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Computer Science Institute of Charles University

Abstract: We summarize and present recent results in the field of infinite matroid
theory. We define and prove basic properties of infinite matroids and we discuss
known classes of examples of these structures. We focus on the topic of connec-
tivity of infinite matroids and we link some matroid properties to connectivity.
The main result of this work is the proof of existence of infinite matroids with
arbitrary finite connectivity, but without finite circuits or cocircuits.

Keywords: matroids, infinite, connectivity, circuit, cocircuit



Contents

1 Preface 2
1.1 Short history of infinite matroids . . . . . . . . . . . . . . . . . . 2
1.2 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Basic definitions 4
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 The notion of an infinite matroid . . . . . . . . . . . . . . . . . . 4
2.3 Properties of infinite matroids . . . . . . . . . . . . . . . . . . . . 10
2.4 Examples of infinite matroids . . . . . . . . . . . . . . . . . . . . 12

3 Connectivity in infinite matroids 17
3.1 Original definition of connectivity . . . . . . . . . . . . . . . . . . 17
3.2 Simple connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Higher connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Tutte’s Linking Theorem . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Connectivity of known matroids . . . . . . . . . . . . . . . . . . . 25
3.6 Infinitary matroids . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 The plus operation 29
4.1 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Applying plus on the omega tree . . . . . . . . . . . . . . . . . . 30
4.3 Decomposition of Tω using 2-sums . . . . . . . . . . . . . . . . . . 31
4.4 Applying plus on algebraic cycle matroids . . . . . . . . . . . . . 32
4.5 Applying plus on infinitary matroids . . . . . . . . . . . . . . . . 34

5 Intersections of circuits 38
5.1 Circuit-cocircuit intersection . . . . . . . . . . . . . . . . . . . . . 38
5.2 Circuit-circuit intersection . . . . . . . . . . . . . . . . . . . . . . 41

6 Conclusion 43
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Future work and final notes . . . . . . . . . . . . . . . . . . . . . 43

1



1. Preface

1.1 Short history of infinite matroids

The notion of a finite matroid has been introduced in the 1930s by Whitney
[Whi35] as a generalization of linear dependence and graph structures, and the
idea of extending the notion of a matroid into infinite sets arrived not much later.

The original definition of an infinite matroid made it a finitary structure, that
is, with all circuits to be finite. These matroids are not even closed on duality,
which is another essential property of the finite matroid theory.

Therefore, in 1966, Rado [Rad66] asked for a structure which extended these
finitary matroids and was as general as possible while still preserving duality.
The first (and ultimately the best) answer to this question was a structure called
a B-matroid proposed by Higgs [Hig69c] and worked on by others, with some
results from that time summarized in Oxley’s 1978 paper on infinite matroids
[Oxl78].

While the B-matroid definition was general enough and was closed on duality,
its axiomatization used both the independence axioms and basis axioms of the
finite matroid theory, plus one new axiom describing maximality called (IM).
This may have been one of the reasons why there was little progress in the area
of infinite matroids until the early 2010s.

Starting in 2010, a Hamburg research group consisting of Bruhn, Diestel,
Kriesell, Pendavingh, Wollan and others ([BDK+13], [BC12b], [BD11], [AHCF11a]
and more) made a substantial breakthrough in the axiomatization of infinite ma-
troids. They have proven that the axiom (IM) can be added to most finite matroid
axiomatization, with the resulting class being identical to the class of B-matroids.

Since then, several papers have extended on their results, trying to translate
concept from finite matroid theory into infinite matroid theory. It turns out
that for infinite matroids, the concept of rank is not as useful as for their finite
counterparts. This means that a lot of the new proofs for infinite matroids provide
also new insights into the structure of finite matroids.

1.2 Thesis overview

The aim of the thesis is to summarize the current breakthroughs in the field
of infinite matroid theory, extend the set of known infinite matroids with new
classes, and provide new insight into the connectivity of some infinite matroids.

In Chapter 2, we introduce the axiomatics and basic properties of the infinite
matroid theory, such as duality, minors and extending bases. We also show
already known examples of matroids.

In Chapter 3, we present the concept of connectivity of an infinite matroid,
explain its basic properties with relation to duality and minors and finally show
connectivity bounds for some of the infinite matroid classes.

In Chapter 4, we present the plus operation that extends independent sets
of a matroid and discuss its previous use in the literature. We then present the
major new result of this thesis – that the plus operation increases connectivity in
a class of matroids not containing any finite circuit or cocircuit.
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A corollary of this result is the fact that there exists an infinite matroid
without finite circuits and cocircuits with finite but arbitrary large connectivity.
The question of existence of infinite matroids with infinite connectivity remains
open.

In Chapter 5, we show recent results on the intersection size of a circuit and
a cocircuit in an infinite matroid, and show their relation to the class of graphs
without a finite circuit or cocircuit. We also briefly discuss intersections of pairs
of circuits.

1.2.1 Further links

The thesis focuses on the topic of matroid connectivity; therefore, some less
related recent results on infinite matroids (such as the concept of infinite matroid
union, intersection and packing/covering) are not covered. For these topics, we
refer the reader to the paper of Bowler and Carmesin [BC12a] and the papers of
Aigner-Horev, Carmesin and Fröhlich [AHCF11a], [AHCF11b].

If the reader wishes to keep up with the recent progress in infinite matroid
theory, the Hamburg research group on infinite matroids collects their published
and unpublished articles on the website [HPo].
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2. Basic definitions

2.1 Notation

Matroid theory abounds with sets, set systems, unions and intersections. For
consistency, we standardize on the following notation:

Notation 1. We will always denote a single element by a lowercase letter, such
as x, y and e. Sets of elements, for example an independent set or a circuit, will
be denoted with uppercase characters, such as X, Y and K. Set systems, such as
the system of all bases, will be denoted with caligraphic characters, such as B or
C. Finally, we will denote individual matroids using the blackboard bold script,
such as M1 and M2.

As for addition and removal of single elements, we will use the following
notation:

Notation 2. I + x will stand for I ∪ {x}, similarly I − x will mean I \ {x}.

For general unions and intersections between two sets, we use X∪Y and X \Y
as usual.

Notation 3. When discussing duality on a ground set E and X ⊆ E, we use X
for E \X while for dual structures we prefer the star notation: B∗ = {B|B ∈ B}.

Notation 4. We employ ↓B for a down-closure of the set system B, that is, an
extension of B with all subsets of sets in B.

2.2 The notion of an infinite matroid

We assume that the reader is already knowledgeable in the basics concepts of
finite matroid theory. For a good introduction see e.g. the textbook of Oxley
[Oxl11].

Definition 1. A finite matroid is a tuple (E, I) such that E is finite, I (a family
of independent sets) is a set system of E and fulfills the following three conditions:

(I1) An empty set is in I.

(I2) I is closed on taking subsets.

(I3) If I1, I2 ∈ I, |I1| = k and |I2| > k, then ∃a ∈ I2 \ I1 such that I1 + a ∈ I.

This definition of a finite matroid is standard in the literature, but it uses the
sizes of the independent sets I1 and I2, which is not very relevant in the infinite
setting. A very small modification will be of more use to us. We first prove
the equivalence of the small modification with the standard axiomatics for finite
matroids:
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Observation 1. For finite matroids, the conditions (I1),(I2),(I3) in the finite
matroid definition are equivalent to (I1),(I2) and the following:

(I3’) If I1, I2 ∈ I, I2 is maximal in I inclusion-wise but I1 is not, then ∃x ∈ I2\I1
such that I1 + a ∈ I.

Proof. (I1),(I2),(I3) imply (I1),(I2),(I3’). This follows immediately, as any set
maximal in I can be used as I2 in (I3).

(I1), (I2), (I3’) imply (I1), (I2), (I3). If I2 is not maximal, we extend it by
a greedy process from elements in E \ I2 until we arrive at a maximal set I ′2. We
iteratively apply (I3’) until we arrive at a maximal set I ′1 that extends I1 with
elements from I ′2.

Since at the start we had that |I1| < |I2| and we cannot apply (I3’) anymore,
it must hold that |I ′1| = |I ′2| and we see that at least one element from I2 had to
have been added to I1 during this process. This element can play the role of a in
the rule (I3).

Now that we have an axiomatics for finite matroids based not on relative sizes,
but on maximality, we can present the definition of an infinite matroid, as stated
by Bruhn, Diestel et al.:

Definition 2. [BDK+13] An infinite matroid (X, I), is a structure with a finite
or infinite set X fulfilling the requirements (I1), (I2), (I3’) for finite matroids,
and also the following condition:

(IM) For any set S ⊆ X and any I ∈ I, I ⊆ S, there exists an inclusion-wise
maximal independent subset of S that contains I.

Besides independent sets, the most important notions in matroid theory are
those of bases, circuits and cocircuits.

Definition 3. In a matroid M, a basis is any inclusion-wise maximal independent
subset of E. A circuit is any inclusion-wise minimal dependent subset of E, and
a cocircuit is an inclusion-wise minimal set such that it intersects every basis of
M.

It is well-known that we can define matroids using axiomatics that talk about
bases and circuits. The same can be done for infinite matroids, only we have
to be more careful in the statements and we also need to usually include the
axiom (IM) in some form. No axiomatics that does not employ (IM) has yet been
proposed.

We state the basis and circuit definitions for completeness:

Claim 1. A matroid is a structure M = (E,B) for which the following three
axioms hold:

(B1) B 6= ∅.

(B2) ∀B1 6= B2 ∈ B,∀x ∈ B2 \B1∃y ∈ B1 \B2 such that B1 − y + x ∈ B.

(BM) The set system ↓B fulfills the axiom (IM).
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Claim 2. A matroid is a structure M = (E, C) for which the following four
axioms hold:

(C1) ∅ 6∈ C.

(C2) ∀C1 6= C2 ∈ C, C1 is not a subset of C2.

(C3) (Infinite circuit elimination) Given a circuit C ∈ C, a subset of elements
X ⊆ C, a set of circuits D indexed by elements of X (D = {Cx|x ∈
C, x ∈ Cx}) such that ∀Cx, Cy ∈ D : y ∈ Cx =⇒ x = y, and an
element z ∈ C \ (

⋃
Cx∈D Cx), there exists a circuit C ′ such that z ∈ C ′ ⊆

(C ∪
⋃
Cx∈D Cx) \X.

(CM) If we define a set system I such that I ∈ I ≡ ∀C ∈ C : C 6⊆ I, then I
fulfills the axiom (IM).

The equivalence was proven in the seminal paper of Bruhn, Diestel et al:

Theorem 1. [BDK+13] A structure satisfies the conditions (B1),(B2),(BM) if
and only if it satisfies (I1),(I2),(I3’) and (IM). Similarly, a structure satisfies
(C1),(C2),(C3) and (CM) if and only if it satisfies (I1),(I2),(I3’) and (IM).

It is a natural question to ask at this point about the rank function, which is
invaluable for many of the proofs of finite matroid theory and the submodularity
of which has sparked research into submodular functions in general.

The biggest problem of the rank function is that r(X) only calculates the size
of the largest independent set of X. However, r(X) = ω is a common phenomenon
in infinite matroids, and it actually does not tell us very much. Specifically,
whenever we add an element e to a set X which already has r(X) ≥ ω, we have
no way to verify whether we extended the largest independent set or not.

This issue has been sidestepped in the paper [BDK+13] by showing that a
similar function, a relative rank function, can be used to axiomatize matroids
(along with the ever-present axiom (IM)). The relative rank function calculates
the maximum independent size difference between two sets Y and X,X ⊆ Y .

In the papers following [BDK+13], however, the relative rank function has
only been used sparingly; suggesting that it may be easier to prove theorems by
arguing about the set structure of the matroid directly.

It is easy to see that the axiom (I3’) together with (IM) does not guarantee
only finitely many extensions of an independent set, but that we can extend any
set to a maximal set. This fact is stated precisely in the following lemma:

Lemma 1. For a matroid M, given an indepedent set X and a basis B, we can
find a basis BX that contains only elements from X ∪ B such that X is fully
contained in BX .

Proof. Applying (IM) we find a maximal independent superset of X inside the
set X ∪B. Denote it BX . This BX must also be maximal, because if not, we can
extend it by a single element using (I3’), which is a contradiction with BX being
inclusion-maximal by (IM).
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Notation 5. We apply Lemma 1 frequently, and so whenever we apply it, we
say we extend the set X to the set BX with elements from a basis B.

The most important axiom of the circuit and basis definitions is arguably the
circuit elimination axiom, as it produces a nice tool for generating further circuits
and arguing about connectivity. We use it several times in later chapters, and so
we propose the following notation:

Notation 6. When applying the axiom (C3) as a tool, we call the circuit C
the main circuit, the set of circuits D the intersecting circuits, the set X will be
denoted as the indexing set and z ∈ C, z 6∈

⋃
Cx∈D Cx a guaranteed element.

An important fact about basis size was already observed by Higgs in 1969:

Claim 3. [Hig69a] Assuming the generalized continuum hypothesis, all bases of
a matroid M are of the same cardinality.

A weaker lemma on bases specifies the exchange property without assuming
Claim 3:

Lemma 2. If B1, B2 are bases of a matroid with |B1 \B2| finite, then |B2 \B1| =
|B1 \B2|.

Proof. We start with basis B2 and for every item that is in B2 \ B1, we apply
the basis exchange axiom (B2). Since |B1 \B2| was finite, we can only employ it
|B1 \ B2| times until we end with the basis B1. Since we have switched a single
element for a single element each time, we have performed |B2 \ B1| operations
but also |B1 \B2| operations, and the numbers must be equal.

Using the definition of bases, we may define duality of matroids:

Definition 4. Given a set of all bases B of a matroid M, the set ↓ (B∗) is the
independent set of a matroid M∗ called the dual of M.

Of course, immediately after this definition we need to verify the correctness
of the definition. We will employ the following useful observation:

Observation 2. Given a matroid M and a dual structure M∗ as defined above,
a set X will be in I∗ if and only if the set X is spanning, that is, there exists a
basis of M inside X.

Claim 4. Given a set of all bases B of an infinite matroid M, the set ↓ (B∗)
fulfills axioms (I1), (I2), (I3’) and (IM).

Proof. Axioms (I1) are (I2) are inherited immediately from the down-closure
operator.

For (I3’) for the dual matroid, suppose we have a (co)independent set I ∈ I∗
non-maximal and a maximal element B ∈ B∗. Since I is non-maximal in the
dual, the complement I is dependent. Pick a M-basis B inside I and remove one
element from I that is not inside B. In the dual, we have added an element to I,
creating I ′, but as I ′ contains a basis, therefore I ′ is still independent.

Finally we verify the axiom (IM) for the dual structure. Suppose that we want
to find a M∗-maximal independent subset of a coindependent set I∗ within a set
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X. We apply (IM) for M to find a maximal independent subset of X, denoting
it as J .

From our observation above we know that since I∗ is independent in the dual,
the set E \I∗ is spanning, and we can use the axiom (IM) to extend J using some
set J ′ ⊆ X \ I∗ to a basis of M.

The set I ′ = X \ J ′ contains the set I because of its construction. We show
that it is both independent and maximal, thus satisfying (IM).

• Independence: Since J ′ ∪ J is a basis of M, its complement is a maximal
element of B∗, and I ′ is a subset of such a complement.

• Maximality: Suppose we can extend I ′ within X to a larger maximal set
I ′′ of ↓(B∗), and we denote X \ I ′′ as J ′′. As I ′′ is an extension of I ′, J ′′ is
a restriction (subset) of J ′, and therefore it is independent.

As J ∪J ′ is a basis, J ∪J ′′ is its proper subset, and therefore non-maximal.
We can therefore use (I3’) for M and extend it either from the set X or the
set X.

If we are able to extend it from X, it contradicts the membership of I ′′ with-
in ↓(B∗), but if we are able to extend it from X, it contradicts our original
application of (IM) which guaranteed that J was a maximal independent
subset of X. In either case, we arrive at a contradiction.

We have mentioned in Chapter 1 that the original definitions of a matroid were
defined as finitary structures. Instead of the axiom (IM), they had a condition
on a set being independent if and only if all its finite subsets were independent.

To explain what finitary means in the context of infinite matroids, we present
the following definition:

Definition 5. A matroid is called finitary if all its circuits are of finite size. A
matroid is called cofinitary if all its cocircuits have finite size; i.e. if its dual is
finitary.

While the notion of the cocircuit was defined in Definition 3, we can also
define it as follows:

Definition 6. For a matroid M , a cocircuit is a subset of elements such that it
forms a circuit of the dual matroid M∗.

Observation 3. The two definitions of cocircuits (Definition 3 and Definition 6)
are equivalent for all matroids.

Proof. Consider a circuit C of M∗ (a cocircuit of the primal). This is a minimal
dependent set in M∗. If there was a M-basis B avoiding C, then the complement
B would be a M∗-basis, which is impossible, as B is a superset of C, which is a
M∗-circuit and thus M∗-dependent.

The same argument said in reverse shows that every set that interesects every
basis of M must be M∗-dependent.

It is easy to see that the minimality of one implies minimality of the other,
thus both conditions are preserved and the definitions are equivalent.
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Claim 5. [BDK+13] In an infinite matroid M, no circuit and cocircuit can meet
in exactly one element.

Proof. Suppose that the circuit C and the cocircuit D meet in one element e.
D − e is not a cocircuit, and so there exists a basis B1 of M not containing

D − e. Necessarily, this basis contains e.
C − e is independent, and can be extended using (IM) to a basis B2 by

extending C − e with elements from B1. The complement B2 is a cobasis by the
duality condition, but it also contains both D−e (because no element from D−e
was in B1 and by extension B2) and e (because e could not have been added to
B2).

The cobasis B2 therefore contains a cocircuit, which is a contradiction.

Historical note. The above definition of the infinite matroid (Definition 2)
was not the first definition that has been used in matroid theory. The important
goal was to find a definition as broad possible (for example one that does not
restrict only to locally finite matroids) while preserving the key notion of duality.
The first definition to fulfill these requirements was the B-matroid definition by
Higgs in the 1960s [Hig69c]:

Definition 7. We call a structure (E, I) a B-matroid if all following requirements
are met:

(I1) ∅ ∈ I.

(I2) I is down-closed.

(IM) ∀X ⊆ E,∀I ⊆ X, I ∈ I, there exists an inclusion-maximal subset of X in
I extending I.

(B2) ∀B1, B2, which are two inclusion-maximal sets of I, and ∀x ∈ B1\B2, there
exists y ∈ B2 \B1 such that B1 − x+ y is also an inclusion-maximal set in
I.

The main advantage of Definition 2 is that it uses the standard axioms
(I1),(I2),(I3) with only a small variation on (I3). Definition 2 can also be easily
shown to be equivalent with the definition of a B-matroid:

Observation 4. A structure M satisfies the conditions of the B-matroid if and
only if it satisfies the conditions (I1),(I2),(I3’) and (IM).

Proof. An infinite matroid is a B-matroid. The condifitions (I1), (I2) and (IM)
are common to both. As for (B2), we can apply (I3’) to a non-maximal indepen-
dent set B1 − x and extend it to a maximal independent set by an element from
B2 to get the required claim.

B-matroid is an infinite matroid. We show that the set of maximal elements
of a B-matroid satisfies (B1), (B2) and (IM). (B2) and (IM) are immediate, as
they are common to both definitions, and (B1) follows from (I1) and a simple
application of (IM) on the ground set E.
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2.3 Properties of infinite matroids

2.3.1 Minors

Since we established duality of infinite matroids, to show validity of all minor
operations we only need to show that restriction produces a matroid.

Lemma 3. [BDK+13] Given a matroid M, a basis B ∈ B and F ⊆ E, B ∩ F is

maximal in I ∩ 2F if and only if B ∩ F is maximal in I∗ ∩ 2F .

Proof. ⇒: If B ∩ F is maximal but the implication is not true, then we extend
B ∩ F with Z 6= ∅ to a maximal independent superset B′ of F and extend this
B′ to a cobasis B′′ of M using elements from B.

The complement B′′ is therefore a basis of M.
Now, B′′ contains B ∩ F (because we extended from F and B only) and so

either B′′ ⊆ B (which is a contradiction with B′′ being a basis) or B∩F ⊂ B′′∩F ,
contradicting the maximality of B ∩ F within I ∩ 2F .

⇐: Apply the first implication in the matroid M∗.

Claim 6. [BDK+13] Given an infinite matroid M and a subset of edges F ⊆ E,
the restriction of M to F (denoted M|F ) will also constitute a matroid.

Proof. (I1),(I2) and (IM) hold automatically. To show (I3’), we are given I and
Im, where Im is maximal in M|F and I is independent non-maximal in M|F . We
extend Im into a M-basis Bm, then extend I into an M-basis B using elements
from Bm.

Since B ∩ F ⊆ Bm ∩ F , taking complements means Bm ∩ F ⊆ B ∩ F , and as
Bm ∩F is maximal in M∗|F , so is B ∩F . Applying Lemma 3 now, we know that
B ∩ F is maximal also, and so B ∩ F is the desired extension of I with elements
from Im.

Notation 7. Given a set X ⊆ E, a minor of M created by removing X from the
ground set will be denoted as M \X and a minor of M created by removing the
set Y ⊆ E in the dual (contraction) will be denoted M/Y .

We will denote restriction on a specific set Z, i.e. removing the elements
M \ (E \ Z), as M|Z and contracting all but a specific set W (M/(E \W )) as
M.W .

2.3.2 Properties of minors

Lemma 4. [BDK+13] Given a matroid M and sets I ⊆ W ⊆ E, the following
conditions are equivalent:

1. I is a basis of M.W .

2. There exists a basis I ′ of M \W such that I ∪ I ′ ∈ B(M).

3. For every basis I ′′ of M \W it holds that I ∪ I ′′ ∈ B(M).
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Proof.
(1) ⇒ (2): If I is a basis of M.W , then W \I is the basis of M∗|W . We extend

the set W \ I to a basis D of M∗. This means that W \ I = D∩W is maximal in
M∗|W , and by Lemma 3, we have that D ∩W is a basis of M \W . D ∩W is a
superset of I, and the independent set I ′ ≡ ((D ∩W ) \ I) is the desired set from
the condition (2).

(2) ⇒ (1): This argument follows by restating the previous argument in re-
verse.

(3) ⇒ (2): Immediate, as there necessarily exists a basis of M \W .

(2) ⇒ (3): Having proven the equivalence of (1) and (2), we can assume that
we have a basis I of M.W such that there exists a basis I ′ of M \W for which
I ∪ I ′ ∈ B(M). Given any basis I ′′ of M \W , we extend it with elements from
I ∪ I ′ to a basis B of B(M). As I ′′ was maximal in M \W and I ′ also, the only
elements that could have been added are from I.

We also see that B is a basis of M, and so B is a basis of M∗ and more
specifically B ∩W is maximal, and by applying Lemma 3 as in (1), B ∩W is
maximal in M.W , which implies that B ∩W = I and I ∪ I ′′ ∈ B(M).

Corollary 1. A set I is independent in M.W if and only if I ∪ I ′ ∈ I(M) for all
I ′ which are independent in M \W .

Proof. ⇒: If I is independent in M.W , extend it to a basis of M.W . Using Point
(3) of Lemma 4, we know that for every basis I ′′ of M \ W BW ∪ I ′′ ∈ BM,
and therefore for all independent sets J of M \W (which are subsets of bases,
I ∪ J ∈ I(M).
⇐: Choose a specific I ′ to be a basis of M \W . Extend I ∪ I ′ by a set X to

a basis of M; since I ′ was already a basis of M \W , we have only extended it by
elements from W . Due to Point (2) in Lemma 4, we know that I ′ ∪X is a basis
of M.W , and I ′ is therefore independent.

Lemma 5. Given a matroid M and its contracted minor M/X, we can extend
any circuit C ∈ C(M/X) into a circuit of M by a subset of X.

Proof. Pick any M |X-basis BX . C ∪ BX is necessarily M-dependent, because C
was M/X dependent. Therefore C ∪ BX contains an M-circuit C ′ which fulfills
the equation C ′ \X = C.

Lemma 6. If C is a circuit of M and X ⊂ C, then C \X is a circuit of M/X.

Proof. Since C is M-dependent, C \X is M/X-dependent and it is minimal with
such property because of the minimality of C.

Lemma 7. Any element not included in X that lies in a circuit C of M also lies
in a circuit of M/X.

Proof. Suppose it does not. Then {e} is a one-element M/X-cocircuit which
intersects the M/X-circuit C \X in exactly one element.
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2.4 Examples of infinite matroids

The study of the class of finite matroids has been motivated by the fact that
matroids arise both as a generalization of the class of graphs and as a generaliza-
tion of the class of vector sets with independence. We list some major classes of
infinite matroids that can be generalized from the finite setting and we also give
examples of those that cannot.

2.4.1 Cycle and bond matroids

The traditional approach to creating matroids from graphs is to base it on its
cycle set or a bond set (edge cut-set). Therefore, the following matroids were
suggested:

Finite-cycle and finite-bond matroids. The finite cycle and finite bond ma-
troids arise from infinite graphs by considering all finite cuts and finite cycles.
Note that these two classes are not dual to each other, as the dual of the finite-
cycle matroid of a graph is the (both finite and infinite) bond matroid of such a
graph.

Cycle and bond matroids. While cycles of infinite size are hard to define for
infinite graphs, as it is not easy to see how to define them, it is easy to imagine
infinite bonds in a graph (for example a vertex of infinite degree).

From these sets of both finite and infinite bonds, the general bond matroids
were defined. The key theorem for the cathegorization of graph matroids was the
following:

Theorem 2. [BD11] Let G be any graph.

• The bonds of G, finite or infinite, are the circuits of a matroid MB(G).

• This matroid is the dual of the finite-cycle matroid MFC(G) of G.

In keeping with the idea of Theorem 2, the general cycle matroid of a graph
G was therefore defined as the dual of a finite bond matroid of the given graph
G.

2.4.2 Algebraic cycle matroids

Given an infinite double ray (an infinite graph that is a path without an endpoint),
should we consider this double ray a cycle or not? It arises as a path structure
but shares many properties with cycles; for example, its embedding in the plane
cuts it in two sections.

One construction which includes these double rays as circuits of the resulting
matroid is called the algebraic cycle matroid. Here, we consider a circuit to be
every inclusion-minimal subset of edges of the given graph, where the subset
induces degree 2 or 0 in all the vertices of the graph.

For the further chapters, the most important example of an algebraic cycle
graph is the omega tree matroid denoted as Tω. To create this matroid, we
construct an infinite rooted tree with all degrees equal to ω, and build an algebraic
cycle matroid of this graph.

12



Figure 2.1: A visualisation of an omega tree – in reality, all vertices have degree ω.

The other important example of the algebraic cycle construction is the fact
that not all graphs can be used to create an algebraic cycle matroid. To show
this, we consider the Bean graph, created as a double ray with an additional
vertex that is connected to vertices of only one ray, as shown below:

additional vertex

. . .

Figure 2.2: The Bean graph BG.

Observation 5. An algebraic cycle structure formed from the Bean graph BG
does not fulfill the circuit axiomatics of an infinite matroid.

Proof. The double ray spans a circuit C ∈ C. Consider a set of consecutive
triangles T1, T2, T3 . . . which is formed from the additional vertex of BG. These
triangles are also members of C. Each of these triangles has exactly one edge
common with the double ray, and the union of these edges will form the set X.

We now apply circuit elimination for the circuit C, the circuit system {Ti}
with indexing edge set X and a guaranteed edge z arbitrary from C \X. From
(C3) we learn that there must exist a circuit C ′ containing z and avoiding the
entirety of

⋃
Ti. As C ′ induces a subgraph in the Bean graph of degrees either 2

or 0, the additional vertex must also satisfy this. Therefore there exists a finite
number j such that the last edge in the circuit C ′ that intersects

⋃
Ti belongs to

the triangle Tj. Therefore, one vertex of this Tj has degree 1 and C ′ cannot be
an algebraic cycle of BG.

However, the Bean graph is essentially the only graph that does not form a
matroid through algebraic circuits:

Claim 7. [Hig69b] The elementary algebraic cycles of an infinite graph G are the
circuits of the matroid on the edge set E(G) if and only if G does not contain
any subdivision of the Bean graph.
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2.4.3 Thin sums matroids

The class of matroids defined by linear independence conditions are necessarily
finitary, so by introducing infinite matroids we lose an important set of exam-
ples. Therefore, in [BDK+13], a class of matroids inspired by representability was
introduced:

Definition 8. Let F be a field, and A a set. A set of functions {ϕiA → F} is
called thin if ∀a ∈ A there are only finitely many indices i such that ϕi(a) 6= 0.

Definition 9. We say that a family Ψ of functions from A to F is thinly indepen-
dent if for every thin subfamily Ψ′ ⊆ Ψ the linear independence condition holds,
i.e. for every set of coefficients {λi|i ∈ I} we have

∑
i∈I λiϕi is a zero function

(f(a) = 0 for all a ∈ A) if and only if all λi are set to be zero.
We call a matroid M thinly represented over F if it can be represented with a

family of functions with independence coinciding with thin independence.

The thin sums matroids have been studied rather extensively, for example
in the papers of [BC12b] and [AB13]. The main question was whether all thin
sums systems form a matroid, and it was answered negatively using the following
definition and claim:

Definition 10. Given a graph G, an algebraic cycle system ac(G) is the system
specified by each subset of its edges classified as dependent or independent. A
subset is dependent if and only if it contains an algebraic cycle of G.

Claim 8. [AB13] For every (infinite) graph G, the algebraic cycle system ac(G)
forms a thin sums system over any field F of three or more elements.

Proof. First, fix an arbitrary orientation of G. Our system will be consisting of
functions fe : V → −1, 0, 1. For every edge e, define a function fe(v) = 1 if v is
the source of the edge e, −1 if it is the target, and 0 otherwise.

We show that ac(G) is dependent if and only if this thin-sum representation
fe is thinly dependent.

If we have a dependent set S in ac(G), then it contains a cycle or a double
ray, so we take only the edges of the cycle or the double ray. Assume an arbitrary
orientation of the double ray or circuit, and then assign c(e) = 1 if the chosen
orientation agrees with fe, c(e) = −1 if the orientation disagrees and c(e) = 0 if
the edge is not present in the double ray or circuit.

Clearly, after this setting,
∑

v∈V (C) c(e)fe(v) = 0 but c is non-trivial assign-
ment, and so the the set of fe is thinly dependent.

On the other hand, if we have a thinly dependent set in the thin representation
we defined, then every vertex of the dependent set has to be present at least two
edges. Therefore, we have a subgraph that contains a 2-regular subgraph and
therefore it contains a double ray or a cycle.

Combining Observation 5 with Claim 8 we get the following:
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Corollary 2. [AB13] The thinly representable graph BG does not form a matroid.

A class of thin sums systems which are all proven to be matroids are the thin
sums systems where the ground set itself is thin. Unfortunately, in this case, the
systems have also a very predictable structure:

Theorem 3. [AB13] A matroid arises as a thin sums system over a thin family
for some field F if and only if it is a dual of a representable matroid.

2.4.4 Structures not forming a matroid

While the previous subsections listed analogues of finite matroids in infinite ma-
troid theory, it is important to realize that even though infinite matroids are
closed on duality and taking minors, not all generalizations of finite matroids
yield an infinite matroid.

The first observation shows the limit of the axiom (IM):

Observation 6. The uniform structure of the type Uα,β, that is, a structure with
a ground set of size |E| = β > α ≥ ω with all sets of cardinality less than or equal
to (or only strictly less than) α in I does not constitute a matroid.

Proof. The system does not satisfy the axiom (IM). If we are given an independent
set I, suppose that we can extend it to a maximal independent set Im. As β > α
there is an element e outside Im. Then Im + e is of size less than or equal to α
and therefore independent, contradicting maximality of Im.

The non-existence of infinite uniform structures seems like a minor one. A
more serious example of a non-matroid arises from the closure operator. The
closure axiomatics is one of the more useful ones for finite matroids and it can
also be translated into an axiomatics for infinite matroids:

Claim 9. [BDK+13] A structure M on the ground set E is a matroid if and only
if there exists a function cl : 2E → 2E satisfying the following properties:

(CL1) For all X ⊆ E it holds that X ⊆ cl(X).

(CL2) For all X ⊆ Y ⊆ E it holds that cl(X) ⊆ cl(Y ).

(CL3) cl is idempotent; that is cl(cl(X)) = cl(X).

(CL4) For all X ⊆ E and a, b ∈ E, if a ∈ (cl(X + b) \ cl(X)) then b ∈ cl(X + a).

(CLM) If we define the set system I as containing exactly the sets I that satisfy
∀x ∈ I : cl(I − i) 6= I, then I satisfies (IM).

Using the closure operator in finite matroids, we can define closed sets as those
satisfying cl(X) = X and open sets as their complements, and we can work with
these sets topologically.

However, the paper [BDK+13] showed the following:
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Observation 7. Given the topological closure operator cl on the set of real num-
bers R, cl satisfies axioms (CL1) - (CL4), but not (CLM).

Proof. The first four axioms follow from general properties of open and closed
sets. However, because of the condition ∀x ∈ I : cl(I − i) 6= I, all independent
sets must be discrete – that is, consisting of isolated points.

However, there is no maximal discrete set in R (we can always add another
point) and so (CLM) fails.

Losing the examples from topology is unfortunate (but necessary) because
topologies abound with various non-standard structures, while the other classes
of infinite matroids we presented (graph matroids, thin sums matroids) are often
finitary or cofinitary.
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3. Connectivity in infinite
matroids

3.1 Original definition of connectivity

The standard definition of connectivity for finite matroids, usually called Tutte
connectivity, starts with the notion of equivalence based on membership in a cir-
cuit. For higher connectivity, we employ minimization of the separation function,
which is usually defined through the rank operation.

Notation 8. For a finite matroid M, the set X ⊆ E identifies a partition of its
elements into disjoint parts (X,X). While this partition is defined only by the
subset X, sometimes it is useful to denote the two sides (X, Y ) so that it is clear
at all times where the elements xi or yi belong.

We will therefore use (X, Y ) or (X,X) depending on the situation.

Definition 11. Given a finite matroid M, a matroid is connected (or simply
connected) when every pair of elements lies on a common circuit.

Definition 12. Given a finite matroid M, a matroid is Tutte k-connected when
the following equality holds:

min
X⊆E, |X|≥k,|X|≥k

κ(X) + 1 = k,

where the connectivity function κ is defined by calculating the rank of both
sides of the partition:

κ(X) = r(X) + r(X)− r(E).

It seems intuitive that we can use the definition of the simple connectivity for
infinite matroids verbatim, while the definition of higher connectivity might be
salvaged by interpreting the rank function directly in the infinite matroid. This is
indeed the case. The notions of connectivity in infinite matroids, as well as most
proofs in this sections, were introduced in the 2012 paper of Bruhn and Wollan
[BW12].

3.2 Simple connectivity

As we suggested in the previous section, we will verify that the definition of simple
connectivity for finite matroids is still salvageable for infinite matroids:

Definition 13. Given an infinite matroid M, M is connected (simply connected)
when every pair of elements lies on a common circuit.

While the definition seems plausible at a first glance, we need to verify that
it behaves properly. The key to this is the standard lemma on connectivity:
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Claim 10. [BW12] Given a matroid M, the relation: “(x, y) ∈ R ≡ x and y lie
on a common circuit” forms an equivalence.

To prove this we need three simple lemmas:

Lemma 8. Given a matroid M and its contracted minor M/X, we can extend
any circuit C ∈ C(M/X) into a circuit of M by a subset of X.

Proof. Pick any M |X-basis BX . C ∪ BX is necessarily M-dependent, because C
was M/X dependent. Therefore C ∪ BX contains an M-circuit C ′ which fulfills
the equation C ′ \X = C.

Lemma 9. If C is a circuit of M and X ⊂ C, then C \X is a circuit of M/X.

Proof. Since C is M-dependent, C \X is M/X-dependent and it is minimal with
such property because of the minimality of C.

Lemma 10. Any element not included in X that lies in a circuit C of M also
lies in a circuit of M/X.

Proof. Suppose it does not. Then {e} is a one-element M/X-cocircuit which
intersects the M/X-circuit C \X in exactly one element.

Proof. (Proof of Claim 10.)
Reflexivity and symmetry of the relation is straightforward.
For transitivity, assume that e, f lie on a common circuit C1 and f, g lie on

C2. Our goal is to show that there is a circuit containing elements e, g.
We cannot assume any elements outside C1 ∪ C2, so we restrict ourselves on

this set. We also contract any elements inside C1 ∩ C2 besides f , as we cannot
assume any of those elements either. It is an allowed operation as we know
from previous lemmas that we can extend a circuit from a minor to the original
matroid. We will denote the resulting matroid M′.

If the circuit C2 was a 2-element one, we would be finished with the proof, as
we could use (C3) with C1 as the main circuit, e as the guaranteed element and
{f} as the indexing set, generating a circuit containing both e and g.

We therefore try to contract M′ using the set P1 = C2− f − g. The set {f, g}
becomes a circuit because of Lemma 9, but it may happen that C1 ceased to be
a circuit and became a dependent set containing a circuit C ′3. We can extend the
M′/P1-circuit C ′3 to a M′-circuit C3 applying Lemma 8.

Instead of P1 = C2−f−g, we now contract M′ by the set P2 = C2−f−g\C3.
We claim that C ′3 remains a circuit after this contraction. If it was not, C ′3 would
be a dependent set, and applying the same argument as before, it would contain
a subset C ′4 that is a M′/P2-circuit, but because we contracted less elements in
P2 than in P1, it must have been a M/P1 circuit as well, which is a contradiction
of (C2).

We arrive at the situation where we have a circuit C3 that contains e and a
circuit C ′2 = C3 ∩C2 + f + g that contains g and differs from C3 by two elements.
In our argument, we have tried contracting elements from C2. Mirroring the same
argument now but contracting elements from C3 while preserving the element e,
we obtain circuits C4 and C5 where e ∈ C4, g ∈ C5 and |C4 \C5| = |C5 \C4| = 2.
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We now contract the intersection C4 ∩ C5 to one element and get a finite
matroid on 5 elements, for which our claim holds immediately. We finish the
proof by decontracting the resulting circuit using Lemma 8.

3.3 Higher connectivity

As we stated at the start of this chapter, it is crucial to interpret the connectivity
function κ in a non-rank manner, since otherwise we would end up with equations
of type ω + ω − ω, which have an undefined result.

Looking at its definition again:

κ(X) = r(X) + r(X)− r(E)

we see that once we split the matroid M into two parts, we sum the size of
the maximal independent set in each half, we get r(X) + r(X). From this, we
substract the size of the basis of M, which is r(E).

Instead of thinking about sizes, we interpret the rank function literally. In
the first part, we therefore pick two maximal independent sets, one of X and one
of X. Let us denote them by BX and BX . From the addition/union of these two
maximal independent sets, we want to subtract the size of the basis. The result of
this subtraction corresponds to the minimum amount of elements that we remove
from BX ∪BX , until we arrive at an independent set – this independent set must
naturally be a basis.

Formally, we define a function delM(X) (we usually drop the subscript when
the matroid is clear from context) that will output one result of such a calculation
as described above:

Definition 14. [BW12] For a finite matroid M and any subset X ⊆ E, del(X) ≡
|K| for a finite set K that satisfies the condition:

BX ∪BX \K ∈ B (3.1)

where BX is an arbitrary maximal independent subset of X and BX an arbi-
trary maximal independent subset of X.

If no such finite set K exists, we set del(X) =∞.

This definition seems very fragile at a first glance; it could happen that two
sets K1, K2 satisfy Equation 3.1 yet have different cardinality, or it could happen
that the choice of the bases BX and BX changes the cardinality of K. The
following claim proves that neither is the case. It also shows a much stronger
condition: that we may choose a specific part from which we are eliminating
elements and the cardinality stays the same.

Claim 11 (Properties of the del function, [BW12]). Let M be a matroid, X ⊆
E(M). Then:

1. For a given BX ∈ B(M|X) and BX ∈ B(M|X), the cardinality |K| is the
same for any finite set K ⊆ BX ∪BY that satisfies Equation 3.1.
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2. For a given subset X, the cardinality |K| of a finite set fulfilling Equation 3.1
is independent on the choice of the bases BX ∈ B(M|X) and BX ∈ B(M|X).

3. del(X) = |K| for any finite set K such that (BX \K) ∪BX is a basis.

Proof. (1): Let us make sure that for two specific bases BX and BX , the number
of the elements is the same for any two sets K1, K2 such that BX ∪BX \Ki ∈ B.
If this were not the case, then we would have two bases B1, B2 that would have
finite difference |B1 \B2| 6= |B2 \B1|, which is a contradiction because of Lemma
2 in Chapter 2.

We now state a weaker version of point (3):

Observation 8. For a given BX ∈ B(M|X) and BX ∈ B(M|X), if a given set
K ⊆ BX satisfies Equation 3.1, then it is equicardinal to any set K ⊆ BX ∪ BY

that also satisfies 3.1.

Proof of Observation 8. Any set K ⊆ BX can also be thought as being from
BX ∪BX , and the statement follows from (1).

Note that if |K| is finite, we can always remove edges only from X: simply
remove edges arbitrarily until (BX \ K) ∪ BX ceases to be dependent. At that
moment, the resulting system will be maximal, and necessarily a basis of M.

(2): We are given two pairs of bases (B1
X , B

1
X

) and (B2
X , B

2
X

), and we suppose
that the set K satisfying B1

X ∪B1
X

) \K ∈ B is of size k (either finite or inf).
We now use Observation 8, choosing elements of K only from B1

X to move
from a pair (B1

X , B
1
X

) to a pair (B1
X , B

2
X

) with the same k, using the rule (1)
we can now switch to removing elements of B2

X
without changing k, and finally

applying Observation 8 again we end up with the pair (B2
X , B

2
X

) with k unchanged
throughout all of the operations.

(3): Follows by combining Observation 8 with point (2).

Definition 15. We say that an infinite matroid M is k-connected and write
κ(M) = k if and only if

min
X⊆E,|X|≥k,|X|≥k

del(X) + 1 = k.

If no such finite k exists, we say that M is infinitely connected.

Notation 9. Our del(X) function now plays essentially the same role as the
κ(X) function, and indeed they behave the same way on finite matroids. The
authors of [BW12] prefer to switch back to the original notation κ(X), while we
do not use this notation except for computing global connectivity.

The following simple observation is very handy when arguing about the be-
havior of circuits in BX ∪BX that get removed during computation of del(X):
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Lemma 11. For an infinite matroid with a given partition (X, Y ) and bases
(BX , BY ) thereof with finite separation k, every element of a separating edge set
K of (BX , BY ) lies on a circuit C (which we call an identifying circuit) such that
no other element of K lies on this circuit.

Proof. Suppose that for an element p ∈ K, no such identifying circuit exists.
Then every circuit of BX ∪BY is already covered by a different element in K and
removing K creates a smaller separation, which is a contradiction.

The following lemma verifies that the del function preserves the submodularity
of the connectivity function in finite matroids:

Lemma 12. [BW12] For all sets X, Y ⊆ E of a matroid M:

del(X) + del(Y ) ≥ del(X ∪ Y ) + del(X ∩ Y ).

Proof. The idea of the proof is to construct very similar bases for all 4 partitions.
First, define the following two bases:

• B∩ ≡ a basis of X ∩ Y .

• B∪ ≡ a basis of X ∪ Y .

Next, we set F∩&∪ to be a set that needs to be deleted from B∩ ∪ B∪ to get
a basis of the matroid on the union of their ground sets (which is M|(X ∩ Y ) ∪
(X ∪ Y )).

We denote the resulting independent set as B∩&∪. We extend this set to a
basis B of M. The elements we have added to B∩&∪ are from X \ Y and Y \X;
therefore, B is of the form B = B∩&∪ ∪ IX\Y ∪ IY \X .

Now, imagine that we went back to B∩ and before merging it with B∪, we
tried to merge B∩ instead with IX\Y and IY \X . We claim that this union B∩ ∪
IX\Y ∪ IY \X cannot form a circuit.

For the contradiction, suppose that it does contain a circuit C. This circuit
intersects B∩ and therefore also F , as C is not a circuit in B.

Select all identifying circuits of F ∩ C as described in Lemma 11 and apply
circuit elimination (the guaranteed element can be any element of IX\Y ). We
thus get a circuit avoiding all of F , which is a contradiction.

Thus, the set B∩ ∪ IX\Y ∪ IY \X is independent in M. Symmetrically, the set
B∪ ∪ IX\Y ∪ IY \X is also independent. We will denote these two sets as I∪ and
I∩, as they are independent set in the union or in the complement of intersection,
respectively.

Finally, since we have an independent set of the union I∪ which may not be
a basis, we extend it to a basis B′∪ of X ∪ Y . The elements that we extended I∪
with come from either (X \ Y ) \ I∪ or (Y \X) \ I∪. We denote the former as FX

∪
and the latter as F Y

∪ . We also define the FX
∩ and F Y

∩ in a similar fashion.
The last pieces of notation will be IX , which will consist of the part of the

basis B′∪ that lies on the side of X, and IY similarly. Analogously, we define IX
and IY .
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We now summarize all the definitions we have:

• B∩, a basis of X ∩ Y .

• B∪, a basis of X ∪ Y .

• B∩&∪, a basis of (X ∩ Y ) ∪ (X ∪ Y ). Extends B∩,B∪.

• F∩&∪, a set that we removed when creating B∩&∪.

• B, a basis of M. Extends B∪&∩.

• IX\Y and IY \X , the independent sets used in the extension to B.

• I∪, an independent set of X ∪ Y . Union of B∩, IX\Y and IY \X .

• I∩, an independent set of X ∩ Y . Union of B∪, IX\Y and IY \X .

• B′∪, a basis of X ∪ Y . Extends I∪.

• B′∩, a basis of X ∩ Y . Extends I∩.

• FX
∪ , F

Y
∪ , sets that were used in the extension of I∪ to B′∪.

• FX
∩ , F

Y
∩ , ditto for B′∩.

• IX and IY , restrictions of B′∪ on X and Y respectively.

• IX and IY , restrictions of B′∩ on X and Y respectively.

We now prove the submodularity by making a lower bound on the left side
which will match an upper bound on the right side. First we prove the lower
bound on del(X). IX and IX are independent sets of X and X, we can choose
them as the starting points for bases of (X,X) and so removing all circuits of
IX ∪ IX is a good lower bound on removing all circuits of (X,X).

Now, observe that IX ∪ IX is composed of the following sets:

B∩&∪ ∪ F∩&∪ ∪ IX\Y ∪ IY \X ∪ FX
∪ ∪ F Y

∩ .

We see that in this union there are two bases – B and B′∪ – and any element
of the F -sets creates a basis in at least one of those bases. Therefore, we need to
remove at least as many elements as the sizes of the F -sets. We now have that
del(X) ≥ |F∩&∪|+ |FX

∪ |+ |F Y
∩ |.

Applying the same argument for Y , we get that

del(X) + del(Y ) ≥ 2|F∩&∪|+ |FX
∪ |+ |F Y

∩ |+ |F Y
∪ |+ |FX

∩ |. (3.2)

Now we prove the upper bound on del(X ∪ Y ) + del(X ∩ Y ). We start with
del(X ∩ Y ), del(X ∪ Y ) can be proved symmetrically. We have the basis B∩ of
X ∩ Y and we have the basis B′∩ of X ∩ Y . del(X ∩ Y ) will be upper bounded
by the size of the set needed to make B∩ ∪B∩ circuit-free.

First we remove F∩&∪, which means that from B∩ and B∪ (contained in B∩
only an independent set B∩&∩ will remain. After removing F Y

∩ and FX
∩ we are

left with subsets of IX\Y and IY \X which together with B∩&∩ form a subset of
the basis B.

Summing up del(X ∩ Y ) and del(X ∪ Y ), we have

2|F∩&∪|+ |FX
∪ |+ |F Y

∪ |+ |FX
∩ |+ |F Y

∩ | ≥ del(X ∩ Y ) + del(X ∪ Y ). (3.3)
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Equations 3.3 and 3.2 together give us the desired submodular inequality.

Another key lemma is that duality preserves connectivity of any partition:

Lemma 13. [BW12] For any M and partition (X,X) it holds that delM(X) =
delM∗(X) and therefore it also holds that κ(M) = κ(M∗).

Proof. Let BX be the basis of X and BX the basis of X. Suppose that KX is the
minimal separation when we remove elements only from BX , and define KX in a
similar fashion.

We remember from Lemma 4 in Chapter 2, a set I is a base of M.X if and
only if there exists a base of X that extends I to a base of M. That is clearly true
for BX \KX and BX \KX , and so they are bases of M.X and M.X, respectively.

Moving to the dual, B∗X ≡ (X \BX)∪KX is an M∗|X-basis and B∗
X

, defined
symmetrically, is a M∗|X-basis.

We can also see that (B∗X \KX) ∪ B∗
X

= E(M) \ (BX ∪ (BX \KX)), and so
(B∗X \KX)∪B∗

X
is a basis of M∗ and we have removed exactly the same elements

KX in the process. The lemma follows.

Claim 12. The matroid M is 2-connected if and only if it is simply connected.

Proof. Suppose that the matroid is 2-connected but not simply connected. There-
fore there exist elements x, y that are not on the same circuit. Because of Claim
10 we know that the relation “being on the same circuit” forms an equivalence,
and so the equivalence classes of x and y are disjoint.

Suppose X is the equivalence class of x. We consider the partition (X,X)
and claim that del(X) = 0. If not, then choosing BX and BX forms a circuit that
needs to be disconnected by the set K, but then we have a circuit going outside
the equivalence class of x, which is a contradiction.

For the other direction of the equivalence, suppose that M is simply connected
but not 2-connected. Therefore del(X) = 0 for some set X where |X| ≥ 1, |X| ≥
1. Since K = ∅ this means that there was no circuit present in BX ∪BX for any
choice of BX and BX .

This is however a contradiction because we can find such BX and BX which
contain a circuit: Pick an element x ∈ X and y ∈ X and consider a common
circuit C for these two elements. As this circuit has elements in both sides of the
partition (X,X), C ∩X and C ∩X are both independent sets. Extending C ∩X
and C ∩X into bases of BX and BX respectively yields the desired contradiction.

Observation 9. Finite circuit or cocircuit limits connectivity. Given a matroid
M that contains a finite circuit C or a finite cocircuit D of sizes at most c, the
connectivity of this matroid is at most c.

Proof. Using duality of separations we can assume without loss of generality that
there exists a cocircuit D of size c. If we set X = D and Y for the remaining
elements, we can see that with any choice of BY , we can disconnect all circuits in
BY ∪X using c− 1 elements from X, as D was a cocircuit and thus there existed
an element from D which extended the basis BY .

The previous observation motivated Bruhn and Wollan to state the following
problem:
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Open problem 1. [BW12] Give an example of an infinite infinitely connected
matroid.

Note that there are finite uniform matroids of the form Uk/2,k which have in-
finite connectivity even in the finite matroid setting, but the infinite connectivity
of these matroids is generally considered a fluke of the definition.

3.4 Tutte’s Linking Theorem

Similarly as in the finite matroid theory, we can extend our new connectivity
function del not just on partitions, but on any two disjoint subsets:

Definition 16. Given two disjoint subset X, Y of the ground set of M, the
function del(X, Y ) is defined as follows:

del(X, Y ) = min
X⊆X′⊆E\Y

del(X ′).

This extension of the del function allows us to compare connectivity of a
disjoint pair of sets in M with its connectivity in a minor of M. A simple lemma
states connectivity is decreasing:

Lemma 14. [BW12] Given a mutually disjoint quadruple of sets X, Y,C,D, the
connectivity function satisfies delM(X, Y ) ≥ delM/C\D(X, Y ).

Proof. From Lemma 13 we know that computing connectivity in the primal is
the same as computing it in the dual, and so we can assume that C = ∅, as it
would follow the same argument as we apply for D 6= ∅, but in the dual matroid.

Assume we have a partition (X ′, Y ′), X ⊆ X ′, Y ⊆ Y ′ of the matroid M
that certifies the minimality of Definition 16, i.e. del(X ′) = del(X, Y ). Assume
that BDX′ is the maximal independent set of D ∩ X ′. and BDY ′ the maximal
independent set of D ∩ Y ′. We extend BDX′ to a basis of X ′ and BDY ′ to a basis
of Y ′.

In the minor M \ D, we can see that BDX′ \ D and BDY ′ \ D are bases of
X ′ \D and Y ′ \D, respectively.

Now, assume that there is a set K such that BDX′ ∪BDY ′ \K is a basis of M.
Looking at the matroid M\D, the only change to the partition is that we may have
removed additional elements from the bases BDX′ and BDY ′ . Therefore, since K
removed all circuits in BDX′∪BDY ′ , it also removes all circuits in BDX′∪BDY ′\D.

Therefore:

delM\D(X, Y ) = delM\D(X ′ \D, Y ′ \D) ≤ delM(X ′, Y ′) = delM(X, Y ).

A rather well-known result of Tutte states that whenever we compute del(X, Y )
for some subsets X, Y that are not partition of M, we can create a minor of
E \ (X ∪ Y ) which has the same value of del(X, Y ).

The paper of Bruhn and Wollan shows that this is the case also for finitary
and cofinitary matroids:
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Theorem 4 (Tutte’s Linking Theorem for finitary matroids). Let M be a finitary
or a cofinitary matroid. Then for any disjoint pair X, Y there exist disjoint sets
C,D ⊆ E \ (X ∪ Y ) such that delM(X, Y ) = delM/C\D(X, Y ).

However, the proof of this theorem uses finitarity in a very essential manner –
simplistically said, the proof iteratively generates a finite union Z of finite circuits
linking X to Y , and concludes that there are still many more circuits to be chosen
from E \ Z unless the connectivity of M|Z is high enough.

Therefore, the following still remains open:

Open problem 2. Does Tutte’s linking theorem (Theorem 4) hold for general
infinite matroids?

3.5 Connectivity of known matroids

The following series of claims shows the limits of current examples of matroids,
at least for potential candidates for infinite connectivity.

3.5.1 Cycle and bond matroids

Claim 13. Given an infinite graph G, any cycle matroid or bond matroid, finite
or infinite, is either finitary or cofinitary.

This claim follows from the theorem of Bruhn and Diestel:

Theorem 5. [BD11] Given an infinite graph G, a cycle matroid of G is a dual
of the finite bond matroid of G, and the bond matroid of G is a dual of the finite
cycle matroid of G.

Because of this theorem, any cycle or bond matroid contains a finite circuit
or cocircuit and the connectivity is bounded by the length of such a circuit.

3.5.2 Algebraic cycle matroids

The algebraic cycle matroids contain matroids without finite circuits and cocir-
cuits – the omega tree Tω was given as an example in the previous section.

However, Tω is essentially the only such matroid in its class:

Claim 14. Given an algebraic cycle matroid with degree ≤ ω, it either is isomor-
phic to Tω or it contains a finite circuit or a cocircuit.

Proof. Consider any graph G. G must be graph-connected, otherwise it would
have a cocircuit of size 2. Pick a vertex arbitrarily and create its spanning tree
using a BFS-like traversal. If we arrive at a vertex with a finite number of
neighbors, we know that there is a finite cocircuit in the algebraic cycle matroid.
Therefore, all the vertices need to be of the degree ω.

If at any point we arrive at an already traversed vertex, we necessarily get a
finite circuit. Therefore, at no finite point will the BFS procedure halt, and we
get a spanning tree that spans the entire graph G, and the graph is an omega
tree.

We give a proof in the later section of this chapter that the omega tree has
connectivity two. Therefore, all algebraic cycle matroids have finite connectivity.
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3.5.3 Thin sums matroids

As we have learned by Corollary 2, not all thin sums structures are matroids. We
also learned that thin sums matroids are not closed on duality.

Unfortunately, when we focus on the class of thin sums matroids that are
closed on duality – the set of thin sums matroids on thin function sets – we must
concede that Theorem 3 applies and all such matroids are cofinitary, which limits
their usefulness for connectivity in infinite matroids.

3.6 Infinitary matroids

In the search for the infinite matroid with infinite connectivity, due to Observation
9 we restrict ourselves only to matroids which have no finite circuit or a cocircuit.
Since we refer to them frequently, we employ the term infinitary matroid for such
matroids.

In an infinitary matroid, any finite set is automatically independent and co-
independent. For any partition (X, Y ) where X is of finite size, we immediately
know that there exists a basis of M completely within Y and such a partition is
not relevant for the connectivity of M .

The following lemma also establishes that some non-trivial infinite partitions
are irrelevant as well:

Lemma 15. Given a partition (X, Y ) of an infinitary matroid M such that
both parts are infinite and one of them is either independent or coindependent,
del(X, Y ) ≥ ω.

Proof. We already know that delM(X, Y ) = delM∗(X, Y ), so without loss of gen-
erality the set X is coindependent. This means that the set X does not contain
a cocircuit, which is equivalent to the fact that there exists a basis B of M that
avoids a set X. This basis B lies in M , so we pick this B as BY and the largest
independent set BX (which is of size at least ω) in X.

SinceBY = B is a basis ofM , any element ofX automatically creates a circuit.
If we choose to remove elements only on the side of X, in order to disconnect
all circuits, we have to remove all elements of BX and therefore del(X, Y ) ≥ ω.

3.6.1 Connectivity and properties of the omega tree

The only infinitary matroid presented in the literature to date was the omega
tree Tω, defined in Chapter 2. Since this matroid is of interest to us in the later
chapters, we list its properties and calculate its connectivity.

Observation 10. Any basis B of Tω has the following structure: from the root
leads exactly one infinite ray and all the other paths are finite. At the end of
any finite path, there is one edge e = (α, β) not in B. The vertex β is a root of
another basis B′ of Tω.

Proof. The proof is straightforward. There must exist at least one ray from
the root of the omega tree, otherwise we could add one more edge and preserve
independence. Clearly, two infinite paths would constitute a circuit, and so all
the other paths end after a finite number of edges.
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BTω BTω

BTωBTωBTω BTωBTω BTωBTω BTωBTωBTω

Figure 3.1: A recursive example of a basis of Tω. Dashed lines are not within the
basis. Every BTω pictured may be a different basis from B(Tω).

Observation 11. The omega tree matroid is not self-dual.

Proof. If Tω was self dual, then all cocircuits of Tω can be mapped to circuits of
Tω bijectively.

First we note that if we take a vertex v of the graph representation of Tω, then
δ(V ) (the edges adjacent to v) form a cocircuit. This is clear because if there was
a basis B avoiding δ(v), then adding a single edge of δ(v) cannot create a double
ray, as this edge would have one endpoint of degree 1. Therefore δ(v) intersects
all bases of Tω.

We can also see that δ(v) is minimal with the property of avoiding all bases,
as we can form a basis that uses any single edge to v and avoids all others by
using Observation 10.

Similarly, we can observe that if we are given a finite subtree S of Tω that
contains the root, the edge set δ(S) that exit the subtree S form a cocircuit. This
can be proven by contracting the subtree to the root.

Finally, suppose that the vertex v is contained in one such finite subtree S
and v is the leaf of S. Then all the edges of δ(v) except one are contained in δ(S).
If Tω was self-dual, then δ(v) forms a double ray, we have removed one edge of
such a double ray, added infinitely many others, and we arrive at another double
ray. This is not possible in Tω, we have to remove infinitely many elements to
move from a double ray to another double ray.

Corollary 3. The dual of the matroid Tω is not an algebraic cycle matroid.

Proof. From Observation 11 we know that Tω
∗ is not self-dual but from Obser-

vation 14 we know that any infinitary matroid that is also an algebraic cycle
matroid is isomorphic to Tω.
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Claim 15. The connectivity of the matroid Tω is 2.

Proof. The matroid is immediately 2-connected, because every element lies on a
cycle. To see that the connectivity is not higher, we create a partition (X, Y ) by
choosing an arbitrary edge e ∈ Tω and putting all edges of one graph-connected
component of Tω − e plus e itself into X and all the edges of the other graph-
connected component into Y .

From Observation 10 on bases of Tω we know that given a basis BX of X
and a basis BY of Y , all the arising circuits of BX ∪ BY must use the edge e.
Removing it therefore creates an independent set, thus del(X, Y ) = 1.
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4. The plus operation

4.1 Basic properties

The plus operation is a unary operation on matroids that was introduced in
[AHCF11a] and applied in [BC12b] in order to settle a question about a circuit and
cocircuit meeting in infinitely many points (See Chapter 4 for the application).

Definition 17. Given a finite or an infinite matroid M where E is not indepen-
dent, the matroid M+ is created by extending bases by one element not present
in them. Formally:

B(M+) = {B + x|B ∈ B(M), x 6∈ B}.

Definition 18. The minus operation forms a matroid M− (provided that M has
a nonempty basis) by shrinking bases by an element. Formally:

B(M−) = {B − x|B ∈ B(M), x ∈ B}.

The duality of the plus and minus operations follows from the duality of the
bases.

Observation 12.
(M∗)+ = (M−)

∗
.

We now verify that the operations create a valid matroid from a valid matroid:

Observation 13. The plus and minus operation forms a matroid for every ma-
troid M.

Proof. Because of duality it suffices to prove this for M+ only. The independent
sets of M+ are either of the form {I|I ∈ I(M)} or of the form {I+x|I ∈ I(M), x 6∈
I}. Any indepenedent set of the second form is an extension of the old indepen-
dent set, while the old independent sets remain indepenedent by definition. Thus
(I1) and (I2) are fulfilled.

(I3’) holds because we can extend any independent set either the same way as
in M, or (if the first option is not possible) with any single element that remains.

As for (IM), we can select a maximal independent subset of any set simply by
finding such a set for M, then extending it by one element that is not present, if
such an element exists.

While the operations are defined similarly for bases, it is notable to see that
much changes in the family of independent sets. For those, the plus operation
extends every independent set by any element that would have made it dependent
in M (and old independent sets remain independent), the minus operation changes
no independent set except for the bases, which all disappear.

There is a useful description of circuits of M+ and M− as well:
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Observation 14. The circuits of M− are either bases of M or circuits of M,
unless there was a circuit of M that contained a basis – these circuits are not
present in M−. The circuits of M+, on the other hand, arise as minimal sets
C with the following property: “erasing any one element e from the set C will
produce an M-dependent set C − e that contains exactly one M-circuit.”

We can also think of the circuits in M+ as subsets of the unions of circuits
C1 ∪C2 based on dependence of the subsets of C2 in M/C1. This notion is made
precise in Lemma 18.

4.2 Applying plus on the omega tree

We first investigate applying the plus operation on the infinite matroid Tω, defined
in Section 2.

The bases are of the form B1+x+B2, where B1 and B2 are bases of two copies
of Tω that can be thought of as the “components” of Tω − x. This means that
the new bases will always contain double rays. It turns out that as the number
of rays rises, so does connectivity:

Claim 16. Applying + on Tω increases its connectivity by one.

Figure 4.1: Two types of circuits in the matroid Tω
+. On the left is a pair of

double rays, on the right a triple ray. All circuits of Tω
+ are of these types.

Proof. The upper bound on the increase of connectivity is easy to observe, as the
connectivity cannot be increased by more than 1 since we can apply the same
argument for connectivity of Tω to the connectivity of Tω

+, while removing 2
edges.

As for the lower bound, we consider a partition (X, Y ). Start from the root
of Tω and include all encountered edges into BX or BY . If there are at least two
infinite rays from the root with edges only in X, we include those two rays in BX

and take only finite sections of all the remaining rays.
We know that after finitely many steps from the root, we encounter edges in

Y . We include these edges in BY in the same manner (if the entire subtree is
in Y , include two infinite rays). For all the remaining subtrees we encounter, we
preserve the independence of BY and BX – by including only one infinite ray in
the subtree whenever we avoid an edge of X and the same for Y .
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Regardless of the separation we end up with the pair (BX , BY ) that are inde-
pendent and contain at least four rays. We know that any basis of M+ contains
exactly two infinite rays in one connected subtree and exactly one infinite ray in
all the other connected subtrees, therefore we need at least two edges removed
from BX , BY to arrive at a basis of M+.

It is easy to see that this argument can be easily extended to higher itera-
tions of the plus operation. We have therefore produced a sequence of infinitary
matroids which are not isomorphic to each other. This also implies the following
corollary:

Corollary 4. For any 2 ≤ k < ω there exists a matroid without finite circuits
and cocircuits with connectivity k.

4.3 Decomposition of Tω using 2-sums

The main advantage of working with Tω is that despite not being a graph matroid
itself, it has a nice graph-theoretical description.

We have shown in Chapter 3 that Tω has connectivity 2. Finite matroids can
be decomposed using the 2-sum operation into three-connected components, for
reference see e.g. Chapter 7 in the book of Oxley [Oxl11].

The 2-sum operation is not dependent on the finiteness of the matroid M and
can be restated for infinite matroids:

Definition 19. Given a matroid M1 and a matroid M2 for which holds that
E(M1) ∩ E(M2) = {e}, then the 2-sum M1 ⊕2 M2 is a matroid defined by its
circuit space, which is

C(M1 ⊕2 M2) = {C|e 6∈ C,C ∈ C(M1)} ∪ {C|e 6∈ C,C ∈ C(M2)}

∪{(C1 − e) ∪ (C2 − e)|e ∈ C1 ∩ C2, C1 ∈ C(M1), C2 ∈ C(M2)}.

The validity of such a definition was shown first by [AHDP11]:

Lemma 16. [AHDP11] For two infinite matroids that have a single element in
common, M1 ⊕2 M2 produces a matroid.

The main result of [AHDP11] enables us to decompose 2-connected matroids
which are not 3-connected using 2-sums into smaller objects:

Theorem 6. [AHDP11] Every connected matroid with at least three elements can
be decomposed into a unique, irreducible tree where nodes are either 3-connected
matroids, circuits, or cocircuits, and two nodes are connected by an edge exactly
when the two nodes can be joined by a 2-sum operation. Summing the nodes as
indicated by the edges produces the original matroid M.

As the tree Tω is a 2-connected matroid which is not 3-connected, Theorem 6
guarantees a tree decomposition int 2-sums. In order to understand the structure
of Tω better, we show this decomposition.

Since Tω has a tree-like structure, it is natural to try splitting it into 2-sums at
its vertices. If we contract everything else except one vertex and its edges, each
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edge will represent a ray, and no two rays are contained within an independent
set. Therefore, we obtain a copy of the uniform matroid U1,ω, where all elements
(pictured as arrows on Figure 4.2) are edges that will disappear after the 2-sum
is applied. Note that U1,ω is a cocircuit of size ω.

v

⊕2
⊕2
⊕2
⊕2
⊕2
⊕2
⊕2

Figure 4.2: The decomposition of one vertex v of the graph Tω. Note that none
of the edges of the matroid U1,∞ associated with v remains in the final matroid
Tω.

We see that every element e of the matroid Tω is adjacent to two vertices
and therefore it needs at least two additional edges in its node. These edges are
depicted on Figure 4.3 as arrows. The resulting node is a circuit of size 3 (a
triangle).

⊕2

e
⊕2

Figure 4.3: The decomposition of an edge e of Tω in the 2-sum. The edge itself
is the undirectional one, the other edges will be used as common edges in the
2-sum. The matroids U1,ω representing vertices are on the left and on the right
of the edge e.

4.4 Applying plus on algebraic cycle matroids

We have already shown the circuit structure of Tω
+, but we can similarly describe

all circuits of M+ for a given algebraic cycle matroid M. This description has
first appeared in [BC12b].
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Before presenting the description of the circuits of M+ for M algebraic, we
show a necessary and a sufficient condition for being a circuit of M+ for any
matroid, not only an algebraic cycle matroid.

Lemma 17. [BC12b] Let C be a circuit of M and I a disjoint independent set.
Then, C ∪ I is independent in M+ if and only if I is independent in M/C.

Proof. ⇒: If C ∪ I is independent in M+, then we can extend it to a basis B of
M+. This basis is of the form B′ + e for some basis B′ of M and one element e
not present.

Since the fundamental circuit of B′ + e must be C, we know that for any
f ∈ C, (C − f) ∪ I is independent in M. Applying Corollary 1 in Chapter 2, we
get I being independent in M/C.
⇐: Suppose that I is independent in M/C. Using Corollary 1, we know that

I∪I ′ ∈ I(M) for all I ′ ∈ I(M|C). This especially means that I∪(C−f) ∈ I(M).
Adding f to I ∪ (C − f) gives us an independent set of the form I ′ + f and such
a set is therefore also M+-independent.

Lemma 18. [BC12b] Let C1 be a circuit of M and C2 a circuit of M/C1. Then
C1 ∪C2 is a circuit of M+. Furthermore, every circuit in M+ arises in this way.

Proof. Since C1 is a circuit of M and C2 is a dependent set, by Lemma 17 we
have that C1 ∪ C2 is dependent in M+.

We now show that it is minimal with such property. Clearly, removing any
element from C2 will form an independent set in M/C1 and we will reach an
independent set.

Consider therefore removing an element f from C1 and assume that C1∪C2−f
is still dependent. C1−f is now independent. We select any g ∈ C2, which means
C2− g is M/C1-independent, and extend C2− g to a basis B of M/C1. Applying
Lemma 4, we get that B ∪ (C1 − f) is independent in M. Therefore, adding g to
B∪C1−f makes it of the form I+g = C1∪C2−f and therefore M+-independent,
which is a contradiction.

Corollary 5. [BC12b] Every union of two circuits of M forms a dependent set
of M+.

Claim 17. [BC12b] Given an algebraic cycle matroid M, all circuits of M+ are
subdivisions of the form (a) - (h) on Figure 4.4.

Proof. From Lemma 18, we know that every circuit of M+ where M is an algebraic
cycle matroid must be of the form C1 ∪C2, where C2 is a circuit of a contraction
of M/C1.

From Corollary 5 we know that any circuit of M+ arises as a subgraph of the
union of two circuits in M. We list the possible situations and categorize them.

Consider two circuits C1 and C2 in the matroid M and let us see what happens
when we contract C1 to a single element. If C2 was finite and shared a vertex
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4.4: The only possible contractions of a circuit of a M+ when M is an
algebraic cycle matroid.

with C1 or was completely disjoint from C1, we get circuits is M+ of the type (a)
or (c). If the circuit C2 had an intersection with C1, we get a circuit of type (b).

Suppose C1 and C2 are both infinite circuits (double rays). If the double rays
do not share an edge or a vertex, contracting one again does not affect the other,
and we get a circuit of the case (d).

If C1 and C2 share an edge or a vertex, then we note that a circuit of M/C1 is
any inclusion-minimal set that can be extended by elements from C1 to a circuit
of M. From this we get that any single ray of C2 that is adjacent to the circuit
of C1 will form a circuit of M/C1, and we get a circuit of the form (e).

The circuits (f), (g) and (h) are created by the same arguments, only in these
three cases one of the circuit is finite and one is infinite.

4.5 Applying plus on infinitary matroids

The proof of our claim about increasing connectivity in Tω was linked to the
structure of the tree, however, the plus operation does increase connectivity in
general matroids without finite circuits and cocircuits. This is expressed by the
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following theorem:

Theorem 7. For every infinitary matroid M with connectivity 2 ≤ k < ω, the
matroid M+ has connectivity k + 1.

Proof. Suppose that there is a k-separation of M+. This means that we have a
partition (X, Y ) such that I = BX ∪ BY \ K ∈ I(M+), where K is a set of k
elements. We can assume that I is a basis of M+. As such, it is of the form
B + e, B ∈ B(M). Our goal is to show that this partition (X, Y ) also admits a
(k − 1)-separation of M.

Case 1. Suppose that neither side was independent in M , that is, BX is of
the form BM

X + eX and BY of the form BM
Y + eY .

Observation 15. Without loss of generality, we can assume that BX ∪BY \K =
B + eY and K ⊆ BX .

Proof of Observation 15. From Claim 11 in Chapter 3, we know that the size of
the cut set is the same if we remove elements only in the part X. Since the
maximum independent set on the side of Y is of the form BM

Y + eY , we know
that there is a unique M-circuit in BM

Y + eY that contains eY . This circuit must
also be the unique circuit contained in BX ∪BY \K, and so eY can be the extra
element present in the final independent set.

Case 1a. Suppose that eX was removed in the process – it is included in the
removed set K. We look at bases BM

X and BM
Y . Since we do not need to remove

eX in M (eX is not part of the basis BX) and B = B + eY − eY is a basis of M,
we see that (BX , BY ) are bases witnessing the k − 1 separation of (X, Y ) in M.

Case 1b. Suppose that eX is not present in K. Looking at the M-separation,
we have removed K elements plus eX , which was not present in the original BM

X .
We need to show that at least one of the elements of K can be returned to BX∪BY

while it remains M-independent.

BX BY

eX eY

Figure 4.5: A visual representation of the situation in the proof of Theorem 11.
The bold segments represent the elements of the set K, which is only in the part
X. Our goal is to show eX can play the role of one element of CX ∩K.

From our last observation we know that in the M+-basis B+ eY , the only M-
circuit that is present is fully contained in the (M-dependent, M+-independent)
set BY + eY . Therefore, the single fundamental M-circuit CX of BX + eX must
have been intersected by at least one element from K.
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We now return all elements of K back, therefore working with the ground set
of BX + eX ∪ BY + eY . We will now employ circuit elimination, along with the
Lemma 11 from Chapter 2:

We now apply circuit elimination (C3) on the system as follows:

• Our main circuit will be the fundamental circuit CX containing eX .

• The guaranteed element will be eX .

• The indexing family will be K ∩ CX .

• The circuits indexed by K∩CX will be the M-circuits of BX +eX ∪BY +eY
that are identifying for the respective elements of K. We also require that
eX does not lie on the identifying circuits of K.

We are not guaranteed that the circuit elimination will succeed, therefore we
consider the failure of the procedure also.

If the circuit elimination procedure succeeds, this means that we have found
a circuit in BX + eX ∪ BY + eY that contains eX but no element of K. This
circuit could not have been contained in the M+-basis B+e because only a single
M-circuit is contained in this basis and such circuit does not contain any elements
of X, and so we reach a contradiction.

If the circuit elimination could not have been realized, this means that one of
the conditions was not met. If there is more than one element of K on CX , then
the identfying circuits exist and are distinct from CX .

The remaining option is then that there is one element p ∈ K ∩C on CX and
all identifying circuits of p contain eX . We can therefore remove p out of K and
add eX to it. As all identifying circuits of p contained eX also, we are guaranteed
that all the M-circuits of BX +eX ∪BY +eY \K are removed except for the single
circuit contained in BY + eY (which does not get removed or play any role as we
only remove elements from the part X).

The new set K ′ = K − p′ + eX is therefore a separating set and we can use
Case 1a to reach a contradiction again.

Case 2. Suppose that BM+

X is of the form BM
X , that is, the independent set

is directly inherited from M . This means that the partition X was independent
in M . However, Lemma 15 from Chapter 3 gives us that any independent set on
one side automatically results in a separation of ∞ in an infintary matroid, and
so this holds for M+ also.

From Theorem 11 and the fact that every infinitary matroid is also a dual of
an infinitary matroid, we get the following:

Corollary 6. For every infinitary matroid M with connectivity 2 ≤ k < ω, the
matroid M− has connectivity k + 1.

Remark. While the results of this chapter (primarily Corollary 8) on the
systematic increase of connectivity for infinitary matroids could make us hopeful
that we can find an infinitely connected infinitary matroid through taking some
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limit of a sequence of matroids with increasing connectivity, this does not seem
realistic.

For example, looking at the sequence of increasing plus iterations of the omega
tree, we see that with every iteration, the bases of (Tω)k+ are those of the form
B + S, where |S| = k and B ∈ B(Tω).

However, considering a matroid of the form B + S, where B ∈ B(Tω) and
|S| = ω, we notice the same problem which leads to the structure Uω,2ω not
forming a matroid – the form B + S would allow us to create ω rays from the
root, but adding one more would again constitute a structure of the form B + S,
thus failing (IM).

We also present the following small observation related to the previous remark:

Observation 16. If there exists an infinite matroid M such that it has connec-
tivity ∞, then M+ and M− are matroids with the same property.

This observation makes it probable that once a matroid M with infinite con-
nectivity were to be found, we could generate many with such property.
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5. Intersections of circuits

5.1 Circuit-cocircuit intersection

The very useful Claim 5 of Chapter 2, proven for infinite matroids in [BDK+13]
and likely observed for B-matroid even prior to this paper, proves that circuits
and cocircuits of a matroid cannot intersect in one element.

It is not difficult to construct a matroid M where a circuit and a cocircuit in-
tersects in k elements with k finite. However, infinite circuit-cocircuit intersection
was not present in most examples of infinite matroids. The following definition
was proposed for such matroids that have this intersection:

Definition 20. A matroid M is called wild if it contains a circuit-cocircuit in-
tersection of size at least ω. A matroid is called tame if all such circuit-cocircuit
intersections are finite.

In [BDK+13], the question was posed whether infinite matroids can have
a circuit-cocircuit intersection of infinite size. The existence of such intersec-
tion was considered to be false by some authors (for instance by Dress [Dre86]),
and potential axiomatics of infinite matroids were built on the presumption that
circuit-cocircuit intersection is always finite.

This presumption of Dress was however false, as infinite matroids often contain
such an intersection, and a simple example was shown by Bowler and Carmesin
in in [BC12b]:

Theorem 8. [BC12b] There exists a wild matroid.

Proof. Consider an algebraic cycle structure N such that it arises as a disjoint loop
l along with a union of two single rays with vertices i1, i2, i3, . . . and j1, j2, j3 . . .
with additional edges {ik, jk} for all k ∈ ω. The graph in Figure 5.1 does not
contain a subdivision of the Bean graph and so N is a matroid by Claim 7.

The matroid N is depicted in Figure 5.1

Figure 5.1: The matroid N+ used in the proof of Bowler and Carmesin. The
circuit C is dashed, the cocircuit D is bold.

We see that the set R = {{i1, j1}} ∪
⋃
k{ik, ik+1} ∪

⋃
k{jk, jk+1} is a double

ray and therefore forms a circuit in N, and so C ≡ R + l forms a circuit in N+.
To find a cocircuit of N+, we look for a circuit of (N∗)−. Using Observation

14 in Chapter 4, we see that some circuits of a matroid N− are bases of N. In our
case, we look for a basis of N∗, which means a complement of a basis of N. From
this argument we have that D = {

⋃
k{jk, jk+1}}+ l forms a circuit of (N∗)− and

a cocircuit in N+.
The intersection C∩D is the entire single ray

⋃
k{jk, jk+1}+l and it is therefore

infinite.
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Note. The application of the plus operation on N was necessary, because all
the cocircuits of N are finite otherwise, in fact every cocircuit of N is of cardinality
two or three.

The paper [BC12b] also shows that almost every matroid M+ is a wild matroid.
We will employ Lemma 17 and Lemma 18 from Chapter 4.

Theorem 9. Let M be any matroid that fulfills these conditions:

1. M contains at least two circuits.

2. There exists a circuit of M and for this circuit there exists a basis B such
that C \B is infinite.

Then, M+ is a wild matroid.

Proof. The proof is a generalization of the construction in Theorem 8.
Suppose that M contains a circuit C1 and a circuit C2 and that C1 satisfies

the condition (2) with a basis B. C2 is dependent in M/C1 because of Corollary
1 in Chapter 2, and contains a circuit C ′2 of M/C1. Then, by Lemma 18, we know
that C1 ∪ C ′2 forms a circuit in M+.

We already know that for C1 and B holds that C1 \B is infinite, therefore it
also holds for the set C1 ∪ C ′2. The cardinality of the difference (C1 ∪ C ′2) \ B is
the same as the cardinality of the intersection (C1 ∪C ′2)∩B, with a cobasis B of
M which becomes a cocircuit of M+, and the matroid M+ is wild.

Corollary 7. M+ is a wild matroid for every infinitary matroid M.

Proof. We verify both conditions of Theorem 9.

1. If a matroid has an infinite cocircuit D, then D−e is codependent and there
exists a basis B that avoids D − e. Any element f from the still infinite
set D− e forms a unique fundamental circuit within B + f . Therefore, the
condition (1) is met.

2. Consider a circuit C. The size of the circuit is infinite. Consider the set C
in the dual matroid M∗. Apply (IM) to find a maximum coindependent set
A in the set C. Since the matroid is infinitary, the set A is infinite. Since
we applied it in the dual, the set A is coindependent, and so there exists a
basis of M that avoids it completely. For this basis B, C \B is infinite and
the condition (2) holds also.

The existence of the wild matroid was open for a time primarily because
such matroids are not common among the standard examples of infinite graph
matroids, as our next claim illustrates:

Claim 18. Every matroid M formed as an algebraic cycle matroid (and also every
matroid formed as a graph cycle matroid) is tame.

To prove this claim, it is useful to show the following description of the cocir-
cuit space of the algebraic matroids:
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Definition 21. Given an algebraic cycle graph G, a skew cut F is an edge cut
in the graph G if and only if at least one part of the graph G separated by the
skew cut contains no ray and F is inclusion-minimal with this property.

Observation 17. [BD11] The cocircuits of any algebraic cycle matroid M formed
from the graph G are precisely the skew cuts of G.

Proof. Suppose we are given a skew cut F of G. Suppose that F is not a cocircuit,
then F avoids a basis B. Adding any element of e ∈ F to B forms a circuit, which
has to be either a finite circuit or a double ray. However, we also know that e
connects to a part of the skew cut without any ray. Adding one edge cannot
form neither a finite circuit (because F is a cut) nor a double ray, and we have a
contradiction.

Now, suppose we have a cocircuit F of M. Suppose that both sides of the cut
contain a ray. Consider an edge e ∈ F . If both endpoints of e are in the same
side of the cut, we have a circuit and a cocircuit meeting in one element, violating
Claim 5.

We can now suppose that the endpoints are in different sides of the cut. As
both sides contained a ray (which is independent by itself), we can form a basis B
that contains the rays on both sides, and adding an edge e to this basis, we form
a double ray that meets exactly in one element with F , again violating Claim 5.

Therefore, we know that one side of the cut contains no ray. We also know F is
minimal with this property because the cocircuit F itself is also inclusion-minimal
and from the previous paragraph we know that the properties are equivalent.

Proof of Claim 18. We can again assume without loss of generality that the graph
G is graph-connected, as otherwise a cocircuit would only be in one connected
component.

Consider a skew cut F , which splits the graph G into a part V (S) without
no ray and the rest. Suppose that a circuit C has an infinite intersection with it.
Then such a circuit must automatically be a double ray.

After each transition from the part V (S) to the other part, the circuit C has
to include exactly one edge of F and it visits every vertex of V (S) at most once.

We have assumed that the circuit C has infinite intersection with F , and so
it must visit infinitely many disjoint vertices in V (S). However, this means that
the side V (S) has infinitely many vertices and it is connected, and so it contains
a ray, which is a contradiction.

While many matroids arising from the “natural” constructions from graphs
and thin sums contain a finite circuit or a cocircuit, we have already shown many
examples of infinitary matroids, where no such structures exist. Motivated by this
lack of finitarity in matroids, we could pose the question whether there exists a
matroid such that all circuit-cocircuit intersections are infinite.

However, this question is rather easy to answer negatively using the following
lemma, found for example in the PhD thesis of Robin Christian [Chr10]:
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Lemma 19. [Chr10] Given an (infinite) matroid M without loops and coloops, a
dependent set C is a circuit if and only if for every two distinct elements e, f ∈ C
there exists a cocircuit D such that C ∩D = {e, f}.

Proof.
⇒: Pick any element e ∈ C. C − e is independent, so we can extend it to

a basis B. Looking at the cobasis B, we see that it contains only the element e
from C.

Consider any other element f ∈ C−e. The set B+f is coindependent, and so
it contains a fundamental cocircuit D . This cocircuit D contains f but because
of Claim 5, the intersection C ∩D cannot be of size 1, but the only other element
C ∩D can contain is e, and so C ∩D = {e, f}.
⇐: Suppose that the condition holds but C is dependent and not a circuit.

Therefore, there exists a strict subset C ′ ⊆ C such that C ′ is a circuit.
Choosing the element e from C ′ and the element f ∈ C\C ′, we find a cocircuit

that intersects C in {e, f}, but this cocircuit intersects C ′ only in the element e,
which is a contradiction with Claim 5.

The authors of [BC12b] believe that wild matroids serve as a good counterex-
ample to many claims about infinite matroids. To back this assumption, they
provide the following theorem, which we state without proof:

Theorem 10. [BC12b] Consider the algebraic cycle matroid N used in the proof
of Theorem 8 and depicted on Figure 5.1. Then, matroid N is a thin-sums matroid
as is N+, but (N+)

∗
= (N∗)− is not a thin sums matroid.

5.2 Circuit-circuit intersection

We now briefly consider the behaviour of intersections of two circuits (or dually,
two cocircuits). The question whether there exists a matroid with infinite circuit-
circuit intersection is not very interesting, as already an algebraic cycle matroid
of a triple ray satisfies this condition.

In the still ongoing search for an infinitary matroid with infinite connectivity,
it is expected that if such a matroid exists, it has its circuits interlocked very
densely, as that is the general understanding of connectivity.

Since we know there are many infinitary wild matroids, we can ask whether
there is an infinitary matroid where not only all the circuits and cocircuits pairwise
intersect in an infinite number of elements.

Such a condition sounds too strict, and it is indeed the case:

Observation 18. In an infinitary matroid M, there is either a pair of circuits
or a pair of cocircuits such that their intersection is of size at most two.

Proof. Choose an arbitrary circuit C. We now apply Lemma 19 to get a cocircuit
D that intersects C in at most two elements.

Now, apply (IM) to find the maximum independent set BD in D. If that set is
not the entire set D, then adding an element from D \BD would create a circuit
with the desired property.
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If the set BD is the entire set D, then the cocircuit D is also independent,
which means (looking at the matroid M∗) that there is a cobasis B′ in the set
D. Adding an element of D to this basis forms a cocircuit, and this cocircuit has
exactly one element common with D.

If we look at the structure of the circuits of the matroid Tω, we see a much
larger variety of circuit-circuit intersections – for example a large set of mutually
disjoint circuits. The examples strongly suggest that there are much stronger
lemmas about the structure of infinitary matroids and their circuit spaces. We
therefore believe Observation 18 can be strengthened into a much stronger one.
Motivated by this, we ask the following:

Open problem 3. How many disjoint circuits or cocircuits can be found in any
infinitary matroid M?
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6. Conclusion

6.1 Summary

We have presented most of the core of the infinite matroid theory throughout the
thesis. Having presented the notion of infinite matroid connectivity and its basic
properties in Chapter 3, we have used it in conjunction with the plus function
from Chapter 4 to study the omega tree matroid, its dual, the as of yet still
unexplored class of infinitary matroids and other matroids. We have also briefly
investigated the structure of the intersections between circuits and cocircuits.

We restate our main results here for convenience:

Theorem 11. For every infinitary matroid M with connectivity 2 ≤ k < ω, the
matroid M+ has connectivity k + 1.

Corollary 8. For any 2 ≤ k < ω there exists a matroid without finite circuits
and cocircuits with connectivity k.

We would also like to note that before this thesis, the only referenced example
of an infinitary matroid in the literature was the algebraic cycle matroid Tω. We
have employed an existing method (the plus function) to generate many more.

6.2 Future work and final notes

We believe our future work will focus on the Open problem 1 (search for infinitely
connected infinite matroid), as it is the most essential open problem of the infinite
matroid theory of today. The key to solving this problem is finding stronger
theorems on the properties of infinitary matroids, as any infinitely connected
matroid must be infinitary. Open problem 3 may be a good starting mark.

The constructive approach to finding the infinitely connected matroid would
likely involve discovering an entirely new class of infinitary matroids, as the cur-
rent classes of infinite matroids are often either finitary or simply with a mix of
finite and infinite circuits.

However, finding a large class of new matroid examples, perhaps one that has
its base in geometry or set theory, would be very useful on its own, as infinite
matroids (in our opinion) still suffer from lack of examples.

Besides Open problem 1, there are many other open question in infinite ma-
troid theory, for example relating to different axiomatics, the class of thin sum
structures which form a matroid, or related to the Tutte Linking Theorem (Open
problem 2.)

It would be also very notable if we could apply relative rank function or some
other new property of infinite matroids to re-prove some of the theorems already
existing in this field. We would like to note Lemma 12 and Claim 10, which are
seemingly stating a very simple fact but their current proofs are rather technical
and involved.

We hope that we have been able to convince you that the theory of infinite
matroids is interesting, active, yet still full with undiscovered examples and the-
orems.
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