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Introduction

The subject of this thesis is a study of experimental measurements of jets
in ultra-relativistic heavy-ion collisions and the phenomenon of jet quenching.
Collisions of the heavy ions at these energies are expected to produce a dense
medium of extremely high temperatures in order of trillion kelvins, as predicted
from lattice quantum chromodynamics (QCD) calculations. This phase of matter
consists of deconfined quarks and gluons as degrees of freedom and it is, therefore,
accordingly called a quark-gluon plasma (QGP). QGP allows to test QCD in the
limit of extreme temperatures and densities. What is also important, it is believed
that the QGP existed at the very early stages of our universe. Therefore the study
of the properties of this phase may provide a critical insight into the dynamics of
this era.

Attempts to create and study the QGP have been previously made at CERN’s
(The European Organization for Nuclear Research) Super Proton Synchrotron
(SPS) in the 1980s and 1990s, later at the Relativistic Heavy Ion Collider (RHIC)
at the Brookhaven National Laboratory on Long Island (NY, USA) and most
recently in PbPb collisions at CERN’s Large Hadron Collider (LHC).

High transferred momentum interactions of quarks and gluons in colliding
beams are known to produce highly collimated clusters of hadrons and other
particles produced by hadronization referred to as jets. Jets have long been
thought to interact with the ambient plasma and, therefore, to serve as probes of
the QCD matter created in the collisions. The process by which a quark or gluon
loses energy in a medium of high color charge density is called jet quenching.

Of special interest are the “dijets” consisting of the two energetic jets. These
two jets are expected to have on average comparable energies and are also ex-
pected to be ejected in back-to-back geometry (i.e., having azimuthal difference
close to π). However, the strong interactions of quarks and gluons inside the
hot medium can significantly modify the dijet energy balance between the two
most energetic jets. It is therefore important to study these modifications of dijet
properties, since they can provide useful information about the properties of the
QCD medium formed in the collisions.

The analysis in this work was made using the data from heavy-ion collisions
at nucleon-nucleon center-of-mass energy 2.76 TeV, which were collected by the
ATLAS (A Toroidal LHC ApparatuS) detector in 2011.

This thesis is organized as follows: Chapter 1 provides the theoretical back-
round, introducing the main ideas of QGP and their consequences. These con-
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cepts are developed in order to motivate the use of heavy-ion collisions as an
experimental tool. Chapter 2 contains the descriptions of the experimental appa-
ratuses, the ATLAS detector and the LHC, which provided the measurement data
presented in this work. The results of the experimental analysis are presented in
Chapter 3 with the conclusions following in the last chapter.
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1 | Physical Background

1.1 The quark-gluon plasma

The quark-gluon plasma (QGP) is the main object of study in ultrarelativistic
heavy ion physics. It is an unexplored state of matter in which the relevant degrees
of freedom are not hadrons, but quarks and gluons. It is believed that the QGP is
a primordial form of matter, which existed in the very early stages of our universe,
for only few microseconds after the big bang [1].

1.1.1 General concepts of quantum chromodynamics

Quarks are one of the smallest known subdivisions of matter that have various
intrinsic properties, including electric charge, color charge, mass, spin and flavor.
They combine to form composite particles called hadrons, either baryons (con-
sisting of three quarks) or mesons (consisting of one quark and one antiquark).
The theory explaining the interactions among quarks is called the quantum chro-
modynamics (QCD).

Like in the quantum field theory describing the electromagnetism (EM), where
the carriers of the EM force (gauge bosons) are photons, the interactions of QCD
are realized by the exchanging of gluons, and the accompanying force is called the
strong nuclear force. Quarks and gluons are collectively called partons. Quarks
are the only known elementary particles in the standard model that engage in all
four fundamental forces of contemporary physics (electromagnetism, gravitation,
strong interaction, and weak interaction) [2].

One of the characteristic features of QCD is color confinement, often simply
called confinement. This phenomenon explains the fact that no color charged
particles (such as quarks or gluons) can ever be isolated and directly observed
in our laboratories, because they are confined by the strong interaction. We can
only observe particles carrying zero net color charge (e.g., baryons and mesons)
[3]. The strong force favors confinement because at a certain range it is more en-
ergetically favorable to create a quark-antiquark pair than to continue to increase
the distance between the quarks.

Another feature of QCD, closely related to that of confinement, is asymptotic
freedom. This phenomenon was discovered in 1973 by David Gross and Frank
Wilczek, and by David Politzer [4, 5]. It describes the behavior of quarks, which
interact strongly at large distances (or small transverse momenta) and weakly at
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small distances (or large transverse momenta). Under these conditions the QCD
interactions are thought to be weak at high temperatures and densities, which
can be achieved in heavy-ion collisions. Therefore, a new phase of matter called
quark-gluon plasma may occur.

1.1.2 The QCD phase diagram

Phase diagrams are often used when physicists want to summarize the proper-
ties of matter over a range of various physical quantities. The control parameters
in this case are temperature T and baryon chemical potential µB. The chemical
potential can be intuitively thought of as a measure of net baryon density of the
system [6]. In general, chemical potential describes the change of internal energy
due to the change of the composition of the system (in our case, the number of
baryons).

The phase diagram of quark matter is not very well known, both experimen-
tally and theoretically. Fig. 1.1 shows the contemporary view of the QCD phase
diagram. Each point on the diagram represents the state of thermodynamic equi-
librium, characterized by the coordinates in T×µB space. Phase coexistence lines
are illustrated as solid blue lines, crossover region by dashed line. Filled circles
represent critical points.

Figure 1.1: Schematic sketch of the QCD phase diagram showing the names of
the various phases. For guidance it also shows the typical values of µB and T in
heavy-ion collision experiments (LHC, RHIC) and in the early universe. Based
on [8].

Let us now begin at the point in the vacuum where T = µB = 0. As we move
along the horizontal axis the temperature and the density are zero up to the point
of µB ≈ 920 MeV where the density jumps to nuclear density. The process of
crossing the coexistence lines is believed to be the first-order phase transition.
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This process exhibits a discontinuity in the first derivative of the free energy with
respect to pressure and temperature. Along the vertical axis, in the direction of
increasing temperature, we go through the crossover region from hadron gas to
the QGP. This is the area explored by ultrarelativistic heavy-ion colliders [7].

1.1.3 Heavy-ion collisions

The QGP can exist only in extreme conditions of very high energy densi-
ties and temperatures. In order to recreate matter at these conditions in the
terrestrial laboratory, one collides heavy nuclei (heavy ions) at ultrarelativistic
energies. Previous attempts to study the properties of the QGP created in heavy-
ion collisions have been made at the Brookhaven National Laboratory on Long
Island (NY, USA) at the Relativistic Heavy Ion Collider (RHIC), which was the
world’s highest energy accelerator of heavy ions before the launch of the Large
Hadron Collider (LHC) in 2008 [9]. Further details about the LHC machine will
be discussed in Chapter 2.

In center-of-mass frame, as they fly towards each other, the colliding nuclei
appear as two Lorenz-contracted discs. It is expected that during the collision,
the nuclei deposit a large amount of energy into a very small volume in the
collision region. As estimated by Bjorken [10], the energy density can be so high
that these reactions might provide the conditions for the creation of the QGP.

The most frequent events at low energy nuclear physics (
√
sNN ≈ 1 MeV)

are elastic collisions and low energy inelastic collisions. In both cases the final
multiplicity (the number of particles after the reaction) is quite small. However,
the multiplicities in (ultra)relativistic heavy-ion collisions1 are very large. The
number of produced particles may exceed 1000, which is much more than the
number of initial nucleons [11].

This leads to special experimental requirements. For example the track recog-
nition problem becomes very difficult at large multiplicities. It is also advanta-
geous if we can detect all of the created particles in an event. Because of this,
it is desired for the detector to cover full 2π in azimuth. As we will see, these
conditions are partially fulfilled by the ATLAS detector at LHC (see Sec. 2.2).

Moreover, the energy frontier achieved at LHC provides us with the tool to
study the interactions inside this medium. This tool is known as jet quenching.

1.2 Jets as the QGP probes

Let us first consider a collision of simple “QCD systems”, for example two pro-
tons2. During a large-momentum-transfer scattering processes in high-energy col-
lisions, as the original quarks inside the protons separate, the energy of the strong

1The energy region of ultrarelativistic heavy ion reactions starts at around 10 GeV center-
of-mass energy.

2We call these systems simple because, as opposed to the much more complex systems
encountered in heavy-ion collisions, only few of the partons interact.
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nuclear field between them increases up to the point when there is enough energy
to create a new quark-antiquark pairs [12]. Due to postulated confinement, the
quarks escaping from the collision cannot exist individually. Instead, free quarks
created in collision combine with quarks and antiquarks created spontaneously
from the vacuum to form hadrons [13]. This process is called hadronization and
leaves us with two sets of hadrons travelling in the opposite directions. They
are usually collimated in two cones around the direction of the two original par-
tons and we refer to them as jets. Schematic picture of the jet production in
proton-proton (pp) and lead-lead (PbPb) collision is shown in Fig. 1.2.

Since we cannot measure the original parton, jet has to be defined by a jet
finding algorithm. It is a set of rules that postulate how to cluster the products
of the hadronization into an object whose kinematics is as close as possible to the
kinematics of the original parton.

Figure 1.2: Sketch of a hard scattering, showing the jet production in proton-
proton (left) and lead-lead (right) collisions. The colliding nuclei in the right
picture are displayed as thin discs due to the Lorenz contraction. Note that the
jets created in heavy-ion collision are modified due to the interactions of quarks
with the QGP. Ref. [14].

One of the main differences between proton-proton collisions and heavy-ion
collisions is the presence of the QGP in the latter. In these conditions the
products of the potential scattering processes interact heavily with the ambient
plasma, experiencing collisional and radiative energy loss, via scattering and gluon
bremsstrahlung (“gluonstrahlung”), respectively [15, 16]. It is expected that the
radiative energy loss dominates over collisional energy loss. The amount of energy
loss is predicted to be proportional to the energy density of the medium. Hence
jets, which have lost significant amount of energy while propagating through the
medium, can be used as probes of the medium, providing information about its
structure and properties [16]. In this way jets play a distinct role in ultrarela-
tivistic heavy-ion physics.

Bjorken was the first one who recognized the potential of jets as a tool to study
the QGP. He suggested that high energy quarks and gluons suffer differential
energy loss while propagating through the plasma [10]. He also pointed out the
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extreme case when the hard collision occurs at the periphery of the hot medium
resulting in one jet being almost unquenched, and the other jet being totally
absorbed. An example of such an asymmetric event measured by the ATLAS
experiment is illustrated in Fig. 1.3.

On the left, a view along the beam axis is pictured with high-pT charged
particle tracks indicated by the lines and energy responses in calorimeters by
colored bars. The middle figure shows the ET distribution in η×φ space. On the
right a similar distribution is shown for the charged particle tracks in the Inner
Detector. It is consistent with the calorimeter signal3.

Jet quenching, or high-pT parton suppression, has already been observed in
the collisions of golden nuclei at RHIC [17], but the LHC heavy-ion program
allows us to study this phenomenon at much higher energies than previously
achieved at RHIC and, therefore, to use fully reconstructed jets [18].

Figure 1.3: Event display of a highly asymmetric dijet event, recorded by ATLAS
during the early portion of the 2010 PbPb run, with one highly energetic jet and
no visible recoiling jet. Ref. [18].

3Mentioned physical quantities and experimental apparatus are further discussed in sec-
tion 2.2
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2 | Experimental Setup

2.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is a particle accelerator and collider located
at CERN outside Geneva, Switzerland. It was primarily constructed to collide
protons, however, the machine is also capable of colliding heavy ions. The first
lead ion collisions took place in November 2010.

The LHC machine1 is installed in the tunnel which was originally constructed
for LEP (Large Electron–Positron Collider). The tunnel itself has 26.7 km in
diameter and contains eight arcs and eight straight sections. It lies between 45 m
and 170 m under the ground on the borders of Switzerland and France. By
contrast to the particle-antiparticle colliders, the LHC accelerator is designed to
collide particles with the same charge sign. For this reason it has two parallel
rings with counter-rotating beams. Figure 2.1 shows the location of the LHC
tunnel, and the location of the four large experiments around its ring.

Figure 2.1: Overall view of the LHC and its 4 main experiments. Ref. [21].

1If not stated otherwise, all information about the LHC were taken from the LHC design
paper [19].
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As previously mentioned, the LHC main physics program is based on proton-
proton (pp) collisions. However, typically one month per year, runs with heavy-
ion (208Pb82+) collisions are included. The LHC injector chain for Pb ions is
almost identical to the one for protons. The ions go from source through a series
of linear and circular accelerators before entering the LHC. The first of them is a
linear accelerator Linac 3, after that the ions go through three circular accelera-
tors, namely the Low Energy Ion Ring (LEIR), the Proton Synchrotron (PS) and
the Super Proton Synchrotron (SPS). This sequence is also schematically shown
in Fig. 2.2.

Figure 2.2: Scheme of the LHC ion injection chain with corresponding output
energies per nucleus taken from [20].

The Pb27+ ions extracted from source need to be fully stripped from electrons
before entering the LHC. This is assured by two aluminium foil strippers. The
first one is located in Linac3 and provides the conversion to Pb54+. The second
stripping occurs in the line between PS and SPS. After extraction from PS the
Pb beam is fully stripped by a 0.8 mm aluminium foil [20].

2.2 The ATLAS Experiment

ATLAS2 (A Toroidal LHC ApparatuS) is one of the seven particle detectors
at the LHC and together with the CMS (Compact Muon Solenoid) one of two
general purpose detectors. It is built at interaction point 1 (IP1) of the LHC
ring and is capable of studying both pp and PbPb collisions at unprecedented
luminosity. Its massive dimensions are 44 m in length, 25 m in height and it
weighs about 7000 tons. The illustration on Fig. 2.3 provides overall cut-away
view of the ATLAS detector.

2If not stated otherwise, all information about the ATLAS detector were taken from [22].
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Following sections are devoted to the more detailed description of this exper-
iment. In Section 2.2.1 we will define several concepts and physical quantities
which are often used in accelerator physics. This Section also defines the coor-
dinate system generally used in the ATLAS experiment. The Section 2.2.2 then
describes various parts and sub-detectors of ATLAS.

Figure 2.3: Cut-away view of the ATLAS detector highlighting various parts of
the experiment [23].

2.2.1 The ATLAS coordinate system and related concepts

The origin of the ATLAS coordinate system is located in the nominal inter-
action point. The z-axis is defined by the beam direction while the x-y plane
is perpendicular to the beam direction. The positive x-axis points towards the
center of the LHC tunnel and the positive y-axis is defined as pointing upwards.
The orientation of the z-axis therefore follows from the right-handedness of the
coordinate system.

The azimuthal angle φ is measured as the angle in the x-y plane. The φ = 0

corresponds to the positive x-axis and increases clock-wise looking in the positive
z direction. The polar angle ϑ is measured as the angle from the positive z-axis.
By definition, ϑ is 0 or π along the beam axis and π/2 on the transverse plane.

Considering a particle with momentum vector p = (px, py, pz) and energy E
experimental particle physicists often use rapidity y as an alternative to speed as
a measure of motion. It is defined as [24]:

y =
1

2
ln

(
E + pz
E − pz

)
. (2.1)
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Rapidity is not Lorentz-invariant, it is, however, additive under the boosts along
the z-axis. For p � m or, equivalently, m/p → 0 the Eq. (2.1) can be expanded
and simplified to obtain the definition of pseudorapidity :

η = − ln

(
tan

(
ϑ

2

))
. (2.2)

This quantity gives us only geometric information about the direction of the par-
ticle and does not require the knowledge of mass of the particle. Unlike rapidity,
pseudorapidity is not additive under longitudinal boosts.

We define the transverse momentum pT as the projection of the momentum
vector on the x-y plane:

pT = |p| sinϑ =
√
p2x + p2y. (2.3)

The transverse energy of a particle is defined as its energy in the rest frame where
its pz = 0. We can write3 [25]:

ET = E sinϑ =
√
m2 + p2T, (2.4)

where m is the rest (invariant) mass of the particle.
Azimuthal angle φ, pseudorapidity η, ET and pT are four quantities that can

fully characterize the particle. We can therefore say that ET and pT are measured
in η × φ space.

A total energy accessible in the collision is quantified by the center-of-mass
energy, which can be expressed in the Lorentz invariant form4 [24]:

√
s =

√
(p1 + p2)2 =

√
(E1 + E2)2 − (p1 + p2)2, (2.5)

where p1 and p2 are the four-momenta of the incoming particles.
In heavy-ion collisions, it is common to use the energy per nucleon-nucleon

pair
√
sNN. Typical values of

√
sNN for AuAu collisions at RHIC have been

130 GeV [26] and 200 GeV [17]. The LHC currently operates at 2.76 TeV per-
nucleon center-of-mass energy and it is planned to reach

√
sNN = 5.5 TeV, which

corresponds to designed 7 TeV for protons.
An important factor in a collider run is the luminosity. The beams in today’s

colliders consist of bunches of ions. If two bunches containing n1 and n2 particles
collide head-on with frequency f , the instantaneous luminosity, L , of a beam
can be expressed as:

L = f
n1n2

4πσxσy
, (2.6)

where σx and σy characterize the transverse beam profiles in the horizontal and
3Using the convention where c = 1.
4This formula takes into consideration the collision of two particles with the energies E1 and

E2 and momenta vectors p1 and p2. The square of the momenta therefore plays the role of the
dot product.
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vertical directions. It is assumed that the transverse profiles of the colliding
bunches are identical and that the profiles are independent of position along the
bunch.

The integral over time of the instantaneous luminosity is the integrated lumi-
nosity. It is used to calculate the number of events N with cross section σ:

N = σ

∫
L (t)dt. (2.7)

Luminosity is clasically stated in units of cm−2s−1. Integrated luminosity, on
the other hand, is usually quoted as the inverse of the standard measures of cross
section, such as barns [24].

This thesis focuses on the phenomenon of jet quenching. It is therefore useful
to define two more quantities regarding jets. One of them is the jet axis which
characterizes the jet position in η×φ phase space and gives us information about
the direction of the parton from which the jet originates. It can be defined e.g.,
as a transverse energy weighted position of constituents of jets:

φjet =

∑
i∈jet

ET,iφi∑
i∈jet

ET,i

, ηjet =

∑
i∈jet

ET,iηi∑
i∈jet

ET,i

, (2.8)

where ηi, φi and ET,i are the position in η × φ space and transverse energy of
constituents of jets. Constituents of jets are particles or calorimeter cells that
are assigned to a jet by the jet finding algorithm mentioned in Section 1.2. Each
jet finding algorithm has a distance parameter, or radius, R, which is the area in
η × φ space that is covered by a jet.

2.2.2 The sub-detectors

The ATLAS detector is forward-backward symmetric with respect to the in-
teraction point and covers almost the full 2π in azimuth. It consists of four main
subdetector systems [23].

• The Inner Detector (ID): This is the innermost sub-detector beginning
only 50 millimeters from the beam axis. It has a cylindrical shape with
a length of 7 m and the outer radius of 1.15 m. These dimensions cover
a pseudorapidity region of |η| < 2.5. Its main purpose is the tracking of
the charged particles and measuring their momentum. It is also capable of
reconstructing the primary interaction vertex and particle decay vertices.
Fig. 2.4 contains the illustration of this sub-detector.

The ID is immersed in the solenoidal magnetic field of 2 T which curves
the tracks of charged particles allowing the momentum measurements. The
detector is composed of three independent sub-detectors. These are (in or-
der of increasing radius): silicon pixel detector, a silicon microstrip detector
(SCT) and, finally, a straw tube transition radiation tracker (TRT).
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Figure 2.4: Overall view of the Inner Detector [23].

• The Calorimeter System: The ATLAS calorimeters are designed to stop
the particles through the electromagnetic and strong interactions. This sys-
tem is composed of electromagnetic (EM) and hadronic calorimeters, each
using a different technology to measure the energy of particles. Liquid ar-
gon technology (LAr) is used by the EM calorimeters (and some hadronic
calorimeters) and scintillation tiles by the hadronic ones. The fine segmen-
tation of both types of calorimeters is well-suited for measuring jets [18].

When the particle strikes an absorber (thick metal layer) it initiates EM
and/or hadronic showers. The energy of the incident particle is spread
among the lower energy particles in the cascade. Behind the absorber is
placed an active material which collects some of the energy of these particles,
either through ionization (LAr) or scintillation (tiles). Alternating layers
of absorber and active material are placed in succession and the shower-
sampling is repeated. As a consequence, the energy of the particle can be
determined.

In order to limit punch-through of the particles into the muon system the
thickness of the calorimeters is an important parameter. Moreover, the
absorbing material is chosen to be dense in order to absorb the particles.
Figure 2.5 highlights various parts of the ATLAS calorimetric system. The
EM calorimeter covers the pseudorapidity range of |η| < 3.2. The hadronic
calorimetry which uses the steel and scintillating tiles covers the range of
|η| < 1.7. LAr technology is also used in hadronic end-cap calorimeters
covering the range of 1.5 < |η| < 3.2. Finally, the LAr forward calorimeters
(FCal) extend the pseudorapidity coverage up to |η| = 4.9. As we will see in
section 3.2.1 the FCal system plays a special role in the ATLAS heavy-ion
analyses.
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Figure 2.5: Cut-away view of the ATLAS calorimeters [23].

• The Muon Spectrometer: Figure 2.6 shows the layout of the muon
spectrometer. This system is located on the outermost part of the detec-

Figure 2.6: Layout of the muon spectrometer [23].

tor (see Fig. 2.3) because the muons with sufficient energy are the only
detectable particles that can pass the calorimetric system without being
stopped. It consists of monitored drift tubes (MDTs) for precision track-
ing in the spectrometer, Resistive Plate Chambers (RPCs) and Thin Gap
Chambers (TGCs) for triggering in barrel and endcap, respectively, and
Cathode Strip Chambers (CSCs) for detailed measurements in the high-
rate endcap inner layer where MDTs would have occupancy problems. Like
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in the ID the momenta of muons are measured using a magnetic field pro-
vided by the magnets described in the following paragraph.

• The Magnet System: The main purpose of this system is, as previ-
ously mentioned, bending the tracks of the charged particles for precise
momentum measurements. It consists of the magnets used in the ID and
the muon spectrometer. The system of magnets for the latter consists of
large barrel toroid for |η| < 1.4, two smaller end-cap magnets for the range
1.6 < |η| < 2.7 and by the combination of the two in the transit region
(1.4 < |η| < 1.6).
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3 | Experimental Analysis

3.1 Definition and general behavior of the
missing pT

The law of conservation of momentum dictates that the total sum of transverse
momenta vectors pT of all the particles created in the collision should be zero1:

pT =
N∑
i=0

pT,i = 0, (3.1)

where i is the integer labeling the particle and N is the total number of particles
produced in the collision (i.e., the multiplicity of the collision). In other words, the
pT vector calculated by adding the pT,i vectors of individual particles produced
in an event should be a zero vector.

This fact is, however, almost never observed in real experiments. We can,
therefore, talk about a missing transverse momentum vector �pT. This observable
is of high importance when studying the phenomenon of jet quenching. It is
usually calculated by adding the momenta vectors of all reconstructed ID tracks
present in an event vectorially and multiplying this by −1, as defined in the
following equation:

�pT ≡ −
N∑
i=0

pT,i = −pT. (3.2)

A nonzero �pT in an event usually has contributions from many sources. The
primary source of missing pT are neutrinos, which are produced in weak inter-
actions and which escape from typical collider detectors without producing any
direct response in the detector elements. The presence of such particles must
be deduced from the overall imbalance of the total momentum [27]. Another
contributions to �pT include measurement resolution, instrumental defects in the
detector system and reconstruction inefficiencies. Apart from the undetected
particles, these contributions are considered unwanted, because they distort the
measurements.

1The summation sign here denotes the vector sum.
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3.1.1 Toy Monte Carlo

Before we started the analysis of the real data taken by ATLAS a simple
Monte Carlo (MC) simulation has been performed. The main purpose of this
simulation was to define �pT and to study the main properties of this quantity
under idealized conditions. Moreover, it served as a simple learning tool, which
introduced the author of this work into the world of particle physics data analysis
using the ROOT framework [28].

This MC was based on random number generation. It created a set of NC vir-
tual collisions, each with a different number of particles. The amount of particles
in each collision was uniformly distributed from Np,min to Np,max. Every particle
in an event was assigned a value of pT,i

2 and an azimuthal angle φi. The values
of φi were uniformly distributed over the interval [−π, π] and the number of par-
ticles N carrying the transverse momentum pT, N(pT), followed the exponential
distribution:

N(pT) = ae−b·pT ,

where a and b are free parameters chosen to be 1 and 5, respectively. Note that
the behavior of quantities discussed further (especially of �pT) does not depend on
the choice of these parameters.

From the value of pT,i and corresponding angle φi we calculated the x and
y components of the transverse momentum of a given particle i using simple
formulae:

pxT,i = pT,i · cosφi, (3.3)
pyT,i = pT,i · sinφi. (3.4)

For every event the values of pxT and pyT of every particle were summed to obtain
the final vector pT. The magnitude of this vector reads as:

pT =

√√√√(∑
i

pxT,i

)2

+

(∑
i

pyT,i

)2

. (3.5)

The vector �pT is, according to the Eq. (3.2), just the vector of pT with the minus
sign. Thus they both have equal magnitude.

The individual x and y components of �pT can, therefore, be calculated as:

�p
x
T = −

∑
i

pxT,i, (3.6)

�p
y
T = −

∑
i

pyT,i. (3.7)

These are the quantities we will thoroughly discuss throughout the rest of the
text.

2If the sign for the vectorial quantity is not in boldface it denotes the magnitude of the
vector.
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The values of parameters used in this simulation were: NC = 100, 000; Np,min =

10 and Np,max = 6, 000. Each event was assigned to one of six bins according to
the number of particles in the event, that is, according to the “activity” of the
collision. In real collisions the activity of the event reflects the centrality of the
collision, which is a crucial quantity in the heavy-ion physics and which is further
discussed in Sec. 3.2.1.

The distribution of �pT for each of these bins is displayed in Fig. 3.1. This plot
does not have an associated unit for the �pT, because we are only interested in the
qualitative behavior of the distribution. Histograms are normalized according to
the number of entries in each activity bin3.
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Figure 3.1: Probability distribution of �pT for six activity bins in MC simulation.

Let us now introduce one more quantity regarding �pT, the missing pT signif-
icance �p

sign
T , which shall help us to understand the behavior of missing pT. It is

defined for each collision as �pT divided by the square root of the total transverse
momentum of all the particles in that collision:

�p
sign
T = �pT√∑

i

pT,i

. (3.8)

In an idealized case of our MC simulation, the distribution of �p
sign
T should be the

same for each centrality bin (as explained later). This is really the case, as shown
in Fig. 3.2. The reason for this will be explained further.

Looking at the Figures 3.1 and 3.2, one could wonder about the origin of the

�pT. Remember that this is just a very simple MC simulation, without any im-
3Note that the rest of the histograms in this work shall be normalized in the same way.
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Figure 3.2: Probability distribution of �p
sign
T for six activity bins in MC simulation.

plemented mechanism, which would generate the missing transverse momentum
of the simulated collisions. As it turns out, this �pT stems from finite statistics of
particles we are dealing with.

In order to understand this, imagine the transverse plane of the detector as a
circle. Let us now generate Np particles with uniformly distributed φ and divide
the transverse plane in two halves, each spanning π in azimuth (for example, the
upper half of the detector φ ∈ (0, π) and the bottom half φ ∈ (π, 2π)). Say that
the number of particles with azimuthal angle belonging to the upper half of the
detector is N , and number of the remaining particles (those hitting the bottom
half) is M (obviously, M +N = Np).

The overall �pT can be approximated using the mean particle transverse mo-
mentum 〈pT〉:

�pT ≈ 〈pT〉M − 〈pT〉N = 〈pT〉(M −N). (3.9)

The uncertainty of this quantity can be evaluated as the error of the indirect
measurement:

(δ�pT)2 =

(
∂�pT
∂M

)2

(δM)2 +

(
∂�pT
∂N

)2

(δN)2 = 〈pT〉2(M +N), (3.10)

where δM and δN are the uncertainties of M and N , respectively. The last
equality follows from the fact that the standard deviation of the Poisson process
is the square root of the number of entries.

One can see that the error of the measurement of missing pT is proportional
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to the square root of pT sum:

〈pT〉
√
M +N ∼

√∑
i

pT,i. (3.11)

Hence, the significance of the missing pT is, according to the Equations (3.8)
and (3.11), missing pT scaled by its error, which is the reason why we see the
scaling in Fig. 3.2 and which also confirms the explanation of the origin of the
missing pT in our toy MC: �pT stems from finite statistics of particles we are
dealing with.

For the purpose of this Monte Carlo simulation the collision centrality was
defined according to the number of produced particles, because we had no other
way to comprehend the activity of an event. The experimental particle physics
however, offers us numerous tools to measure this quantity. In the following
section, the rigorous definition of the collision centrality will be given, as well as
the method of its determination.

3.2 Minimum Bias data analysis

In this thesis, two data samples have been analyzed. One of them is minimum
bias event sample, which will be discussed in this section. This bulk of the
data was selected using the Minimum Bias Trigger Scintillator (MBTS) detectors.
These detectors are positioned 3.6 m from the nominal interaction point and
provide the full coverage of the azimuthal angle φ in the region of pseudorapidity
2.09 < |η| < 3.84. They are divided into eight φ and two η sectors, allowing for
16 possible hits per detector side [29]. In addition to this data sample, a jet data
sample was used and will be thoroughly analyzed in Section 3.3.

In order to select a pure data sample of inelastic hadronic collisions, several
offline selections had to be applied to the triggered event sample. Minimum bias
events are required to have at least one existing reconstructed primary vertex
(derived from the reconstructed tracks in the ID). Additionally, the time difference
between the two MBTS detectors is chosen to be less than 7 ns to efficiently reject
beam-halo events. Furthermore, to veto beam-gas events (when an accelerated
heavy-ion strikes a residual gas molecule), a coincidence of signals at MBTS and
Zero Degree calorimeter was required.

The total integrated luminosity corresponding to this data sample is approx-
imately 0.7 µb−1.

3.2.1 Centrality definition and determination

Since the colliding nuclei are extended objects with non-zero volume, the size
of the interacting region depends on the impact parameter b of the collision. This
physical quantity is defined as the distance between the centers of the colliding
nuclei in a transverse plane (see Fig. 3.3). Because it is impossible to directly
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measure the value of b [30], physicists introduced the concept of the centrality of
the collision, which is directly related to the impact parameter of the collision.

Figure 3.3: Left: the two heavy ions before the collision with the impact param-
eter b. Right: the spectators remain unaffected while in the participant zone,
particle production takes place. Picture adapted from [31].

The collision centrality can be intuitively thought of as the degree of overlap
of the two colliding nuclei. It is one of the most important factors in heavy-ion
physics, because the system produced in the most overlapping heavy-ion collisions
is expected to create the best conditions necessary for QGP production. In other
words, closer the collision is to “head-on” (we say the collision is more “central”),
the more likely plasma production will be. On the other hand, more “peripheral”
collisions are less likely to create ideal conditions for the plasma production [30].

The geometrical Glauber model of multiple collisions [32] treats a nuclear
collision as a superposition of binary nucleon-nucleon interactions. The variables
used to quantify the collision centrality in this model include the number of
participant nucleons Npart (that is the number of nucleons that undergo at least
one collision) and the number of all nucleon-nucleon collisions Ncoll. Assuming
that nucleons follow straight trajectories we can calculate these quantities for
a given value of the impact parameter. While these geometrical quantities are,
together with the impact parameter, unobservable, previous studies at RHIC and
SPS have shown that the multiplicity and total transverse energy ET are strongly
correlated with Npart. Multiplicity or total ET are, therefore, used to quantify
the centrality in an experiment.

In ATLAS, the PbPb collision centrality is characterized using the summed
transverse energy (

∑
ET) deposited in the forward calorimeters (FCal). The min-

imum bias FCal
∑
ET distribution of the data analyzed in this work is illustrated

on Fig. 3.4. The FCal
∑
ET is used for this analysis to avoid biasing the central-

ity measurements by jets, which are produced with the highest probability in the
barrel region [18].

It is appropriate to mention that the FCal
∑
ET shown in Fig. 3.4 is not

precisely equal to the transverse energy deposited in forward calorimeters. It is
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Figure 3.4: Probability distribution of
∑
ET in the forward calorimeters for min-

imum bias data. The four regions of centrality are indicated by dashed lines and
labeled according to increasing fraction of lead-lead total cross section.

slightly modified by applying a necessary calibration factor4 [33]:

FCal
∑

ET (corrected) = 1.041 · FCal
∑

ET (real). (3.12)

The shape of the energy distribution (Fig. 3.4) can be explained very intu-
itively. The more frequent peripheral collisions with large impact parameter pro-
duce only few particles, which generate only a small response in FCal (the left end
of the distribution), while the rare central collisions with small impact parameter
generate many more particles because of the increased number of nucleon-nucleon
interactions (the right end of the distribution).

For the purpose of this analysis, the fine-grained bins on Fig. 3.4 were com-
bined into 10 larger bins, which are defined according to fractions of the to-
tal PbPb cross section in minimum bias events. These bins are expressed in
terms of percentiles. By convention, the (0− 10)% bin represents the 10% most
central events (highest values of FCal

∑
ET) and increasing percentiles refer to

events with successively lower FCal
∑
ET. The Table 3.1 contains values of FCal∑

ET, which determine different centrality bins, together with the mean values
〈FCal

∑
ET〉 [33].

Figure 3.5 confirms the assumption that various centrality bins contain, by
definition, the same amount of minimum bias events.

4Note that in this text, every time we refer to the FCal
∑

ET, we mean the corrected value.
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Centrality FCal
∑
ET range [TeV] 〈FCal

∑
ET〉 [TeV]

(0− 10)% > 2.423 2.903
(10− 20)% 2.423− 1.661 2.033
(20− 30)% 1.661− 1.116 1.363
(30− 40)% 1.116− 0.716 0.885
(40− 50)% 0.716− 0.430 0.545
(50− 60)% 0.430− 0.239 0.308
(60− 70)% 0.239− 0.119 0.160
(70− 80)% 0.119− 0.053 0.077
(80− 90)% 0.053− 0.019 0.032
(90− 100)% < 0.019 -

Table 3.1: Values of FCal
∑
ET and 〈FCal

∑
ET〉 for the centrality bins used in

this analysis.
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Figure 3.5: Distribution of the fraction of events in 10 centrality bins. The
centrality-bin labels run from 0% (most central events) to 100% (most peripheral
events).
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3.2.2 Corrections for the components of ��pT

To investigate the basic behavior of �pT, similar analysis to the one presented in
Section 3.1.1 has been made on minimum bias data. The distributions of �pT and

�p
sign
T for centrality bins defined in the previous section are shown in Figures 3.6

and 3.7. The (90−100)% centrality bin is omitted, because it comprises only the
most peripheral collisions, which are not of much interest.
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Figure 3.6: Probability distribution of �pT for nine centrality bins.

As we can observe, the qualitative behavior of the missing transverse momen-
tum is almost identical to the one in Fig. 3.1. However, in comparison to the
Fig. 3.2, probability distributions of �p

sign
T for individual centrality bins are not

equivalent. This is caused by the malfunctioning regions in ID, which distort the
missing pT, as will be shown in the following text.

As already mentioned, some of the missing pT may be generated due to the
presence of faults in ATLAS ID system. We shall demonstrate this effect on a
simple example. For the sake of simplicity, let us consider the extreme case where
one half of the Inner Detector is completely dysfunctional, for example all of the
detectors in the range of φ ∈ (0, π) (that is, the upper half of the detector).
If we were now to measure transverse momenta of a huge amount of particles,
the overall �pT would be pointing upwards (towards the faulty parts of the Inner
Detector), because no particles have been detected in the range φ ∈ (0, π).

It is therefore useful to create the “map” of the detector, which would display
the faulty spots in the tracking system. It can be done by plotting the density of
tracks in two dimensional η × φ space. This is illustrated on Fig. 3.8.

The natural segmentation in pseudorapidity η does not concern us, since this
quantity does not appear in equations mentioned in Section 3.1. The inhomo-
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Figure 3.7: Probability distribution of �p
sign
T for nine centrality bins.
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geneity in φ, however, has a huge impact on this analysis, because it distorts the
calculations of pxT,i and p

y
T,i, which are used in Eq. (3.5).

The consequences can be observed in Figures 3.9 and 3.10, where the means
of the distributions of x and y components of �pT are strongly shifted and cen-
trality dependent, while in reality these distributions should be zero-centered. To
restore expected centering at zero of these distributions, some corrections for the
components of �pT have to be applied. If we were, for example, able to find the
relationships between the means of these distributions and overall FCal

∑
ET, we

could use them to compensate for the distortions caused by faulty parts of the
ID system.

Note that like in the following figures, also in the rest of this work the analyses
shall be done for four individual pT ranges: (0.5 −∞) GeV/c, (0.5 − 2) GeV/c,
(2− 4) GeV/c, (4−∞) GeV/c.
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Figure 3.9: Probability distributions of the x component of �pT for four individual
pT bins.

In order to find these relationships, graphs displaying the means of distribu-
tions of x (〈�pxT〉) and y (〈�pxT〉) components of the overall missing transverse mo-
mentum vector as a function of mean FCal

∑
ET (〈FCal

∑
ET〉 (see Table 3.1)

have been made. These were fitted using a second order polynomial of the form:

〈�p
(x,y)
T 〉

(
〈FCal

∑
ET〉

)
= a ·

(
〈FCal

∑
ET〉

)2
+ b · 〈FCal

∑
ET〉+ c, (3.13)
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Figure 3.10: Probability distributions of the y component of �pT for four individual
pT bins.

where a,b and c are parameters of the regression5.
Graphs, along with the fitted functions, are shown in Figures 3.11 and 3.12.

The values of the parameters of regressions, estimated in ROOT using the method
of least squares, are summarized in Table 3.2.

�p
x
T �p

y
T

pT range [GeV/c] a b a b

0.5 < pT 0.69± 0.01 −18 0.6 6.6
0.5 < pT < 2 0.27± 0.01 −15 0.58± 0.01 5.6
2 < pT < 4 −0.086± 0.003 −2 0.033± 0.003 0.89± 0.01

4 < pT 0.031± 0.001 −0.25 −0.015± 0.001 0.12

Table 3.2: Values of the regression parameters computed in ROOT software. If
the values of the parameter and associated error differ by more than two orders
of magnitude, the error is not mentioned.

We are now able to use these relations to apply the corrections for the x and
y components of missing pT such that the means of their distributions will be
zero. This can be done by simply taking �p

x
T and �p

y
T, and subtracting the value

5Note that the value of c was set to zero, since we require the polynomials to go through
the origin.
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Figure 3.11: The centrality dependence of the average missing transverse momen-
tum in the x direction for four individual pT ranges.
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Figure 3.12: The centrality dependence of the average missing transverse momen-
tum in the y direction for four individual pT ranges.

29



of a corresponding polynomial. For example, let us consider an event, which left
a response in FCal with the magnitude of FCal

∑
ET. Particles detected by the

tracking system are divided into four bins according to their pT. For every one of
these bins we calculate the �p

x
T and �p

y
T. If we now want to calculate the corrected

values of these components �p
x,corr
T and �p

y,corr
T , we have to subtract the value of the

appropriate polynomial (belonging to the desired component of �pT and desired
pT range) at point FCal

∑
ET. In mathematical notation:

�p
(x,y),corr
T = �p

(x,y)
T −

(
a ·
(

FCal
∑

ET

)2

+ b · FCal
∑

ET

)
, (3.14)

where a and b are the values of the parameters taken from Table 3.2.
The means of the probability distributions of the corrected values of �p

x,corr
T

and �p
y,corr
T are now really located at �p

(x,y)
T = 0 GeV, as clearly seen in Fig. 3.13

and 3.14. In the rest of this work the notation �p
x
T and �p

y
T stands for the corrected

values �p
x,corr
T and �p

y,corr
T , respectively.
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Figure 3.13: Probability distributions of the corrected x component of �pT for four
individual pT ranges.
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Figure 3.14: Probability distributions of the corrected y component of �pT for four
individual pT ranges.

3.3 Jet data sample

For the purpose of jet analysis, the equally sized centrality bins from previous
section were combined into five bins corresponding to the 10% of the most central
events (i.e., the most head-on collisions), the next 10% of the events (labeled
(10− 20)%), and further bins corresponding to the (20− 40)%, (40− 60)% and
(60− 100)% selections of the total hadronic cross section.

Jets have been reconstructed using the anti-kt jet clustering algorithm [34]
with the radius parameter R = 0.4. It is the standard jet algorithm used by
both ATLAS [18], and CMS [35]. The transverse energy of the jet is equal to
the sum of the transverse energies deposited in calorimeters belonging to the
reconstructed jet cone. The average contribution from the underlying event to
the jet was subtracted. In order to get results as accurate as possible, efficiency
of the ID to reconstruct charge particles had to be taken into account.

The jet data sample corresponds to the total integrated luminosity of approx-
imately 140 µb−1.

3.3.1 Event selection

Starting from inelastic hadron collisions based on the selections described in
Section 3.2, the basic condition for offline selection of events for the jet analysis
is the presence of two jets in the pseudorapidity range of |η| < 2.1 (to capture
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all particles within a jet cone), where the transverse energy of the first (also
called leading) jet is required to be ET1 > 100 GeV, and the second (subleading)
jet is the highest ET jet in the opposite hemisphere with ET2 > 25 GeV. In
this work, jets are labeled as being in opposite hemispheres if their azimuthal
angle separation is ∆φ = |φ1 − φ2| > π/2. This requirement is used to reduce
contributions from multi-jet final states. These settings were adapted from the
paper [18].

By selecting leading jets with a rather large transverse energies we ensure high
reconstruction efficiency and avoid possible biases caused by inefficiencies close
to the trigger threshold. The requirement for the subleading jet assures that this
jet is reliably detected above the underlying event.

It is important to characterize the dijet energy balance (or imbalance) with a
single quantity. To do so, the jet assymetry ratio, AJ , is introduced:

AJ =
ET1 − ET2

ET1 + ET2

, (3.15)

where the subscripts 1 and 2 refer to the leading jet and subleading jet, re-
spectively. This construction ensures that AJ is always positive and removes
uncertainties caused by possible constant shifts of the jet energy scale. Regular
dijet events are expected to have the AJ distribution dominated by the contribu-
tion at zero. The deviations from zero are caused by a combination of intrinsic
properties of dijets and the jet energy resolution. Energy loss caused by the prop-
agation through the dense medium is expected to produce strong deviations in
the reconstructed energy balance. This was indeed observed in [18, 35].

It is important to note that the ET2 threshold of 25 GeV constrains the
ET1-dependent limit on the magnitude of AJ . For the most common leading
jets with energies just above the 100 GeV threshold, this limit is AJ < 0.6. The
largest possible value of the dijet assymetry ratio for used dataset is AJ = 0.88

for the highest energy leading jets with ET1 ≈ 400 GeV. Jets carrying the energy
of this magnitude are, however, very rare, and we can consider AJ = 0.7 as an
effective upper limit of the energy imbalance.

3.3.2 Overall energy balance of dijet events

Before we present the study of energy imbalance, it is useful to explore the
angular behavior of the missing transverse momentum evaluated with respect to
the jet position. More precisely, the object of our interest is the angle between the
missing momentum vector �pT and the axis of leading or subleading jet defined in
Section 2.2. Hence, we introduce angular differences α defined as:

αLJ = |φMPT − φLeading Jet|, (3.16)
αSJ = |φMPT − φSubleading Jet|, (3.17)

where φMPT is the azimuthal angle of �pT. The behavior of these quantities is
shown in Figures 3.15 and 3.16. It is non-trivial, as one can see in the figures.
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Figure 3.15: Probability distributions of the angle between the �pT vector and
leading jet axis for four individual pT ranges.
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Figure 3.16: Probability distributions of the angle between the �pT vector and
subleading jet axis for four individual pT ranges.
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The basic properties seen in the plots are following. For the highest pT par-
ticles (pT > 4 GeV/c), we can see that the missing pT points dominantly to the
direction of the subleading jet (e.g., αLJ near π in Fig. 3.15), which reflects the
fact that the subleading jet has less particles with high-pT than the leading jet.
For the lower-pT particles (0.5− 4 GeV/c) the �pT points dominantly to the lead-
ing jet (e.g., αLJ near 0 in Fig. 3.15), which is a consequence of subleading jet
having more lower pT particles than the leading jet.

Due to the jet energy resolution effects the leading jet can be misidentified
as subleading (and vice versa) and, therefore, we can observe an enhancement of
the distributions at zero angles.

It is not easily possible to disentangle the underlying physics from these plots,
since jets with different AJ contribute simultaneously to the plots. Moreover, the
magnitude of the missing transverse momentum varies in a given centrality bin
according to the physics, as we shall further see.

To get some information about the overall energy balance (or imbalance) of
dijet events, we can use the projections of �pT vector of reconstructed tracks onto
the axes of both leading, and subleading jets. These were calculated for each
event as the scalar projections:

�p
||,LJ
T = �pT cosαLJ, (3.18)

�p
||,SJ
T = �pT cosαSJ, (3.19)

where �pT is the magnitude of the missing transverse momentum vector and αLJ

and αSJ are the angles defined in Equations (3.16) and (3.17). Probability dis-
tributions of these projections are displayed in Figures 3.17 and 3.18. One can
see that the distributions are rather broad, although a clear shift of the mean
values can be seen. We can, therefore, average the results over events to obtain
the mean values of the projections 〈�p

||,LJ
T 〉 and 〈�p

||,SJ
T 〉. These quantities can be

evaluated as a function of centrality and AJ and we shall see that they carry an
important physical information.

In Figures 3.19 and 3.20, these average values are shown as a function of event
centrality for four track pT bins. Figures 3.21 and 3.22 present the average values
of the projections as a function of dijet assymetry ratio, AJ , for two centrality
bins, (0− 30)% (left) and (50− 100)% (right).

These figures show the average missing transverse momentum for tracks with
pT > 0.5 GeV/c, projected onto leading and subleading jet axes, as solid black cir-
cles. They also show the contributions to the mean �pT projection for three trans-
verse momentum ranges, displayed as colored bands. For our bulk of data, the
main (negative) contribution in Fig 3.19 by the tracks in the pT > 4 GeV/c range
is almost perfectly balanced by the positive contributions from the 0.5− 2 GeV/c

and 2− 4 GeV/c regions.
From Fig. 3.19, we can see that with the increasing centrality (centrality go-

ing to zero) the size of the �pT projection calculated using the highest pT particles
increases and is negative, which means an excess pointing towards the leading jet
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Figure 3.17: Probability distributions of the scalar projection of the �pT vector on
a leading jet axis for four individual pT ranges.
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Figure 3.18: Probability distributions of the scalar projection of the �pT vector on
a subleading jet axis for four individual pT ranges.
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Figure 3.19: Average missing transverse momentum, 〈�p
||,LJ
T 〉, projected onto the

leading jet axis for four individual track pT ranges. The 〈�p
||,LJ
T 〉 values are shown

as a function of collision centrality. Vertical error bars represent the statistical
uncertainties and horizontal represent a size of a given collision centrality bin.
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Figure 3.22: Average missing transverse momentum, 〈�p
||,SJ
T 〉, projected onto the

subleading jet axis for four individual track pT ranges. The 〈�p
||,SJ
T 〉 values are
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(right). The statistical errors are shown as vertical bars.
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(�pT points in the direction of the subleading jet). This means that more hard par-
ticles are in the leading jet than in the subleading jet. This excess is compensated
by an excess of �pT calculated using soft particles (0.5 GeV/c < pT < 2 GeV/c).
This means that there is more soft particles in the subleading jet region. The
underlying physics picture is following: in central collisions the subleading jet
is very often strongly quenched, which means that the yield of hard particles is
suppressed. The energy from these hard particles is transferred to soft particles,
which show an enhanced yield in central collisions. This physics picture can be
concluded also from the plots on Fig. 3.21 and 3.22, which evaluate the mean miss-
ing pT projection as a function of dijet asymmetry separately for central (0-30%)
and peripheral (50-100%) collisions. With increasing asymmetry the imbalance
increases and the lack of the high-pT particles in the subleading jet (negative val-
ues of �p

||,LJ
T in Fig. 3.21) is compensated by the excess of soft particles (positive

values of �p
||,LJ
T in Fig. 3.21). This effect is stronger for central collisions (left plot)

than for peripheral6 (right plot).
One can also see from these plots that there is relatively good overall balance

of the �pT in the event – the missing pT projection calculated using all particles
with pT > 0.5 GeV/c is near zero. This implies that we don’t need to go much
lower with the minimal pT threshold to capture all the physics.

As expected, the behavior of the average projection onto the subleading jet
axis is almost identical to the one for leading jet, only inverted around the line
of zero projection (displayed as dashed line in figures). This can be intuitively
explained thanks to the fact that most dijet events exhibit back-to-back behavior,
which means that the angular difference between the axes of both jets is ∆φ ≈ π.
This means that the magnitude of the projection of missing transverse momentum
on leading jet axis is usually the same as the projection on the subleading jet with
the minus sign, and vice versa.

3.3.3 Comparison with the CMS study

These results, especially those displayed in Fig. 3.21, can be compared with
the results obtained by CMS detector at LHC, published in [35]. We should note
that there are some small differences between their analysis and the analysis in
this work. For example, CMS energy requirements for the leading and subleading
jets were following: ET1 > 120 GeV, ET2 > 50 GeV, ∆φ > 2/3π. Moreover, the
centrallity bins and track pT ranges are slightly different than those presented in
this work.

The main object of our interest are the figures shown in the bottom row of
Fig. 3.23. It is possible to directly compare these figures with Fig. 3.21 presented
in previous section. As we can see, both of these figures exhibit a very good
correspondence between each other. One of the differences, though, are the much
smaller statistical uncertainities in our work. This observation can be attributed

6(50-100)% are not fully peripheral collisions and some jet quenching is expected to be
present also in these collisions.
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to the much larger dataset available to our analysis, as opposed to the relatively
small sample of data analyzed in [35]. In the CMS study, only a total integrated
luminosity of 6.7 µb−1 has been included, which is approximately 20 times smaller
dataset than the one used in our study.

Figure 3.23: Average missing transverse momentum, 〈�p
||,LJ
T 〉, projected onto the

leading jet axis for five individual track pT ranges. The 〈�p
||,LJ
T 〉 values as shown as

a function of AJ for (30−100)% centrality (left) and (0−30)% centrality (right).
The statistical errors are shown as vertical bars. The top and bottom rows show
results for Pythia+Hydjet (MC simulations) and PbPb data, respectively.
Figure taken from [35].
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Summary and Conclusions

In this work, the data collected by ATLAS detector have been used to in-
vestigate the behavior of missing transverse momentum in PbPb collisions at
center-of-mass energy

√
sNN = 2.76 TeV. Before the analysis of the real data a

simple MC simulation has been performed to study the basic mechanism of �pT
creation.

We analyzed two main bulks of data. First of them was the minimum bias
data sample, corresponding to an integrated luminosity of 0.7 µb−1, which has
been used to define the collision centrality. These data were also used to construct
the corrections for the x and y components of the missing transverse momentum
vector. These corrections had to be applied in order to compensate for the faulty
parts of the ID tracking system.

The aim of this work was to study the phenomenon of jet quenching and
to investigate the relationships between the �pT and jets themselves. A jet data
sample has been used to elaborate this task. Jets were reconstructed using the
anti-kt jet clustering algorithm with the distance parameter of R = 0.4 in a data
sample corresponding to an integrated luminosity of 140 µb−1. Only events with
|η| < 2.1 having leading and subleading jet energies higher than 100 GeV and
25 GeV, respectively, were selected. Only the tracks with pT > 0.5 GeV/c were
used in this study. The pT of tracks was corrected to compensate for the ineffi-
ciency of the ID tracking system. The missing transverse momentum projected
onto the jet axis has been studied and it has been shown that the overall bal-
ance of the transverse momentum can be recovered using tracks with low enough
momentum (pT > 0.5 GeV/c). Moreover, a strong increase of yields of highly
unbalanced dijets has been shown to be correlated with an increase of production
of soft particles associated with the strongly quenched subleading jet.

All things considered, these results provide a critical qualitative and quanti-
tative insight into the transport properties of the medium created in heavy-ion
collisions. Furthermore, they are in a very good agreement with previously pub-
lished results by CMS [35].
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