core should be otherwise idle. That is in clear contrast with the soft
CPU limits where the thread is allowed to exceed its limits if there is no thread
CPU contention in place.

In practice, both approaches are used. The parts of the Linux kernel cgroups
implementation presented in the previous chapters are a nice example of the
soft CPU limits approach. In our own prototype implementation, we will use the
hard CPU limits approach, but we will also sketch a way how our implementation

33

could be extended to also support the soft CPU limits. Soft CPU limits are best
suited for desktop environments. As noted in [8], we can see following areas where
enforcing hard CPU limits is beneficial:

1. Hard limits can be used in Pay-per-use enterprise environments where cus-
tomers demand a certain amount of the CPU resources and pay only for
that.

2. They can be also used in virtualization environments. For example in the
case of the FreeBSD jail - which is an operating system level virtualization
schema for FreeBSD - the hard limits can be used to make sure a particular
jail does not exceed its CPU entitlement.

3. Hard limits can be used to provide guarantees.

5.2.2 Specifying CPU limits on uniprocessor and multi-
processor architectures.

We consider a single percentage value the best way to specify CPU usage limits,
because it is user-friendly and easy to understand. In the case of the uniprocessor
architectures, the meaning of the limit is straightforward: For example if the limit
for the process p is set to the value 50%, then during an arbitrary time interval,
the thread p should not be running on the CPU for more than 50% of the time.

However, the situation can become a litter trickier in multiprocessor architec-
tures. In this case, at least two reasonable interpretations of the single percentage
value could be used. The question is, if the percentage value limit is to be applied
per a single processor, or it should be applied to the overall computing power of
the machine.

In our prototype FreeBSD implementation, we will apply the CPU percentage
limits set for the process p per single processor. This interpretation brings us
several advantages: Firstly, we can directly use the provided CPU accounting
information from the scheduler code, because this accounting is done per single
CPU. The second advantage is that our per-processor interpretation is also com-
patible with commonly used UNIX tools like top and ps. However, there are also
tools in the FreeBSD operating system, that display CPU percentage utilization
ratio based to the overall computing power, for example the vmstat tool works
this way.

Another important point to note about the multiprocessor architectures is that
the single percentage limit value is not linked to any specific CPU chip, nor is the
limit applied separately to all the processor chips. Although a process sometimes
migrates from one CPU to another, the limit is still applied the same way as
it would be applied if the process was always running on the same processor.
That means, if we have two processors in the machine and the CPU limit for
the process p has been set to 50%, then the process p is allowed to run 50%
of the time on one processor, or it can run for example 20% of the time on the
first processor and the remaining 30% of the time on the second processor. The
important thing is that the overall time the process p is running is independent of
the process p’s cpu affinity which could change in time. This is the way how the
cpu percentage limit value is interpreted in our prototype implementation and it

34

is also compatible with the CPU usage accounting code already present in the
FreeBSD schedulers.

5.2.3 Specifying the CPU limits for different entities.

In the previous section, we have exactly specified what it means if the CPU
limit for a process p is set to some value, for example 50%. However, it is often
desirable to specify the CPU limits for other entities like groups of processes,
or process containers and cgroups in the Linux world. The groups of processes
could be based on several criteria - for example user id, jail id, or they could
be built manually as well. Such ability gives the computer administrator much
greater flexibility, and its implementation cost is usually not too big compared to
the benefits it brings - once the per-process limits are already implemented.

The natural way to implement such functionality is to use a simple additive
function to account the CPU usage of the process group as the sum of the CPU
usage values of its members. This is how we make it in our prototype implemen-
tation and the similar way is also used in the Linux cgroups - where the overall
cgroup scheduling weight is distributed among all the child processes and cgroups.

5.3 Implementing the CPU usage limits

We will now evaluate various possible approaches how to actually implement the
CPU limits enforcement. Then we will be able to choose one approach that best
suits our needs for the prototype implementation presented in the next chapter.

5.3.1 Implementing the CPU limits at the scheduler level

Probably the most intuitive way to implement the CPU limits would be to create
a brand new process scheduler or to adjust the already existing FreeBSD process
schedulers to honour the CPU limits set. This approach is for example also used
in the case of the Linux CFS scheduler which has full cgroup support. This is
however easier said than done and brings some severe complications that would
be beyond the scope of our resources.

Firstly, it would not be too difficult to create some new scheduler that would
also honour the hard CPU limits. However, it would be difficult to create such
scheduler that would also be competitive with the modern ULE FreeBSD scheduler
that shows very good scalability results on multiprocessor machines, its scheduling
decision are time-effective and also provides good interactivity experience.

We also decide not to adjust the existing FreeBSD schedulers to support the
relative CPU limits because that would considerably change the logic how these
schedulers work. In some cases this would cause problems to other kernel parts
that rely on some scheduler invariants that are not well documented and these
problems would be difficult to debug.

There are other difficulties we would need to overcome if we wanted to connect
the FreeBSD racct/rctl infrastructure1 directly with the scheduler code. The

1The racct/rctl framework is a resource limiting framework implemented in the FreeBSD
kernel. Our prototype implementation presented in the next chapter will extend this framework
to add support for the relative CPU usage limits and the block IO bandwidth limits.

35

important parts of the FreeBSD scheduler code run protected under the spin
locks. On the other hand, the racct/rctl infrastructure is protected by sleepable
locks. That would prevent accessing the racct/rctl data structures directly from
the scheduler code. Yes, this issue is definitely solvable, but it also helps us to
decide not to implement the CPU limits at the scheduler level.

On the contrary, our prototype implementation will be scheduler independent.
This has the advantage that our implementation will work with both FreeBSD
schedulers and the necessary kernel changes made will not be so dramatic.

5.3.2 Ensuring per-process CPU limits by manipulating
the process scheduling priority

Another possible approach to enforce the per-process CPU limits could involve
modifying the process scheduling priority. However, this approach is not possible
for implementing the hard CPU limits in FreeBSD, because even a low prior-
ity process can starve the CPU usage to 100% if there are no other processes
competing for the same CPU. So we will analyse here how (and if) changing
the process priority could be used to ensure the enforcement of the relative CPU
limits. The FreeBSD operating system contains two different schedulers and the
user can choose one before the compilation of the system. The older one is the
4BSD scheduler and the new (and the default) one is the ULE scheduler.

The 4BSD scheduler

The 4BSD scheduler works by choosing the thread with the semantically highest
priority in a round-robin fashion as the next thread to run. The CPU starvation
is prevented by a periodic timer that adjusts the threads’ priorities. So the key
to the scheduling fairness in this scheduler is the algorithm that recalculates the
process priorities based on their recent CPU usage. This algorithm could be
modified to semantically lower the scheduling priority of a thread if the thread
exceeds its CPU limits. This would have the effect that if there are any other
runnable threads with the same priority, they will be preferred. And this is
exactly what the relative CPU limits are for.

The ULE scheduler

The ULE scheduler works in a different way and it does not use the process
priority to ensure the scheduling fairness. To ensure fairness, the scheduler keeps
two different queues, the current and the next. Threads are chosen from the
current queue in their priority order. When the current queue is empty, it is
switched with the next queue and it all continues the same way. Interactive
threads are inserted into the current queue, the other threads are inserted into
the next queue.

As we can see, once every two switches of the the current and the next queues,
every thread will be given a chance to run regardless of its scheduling priority.
This means that the relative CPU limits can not be implemented for this scheduler
simply by manipulating the process’s scheduling priority.

36

5.3.3 Implementing the hard CPU usage limits by the
stop-and-run technique

We are now going to consider the defensive approach that we name stop-and-run.
It works like this: Whenever there is a processes exceeding its CPU usage limits,
the process is paused until its CPU usage statistics fall again into the allowed
range. At this point, the process can be resumed and it continues to run until
the limits are again exceeded. This approach could be implemented both in the
user-space and in the kernel-space.

The user-space approach

In this approach, there could be a userspace daemon process running in the
background and periodically monitoring the cpu usage statistics of all the running
processes. Once an offending process is found that exceeds its limits, the process
is sent a SIGSTOP signal. To resume the process, it is sent the SIGCONT signal.
This approach has a basic sense of security, because the SIGSTOP signal can not
be ignored. This is for example how the cpulimit2 tool is implemented.

This approach could be also used to implement the CPU limits for various pro-
cess groups, based for example on process real user-id. The algorithm would work
this way: If the per-user CPU limit has been exceeded, all processes belonging
to the offending user would be temporarily paused.

The kernel-space approach

The same technique could be implemented directly in the FreeBSD kernel. The
per-process CPU usage statistics can be periodically collected directly from the
FreeBSD schedulers. As soon as the process exceeds its limits, it is forced to
sleep. When its CPU usage falls back into the requested range, the process is
awaken. This way, the limits can be implemented per-process, per-user or per
any other process groups that are considered necessary.

So now comes the question why would anybody implement this technique for
FreeBSD in the kernel. In addition to the better transparency, this solution can
provide an additional benefit. It can be further extended to provide support for
soft CPU limits. For example in the case of the per-user soft CPU limits, there
could be added a little bit of bookkeeping code to the scheduler that would tell if
on a given CPU core, there are running at least two processes with different real
user-ids. If this is true, the limits are imposed by pausing all the processes of the
offending user on this CPU core. (Other CPU cores are handled separately in
the same way) However, if all the processes on the CPU core belong to the same
user, the limits need not to be imposed on this particular CPU. This is in line
with the soft CPU limits semantics.

There are some reasons why extending the user-space approach in a similar
way to support soft CPU limits would not be practical. Firstly, process affinity
can change during the process’s runtime and it also usually does. (For example
when the scheduler tries to balance the CPU load on multiple CPU cores). So
the statistics taken from some user-space daemon saying on which CPU core the
process is currently running could already be obsolete at the time they are being

2For more information, visit the project homepage at http://cpulimit.sourceforge.net/

37

interpreted. This would also increase the reaction time after which the offending
processes would be paused. In the kernel-space approach, however, as soon as
the scheduler schedules the process on some CPU core, it knows it immediately.

On the other hand, if we wanted to make this reaction time as little as possible,
our user-space daemon could itself add a considerable amount to the CPU load
of the system and that would also render the user-space solution impractical.

5.3.4 Overview of the implementation approaches for im-
posing CPU usage limits

Here we present the summary of possible approaches to our problem that we have
already evaluated. We also list their most notable advantages and disadvantages.

implementation approach advantages disadvantages
create a new scheduler or
possibly rework an existing
one

clean and accurate so-
lution

scheduler dependent, may
break nice scheduling be-
haviour in some cases (ef-
fective workload balancing
on multiprocessor architec-
tures, scheduling fairness,
favouring of interactive pro-
cesses)

manipulating the schedul-
ing priority of a process

easy to understand scheduler dependent, does
not work for the ULE
scheduler without further
changes to the scheduling
logic

stop and run technique -
userspace daemon

no kernel modifica-
tions, easy to imple-
ment, scheduler inde-
pendent

not very accurate since the
inherently defensive nature

stop and run technique -
kernel implementation

easy to implement,
scheduler indepen-
dent, possibility to
support also soft CPU
limits

not very accurate since the
inherently defensive nature

Based on the analysis, we choose to use the stop and run technique kernel-
space approach in our prototype implementation that will be presented in the
next chapter.

5.4 Specifying the block IO bandwidth limits

For our purposes, the block IO limits are best defined by specifying the number
of bytes that are allowed to be transferred in read/write operations on a block
device per second. The read and write limits can be defined independently of
each other.

38

We need to emphasize that reading a file that is stored on some block device
does not always mean that the actual data transfer between the block device and
the main memory takes place. This is possible because the data stored in the
file may already be cached in the main memory from the previous block device
operations. So by specifying the block device read and write limits we really
do want to limit only the data transfer coming to or originating from the block
device. We are not interested in limiting the read and write operations as long as
they involve only the data transfer between the cache memories managed by the
operating system and do not involve the direct read/write data transfers between
the block device.

Now, we take a look at the general architecture of the FreeBSD block device
IO subsystem so that we can understand at which layer the specified limits will
be enforced:

Figure 5.1: The general FreeBSD block device IO subsystem architecture

Source: The Design and Implementation of the FreeBSD Operating System[10]

We see that enforcing the limits at the VFS layer would not have the desired
effect because this way the cached operations would be limited too. Therefore,
the limits will be enforced at the GEOM layer. This is analogical to the Linux
cgroups blkio subsystem implementation where the block IO limits are enforced
at the generic block layer.

5.5 Implementing the block IO bandwidth limits

The problem of managing the traffic bandwidth is well known and well studied in
the field of computer networks. We will now have a look at some common traffic
shaping algorithms described in Computer Networks [11] and evaluate how they
suit our needs of limiting the block device IO bandwidth.

39

5.5.1 The Leaky bucket algorithm

This algorithm is based on an analogy of a bucket with small holes at the bottom.
If the bucket contains water, then it will leak at constant rate that is independent
of the rate at which the water enters the bucket. Also, if the amount of water in
the bucket reaches its capacity, any additional water would overflow - that means
it would be lost because it does not come out of the output stream of the bucket
under the hole.

A possible implementation of this algorithm includes a queue data structure
that serves as our fixed-capacity bucket. As the data packets arrive, they are
enqueued into the queue. Also, as long as the queue is not empty, the data
packets are taken off the queue at constant speed.

Thus, this algorithm produces an output data stream with speed that is low-
er or equal to a constant value. In some network scenarios, this might be the
required behaviour. But this is not what we are looking for. Firstly, we have
already decided that our bandwidth limits will be specified per second. Which is
quite a big time interval when it comes to computer processing. So a reasonable
implementation of the leaky bucket algorithm could divide the imposed limit by
1000 for example and apply it per millisecond. Surely, this would provide a stable
output stream to or from the block device, but this kind of limiting is actually
more than we really want.

What we really want to limit is exactly specified by the allowed amount of
bytes per second. And nothing more. We are not concerned about limiting any
short data bursts as long as they comply with the per-second limit. That is why
this solution does not suit our needs.

5.5.2 The Token bucket algorithm

The token bucket algorithm is more flexible than the leaky bucket algorithm and
allows limited burstiness in the output data stream. This algorithm is based on
tokens that are inserted into the bucket at fixed rate. A single token is added to
the bucket every 1/n of the second. The bucket has fixed capacity of tokens. If
its capacity is reached, the additional tokens are simply discarded. If an input
data packet arrives, it consumes a single token from the bucket (or a number of
tokens that is proportional to the data size of the packet) and the data packet is
sent out. If there is no token in the bucket, the processing of the input packet is
delayed until the tokens are again available.

If the input stream stands still for some time, the bucket has a chance to refill
itself with tokens to its full capacity. Then, if some data arrives, it is processed in
greater speed until the tokens are used up. A slight modification of this algorithm
will be used in our prototype implementation.

A variation of the Token bucket algorithm that we will use for imposing
the block IO bandwidth limits

The total token capacity of the bucket will be equal to the number of bytes
allowed to be transferred to or from the device in the specified direction. There
are two separate buckets - one for the read and one for the write direction. At the
beginning of each time slice, the buckets will be fully filled with tokens. When the

40

check is performed to see how many available tokens are there in the appropriate
bucket, only the portion of the tokens in the bucket is seen. This portion is
proportional to the time passed since the beginning of the current time-slice.
More specifically, if the one tenth of the time-slice has passed, only one tenth of
the tokens is seen in the bucket. At the end of the time-slice, all tokens will be
visible.

As the data packets come from or to the block device, they are passed on
as long as there are sufficient visible tokens in the appropriate bucket and the
necessary tokens are then consumed. If there are no enough visible tokens in the
appropriate bucket, the processing of the input packet will be delayed for the time
that is proportional to the size of the data that overflows the imposed bandwidth
limits.

In our prototype implementation, the increasing of the amount of tokens in
the bucket by only a single token would be ineffective. Such increments would
need to happen quite often (The frequency being the numerical value of the
bandwidth limit per second in bytes). Also, every such increment must be done
inside a critical section to prevent possible data corruption. For this reason,
the bucket is fully filled with tokens at the beginning of every time slice. This
is not a problem, because if there are no enough tokens available in the bucket
anymore, the delay time for the processing of the input packet is exactly calculated
and the delayed processing of the packet is registered using an underlying timer
framework. That means we are no longer dependent on the amount of available
tokens being incremented by one at the fixed and steady rate.

5.6 Integrating the prototype implementation

within the FreeBSD kernel

In the FreeBSD kernel, there is no such framework that would resemble the
architecture of the Linux cgroups. This simple fact leads us to a decision if
we will implement a new cgroup framework for the FreeBSD operating system.
However, there is a relatively new codebase in the FreeBSD kernel named the
racct/rctl infrastructure that has a similar purpose as the Linux cgroups - that is
limiting resource usage. It has support for various system resources, however it
lacks support for limiting the relative CPU usage and the block IO bandwidth.

We decide to take advantage of the racct/rctl framework and instead of de-
veloping a new cgroup infrastructure from scratch, we will extend this existing
framework to add support for the relative CPU usage limits and the block IO
bandwidth limits.

41

6. Our prototype implementation

6.1 Introduction

After we have performed our analysis of the Linux cgroups subsystem in the first
chapters and after we have analysed other possible solutions in the Analysis chap-
ter, we will now present in this final chapter our prototype implementation of the
relative CPU limits and the block IO bandwidth limits. Our code is provided in the
form of patches for the FreeBSD-CURRENT branch of the FreeBSD source tree.
The FreeBSD-CURRENT branch is the ”bleeding-edge” development branch of
the FreeBSD operating system where most of the experiments with new features
take place.

We start this chapter by presenting the analysis of our implementation of the
relative CPU limits. Firstly, we set forth the requirements that our implementa-
tion should fulfill. Once our requirements are clearly stated, the analysis of the
actual implementation will follow. The same logic will be applied in the second
part of this chapter, where we present our prototype implementation of the block
IO bandwidth limits.

6.2 The relative CPU limits

6.2.1 Implementation requirements

We impose the following requirements on our prototype implementation:

1. Our tool will be fully integrated within the FreeBSD racct/rctl framework
designed for specifying and imposing resource usage limits in the FreeBSD
operating system.

2. The CPU usage percentage calculations of our tool will be compatible with
the common userland tools ps and top.

3. We will support specifying relative CPU limits per-process, per-user and
also per-jail.

4. We choose the defensive algorithm for our solution, named in the sec-
tion 5.3.3 on page 37 as the stop-and-run technique. More specifically,
we implement the kernel-space approach. This brings us some advantages
but also disadvantages that we agree to accept.

6.2.2 Integrating the tool within the FreeBSD kernel and
especially the racct/rctl framework

The core parts of the FreeBSD kernel racct/rctl framework are implemented
in the files src/sys/kern/kern racct.c and src/sys/kern/kern rctl.c and
these files are also the place where most of our code will be applied.

42

The racctd kernel thread

The racct subsystem contains one kernel thread racctd that is responsible for
periodically collecting some per-process CPU usage statistics. This is the place
where we hook our code to calculate the per-process CPU usage percentage.

The racctd works by periodically iterating over all the processes and recal-
culating the per-process CPU usage statistics. To properly implement the stop-
and-run technique, we need to iterate over all the processes in the system in two
passes. In the first pass, the necessary per-process CPU usage percentage statis-
tics are collected. In the second pass, we iterate over every single process once
again and we decide if the process should be throttled. The process should be
throttled if some of the CPU usage limits imposed on the process or on the group
of processes where the process belongs have been exceeded.

The reason why we need two passes to implement the desired behaviour is
the throttling fairness. If, for example, a per-user CPU usage limit has been
exceeded then we want to throttle all the processes that belong to the offending
user. Thus, to decide if a per-user limit has been exceeded, we need to firstly
build the per-user CPU usage percentage statistics. Such kind of information is
reliably obtained only after all the processes in the system have been inspected
for their individual CPU usage percentage statistics in the first pass.

Throttling and waking up the offending processes

When the CPU usage percentage value of a process is approaching the imposed
CPU usage limit , the process will be throttled. This is handled by the routine
racct proc throttle(struct proc *p). The per-process flag p throttled is
firstly set to the logical value 1 so that this process should be throttled as soon
as possible - when the appropriate time comes. We also inspect the current state
of the process. If the process is found to be running or it is currently placed in
the scheduler runqueue, we request the involuntary context switch for the process
by setting the TDF NEEDRESCHED bit in the td flags field for all the threads that
the offending process contains.

If a user process is running, sooner or later the execution context of the process
will switch to the kernel mode. This may happen voluntarily - by calling a system
call, or involuntarily - when for example a timer interrupt occurs. In any case,
the kernel will try to do its work and then return the execution context again to
the user mode so that the user-space process continues running. Before the kernel
returns the execution to the user-space mode, it calls the userret() routine. We
add a check at the end of this routine to see if the process should be throttled.
That is, if the p throttled per-process flag is set for the current process. If the
flag is set, we sleep and thus do not return to the user mode immediately.

When the offending process is later found to be again within its CPU usage
limits, the process is woken up. This handles the racct proc wakeup(struct

proc *p) routine. After the process is woken up, it returns to the user mode and
its user-space execution continues.

Thus, the throttling of the offending processes and then making them later
again runnable is achieved without directly hacking the schedulers. This makes
our solution scheduler-independent and that is a nice feature since the FreeBSD
operating system currently supports two schedulers that are completely different.

43

Unbounded kernel execution

It is now clear from the previous section that the actual CPU throttling in our
prototype implementation is implemented by inserting a sleep call at the kernel-
userspace boundary. This also means, the process is never throttled while exe-
cuting the code in kernel mode. Only after the work in kernel mode is done and
the userret function is executed, the process may be throttled.

Therefore, if there is for example any faulty syscall implementation in the
kernel that could starve the CPU resources significantly - maybe by employing
an endless loop or a similar construct - our throttling would be ineffective. Such
problems are not handled in our implementation. It is not our intention to create
any safeguards against the side effects of the programming errors elsewhere in
the kernel. If such problems do occur, they should be handled by eliminating
the root cause of the problem, not just its side effects - which in our case is the
superfluous CPU usage.

6.2.3 Calculating the CPU usage percentage

Calculating the CPU usage percentage value of the process p is handled in our tool
by the racct getpcpu(struct proc *p, u int pcpu) subroutine. The first ar-
gument identifies the process whose CPU usage we are going to determine. The
second argument is our own estimate of the CPU usage percentage for the spec-
ified process p. Normally, we calculate the percentage value from the statistics
provided by the scheduler and ignore this estimated value. However, if the pro-
cess p is very young - that means the process’s runtime so far is less than 3
seconds - the statistics provided by the scheduler are unreliable. In that case, we
use our own estimate to calculate the CPU usage percentage value and ignore
the statistics provided by the scheduler. We have found the limit of 3 seconds
empirically as a good value to differentiate the cases where the statistics provided
by the scheduler should be used.

Ensuring compatibility with the userland ps tool

Firstly, we will see how the FreeBSD userland ps tool performs the per-process
CPU usage percentage calculations. These calculations are handled by the fol-
lowing lines of code:

double
getpcpu (const KINFO ∗k)
{
. . .

#define f x t o f l (f i x p t) ((double) (f i x p t) / f s c a l e)
. . .
return (100 . 0 ∗ f x t o f l (k−>ki p−>k i pc tcpu) /

(1 . 0 − exp (k−>ki p−>ki swt ime ∗ l og (f x t o f l (ccpu))))) ;
}

Mathematically, the computation is expressed in the following fraction:

100 · ki pctcpu
FSCALE

· 1

1− eki swtime·log ccpu
FSCALE

(6.1)

44

The computation depends on the following variables:

FSCALE This is the scaling factor in the FreeBSD kernel for performing the
fixed-point arithmetic. It is defined to have value 2048. Thus, in the fixed-
point arithmetic, the value 0.5 is represented as integer number 1024.

ki pctcpu The per-process CPU usage percentage value obtained from the ker-
nel in fixed-point arithmetic format.

ki swtime The time in seconds that has passed since the process started or it
has been last swapped in.

ccpu The kernel-defined constant value. In the 4BSD scheduler it is used as the
per-second decaying factor for the CPU usage percentage calculations. It is
defined in this scheduler to the value e−

1
20 and is meant to decay 95% of the

percentage value in 60 seconds. ((e−
1
20)60 ≈ 0.05). In the ULE scheduler,

the value is not used. For compatibility with the ps tool, the ccpu kernel
constant is defined in the ULE scheduler to the value 0.

Because the ccpu value is different for the 4BSD and the ULE schedulers, the
CPU usage percentage calculations also differ depending on the current scheduler
used. In the case of the ULE scheduler, the ccpu value is defined to be 0, which
simplifies the calculations significantly. Thus, in the case of the ULE scheduler,
the computation 6.1 can be simplified as follows:

100 · ki pctcpu
FSCALE

(6.2)

In the case of the 4BSD scheduler, the calculation 6.1 yields the following
formula:

100 · ki pctcpu
FSCALE − FSCALE · e− ki swtime

20

(6.3)

Thus, to calculate the per-process CPU usage percentage value, we use the
formula 6.2 in our tool if the ULE scheduler is compiled into the kernel. This is a
simple formula and it is very convenient because it does not involve any floating
point functions.

However, in case of the 4BSD scheduler, things are not so easy. To properly
evaluate the formula 6.3, we need to be able to calculate the exponential function.
And this is a problem in kernel-space in general and especially in the FreeBSD.
The usage of the floating point unit is best avoided in kernel-space because of
the overhead of swapping the contents of the FPU registers on every context
switch. For this reason, the FreeBSD kernel does not support the floating point
unit operations at all, as some conversations of the FreeBSD developers in the
freebsd-hackers mailing list [12] suggest. Also, the floating-point emulation for the
i386 architecture has been removed in 2004 in the FreeBSD version 5.2.

To avoid using the floating point in our code in case of the 4BSD scheduler,
we use a table named ccpu exp that is filled with the precomputed fixed-point
arithmetic integer values of the following formula:

FSCALE · e−
k
20 k ∈ 0..n (6.4)

45

The stop-and-run technique and malicious users creating short-lived
processes to avoid being noticed

The FreeBSD racct/rctl infrastructure is not only meant to limit the usage of
various resources. It also provides facilities to monitor their usage. In our case
of monitoring for example the per-user CPU percentage value and facilitating
the stop-and-run technique, one important problem arises: Processes with short
lifetime may not be noticed, because of the discrete and periodic sampling of the
CPU resource usage done in the racctd thread. And this may happen even if they
use substantial CPU resources in their short lifespan. The process may not be
noticed if its life span is shorter than our sampling period, which is 1 second in case
of the racctd. A malicious user could thus use substantial CPU resources without
being noticed. He could achieve this by creating and appropriately scheduling
short-lived CPU intensive processes.

To address this problem, whenever a process terminates, if it has not been
inspected for its CPU usage by the racctd thread, its CPU usage percentage
value is added to the CPU usage account of the appropriate user. This is also
done for other necessary CPU usage accounts, like per jail and per login class
CPU usage accounts. Now we see that our CPU usage accounting system also
contains some superfluous CPU usage amounts caused by the already terminated
processes. However, these excessive CPU usage amounts will be shortly reduced
to zero. This is achieved by the automatic decaying of these superfluous CPU
usage amounts.

Decaying the CPU usage percentage values

The excessive CPU usage amounts caused by the terminated processes are only
present on per user, per login class and per jail CPU usage accounts. We refer
to these types of CPU usage accounts as container accounts. The excessive CPU
amounts are not present on individual per-process CPU usage accounts, because
the per-process CPU usage accounts are kept only for living processes.

The container CPU usage accounts are subjected to the process of decaying.
At the beginning of every racctd iteration, the CPU usage amounts in these
container accounts are reduced by multiplying them by the racct decay factor

variable that is always less than one and greater than zero. The value of this
decaying factor is derived from the one-minute system load average. The decaying
factor f is calculated using the following formula:

f =
2 · load average

2 · load average+ 1
(6.5)

The decaying factor f obtained from this formula has a handy property that
multiplying the percentage value by this factor once a second will decay away
about 90% of the percentage in (5 · load average) seconds. Another important
advantage of this formula is that it does not involve any floating point functions
and can be easily computed using the fixed point arithmetic in the kernel. This
very same formula is also used in the code of the 4BSD scheduler that also
employs the CPU usage decaying. Now, we will sketch the rationale behind this
simple formula. The formula is also explained in the comments of the source code
of the 4BSD FreeBSD scheduler in the file sys/kern/sched 4bsd.c.

46

We are looking for a decaying factor f that will decay away 90% of the per-
centage value p in 5l multiplying iterations, where l is the one-minute system load
average. Mathematically, this is expressed in the following equation:

p · 1

10
= p · f 5l, p > 0, f ∈ (0, 1) , l > 0 (6.6)

We assume that the percentage value p 6= 0 because the zero-valued percentage
does not need any decaying.

1

10
= f 5l (6.7)

From the equation 6.7 we can get the formula for the decaying factor f :

f = e
ln(0.1)

5l (6.8)

We will approximate the expression ln(0.1) as −2.30. We also assume that l is
not close to zero, more specifically that 2l > 1. This assumption is quite realistic
considering that the CPU throttling is usually applied under high system loads.
Now we can also use the fact that limx→0 exp(x) = 1 + x. This is what we get:

f = e
ln(0.1)

5l ≈ e
− 1

5
2.3 l ≈ e−

1
2l ≈ 1− 1

2l
=

2l − 1

2l
≈ 2l

2l + 1
(6.9)

At the end of the last equation 6.9 we have the formula 6.5, that is used in
our implementation.

An illustrated example of the decaying of the CPU usage percentage
values

We illustrate how the CPU usage decaying works in the figures 6.1 and 6.2. The
example user John was running three different processes p1, p2 and p3 that were
occupying 30%, 15% and 24% of the CPU resources respectively. The process p1
was running only for a short time and thus has not been inspected in the latest
racctd iteration. Therefore, it also does not contribute to the per-user CPU usage
amount of the user John. The processes p2 and p3 have been running for a longer
time and therefore their CPU usage is also mirrored in the John’s per-user CPU
usage account. Now, the process p1 has just terminated, so its CPU percentage
value has been added to the John’s per-user CPU usage account. The green bars
in the figure 6.1 show the per-user CPU usage account of the user John. In the
beginning of the next racctd iteration, the John’s CPU usage account will decay.
The red bars in the figure 6.1 show his account after the decaying.

In the figure 6.2 we present the situation where the current racctd iteration is
finished. The racctd iteration continued by inspecting all the running processes.
Because the processes p2 and p3 are still running, they were also inspected and
their amounts in the John’s CPU usage account have been refreshed to their
up-to-date values. The percentage amount of process p1 has not been refreshed
because the process does not exist any more.

You can see how the excessive amount of the percentages caused by the termi-
nated process p1 diminishes every racctd iteration from the respective container
accounts.

47

0 %

5 %

10 %

15 %

20 %

25 %

30 %

35 %

p1 p2 p3

Figure 6.1: The CPU usage account of user John before and after the decaying

0 %

5 %

10 %

15 %

20 %

25 %

30 %

35 %

p1 p2 p3

Figure 6.2: The CPU usage account of user John after the racctd iteration has
finished

A note about the rounding errors in the percentage calculations

There are basically two sources of rounding errors in the percentage calculations
of our prototype implementation. The first source of problems would be caused by
the inherent nature of percentages - there are only one hundred of them. Storing
the percentage values directly in the percentage units would be insufficient. We
therefore use a nice feature of the racct/rctl framework and register the cpu usage
resource within the framework to work internally in multiples of millions. This
gives us bigger precision and less rounding errors.

48

The other source of rounding errors is caused by the fixed point arithmetic.
Our implementation uses the precision of 11 bits right of the fixed binary point.
This is de-facto a standard in the FreeBSD kernel fixed-point arithmetic and
many other kernel parts use the same scheme.

6.2.4 Support for relative CPU limits specified per pro-
cess groups

Our prototype implementation does not support only per-process CPU limits. It
also supports CPU limits specified per user, per login class and per jail. Once
we have implemented the per-process CPU usage accounting, the racct/rctl in-
frastructure takes care of the per user, per login class and per jail CPU usage
accounting. This is done automatically as long as we use the right API to control
the per process CPU usage accounting.

The racct/rctl infrastructure also provides us with the API to check if a spec-
ified process’s resource usage is in line with all the limits that are applicable to
the process, be them per-user, per-process, or any other limits supported by the
framework. It is the racct/rctl infrastructure’s responsibility to keep track of and
check all the rctl rules1 that apply to a specific process. We need not to be
concerned about this - as long as the right API is used.

6.2.5 Simple evaluation of our prototype implementation

To evaluate the functionality of our prototype implementation to limit the relative
CPU usage, we have created a shell script that compiles the FreeBSD base system.
The script is supposed to be running under a testing user. Using our prototype
facility, we have set the per-user relative CPU usage limit and we periodically
observed the current CPU usage of the testing user. The following data displayed
in the figure 6.3 was obtained when the per-user limit was set to 60%.

When using the 4BSD scheduler during the benchmarking process, the CPU
usage percentage can even exceed 100%. This is not a bug caused by our code,
but a documented standard behaviour in FreeBSD. See the man(1) page for the
ps tool in FreeBSD for more details. Since the defensive nature of the employed
algorithms, we see that the limits are sometimes exceeded. But most of the time,
they have been kept.

6.3 The block IO limits

6.3.1 Implementation requirements

We impose the following requirements on our prototype implementation:

1. Our tool will be fully integrated within the FreeBSD racct/rctl framework
that is designed for specifying and imposing resource usage limits in the
FreeBSD operating system.

1The resource limits in the racct/rctl framework are specified using the rctl rules. See the
appropriate appendix section for more details about the syntax and some examples of these
rules.

49

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80 90

fr
e
q
u
e
n
c
y

CPU percentage

Figure 6.3: Periodically observed per-user CPU utilization during the compilation
of the base system with the per-user CPU limits set to 60%. The 4BSD scheduler
is in use.

2. We will support specifying the bandwidth limits for the block devices in
both the read and the write direction.

3. We will support applying the limits per-process, per-user and also per-jail.

4. The limits will only affect the data transfer originating from or directed to
the block device. Read and write operations that take place only in the
cached memories managed by the operating system are not affected.

6.3.2 Integrating the block IO limits within the FreeBSD
kernel

The block device IO bandwidth limits in our prototype implementation are also
implemented as an extension to the racct/rctl framework in the FreeBSD ker-
nel. This framework is implemented in files src/sys/kern/kern racct.c and
src/sys/kern/kern rctl.c. Only small changes are applied to the racct/rctl
resource limiting framework to register names for the virtual resources that serve
as identifiers for specifying the read and write block device IO limits.

Most of the work is done however on top of the GEOM layer that receives the
block device access IO command descriptors from the upper kernel layers and pro-
cesses them further. See the figure 5.1 to see the overview of the FreeBSD kernel
block device IO subsystem architecture. The entry point to the GEOM layer from
the filesystem layers in the FreeBSD kernel is the g vfs strategy() function in

50

the src/sys/geom/geom vfs.c file. This function simply creates a GEOM layer
command descriptor for the requested action, fills its fields accordingly and calls
the g io request() function to process the newly created command descriptor.
And this is the place where we hook our code.

Instead of simply calling the g io request() function to process the com-
mand, we use the racct/rctl API to check if the requested operation would ex-
ceed any IO limits. If the action does not violate any limits, the call to the
g io request() function is made to process the IO command. However, should
the requested action exceed the block device IO bandwidth limits set by the com-
puter administrator, we store the command descriptor into a red-black tree-based
data structure. The command descriptors in this tree are indexed by the time
estimate value that says when the action should be processed to satisfy the limits.
The FreeBSD callout timer framework is used to ensure the timely processing of
the delayed command descriptors registered in the tree.

6.3.3 The token bucket algorithm

We have already described the variation of the token bucket algorithm that we
use in our prototype implementation in the section 5.5.2 in the previous chapter.
The whole checking if the limits are exceeded or not is done inside the racct/rctl
framework that defines a specific API for this purpose. This process is analogical
to our description of the token bucket algorithm.

We use the racctd thread to fill the buckets with the necessary tokens. The
racctd thread works in a loop, each iteration taking place once a second. For
every process, the racct/rctl infrastructure stores the numbers of bytes read and
written in the last second. On every racctd iteration, these numbers are set to
zero. This is analogical to filling the buckets with tokens. The number of tokens
in the bucket can be obtained by subtracting the number of processed bytes in
the last second from the overall read/write limit. When the command descriptors
are processed in the GEOM layer, the appropriate number of processed bytes in
the last second is increased in the racct/rctl framework. This is analogical to the
process of consuming the available tokens.

To find out if the block IO access limit for the process p has been exceeded,
the racct/rctl framework checks all the limits applicable to the process p. This
may include limits defined per-process, but also per-user and per-jail limits. It is
analogical to checking if there are enough tokens in the bucket for the operation
to be performed. This is true because in our case the tokens are analogical to the
yet unconsumed bandwidth.

6.3.4 Implementation details

The block device IO command descriptors that are stored in the red-black tree
data structure are specified by the following structure definition:

struct g s ched b i o {
struct bio ∗bip ;
struct g consumer ∗cp ;
struct proc ∗p ;
STAILQ ENTRY(g s ched b i o) g s b l i n k ;

51

} ;

The struct bio *bip pointer is a link to the actual GEOM-layer command
descriptor and the struct g consumer *cp is a pointer to the GEOM consumer
for the IO command. The process that caused the command is stored in the
p variable. We need to store this pointer because we have to perform the per-
process IO bandwidth usage accounting using the racct/rctl API. Finally, the
STAILQ ENTRY(g sched bio) gsb link member variable enables us to keep the
g sched bio objects in a FIFO queue.

In fact, the g sched bio objects are not kept directly in our red-black tree.
We keep the lists of the g sched bio objects in the tree. That is because objects
in the tree are indexed by their estimated dispatch time and there are often more
than one command descriptors with the same dispatch time. Thus, the lists that
are directly inserted into the red-black tree are defined by the following structure
definition:

struct g s c h e d b i o l i s t {
int d i spatch ;
RB ENTRY(g s c h e d b i o l i s t) g s b l i n k ;
STAILQ HEAD(, g s ched b i o) b i o l i s t ;

} ;

The int dispatch member variable is self-explaining. It is used as the in-
dexing key in the red-black tree. The RB ENTRY(g sched bio list) gsb link

member variable enables us to store the g sched bio list objects in the red-
black tree. And the STAILQ HEAD(, g sched bio) bio list member variable
contains pointer to the actual queue head. The queue contains objects of the
struct g sched bio type.

6.3.5 Evaluating the block device IO bandwidth limits

Firstly, we take a look at the requirements that we have imposed on our proto-
type block device IO bandwidth limits implementation. The implementation does
integrate within the FreeBSD racct/rctl resource limiting framework. Also, both
read and write operations are supported. Thanks to the racct/rctl framework,
per-user, per-jail and any other container-based limits supported by the frame-
work are also supported. Again, we only had to do the per-process bandwidth
accounting and the rest has been taken care of by the framework. Because the
limits are applied at the top of the GEOM layer, the cached read and write filesys-
tem operations taking place only in the main memory are not affected. Now we
can conclude that we have accomplished our goals set forth in the implementation
requirements.

To evaluate our implementation, we use the dd utility to copy files on the
disk devices. This utility conveniently shows the number of bytes processed per
second.

We have set the bandwidth limit for the read block device access to 1MB
per second. You can inspect in the figure 6.4 the speeds of the read operations
as provided by the dd utility. The mean value µ for the bandwidth of the read
operations is 1089217.4 bytes per second, which is less than 4% above the limit.

52

0.8

0.9

1

1.1

1.2

 1 2 3 4 5 6 7 8 9 10

M
B

/s
e
c

data obtained via dd utility
limits set per racct/rctl

Figure 6.4: Measuring the read block device access using 16MB files.

In the figure 6.5, we have set the bandwidth limit for the write block device
operations to 1MB per second. You can inspect the speeds of the write operations
as provided by the dd utility.

0.9

1

1.1

1.2

1.3

 1 2 3 4 5 6 7 8 9 10

M
B

/s
e
c

data obtained via dd utility
limits set per racct/rctl

Figure 6.5: Measuring the write block device access using 16MB files.

The mean value µ for the bandwidth of the write operations is 1219458.6 bytes
per second, which is 16.3% above the limit.

The error in the latter case of the write operations is much bigger than in the
previous case of the read operations where it was less than 4%. The reason for
this is simple: The dd utility counts the data as written sooner than the data are
physically committed to the block disk device.

53

Conclusion

We start this thesis by examining the Linux cgroups. Analysing the kernel imple-
mentation of the Linux cgroups management and later analysing the implemen-
tation of the cgroup subsystems responsible for the CPU throttling and the block
IO bandwidth throttling was quite time-consuming due to the complexity of the
whole system.

In the next part of this thesis, the Analysis chapter, we try to look at the core
problems of this thesis from different points of view. We also look at algorithms
that are better known in other fields of computer science and are not directly
related to the theory of Operating systems. We evaluate the pros and cons of
the application of the token bucket and leaky bucket algorithms to our problems.
These algorithms are usually connected with traffic shaping models of computer
networks.

Probably the most challenging part of this thesis is the last part, our own
implementation of the CPU throttling and the block IO bandwidth throttling for
the FreeBSD operating system. We have decided not to port the Linux cgroups
implementation into the FreeBSD. One reason for this was the complexity of the
Linux cgroups framework, the other reason was the racct/rctl framework already
present in the FreeBSD that is used for a similar purpose and that was just asking
to be extended to support also the CPU throttling and the block IO bandwidth
throttling.

We consider our prototype implementation stable and working. Thus, we
can conclude we have successfully achieved all the goals of this thesis. Some
benchmarking results are provided in the appendix section Benchmarks. A part
of our implementation (the CPU throttling) has been already accepted to the
FreeBSD-CURRENT source tree. That makes us particularly proud.

Our implementation can be easily tested without the need of compiling the
whole FreeBSD system. We attach to this thesis a DVD that contains a QEMU
disk image of an already preinstalled FreeBSD-CURRENT system with our patch-
es already applied. More details about the DVD can be found in the appropriate
appendix section. However, if you prefer not to use the prebuilt environment but
to apply our patches yourself and then manually compile the FreeBSD-CURRENT
operating system from sources, please refer to the appendix section Building the
prototype implementation.

Since the CPU throttling patch has been already accepted to the FreeBSD-
CURRENT source tree, our future work on the topics explored in this thesis will
be based on the opinion of the FreeBSD community to our block IO bandwidth
management patch. The CPU throttling implementation could be also later ex-
tended to support the soft CPU limits.

54

Bibliography

[1] Corbet, Jonathan. Process containers. LWN.net. Linux info from the source
[online]. May 29 2007 [viewed 29 Oct 2012]. Available from:
http://lwn.net/Articles/236038/

[2] Menage Paul. CGROUPS. [online]. [viewed 20 Oct 2012]. Available from:
http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt

[3] The Linux Kernel Organization. Block IO Controller. The Linux Kernel
Archives. [online]. [viewed 20 Oct 2012]. Available from: http://www.kernel.
org/doc/Documentation/cgroups/blkio-controller.txt

[4] Prpič Martin, Landmann Rüdiger, Silas Douglas. Managing system
resources on Red Hat Enterprise Linux 6. [online]. 2011 [viewed 20 Oct
2012]. 3th ed. Available from: https://access.redhat.com/knowledge/

docs/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_

Guide/index.html

[5] Corbet Jonathan. Schedulers: the plot thickens. LWN.net. Linux info from
the source [online]. April 17 2007 [viewed 29 Oct 2012]. Available from:
http://lwn.net/Articles/230574/

[6] Bovet P. Daniel, Cesati Marco. Understanding the Linux kernel. 3rd ed.
California:O’Reilly, 2005. 944 p. ISBN-13: 978-0596005658

[7] Corbet Jonathan. Trees I: Radix trees. LWN.net. Linux info from the source
[online]. March 13 2006 [viewed 29 Oct 2012]. Available from:
http://lwn.net/Articles/175432/

[8] Bharata B Rao. CPU hard limits. [online]. 2009 [viewed 10 Nov 2012].
Available from: http://lwn.net/Articles/336127/

[9] Roberson Jeff. ULE: A Modern Scheduler For FreeBSD. [online]. Sep
2003 [viewed 7 Dec 2012]. Available from: http://www.usenix.org/event/

bsdcon03/tech/full_papers/roberson/roberson.pdf

[10] Kirk McKusic Marshall, Neville-Neil V. George. The Design and Im-
plementation of the FreeBSD Operating System. Boston:Addison-Wesley,
2004. 720 p. ISBN-13: 978-0201702453

[11] Tanenbaum S. Andrew. Computer Networks. 4th ed. New Jersey:Prentice
Hall, 2002. 912 p. ISBN-13: 978-0130661029

[12] The FreeBSD hackers mailing list. [online]. [viewed Nov 25 2012]. Available
from: http://lists.freebsd.org/pipermail/freebsd-hackers/

[13] The FreeBSD Documentation Project. FreeBSD Handbook. [online]. [viewed
Dec 15 2012]. Available from: http://www.freebsd.org/doc/en/books/

handbook/index.html

55

http://lwn.net/Articles/236038/
http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://www.kernel.org/doc/Documentation/cgroups/blkio-controller.txt
http://www.kernel.org/doc/Documentation/cgroups/blkio-controller.txt
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/index.html
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/index.html
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/index.html
http://lwn.net/Articles/230574/
http://lwn.net/Articles/175432/
http://lwn.net/Articles/336127/
http://www.usenix.org/event/bsdcon03/tech/full_papers/roberson/roberson.pdf
http://www.usenix.org/event/bsdcon03/tech/full_papers/roberson/roberson.pdf
http://lists.freebsd.org/pipermail/freebsd-hackers/
http://www.freebsd.org/doc/en/books/handbook/index.html
http://www.freebsd.org/doc/en/books/handbook/index.html

[14] The FreeBSD Documentation Project. FreeBSD Architecture Handbook.
[online]. [viewed Dec 20 2012]. Available from:
http://www.freebsd.org/doc/en/books/arch-handbook/

[15] The FreeBSD Documentation Project. FreeBSD Developers’ Handbook.
[online]. [viewed Dec 20 2012]. Available from:
http://www.freebsd.org/doc/en/books/developers-handbook/

[16] The Linux Kernel Organization. Linux kernel sources. [online]. Version 3.6.8.
[viewed Dec 2 2012]. Available from: https://www.kernel.org/

[17] The FreeBSD Project. FreeBSD sources. [online]. Version FreeBSD-
CURRENT. [viewed Dec 15 2012]. Available from: http://www.freebsd.org

56

http://www.freebsd.org/doc/en/books/arch-handbook/
http://www.freebsd.org/doc/en/books/developers-handbook/
https://www.kernel.org/
http://www.freebsd.org

Appendix A

Usage and examples

The rules syntax

The CPU limits and the block IO bandwidth limits are specified using the rctl(8)
command in FreeBSD. This command is used for the management of the rctl rules
loaded into the kernel. The rctl rules specify the limits for various resources
managed by the kernel. We provide here an excerpt from the rctl(8) man page
that specifies the syntax of the rctl rules :

Syntax for a rule is: subject:subject-id:resource:action=amount/per.

Subject defines the kind of entity the rule applies to. It can be either
process, user, login class, or jail.

Subject ID identifies the subject. It can be user name, numerical
user ID, login class name, or jail name.

Resource identifies the resource the rule controls.

Action defines what will happen when a process exceeds the allowed
amount.

Amount defines how much of the resource a process can use before
the defined action triggers.

The per field defines what entity the amount gets accounted for. For
example, rule loginclass:users:vmem:deny=100M/process means
that each process of any user belonging to login class ”users” may
allocate up to 100MB of virtual memory.

Rule loginclass:users:vmem:deny=100M/user would mean that for
each user belonging to the login class ”users”, the sum of virtual
memory allocated by all the processes of that user will not exceed
100MB.

Rule loginclass:users:vmem:deny=100M/loginclass would mean
that the sum of virtual memory allocated by all processes of all users
belonging to that login class will not exceed 100MB.

Valid rule has all those fields specified, except for the per, which de-
faults to the value of subject.

The rctl resource used for the CPU throttling is identified by pcpu. The
resource responsible for the block IO bandwidth throttling in the read direction is
ior. The write direction is identified by the rctl resource iow. There is only one
valid action for these resources, and that is the deny action.

57

Examples

The rctl rules can be managed only by the root user. The following command
loads a rule into the kernel that sets the 50% limit to the overall CPU access of
processes owned by user rctl :

rctl -a user:rctl:pcpu:deny=50

The following command loads a rule into the kernel that sets the 1MB per second
limit for the block IO device read access for processes owned by user rctl :

rctl -a user:rctl:ior:deny=1M

The M prefix stands for megabytes. The k prefix stands for kilobytes. If no prefix
is provided, the default unit is in bytes. The following command loads a rule into
the kernel that sets the 1024kB per second limit for the block IO device write
access for processes owned by user rctl :

rctl -a user:rctl:iow:deny=1024k

The following command removes the last rule:

rctl -r user:rctl:iow:deny=1M

When a rule is being removed, you do not always need to specify the whole rule.
Sometimes, filters can be used that are shorter to type and can comprise more
than one rule. The following command removes all the rules specified for the user
rctl :

rctl -r user:rctl::

To view all the rules currently loaded in the kernel, the root user can run the
rctl command without providing any parameters.

58

Appendix B

Building the prototype implemen-
tation

Tutorial

Use the following steps to build a FreeBSD-CURRENT machine patched with
the patches that make up our prototype implementation. This is also the way
how we built the FreeBSD system provided on the QEMU disk image present on
the attached DVD.

1. You firstly need to build the FreeBSD-CURRENT operating system.

Download and install the latest RELEASE version of the FreeBSD operat-
ing system from the FreeBSD homepage. At the time of this writing, it is
the FreeBSD 9.1-RELEASE version. Now, refer to the FreeBSD handbook
to upgrade your system to FreeBSD-CURRENT.

You will do the best if you upgrade your system to FreeBSD-CURRENT
revision number r248247, because this is the subversion revision number
for which the patches are provided on the attached DVD.

2. Apply the tomor6am.patch file provided on the DVD

cd /usr/src

patch -p1 < tomor6am.patch

3. Add the following options to your kernel configuration file:

OPTIONS RACCT

OPTIONS RCTL

4. Build the kernel

cd /usr/src

make buildkernel KERNCONF=YOUR CONFIG FILE

Where YOUR CONFIG FILE should be substituted with the name of your
custom kernel configuration file.

5. Install your new kernel

make installkernel KERNCONF=YOUR CONFIG FILE

Again, the YOUR CONFIG FILE should be substituted with the name of your
custom kernel configuration file.

6. Reboot your computer. You will boot your new kernel.

59

Appendix C

Benchmarks

The block IO bandwidth throttling

Here we have performed disk device read operations by instructing the dd utility
to read 16MB files. The benchmark was performed using two processes running
under the same user. The per-user read block IO bandwidth has been limited.

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

 1 2 3 4 5 6 7 8 9 10

M
B

/s
e

c

read bandwidth of process p1
read bandwidth of process p2

overall read bandwidth (p1 + p2)
limits set per rctl

Figure 6.6: Two processes running under the same user have been performing
read operations. The per-user read bandwidth has been limited to 1MB per
second.

The CPU throttling

The following figures 6.7 and 6.8 show a situation where we have been compiling
the FreeBSD base system under a testing user. The per-user CPU limits for the
testing user have been set to 50% and 60% respectively. During the compilation
process, we have periodically observed the per-user CPU usage using the ps utility.
In both benchmarks, the ULE scheduler has been used.

These figures look slightly different than the figure 6.3. The reason for this is
that in the previous case, the 4BSD scheduler was employed.

60

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50

fr
e
q
u
e
n
c
y

CPU percentage

Figure 6.7: The per-user CPU limit has been set to 50%.

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60

fr
e
q
u
e
n
c
y

CPU percentage

Figure 6.8: The per-user CPU limit has been set to 60%.

61

Appendix D

The attached DVD

The contents of the DVD

The attached DVD contains the following directories:

qemu-vm This directory contains the raw QEMU image with the preinstalled
and patched FreeBSD-CURRENT operating system. Our prototype im-
plementation can be easily tested using this virtual machine. Some helper
scripts to run the virtual machine are also provided.

code This directory contains our prototype implementation and the relevant
parts of the sources for the FreeBSD kernel.

code/patches The patches that make up our prototype implementation are
included here.

code/src Parts of the FreeBSD-CURRENT kernel sources are stored here.

code/src/vanilla This directory contains files from the unpatched kernel sources
for the FreeBSD-CURRENT operating system. They have been obtained
directly from the FreeBSD-CURRENT svn repository.

code/src/patched This directory contains the same files as the vanilla direc-
tory, but after applying the patches that make up our prototype implemen-
tation.

benchmarking This directory contains some shell scripts that we have used for
benchmarking.

thesis This master thesis is stored there.

More detailed descriptions of the files inside these directories can be found in
the respective readme files.

A note about the included QEMU image on the

attached DVD

Please note that you can not boot the QEMU virtual machine using the provided
raw QEMU image directly from the DVD. That is because the attached DVD
serves only as the read-only memory.

To use the image file, first copy the whole qemu-vm directory to your hard
drive. It takes about 2GB of disk space. After that, if you have the QEMU
emulator installed on your system, you should be able to run a QEMU virtual
machine from the provided QEMU disk image residing on your hard drive. To
boot a QEMU virtual machine using our disk image on a UNIX system, you can
use the provided helper scripts in the qemu-vm directory.

62

A tutorial to test our implementation using the

QEMU disk image provided on the attached DVD.

By following the steps in this tutorial you will firstly set some rctl limits and then
observe the behaviour of the virtual machine.

1. Boot a QEMU virtual machine using the provided raw QEMU disk image.
We will later need the SSH access to the virtual machine. Therefore, qemu
should be instructed to listen on some port and then forward the incoming
packets via the SSH port of the virtual machine.

The qemu-vm/fire-vm-ssh.sh script can be used for this step. This script
instructs qemu to listen on the TCP port 33333.

2. Login as the root user providing the password root.

3. Enter the rules-mgmt directory which is located in the home directory of
the root user.

4. Run the add cpu limit.sh script to set the 50% CPU usage limit for the
user rctl. You can confirm that the limit has been successfully set by running
the view all limits.sh script.

5. Login to the virtual machine via ssh as user rctl using password rctl. The
following command can be used for this if the qemu is listening for SSH
connections on port 33333: ssh -p 33333 rctl@localhost.

6. As user rctl, change your working directory to the ~/tests/cpu directory.

7. Run the top command in the virtual machine. (Not in your SSH session,
but as user root. You will need your SSH session for other commands.)

8. As user rctl in your SSH session, run the ./dummy process binary in your
working directory. You should notice in the output of the top command
that the dummy process does not consume more than 50% CPU time.

9. SSH with a new session to the virtual machine as user rctl. Again, run
the dummy process binary. You should notice in the output of the top

command that the two processes do not consume more than 50% CPU
time altogether.

10. Terminate the two running dummy process binaries. As user root, run the
remove all limits.sh script to remove the previous pcpu rctl rule. Now,
run the add write limit.sh script to set the limit for the block IO band-
width in the write direction to the 1MB per second. Again, check with the
view all limits.sh script that only the last limit is set now. The output
should read: user:rctl:iow:deny=1048576.

It is important that the previous rctl rule responsible for limiting the CPU
usage of the user rctl is no longer active. Otherwise, the results of the
tests performing the block IO read and write operations and measuring the
overall bandwidth would be biased.

63

11. Now, you will need to run two scripts almost simultaneously. You should
now have two active SSH sessions as user rctl to your virtual machine.
In the first session, type this command (without typing the enter key to
submit the command): ./write test.sh 1. In the second session, prepare
this command: ./write test.sh 2. The write test.sh script is located
in the ~/tests/write directory. Now, type the enter key in both sessions
to submit the commands almost simultaneously. Wait until the commands
end. You should notice in the output of these commands that both of them
were processing about half of a megabyte per second. This adds up to our
1 megabyte limit.

12. As the root user, run the add read limit.sh script to set a bandwidth
limit for the block IO read operations to 1MB per second. Now, it is not
necessary to remove the previous rule for the write operations. If you run
the view all limits.sh command, you should see the following rule has
been set: user:rctl:ior:deny=1048576

13. Now, in your two SSH sessions, change your working directory to the
~/tests/read directory. In your first session, run the script read test 1.sh.
In the second session, run the read test 2.sh script. Again, these scripts
should be run almost simultaneously. You should notice in the output of
these scripts that they have been again processing about half of a megabyte
per second. This adds up to our 1MB limit.

64

	Introduction
	Linux Control Groups
	Introduction
	Cgroups hierarchies
	Cgroup resource subsystems
	Cgroup virtual file system
	Working with cgroups
	Using cgroups to set relative cpu time limits
	Using cgroups to limit disk I/O throughput

	The Linux kernel cgroups management
	Introduction
	Interconnecting Linux tasks with cgroups
	Iterating over tasks that are members of a specific cgroup
	Associating the css_set with tasks that reference it
	Iterating the cgroups that are indirectly linked to a css_set
	Iterating the css_sets that indirectly link a cgroup

	Creating a new cgroup
	Moving the task to a different cgroup

	The Linux CPU cgroup subsystem
	Introduction
	The Linux CFS scheduler
	Overview of the CFS scheduler
	Overview of the CFS data structures

	The cgroup extension to the CFS scheduler
	Enforcing the relative cpu limits using the cpu.shares tunable
	The load weight of tasks and cgroups
	Calculating the scheduling time-slice.

	The Linux blkio cgroup subsystem
	Introduction
	The Linux generic block layer
	The bio structure
	Interconnecting the bio structure with the blkio cgroup subsystem
	Ensuring the blkio cgroup limits
	The throtl_data structure
	Enqueuing the delayed bios.
	Dispatching the delayed bios.

	Analysis
	Introduction
	Specifying the CPU usage limits
	Hard versus soft CPU limits
	Specifying CPU limits on uniprocessor and multiprocessor architectures.
	Specifying the CPU limits for different entities.

	Implementing the CPU usage limits
	Implementing the CPU limits at the scheduler level
	Ensuring per-process CPU limits by manipulating the process scheduling priority
	Implementing the hard CPU usage limits by the stop-and-run technique
	Overview of the implementation approaches for imposing CPU usage limits

	Specifying the block IO bandwidth limits
	Implementing the block IO bandwidth limits
	The Leaky bucket algorithm
	The Token bucket algorithm

	Integrating the prototype implementation within the FreeBSD kernel

	Our prototype implementation
	Introduction
	The relative CPU limits
	Implementation requirements
	Integrating the tool within the FreeBSD kernel and especially the racct/rctl framework
	Calculating the CPU usage percentage
	Support for relative CPU limits specified per process groups
	Simple evaluation of our prototype implementation

	The block IO limits
	Implementation requirements
	Integrating the block IO limits within the FreeBSD kernel
	The token bucket algorithm
	Implementation details
	Evaluating the block device IO bandwidth limits

	Conclusion
	Bibliography
	Appendix A - Usage and examples
	Appendix B - Building the prototype implementation
	Appendix C - Benchmarks
	Appendix D - Attachments

