
Processing of Turkic Languages

Sibel Ciddi

Faculty of Mathematics and Physics

Charles University in Prague

Thesis Supervisor:

RNDr. Daniel Zeman, Ph.D., Univerzita Karlova

Co-Supervisors:

Prof. Dr. Hans Uszkoreit, Universität des Saarlandes

Dr. Yi Zhang, Universität des Saarlandes

Specialization:

Mathematical Linguistics

A thesis submitted for the degree of

European Masters in Language and Communication Technologies

2012 - 2013

mailto:sibelciddi@gmail.com
http://ufal.mff.cuni.cz/
http://www.cuni.cz

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In date signature of the author

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

........, den Unterschrift

Acknowledgements

I am thankful to everyone who has supported me during my journey
sharing both my happiness and difficulties. I give my special grati-
tude to my local coordinators and supervisor in Prague, and the LCT
program for giving me the opportunity to study in Europe. Finally,
I am thankful to my sister, İdil, without whose support I could not
have made it through this far.

Sibel Ciddi
Prague, 2013

Abstract

Title: Processing of Turkic Languages
Author: Sibel Ciddi
Department: Institute of Formal and Applied Linguistics,
Faculty of Mathematics and Physics, Charles University in Prague
Supervisor: RNDr. Daniel Zeman, Ph.D.
Abstract: This thesis presents several methods for the morpholog-
ical processing of Turkic languages, such as Turkish, which pose a
specific set of challenges for natural language processing. In order to
alleviate the problems with lack of large language resources, it makes
the data sets used for morphological processing and expansion of lex-
icons publicly available for further use by researchers. Data sparsity,
caused by highly productive and agglutinative morphology in Turkish,
imposes difficulties in processing of Turkish text, especially for meth-
ods using purely statistical natural language processing. Therefore,
we evaluated a publicly available rule-based morphological analyzer,
TRmorph, based on finite state methods and technologies. In order
to enhance the efficiency of this analyzer, we worked on expansion of
lexicons, by employing heuristics-based methods for the extraction of
named entities and multi-word expressions. Furthermore, as a prepro-
cessing step, we introduced a dictionary-based recognition method for
tokenization of multi-word expressions. This method complements to-
kens in the larger multi-word expression lexicons, and prepares them
for further morphological processing. Experiment results point out
that the new addition of lexical tokens provide promising coverage
increase for the text processed by TRmorph. The dictionary-based
recognition method enables tokenization of multi-word expressions;
and tokenized multi-word expressions help reducing morphological
ambiguity. The proposed method enhances the efficiency of a purely
rule-based morphological analyzer with finite-state transducers.
Keywords: morphological analysis, finite-state transducer, finite-
state automata, recognition and tokenization of named entities, and
multi-word expressions, morphological & lexical ambiguity.

Abstrakt

Název: Zpracováńı turkických jazyk̊u
Autor: Sibel Ciddi
Katedra: Ústav formálńı a aplikované lingvistiky,
Matematicko-fyzikálńı fakulta, Univerzita Karlova v Praze
Vedoućı diplomové práce: RNDr. Daniel Zeman, Ph.D.
Abstrakt: Tato práce představuje a na př́ıkladu turečtiny demon-
struje několik metod morfologického zpracováńı vhodných pro tur-
kické jazyky, jejichž poč́ıtačové zpracováńı přináš́ı sadu specifických
problémů. Př́ınosem práce je také značné rozš́ı̌reńı lexikálńı databáze
a souvisej́ıćıch dat potřebných pro morfologickou analýzu a syntézu;
tato data jsou nyńı volně dostupná veřejnosti. S ohledem na vysoce
produktivńı a aglutinačńı tureckou morfologii a s ńı spojenou ř́ıdkost
dat byl omezený rozsah slovńıku významnou překážkou poč́ıtačového
zpracováńı jazyka, zvláště pokud jde o zpracováńı statistickými me-
todami. Proto jsme d̊ukladně otestovali a vyhodnotili veřejně do-
stupný, na konečných převodńıćıch založený morfologický analyzátor
TRmorph. Zaměřili jsme se na rozš́ı̌reńı záběru a slovńıku tohoto ana-
lyzátoru. Za t́ım účelem jsme navrhli heuristické metody pro źıskáváńı
pojmenovaných entit a v́ıceslovných výraz̊u. Daľśı vylepšeńı spoč́ıvá
ve slovńıkovém rozpoznáváńı v́ıceslovných výraz̊u, které je předstupněm
k jejich morfologickému zpracováńı. Výsledky experiment̊u ukazuj́ı,
že takové heuristické rozš́ı̌reńı slovńıku slibně zvyšuje pokryt́ı text̊u,
které jsme s pomoćı TRmorphu rozebrali. Slovńıková metoda nejen
umožňuje správnou tokenizaci v́ıceslovných výraz̊u, ale také t́ım snižuje
(lexikálńı) morfologickou nejednoznačnost a připravuje analyzovaný
text pro použit́ı v aplikaćıch vyšš́ı úrovně. Námi navržený př́ıstup
tak zvyšuje účinnost čistě pravidlového morfologického analyzátoru s
konečnými převodńıky.
Kĺıčová slova: morfologická analýza, konečný převodńık, konečný
automat, rozpoznáváńı pojmenovaných entit, rozpoznáváńı v́ıceslovných
výraz̊u, morfologická a lexikálńı nejednoznačnost.

Contents

Contents vi

1 Introduction 1

2 Motivation 4
2.1 Morphological Processing . 4
2.2 Turkish Morphology . 9

2.2.1 Word Formation in Turkish 10
2.2.2 Morphophonology (sound alternations) in Turkish 11
2.2.3 Vowel Harmony . 14
2.2.4 Consonant Alternations 15

3 Overview of Previous Work and Existing Tools in Processing of
Turkish 20
3.1 Rule-Based Methods in Morphological Processing 21
3.2 Statistical Methods in Morphological Processing 25
3.3 TRmorph: A Turkish morphological analyzer 28

3.3.1 Lexicon in TRmorph Baseline. 30
3.3.2 Processing of Nominal Word Formations 31
3.3.3 Processing of Verbal Word Formation 31
3.3.4 Additional Utilities in TRmorph-Extended Version 33

4 Evaluation of TRmorph 38
4.1 Newspaper Data Coverage . 38
4.2 Web-To-Corpus (W2C) Data Coverage 41
4.3 METU–Sabanci TreeBank, CoNLL Data Coverage 43

4.3.1 METU Turkish Corpus Data Coverage 49
4.4 Morpho Challenge Shared Task Data Coverage 50

4.4.1 Morpho Challenge Shared Task Data Evaluation 54
4.5 Results of TRmorph Evaluation 56

vi

CONTENTS

5 Methods for Expanding & Improving the Lexicon 58
5.1 Method 1: Extraction of New Lexical Tokens for the Expansion of

Lexicons . 58
5.1.1 Abbreviations . 58
5.1.2 Parsing of Numbers & Digits in Dates 59
5.1.3 Multi-word Expressions . 60
5.1.4 Proper Noun and Named Entity Lexicons 67

5.2 Method 2: Tokenization of Multi-word Expressions 70
5.2.1 Preprocessing Step: Preparation of the FSA Dictionary . . 70
5.2.2 Tokenization Step: Construction of the Finite-State Recog-

nizer . 72
5.3 Method 3: Finite-State Guesser for Proper Nouns 76
5.4 General Outline and Workflow of Methods 79

6 Evaluation of Methods in TRmorph+ 87
6.1 Evaluation of TDK Sentence Data Set with TRmorph+ 87
6.2 Evaluation of CoNLL Test Set using ITU-Validation Gold Standard 90

7 Conclusion 99
7.1 Future Work . 100

Appendix A 101

List of Tables 104

References 106

vii

Chapter 1

Introduction

There have been many research studies, and special interests groups around
morphologically rich languages with efforts to solve natural language process-
ing (NLP) problems, concerning their complex morpho-syntactic and morpho-
phonological structures. Many morphologically rich languages are at the same
time low-resource languages, i.e. the extent of available annotated data, dictio-
naries etc. for these languages is far from sufficient. Given these circumstances,
they continue to provide a lot of unresolved questions for researchers in the NLP
field. Agglutinative languages, such as Finnish, Hungarian and Turkish, indeed
have an extremely rich morphological system. In the present thesis, we focus on
Turkish; even though there are now some resources for this particular language,
Turkish is a representative of a large group of closely-related Turkic languages,
which are mostly very resource-poor. We believe that the methods we propose
to extend the Turkish resources can be largely reused for other languages in this
language family.

The existing research methodologies and various processing tools do attempt
to take advantage of recent developments in NLP. However, due to the complex
structure of agglutinative languages and the lack of resources, the state-of-the-
art implementations of various NLP tools, such as parsers, part-of-speech taggers,
morphological analysers, and Named Entity Recognition (NER) systems for these
languages still cannot be effectively compared with other NLP tools developed
for less complex languages that have access to a lot more resources.

In order to alleviate some of these current issues, this thesis aims to assess cur-
rently available NLP tools for the morphological analysis of the Turkish language,
and propose new extensions and methods with proven effectiveness in order to
complement the missing components, and improve the accuracy and the efficiency
of the existing tools. Finally, it aims to provide the researchers and academicians

1

with publicly available data resources that can be used for further research in sim-
ilar issues, or for the extension of the methods that will be described in this thesis.

With these goals in mind, the following chapter 2 discusses morphological
processing and analysis in a general context and describes the main features of
Turkish morphology that sets up the ground for the motivation in pursuing this
research. Chapter 3 continues to discuss the previous work and main methods
and theories in morphological processing with a focus on morphological analy-
sis of Turkish. Afterwards, it follows up by introducing one of the open-source
morphological analyzer tools, TRmorph: A Turkish morphological analyzer 1 2 by
Çöltekin (2010)—which sets up the main focus of this thesis. Chapter 4 continues
with the evaluation of TRmorph analyzer by assessing coverage and evaluation
metrics of data sets that were available at the time of this research.

The following chapters and sections, thereafter discuss three of the main,
interrelated issues concerning the morphological analysis of Turkish, thus the
TRmorph tool; and describe our proposed methods for improving those issues.
In other words, the focus of this thesis can be summarized around these main
issues as the following:

i. Morphological processing of out-of-vocabulary (OOV) tokens by extending
the fixed-lexicons in TRmorph

ii. Recognition and tokenization of Named Entity (NE) and proper nouns;
Recognition and tokenization of Multiword Expressions (MWEs) for further
morphological processing

iii. Morphological processing of unknown proper nouns via a finite-state guesser

After the discussion of our proposed methods, it also discusses present issues and
challenges about the potential methods for morphological disambiguation and
more fine-grained and accurately ranked morphological analysis.

More precisely, chapter 5 provides a discussion of techniques and methods em-
ployed for the expansion of fixed-lexicons in TRmorph-Baseline with by providing
an extension of existing lexicons and adding several new lexicons. Afterwards, it
introduces our method for the recognition and tokenization of multi-word expres-
sion units (including Named Entities) that is necessary for further morphological
processing. In the last section, it provides a description of the finite-state guesser
for OOV proper nouns, and follows up with the summary of current architecture

1http://www.let.rug.nl/~coltekin/trmorph/
2https://github.com/coltekin/TRmorph

2

http://www.let.rug.nl/~coltekin/trmorph/
https://github.com/coltekin/TRmorph

and work-flow that has been implemented for the new TRmorph analyzer.

Chapter 6 provides an evaluation of TRmorph—utilizing our methods—by
evaluating several data sets, including the manually created new data set with
a collection of sentences, consisting of examples with multi-word expressions. It
further provides a comparison of data sets evaluated with the TRmorph-Baseline,
and evaluated with TRmorph utilizing our methods. At last, it discusses the re-
maining challenges regarding different tagsets used in different morphological an-
alyzers, and our attempt at tagset conversion as a preprocessing step for context-
based morphological disambiguation. Finally, the last chapter 7 discusses the
conclusions gathered from this thesis study, and describes some of the limitations
that remain to be challenging. At the end, it provides a summary of questions
and issues that are yet to be resolved for further research.

3

Chapter 2

Motivation

Morphology is the study of the way words are built up from smaller
meaning bearing units i.e., morphemes. A morpheme is often defined
as the minimal meaning-bearing unit in language. So, for example,
the word fox consists of a single morpheme (the morpheme fox) while
the word cats consists of the morpheme cat and the morpheme –s.
As this example suggests, it is often useful to distinguish two broad
classes of morphemes: stems and affixes. The exact details of the
distinction vary from language to language, but intuitively, the stem
is the “main” morpheme of the word, supplying the main meaning,
while the affixes add “additional” meanings of various kinds.
(Jurafsky et al., 2000)

2.1 Morphological Processing

In written text processing, morphological analysis is one of the most important
tasks that most NLP tools need as a supplement to their final toolkit because it
serves as the basis for the development of more comprehensive natural language
processing tasks. For example, NLP applications that need to use a part-of-speech
tagger, (shallow) parsers, or phrase chunkers, Information Extraction (IE) tools
such as Question-Answering systems, or tools that are used in the development
of machine translation systems, and text proofing tools such as spell checkers and
grammar checkers, Computer Assisted Language Learning (CALL) tools and elec-
tronic and/or web-based dictionaries often rely on annotated text. In order for
these applications to be designed properly, morphological analyzers serve as a
pre-requisite, and often as a pre-processing layer.

Therefore, if we think of such natural language processing applications having

4

2. Motivation

a hierarchical workflow order; morphological analyzers would be placed in one of
the initial steps of the workflow that enable the larger NLP tools and systems
to proceed to the next steps required for their own set of tasks. If we examine
the steps that make up the morphological processing task, then we can divide
those steps into their own sub-tasks. In that case, those steps that lead to mor-
phological processing as a whole can be described as morphological analysis, and
morphological generation.

Morphological Analysis

Most commonly, morphological analyzers are implemented as finite-state trans-
ducers. Their main task is to map a given word form to all its possible morpho-
logical tags. For example, the word form ‘drinks’ may be mapped to its mor-
phological tags and return as its output: drink+V+3p+Sg which would denote
that the word form being analyzed is a verb, in third-person, singular. Another
potential analysis could also show that the word form drinks may be mapped
to the morphological tags, showing: drink+N+3p+Pl, denoting that drinks could
also be a noun, in third-person, plural form.

As discussed in a greater detail in Beesley and Karttunen (2003), the mor-
phological analysis task–which is often called as ‘lookup’ task as well–returns as
successful only when the word form that leads to such an analysis has previously
been described (often via a set of various rules) for that language. This process
requires matching of the symbols from the input words to verify them against the
pre-defined symbols (and rules) for that language. Such a process implies that
a morphological analysis of a word form becomes successful if and only if the re-
quired pre-steps have already been done (e.g. the grammar engineer pre-defines
the symbols, and necessary rules in advance). Otherwise, the analyzer returns no
output. Therefore, in the implementation of a morphological analyzer, consid-
ering the most important thing is the pre-definition of symbols (and rules) that
results in the analyzed output of the input word form; how the analysis output
is generated becomes trivial.

Morphological Generation

Considering how the morphological analysis task is done with the finite-state-
transducers, we can describe similar set of processes and steps for the task of
morphological generation. This becomes possible once a finite-state-transducer
is built; then it can be considered as a bidirectional processor, which can infer
both the potential set of all morphological tag sequences for a given word form,
and also the word form given a set of morphological tag sequences.

5

2. Motivation

In other words, as we can see from the description of the task of a morpholog-
ical analyzer as providing all potential analyses of a word form–which was shown
by the ambiguous word form example ‘drinks’–then it is assumed that the task
of morphological generation is to map the morphological tag sequences to their
associated word forms. This implies that the morphological generation task is re-
quired to perform the opposite of the tasks done by the morphological analyzer–in
a backwards direction–given a set morphological tag sequences, it is expected to
match the set of tag sequences to the word form they are associated with. In this
case, if a morphological processor is given the set of tags as drink+N+3p+Pl, or
drink+V+3p+Sg; in either case, the expected word form would be ‘drinks’.

As it is the case with morphological analysis task; in the same way, the mor-
phological generation task also returns a successful matching output, if and only
if the given set of specific morphological tag sequences has already been defined
for that language. In other words, for the generator to return a matching output,
via a set of specific rules, and definitions, the finite-state-transducer needs to be
taught that the English morpheme -s can lead both to a plural form of a regular
noun, and also the third-person, singular, present tense form of a regular English
verb.

Given these descriptions of morphological analysis and morphological genera-
tion tasks, we see that in natural language processing applications and tools, the
role of morphological processing cannot be underestimated. This is not exactly
because morphological processing is not avoidable, due to being used as an ini-
tial step in a natural language processing tool; but because the types of output
that can be obtained from a morphological processor can also become useful in
the further stages of an NLP task. Because morphological processors have the
bidirectional capacity to provide both the word forms (given tag sequences), and
also the set of morphological tag sequences (given the word forms), the output
produced by a processor can be used at different stages of the development of a
tool.

However, it is also important to point out that—as we can see from the ex-
amples of regular English verb forms, and regular English nouns—the rule-based
nature of morphological processors may also make them susceptible to some of
the challenging problems that are commonly observed in morphological process-
ing in general. Such problems may become even more complicated and harder to
define depending on language specifications. For example, in Turkish, considering
the word ‘sular’ (water: verb, noun), looking at its morphological analysis and
generation, we should be able to see the following parts of speech and different

6

2. Motivation

derivations based on the same surface form. For all of the analyses1 of ‘sular’ :

(1) apply up> sular

sula<v><t aor><3p>
sula<v><t aor><3s>
su<n><pl>
su<n><pl><3p>
su<n><pl><3s>

For the generation to be obtained from verb form, sula<v><t aor><3s>:
(1-a) apply down> sula<v><t aor><3s>

sular

Sular

SULAR

For the generation to be obtained from noun form, su<n><pl>:
(1-b) apply down> su<n><pl>

sular

Sular

SULAR

However, even if this example may look like a straightforward case of a mor-
phological analysis and generation; we cannot always assume that it is possible to
generate any word form given its tag-sequence. Because pattern-based rules may
not always be general enough to make language specific assumptions, we may not
always be able to generate the corresponding word form of a tag-sequence, if that
tag-sequence is based on previous observations, and the knowledge of previous
rule generations. This issue can be demonstrated with an example, in Turkish,
by looking at the instrumental noun case suffix: -le, -la
If we analyze the word, ‘şarapla’ (wine+inst. as in with wine), we get the following
derivations:

(2) apply up> şarapla

şarap<n><ins>
şarap<n><ins><3p>
şarap<n><ins><3s>

1For the remaining of this thesis, all the morphological analyses are shown in the following
convention:
1. Prompt for analysis : “apply up>” or “apply down>”
2. The input: “sular” (following the prompt)
3. The output: Lines 2 to 6 (after the input)

7

2. Motivation

If we put this analysis in a mini experiment, relying on these derivations obtained
from the analysis of ‘şarapla’, we assume that the word stem is ‘şarap’, and the
suffix -la is the instrumental case. In this experiment, we make a generalization
and derive a word form from ‘water’ → ‘su’ to make the hypothetical instrumental
case form ‘with water’ → ‘sula’. According to our previous assumptions and
observations from the word ‘şarapla’, then when we analyze the word form ‘sula’ ;
we should be able to get the same derivations that we observed for the example
şarapla, in (2):
(2-a) apply up> sula

sula<v><t imp><2s>

Wrong assumption. The morphological analysis of the word form sula contra-
dicts our previous assumption—which was based on the derivations of the word
form şarapla. If we want to see the word form of su- in instrumental case, then
we generate it by su<n><ins>:
(2-b) apply down> su<n><ins>

suyla

Suyla

SUYLA

Notice the /y/ between su- and -la, which was not in our initial assumption1

based on the previous example of the word form şarapla. Therefore, this mini
experiment shows that not all tag sequences that are rule-based patterns can be
directly applicable to make general assumptions; and that there might be a va-
riety of other factors that might give the final word form of words in a language
lexicon. This shows us that it is important to identify language-specific points
that may pose challenging problems in morphological processing. As described
in Beesley and Karttunen (2003), the two biggest challenges in morphology come
out as the morphosyntax (aka. morpho-tactics), and morphophonology of a given
language.

These problems can be described as ‘word formation’–which is made up from
morphemes, smaller parts of meaning split within a word–and ‘phonological and
orthographical alternation’–which is the spelling or sound of a morpheme occur-
ring in a specific context. Karttunen (1991) argues that word formation process
comes out as a result of principles that impose constraints on the combinations
of stems, affixes, and other types of morphemes. On the other hand, the issue of

1The -y infix is used only with certain suffix forms when the word stem ends with a vowel
as in su, and it is followed by such suffixes starting with a consonant, as in -le, -la instrumental
case. For such nouns, the exception rules must be made in advance.

8

2. Motivation

morphological alternations stem from the fact that a single morpheme can appear
in different phonological environments and different word formations without los-
ing its original meaning.

In other words, word formation dictates the specific constraints on the order
and combination of morphemes within a word. For example, English deriva-
tions follow a certain order. We can derive ‘playfulness’ from the stem ‘play-
’+full+ness, but not *play-ness-full. As for alternation, we observe that certain
changes appear as context-dependent sound and spelling alternations, as in the
English -s suffix to denote plurality of nouns, except for nouns ending with -s,
-ch, -sh, -z, where the plural form is altered as -es, instead of the regular, single
-s plural suffix. According to these irregular forms in English, for example, ‘glass’
becomes ‘glasses’, and ‘church’ becomes ‘churches’.

In order to further examine the issue of word formation and context-dependent
phonological & orthographical alternations, the following section describes and
discusses how these kinds of potentially problematic morphological issues reflect
on Turkish morphology, while giving a general overview on the background and
the main aspects of Turkish morphology.

2.2 Turkish Morphology

Dilbilimcileştiremeyebileceklerimizden miydiniz?

As it can be seen from ‘Dilbilimcileştiremeyebileceklerimizden miydiniz ’1-2, the
productive inflectional and derivational morphology enables Turkish to have lengthy
word formations–that can even be used as a whole sentence. Therefore, we can
deduce that more than the order of words in a sentence, it is this complex struc-
ture of morphology that gives a sentence both the syntactic and semantic context.
Eryiğit et al. (2008) argues that regardless of the SOV order predominantly seen
in written texts, Turkish is a flexible word order language, and the order of words
may change depending on the context. However, we can assume that from a
dependency structure point of view, Turkish is primarily (but not exclusively)
head final.

1It can be translated as ‘Were you one of those whom we would not be able to transform
into a linguist?’, and segmented as “Dilbilim-ci-leş-tir-e-me-yebil-ecek-ler-i-miz-den-mi-ydi-niz”
leads to 36 possible analyses.For more, see:http://en.wikipedia.org/wiki/Longest_word_
in_Turkish

2For more details and the derivational analysis, see Appendix A, 101.

9

http://en.wikipedia.org/wiki/Longest_word_in_Turkish
http://en.wikipedia.org/wiki/Longest_word_in_Turkish

2. Motivation

Besides the primarily head-final structure of the language, Turkish is also an
agglutinative language that derives words and new word forms from existing roots
via suffixation. Kerslake and Göksel (2005) describes this word formation process
as ‘the formation of a new word by attaching an affix to the right of a root.’ In
Turkish, suffixation is done by means of derivational and inflectional suffixes.
Except for borrowed or foreign words, the use of prefixes is not a part of Turkish
morphology. Since the order of suffixation can follow both the derivational and
the inflectional suffixes1 (as well as certain infixes2), it becomes possible to create
these kinds of long word forms. While the example used here only serves to make
the point about the productive morphology–and it should be noted that the
given example is not a commonly used, frequent word–we can safely assume that
this agglutinating nature of the morphology in Turkish makes the word forms less
common than other languages’ word forms, because the majority of word forms in
Turkish appear more unique as a result of unique suffixation. This problem alone
causes one of the biggest difficulties for the field of natural language processing,
especially for morphological processing with statistical methods as the problem
of data sparsity is unavoidable.

2.2.1 Word Formation in Turkish

Among Turkish language linguists and grammarians, there is a general consensus
that part-of-speech labels of words may not be clearly defined without a given
context because most words are derived from either nominal or verbal root forms
initially, and their final surface form may be a different part-of-speech. Therefore,
Hengirmen (2005) suggests that it is important to consider the meaning and the
context of the word in that given sentence before determining its part-of-speech
label.

As one of the main identifiers of the part-of-speech of a word, the types of
suffixes determine the types of words in Turkish. In other words, we see that
the types of words are distinguished according to the types of suffixes they take–
whether they can take derivational suffix, or inflectional, or both. Therefore,
Turkish word formation can be categorized as the following groups of words:

1. Simple words: Group of words whose stems are derived from a single
part-of-speech. They take only inflectional suffixes:

i. masa-lar → tables

1Note that in most cases, in a complex word, derivational suffix(es) come before the inflec-
tional suffix classes.

2The negation suffix -me, -ma is used as an infix.

10

2. Motivation

ii. kedi-cik→ cat-diminutive

iii. köpek-ler-im → dog-s-my

2. Complex words: Group of words whose stems are derived from a different
part-of-speech, or still the same part-of-speech, where the meaning of the
stem changes 1 due to derivational suffixation (for example, verb to verb,
noun to noun, or verb to noun, or verb to adjective, etc.). Following a
derivational suffix, they can take inflectional suffixes as well, as it is shown
by the following examples:

i. uyku-lu → sleep-y (from noun to adjective)

ii. dalgın → (to) driftˆDB2 → absent-minded
(from verb to adj, as in from ‘to drift’ to ‘absent-minded’).

iii. kitap-lık-lar → bookˆDB+plr. → bookshelves
(from noun to noun, as in from ‘book’ to ‘bookshelves’).

iv. sevgi → (to) loveˆDB → love-ing
(from verb to noun, as in from ‘to love’ to ‘loving’).

3. Compound words: Group of words that are formed as a combination of
two words written together. Sometimes one of the words lose its original
meaning, sometimes both lose its original meaning, and sometimes both
preserve their original meaning. In all cases, they can take both derivational
and inflectional suffixes, such as:

i. dil+bilim+ci → dilbilimci (language+scienceˆDB: linguist).

2.2.2 Morphophonology (sound alternations) in Turkish

As for the morphophonology of Turkish, as it was briefly shown with the examples
in the previous chapter, we see that the following phonological phenomena—which
mainly has to do with vowel harmony and consonant changes—give their empha-
sis to the word stems and cause certain alternations (and certain irregularities)
occurring in specific contexts. As it is described in (Kerslake and Göksel, 2005,
p. 21), the forms of suffixes are conditioned by the vowels and consonants that

1Note that these are the types of words that can be ambiguous if there is an overlap between
certain derivational and inflectional suffixes, e.g.: -ecek, -acak suffixes can be used both as tense
inflection when added onto the verbs, and also it can make verbs into adjectives when the word
occurs in a certain context. For example, in ‘Şiiri sonuna kadar okuy-acak’ (s/he will read
the poem till its end) where ‘okuy-acak’ is a verb, and in ‘Şiiri okuy-acak çocuk geldi’ (The
child who will read the poem has arrived), where ‘okuy-acak’ is an adjectival.

2DB:Derivational Boundary where the derivational morphemes are attached to the stem

11

2. Motivation

precede them.

Initial consonants and vowels in suffixes are conditioned by the consonants
and vowels in the preceding syllable. How these constraints are conditioned can
be shown by the following vowel chart in 2.1, which shows the categorization
of the vowel sounds according to their position in terms of frontness, backness,
roundness and unroundness, and highness and lowness:

FRONT BACK

Rounded & Unrounded Rounded & Unrounded

HIGH ü, i u, ı

LOW ö, e o, a

Table 2.1: Chart of Turkish Vowels

Given this vowel chart, in their work, Kaplan and Kay (1994) describe the
process of vowel harmony and how the morphophonological rules are applied to
Turkish words1 with four phonological rules. Considering the following vowels
and their corresponding representations mappings:

i. The vowel /A/ represents /e/ and /a/ as front and back and low.

ii. The vowel /I/ represents /i/ and /ı/ as front and back and high.

a. The group of vowel harmony seen in (i.) applies to the plural suffix ‘lAr’

b. The group of vowel harmony seen in (ii.) applies to the possessive suffix
‘Im’ for‘my’,‘your’, ‘her’, ‘his’, etc.

Both of these suffixes can be used together, and the vowel harmony is still
preserved via the different/corresponding realizations of vowels. To illustrate
these representations with examples:

i. The word form ‘arkadaşlArIm’ for ‘my friends’ applies to the vowel harmony
seen in (i).
-The realized surface form of ‘arkadaşlArIm’ appears as ‘arkadaşlarım’.

ii. The word form ‘askerlArIm’ for ‘my soldiers’ applies to the vowel harmony
seen in (ii.)
-The realized surface form of ‘askerlArIm’ appears as ‘askerlerim’.

1This example concerns only the words having /e/ or /a/ in the last syllable of the stem.

12

2. Motivation

Returning back to the more formal representations of these phonological rules
as described by Kaplan and Kay (1994), the vowel harmony variations—for the
words forms above—are formalized as following:

1. A → e / e C*

2. A → a

3. I → i / e C*

4. I → ı

The correct surface representations of words are generated when the rules are
applied from left to right, one at a time. However, considering the rules given
above, application of these rules gives an incorrect analysis when we apply the
dative possessive suffix to ‘asker’, which is represented as the vowel form /A/ as
in the case (i.) above—by producing the following incorrect form:

. asker → askerim → askerimA

This incorrect analysis results from the fact that the rule (1) above imposes
that every final syllable vowel, except for /e/, must be followed by /a/ (2), instead
of /e/1. Thus, for the possessive dative suffix, the left-to-right rule application
results in the generation of vowel /a/ for a word form that has /i/ in its preceding
syllable (due to application of rule (3) /I/ for the possessive suffix in asker-im—
before the dative suffix is attached). If the vowel harmony is fully considered,
askerimA should be realized as askerime.

Kaplan and Kay (1994) argues that correct analyses of word forms can only
be generated if the vowel harmony is described with rules that proceed left to
right through the string as a group, by applying the rules at each position for the
one that matches. This way, application of a set of rules collected together as a
batch gives the correct results in all analyses of the word forms.

However, for a more complete description of the mapping of vowel variations
between /a/ and /e/ in the ‘lAr’ suffix, as well as others; the other vowels–
considering their frontness, backness, and roundness, unroundness features–must
be taken into account. The four rules given above present only a partial descrip-
tion of left-to-right phonological rule application. In this restricted context, they
would not result in correct concatenation of suffixes for every possible word form.

1In other words, /A/ can only have the representation of /e/ if the final/preceding syllable
is also /e/.

13

2. Motivation

In the following section, we provide complete description of the vowel harmony
and morphophonological alternations, considering all the contexts where vowel
harmony and consonant alternations are applied.

2.2.3 Vowel Harmony

The vowel alternations are conditioned by two types of vowel harmony1 rules:

Two-way Vowel Harmony

This type of vowel harmony, which is occasionally called ‘front-back vowel har-
mony’ dictates the type of vowels within a word according to their ‘frontness’ or
‘backness’. According to this vowel harmony, a word cannot have both frontal and
back vowels. If we look at the plural suffix -ler, -lar, we see that two-way vowel
harmony—where the vowel alternates between -e and -a—determines which one
of these plural suffixes a noun can take. The noun examples below show how
morphophonological alternations apply to the the plural word formation: As we

Word Word Form

köpek → köpek-ler (dog, dogs)
ikiz → ikiz-ler (twin, twins)
kör → kör-ler (blind, blinds)
üzüm → üzüm-ler (grape, grapes)
çocuk → çocuk-lar (child, children)
doktor → doktor-lar (doctor, doctors)
omuz → omuz-lar (shoulder, shoulders)
ayak → ayak-lar (foot, feet)

Table 2.2: Two-way Vowel Harmony & Plr. Word Formation

can see from these examples, plural word formation is done with the alternation
of front or back vowels. Words that have a front vowel in their final syllable take
‘ler’, words with a back vowel in their final syllable take the ‘lar’ suffix in the
plural form. The mapping of vowels to suffix can be shown as following:

i. Front vowels: /i, ü, e, ö/ → -ler

ii. Back vowels: /ı, u, a, o/ → -lar

1Note: Vowel harmony rules apply to words with Turkish origin. Foreign and borrowed
words may be exceptions to these rules.

14

2. Motivation

Four-way Vowel Harmony:

Secondary type of vowel harmony, also occasionally called ‘rounding’ harmony
imposes matching between high and low vowels. It consists only of high-front
and high-back vowels: ‘i, ü, ı, u’.
According to this type of vowel harmony, words ending with low-front vowels are
followed by their high-front counterparts in their suffix. Namely, after a word
ending with ‘low-unrounded-front’ vowel, its counterpart ‘high-unrounded-front’
vowel follows in the initial suffix. As a result of this, the following mapping of
rounded / unrounded vowels comes out:

i. /e, i/ → /i/

ii. /ö, ü/ → /ü/

iii. /a, ı/ → /ı/

iv. /o, u/ → /u/

Therefore, with different suffixes, four-way vowel harmony might be applied.
For example, the question-making clitic suffix -mi is constrained by the preceding
syllable’s vowels and the four-way vowel harmony is applied—vowel alternates
between -mi, -mu, -mü, -mı1. Some examples:

Word Q-Clitic

güzel mi? (is it ‘nice’?)
masa mı? (is it ‘table’?)

bu mu? (is it ‘this’?)
süt mü? (is it ‘milk’?)

Table 2.3: Four-way Vowel Harmony & Question-Clitic Suffixation

2.2.4 Consonant Alternations

Also depended on the preceding vowel and consonant in the word stem, the con-
sonant alternation occurs in certain environments. Consonant final syllables in
the stem of the word, and the suffix following the stem go through assimilation in
order to have similar sounds. This type of consonant assimilation is conditioned

1high-frontal-rounded: ü, high-frontal-unrounded: i, high-back-rounded: u, high-back-
unrounded: ı

15

2. Motivation

depending on whether the final syllable of the stem ends with a voiced or voiceless
consonant, and the following suffix initial sound starts with a voiced or voiceless
consonant (or a vowel).

The chart 2.4 below shows the voiced and voiceless consonants in Turkish:

Voicing Consonants

Voiced: b, c, d, g, ğ, j, l, m, n, r, v, y, z

Voiceless: ç, f, h, k, s, ş, t, p

Table 2.4: Chart of Voiced & Voiceless Consonants

According to this chart, two types of assimilation can be described:

1. Voiced-Voiced & Voiceless-Voiceless Consonant Alternation

Words ending with voiced consonants are followed by suffixes starting with one
of the following voiced consonants: /c, d, g/. Words ending with a voiceless

consonant are followed by a suffix starting with a voiceless consonant. Following
table illustrates some of the examples:

Word Locative: /de, da, te, ta/

Voiced: Ev Ev-de (Home, home-at)
Voiced: Okul Okul-da (School, school-at)
Voiceless: Ofis Ofis-te (Office, office-at)

Table 2.5: Voiced&Voiced and Voiceless&Voiceless Consonant Alternation

2. Voiceless to Voiced Consonant Alternation

Words ending with one of the following voiceless consonant /p, ç, t, k/, are fol-
lowed by suffixes starting with those voiceless consonants.

However, one exception is that if the initial suffix starts with a vowel—as in
the dative noun case /e, a/; then the final voiceless consonant /p, ç, t, k/ in the
stem of the word is alternated with its voiced counterpart. In that case, the final-
voiceless consonant in the stem alternated as the voiceless consonant becomes
voiced in the surface form.

16

2. Motivation

Corresponding mapping of these alternations can be shown as the following:
. p → b
. t → d
. k → g/ğ
. ç → c

The examples in the table below illustrate these alternations:

Voiceless-to-Voiceless Voiceless-to-Voiced
Word Loc.: /de, da, te, ta/ Dat.: /e, a/

Ağaç Ağaç-ta Ağac-a (Tree, tree.loc, tree.dat)
Yatak Yatak-ta Yatağ-a (Bed, bed.loc, bed.dat)

Table 2.6: Voiceless to Voiced Consonant Alternation

Irregular Sound Changes

Besides the regular morphophonological alternations described as above, certain
irregular sound changes that affect both consonants and vowels occur in the
following contexts also:

1. Sound Derivation

When the word stem ends with a consonant and either the immediate suffix that
follows starts with a vowel, or the stem is followed by an auxiliary word that
starts with a vowel1; the final consonant of the stem is doubled. For example:

i. his + etmek → his-s-etmek (to feel)

Additionally, the sound derivation is observed with vowels as well if a single
syllable word stem takes ones of the ‘-cik, -cık, -cuk, -cük’ diminutive suffixes.
For example:

ii. bir → bir-i-cik (one, little one)

1Derivation of vowels and consonants is also common with foreign or borrowed words.

17

2. Motivation

2. Vowel Drop

In general, when a two-syllable word ending with a consonant1 takes a suffix
starting with a vowel—if the vowel in the second syllable of the stem is a high
vowel such as /i, ü, ı, u/; then, this vowel is dropped from the stem. For example:

i. burun → burun-um → burn-um (nose, nose-my)

Additionally, this kind of vowel drop is also observed with complex words (as
is described in the previous section), for verbs that are originally derived from
nouns ending with a vowel, and for nouns that are originally derived from verbs
ending with a vowel. For example:

ii. duyu-: hearing → noun
duyu-mak → duy-mak: to hear → noun+ˆD verb2.

iii. uyu-: (to) sleep → verb root
uyu-ku → uy-ku: sleep → verb+ˆD noun3

3. Consonant Drop

When the words ending with the consonant /k/ take one of the diminutive suffixes
‘-cik, -cık, -cuk, -cük’, the consonant-final from the stem is dropped. For example:

i. küçük → küçük-cük → ‘küçü-cük’ (small, small+dimun.)

ii. minik → minik-cik → ‘mini-cik’ (mini, mini+dimun.)

Additionally, in order to avoid double consonants in adjacent syllables, similar
type of consonant drop is observed when a noun stem ending with a consonant
takes a suffix that starts with the same consonant. In those cases, one of the
consonants is dropped. For example:

iii. Ad → Ad-daş → Adaş (name, namesake)

1This kind of vowel drop is most common with the words related to organs, that are made
of two-syllables in the form of: ‘V-CVC’ or ‘CV-CVC’

2Verb that is made via verbal derivational suffixation, shown by ‘ˆD verb’, attached to a
noun stem.

3Noun that is made via nominal derivational suffixation, shown by ‘ˆD noun’, attached to
a verb stem.

18

2. Motivation

4. Vowel raising

The final low-vowel /a, e/ in verb stems is alternated with one of the high vowels
/ı, i, u, ü/ if the verb takes verbal aspect inflection -yor. In most cases, the
alternation occurs as in the following correspondence mapping:

i. the final vowel /a/ → /ı, u/

ii. the final vowel /e/ → /i, ü/. For example:

a. kokla- (to smell) → koklu-yor → s/he is smelling

b. kayna- (to boil) → kaynı-yor → it is boiling

c. ekle- (to add) → ekli-yor → s/he is adding

d. özle- (to miss) → özlü-yor → s/he is missing

The next chapter discusses the background and related work regarding how
these morphophonological changes and word formations in Turkish have been
handled by various morphological processors, implemented for the analysis of
Turkish morphology to this day. Furthermore, it introduces the open-source
morphological analyzer, TRmorph (Çöltekin, 2010), as the focus of this thesis. In
the remaining chapters and sections, it continues with the relevant data coverage
assessments and evaluations, followed by a discussion for further improvements
necessary for the TRmorph morphological analyzer.

19

Chapter 3

Overview of Previous Work and
Existing Tools in Processing of
Turkish

For the task of morphological processing, to our day, several morphological an-
alyzers have been implemented. Most of the morphological analyzers that are
being used today differ from one another in the type of methods and approaches
used in their implementations. The two of the most commonly used approaches
in morphological processing are generally based on rule-based methods, and sta-
tistical methods. The rule-based methods largely employ finite-state automata
and transducer constructions in their implementations, while the statistical meth-
ods employ a variety of different learning approaches, such as supervised, semi-
supervised, or unsupervised learning settings for handling of data and building
of morphological analyzer models.

Besides the purely rule-based and purely statistical methods, another ap-
proach also exists as a hybrid method, which employs a combination of these two
approaches based on rule-based and statistical methods. For the morphological
processing of Turkish text, this hybrid method has also been used in the past.
This chapter gives an overview of the background for what has been done in
general for the morphological processing task in natural language processing, and
it further discusses the previous work that has been done for the morphological
processing of Turkish language.

20

3. Overview of Previous Work and Existing Tools in Processing of
Turkish

3.1 Rule-Based Methods in Morphological Pro-

cessing

One of the earliest studies done with Turkish morphology by using finite-state ma-
chine techniques is from the work of Hankamer (1986) examines a parser for words
formed agglutinatively and investigates the parser’s behavior for morphophono-
logical alternations in Turkish. By employing a left-to-right parsing technique,
originally based on the study of finite-state transition networks by Koskenniemi
(1984), Karttunen (1983) and Hankamer (1984); the parser works by using cyclic
generative-rules by reading words from left-to-right in suffixation languages like
Turkish.

It considers that phonological rules apply one morpheme at a time, starting
with the root and moving forward to the right. Due to cyclic phonological rules,
whenever a phonological rule is applied and matches a surface string; the word
formation ends, in other words, that word is never examined again.

The Keçi system designed and implemented by Hankamer (1984) for the pro-
cessing of Turkish, checks for the harmony rules of Turkish, and tags for each
morpheme in a suffixed word according to its order as in N0, N1, and so on.
While the Keçi system is powerful in showing the strictly concatenative morphol-
ogy of Turkish, other systems using FSM techniques for morphological processing
of Turkish1 developed after the Keçi system, prove to be more comprehensive in
the processing of Turkish.

Studies by Oflazer (1994) and Oflazer et al. (1994) examine the first applica-
tion of two-level morphology on Turkish, which is originally based on the imple-
mentation of ‘Kimmo approach’ by Karttunen (1983) and Koskenniemi (1984).
In their work, Karttunen and Beesley (2005) describes the two-level morphology
system as “a new way to describe phonological alternations in finite-state terms”.
With KIMMO-style two-level morphology, morphophonological alternations seen
in highly concatenative languages are simulated via rule specifications that work
simultenaously.

By taking advantages of the two-level morphology, the system implemented
by Oflazer et al. (1994) describes rule-based processing of morphosyntactic and
morphophonological phenomena of Turkish. Because the word formation process
is done by concating suffixes to the stem, suffix concatenation can often lead to
relatively long words (which are frequently equivalent to a whole sentence in En-

1For example, Two-level description of Turkish morphology Oflazer (1994)

21

3. Overview of Previous Work and Existing Tools in Processing of
Turkish

glish). However, due to the strict word formation (morpho-syntactic) constraint
definitions and regular-expression like nature of the two-level system, such word
formations allow Turkish to be modeled with FSMs. The example below, given
in Oflazer (1994), shows the word formation of a relatively long word:

OSMANLILALAŞTIRAMAYABİLECEKLERİMİZDENMİŞSİNİZCESİNE1

This word can be broken down into morphemes as follows:

OSMAN+ LI+ LA+ LAŞ+ TIR+ AMA+ YABİL+ ECEK+ LER+
İMİZ+ DEN+ MİŞ+ SİNİZ+ CESİNE

For the two-level description of Turkish, the two-level system designed by
Oflazer (1994) has been implemented based on a root word lexicon of about
23,000 roots words. The morphophonological alternation rules of Turkish have
been created using 22 two-level rules. For the word formation process of concate-
native word structures, finite-state machines have been implemented for the ver-
bal, nominal and other part-of-speech category paradigms. This example above
shows the complex morpho-syntactic word formation process in Turkish. Mor-
phemes attached to a root-form can change the surface word form’s part-of-speech
from a noun to a verb, or vice-versa; or as in the example above, it can create
adverbial clause structures.

As illustrated with the examples in the previous chapters and sections also,
the surface (final) representations of morphological structures are not only con-
strained, but also changed by several morphophonological rules affected by both
the preceding syllables and the next syllables in the word structure. Therefore,
vowels and consonants in the morphemes attached to root forms or preceding
morphemes have to agree with the preceding vowel (and / or consonant in the
preceding syllable) in order to comply with the vowel harmony rules, or other
sound alternations. The two-level morphology description of Turkish achieves a
description and application of such complex syntactic and phonological phenom-
ena for the morphological processing of Turkish text.

In a different study, for the rule-based morphological processing of Turkish
by Eryiğit and Adali (2004), a different approach has been adopted. In their
affix-stripping method, Eryiğit and Adali (2004) used no lexicon. As opposed
to root-driven morphological analysis approaches, according to this method with

1The symbols for ‘+’ in this example indicate morpheme boundaries. This adverb trans-
lates into English as “As if you were of those whom we might consider not converting into an
Ottoman.”

22

3. Overview of Previous Work and Existing Tools in Processing of
Turkish

affix-stripping approach, search and find method is applied for affixes first before
the word stem of the word is determined. After removing the suffixes, the re-
maining part(s) of the words are considered to be the stem.

In their study, Eryiğit and Adali (2004) claim that the advantage of using this
approach is the fast search for affixes, compared to the root-driven approaches
which determine the stem of the words at the cost of a whole lexicon search.
In the root-driven method, first the examination of word morphemes is done by
deleting characters one by one from the end of the words, and then by making
a list of potential stems, which are checked against the list of words in a lexicon
consisting of stems only. As a result, the process of determining the stem becomes
highly time-consuming.

For the illustration of their own method, the example taken from Eryiğit and
Adali (2004), shows the process of affix-stripping applied to a word to find the
word stem.

Given the words for kale (castle) and kalem (pencil), all possible analyses of
the word ‘kalem’ are the following:

i. kalem → N (kalem) (pencil)

ii. kale-m → N(kale)+1PS-POSS(m) → kalem (my castle)

Determining the correct analysis of ‘kalem’ requires the context-in-use in the
sentence. However, for the plural word formation as in ‘kalem’ → ‘kalem-ler’, we
see only one valid analysis:

a. kalem-ler → N(kalem)+PLUR(ler) → kalemler (pencils)

b. kale-m-ler → N(kale)+1PS-POSS(m)+PLUR(ler)

Therefore, this approach claims that suffix concatenation rules (and thus, the
right-to-left affix-stripping) help finding the correct stem because the potential
analysis cannot be “kale + m + ler” because in Turkish, a plural suffix cannot
follow a possessive one (as it is also shown by the first example (ii.), where the
1PS-POSS suffix attached at the end of the word).

Another morphological analyser and multi-purpose tool, called Zemberek, an
open source NLP framework for Turkic Languages, implemented by Akın and
Akın (2007) aims to provide a main NLP framework for all Turkic languages,
including Turkish. Based on a root-words dictionary, and a separate file con-
taining irregular phonemic and word formation changes via rules, Zemberek uses

23

3. Overview of Previous Work and Existing Tools in Processing of
Turkish

dictionary-based parser in order to find the root forms of the words. Via a Direct
Acyclic Word Graph (DAWG) tree, which enables easy access and extensibility
of the word forms; suffix attachment is applied to the root forms of the words
after the root-form search and find operation is completed.

In Zemberek, the implementation of DAWG tree, which functions as a dictio-
nary, provides three root-form selections. These root-form selections perform the
following tasks:

i. The first, used for normal strict root selection for an input word form. For
example, for the word form “elmaslar”, it finds all potential root forms from
the set as the following:
- el- → noun (hand)
- elma- → noun (apple)
- elmas → noun (diamond)

ii. The second selection, done via a string similarity algorithm, applies a tol-
erance level to select candidate root-forms, and generates more root-form
candidates than the strict root-form selector used in (i).

iii. The third selector applies a tolerance for non-ASCII letters.

The DAWG tree and word root-form selectors function independently from
the language implementation. Akın and Akın (2007) defines the structure of the
morphological parser as a root-driven dictionary based, top-down parser. The
main steps involved in the morphological analysis of an input word are described
as following:

i. Preprocessing Task : Preparing tokens by removing accents, hyphens etc. and
converting it to lower-case. If the word contains characters that cannot occur
in the defined alphabet, morphological parsing operation ends.

ii. If pre-processing step is successful, then, using one of the three root-form
selector (as described above), root-form candidates for the input word are
found.
- For each root-candidate, possible suffixes are attached to the root, and
necessary morphophonological and word-formation rules are applied—until
either the surface form of the input word is obtained, or there are no more
suffix alternatives left.

Among the other rule-based and finite-state morphological analyzers, Open
source multi-platform NooJ1 for NLP, by Silberztein et al. (2012) provides a

1http://www.nooj4nlp.net/pages/introduction.html

24

http://www.nooj4nlp.net/pages/introduction.html

3. Overview of Previous Work and Existing Tools in Processing of
Turkish

graph-based corpus processor, NooJ implementation. The underlying implemen-
tation is primarily based on the Augmented Transition Networks first introduced
by Woods (1970), Bates (1978) and Shapiro (1982). In previous studies, the use
of ATNs was also investigated for Turkish morphological analysis by Güngör and
Kuru (1993), and (Güngör, 2003). Nooj by providing graphical tools for modeling
and the simulation of word-formation in Turkish, it is also used to access large
texts and process corpus-like texts simultaneously. However, Nooj architecture
also relies on the use of pre-made dictionaries (with limited number of lexical item
tokens) to be used as inputs in the finite-state-transducers. In Nooj, for the lex-
ical analysis of Turkish1, four different classification of Atomic Linguistic Units
(aka. ALU)—which are considered as lexical items are applied:

i. Simple-words lexicon: for words without any affix, such as ‘table, chair’,
defined similarly to the way it was described for Turkish examples of simple
words2.

ii. Affix lexicon: for complex word forms, as in the word ‘constitutional’, defined
similarly to the way word formations were described for Turkish complex-
words3.

iii. Multiword Units: for non-compositional multiword expression words, as in
‘round table’ for “meeting”.

iv. Frozen Expressions: for compositional multiword expression words, as in
‘take ...into account’.

NooJ is designed to run on MS-Windows, using the .NET platform. However,
with extra effort, and via installation of MONO and GNU projects that provide
the .NET framework for other platforms, NooJ is usable on Linux and the Mac
OS X platforms as well.4

3.2 Statistical Methods in Morphological Pro-

cessing

Most of the the statistical methods applied to morphological processing of Turk-
ish, come from attempts to solve problems with morphological ambiguity–which
directly relates to morphological processing. Some of the notable research in this

1http://nooj4nlp.net/pages/turkish.html
2 As described earlier on page 10, see ‘Simple words’.
3As described earlier on page 11, see ‘Complex words’.
4For more info, see: http://nooj4nlp.net/pages/technology.html

25

http://nooj4nlp.net/pages/turkish.html
http://nooj4nlp.net/pages/technology.html

3. Overview of Previous Work and Existing Tools in Processing of
Turkish

area defines and describes the problem of morphological disambiguation and mor-
phological processing conjointly.

Previous work in morphological disambiguation attempts to alleviate prob-
lems resulting from data sparsity problem. Data sparsity, because of the ag-
glutinative and productive nature of Turkish, makes it harder to define common
patterns frequently seen in large texts, which is highly needed for statistical meth-
ods, and it often poses as a serious challenge for researchers. In order to solve
the problems with data sets (and data sparsity), in their work Hakkani-Tür et al.
(2002), attempt to handle the issue by breaking down the morphosyntactic tags
of tokens into inflectional groups (aka. IGs), so that IG patterns can be better
observed—rather than attempting to define each uniquely assigned morphosyn-
tactic feature of tokens.

In this approach, each of the grouped IGs contain inflectional features1, which
include each of the intermediate derivations leading to the word-formation of the
token in analysis. In order to design this statistical method, Hakkani-Tür et al.
(2002) used the two-level morphological analyzer by Oflazer (1994), described in
the previous section. Using the morphological analyses obtained from the ana-
lyzer, they developed four different n-gram models, assigning a probability for
each morhosyntactic tag by considering statistics over the individual inflectional
groups and surface roots in trigram models. In their baseline model, they built
a trigram tag model, representing the distribution of morphological parses given
the words, by using a hidden Markov model (aka. HMM). As a result of their
work, they found that the simplest of the four n-gram models, which ignored the
local morphosyntactic features, gave the best results in accuracy.

Following this n-gram model, a contrasting approach was taken by Yüret and
Türe (2006) attempting to solve the morphological disambiguation problem by
using a hybrid approach that is partially rule-based and partially statistical. In
their work on Learning morphological disambiguation rules for Turkish, they de-
scribe and discuss a rule-based model with supervised training for morphological
disambiguation of Turkish. For the generation of rules, they used a decision list
learning algorithm. For the disambiguation of lexically ambiguous words, they
trained a separate model for 126 morphological features, known to the morpho-
logical analyzer by Oflazer (1994), which they used in their experiment.

In contrast to the use of Inflectional Groups (IGs) as morphosyntactic fea-

1Inflectional feature groups are separated by derivational boundaries, marked by ˆDB in
each IG.

26

3. Overview of Previous Work and Existing Tools in Processing of
Turkish

tures, which was commonly adopted in other experiments, in this work Yüret
and Türe (2006) attempted to solve the data sparsity problem by considering
each individual morphological feature separately (instead of in the groups of IGs,
which is a more unifying approach). Claiming that even if the number of possible
tag combinations may be infinite, the number of morphological features remain
within a finite set of features, and the number of features recognized by the mor-
phological analyzer was 126. Considering these aspects, they trained a model
where they used the subsets of training, for each unique feature f, in which one
of the parses for each instance had an example of that unique feature. Based on
the presence or absence of the feature f in the parses, they used the examples
to learn rules via the Greedy Prepend Algorithm (GPA), which is a decision list
learner algorithm.

The prediction of correct tags of unknown words was performed first by gen-
erating all the potential morphological analyses of words via the morphological
analyzer, and then by using the decision lists to check for the presence / absence
of a feature. The final results were probabilistically computed by considering the
accuracy of each decision list to choose the best parse among the list of parses.
As a result of using decision lists via the GP algorithm, they were able to reach a
final tagging accuracy of 96% on manually-annotated test set. Their results also
showed that use of full-tags (as it was promoted by the use of IGs) trained with
a single decision list—rather than separate models for each feature—had 91% ac-
curacy, compared to the 96% accuracy obtained by their model.

Following this hybrid method for the morphological disambiguation of Turk-
ish, Sak et al. (2007) uses a purely statistical approach, describing a new method
for Morphological disambiguation of Turkish text with perceptron algorithm. In
their work, they examined the efficiency of morphological-ranking with percep-
tron algorithm for the task of morphological disambiguation. Similar to the
previous work on statistical morphological disambiguation by Hakkani-Tür et al.
(2002), for the representation of morphological tags, Sak et al. (2007) also used
the inflectional-groups (IGs) obtained from the morphological analyzer by Oflazer
(1994)–which was also used in the previous study.

Complementing their study on Morphological disambiguation of Turkish text
with perceptron algorithm, (Sak et al., 2009) published another work, which de-
signed a Stochastic Finite-State Morphological Parser for Turkish. As different
from the previous work in statistical methods for morphological processing, in
their work, this time Sak et al. (2007) built their own morphological parser,
adapted from the two-level morphology formalism of Koskenniemi (Koskenniemi,
1984), again by using the two-level phonological and word-formation rules bor-

27

3. Overview of Previous Work and Existing Tools in Processing of
Turkish

rowed from the original two-level morphological analyzer by Oflazer (1994). They
compiled a new root-lexicon of 55K words borrowed from the Turkish Language
Institution dictionary, and used the OpenFst weighted finite-state transducer li-
brary (Allauzen et al., 2007) for implementation of finite-state operations and
running the morphological analyzer. In order to overcome problems commonly
seen in their previous work on morphological disambiguation (Sak et al., 2007),
this time they took advantage of the morphological disambiguator, which they
had already implemented using the averaged perceptron algorithm. For the im-
plementation of the parser with a probabilistic finite-state-transducer, they con-
structed the probabilistic FST as the composition of morphophonological and the
morphosyntactic transducer.

For the estimation of parameters in this probabilistic finite-state transducer,
they used the general Expectation Maximization (aka. EM) algorithm, according
to the description given in Eisner (2002). In this description, the method of expec-
tation semiring—a bookkeeping trick—was used in order to compute the expected
number of traversals of each arc in the Expectation step. In the Maximization
step, for the re-estimation of arc probabilities, the arc probabilities were normal-
ized at each state (so that the arc probabilities from each state is proportional to
the number of the expected number of traversals of each arc).

As a result of this combination of methods using OpenFst with semiring
method and Markovian finite-state transducer, and the combination of the av-
eraged perceptron algorithm for the task of morphological disambiguation, Sak
et al. (2009) cites that their disambiguation system achieves 97.05% disambigua-
tion accuracy on the test set.

3.3 TRmorph: A Turkish morphological ana-

lyzer

TRmorph, by Çöltekin (2010), is morphological analyzer that uses finite-state
transducers in its implementations. It has been developed for the morphological
analysis of Turkish primarily, by using a lexicon based on the Turkish spell-checker
Zemberek1 by Akın and Akın (2007). However, the flexibility in its implemen-
tation also makes it adaptable to other Turkic languages. TRmorph tool was
initially implemented as a two-level morphological processor, using SFST sys-
tem, aka. Stuttgart Finite-State Transducer, which is a C++ transducer library2

1https://code.google.com/p/zemberek/
2http://www.cis.uni-muenchen.de/~schmid/tools/SFST/

28

https://code.google.com/p/zemberek/
http://www.cis.uni-muenchen.de/~schmid/tools/SFST/

3. Overview of Previous Work and Existing Tools in Processing of
Turkish

(Schmid, 2005).

Capable to adaptation to different back-end libraries, besides the main SFST
compiler, TRmorph could also be used with HFST libraries, aka. Helsinki Finite-
State Transducer Technology1 (Lindén et al., 2013), which is mostly targeted at
the morphological analyzers based on weighted and unweighted FST construc-
tions, mainly used for morphologically rich languages such as Finnish and several
others.

The main TRmorph distribution, using the SFST back-end library, was based
around three underlying structures:

i. Finite state machinery that was written using regular expression syntax (us-
ing xfst syntax).

ii. Two-level grammar that enabled alternations both for word formations and
for morphophonological changes.

iii. Lexicon that consisted only of the ROOT forms of the words.

This version of TRmorph was distributed with two different sets of lexicons—one
smaller lexicon prepared during development phase, and another lexicon adapted
with some corrections and modifications from the Zemberek spell-checker—made
of 1500 and 37101 words each. Both lexicons labeled the lexical items into
nine parts-of-speech categories: adjectives, adverbs, conjunctions, interjections,
nouns, postpositions, pronouns, proper names and verbs.

After several ongoing changes to the underlying structure and utilities of
the Trmorph analyzer, and lexicon; TRmorph has switched to using the open-
source Foma compiler2 and finite-state library(Hulden, 2009), which is another
C programming language library, providing a ‘multi-purpose finite-state toolkit’.
While the Foma compiler is still similar to the SFST implementation in many
ways; switching to the Foma compiler brought some other benefits. For example,
Lindén et al. (2013) evaluated the HFST Toolkit by using the HFST 3.3.4. Toolkit
version, for Finnish, German, Italian, Swedish, and Turkish morphologies with
different HFST back-end libraries such as SFST, OpenFst3, and Foma. They
represented their findings according to the compilation times shown in minutes
and seconds, by averaging over 10 compilations. Their findings show that among
these three HFST back-ends, the Turkish morphology had the best performance

1http://www.ling.helsinki.fi/kieliteknologia/tutkimus/hfst/
2https://code.google.com/p/foma/
3http://www.openfst.org/twiki/bin/view/FST/WebHome

29

http://www.ling.helsinki.fi/kieliteknologia/tutkimus/hfst/
https://code.google.com/p/foma/
http://www.openfst.org/twiki/bin/view/FST/WebHome

3. Overview of Previous Work and Existing Tools in Processing of
Turkish

by using the Foma library, achieving a performance of 0:05 seconds over 10 com-
pilations, using morphology taken from TRmorph. The second best performance,
0:12 seconds, was achieved by using the SFST library; and as last OpenFst library
achieved a performance of 0:40 seconds.

3.3.1 Lexicon in TRmorph Baseline.

After this gradual switch to the Foma compiler, the TRmorph lexicon has also
been modified. The comparison of the lexicon used in SFST implementation of
TRmorph, and the lexicon used in the Foma compiler version—which we use
as our baseline1—is shown in the following table: With the Foma version of

PoS Count

Adjective 1244
Adverb 483
Conjunction 47
Interjection 131
Noun 23101
Postposition 36
Pronoun 21
Proper Noun 9532
Verb 2488

Table 3.1: PoS Distribution of
ROOT Forms in TRmorph-SFST

PoS Count

Adjective 1403
Adverb 430
Conjunction 113
Interjection 416
Noun 15230
Postposition 111
Pronoun 94
Proper Noun 10050
Verb 2088

*Onomatopoeia 54
*Reduplication 11
*Determiner 37

Table 3.2: PoS Distribution
of ROOT Forms in TRmorph-
Baseline(Foma)

TRmorph, three more part of speech forms— onomatopoeia, reduplication, and
determiner—were added to the TRmorph implementation. At the same time,
while some of the part of speech form numbers increased, such as the number
of conjunctions, interjections, postpositions and pronouns; some of the part of
speech form numbers, such as the noun and verb lexicon, were decreased due to
previous redundancy. In this thesis, we aim to expand the lexicon, and thus,
expect these numbers to change again.

1In our baseline, we use the version of TRmorph, before the latest TRmorph version, dated
2013-10-13, was released.

30

3. Overview of Previous Work and Existing Tools in Processing of
Turkish

3.3.2 Processing of Nominal Word Formations

In Çöltekin (2010)’s work for TRmorph, co-occurrence of nominal suffixes at-
tached to nominal word roots are defined as following:

i. A nominal stem may be followed by plural suffix -lAr.

ii. Next possible suffix that can attach to a nominal is one of 6 possessive suffixes,
denoting first, second and third person that is either singular or plural.

iii. Next possible suffixes are six of the common nominal cases: accusative -(y)I,
dative -(y)A, locative -DA, genitive -(n)In, ablative -DAn, and instrumental
-(y)lA.

iv. Nouns with a locative or genitive case can be followed by the suffix -ki, and
then all the nominal suffixes can be attached again.

v. All nominals can take a verbal person agreement to form nominal predicates.

vi. A nominal predicate that has a verbal person agreement can have an optional
copula or the generalizing modality marker –DIr1.

vii. The nominals consist of a large number of part-of-speech categories including
nouns, adjectives and adverbs. In TRmorph specification, only nouns are
allowed to take the nominal suffixes. In order to make adjectives and adverbs
nominalized, all adjectival and adverbial stems become a noun by a zero
derivation.

According to Eryiğit et al. (2008), due to the agglutinative morphology of the lan-
guage, Turkish nouns can have around 100 inflected forms, and verbs even more.
Because Turkish word formation is done through very productive derivations, the
number of possible word forms that may be generated from the root-form of the
verb increase significantly. Therefore, it is usually very common to find up to
four or five derivations in a single word form.

3.3.3 Processing of Verbal Word Formation

In the TRmorph distribution, verbal word formation—which is more complex
than nominal word formation process—is described as follows:

i. Verbal roots can take a number of voice suffixes, the negative marker, a
number of sufixes that form compound verbs.

1Although, usage of this kind of nominal predicates is not common in informal writing and
spoken Turkish

31

3. Overview of Previous Work and Existing Tools in Processing of
Turkish

ii. The passive suffix has two forms, predictable from the preceding context,
and handled by two-level rules, while negation marker precedes all other
inflectional suffixes1 And, +COMP marker is used to represent 8 suffixes to
form compound verbs, expressing modality.

iii. The two of the most productive of these modality suffixes are -(y)Abil and
-(y)Iver. This compound/modality suffix -(y)Abil becomes -(y)A when it oc-
curs before the negative marker and only in negative forms. After compound
suffixes, causative suffix and other suffixes that form a compound verb form
can be attached.

iv. For finite verbs, after these optional suffixes, suffixes for person agreement
and tense/aspect/modality (TAM) marker are used. Following these oblig-
atory person agreement and TAM markers, several other optional suffixes,
such as copular markers and the generalizing modality marker -DIr can be
attached.

v. Finite verbs can have one of the 11 TAM markers, together with the person
agreement. In finite verb formation, use of one of these markers is obligatory.
In some of the tense or modality markers, there are some irregularities. For
example, the aorist tense morpheme is irregular when it is directly attached
to the root forms, and this must be specified in the lexicon because it is
unpredictable.

vi. After T/A/M markers, in finite verbs, there are usually two options. Either,
one of the three copular markers forming complex tenses can follow, and
after the copula, person agreement attachment is mandatory; or one of the
six person agreement morphemes followed by optional generalizing modality
marker, -DIr can follow the sequence of morphemes (The copular markers rely
on the context of preceding T/A/M marker, and type of the person agreement
depends on the preceding copula.)

vii. As one of the other irregularities, reflexive and reciprocal suffixes show some
unpredictability when attached to a small number of verbs. Therefore, those
verbs that can become reflexive, or reciprocal, or both are marked on the
lexicon as well.

viii. In the same way, causative verb forms show irregularity as well, by combining
with one of the six forms depending on the root, or it usually between -DIr
and -t according to the preceding letter. Irregularities of these causative verb
forms are again dealth with by marking them in the lexicon.

1The negative marker -mA becomes -mI before the suffix -(I)yor, this exception is handled
via morpho-phonological rules.

32

3. Overview of Previous Work and Existing Tools in Processing of
Turkish

ix. ‘Untensed’ verbs can be nominalized by a number of subordinating suffixes,
forming verbal nouns, participles or converbs1. These nominalized verb forms
can take most, if not all, of the nominal inflections.

3.3.4 Additional Utilities in TRmorph-Extended Version

Following additional utilities have been added to the TRmorph analyzer much
later after we evaluated it as our baseline2. In order to give full credit for the
developer; and to compare the differences between these two different versions;
here we briefly introduce recently added analyzer utilities and explain how they
affect the evaluation of the data sets whenever the evaluation is possible and/or
necessary.

Stemmer Utility

Additional utility tools that are provided with the updated version of TRmorph
work similary to the automaton implementation of the analyzer. The stemmer
automaton is defined as stemmer.fst, which is a binary file, created using the
makefile that is included in the main distribution of the TRmorph package.
The stemmer automaton produces the lexical root-forms of the word forms as
the analysis once the surface form of a word is entered for the query. Additional
options to keep the first tag of the stem as the syntactic category word3, or
select to mark the verbs with their infinitive suffix -mak—which is the general
dictionary form of the verbs—can also be set from the configuration settings4.
Some basic examples are as following:

foma[0]: regex @"stem.fst";

1.0 MB. 29400 states, 68377 arcs, Cyclic.

foma[1]: up

apply up> okumuşlar (‘read-PAST_narr-3p’)

oku<V> (‘(to) read’)

apply up> evlerinden (‘house-Poss3p-Loc’)

ev<N>(‘house’)

apply up> miyavlamış (‘meow-^D_lA-PAST_narr(3s)’)

miyavla<V>(‘(to) meow’)

1Non-finite verb forms, acting similar to verbs but functioning as adverbial subordination
2Version dated as 2013-10-13
3The stemmer automaton takes the lexical form as the ‘stem’, even if the final word form

ROOT may be different from the stem due to derivational suffixes immediately following the
root form.

4These options are handled from the file options.h in the main directory of the TRmorph
distribution.

33

3. Overview of Previous Work and Existing Tools in Processing of
Turkish

Unknown Words Guesser Utility

The TRmorph guesser implementation works in the similar way as the analyzer
works. The guesser transducer accepts an FSA for lexical items with minimal
restrictions (based on the definitions of symbols—including all Turkish character
letters that appear in Turkish text—used in the lexc compiler) instead of restricting
the query words to the list of stems that need to exist in the fixed-lexicon. This
way the handling of the unknown words is managed based on the suffixes whose
morphological properties are already defined in the morph.lexc settings, and the
guesser transducer returns the surface strings of unknown words with analyses of
potential word candidates depended on two options specified by the user:

i. Either the full analysis of strings, including their potential unknown roots
that may result in the final surface form of the words.

ii. Or, only the root word and its part of speech tag.

With the current Foma implementation of the TRmorph analyzer, the only
restriction of the guesser is the minimum and maximum root-word length which
can also be set from the configurations settings. Similar to the implementation
of the analyzer FSA, the guesser transducer was implemented as a standalone
automata. Therefore, in order to use the unknown word guesser together with
the analyzer, the two automata—separate transducers for the analyzer and the
guesser—is used with a priority union so that the guesser is activated only when
the analyzer fails. For this, there are two options available, which enable the
guesser to be used either as a simple wrapper xfst file1, or by using foma’s flookup
command, specifying both transducers on the command line2. Here are two
examples showing how to activate the guesser:

1. In order to use the guesser by itself:

foma[0]: regex @"guess.fst";

13.2 MB. 41753 states, 862831 arcs, Cyclic.

foma[1]: up

apply up> biçimbirimsel (‘morphologic-al’)

biçimbirim<N:abbr><sal><Adj>

biçimbirim<N:abbr><sal><Adj><0><N>

biçimbirim<N:abbr><sal><Adj><0><N><0><V><cpl:pres><3p>

biçimbirim<N:abbr><sal><Adj><0><N><0><V><cpl:pres><3s>

biçimbirim<N><sal><Adj>

1First by compiling the foma, and then typing ‘source guesser.xfst’, or ‘regex

@"guess.fst";’
2Such as: flookup -a guess.fst trmorph.fst

34

3. Overview of Previous Work and Existing Tools in Processing of
Turkish

biçimbirim<N><sal><Adj><0><N>

biçimbirim<N><sal><Adj><0><N><0><V><cpl:pres><3p>

biçimbirim<N><sal><Adj><0><N><0><V><cpl:pres><3s>

...

...

...

biçı̂mbı̂rim<N><sal><Adj>

2. Using foma’s flookup command, activating the guesser together with the
analyzer, and to batch-process text files:

TRmorph$ flookup -a guess.fst trmorph.fst < test-conll-unknown.txt

biçimbirimsel +?

biçimbirimsel biçimbirim<N:abbr><sal><Adj>

biçimbirimsel biçimbirim<N:abbr><sal><Adj><0><N>

biçimbirimsel biçimbirim<N:abbr><sal><Adj><0><N><0><V><cpl:pres><3p>

biçimbirimsel biçimbirim<N:abbr><sal><Adj><0><N><0><V><cpl:pres><3s>

biçimbirimsel biçimbirim<N><sal><Adj>

biçimbirimsel biçimbirim<N><sal><Adj><0><N>

biçimbirimsel biçimbirim<N><sal><Adj><0><N><0><V><cpl:pres><3p>

biçimbirimsel biçimbirim<N><sal><Adj><0><N><0><V><cpl:pres><3s>

...

...

...

Note that, in the second example, we see that once the word form “biçimbirimsel”
is returned as unknown denoted by +? symbols, the guesser transducer is invoked,
and all the potential analysis are returned.1

Segmenter Utility

The TRmorph tool comes with a separate automaton—a binary file, segment.fst—
which finds the morpheme boundaries on the surface strings. The segmentation
transducer depends on the root and morpheme boundaries on the surface strings
which are deleted during the regular analysis processing. Segmenter works by
first analyzing the query words through the regular analyzer, and then passing
them through the segmenter transducer in generation mode, without deleting the
morpheme boundaries from the surface form of the word. During this process,

1Due to space constraints, we did not list all the analyses of the word ‘biçimbirimsel’ here.

35

3. Overview of Previous Work and Existing Tools in Processing of
Turkish

certain word forms might produce multiple and identical segmented forms due to
vowel and consonant harmony rules described in the previous chapter—since the
environment affecting the morphophonology might come both from the preced-
ing and following vowels and consonants. Here is an example of a noun that is
segmented from its morpheme boundaries:

foma[0]: regex @"segment.fst";

2.9 MB. 59573 states, 190562 arcs, Cyclic.

foma[1]: up

apply up> evlerinden

ev-leri-nden

ev-leri-nden-ler

ev-ler-in-den

ev-ler-in-den-ler

ev-ler-i-nden

ev-ler-i-nden-ler

ev-ler-i-nden

ev-ler-i-nden-ler

ev-ler-i-n-den

ev-ler-i-n-den-ler

ev-ler-i-nden

ev-ler-i-nden-ler

ev-leri-nden

ev-leri-nden-ler

ev-i-nden

ev-i-nden-ler

Token-Hyphenator Utility

Hyphenated words are split from the syllable boundaries in Turkish. Due to reg-
ular syllable structure in the spelling, there is no special treatment required. A
transducer for hyphenated words is created via the Makefile, and produced as a
binary file called hyphenate.fst. The resulting analysis while using this trans-
ducer forms surface strings of words with hyphens placed between the syllables.
For example:

foma[0]: regex @"hyphenate.fst";

10.6 kB. 12 states, 551 arcs, Cyclic.

foma[1]: up

apply up> okudum (‘read-PAST-1s’)

o-ku-dum

apply up> okudularsa (‘read-PAST-3p-Cond’)

36

3. Overview of Previous Work and Existing Tools in Processing of
Turkish

o-ku-du-lar-sa

apply up> okuduysalar (‘read-PAST-Cond-3p’)

o-ku-duy-sa-lar

Note that in the last two examples, essentially both of the word forms refer to the
same thing, as in ‘(if) they read’. However, there are two different ways to form
such conditional word forms because the morpheme-order of the ‘3p’ suffix -lAr

can vary, without losing its meaning. In such cases, the hyphenator still needs to
be able to correctly segment the morphemes from the syllable boundaries.

Evaluation of the current architecture in TRmorph

The following chapter examines the evaluation of the TRmorph-Baseline analyzer
(as well as the TRmorph with its additional utilities wherever it is necessary)
on various data sets—consisting of both annotated and unannotated text such
as Turkish articles and newspaper texts—including the Turkish Treebank and
Turkish Corpus (Oflazer et al., 2003), (Atalay et al., 2003), as well as Morpho
Challenge Shared Task1 2010 data sets (Kurimo et al., 2010a). It assesses the
coverage of these data sets analyzed by the TRmorph-Baseline version, as well
as TRmorph-Extended version. At last, it provides evaluation analyses (Morfes-
sor Reference evaluation results whenever possible) for the data obtained from
Morpho Challenge Task.

1http://research.ics.aalto.fi/events/morphochallenge2010/

37

http://research.ics.aalto.fi/events/morphochallenge2010/

Chapter 4

Evaluation of TRmorph

Data Sets Used in the Evaluation of TRmorph

In order to assess how well the TRmorph analysis covers annotated data set
word forms, as well as unannotated text words; we processed several data sets for
the assessment of coverage. Among these data sets, we processed the following:

i. Unannotated news paper text.

ii. Unannotated data sets taken from Web-To-Corpus—collected from Wikipedia
and web text by Majlǐs (2011), and Majlǐs and Žabokrtský (2012).

iii. METU-Sabanci Treebank data sets (Oflazer et al., 2003), (Atalay et al.,
2003)—used in CoNLL–Shared Task on Dependency Parsing (2007), (Nilsson
et al., 2007).
– METU Turkish Corpus data sets (Say et al., 2002).

iv. Annotated data sets obtained from Morpho Challenge 2010, Semi-supervised
and Unsupervised Analysis Shared Task1 (Kurimo et al., 2010b).

In the next sections, we examine the coverage of these texts processed with the
TRmorph analyzer and discuss the evaluation metrics on the gold standard data
sets taken from the Morpho Challenge shared task.

4.1 Newspaper Data Coverage

In order to process tokens that are more commonly seen in daily usage, both
formally and informally, and to avoid linguistically motivated bias that may exist
in annotated tagsets; we processed unannotated newspaper text, collected from

1http://research.ics.aalto.fi/events/morphochallenge2010/

38

http://research.ics.aalto.fi/events/morphochallenge2010/

4. Evaluation of TRmorph

Milliyet newspaper articles1. For coverage assessment of this newspaper text, we
used the TRmorph-Baseline analyzer2. In order to prepare these data sets for
the morphological processing, we first applied some basic pre-processing steps by
filtering out tokens such as punctuation marks, and mark-up tags, and new lines—
which do not contribute to the morphological analysis. After the pre-processing
step, we obtained the following coverage counts:

Milliyet Texts All Tokens All Unknown Tokens Token Coverage

Milliyet1 5028083 283912 0.943534743

Milliyet2 5016963 283962 0.943399622

Milliyet3 5010526 297896 0.940545963

(Avg.) TOTAL 15055572 865770 0.942495044

Table 4.1: TRmorph-Baseline token coverage of Milliyet Newspaper

Milliyet Texts All Uniq.Tokens Uniq.Unkn.Tokens Type Coverage

Milliyet1 351238 75857 0.784029632

Milliyet2 352296 74245 0.789253923

Milliyet3 324246 79133 0.755947645

(Avg.) TOTAL 1027780 229235 0.776961023

Table 4.2: TRmorph-Baseline type coverage of Milliyet Newspaper

The next table 4.3 shows the distribution of unknown words according to
their initial letters. Observations obtained from these distributional word counts
point out that unknown words starting with a lower-case letter, rejected by the
analyzer, consist of words that have either a foreign or borrowed origin—thus,
their root-forms do not exist in the fixed lexicon of TRmorph-Baseline version. A
second majority of unknown words come from tokens that have been misspelled,
or words that have unconventional spelling. The other group of unknown words,
starting with an upper-case letter, rejected by the analyzer include mostly proper
nouns, and noun phrases, which are generally a group of Named Entities (NE).

1Special thanks to Prof. K. Oflazer for giving us permission to use the Milliyet Data Collec-
tion. The set of collections (in raw-text format) can be accessible from:http://deniz.yuret.
com/turkish/Milliyet1.bz2, http://deniz.yuret.com/turkish/Milliyet2.bz2, http://
deniz.yuret.com/turkish/Milliyet3.bz2

2without the guesser for unknown words

39

http://deniz.yuret.com/turkish/Milliyet1.bz2
http://deniz.yuret.com/turkish/Milliyet1.bz2
http://deniz.yuret.com/turkish/Milliyet2.bz2
http://deniz.yuret.com/turkish/Milliyet3.bz2
http://deniz.yuret.com/turkish/Milliyet3.bz2

4. Evaluation of TRmorph

Unique Words Word Count

All Unique Words 214385

Tokens starting with uppercase 148803

Tokens starting with lowercase 63088

Others (Punct, Digits) 2494

Table 4.3: Distribution of unknown words according to their capitalization in
Milliyet newspaper

The frequency distribution of the top ten lower-case and upper-case unknown
words obtained from these lists can be shown as the following:

Frequency Lowercase Words

106 ın

102 ilerde

101 t

100 livaneli

10 açıkhava

10 anakent

10 aprona

10 arttırarak

10 arttırdığı

10 arttırmayı

Frequency Uppercase Words

100 Amokachi’nin

100 Aluminyum

100 Alcatel

100 Aksigorta

100 Bakanı’nın

100 Banvit

100 Bir’in

100 Borova

100 Çimentaş

100 Demisaş

Table 4.4: Frequency distribution of top 10 unknown words

From the examples given in table 4.4, we can easily see that noun phrases,
proper nouns and Named Entities in Turkish are not only used with upper-case
initials; but also they use an apostrophe to separate nominal suffixes attached
to the stem. Relying on these assumptions, we can identify Named Entities. In-
tuitively, we may also conclude that if the NE types are annotated according to
certain NE characteristics, such as person, location or organization, or a given
analyzer can detect such patterns; certain unknown tokens carrying the patterns
of NEs can be correctly analyzed, rather than being rejected from the analyzer,
due to unknown word-forms (or stems). In the next sections, for the processing
of unannotated data sets, we have continued using only the TRmorph-Baseline
version (without the unknown tokens guesser utility in TRmorph-Extended ver-
sion).

40

4. Evaluation of TRmorph

4.2 Web-To-Corpus (W2C) Data Coverage

For the coverage assessment of unannotated data sets, we have used Web-2-
Corpus data sets prepared by Majlǐs (2011) and Majlǐs and Žabokrtský (2012).
These data sets consist of a collection of texts extracted from Turkish Wikipedia
which contains around 12.5 million words; and other unannotated web text col-
lected via web crawling of various text resources, which contain around 100 mil-
lion words1. Since these kinds of data sets contain both formal and informal (and
noisy content, mostly unedited text) language that is commonly used on the
internet; we evaluated these data sets to see how well the TRmorph-Baseline an-
alyzer processes such data sets. Before the coverage assessment, we pre-processed
the Wikipedia text by removing certain tokens—such as the punctuation, empty
lines—that are irrelevant to the analysis of tokens. Table 4.5 below shows the
token coverage of Wikipedia words:

Wikipedia Texts All Tokens All Unknown Tokens Token Coverage

Wikipedia-1 4200000 470376 0.888005714

Wikipedia-2 4200000 545077 0.870219762

Wikipedia-3 4193380 449681 0.892764071

(Avg.) TOTAL 12593380 1465134 0.883658398

Table 4.5: TRmorph-Baseline token coverage on Wikipedia data sets

Based on the number of unique words within these Wikipedia data sets, table
4.6 below shows the coverage of token-types: Table 4.6 below shows the token-
type coverage of Wikipedia data sets processed with TRmorph-Baseline analyzer:

Wikipedia Texts Unique Tokens Unique Unknown Type Coverage

Wikipedia-1 422861 199054 0.529268483

Wikipedia-2 449103 222440 0.504701594

Wikipedia-3 395619 217163 0.451080459

(Avg.) TOTAL 1267583 638657 0.496161593

Table 4.6: TRmorph-Baseline token-type coverage on Wikipedia data sets

1For more details on how these data sets were collected, see the developer’s page: http:

//ufal.mff.cuni.cz/~majlis/w2c/

41

http://ufal.mff.cuni.cz/~majlis/w2c/
http://ufal.mff.cuni.cz/~majlis/w2c/

4. Evaluation of TRmorph

As it was described for the Wikipedia text pre-processing, before the analysis
of texts, we applied the same steps for the coverage of Web-2-Corpus web-text
assessment. We give the coverage of the web-text, made of 50 million tokens
which were processed with TRmorph-Baseline analyzer in the following table 4.8
below:

W2C-Web Data Number of Tokens

All Tokens 50000000

All Unknown 5449269

Token Coverage 0.89101

Unique Tokens 2312007

Unique Unknown 1436792

Type Coverage 0.37855

Table 4.7: TRmorph-Baseline token & type coverage on W2C-Web data

It is important to note, however, that the web-text that is extracted from the
web is normally not expected to be as clean as edited news-paper or annotated
text. Therefore, we see a much lower token-type coverage of the web-text than
the one obtained for the Wikipedia source–which is also considered as non-edited
text, compared to other more formal types of written text. As a result, we see
that a significant number of tokens—that were returned as unknown from the
web-text—contain highly noisy content that is normally not seen in edited and
more formal written texts. The type of tokens that were not analyzed consist of
not only misspelled or unconventionally spelled tokens, but also tokens that do
not have much morphological content. Approximately 62K of tokens out of 1,4M
unknown tokens consist of digits/numbers for currencies, dates, phone numbers
or certain digital codes, email addresses and similar kinds of tokens. We give a
small list of examples taken from the unknown tokens list below:

01/01/1992 01/01/1993
01011993′den 01/01/2007
01/01/2008 01/01/2009
01Haziran2011 02/Haziran/2009
00005YTL 00007YTL
#0206*8373# *#0206*8378#
aacun92@hotmailcom abis@abgsgovtr

Table 4.8: Examples of unknown tokens from W2C-Web text

The rest of the unknown tokens that do not have digits in them also con-

42

4. Evaluation of TRmorph

sist highly of misspelled tokens, or multi-word tokens that were not properly
tokenized via use of white-space. For a general evaluative assessment of the
TRmorph-Baseline, we have obtained these coverage results. However, we will
mostly consider the issues seen in annotated or edited (but unannotated) texts for
the improvement of the TRmorph-Baseline since the parsing of noisy content is
out of scope of this thesis, and in general out of the scope of generic morphological
analyzers.

4.3 METU–Sabanci TreeBank, CoNLL Data Cov-

erage

The METU–Sabanci TreeBank made from a smaller subset of the METU1 Turk-
ish Corpus—which is a two million word collection of Turkish text written in
post-1990s from 10 genres—consists of 7262 sentences. For the morphological rep-
resentation, words are represented with IG-based annotation2, and dependency
links showing inflectional IGs on the gold-standard data sets.(Eryiğit et al., 2008)

From METU–Sabanci TreeBank, a smaller subset of data, consisting of 5635
sentences, was prepared for the CoNLL 2007 shared task on dependency parsing.
However, especially because the word-internal dependencies3 in the gold-standard
data are represented with underscores (Nilsson et al., 2007); the dependency rep-
resentation of the IGs4 can suffer in data processing. This often stems from the
formatting types, and annotation differences required by different tools. Some-
times, these dependencies can have more than just one internal dependency link,
shown as DERIV link. For example, the lines 4-7 in the sentence below, taken from
the CoNLL test set, show the usage of multiple dependency links where each IG
represents a different part of speech than the part of the speech of the lemma
and/or the final word form:

1Middle East Technical University,http://ii.metu.edu.tr/corpus
2Inflectional groups represent the root and derivational elements of a word. They are

separated from one another by derivational boundaries. Each IG carries its own part of speech
and inflectional features(Eryiğit et al., 2008).

3Internal dependencies are shown with dependency links labelled as DERIV, which connect
IGs of words.

4Link between word dependencies and their corresponding morphological tags

43

http://ii.metu.edu.tr/corpus

4. Evaluation of TRmorph

1 Ama (However) ama Conj Conj 12 S.MODIFIER

2 , , Punc Punc 0 ROOT
3 hareket (movement) hareket Noun Noun A3sg|Pnon|Nom 11 SUBJECT

4 (expect) bekle Verb Verb 5 DERIV

5 Verb Verb Pass|Pos 6 DERIV

6 Adj APresPart 7 DERIV

7 beklenenden(is expected) Noun Zero A3sg|Pnon|Abl 10 MODIFIER

8 çok (very) çok Adv Adv 9 MODIFIER

9 daha (much) daha Adv Adv 10 MODIFIER

10 sert (hard) sert Adj Adj 11 MODIFIER

11 oluyor (become) ol Verb Verb Pos|Prog1|A3sg 12 SENTENCE

12 . . Punc Punc 0 ROOT

Table 4.9: CoNLL sentence format with derivational IGs– Translation of the sentence:
‘However, the movement is becoming a lot harder than what is expected’.

Besides such dependency links showing IGs, for the representation of deriva-
tional dependencies (which are labelled as DERIV in the sentence above, showing
the connection of IGs to the words), another type of internal word structure rep-
resented in the data format poses a challenge for the morphological processing of
words. In the CoNLL data sets, multi-word expression tokens are also internally
linked together by using an underscore, showing their lexical compositionality.
The examples below, which were randomly selected from the CoNLL test set,
show how those MWEs are represented in the CoNLL format:

10 yer alan (taking place) Adj APresPart 11 MODIFIER

15 dolaşıp durmuş (keep wandering) dolaşıp dur Verb Verb Pos|Narr|A3sg 16 SENTENCE

11 fark etmiş (made difference) fark et Verb Verb Pos|Narr|A3sg 12 SENTENCE

Table 4.10: Format of MWE tokens in the CoNLL data sets

In our coverage assessments, we removed certain tokens and lines that are not
relevant to the coverage estimations for processing the text by the TRmorph ana-
lyzer. These include punctuation tokens, empty lines, and the lines starting with
underscores that point to the word-internal dependency links. In this section, we
provide the analyses of CoNLL data sets with two different coverage estimations.

i. At first, we give the coverage of CoNLL data sets with the original tokens
which include the multi-word expression tokens as shown in 4.10. In our eval-
uation, in order to process these tokens properly, we have removed linking-
underscores1 between tokens composing that multi-word expression.

ii. Secondly, we provide the coverage of all tokens as single-unit lexical items—
where we have split the multi-word expressions into separate tokens by re-

1By removing those underscores, we replaced them with regular white-spaces, so that tokens
given as ‘yer alan’ can be formatted as ‘yer alan’ (‘taking place’)

44

4. Evaluation of TRmorph

moving the underscores within that MWE. This was done in an attempt to
process all the tokens individually so that we can evaluate the performance of
TRmorph, based on the number of single tokens without linking-underscores,
or spaces.

Table 4.11 below shows the TRmorph-Baseline coverage of original tokens for the
analyzed word forms in relation to the unknown1 word forms:

Original CoNLL-Data without punctuation

Tokens
Treebank Files # of. Sents. All Unknown Token Coverage

test.conll 300 3070 112 0.963

train.conll 5635 43573 2247 0.948

Table 4.11: TRmorph-Baseline coverage of tokens on METU TreeBank

The table 4.12 below shows the TRmorph-Baseline coverage of original token
types—which were obtained by calculating the unique word counts in the CoNLL
data sets—for the analyzed word forms in relation to the unknown word forms:

Original CoNLL-Data without punctuation

Unique Tokens
Treebank Files # of. Sents. All Unknown Type Coverage

test.conll 300 1865 70 0.962

train.conll 5635 19413 1952 0.899

Table 4.12: TRmorph-Baseline coverage of token-types on METU TreeBank

Processing Tokens with TRmorph-Extended

The following tables show the coverage of CoNLL data when the TRmorph ana-
lyzer was run using the unknown tokens guesser utility. Table 4.13 below gives
the coverage of tokens processed with TRmorph-Extended version:

1‘Unknown’ in these tables and for the rest of this thesis refers to tokens that the TRmorph
analyzer returns “no analysis”.

45

4. Evaluation of TRmorph

Processing CoNLL Data–Tokens without punctuation

Tokens
Treebank Files All Unknown Token Coverage

test.conll 3070 90 0.970

train.conll 43573 1805 0.958

Table 4.13: TRmorph-Extended token coverage on METU TreeBank

And table 4.14 gives the coverage of types for tokens processed with TRmorph-
Extended, using the unknown words guesser utility:

Processing CoNLL Data–Token Types without punctuations

Unique Tokens
Treebank Files All Unknown Type Coverage

test.conll 1865 65 0.965147453

train.conll 19413 1540 0.920671715

Table 4.14: TRmorph-Extended type coverage on METU TreeBank

Processing Single–Unit Tokens

The following tables show the TRmorph coverage of single-unit tokens—where
we have replaced the underscores with the \n character from the MWEs to split
them into new lines—for the analyzed word forms in relation to the unknown word
forms. Regular coverage of tokens (processed with TRmorph-Baseline, without
using the unknown tokens guesser utility) is given in 4.15:

Processing CoNLL Data without punctuation

Tokens
Treebank Files # of. Sents. All Unknown Token Coverage

test.conll 300 3160 50 0.984

train.conll 5635 46010 929 0.979

Table 4.15: TRmorph-Baseline coverage of single-tokens on METU TreeBank

The coverage of types for these single-unit tokens (processed with TRmorph-
Baseline) is given in table 4.16:

46

4. Evaluation of TRmorph

Processing CoNLL Data without punctuation

Unique Tokens
Treebank Files # of. Sents. All Unknown Type Coverage

test.conll 300 1875 23 0.987

train.conll 5635 19112 737 0.961

Table 4.16: TRmorph-Baseline coverage of single-token types on METU Tree-
Bank

At a first look, coverage counts obtained from these results seem promising.
However, splitting of original multi-word unit tokens into single tokens often led
to different PoS tags (and indeed even different morpheme tags) being assigned
to these single-tokens. Multi-word tokens usually compose a lexical entity that is
different from the composition of its individual tokens. Therefore, splitting the
tokens—while it increases the coverage—does not necessarily return the correct
tag assignment.

Processing Single–Unit Tokens with TRmorph-Extended

Following tables below show the coverage of single-unit tokens—which were previ-
ously underscored multi word expressions in the CoNLL data format—processed
with the TRmorph unknown words guesser. Table 4.17, below, shows the cover-
age of tokens over the Turkish Treebank:

Processing Single-Unit Tokens without punctuation

Tokens
Treebank Files All Unknown Token Coverage

test.conll 3160 1 0.999

train.conll 46010 63 0.998

Table 4.17: TRmorph-Extended coverage on METU TreeBank

Table 4.18 below shows the coverage of types for single-unit tokens processed
with TRmorph-Extended over the METU Treebank:

47

4. Evaluation of TRmorph

Processing Single-Unit Token Types without punctuation

Unique Tokens
Treebank Files All Unknown Type Coverage

test.conll 1875 1 0.999

train.conll 19112 56 0.997

Table 4.18: TRmorph-Extended coverage on METU TreeBank

The way tokens are formatted in existing data sets is important because while
the gold standard data sets can employ different annotation tags, different types
of NLP processing tools and methods may use different annotation methods which
then may cause significant drops in accuracy while testing for accuracy. As de-
scribed in Eryiğit et al. (2011), the lack of MWE handling in the dependency
parsing of Turkish—which exists in the gold standard data sets of the METU-
Sabanci treebank, as we have shown above in the examples in 4.10—results in
4% accuracy drop when they test their parser on raw data.

In our earlier coverage assessment of CoNLL tokens processed with TRmorph-
Extended (using the unknown tokens guesser utility), our findings show that a
total number of 4294 unknown tokens1 correspond to 3663 token-types2 in the
previous sections. Among these unknown tokens, a total of 4099 unknowns con-
sist only of MWE (including, also, Named Entities—aka. NEs) tokens; and from
those, 1791 of them come from unique MWE types. Table 4.19, below, shows
the breakdown of MWE token and type counts existing in the CoNLL data sets:

Data Sets Word Counts

All Unknown Tokens 4294

Unique Unknown Types 3663

All MWE Tokens 4099

Unique MWE Types 1791

Table 4.19: Distribution of MWE tokens on METU TreeBank

Table 4.20, below, shows 10 MWE tokens that were randomly selected from
the TRmorph-Baseline unknown token analyses.

1As shown in table 4.13 for ‘TRmorph-Extended Token Coverage on METU TreeBank’
2As shown in table 4.14 for ‘TRmorph-Extended Type Coverage on METU TreeBank’

48

4. Evaluation of TRmorph

Unknown MWE Tokens

Bayındır Sokak’taki (‘on the Bayındır Street’)
belli olmaz (‘cannot be made certain’)
bilgisayar mühendisi (‘computer engineer’)
Dışişleri Bakanı (‘external affairs minister’)
gerek duyulur (‘feeling the need’)
Hemen hemen (‘almost, nearly’)
riayet edilmesini (‘to submit, comply with’)
tahmin ettiğim (‘making a guess’)
tarihe geçmiştir (‘taking place in the history’)
şifa veren (‘healer, remedy giving’)

Table 4.20: 10 random MWE tokens on METU TreeBank

Looking at findings from the coverage assessment, we see that the format
of tokens in the source corpus directly affect the way they are analyzed in a
morphological analyzer.

4.3.1 METU Turkish Corpus Data Coverage

Çöltekin (2010) reports that tokens existing in the METU Turkish Corpus1 were
processed with TRmorph–using the earliest released version with SFST compiler ;
and they give the following assessment findings shown on the table 4.21

Original Analyzed
Type Token Type Token

162724 1431513 88% 95%

Table 4.21: TRmorph coverage on METU Turkish Corpus

For our own coverage assessment of the METU-Corpus, using the TRmorph-
Baseline analyzer, we processed the current version of METU-Corpus that was
available for researchers at the time of this thesis. The corpus data consist of a
collection of approximately two million words taken from written Turkish samples
dated as post-1990s. For pre-processing of the data, we have filtered out all the
corpus related mark-up tags, and punctuation characters, as well as new lines,
which are irrelevant to the processing of word types in the TRmorph analyzer.
Table 4.22 below shows our findings for the token coverage, showing the total
number of tokens in the corpus and the number of tokens that were unknown to
the TRmorph analyzer.

1http://ii.metu.edu.tr/corpus

49

http://ii.metu.edu.tr/corpus

4. Evaluation of TRmorph

Original METU-Corpus Data

Tokens Unknown Token Coverage

2030984 92859 0.954

Table 4.22: TRmorph-Baseline coverage on METU Turkish Corpus

These coverage results show the current baseline version of TRmorph that
uses the Foma compiler, compared to the earliest version of TRmorph that used
the SFST implementation for the TRmorph analyzer as given in table 4.21. Based
on the unique token count of corpus words, table 4.23 below shows the coverage
of token-types analyzed with TRmorph-Baseline:

Original METU-Corpus Data

Token-Types Unknown Type Coverage

217001 25892 0.880

Table 4.23: TRmorph-Baseline coverage of token-types on METU Turkish Corpus

Our findings from this coverage assessment show that most common unknown
words that were not analyzed with the TRmorph-Baseline analyzer, again are
either of foreign origin, or proper nouns (person names and other Named Entity
types) that do not exist in the fixed TRmorph lexicon.

4.4 Morpho Challenge Shared Task Data Cov-

erage

Coverage of Morpho Challenge Tokens Processed with TRmorph-Baseline
Since the Morpho Challenge data sets, part of the Morpho Challenge Shared Task
(Kurimo et al., 2010a), are the only gold standard data sets1 with evaluation
assessments available; in this section, we examine the coverage of the Morpho
Challenge data set tokens to assess the percentage of word forms analyzed by
TRmorph in relation to the percentage of unknown word forms.

For the task of assessing the coverage of the Morpho Challenge data sets,
in order to process the tokens with the TRmorph analyzer, we had to apply a
character conversion first. For this conversion, we replaced the uppercase letter

1The Turkish gold-standard analyses were obtained from a morphological parser developed
at Boğaziçi University; based on Dr. Oflazer’s finite-state machines. See:http://research.
ics.aalto.fi/events/morphochallenge2010/datasets.shtml#goldstd

50

http://research.ics.aalto.fi/events/morphochallenge2010/datasets.shtml#goldstd
http://research.ics.aalto.fi/events/morphochallenge2010/datasets.shtml#goldstd

4. Evaluation of TRmorph

characters—that were originally replaced by uppercase letters1 of the standard
alphabet in the Morpho Challenge data—with regular Turkish characters that
use UTF-8 characters as this is required by the TRmorph analyzer.

After the character conversion, we assessed only the data gold standard data
sets, consisting only of word list, taken as a corpus size of a one million word from
the Wortschatz collection (Quasthoff et al., 2006) at the University of Leipzig2

(Germany), training set, development and development pairs set, as well as the
combined sets. Our coverage assessment shows that the word list coverage is
significantly lower than the other data sets. This is probably due to the fact that
in the Morpho Challenge Shared Task, actual Turkish characters were replaced
with their corresponding uppercase variants. Certain words, especially the ones
where the lowercase/uppercase dotted/dotless letters (-ı, -I, -i, -İ) are used—
seem to have been annotated incorrectly in the original data. Thus, those words
do not appear in the lexicon, which resulted in many unknown analyses returned
from the TRmorph analyzer, since they cannot be recognized as legitimate word
forms. The table 4.24 below shows the coverage of the tokens processed by
the TRmorph, and next table 4.25 shows a list of tokens that were returned as
unknown due to character conversion:

Data Sets All Tokens Unknown Tokens Token Coverage

Word List 617294 291240 0.528198881

Training Set 1000 43 0.957

Development Set 763 35 0.95412844

Combined Sets 1760 78 0.955681818

Table 4.24: TRmorph-Baseline coverage of Morpho Challenge Shared Task (2010)

The table 4.25 below shows the examples of 15 unknown words taken from
the Morpho Challenge Word List, which were corrupted during the character
conversion process:

1In the Morpho Challenge tokens, letters specific only to the Turkish alphabet replaced
by their uppercase letter equivalents, e.g., “açıkgörüşlülüğünü” spelled as “aCIkgOrUSlUlU-
GUnU”.

2http://corpora.informatik.uni-leipzig.de/

51

http://corpora.informatik.uni-leipzig.de/

4. Evaluation of TRmorph

Unknown Words in Original Unknown Words with Normalized
Morpho Challenge Sets Chars in TRmorph

CGkabilir çğkabilir
CGkamazlar çğkamazlar
CGkar çğkar
CGkarGmda çğkarğmda
CGkarGmlarGn çğkarğmlarğn
CGkardG çğkardğ
CGkarlar çğkarlar
CGkarmak çğkarmak
CGkarmayG çğkarmayğ
CGkmGStGr çğkmğştğr
CGkmasGna çğkmasğna
CGkmaya çğkmaya
CGktGGGnG çğktğğğnğ
CGnkU çğnkü
CI çı

Table 4.25: Mapping of Morpho Challenge ‘word list’ tokens to normalized tokens
in TRmorph

Besides the unknown words returned from the Word List file in the Morpho
Challenge data sets, the other most common types of unknown word forms ob-
tained from the training, development and combined data sets come from the
following examples:

muarrem, öveçler, boşboğazlık, derebeyi, müstacel, semih, canbazın,
galatasaraylıyım, müstacel, plus, istanbullular, olumlanan, konyaspor,
yargıtayımız, dominantlığı, öveçler, adeleler, pasifikteki, dejenerasy-
onun, arzuluyorsunuz.
Example: 20 random unknown words from Word List

These examples show that some of the compound noun forms such as “dere-
beyi, boşboğazlık, canbazın, galatasaraylıyım, konyaspor”; and old or borrowed
Turkish words such as “müstacel, semih, öveçler”; and words with foreign origins
such as “dominantlığı, pasifikteki, dejenerasyonun” cannot be processed with the
current infrastructure of implementation of the TRmorph analyzer. The next sec-
tions and chapters examine the morphological analysis with the unknown words
guesser, and how that affects the data evaluation and the analysis process in
general.

52

4. Evaluation of TRmorph

Morpho Challenge Data Processing with TRmorph-Extended
After processing the Morpho Challenge data sets with the TRmorph-Baseline an-
alyzer (without using the unknown word guesser utility); we obtained the coverage
estimates given in table 4.24 above. Next, in order to re-examine the coverage,
we processed these same data sets with the TRmorph analyzer run together with
the guesser predicting unknown words. At this step, the TRmorph analyzer re-
sulted in 100% coverage for all data sets by guessing morphological analyses for
the previously-unknown tokens. Table 4.26 below shows the average number of
analyses per token:

Data Sets All Tokens Avg. # of Analyses Token Coverage

Word List 617294 475.8 100%

Training Set 1000 659.5 100%

Development Set 763 616.8 100%

Combined Sets 1760 641.4 100%

Table 4.26: Average number of analyses per token on Morpho Challange data
processed with TRmorph-Extended

However, as we have noted before—especially regarding the Morpho Challenge
data Word List file—due to data corruption during character conversion process
and the main method of guessing full morphological paradigms of word forms in
TRmorph; our findings show that even if certain word forms are nonsense, or
legitimately incorrect (and thus, should be returned as unknown by analyzers in
ideal conditions), or misspelled, the TRmorph guesser returned spurious analy-
ses for those previously-unknown tokens, resulting in 100% coverage in overall.
Therefore, the results of 100% coverage does not mean 100% accurate coverage
because extensive coverage is not necessarily equal to accuracy. For this reason,
in the next section, we discuss the accuracy of morphological tags and evaluation
metrics used in Morpho Challenge Shared Task both for tokens analyzed with
the TRmorph-Baseline analyzer, and the analyzer from the TRmorph-Extended
version, which utilized the guesser for unknown tokens.

53

4. Evaluation of TRmorph

4.4.1 Morpho Challenge Shared Task Data Evaluation

TRmorph Analyses and Morfessor Reference Methods

In Morpho Challenge shared task evaluations1, from the Morfessor Reference
methods, Morfessor Baseline, Morfessor Categories-MAP (Creutz and Lagus,
2007), and letters2 methods were used. The Morpho Challenge evaluations were
done by sampling a set of random word pairs created from the set of words
with proposed morphemes, and comparing this word pair set morphemes against
the common morphemes from the gold standard development/test set. In these
Morpho Challenge Shared Task evaluations, the segmentation with the highest
F-Measure was considered as the best result. Therefore, the F-measure was
considered as the main evaluation measure, and it was calculated as the harmonic
mean of precision and recall :

F = 2× Precision×Recall/Precision + Recall (4.1)

Besides the F-Measure3 value, they evaluated Precision, and Recall. For pre-
cision, they generated random word pairs from the predicted morpheme analyses
set. And then, compared this set with the gold standard analyses of word pairs
in the original Morpho Challenge data. The ratio of common morphemes found
in the predicted analyses and expected morphemes were normalized according to
the number of words to be evaluated. This means that for each word pair that
shares a morpheme in common with the gold standard analysis, one point was
given.

Recall was normalized among all proposed alternative analyses of each word
and the ones in the gold standard analyses. If words had more than one proposed
alternative analysis, and the word pairs had more than one morpheme in common
with the gold standard morphemes, then they assigned an equal weight for each
alternative analysis, and word pair analyses4. If the words happen to have a lot
more proposed alternative analyses, the best # match between the analyses is
returned.

1For the details of all Morpho Challenge shared tasks, and evaluation & results, see: http:
//research.ics.aalto.fi/events/morphochallenge/

2Method for segmentation that results in the highest recall possible for segmentation of
words to the letters they are made of

3Here, we give the standard formula of F−Measure, as given in (Manning and Schütze,
1999, p. 269), which slightly differs from the Morpho Challenge citation; however this formula
matches the numbers obtained from their own evaluation results.

4If a word has 3 proposed analyses, the first analysis has 4 morphemes; and the first word
pair in that analysis has 2 morphemes in common with the gold standard, then each of the 2
common morphemes amounts to 1/3 ∗ 1/4 ∗ 1/2 = 1/24 of the 1 point given for each word.

54

http://research.ics.aalto.fi/events/morphochallenge/
http://research.ics.aalto.fi/events/morphochallenge/

4. Evaluation of TRmorph

By taking these criteria into account, in the 2010 Morpho Challenge shared
task, using the letters (segmentation) and Morfessor reference methods evaluation
metrics, the best scores obtained for precision, recall, and F-Measure for the
Turkish data sets come from the following method and learning types1,2:

Morfessor Reference Methods

AUTHOR METHOD PRECISION RECALL F-MEASURE

Nicolas MorphAcq (U) 79.02% 19.78% 31.64%
Golenia MAGIP (S) 32.00% 65.80% 43.06%
Kohonen Morfessor S+W+L (S) 71.69% 59.97% 65.31%

- Morfessor CatMAP (U) 79.38% 31.88% 45.49%
- Morfessor Baseline (U) 89.68% 17.78% 29.67%
- Letters (-) 8.66% 99.13% 15.93%

Table 4.27: Morpho Challenge shared task results with Morfessor evaluations

We followed the evaluation metrics given for the letters and Morfessor refer-
ence methods, and evaluated the same Morpho Challenge word pairs data set in
the ‘gold standard development word pairs’3 file. Using their evaluation metrics
and instructions, we generated the set of tokens containing a mix of 300 random
word pairs analyzed by TRmorph. For our own evaluation, the results were then
compared between the following sets:

i. the gold standard word pairs
–TRmorph Set: Analyses of word pairs obtained by using the TRmorph-
Baseline

ii. the gold standard development set labels
–TRmorph Set: Analyses of gold standard development set labels obtained
by using the TRmorph-Baseline

Using these four files, we obtained the total precision, recall and F-Measure
scores for the word analyses found by TRmorph analyzer in the development set.
According to these evaluations, we also obtained the precision and recall values
for “affixes” and “non-affixes”—in which the algorithm considers morpheme tags
starting with an initial + sign as an affix, and the others as a non-affix—where

1The learning types given in the parantheses: S: semi-supervised algorithm, U: fully un-
supervised algorithm.

2Full list of results at: http://research.ics.aalto.fi/events/morphochallenge2010/

comp1-results.shtml
3Original Morpho Challenge Data set “goldstd develset.wordpairs.tur”:http://research.

ics.aalto.fi/events/morphochallenge2010/data/goldstd_develset.wordpairs.tur

55

http://research.ics.aalto.fi/events/morphochallenge2010/comp1-results.shtml
http://research.ics.aalto.fi/events/morphochallenge2010/comp1-results.shtml
http://research.ics.aalto.fi/events/morphochallenge2010/data/goldstd_develset.wordpairs.tur
http://research.ics.aalto.fi/events/morphochallenge2010/data/goldstd_develset.wordpairs.tur

4. Evaluation of TRmorph

we converted the format of TRmorph analysis annotations to show only the in-
flectional morphemes as the affix. The evaluation results we got are given in the
following table :

Morfessor Evaluation

Precision Recall F-measure

42.30% (122/288) 92.66% (265/286) 58.09%
Non-affixes: 69.34% (18/27) 93.73% (93/99) 79.71%
Affixes: 39.55% (103/261) 92.10% (173/187) 55.34%

Table 4.28: TRmorph-Baseline results on Morpho Challenge Data Sets

TRmorph-Extended Analyses and Morfessor Reference Methods
Here we give the results of the Morfessor evaluations based on the analyses of

development-word-pairs set processed with the unknown tokens guesser utility in
TRmorph-Extended version:

Morfessor Evaluation

Precision Recall F-measure

15.20% (46/300) 100.00% (286/286) 26.39%
Non-affixes: 64.84% (2/3) 100.00% (99/99) 78.67%
Affixes: 14.67% (44/297) 100.00% (187/187) 25.58%

Table 4.29: TRmorph-Extended results with Morpho Challenge Data Sets

From this evaluation comparison, our findings show that use of the guesser
for unknown tokens significantly damage the precision and F-Score–while it raises
the recall value to a higher number, which was already relatively good before the
use of guesser for unknown tokens. The number of multiple analyses generated
by the guesser for unknown tokens seems to impact the final results a lot more
negatively that benefits of using the guesser does not really outweigh the use of
TRmorph analyzer by itself.

4.5 Results of TRmorph Evaluation

As described in the Morpho Challenge results by Kurimo et al. (2010a), regarding
all morphologically rich languages, our various coverage assessment and evalua-
tion using the Morfessor Reference methods show that high number of inflected
word forms (due to productive nature of Turkish morphology) poses a challenge

56

4. Evaluation of TRmorph

for morphological processing. Given the inflected forms of tokens, the use of a
rule-based morphological analyzer, (such as the TRmorph analyzer as the focus of
this thesis), is indeed effective in providing the root-forms of words. However, this
efficiency goes only as far as the the number of words that exist in the lexicon.
As we have seen with the data evaluated, TRmorph does not cover the whole
language; and most of the tokens that are unknown come from words that are
rarely-used, or have foreign origins as it is the case with unknown proper nouns,
or they may have unconventional spelling. The attempt at resolving unknown
tokens via a guesser utility also seemed to damage the overall analysis results.

Considering these findings, there are several areas that need to be improved
and resolved. For this, in the next chapter, we provide our proposed method
for extending the fixed lexicons in TRmorph-Baseline so that the number of
tokens returned unknown due to OOV tokens can be reduced. For this, we try to
handle the processing of proper names and Named Entities for the nominal tokens
group. Secondly, we provide an extension of lexicon for the processing of multi-
word expression verbs. For processing of new tokens, we provide our proposed
method for tokenization of new lexical items—which is added onto the TRmorph
package. At last, we introduce a revised version of a finite-state guesser that will
work only for the analysis of nouns. In the next chapter, we discuss the individual
components of our proposed method, and provide a summary of architecture at
the end.

57

Chapter 5

Methods for Expanding &
Improving the Lexicon

In this chapter, we explore methods to expand and improve the existing TRmorph-
Baseline lexicon by using linguistically-motivated, heuristic information extrac-
tion techniques and finite-state approaches to make a more flexible and compre-
hensive lexicon. The main methods we have employed in the construction of new
lexicons used in our version of the TRmorph analyzer—TRmorph+1, and the
types of data we extracted for the collection of new lexical items are discussed
with more detail in the following sections.

5.1 Method 1: Extraction of New Lexical To-

kens for the Expansion of Lexicons

5.1.1 Abbreviations

The Abbreviation and Acronym lexicon in TRmorph-Baseline originally consisted
of 83 lexical items. For the construction of this new lexicon, we extracted a list
of abbreviations from the Turkish Wiktionary2, and Turkish Wikipedia Person
categories. These consisted of 118 N abbreviations, composed of abbreviations
of general common nouns, and 743 NP abbreviations, composed of the abbrevia-
tions of organizations and foundations that stand for a proper name in the lexicon.

With a total of 861 unique additions of abbreviations, the current TRmorph+
Abbreviations lexicon consists of 944 abbreviations.

1We will refer to the version of TRmorph that we use in our own experiments as ‘TRmorph+’
for the rest of this thesis.

2https://tr.wiktionary.org/wiki/Kategori:Kısaltma (Türkçe)

58

5. Methods for Expanding & Improving the Lexicon

Lexicon Name TRmorph-Baseline TRmorph+

Abbreviation 83 944

Table 5.1: New abbreviations lexicon in TRmorph+

5.1.2 Parsing of Numbers & Digits in Dates

As given in the table 4.8 for Unknown Tokens from W2C-Web Text in the previ-
ous chapter, our evaluation and assessments of the TRmorph-Baseline analyzer
showed that most of the formats of dates, such as 08/06/1933, 08/06/1936,

08/06/1938 were not analyzed in the TRmorph-Baseline analyzer. While it is
still difficult, and indeed it is outside the scope of a general morphological ana-
lyzer to be able to process noisy content web-text; in our version of TRmorph+,
we have proposed a method to parse several date formats.

Provided that the date format given in the input could adhere to the writing
and orthography specifications given by the Turkish Language Institution1, our
method for parsing dates via the construction of a finite-state transducer reads
the text input, accepts and tags the date format if the format is accepted by the
transducer.

Processing Date Formats via the Construction of a FST Parser
For the new utility of TRmorph+, in the construction of the date parser FST, we
used the examples provided in the Foma library for English date rules. Following
the description of dates, as specified on TDK2, the new dateparser transducer
reads date formats in the input text, and adds ‘< DATE >’ tags if the date
format is accepted and recognized by the parser automaton. According to this
parser, following formats of dates are recognized and accepted:

i. Month and days of the week for specific dates, that start with an upper case
initial letter, as in ‘29 Mayıs 1453 (Salı)’ (May 29, 1453, (Tuesday)), or just
the combination of day of the month and name of the month as in ‘29 Ekim’
(October 29)

ii. Dates that are written only with digital numbers using one of the two symbols
as in ‘23.04.1923’ or ‘29/10/1920’

1As mentioned before, parsing of unconventional text or text with noisy content is essentially
impossible without using other exhaustive methods, which are not within the scope of this thesis.

2http://www.tdk.gov.tr/‘Büyük Harflerin Kullanıldığı Yerler’

59

http://www.tdk.gov.tr/

5. Methods for Expanding & Improving the Lexicon

The binary of the dateparser.fst can be generated from the makefile of the
TRmorph+1 package. In order to use this utility, the following flookup command
is used:

$echo "24 Aralık 1999" | flookup -i dateparser.fst

This command starts the flookup method of Foma in the inverse mode—
which generates a tagged version of the date string. If the string is accepted by
the parser, it returns, for example:

<DATE>24 Aralık 1999</DATE> (‘24 December 1999’)

Alternatively, the date parser can be used via the Foma command by entering:

$foma

$regex @"dateparser.fst";

$down

>24.12.2000 //entering date_string

5.1.3 Multi-word Expressions

Multi-word expressions are word formations that are composed of two or more
words. The composed meaning of these lexical units are usually different from the
lexical meaning of its individual words. In the previous sections, as we examined
different Named Entity types—which are considered a unique type of Multi-word
Expression, other lexical categories such as verbs, adjectives and adverbs and
other part-of-speech types can form multi-word units that result in a different
lexical meaning from their individual tokens. Therefore, the role of multi-word
expression tokens in parsing is significant. The importance of these units is es-
pecially more visible in other NLP fields such as Machine Translation, as the
composed meaning of multi-word expressions can be entirely different from the
translation of its individual tokens (Eryiğit et al., 2011).

When these multi-word tokens are correctly tokenized to preserve their own
unique lexical meaning, they also help reducing the spurious ambiguity since their
morphological interpretation and analysis become more unique than its individual
tokens. In their work, Oflazer et al. (2004) state that multi-word expressions in
Turkish make heavy use of auxiliary/support verbs with lexicalized direct or
oblique objects that have various morphological constraints. They describe the
formation of multi-word expressions in four different categories:

1By prompting the command: $ make dateparser . Date parser transducer works only in
generation mode. For more details, please see the dateparser.foma script in the TRmorph+
Directory.

60

5. Methods for Expanding & Improving the Lexicon

i. Lexicalized multi-word expression: All individual tokens of the multi-word
expression are fixed. For these types of multi-word expressions, final syntactic
function and semantics are not predictable in advance from the structure and
the morphological properties of its individual tokens. Some examples under
this type are the following:

a. hiç olmazsa (at least) → hiç(never)+Adverb, -ol(be)+Verb
→ hiç olmazsa+Adverb

b. ipe sapa gelmez (worthless1)→ ip(rope)+Noun, sap(handle)+Noun+Dat,
gel(come)+Verb
→ ipe sapa gelmez+Adj

ii. Semi-lexicalized multi-word expression: Some individual tokens of the multi-
word expression are fixed, and some can vary via inflectional and derivational
morphology processes. Usually, the (lexical) semantics of the collocation is
non-compositional. This group of multi-word expressions come from com-
pound and auxiliary/support verb formations with two or more lexical items
that are lexically adjacent. The head of the multi-word expression (the last
word in the sequence) is a verb, or it is (any) word-form that is derived from
a verb. Even if the tokens preceding the lexical head may be inflected, only
the morpho-syntactic features of the head token give their features to the
whole multi-word unit. Thus, only the head token’s morpho-syntactic fea-
tures go through word-formation via morphological derivation and inflection
processes. For example:

- kafayı ye– (literally to eat the head – to get mentally deranged) inflected
by keeping the first token of the multi-word unit ‘kafayı’ as fixed, and the
last token—which is a verb—as inflected or derived in many ways, as in the
following examples:

a. kafayı ye-dim (I got mentally deranged)

b. kafayı yi-yeceklerdi (they were about to get mentally deranged)

c. kafayı yi-yenler (those who got mentally deranged)

d. kafayı ye-digi (the fact that (s/he) got mentally deranged)

iii. Non-lexicalized multi-word expression: The multi-word expression is made by
a morpho-syntactic pattern of duplicated and/or contrasting components, as
in reduplications or semi-duplications. These are completely non-lexicalized,
and only change the semantics of the phrase in use. Following examples can
be considered for this group of non-lexicalized multi-word expressions:

1Literally, (he) does not come to rope and handle

61

5. Methods for Expanding & Improving the Lexicon

–mavi mavi (literally ‘blue blue’, used in order to enhance the blue color aspect
of an object)
–gelir gelmez (literally ‘(s/he) comes, (s/he) does not come’, expressing “as
soon as s/he comes”. This is an example of contrasting verbal duplication.)

iv. Multi-word Named Entities : These are multi-word expressions for proper
names for persons, organizations, places, etc. This group of multi-word ex-
pressions are also considered as semi-lexicalized multi-word expressions since
they behave the same way, as we described with the previous verbal exam-
ple. These Named Entities occur in the text as all of its tokens except for
the last—which is the head—being fixed, and the last token may go through
several morphological processes reflecting nominal word formation. The ex-
ample below shows a proper noun Named Entity, whose very last token car-
ries the nominal case mark, and it represents a case marking on the whole
named-entity:

- Türkiye Büyük Millet Meclisi’nde (In the Turkish Grand National Assembly)

→ Türkiye Büyük Millet Meclisi+Noun+Prop+A3sg+Pnon+Loc, (Oflazer
et al., 2004)

In TRmorph+, although we do not morphologically mark the differences be-
tween these four groups of multi-word expressions, in our data/token collection
for the expansion of lexicons, we closely followed these descriptions. As a result,
we mostly collected lexicalized and semi-lexicalized multi-word expression forms,
besides the various Named Entity types. Non-lexicalized multi-word expression
types were already being handled in TRmorph-Baseline. While we did not ex-
pand the group of non-lexicalized multi-word expressions very much; nonetheless,
we still handle the proper tokenization of all multi-word expression forms. In the
sections below, we describe the lexicon changes undertaken for TRmorph+ re-
garding the multi-word expressions and Named Entity types.

i. Verbal Multi-word Expressions

For the processing of the multi-word expression verbs, we extracted 10038 unique
MWE-verbs from the Turkish Wiktionary from different categories, such as phrasal
verbs, regular multi-word verbs, and idiomatic verbs (the ones that have mostly
non-compositional meaning). For the lexicon preparation and pre-processing, we
removed all the verbal endings from these verbs in order to leave them in their
root form. After removing all the duplicates, we obtained a unique list of 9985
MWE-verbs collected only from the Turkish Wiktionary.

62

5. Methods for Expanding & Improving the Lexicon

Besides the MWE verbs taken from Wiktionary, we extracted 50 MWE verbs
from the ITU-Validation set1 (Eryiğit, 2007), (Eryiğit, 2012)–-which is avail-
able in the METU-Treebank, and was prepared as a test set for the CoNLL-XI
Shared Task—containing MWE annotations. After the ITU-Validation sets, we
extracted the MWE tokens from the METU-Treebank CoNLL Sets. These were
the tokens that were returned as unknown by the TRmorph-Baseline earlier, as
we had shown in table 4.19:Distribution of MWE Tokens on METU TreeBank.
From those unknown MWE tokens in the CoNLL set, we extracted 858 MWE
verbs. After filtering out duplicates, and removing the verbal inflections and un-
derscore connectors, we obtained the following unique counts from these data sets
for the initial preparations:

1. ITU-validation Set consisting of 42 MWE verbs

2. CoNLL Data Sets, consisting of 485 MWE verbs

3. Combination of Wiktionary, ITU, CoNLL tokens: 10500 MWE tokens
- Unique count of all of the MWEs: 10125/10500

For further pre-processing, we removed all of the punctuations such as quota-
tion marks, exclamations marks, and commas from the MWEs, and also added
derivational boundary markers for verbs that have internal stem changes due to
vowel harmony and consonant alternations. After we filtered out the original 77
MWE verb tokens that already exist in the TRmorph-Baseline verb lexicon from
the new MWE-verb lexicon for TRmorph+, we obtained 10062 unique MWE ad-
ditions. For the MWE-verb lexicon, for correct verb-formation, we divided the
types of verbs into five different categories according to their lexical and deriva-
tional types.

1. Verbs ending with “-et” auxiliary as its head → “Aorist” verb
–e.g. ‘yardım et-’ (make help)

2. Verbs ending with “-kal, -ver, -al, -ol” auxiliary as their heads→ “Regular
Causative” verbs (ending with -dir)
–e.g. ‘aç kal-’ (stay hungry), ‘akıl ver-’ (give idea/opinion), ‘ifadesini al-’
(take testimony), ‘abone ol’ (become a subscriber)

3. Verbs ending with “-sür, -et, -gör” auxiliary as their head→ “Aorist Causative”
(irregular ending causatives)
–e.g. ‘yokuşa sür’ (ride (against) uphill, make difficult), ‘alay et-’ (make
fun (of)), ‘hoş gör’ (be nice, take it lightly)

1http://web.itu.edu.tr/gulsenc/treebanks.html

63

http://web.itu.edu.tr/gulsenc/treebanks.html

5. Methods for Expanding & Improving the Lexicon

4. All verbs ending with “-ol” auxiliary as its head → “Irregular Causative”
(verbs that cannot be causative–as in the passive forms of the verbs)
–e.g. ‘şart ol-’ (have/be a condition)

5. Verbs ending with “-gör” auxiliary as its head → “Reflexive-Reciprocal Ir-
regular Causative” (verbs that take the causativity from the reflexive or
reciprocal forms of the specified verb)
–e.g. ‘kırmızı kart gör (göster)’ (to show red card)

6. All the remaining verbs that do not fit any of these categories were tagged
as “Verb” for regular verb formation.

After tagging these verbs according to their appropriate verb-form categories,
we obtained the following unique MWE verb counts:

Type of Verbs # of Tokens

Regular verbs 6525
Aorist Verbs 1455
Regular Causatives 1827
Aorist Causatives 1583
Irregular Causatives 956
Reflx-Recp Irr.Causatives 96

TRmorph-Baseline MWE verbs 77
TRmorph+ MWE Verbs 12442

Table 5.2: New MWE-Verbs lexicon in TRmorph+

ii. Nominal Multi-word Expressions

For the expansion of the multi-word expression nouns lexicon, we extracted the
list of regular common nouns template from the Turkish Wiktionary1. From this
list, we filtered out single token nouns from the multi-word expression nouns,
and obtained a new list of of 13616 new multi-word expression noun tokens. To-
gether with the 71 multi-word expression nouns already existing in the TRmorph-
Baseline lexicon, currently TRmorph+ has 13663 new multi-word expression
nouns in the new lexicon. Table 5.3 below shows the number of tokens that
have been added to the TRmorph+ lexicon.

1https://tr.wiktionary.org/wiki/Kategori:Ad

64

https://tr.wiktionary.org/wiki/Kategori:Ad

5. Methods for Expanding & Improving the Lexicon

Lexicon Name TRmorph-Baseline TRmorph+

MWE noun 71 13663

Table 5.3: New multi-word nouns lexicon in TRmorph+

These multi-word expression nouns are almost strictly made of lexicalized
multi-word expressions groups, where all individual tokens are fixed, and mor-
phological properties of individual tokens do not change according to context,
and they are not predictable in advance. Some examples of this category include
the following multi-word expressions:
> maskeli balo → ‘(with)mask’ + ‘ball’ → masquerade
> İngiliz anahtarı1 → ‘English’ + ‘key’ → monkey-wrench
> tüp bebek → ‘tube’ + ‘baby’ → baby born via ivf
> tükenmez kalem →‘(never running out) infinite’ + ‘pencil’ → pen

iii. Adjectival Multi-Word Expressions

For the extension and improvement of the Adjective and Adverb lexicons, we
examined the adjective and adverb tokens currently existing in the TRmorph-
Baseline lexicons. In the adjectives lexicon, TRmorph-Baseline had 53 MWE
tokens. However, as it is the case for other lexicons as well, these were only
processed correctly as adjectives when they were tokenized as a single unit as in
the following token:

>$akşamlı sabahlı (‘morning and evening, always’)

This yielded the following analysis:

apply up> akşamlı sabahlı

akşamlı sabahlı<adj>

akşamlı sabahlı<adj><JN_0><n>

akşamlı sabahlı<adj><JN_0><n><3p>

akşamlı sabahlı<adj><JN_0><n><3s>

However, when these words were tokenized as single units, as in,

>akşamlı

>sabahlı

1One specific group of Turkish mwe-nouns are composed via suffixation of ‘noun-compound’
making suffix /-ı, -i, -u, -ü, -sı, -si, -su, -sü/ inflections–which are added onto the head of the
multi-word expression as in ‘İngiliz anahtar-ı’. In order to prevent lexical ambiguity, due to the
high syncretism of this suffix with other suffixes, such as possessive pronoun and accusative case
suffix, these groups of mwe-nouns have been directly marked as ‘MWENComp’ on the lexicon.

65

5. Methods for Expanding & Improving the Lexicon

they incorrectly yielded different analyses. If the words are analyzed as single-
word tokens, because the TRmorph-Baseline analyzer does not tokenize MWE
units, the analysis often returns different morphological features from the ones
that actually compose the meaning of MWE units1. In our current version of
TRmorph+, we included 53 of the original TRmorph-Baseline MWE adjectives
in the construction of our FSA dictionary so that the sequence of such tokens in a
context can be properly tokenized and spurious ambiguity can be eliminated. We
discuss the method of tokenization and the description in the following sections
of this chapter.

iv. Adverbial Multi-Word Expressions

As for the processing of adverbs, we examined the current adverb tokens exist-
ing in the TRmorph-Baseline lexicon, and extended this lexicon with other verbs
extracted from the CoNLL data sets. The current TRmorph-Baseline adverbs
lexicon had 113 MWE tokens. To increase the number of adverb MWEs previ-
ously not covered, we extracted 135 MWE tokens from the CoNLL Shared Tasks
Data Sets–METU Treebank, which we had used in our coverage assessments ear-
lier.

For the pre-processing of these tokens from the CoNLL data sets, we removed
underscores, and inflectional endings to prepare the root-form list to be put on
the new adverbs lexicon. After removing duplicate tokens that already existed in
the original TRmorph-Baseline adverb list, we obtained 97 unique MWE adverbs
extracted from the CoNLL set. Table 5.4 below shows the number of total and
MWE tokens in the current TRmorph+:

of Tokens TRmorph-Baseline Adverbs TRmorph+ Adverbs

of MWE tokens 113 210

of Total tokens 562 659

Table 5.4: New adverbs lexicon in TRmorph+

Originally the Trmorph-Baseline had 562 adverbs all together, consisting of
single and multi-word token adverbs. After our new addition of 97 MWE adverb
tokens, we reached a total of 659 adverbs. 210 of these MWE adverb tokens
were also added to the separate FSA tokenization so that they can be correctly
analyzed when they occur in sequences.

1In order to save space, we describe and discuss these relevant examples in the following
section.

66

5. Methods for Expanding & Improving the Lexicon

5.1.4 Proper Noun and Named Entity Lexicons

For the extension of the proper noun lexicon in the TRmorph-Baseline, we ex-
tracted more proper nouns from several resources and divided these proper nouns
into several different categories. The original baseline proper noun lexicon con-
sisted of 10049 tokens, including several multi-word proper nouns. In our version
of the proper noun lexicon, we categorized the new proper nouns extracted from
new resources according to the following groups:

i. Single-token proper nouns : These are tagged as ‘NP’, and have been added
to the baseline lexicon, originally consisting of 10049 tokens.

ii. Multi-word token proper nouns : These are tagged as ‘NeNp’ in the lexicon1

and additionally exist in the Named Entity FSA recognizer dictionary used
for the tokenization of named entities.

iii. Single-token place names : These are tagged as ‘NeLoc’2 in the lexicon.

iv. Multi-word place names: These are tagged as ‘NeLoc’ as well, and exist
within the same ‘NeLoc’ lexicon as in (iii), in addition to Named Entity FSA
recognizer dictionary used for tokenization.

v. Multi-word token ORGanization names : These are tagged as ‘NeOrg’3, and
exist in the Named Entity FSA recognizer dictionary, as well.

i. Single-Token Proper Nouns

For the extension of the “NP” lexicon in (i), we extracted 19371 tokens of Turk-
ish person names (male names, female names, last names), and 17232 tokens of
English proper names from the Turkish Wiktionary. Additionally, we extracted
753 person names from Wikipedia person categories, and added an initial total
of around 37K new proper noun tokens.

After filtering out tokens that already exist in the TRmorph-Baseline proper
noun lexicon, we obtained 36665 unique single-token proper names. However, we
refined this lexicon some more by filtering out acronyms and proper noun place
and geographical location names. In the end, we reached a unique number of
23264 new tokens for the proper nouns lexicon, which were added as “NP”s to
the new TRmorph+ proper noun lexicon, on top of the original 10049 proper
noun tokens existing in the TRmorph-Baseline. As a result, the current version

1“NeNp” tokens have ‘<ne np>’ tags in the analyses.
2‘NeLoc’ tokens have ‘<ne loc>’ in the analyses
3‘NeOrg’ tokens have ‘<ne org>’ tags in the analyses

67

5. Methods for Expanding & Improving the Lexicon

of the proper noun lexicon in TRmorph+ consists of 33311 unique proper name
tokens.

Lexicon Name TRmorph-Baseline TRmorph+

proper noun 10049 33311

Table 5.5: New proper noun lexicon in TRmorph+

ii. Multi-Word Proper Noun Named Entities

For the new lexicon in (ii)—which is an extension of the “NP” tokens—we ex-
tracted 32597 tokens of multi-word person names from various Wikipedia cat-
egories, and 640 multi-word tokens of Turkish person names, and around 3900
multi-word tokens of English person names from the Turkish Wiktionary.

After combining all of these files and filtering out duplicate tokens, we ob-
tained 35927 unique multi-word tokens for the NE proper noun lexicon.

Lexicon Name TRmorph-Baseline TRmorph+

NE proper noun -- 35927

Table 5.6: New Named-Entity proper noun lexicon in TRmorph+

iii. Single-token Place Names

As a new extension of the proper noun lexicon, we have added another category
of proper nouns for place and geographic location names. We further split this
category into single-token (single word) and multi-word token location names.
For the construction of single-token location names, we extracted location and
place names from the following resources:

i. 4197 single-token Turkish location names from a web-blog database1

ii. 52 single-token location names from Wikipedia place and location categories

iii. 47126 single-token location names from the Geospatial Intelligence Agency
for places in Turkey2

1http://blog.fatihaytekin.com/javascript-il-ilce-semt-mahalle-listeleme-db-baglantili-asp
2http://earth-info.nga.mil/gns/html/namefiles.htm

68

http://blog.fatihaytekin.com/javascript-il-ilce-semt-mahalle-listeleme-db-baglantili-asp
http://earth-info.nga.mil/gns/html/namefiles.htm

5. Methods for Expanding & Improving the Lexicon

After post-processing this file to filter out duplicate tokens and tokens that
already exist in different categories or other lexicons and the original TRmorph-
Baseline proper noun lexicon, we obtained 45963 new and unique location names,
which are tagged as ”NE Loc”.

iv. Multi-word Place Named Entities

For multi-word location and place names, we extracted multi-word tokens from
the following resources:

i. 25537 tokens from the directory of Turkish location names from the same
web blog used for the single-token location names

ii. 1363 tokens from Wikipedia location and place names

iii. 20267 tokens from the Geospatial Intelligence Agency directory, used for the
single-token location names

iv. 550 tokens from English and Turkish Wiktionary for Turkish country names

From a total of 47717 tokens, after removing the duplicates we obtained 47032
unique tokens made of multi-word location and place names. Combined with
the single-token location names, the current TRmorph+ contains the following
location named entity lexicons:

Lexicon Name TRmorph-Baseline TRmorph+

NE Loc: Single-Token -- 45963

NE Loc: Multi-Token -- 47032

Table 5.7: New Named Entity-Location lexicons in TRmorph+

v. Single & Multi-word Organization Named Entities

For the organization names, we extracted a list of categories from Wikipedia for
the Turkish organizations. After removing the abbreviated names from this list,
we obtained a total of 883 Organization names. Additionally, we collected 1290
other organization names from various web resources such as official websites of
the government organization listings, and ministries, and related governmental
foundations. From the combined list of organization names, 41 of them consist of
single-token organization names, and the rest makes up for the list of multi-word
tokens organization names.

69

5. Methods for Expanding & Improving the Lexicon

Lexicon Name TRmorph-Baseline TRmorph+

NE Org -- 2132

Table 5.8: New Named Entity-Organization lexicon in TRmorph+

5.2 Method 2: Tokenization of Multi-word Ex-

pressions

In this section, we describe our method—which consists of several steps—for
proper tokenization and morphological analysis of multi-word expressions in Turk-
ish. In the next section, we introduce the dictionary that was prepared as a pre-
processing step, in preparation for the structures needed in our main method of
FSA-based recognition and tokenization of multi-word expressions. After that,
we discuss the various individual steps that are involved in our method for tok-
enization of multi-word expressions.

5.2.1 Preprocessing Step: Preparation of the FSA Dictio-
nary

As we have earlier introduced the new lexicon tokens in Method 1 for the Ex-
pansion of TRmorph Lexicons ; as the preprocessing step of our Method 2 for
the construction of the FSA-based tokenizer, we compiled a dictionary of multi-
word expression tokens, consisting of tokens collected for the general expansion of
TRmorph lexicons, and other multi-word expression tokens that already existed
in TRmorph-Baseline previously—which were not tokenized in the TRmorph-
Baseline. For the construction of this dictionary, we collected multi-word expres-
sion tokens from the following lexicons:

70

5. Methods for Expanding & Improving the Lexicon

Type of MWE-Tokens # of Tokens

MWE-Verb: 10021
MWE-Noun: 13663
MWE-Adj: 53
MWE-Adv: 210
NE-NP: 35927
NE-LOC: 47032
NE-ORG: 2091
MWE-Pronoun: 18
MWE-Conj: 26
MWE-Det: 9
MWE-Interj: 58

TOTAL: 109108

Table 5.9: MWE tokens in the FSA dictionary

Multi-word expression tokens in this dictionary exist in the same form they
exist in their corresponding TRmorph lexicons. That is, multi-word expressions
are only uninflected on the head-final token (last token) of the MWE-token se-
quence because the TRmorph lexicons can only hold the root-forms of the lexical
items. Because we are only mainly concerned about the processing of lexicalized
and semi-lexicalized multi-word expressions, as discussed earlier on 61; morpho-
logical features that are fixed on the non-head, intermediate tokens within the
multi-word expression have not been removed. However, another important dif-
ference between the lexicon tokens and the dictionary tokens is that dictionary
tokens exist in their plainest (uninflected) surface form; while the lexicon tokens
carry certain morphophonological features by marking them on the lexicon di-
rectly. For example, certain lexical tokens that are irregular, and thus go through
irregular vowel harmony or various voicing/devoicing phenomena (or a combina-
tion of both), had to be marked on the root-boundaries directly on the lexicon.
For the dictionary tokens, since we are only interested in the surface form of
the tokens (which are used only as input for morphological analysis or genera-
tion), morphophonological root-boundary markers could not be included in the
dictionary.

71

5. Methods for Expanding & Improving the Lexicon

5.2.2 Tokenization Step: Construction of the Finite-State
Recognizer

It is important to realize that tokenization is a non-trivial task. In real
life, tokenization is seldom as simple as dividing a text at the spaces
and punctuation marks. For one thing, MULTI-WORD TOKENS
like the classics to and fro and far and away contain spaces and yet
should be kept together as single tokens; the meaning of these tokens is
not a syntactic function of the individual orthographical words, which
sometimes, like the archaic word fro, cannot even appear outside the
fixed construction. (Beesley and Karttunen, 2003, p. 529)

For the task of tokenization of English multi-word tokens, sample solutions
have been proposed—which use finite-state transducers that mark maximally long
multi-word expressions, only if the expression boundaries correspond to normal
word boundaries (Beesley and Karttunen, 2003, p. 537). According to this ap-
proach, given a token as a (fixed-length) multi-word expressions such as ‘New
York’, it allows other forms of multi-word expressions such as ‘New York’ and
‘New Yorker’, both to be recognized and accepted by the transducer, so that not
just ‘New York’ is accepted.

However, in this approach, even if the morpheme boundary -er in ‘New York-
er’ is recognized as the longest matching token between ‘New York’ and ‘New
Yorker’, proper tokenization of both multi-word expressions works only if both
of the multi-word expression tokens exist in the list of MWE tokens in the trans-
ducer. In other words, both ‘New York’ and ‘New Yorker’ must exist in the list
of multi-word expressions, so that the maximally longest match operation can
recognize and accept, and properly tokenize both of the multi-word expressions
(namely, given only the multi-word expression token ‘New York’, the transducer
cannot deduce all the derived forms of ‘New York’, for ‘New Yorker’, ‘New York-
ers’, ‘New Yorker’s’, ‘New Yorkers’ ’, and so on...).

This issue of morphological recognition of derived forms of multi-word expres-
sions presents the same problem we face in the recognition of Turkish multi-word
expressions. Indeed, considering, the list of potential inflected forms of multi-
word expressions in Turkish is a lot longer (indeed, considered as infinite) and
complex, recognition of multi-word expressions in Turkish is not directly straight-
forward. Regarding the challenge in proper tokenization of multi-word tokens,
in their work Oflazer et al. (2004) state that for the morphological processing
of multi-word expressions, at the most basic level, it is important to recognize a
sequence of input tokens whose morphological analyses match the patterns that

72

5. Methods for Expanding & Improving the Lexicon

exist in the actual multi-word dictionary (list); and then collapse these multi-
word tokens into a single multi-word expression representation.

The problematic issue arises from the fact that the multi-word expressions in
Turkish exist in different morphological word forms, while the FSA dictionary
(used in the construction of the FSA, responsible for exact pattern matching of
the input and the dictionary tokens) can only keep a finite number of multi-word
expressions1. Therefore, performing the exact pattern match task—when given a
dictionary with a finite set of tokens and another potentially infinite set of word
forms—is a non-trivial task.

As a solution to overcome the exact pattern match problem2, in our method,
we break down the words into their stems before they can be matched so that
both the FSA dictionary tokens, and the input tokens can be in their plainest
/ uninflected forms (without their morpho-syntactic features). Stemming task
is performed within the main FSA algorithm by calling the TRmorph utility
stem.fst in flookup mode. Once the stemming step is done, stemmed words
(from the input) are matched with the stemmed dictionary tokens by using the
FSA recognition method. After a successful match, original input words are
coalesced together into a single-unit expression and checked against the multi-
word lexicon existing in the TRmorph analyzer which keeps only the final word
root form in the sequence of multi-word expression tokens. Hence, our target
method checks for three kinds of multi-word strings.

- Input: First, it reads the input (given as single-tokens separated by \n);

- Stemmed-input: Second, it performs the recognition of input using the FSA
dictionary tokens (after the stemming pre-processing step);

- Tokenized-output: Third, recognized tokens are collapsed and new tokenized
output is produced—which is then used in the morphological analysis step,
matching each tokenized output with the lexicon tokens in the main TRmorph
lexicon.

In more detail, the main structure of the steps can be described as the follow-
ing:

1. User input is read as:
> izin
> istediler ((They) ‘wanted’ ‘permission’)

1Due to the impossibility of listing all word-formations that can potentially be infinite due
the productive morphology in Turkish.

2Infinite number of potential word forms against the smaller number of uninflected word
forms in the dictionary

73

5. Methods for Expanding & Improving the Lexicon

2. FSA-Dictionary used in recognition of multi-word expressions has a MWE
form, as:
– izin iste-

This specific FSA works by reading the user input and matching it with the
dictionary tokens. If there is a successful match, it ACCEPTs the input,
otherwise it will output FAIL. The construction of the FSA has two possible
outgoing arcs for every state and every input token it reads. The first arc is
the one going to an ACCEPT state (when the MWE is complete–in a final
state), and the second arc is for the continuation, (pre-fix) of the MWE to
select the possible longest match. For example, given the following lexicon for
some multi-words:

– kaynamat1 noktasıt2 (boiling point)
– kaynamat1 noktasıt2 yükselimit3 (boiling point elevation)

If “kaynama noktası” is read by the FSA, it will output an ‘ACCEPT’, when it
reads the token noktasıt2 after kaynamat1. However, since ‘kaynama noktası’
is a sub-string of ‘kaynama noktası yükselimi ’, the FSA will continue reading
yükselimi t3 and also output an ‘ACCEPT’, so that overlaps are resolved, and
the longest match is always selected–which results in accepting both of the
MWEs.

Given this recipe, in our version the FSA’s task is to match the sequence of user
input (e.g. ‘izin’, ‘istediler’) against the sequence of dictionary tokens (‘izin
iste-’). For this task, the FSA algorithm first performs the stemming task
over the user input and the dictionary tokens1. If there is a match between
the stemmed tokens of the input and the dictionary tokens, the algorithm
collapses the user input tokens into a single-unit expression of multi-words.
These steps are applied in the following order:

i. Stem the user input tokens, as in:

Original Input Stemmed Input

izin izin
istediler iste-

1Dictionary tokens are stemmed in advance during the training step

74

5. Methods for Expanding & Improving the Lexicon

ii. Match & Recognize the sequence of stemmed tokens with the dictio-
nary tokens as in:

Stemmed Input Dictionary Tokens

izint1 izint1 iste–t2

iste–t2

If the matching of the sequence of tokens is successful, as it is in this
example...

iii. Collapse the original user input tokens into single-unit expression for
further morphological processing, as in:

Original Input Successful Match Collapsed Input

izin izin izin istediler
istediler iste-

3. TRmorph MWE Lexicon has the MWE token as in:
– izin iste- #;

Once the collapsed token obtained from the previous step is queried for mor-
phological analysis, the TRmorph analyzer scans the list of MWE tokens in
the MWE lexicon. If there is a match between the root-form of the collapsed
input and the lexicon token1, analysis succeeds, as in:

apply up> izin istediler

izin iste<v><t_past><3p>

The benefit of single-unit tokenization of multi-word expressions is that when
such multi-words are collapsed into a single lexical unit, the morphological am-
biguity is reduced—which helps greatly in the task of further syntactic parsing
and other NLP methods that require unambiguous input. Following the MWE
example we have used for the description of the tokenization steps above, here
we can see the effects of how collapsed tokens reduce the number of potential
morphological analyses:

1Because the lexicon tokens are kept in their root forms, and TRmorph itself finds the
root-forms of input words so that it can match the input with the lexicon tokens.

75

5. Methods for Expanding & Improving the Lexicon

apply up> izin (permission)

izin<n>

izin<n><3p>

izin<n><3s>

*iz<n><p2s>

*iz<n><p2s><3p>

*iz<n><p2s><3s>

*iz<n><gen>

*iz<n><gen><3p>

*iz<n><gen><3s>

*iz<n><ncomp><p2s>

*iz<n><ncomp><p2s><3p>

*iz<n><ncomp><p2s><3s>

...

apply up> istediler (want)

iste<v><t_past><3p>

As we can see from the individual analyses of these tokens; the token izin
results in 12 different analyses, 9 of which (marked with * above) have root forms
that are completely different from the original root form, which is caused by lex-
ical ambiguity, resulting in many different morphological analyses. In the mor-
phological analysis of multi-word expressions, since the (semi-)lexicalized tokens
are analyzed based only on the morpho-syntactic features of the last token (the
head of the multi-word expression), spurious analyses are eliminated. Our method
shows that proper tokenization and morphological analysis of multi-word expres-
sions greatly help reducing the number of multiple analyses of tokens, caused by
lexical ambiguity; therefore, decreasing the morphological ambiguity altogether,
which aids in preparing the text for other higher level tasks, such as syntactic
parsing and machine translation.

5.3 Method 3: Finite-State Guesser for Proper

Nouns

This is a revised version of the guesser utility that is distributed with the extended
version of the TRmorph-Baseline. In order to make this guesser more robust, and
compliant with TRmorph+, we have decided to remove certain features, and add
some other features to the distributed version of the unknown words guesser in
TRmorph-Baseline. In our version of the guesser for TRmorph+, only single to-

76

5. Methods for Expanding & Improving the Lexicon

ken noun and ‘NP’ (proper noun) word forms are considered for unknown-token
guesser processing.

Our evaluations and observations with guessing other POS categories—which
is the case with the guesser implementation in the TRmorph-Baseline version—
have shown that non-nominal word forms are generally ‘known’ and analyzed by
the analyzer—as long as they have proper spelling that adhere to the spelling and
orthography guidelines. Our evaluations of TRmorph-Baseline also showed that
the majority of unknown tokens come from the nominal categories. Among those,
the most frequent unknown tokens come from proper nouns starting with upper-
case initials letters, including Turkish and non-Turkish letters. In order to reduce
the number of analyses generated by the regular analyzer and the guesser.fst, we
have decided to guess tokens only for the ‘noun’ and ‘NP’ part-of-speech cate-
gories.

The rules that define nouns and proper nouns that are expected to be seen
in text have been revised in order to allow both Turkish letters, and the non-
Turkish letters used in Latin alphabets, and their upper-case and lower-case letter
equivalents1. In order to use the guesser transducer2 for the analysis of unknown
tokens, the following commands can be used:

$foma

$regex @"guess.fst";

$up

$up> ‘enter_token_to_guess’

Alternatively, the following flookup commands can be used in order to pro-
cess a file with a list of tokens:
$ flookup guess.fst < file_to_guess_tokens (invokes only the guess.fst)
$ flookup guess.fst trmorph.fst < file_to_guess_tokens

(Second flookup command invokes both guess.fst and trmorph.fst concurrently.
Tokens that are unknown to trmorph.fst are analyzed by guess.fst automatically.)

However, it should be noted that there is a compromise to be made in using
the guesser utility because while the guesser can provide benefits for analyzing
important unknown tokens; it can also hurt the overall results of an evaluation.
While the guesser can analyze all the legitimate guessable noun and NP types
correctly (that is, if the tokens are correctly spelled and tokenized, adhering to

1For more details, see the guesser.lexc in the main TRmorph+ directory.
2The guesser transducer can be regenerated via the makefile by entering ‘make guesser’,

which generates the guess.fst binary file.

77

5. Methods for Expanding & Improving the Lexicon

the general orthography rules); the usage of the guesser utility also increases the
number of multiple analyses overall because the transducer enumerates over all
the potential word-forms that match the character boundaries as specified in the
guesser lexicon. This leads to more tokens being analyzed, generating analyses
for all the potential word-forms, than the actual word-forms that may be seen in
real data, and the actual number of analyses that would normally be generated
with the regular analyzer, which depends on the existence of tokens in the lexicon.

Therefore, it is important to determine in advance whether the guessing (and
analyses of) all potential word forms is more important, by accepting the com-
promise in the increase of the number of analyses, or whether keeping the number
of analyses as minimal as possible is more important even if it means the cover-
age may hurt. In order to demonstrate how this plays a role in evaluation, we
give a short comparison of the usage of the guesser utility by using 1000 tokens,
randomly extracted from the Web-to-Corpus, Wikipedia Data Set. Table 5.10,
below shows the results of the analyses obtained by using just the regular analyzer
trmorph.fst, and guesser.fst together with the trmorph.fst analyzer. These
results are further compared with the TRmorph-Baseline (in the trmorph.fst col-
umn), and TRmorph-Extended (in the guess.fst column) by using the same 1K
wikipedia tokens.

trmorph.fst guess.fst + trmorph.fst

of Tokens 1000 1000

of Unknown Tokens 445 207

TRmorph-Baseline: 484 202

of Analyzed Tokens 555 793

TRmorph-Baseline: 516 798

of Avg. Analyses 6.01 10.5

TRmorph-Baseline: 23.09 14.9

Table 5.10: Comparison of analyses with trmorph.fst and guess.fst +

trmorph.fst

The results obtained from the evaluation of this 1K text file taken from the
Wikipedia text show that the new guesser that we introduce with TRmorph+ is
able to analyze 207 of the total 445 tokens that were unknown to the trmorph.fst
analyzer. Tokens that are ‘known’ to trmorph.fst have the same number of anal-
yses in both cases (i.e. guess.fst has no effect on tokens that are already known to
trmorph.fst). However, the unknown tokens analyzed via guess.fst get so many

78

5. Methods for Expanding & Improving the Lexicon

analyses that the number of average analyses over all tokens increases. The re-
maining tokens that are still unknown to guess.fst as well can be explained by
the fact that the text we analyzed in general had noisy content, including a lot of
unconventional spelling and misspelled tokens. Looking at the list of tokens that
are still unknown in more detail, we see the following examples:

bulgularDoğrulanabilirlik +?

DosyaTiflis +?

El-Hakim’in +?

kav-ramı +?

Güzelyurt?ta +?

We can see that the unknown analyses stem from the way these tokens are
spelled—because the guesser utility is not designed to analyze mixed-character
tokens, or tokens that have a hyphen, or other miscellaneous internal punctuation
marks.

The difference between the number of analyzed tokens (793/798) and remain-
ing unknown tokens (202/207) between the TRmorph+ and TRmorph-Baseline
can be explained by the fact that TRmorph+ is restricted to guessing only nouns
and proper nouns, while TRmorph-Baseline guesses all open-class word-forms.
Therefore, for a guesser that has far less restrictions, it is normal to see a higher
number of tokens being guessed than a different guesser that has more restric-
tions. It is important to note that the difference between the number of tokens
analyzed and the number of tokens that are guessed is rather small (even if it is
difficult to assume that the difference is insignificant), our evaluation shows that
guessing more tokens does not outweigh the number of average analyses per to-
ken, because the ability to guess only five more tokens increases the average from
10.5 in TRmorph+ to 14.9 in TRmorph-Baseline. Therefore, in our version of
TRmorph+, we keep the guesser utility optional by default.

5.4 General Outline and Workflow of Methods

In the previous sections, we described and discussed the methods we have added
for TRmorph+. In this section, we give a general summary of what has changed,
and describe the general workflow of TRmorph+.

Summary of New Lexicon Additions in TRmorph+

Table 5.11 below shows the list of lexicons and token numbers that have been
added to the TRmorph+, and gives the corresponding token numbers of lexicons
in TRmorph-Baseline:

79

5. Methods for Expanding & Improving the Lexicon

TRmorph+ TRmorph-Baseline

Abbreviation 944 84
Adverb 210 113
MWE noun 13663 71
Proper Noun 33311 10049 (single tokens)
NE-Proper Noun 35927 – (multiple tokens)
NE-Loc 45963 – (single tokens)
NE-Loc2 47032 – (multiple tokens)
NE-Org 2131 –
MWE verb 12442 77

TOTAL 191623 –

Table 5.11: New lexicons in TRmorph+

Word Formation Changes in TRmorph+

In our attempts to reduce morphological ambiguity, we have decided to modify
two of the following morphological features, which were causing a high number
of morphological analyses to be generated for each word form:

i. Noun vs. NComp & AdjComp: Previously, in TRmorph-Baseline, all
the noun tokens that had the ambiguous morphological feature, noun-compound
making suffix /-ı, -i, -u, -ü, -sı, -si, -su, -sü/ were also marked as ‘NComp’ by
default. This was made in an effort to cover all the potential cases, where a noun
could also be used as part of a noun-compound phrase.

As we have seen the examples of lexicalized multi-word expression nouns in the
previous sections1, these tokens actually can only be a part of a noun-compound
within a “noun phrase”, rather than when used as stand-alone ‘noun’ tokens. In
other words, the noun-compound suffix cannot be used in a stand-alone token
to give the meaning of a noun-compound. When the ambiguous morphological
feature is observed on a single token, when it is not part of a noun-phrase, it
functions either as a possessive-making or accusative-case making suffix (depend-
ing on the context). Therefore, the addition of the ‘Ncomp’ feature for an already
ambiguous suffix was causing unnecessary analyses.

Relying on these observations, we have removed the ‘NComp’ feature from the
analysis of nouns, as well as the feature for ‘AdjComp’ because all the Adjectival

1Lexicalized multi-word expressions, on page 65

80

5. Methods for Expanding & Improving the Lexicon

morphological features are a continuation class of the nominal morphological
features. In the current version of TRmorph+, single token nouns or adjectives
are no longer marked as ‘NComp’ (or ‘AdjComp’ respectively) by default–even
when they have the noun-compound making suffix. Marking of actual ‘noun-
compounds’ are now handled via the ‘MWE NComp’ group, according to the
suffix they carry. Two of the examples below illustrate the current changes in
TRmorph+ for nouns and multi-word expression nouns:

i. When the ambiguous suffix is attached to a multi-word expression noun:
$ echo "İngiliz anahtarı" | flookup trmorph.fst

İngiliz anahtarı İngiliz anahtarı<mwe_ncomp><n><p3s> (‘monkey-wrench’)
İngiliz anahtarı İngiliz anahtarı<mwe_ncomp><n><p3s><3s>

İngiliz anahtarı İngiliz anahtarı<mwe_ncomp><n>

İngiliz anahtarı İngiliz anahtarı<mwe_ncomp><n><3s>

ii. When the ambiguous suffix is attached to a single-token noun:

$ echo "anahtarı" | flookup trmorph.fst

anahtarı anahtar<n><acc>(‘key’)

anahtarı anahtar<n><acc><3s>

anahtarı anahtar<n><p3s>

anahtarı anahtar<n><p3s><3s>

ii. 3rd Person Agreement in Verbal Predicates:

Segmentation generation of the following verb, ‘okur’ (reads) which has 3rd person
singular agreement (with a null-morpheme, signifying the 3rd person agreement),
shows to have also the plural morpheme -lar. This is an example of an overgener-
ation because TRmorph-Baseline’s verbal predicate word-formation rules had a
plural null-morpheme attachment as 3rd person plural agreement for every verb
formation. The following segmentation analysis shows that even when the verb
is singular, segmentation generates the plural suffix:

$ echo "okur" | flookup segment.fst

*okur oku-r-lar

okur oku-r

okur okur

In the same way, already segmented word generation of the same word (invoked
by using the flookup command in the inverse analysis mode), generates 6 different
forms of the verb—3 of which (marked with *) forms the plural form the same
verb.

81

5. Methods for Expanding & Improving the Lexicon

$ echo "oku-r" | flookup -i segment.fst

oku-r okur

*oku-r okurlar

oku-r Okur

*oku-r Okurlar

oku-r OKUR

*oku-r OKURLAR

In our version of TRmorph+, we removed the null-plural morpheme feature
for 3rd person agreement from the analysis of true singular verbs. In the current
version, given verbs with 3rd person singular agreement, we get a segmentation
analysis only for 3rd person singular agreement.

$ echo "okur" | flookup segment.fst

okur oku-r

okur okur

Similarly, if given a segmented form of a verb (in generation mode) with 3rd
person singular agreement (e.g. oku-r); TRmorph+ returns only the surface-form
of verb with the 3rd person singular agreement. In other words, the analyzer
no longer generates extra plural surface-forms of the same word form for true
singular verbs:

$ echo "oku-r" | flookup -i segment.fst

oku-r okur

oku-r Okur

oku-r OKUR

In the analysis mode, similar to the segmentation of word forms, for verbs
with 3rd person singular agreement (e.g. okudu), TRmorph-Baseline returned
3rd person plural agreement by default, as in the following example:

$ echo "okudu" | flookup trmorph.fst

*okudu oku<v><t_past><3p>

okudu oku<v><t_past><3s>

This was also further complicated by the fact that when we used the lexical
forms of words in generation mode to get the corresponding surface word forms,
the corresponding word forms did not actually map to the original word forms.
For example, when we try to regenerate the surface word form of oku<v><t_past><3p>
by relying on the lexical form analyses above, we expect to get only okudu as the
original word form. However, TRmorph-Baseline returns both singular and plural

82

5. Methods for Expanding & Improving the Lexicon

3rd person agreement features because verbal predicate word formation rules in
TRmorph-Baseline mark all verbs as both plural and singular by default. There-
fore, the following analyses are generated:

$ echo "oku<v><t_past><3p>" | flookup -i trmorph.fst

oku<v><t_past><3p>okudular

*oku<v><t_past><3p>okudu

oku<v><t_past><3p>Okudular

*oku<v><t_past><3p>Okudu

oku<v><t_past><3p>OKUDULAR

*oku<v><t_past><3p>OKUDU

Our evaluations and observations have shown that tagging of the null-plural
morpheme feature in the absence of an overt plural morpheme not only hurt the
evaluation of data seriously by contributing to the overgeneration of analyses; but
also it caused confusion when comparing various gold-standard tagsets with the
tagset of TRmorph-Baseline. Relying on these observations, in TRmorph+, we
have decided to remove the 3rd person null-plural morpheme agreement from the
verbal predicates. In the current version of TRmorph+, when we analyze a verb
that has 3rd person singular agreement only (namely, no overt-plural morpheme),
we currently get only the following analysis:

$ echo "okudu" | flookup trmorph.fst

okudu oku<v><t_past><3s>

In the same way, re-generation of oku<v><t_past><3s> now maps to the
correct word form:

$ echo "oku<v><t_past><3s>" | flookup -i trmorph.fst

oku<v><t_past><3s>okudu

oku<v><t_past><3s>Okudu

oku<v><t_past><3s>OKUDU

And similarly, when we use the analyzer in the generation mode, we get a
plural word form, only when there is an overt-plural agreement; otherwise, in the
absence of an overt-plural morpheme or an overt-plural feature, we get 3rd person
singular agreement only. For example, regeneration of oku<v><t_past><3p> now
results only in three (correct) word forms:

$ echo "oku<v><t_past><3p>" | flookup -i trmorph.fst

oku<v><t_past><3p>okudular

oku<v><t_past><3p>Okudular

oku<v><t_past><3p>OKUDULAR

83

5. Methods for Expanding & Improving the Lexicon

Workflow of TRmorph+

What does TRmorph+ do, what does it not do?
The algorithm we implemented does not do multi-word expression or Named
Entity detection in the sense that given unseen data with new words that do
not exist in the TRmorph lexicons or the FSA dictionary, we cannot infer any
prediction from the existing tokens in the lexicon or the dictionary. In general,
prediction of multi-word expression tokens and Named Entities is not the task of
a morphological analyzer.

Such tasks are often done via more sophisticated NER systems that use statis-
tical measures based on large quantities of data with high frequency of multi-word
expression tokens. What TRmorph+ provides is only a tool for the tokenization
of multi-word expressions which are untokenized, and their morphological anal-
ysis based on already-predicted multi-word expressions (i.e. in that sense, our
method uses already-predicted multi-word tokens that are available in TRmorph+
lexicons). Even for actual NER systems, or multi-word expression detectors that
predict unseen tokens based on a previous training; further morphological anal-
ysis of such predicted tokens require proper tokenization before they can be sent
for morphological analysis.

Furthermore, in rule-based, and dictionary-based morphological analyzers,
predicted tokens must exist in the morphological lexicon for further morpholog-
ical processing, regardless of how they have been predicted (i.e. whether their
prediction was based on an external NER tool, or multi-word expression detector;
or whether they were recognized by the FSA tokenizer, which relies on the avail-
ability of tokens in the FSA dictionary in TRmorph+.) In other words, the NER
task or multi-word expression detection is not the task of TRmorph+; however,
morphological analysis and processing of already predicted NEs and multi-word
expressions, and their tokenization (if they are untokenized) is the task of TR-
morph+. Figure 5.1 shows the main architecture outlining the core components
of TRmorph+:

84

5. Methods for Expanding & Improving the Lexicon

Figure 5.1: TRmorph+ : Main work flow of morphological analysis

According to this framework that outlines the core components of TRmorph+,
work flow of tasks in TRmorph+ is ordered as following:

i. First, words go through stemming process

ii. After the stemming task, stemmed words go through FSA recognizer based
on the list of multi-word expressions in the FSA dictionary

iii. If there are any input words that match with tokens in the dictionary; then
they are collapsed into one ‘single line’, forming a single-unit multi-word
expression token

iv. The new tokenized output is generated

v. And then, generated output is sent for morphological analysis.

85

5. Methods for Expanding & Improving the Lexicon

vi. After the morphological analysis of tokenized output, guessing of unknown
tokens is optional.

- Output of analyzed tokens can be obtained either directly as the output of
trmorph.fst,

- Or, if any OOV handling of unknown tokens is needed, using TRmorph+
analyzer with a priority union of guess.fst1, generates the analyzed out-
put of tokens that are analyzed by TRmorph+ analyzer, and predicted by
guess.fst.

Evaluation of TRmorph+ on Data Sets with Multi-word Expressions

For a general evaluation of TRmorph+, in the next chapter, we introduce a small
data set that was manually collected for the processing of sentences with multi-
word expressions. Further, we re-evaluate one of the subset of CoNLL data sets,
test.conll, which provides gold standard annotation of multi-word expressions.
Finally, we present results from the evaluation of these data sets, by following
up with a discussion of remaining challenges that are still yet to be solved for
TRmorph+.

1Priority union of two different transducers is enabled by the following command:
$ flookup -a guess.fst trmorph.fst < tokenized output file

For more details on the usage of TRmorph+, and available list of commands, see the usage
guide in the main TRmorph+ directory

86

Chapter 6

Evaluation of Methods in
TRmorph+

For the overall evaluation of the methods introduced in the previous chapter,
in this chapter we provide the results of our methods reflected on several data
sets. For the evaluation of TRmorph+, in the next sections we give the coverage
assessment of two data sets:

i. First, we give the coverage assessment for sentences collected from the dic-
tionary of Turkish Language Institute

ii. Second, we evaluate the CoNLL-Test Set (which we also had used for the
evaluation of the TRmorph-Baseline). This time, we give the evaluation
results based on actual gold standard annotations of multi-word expressions,
as described in ITU validation set for the Metu-Sabancı Turkish treebank,
prepared by Eryiğit (2007).

6.1 Evaluation of TDK Sentence Data Set with

TRmorph+

For the evaluation of our methods, we collected a small data set of sentences
from the dictionary of Turkish Language Institute, TDK1. These sentences were
manually selected from the dictionary of idioms. Example sentences, borrowed
from Turkish novels, were given in the definitions of these idiomatic multi-word
expression verbs. For the construction of our own data set, we collected 1013
sentences (9942 tokens) manually, as independent from the collection of multi-
word expressions that exist in the TRmorph+ lexicons. In preparation of these

1http://www.tdk.gov.tr/index.php?option=com_atasozleri&view=atasozleri

87

http://www.tdk.gov.tr/index.php?option=com_atasozleri&view=atasozleri

6. Evaluation of Methods in TRmorph+

sentences for their morphological analysis, we filtered out punctuation marks,
but left the empty lines as sentence separators between the sentences. Coverage
assessment results given in the table, 6.1, below show:

i. Coverage assessment of tokens based on the total number of single-tokens
(before the multi-word expressions were collapsed into single-tokens)

ii. Coverage assessment of tokens based on the total number of tokens, including
collapsed multi-word expressions, processed with TRmorph+

iii. For a direct comparison of TRmorph-Baseline, and the TRmorph+ analyzer,
coverage assessments of both single-tokens and collapsed tokens processed
with TRmorph-Baseline analyzer are given in the table.

Single Collapsed Single-Tok. Collapsed-Tok. Single-Tok. Collapsed-Tok.

Analyzer Tokens Tokens Unknown Unknown Coverage Coverage

TRmorph+ 9942 9189 118 237 0.988 0.974

TR-Baseline 9942 9189 125 687 0.987 0.925

Table 6.1: TRmorph+ and TRmorph-Baseline coverage of TDK sentences

In these sentences, due to lack of gold standard annotation of multi-word
expressions and other tokens, we cannot provide evaluative measures such as
precision, recall, and F-Scores. However, in the table, 6.2, below we give the
coverage of multi-word expressions1, based on the total number of collapsed multi-
word expression tokens, processed with TRmorph+ and TRmorph-Baseline:

TRmorph+ TRmorph-Baseline

Total Collapsed MWEs 753 753
Total Analyzed MWEs 622 180
Total Unknown MWEs 131 573
MWE-Token Coverage 0.82 0.23

Table 6.2: TRmorph+ and TRmorph-Baseline coverage of collapsed multi-word
expressions

These results show that from the total of 9189 tokens that were processed both
with TRmorph+ and TRmorph-Baseline, in both sets, there were 753 already to-
kenized and collapsed multi-word expression tokens. Out of the 753 multi-word

1When given already tokenized/collapsed multi-word expressions as the input

88

6. Evaluation of Methods in TRmorph+

expressions, 131 of them were unknown to TRmorph+, while 573 of them were
unknown to TRmorph-Baseline. The number of analyzed tokens processed with
each of the analyzers shows also the number of tokens that exist in the lexicons
of these analyzers. The numbers of tokens that were unknown to either one of
the analyzers can be explained by a variety of reasons: Either a given multi-word
expression token may not exist in the lexicon, or one of the rules that would
normally give the analysis of the token fails for a variety of reasons.

It should be noted that the processes for tokenization and morphological anal-
ysis of multi-word expressions are different. This means that the ‘number of to-
kenized (recognized) multi-word expressions’ may not necessarily be equal to the
‘number of analyzed multi-word expressions’. The difference between tokenization
and analysis of multi-word expressions comes from the fact that the morpholog-
ical analysis of multi-word expression (as well as others), requires different sets
of solutions to problems that are hard to solve. In the processing of multi-word
expressions, the challenge is not about the tokenization only—although it is the
first problem that needs to be solved. This means that even if a multi-word
expression can successfully be recognized and tokenized; tokenization does not
necessarily guarantee a way for analysis, because morphological analysis depends
on two important morphological levels:
–definition of word-formation process for multi-word expressions
–definition of word-alternation (morphophonological rules) process for multi-word
expressions.

In rule-based morphological analyzers based on cyclic rules, in order to analyze
a multi-word expression, both of the levels of morphological process must be
well-defined. If one of the sub-rules that depends on a higher-level rule within
the definition of word-formation fails (e.g. the rule for plural-copula suffixation
within a set of rules that define the word-formation of verbs), even if the rest
of sub-rules or higher-level rules match the word-formation of the input token,
the analysis fails. In the same way, even if all the word-formation rules that
define the input token match, if one of alternation rules fails (e.g. final consonant
voicing, from /ç/ to /c/), then the analysis fails. Likewise, even if the multi-word
expression token may be recognized through the recognition algorithm; if the
multi-word expression token happens to not exist in the lexicon of the analyzer,
the analysis fails regardless of everything else. This is often the downside of rule-
based systems, because they require a lot of expertise in the development of rules,
and it is often the case that the exact reasons of why an analysis fails may not
always be easily known. Therefore, for a successful and complete morphological
processing of a multi-word expression token, both the tokenization step, and the
morphological analysis step (word-formation and word-alternations that may be

89

6. Evaluation of Methods in TRmorph+

involved) must be well-defined.

6.2 Evaluation of CoNLL Test Set using ITU-

Validation Gold Standard

The ITU validation set was prepared by Eryiğit (2007), as a subset of the CoNLL
data sets. Gold standard annotation of test.conll was made available by includ-
ing the annotation of multi-word expressions according to the list of multi-word
expressions in the dictionary of the Turkish Language Institute. This was pre-
pared for the update of METU-Treebank Eryiğit et al. (2011).

The gold standard annotated version of this set consists of the same tokens
as those existing in test.conll, made of 300 sentences consisting of 3699 single-
tokens, and 3609 tokens, including collapsed multi-word expressions (including
punctuations). In the version of the gold standard set with collapsed tokens,
the number of annotated multi-word expressions is 90. In our own evaluation,
in order to see how well TRmorph+ recognizes single-tokens that need to be
collapsed into multi-word expressions, we initially evaluated three sets:

i. Set 0: Re-evaluation of gold standard collapsed tokens by using the TRmorph-
Baseline analyzer1 for comparison with our methods

ii. Set 1: Evaluation of gold standard collapsed tokens, without applying the to-
kenization method by TRmorph+, which shows us the percentage of already
collapsed tokens existing in the TRmorph+ lexicons

iii. Set 2: Evaluation of gold standard single-tokens, collapsed by applying our
tokenization method by TRmorph+, showing us how well our method per-
forms

After that, we give the statistics for coverage of analyzed and unknown tokens,
as well as additional statistics for precision, recall, and Fscore of tokens that were
tokenized and analyzed with TRmorph+.

1We had given the evaluation of test.conll tokens earlier, in Ch. 4, in table 4.11. Here,
we repeat the results again, based on the evaluation of the total number of tokens collapsed in
the gold standard, including punctuations,

90

6. Evaluation of Methods in TRmorph+

Coverage of tokens in Set 0, Set 1, Set 2

Set 0 Set 1 Set 2

Num. of Single Tokens 3699 3699 3699
Num. of Collapsed Tokens 3609 3609 3581
Num. of Collapsed MWEs 90 90 117
Num. of Unknown Tokens 112 28 50
Token Coverage 0.968 0.992 0.986

Table 6.3: SET0: Analysis of collapsed tokens with Baseline analyzer, SET1: Analysis of
collapsed tokens in ITU-Val Set with TRmorph+, SET2: Analysis of single tokens in ITU-Val
Set with TRmorph+ & tokenization method

The difference between the number of unknown tokens in Set 1 and Set 2 shows
the number of extra 27 multi-word expression tokens, which were collapsed as a
result of the tokenization method in TRmorph+, in addition to the 28 tokens1

that were also unknown in Set 1. This stems from the fact that even though the
words are collapsed and tokenized based on their stems, not all of the inflected
forms of multi-word expressions exist in the lexicon of TRmorph+. Therefore,
even if a multi-word expression may be recognized by applying the tokenization
method, there are instances in which the resulting word form may not exist in
the fixed lexicon of TRmorph.

For a closer examination of which multi-word expressions are correctly tok-
enized in relation to the multi-word expressions existing in the gold standard, the
table below shows the following statistics2 about the recognition of multi-word
expressions by TRmorph+:

Set 2 # of MWE-Tokens

Correct MWEs 40
Missed MWEs 50

Precision 0.34
Recall 0.44
Fscore 0.38

Table 6.4: Additional statistics on multi-word expressions in Set 2

128 unknown tokens in Set 1 come from a mix of multi-word and single tokens
2The statistics above were calculated as follows:

Precision= Num. of correctly recognized MWEs / total number of MWE found
Recall= Num. of correctly recognized MWEs / correct mwes + missing MWEs,
Fscore= 2PR / P+R

91

6. Evaluation of Methods in TRmorph+

The findings given in table 6.4 show that there is still room for improvement
in regards to the tokenization of multi-word expressions that are missed by our
method. We were aiming to integrate the method for proper recognition and tok-
enization of multi-word expressions as compact as possible with TRmorph+. For
this reason, we used the stemmer utility that is part of the TRmorph analyzer.
In our method, stemming is applied both to the dictionary tokens (which is part
of the FSA tokenizer), and the input tokens at runtime. Because the stemming
method also depends on the tokens existing in the lexicon; considering the lexical
ambiguity of words, TRmorph can return multiple results for a given token. This
means that stems for tokens that exist in multiple lexicons result in multiple stem
analyses, as in the following example:

$ echo "alan" | flookup stem.fst

alan alan (field, area)
alan ala (pretty)
alan al ((to) take)

In the initial version of the our method, in case of ambiguity of stems, we
always selected the first stem returned by the TRmorph stemmer. However, in
the evaluation of Set 2 above, we could observe that in a significant number
of cases, the stems of the dictionary tokens and the input tokens (processed at
runtime) did not match entirely. If the dictionary tokens were trained based on a
specific stem—by selecting the first stem analysis in the list of all possible stems
for a token; there were instances that the runtime input token stems could end up
with different stems than intended. For example, for the multi-word expression
token, given as input in runtime ‘yer alan’ (‘taking place’), the stemming analysis
returned for the input token and the dictionary token had a mismatch. In the
sequence of this token, we observed the following:

i. input token stem: ‘yer alan’ → ‘yer alan’
‘alan’ gets the first stem analysis in the list of stems

ii. dictionary token stem: ‘yer al’ → ’yer al’

In order to reduce the number of this kind of mismatched stems and increase
the number of matched stems between the input and dictionary tokens, we ap-
plied another heuristic to our stemming method. In our new stemming method,
we selected the shortest stem out of all possible stems for a token returned by
TRmorph. After application of the new stemming method, we re-evaluated the
tokens analyzed in Set 2, by creating an evaluation Set 3. Table 6.5 below shows
our findings for tokens recognized by using the new heuristic stemming method:

92

6. Evaluation of Methods in TRmorph+

TRmorph+ Coverage of tokens in Set 3

Num. of Single Tokens 3699
Num. of Collapsed Tokens 3557
Num. of Collapsed MWEs 139
Num. of Unknown Tokens 75
Token Coverage 0.978

Table 6.5: SET3: Analysis of single tokens in ITU-Val Set with TRmorph+ & tokenization,
using the shortest-stem selection method

Further, for comparison with the statistics obtained from Set 2, we applied the
same measures for our findings from Set 3. Table 6.6 below shows the statistics
with precision, recall, and Fscore obtained from Set 3, using the shortest-stem
selection method:

Set 3 # of MWE-Tokens

Correct MWEs 43
Missed MWEs 47

Precision 0.30
Recall 0.47
Fscore 0.36

Table 6.6: Additional statistics on multi-word expressions in Set 3

Evaluation results show that most of the unrecognized multi-word expressions
result from tokens that have ambiguous stems. In order to avoid the ambiguity
and increase the number of matched stems, we tried two different methods:

i. Selecting the first stem of tokens from the list of ambiguous stems

ii. Selecting the shortest stem of tokens from the list ambiguous stems

In both methods, some of the tokens were recognized, and some of them were
unknown. By selecting the first stem, input tokens could get multiple analyses,
and the first stem may be different from the first stem (or the only available stem)
of the dictionary token. On the other hand, when selecting the shortest stem,
the dictionary tokens could get multiple stems, and the shortest stem selected
may be different from the shortest stem (or the only available stem) of the input
token. The two following examples show the mismatch of stems when different
stemming heuristics are applied:

93

6. Evaluation of Methods in TRmorph+

1. First stem selection:
–input token: ‘yer alan’ (taking place)→ ‘yer alan-’ as the first stem from
the multiple stem analyses.
–dictionary token: ‘yer al-’ → ‘yer al-’, which is the only available stem.
This shows that the first stem of input token may not always match the
first stem of the dictionary token—if the input token is ambiguous.

2. Shortest stem selection:
–input token: ‘ağlamaya başlamış’ (start crying) → ‘ağlamaya başla-’ as
the shortest stem (which is the only available stem)
–dictionary token: ‘ağlamaya başla-’→ ‘ağlamaya baş-’ as the shortest stem
from the multiple stem analyses.
This shows that the shortest stem of input token may not always match the
shortest stem of the dictionary token—if the dictionary token is ambiguous.

This shows that the selection of shortest-stem only does not guarantee that in-
flected forms of input tokens always get multiple stem analyses. Therefore, the
selection of shortest stems can be ineffective if the input token does not get
multiple stem analyses, while the dictionary token gets multiple stem analyses.
The example for ‘ağlamaya başlamış’ shows such difference of mismatched stems
between the unambiguous input token, and ambiguous dictionary token. Unfor-
tunately, as discussed before, listing all possible word forms in the dictionary is
not feasible because of the high number of potential word forms, caused by pro-
ductive derivations for each token. Recognition of multi-word expressions helps
reducing morphological ambiguity by eliminating a significant number of (multi-
ple) morphological analyses; however, context-based stemming is also required in
order to avoid ambiguous stems, for a proper tokenization of multi-word expres-
sion, and to aid in reducing morphological ambiguity.

Our evaluations and methods show that all of the processes involved in mor-
phological processing are interrelated, and the absence of one method can impact
another method in various ways. Our findings show that even if the handling of
ambiguous stems remains to be an issue, our current method for recognition and
processing of multi-word expressions gives better results over the baseline ana-
lyzer. Evaluation results show that the method we have implemented manages
to decrease the number of unknown tokens, which was previously higher in the
baseline, and at the same time it manages to increase the coverage of tokens over
the baseline coverage. As a summary of our findings, table 6.7 below shows the
overall results of our method for unknown tokens and coverage obtained from
several different evaluation sets:

94

6. Evaluation of Methods in TRmorph+

Tokens Token

ITU-Val Sets Unknown Coverage

SET 0: 112 0.963
SET 1: 28 0.992
SET 2: 50 0.986
SET 3: 75 0.978

Table 6.7: Summary of coverage results ITU-Val Set

Looking at these results, it is also worth noting that the number of tokens
that are unknown to TRmorph+, and a surplus of tokens that have been analyzed
as MWEs by TRmorph+ (which are not seen in the gold standard annotations)
could be attributed to the data coverage of the treebank and their method of
collection of multi-word expressions. As it has been reported by Eryiğit et al.
(2011), the list of MWEs was automatically extracted from the dictionary of the
Turkish Language Institute (TDK, 2011). And only the words in the treebank
whose lemmas matched the lemmas of MWEs from the dictionary were annotated
as MWEs in the treebank, as well as in the gold standards. The fact that our
collection of multi-word expressions was independent from the MWEs existing in
the dictionary of the Turkish Language Institute1, a certain discrepancy in the
coverage could be expected.

Regarding the number of surplus MWEs analyzed as multi-word expressions
in TRmorph+, our observation of the data sets and evaluation results showed that
there were certain inconsistencies in the gold standard multi-word expression an-
notations. Certain tokens that were annotated as MWEs in some of the sentences
were later not annotated as MWEs in other sentences. This could be explained
by the fact that gold standard annotation of MWEs in the treebank was directly
depended on the matching of lemmas between the TDK dictionary MWEs and
the treebank words. Therefore, if a certain dependency parsing analysis of a
previously seen MWE resulted in a different lemma in a different sentence, that
word was not annotated as a multi-word expression for the second time. How-
ever, TRmorph+ does not evaluate words based on the syntax of sentences, or
the recognition of words based on where they occur or what kind of function they
have in a sentence. As a result, all occurrences of MWEs were treated the same
way by TRmorph+—which caused an increase in the number of tokens that were
analyzed as MWEs2.

1Most of our collection of MWEs came from the collection of tokens extracted from Wik-
tionary

2One of the main reasons of low scores obtained in the precision calculations.

95

6. Evaluation of Methods in TRmorph+

Remaining Challenges: Context-Based Disambiguation

As our findings from the previous sections show, morphological ambiguity of to-
kens causes serious problems not only for finding the best morphological features
for a given token (which is required in higher level tasks such as syntactic pars-
ing), but also for determining the best stem based on the context of tokens, which
is required for correct tokenization, and morphological processing of multi-word
expressions.

As described by Hakkani-Tür et al. (2002), the morphological disambiguation
task is responsible for selecting the sequence of morphological parses correspond-
ing to a sequence of words and word forms, given a set of possible parses for
each given word. When it comes to the morphological processing of agglutinative
languages, the role of morphological disambiguators becomes more complex and
challenging than just assigning a single main part-of-speech tag (such as noun,
verb, adj, etc.) to a word (Eryiğit, 2012). As we can see from the example given
in the work by Sak et al. (2007), the Turkish word ‘alın’ below receives multi-
ple morphological analyses as output from the morphological analyzer built by
Oflazer (1994):

alın+Noun+A3sg+Pnon+Nom (forehead)

al+Adj^DB+Noun+Zero+A3sg+P2sg+Nom (your red)

al+Adj^DB+Noun+Zero+A3sg+Pnon+Gen (of red)

al+Verb+Pos+Imp+A2pl ((you) take)

al+Verb^DB+Verb+Pass+Pos+Imp+A2sg((you) be taken)

alın+Verb+Pos+Imp+A2sg ((you) be offended)

The morphological analyses obtained from TRmorph+ for the same word
‘alın’ shows similar analyses:

alın al<n><gen>

alın al<n><gen><3s>

alın al<n><p2s>

alın al<n><p2s><3s>

alın al<adj><JN_0><n><gen>

alın al<adj><JN_0><n><gen><3s>

alın al<adj><JN_0><n><p2s>

alın al<adj><JN_0><n><p2s><3s>

alın al<adj><p2s><prn>

alın al<adj><p2s><prn><3s>

alın al<v><t_imp><2p>

alın al<v><t_imp><2s>

alın al<v><pass><t_imp><2s>

alın alın<n>

alın alın<n><3s>

96

6. Evaluation of Methods in TRmorph+

alın alın<v><t_imp><2s>

As we have also seen from the ambiguous word stem examples and their ef-
fects on tokenization and morphological analysis; it is clear that morphological
disambiguation task is necessary for further improvement of TRmorph+. In or-
der to provide a disambiguator that enables morphological analyses with n-best
ranking, and reduce the ambiguity of the Turkish text, we investigated the option
as outlined in the Morphological Disambiguation of Turkish Text with Perceptron
Algorithm by Sak et al. (2007). In their ranking method with the perceptron
algorithm for the task of morphological disambiguation, they adopted both the
baseline model and the tag representation from the previous work on Statistical
Morphological Disambiguation for Agglutinative Languages by Hakkani-Tür et al.
(2002). For the morphological analysis of the data sets used in training and de-
velopment, they used the two-level finite-state morphological analyzer by Oflazer
(1994).

Given our options with the availability of annotated data sets to use for the
training, we decided to use the CoNLL Shared Task Data set. However, use of
tagsets different from the tagset of TRmorph+ requires another task, which is
tagset conversion. As described by Zeman (2010), tagset conversion of data sets,
from one corpus to another data set presents its own difficulties. Some of the
morphosyntactic features that are well-defined in one set may not necessarily be
well-defined in another tagset, or it may not be defined at all. In order to see
how well the CoNLL and TRmorph tagset features correspond to one another,
we drafted out an initial mapping of features from CoNLL to TRmorph features.

In the planning stage of the initial conversion of tagsets from CoNLL tagsets
to the TRmorph+ tagsets, we examined the mapping of morphological features
seen in the CoNLL training data, and their mapping to the morphological features
provided by the TRmorph+ analyzer. Examining the training data in CoNLL,
from 70816 tokens (including sentence separating empty lines and punctuation),
we found 46010 unique tokens. By extracting the morphological tags from these
unique tokens, we obtained 1051 unique morphological tags, showing all three
of the CoNLL based annotation of coarse-grained POS tags, POS-tag, and the
features for the word form. In order to see which types of features are mappable
and not mappable to TRmorph tags, given these features obtained from the
training.conll set, we attempted to draft a preliminary mapping of features
between tagsets. From this initial draft of mapped (and non-mapped features),
we found that most of the tag features returned by TRmorph+ were a lot more
fine-grained and detailed in comparison to the tagset used in the CoNLL training
data. Our initial examination of the tagsets showed the following problematic

97

6. Evaluation of Methods in TRmorph+

features existing in the conversion sets:

1. Person agreement features in CoNLL were not easily mappable to the same
features provided in the TRmorph tagsets due to the use of 3rd-person
null-morphemes used in the TRmorph tags

2. One single conjunction type, Conj in CoNLL mapped to three different
conjunction types in TRmorph tagsets: Adverbial, coordinating, and subor-
dinating conjunctions

3. Different types of number features existing in CoNLL, such as Distribution,
Cardinal, Real, Ratio, Ordinal had mapping only to Number, and Or-
dinal feature types in TRmorph tag sets

4. The feature ZERO used in CoNLL to show derivational dependencies had
many different mappings in TRmorph tagset, which treats the ZERO fea-
ture according to their main POS-types as nominal, verbal, adverbial and
adjectival, etc.

The examination of the preliminary mapping for features in these sets showed
that tagset conversion is not a straightforward task. While converting from TR-
morph to CoNLL, for multiple features in TRmorph that correspond to one fea-
ture in CoNLL, we could select the single feature that is available (e.g. all of
the three Conj features in TRmorph map to one Conj feature in CoNLL). How-
ever, the same thing is not possible while converting from CoNLL to TRmorph
tagset, since one single feature in CoNLL can map to multiple features in TR-
morph tagsets. Determining which features from one tagset can directly map
to the other tagset, and which features must be dropped from both tagsets in
order to create a unified tagset that covers all the important features in both
tagsets requires a thorough examination of features. For this reason, we leave the
remaining investigation for future research.

98

Chapter 7

Conclusion

In this thesis, we have attempted to give an overview of the morphological tools
that are available for processing of Turkish text. However, it is important to note
that even though at first look it may seem like there are many tools available
for use, most of these tools that are available do not provide all the components
required for a complete morphological processing of Turkish text.

Some of the studies we have discussed are either not publicly available, or
their data sets are not available. Or, only partial components of tools are pub-
licly available. We see that most of the previous work in morphological analysis
of Turkish relies on the morphological analyzer implemented by Oflazer (1994),
which is not readily available. On the other hand, the only disambiguation tool
(Sak et al., 2007) that is publicly available, is not easily usable by other morpho-
logical analyzers because the tool itself relies on the morphological analyzer by
Oflazer (1994). As we have attempted to do, adaptation of the disambiguation
tool to other morphological analyzers is also not feasible, because annotated, gold
standard data required for the training of disambiguator module uses a different
tagset (e.g. the tagset used in the morphological analyzer by Oflazer (1994)) than
other tagsets used in publicly available morphological analyzers (e.g. TRmorph).

Therefore, challenges present themselves in the partial availability of tools, and
the incompatibility of available tools with one another (e.g. the TRmorph tagset
is not readily usable with the disambiguator by Sak et al. (2007). Available tagsets
provided with CoNLL differ from TRmorph and other morphological analyzers,
and the tagset used in the two-level morphological analyzer by Oflazer (1994)
differ in their features—which causes problems with the conversion of tagsets and
adaptation of tools. Considering these challenges, we aimed to provide a tool that
can work independently of these issues and can be made publicly available with
easy access to the data sets used in this thesis. Furthermore, the methodologies

99

7. Conclusion

used for the processing of Turkish text could also be adaptable to other Turkic
languages that are low-resourced, and thus help development of more language
resources and methodologies for those languages.

7.1 Future Work

As future work, and for the improvement of methods we have used in this thesis,
we plan on making full use of available language resources to expand the lexicon
in TRmorph+ in larger scale. For this, we plan on supporting the TRmorph+
lexicons with the resources from the Turkish Language Institute database. Ad-
ditionally, methods for open lexicon and user-defined lexicons could be explored.
In order to improve the performance of the recognition method for the processing
of multi-word expressions, different stemming algorithms that could give more
accurate stems could be used.

Since there are several tools available, with each one of them having their
own unique tagsets, as one of the top priority future work, methods for the
tagset conversion and morphological disambiguation will be explored. In the
end, it is our goal that a freely available morphological tool for Turkish can
unify all the necessary components of a morphological processing tool, by proving
both morphological processing of multi-word expressions, and providing a tool for
morphological disambigution. Finally, it is our goal that the methods we explore
could be applied to other Turkic languages that can benefit from the availability
of a Turkish morphological analyzer.

100

A
p
p

e
n
d
ix

A

T
u

rk
is

h
M

o
rp

h
o
lo

g
y

b
i
l
i
m
c
i
l
e
ş
t
i
r
e
m
e
y
e
b
i
l
e
c
e
k
l
e
r
i
m
i
z
d
e
n
m
i
y
d
i
n
i
z
:

T
h

e
st

ru
ct

u
re

of
th

is
w

or
d

b
ec

am
e

fa
m

ou
s

as
on

e
of

th
e

m
os

t
p

op
u

la
r,

lo
n

ge
st

w
or

d
s

of
T

u
rk

is
h

in
th

e
li

n
gu

is
ti

cs
an

d
T

u
rk

is
h

gr
am

m
ar

ci
rc

le
s,

‘Ç
ek

os
lo

va
k
ya

lı
la

şt
ır

am
ad

ık
la

rı
m

ız
d

an
m

ıs
ın

ız
?’

,
w

h
ic

h
co

u
ld

b
e

tr
an

sl
at

ed
as

‘A
re

yo
u

on
e

of
th

os
e

w
h

om
w

e
co

u
ld

n
ot

tu
rn

in
to

a
C

ze
ch

os
lo

va
k
?’

.
T

h
is

w
or

d
lo

st
it

s
p

op
u

la
ri

ty
d

u
e

to

d
iff

er
in

g
op

in
io

n
s

on
th

e
d

is
cu

ss
io

n
of

w
h

et
h

er
th

e
q
u

es
ti

on
cl

it
ic

-m
i

sh
ou

ld
b

e
co

n
si

d
er

ed
as

a

se
p

ar
at

e
u

n
it

or
n

ot
.

L
at

er
on

,
af

te
r

th
e

se
p

ar
at

io
n

of
th

e
tw

o
co

u
n
tr

ie
s,

th
is

fa
m

ou
s

lo
n

ge
st

w
or

d

lo
st

it
s

p
op

u
la

ri
ty

al
l

to
ge

th
er

,
an

d
n

ew
lo

n
ge

st
w

or
d

s
w

er
e

m
ad

e
b
y

th
e

sa
m

e
w

ay
of

su
ffi

x
at

io
n

.

F
or

il
lu

st
ra

ti
on

,
w

e
sh

ow
th

e
m

or
p

h
ol

og
ic

al
an

al
y
si

s
of

th
is

w
or

d
b

el
ow

:

b
i
l
i
m
<
n
>
<
D
C
I
>
<
n
>
<
D
l
A
S
>
<
v
>
<
c
a
u
s
>
<
a
b
i
l
>
<
n
e
g
>
<
a
b
i
l
>
<
v
n
a
c
a
k
>
<
p
l
>
<
p
1
p
>
<
a
b
l
>
<
q
>
<
c
p
l
d
i
>
<
2
p
>

b
i
l
i
m
<
n
>
<
D
C
I
>
<
n
>
<
D
l
A
S
>
<
v
>
<
c
a
u
s
>
<
a
b
i
l
>
<
n
e
g
>
<
a
b
i
l
>
<
v
n
a
c
a
k
>
<
n
c
o
m
p
>
<
p
l
>
<
p
1
p
>
<
a
b
l
>
<
q
>
<
c
p
l
d
i
>
<
2
p
>

101

b
i
l
i
m
<
n
>
<
D
C
I
>
<
n
>
<
D
l
A
S
>
<
v
>
<
c
a
u
s
>
<
a
b
i
l
>
<
n
e
g
>
<
a
b
i
l
>
<
p
a
r
t
a
c
a
k
>
<
p
l
>
<
p
1
p
>
<
a
b
l
>
<
q
>
<
c
p
l
d
i
>
<
2
p
>

b
i
l
i
m
<
n
>
<
D
C
I
>
<
n
>
<
D
l
A
S
>
<
v
>
<
c
a
u
s
>
<
a
b
i
l
>
<
n
e
g
>
<
a
b
i
l
>
<
p
a
r
t
a
c
a
k
>
<
n
c
o
m
p
>
<
p
l
>
<
p
1
p
>
<
a
b
l
>
<
q
>
<
c
p
l
d
i
>
<
2
p
>

b
i
l
i
m
<
n
>
<
D
C
I
>
<
n
>
<
D
l
A
S
>
<
v
>
<
c
a
u
s
>
<
a
b
i
l
>
<
n
e
g
>
<
a
b
i
l
>
<
t
f
u
t
>
<
V
J
0
>
<
a
d
j
>
<
J
N
0
>
<
n
>
<
p
l
>
<
p
1
p
>
<
a
b
l
>
<
q
>
<
c
p
l
d
i
>
<
2
p
>

b
i
l
i
m
<
n
>
<
D
C
I
>
<
n
>
<
D
l
A
S
>
<
v
>
<
c
a
u
s
>
<
a
b
i
l
>
<
n
e
g
>
<
a
b
i
l
>
<
t
f
u
t
>
<
V
J
0
>
<
a
d
j
>
<
J
N
0
>
<
n
>
<
n
c
o
m
p
>
<
p
l
>
<
p
1
p
>
<
a
b
l
>
<
q
>
<
c
p
l
d
i
>
<
2
p
>

b
i
l
i
m
<
n
>
<
D
C
I
>
<
a
d
j
>
<
D
l
A
S
>
<
v
>
<
c
a
u
s
>
<
a
b
i
l
>
<
n
e
g
>
<
a
b
i
l
>
<
v
n
a
c
a
k
>
<
p
l
>
<
p
1
p
>
<
a
b
l
>
<
q
>
<
c
p
l
d
i
>
<
2
p
>

b
i
l
i
m
<
n
>
<
D
C
I
>
<
a
d
j
>
<
D
l
A
S
>
<
v
>
<
c
a
u
s
>
<
a
b
i
l
>
<
n
e
g
>
<
a
b
i
l
>
<
v
n
a
c
a
k
>
<
n
c
o
m
p
>
<
p
l
>
<
p
1
p
>
<
a
b
l
>
<
q
>
<
c
p
l
d
i
>
<
2
p
>

b
i
l
i
m
<
n
>
<
D
C
I
>
<
a
d
j
>
<
D
l
A
S
>
<
v
>
<
c
a
u
s
>
<
a
b
i
l
>
<
n
e
g
>
<
a
b
i
l
>
<
p
a
r
t
a
c
a
k
>
<
p
l
>
<
p
1
p
>
<
a
b
l
>
<
q
>
<
c
p
l
d
i
>
<
2
p
>

b
i
l
i
m
<
n
>
<
D
C
I
>
<
a
d
j
>
<
D
l
A
S
>
<
v
>
<
c
a
u
s
>
<
a
b
i
l
>
<
n
e
g
>
<
a
b
i
l
>
<
p
a
r
t
a
c
a
k
>
<
n
c
o
m
p
>
<
p
l
>
<
p
1
p
>
<
a
b
l
>
<
q
>
<
c
p
l
d
i
>
<
2
p
>

b
i
l
i
m
<
n
>
<
D
C
I
>
<
a
d
j
>
<
D
l
A
S
>
<
v
>
<
c
a
u
s
>
<
a
b
i
l
>
<
n
e
g
>
<
a
b
i
l
>
<
t
f
u
t
>
<
V
J
0
>
<
a
d
j
>
<
J
N
0
>
<
n
>
<
p
l
>
<
p
1
p
>
<
a
b
l
>
<
q
>
<
c
p
l
d
i
>
<
2
p
>

b
i
l
i
m
<
n
>
<
D
C
I
>
<
a
d
j
>
<
D
l
A
S
>
<
v
>
<
c
a
u
s
>
<
a
b
i
l
>
<
n
e
g
>
<
a
b
i
l
>
<
t
f
u
t
>
<
V
J
0
>
<
a
d
j
>
<
J
N
0
>
<
n
>
<
n
c
o
m
p
>
<
p
l
>
<
p
1
p
>
<
a
b
l
>
<
q
>
<
c
p
l
d
i
>
<
2
p
>

b
i
l
i
m
<
n
>
<
D
C
I
>
<
a
d
j
>
<
J
N
0
>
<
n
>
<
D
l
A
S
>
<
v
>
<
c
a
u
s
>
<
a
b
i
l
>
<
n
e
g
>
<
a
b
i
l
>
<
v
n
a
c
a
k
>
<
p
l
>
<
p
1
p
>
<
a
b
l
>
<
q
>
<
c
p
l
d
i
>
<
2
p
>

b
i
l
i
m
<
n
>
<
D
C
I
>
<
a
d
j
>
<
J
N
0
>
<
n
>
<
D
l
A
S
>
<
v
>
<
c
a
u
s
>
<
a
b
i
l
>
<
n
e
g
>
<
a
b
i
l
>
<
v
n
a
c
a
k
>
<
n
c
o
m
p
>
<
p
l
>
<
p
1
p
>
<
a
b
l
>
<
q
>
<
c
p
l
d
i
>
<
2
p
>

b
i
l
i
m
<
n
>
<
D
C
I
>
<
a
d
j
>
<
J
N
0
>
<
n
>
<
D
l
A
S
>
<
v
>
<
c
a
u
s
>
<
a
b
i
l
>
<
n
e
g
>
<
a
b
i
l
>
<
p
a
r
t
a
c
a
k
>
<
p
l
>
<
p
1
p
>
<
a
b
l
>
<
q
>
<
c
p
l
d
i
>
<
2
p
>

b
i
l
i
m
<
n
>
<
D
C
I
>
<
a
d
j
>
<
J
N
0
>
<
n
>
<
D
l
A
S
>
<
v
>
<
c
a
u
s
>
<
a
b
i
l
>
<
n
e
g
>
<
a
b
i
l
>
<
p
a
r
t
a
c
a
k
>
<
n
c
o
m
p
>
<
p
l
>
<
p
1
p
>
<
a
b
l
>
<
q
>
<
c
p
l
d
i
>
<
2
p
>

b
i
l
i
m
<
n
>
<
D
C
I
>
<
a
d
j
>
<
J
N
0
>
<
n
>
<
D
l
A
S
>
<
v
>
<
c
a
u
s
>
<
a
b
i
l
>
<
n
e
g
>
<
a
b
i
l
>
<
t
f
u
t
>
<
V
J
0
>
<
a
d
j
>
<
J
N
0
>
<
n
>
<
p
l
>
<
p
1
p
>
<
a
b
l
>
<
q
>
<
c
p
l
d
i
>
<
2
p
>

b
i
l
i
m
<
n
>
<
D
C
I
>
<
a
d
j
>
<
J
N
0
>
<
n
>
<
D
l
A
S
>
<
v
>
<
c
a
u
s
>
<
a
b
i
l
>
<
n
e
g
>
<
a
b
i
l
>
<
t
f
u
t
>
<
V
J
0
>
<
a
d
j
>
<
J
N
0
>
<
n
>
<
n
c
o
m
p
>
<
p
l
>
<
p
1
p
>
<
a
b
l
>
<
q
>
<
c
p
l
d
i
>
<
2
p
>

b
i
l
i
m
<
n
>
<
n
c
o
m
p
>
<
D
C
I
>
<
n
>
<
D
l
A
S
>
<
v
>
<
c
a
u
s
>
<
a
b
i
l
>
<
n
e
g
>
<
a
b
i
l
>
<
v
n
a
c
a
k
>
<
p
l
>
<
p
1
p
>
<
a
b
l
>
<
q
>
<
c
p
l
d
i
>
<
2
p
>

b
i
l
i
m
<
n
>
<
n
c
o
m
p
>
<
D
C
I
>
<
n
>
<
D
l
A
S
>
<
v
>
<
c
a
u
s
>
<
a
b
i
l
>
<
n
e
g
>
<
a
b
i
l
>
<
v
n
a
c
a
k
>
<
n
c
o
m
p
>
<
p
l
>
<
p
1
p
>
<
a
b
l
>
<
q
>
<
c
p
l
d
i
>
<
2
p
>

102

b
i
l
i
m
<
n
>
<
n
c
o
m
p
>
<
D
C
I
>
<
n
>
<
D
l
A
S
>
<
v
>
<
c
a
u
s
>
<
a
b
i
l
>
<
n
e
g
>
<
a
b
i
l
>
<
p
a
r
t
a
c
a
k
>
<
p
l
>
<
p
1
p
>
<
a
b
l
>
<
q
>
<
c
p
l
d
i
>
<
2
p
>

b
i
l
i
m
<
n
>
<
n
c
o
m
p
>
<
D
C
I
>
<
n
>
<
D
l
A
S
>
<
v
>
<
c
a
u
s
>
<
a
b
i
l
>
<
n
e
g
>
<
a
b
i
l
>
<
p
a
r
t
a
c
a
k
>
<
n
c
o
m
p
>
<
p
l
>
<
p
1
p
>
<
a
b
l
>
<
q
>
<
c
p
l
d
i
>
<
2
p
>

b
i
l
i
m
<
n
>
<
n
c
o
m
p
>
<
D
C
I
>
<
n
>
<
D
l
A
S
>
<
v
>
<
c
a
u
s
>
<
a
b
i
l
>
<
n
e
g
>
<
a
b
i
l
>
<
t
f
u
t
>
<
V
J
0
>
<
a
d
j
>
<
J
N
0
>
<
n
>
<
p
l
>
<
p
1
p
>
<
a
b
l
>
<
q
>
<
c
p
l
d
i
>
<
2
p
>

b
i
l
i
m
<
n
>
<
n
c
o
m
p
>
<
D
C
I
>
<
n
>
<
D
l
A
S
>
<
v
>
<
c
a
u
s
>
<
a
b
i
l
>
<
n
e
g
>
<
a
b
i
l
>
<
t
f
u
t
>
<
V
J
0
>
<
a
d
j
>
<
J
N
0
>
<
n
>
<
n
c
o
m
p
>
<
p
l
>
<
p
1
p
>
<
a
b
l
>
<
q
>
<
c
p
l
d
i
>
<
2
p
>

b
i
l
i
m
<
n
>
<
n
c
o
m
p
>
<
D
C
I
>
<
a
d
j
>
<
D
l
A
S
>
<
v
>
<
c
a
u
s
>
<
a
b
i
l
>
<
n
e
g
>
<
a
b
i
l
>
<
v
n
a
c
a
k
>
<
p
l
>
<
p
1
p
>
<
a
b
l
>
<
q
>
<
c
p
l
d
i
>
<
2
p
>

b
i
l
i
m
<
n
>
<
n
c
o
m
p
>
<
D
C
I
>
<
a
d
j
>
<
D
l
A
S
>
<
v
>
<
c
a
u
s
>
<
a
b
i
l
>
<
n
e
g
>
<
a
b
i
l
>
<
v
n
a
c
a
k
>
<
n
c
o
m
p
>
<
p
l
>
<
p
1
p
>
<
a
b
l
>
<
q
>
<
c
p
l
d
i
>
<
2
p
>

b
i
l
i
m
<
n
>
<
n
c
o
m
p
>
<
D
C
I
>
<
a
d
j
>
<
D
l
A
S
>
<
v
>
<
c
a
u
s
>
<
a
b
i
l
>
<
n
e
g
>
<
a
b
i
l
>
<
p
a
r
t
a
c
a
k
>
<
p
l
>
<
p
1
p
>
<
a
b
l
>
<
q
>
<
c
p
l
d
i
>
<
2
p
>

b
i
l
i
m
<
n
>
<
n
c
o
m
p
>
<
D
C
I
>
<
a
d
j
>
<
D
l
A
S
>
<
v
>
<
c
a
u
s
>
<
a
b
i
l
>
<
n
e
g
>
<
a
b
i
l
>
<
p
a
r
t
a
c
a
k
>
<
n
c
o
m
p
>
<
p
l
>
<
p
1
p
>
<
a
b
l
>
<
q
>
<
c
p
l
d
i
>
<
2
p
>

b
i
l
i
m
<
n
>
<
n
c
o
m
p
>
<
D
C
I
>
<
a
d
j
>
<
D
l
A
S
>
<
v
>
<
c
a
u
s
>
<
a
b
i
l
>
<
n
e
g
>
<
a
b
i
l
>
<
t
f
u
t
>
<
V
J
0
>
<
a
d
j
>
<
J
N
0
>
<
n
>
<
p
l
>
<
p
1
p
>
<
a
b
l
>
<
q
>
<
c
p
l
d
i
>
<
2
p
>

b
i
l
i
m
<
n
>
<
n
c
o
m
p
>
<
D
C
I
>
<
a
d
j
>
<
D
l
A
S
>
<
v
>
<
c
a
u
s
>
<
a
b
i
l
>
<
n
e
g
>
<
a
b
i
l
>
<
t
f
u
t
>
<
V
J
0
>
<
a
d
j
>
<
J
N
0
>
<
n
>
<
n
c
o
m
p
>
<
p
l
>
<
p
1
p
>
<
a
b
l
>
<
q
>
<
c
p
l
d
i
>
<
2
p
>

b
i
l
i
m
<
n
>
<
n
c
o
m
p
>
<
D
C
I
>
<
a
d
j
>
<
J
N
0
>
<
n
>
<
D
l
A
S
>
<
v
>
<
c
a
u
s
>
<
a
b
i
l
>
<
n
e
g
>
<
a
b
i
l
>
<
v
n
a
c
a
k
>
<
p
l
>
<
p
1
p
>
<
a
b
l
>
<
q
>
<
c
p
l
d
i
>
<
2
p
>

b
i
l
i
m
<
n
>
<
n
c
o
m
p
>
<
D
C
I
>
<
a
d
j
>
<
J
N
0
>
<
n
>
<
D
l
A
S
>
<
v
>
<
c
a
u
s
>
<
a
b
i
l
>
<
n
e
g
>
<
a
b
i
l
>
<
v
n
a
c
a
k
>
<
n
c
o
m
p
>
<
p
l
>
<
p
1
p
>
<
a
b
l
>
<
q
>
<
c
p
l
d
i
>
<
2
p
>

b
i
l
i
m
<
n
>
<
n
c
o
m
p
>
<
D
C
I
>
<
a
d
j
>
<
J
N
0
>
<
n
>
<
D
l
A
S
>
<
v
>
<
c
a
u
s
>
<
a
b
i
l
>
<
n
e
g
>
<
a
b
i
l
>
<
p
a
r
t
a
c
a
k
>
<
p
l
>
<
p
1
p
>
<
a
b
l
>
<
q
>
<
c
p
l
d
i
>
<
2
p
>

b
i
l
i
m
<
n
>
<
n
c
o
m
p
>
<
D
C
I
>
<
a
d
j
>
<
J
N
0
>
<
n
>
<
D
l
A
S
>
<
v
>
<
c
a
u
s
>
<
a
b
i
l
>
<
n
e
g
>
<
a
b
i
l
>
<
p
a
r
t
a
c
a
k
>
<
n
c
o
m
p
>
<
p
l
>
<
p
1
p
>
<
a
b
l
>
<
q
>
<
c
p
l
d
i
>
<
2
p
>

b
i
l
i
m
<
n
>
<
n
c
o
m
p
>
<
D
C
I
>
<
a
d
j
>
<
J
N
0
>
<
n
>
<
D
l
A
S
>
<
v
>
<
c
a
u
s
>
<
a
b
i
l
>
<
n
e
g
>
<
a
b
i
l
>
<
t
f
u
t
>
<
V
J
0
>
<
a
d
j
>
<
J
N
0
>
<
n
>
<
p
l
>
<
p
1
p
>
<
a
b
l
>
<
q
>
<
c
p
l
d
i
>
<
2
p
>

b
i
l
i
m
<
n
>
<
n
c
o
m
p
>
<
D
C
I
>
<
a
d
j
>
<
J
N
0
>
<
n
>
<
D
l
A
S
>
<
v
>
<
c
a
u
s
>
<
a
b
i
l
>
<
n
e
g
>
<
a
b
i
l
>
<
t
f
u
t
>
<
V
J
0
>
<
a
d
j
>
<
J
N
0
>
<
n
>
<
n
c
o
m
p
>
<
p
l
>
<
p
1
p
>
<
a
b
l
>
<
q
>
<
c
p
l
d
i
>
<
2
p
>

103

List of Tables

2.1 Chart of Turkish Vowels . 12
2.2 Two-way Vowel Harmony & Plr. Word Formation 14
2.3 Four-way Vowel Harmony & Question-Clitic Suffixation 15
2.4 Chart of Voiced & Voiceless Consonants 16
2.5 Voiced&Voiced and Voiceless&Voiceless Consonant Alternation . . 16
2.6 Voiceless to Voiced Consonant Alternation 17

3.1 PoS Distribution of ROOT Forms in TRmorph-SFST 30
3.2 PoS Distribution of ROOT Forms in TRmorph-Baseline(Foma) . 30

4.1 TRmorph-Baseline token coverage of Milliyet Newspaper 39
4.2 TRmorph-Baseline type coverage of Milliyet Newspaper 39
4.3 Distribution of unknown words according to their capitalization in

Milliyet newspaper . 40
4.4 Frequency distribution of top 10 unknown words 40
4.5 TRmorph-Baseline token coverage on Wikipedia data sets 41
4.6 TRmorph-Baseline token-type coverage on Wikipedia data sets . . 41
4.7 TRmorph-Baseline token & type coverage on W2C-Web data . . . 42
4.8 Examples of unknown tokens from W2C-Web text 42
4.9 CoNLL sentence format with derivational IGs– Translation of the sen-

tence: ‘However, the movement is becoming a lot harder than what is expected’. 44
4.10 Format of MWE tokens in the CoNLL data sets 44
4.11 TRmorph-Baseline coverage of tokens on METU TreeBank . . . 45
4.12 TRmorph-Baseline coverage of token-types on METU TreeBank 45
4.13 TRmorph-Extended token coverage on METU TreeBank 46
4.14 TRmorph-Extended type coverage on METU TreeBank 46
4.15 TRmorph-Baseline coverage of single-tokens on METU TreeBank 46
4.16 TRmorph-Baseline coverage of single-token types on METU Tree-

Bank . 47
4.17 TRmorph-Extended coverage on METU TreeBank 47

104

LIST OF TABLES

4.18 TRmorph-Extended coverage on METU TreeBank 48
4.19 Distribution of MWE tokens on METU TreeBank 48
4.20 10 random MWE tokens on METU TreeBank 49
4.21 TRmorph coverage on METU Turkish Corpus 49
4.22 TRmorph-Baseline coverage on METU Turkish Corpus 50
4.23 TRmorph-Baseline coverage of token-types on METU Turkish Cor-

pus . 50
4.24 TRmorph-Baseline coverage of Morpho Challenge Shared Task (2010) 51
4.25 Mapping of Morpho Challenge ‘word list’ tokens to normalized

tokens in TRmorph . 52
4.26 Average number of analyses per token on Morpho Challange data

processed with TRmorph-Extended 53
4.27 Morpho Challenge shared task results with Morfessor evaluations 55
4.28 TRmorph-Baseline results on Morpho Challenge Data Sets 56
4.29 TRmorph-Extended results with Morpho Challenge Data Sets . . 56

5.1 New abbreviations lexicon in TRmorph+ 59
5.2 New MWE-Verbs lexicon in TRmorph+ 64
5.3 New multi-word nouns lexicon in TRmorph+ 65
5.4 New adverbs lexicon in TRmorph+ 66
5.5 New proper noun lexicon in TRmorph+ 68
5.6 New Named-Entity proper noun lexicon in TRmorph+ 68
5.7 New Named Entity-Location lexicons in TRmorph+ 69
5.8 New Named Entity-Organization lexicon in TRmorph+ 70
5.9 MWE tokens in the FSA dictionary 71
5.10 Comparison of analyses with trmorph.fst and guess.fst + trmorph.fst 78
5.11 New lexicons in TRmorph+ . 80

6.1 TRmorph+ and TRmorph-Baseline coverage of TDK sentences . . 88
6.2 TRmorph+ and TRmorph-Baseline coverage of collapsed multi-

word expressions . 88
6.3 SET0: Analysis of collapsed tokens with Baseline analyzer, SET1: Analysis of

collapsed tokens in ITU-Val Set with TRmorph+, SET2: Analysis of single

tokens in ITU-Val Set with TRmorph+ & tokenization method 91
6.4 Additional statistics on multi-word expressions in Set 2 91
6.5 SET3: Analysis of single tokens in ITU-Val Set with TRmorph+ & tokeniza-

tion, using the shortest-stem selection method 93
6.6 Additional statistics on multi-word expressions in Set 3 93
6.7 Summary of coverage results ITU-Val Set 95

105

References

Ahmet Afsin Akın and Mehmet Dündar Akın. Zemberek, an open source nlp
framework for turkic languages. Structure, 2007. 23, 24, 28

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wojciech Skut, and Mehryar
Mohri. Openfst: A general and efficient weighted finite-state trans-
ducer library. In Implementation and Application of Automata, pages 11–
23. Springer, 2007. URL http://link.springer.com/chapter/10.1007/

978-3-540-76336-9_3. 28

Nart B Atalay, Kemal Oflazer, Bilge Say, et al. The annotation process in the
turkish treebank. In Proc. of the 4th Intern. Workshop on Linguistically Inter-
preteted Corpora (LINC), 2003. 37, 38

Madeleine Bates. The theory and practice of augmented transition network gram-
mars. In Natural language communication with computers, pages 191–254.
Springer, 1978. URL http://link.springer.com/content/pdf/10.1007/

BFb0031372.pdf. 25

Kenneth R. Beesley and Lauri Karttunen. Finite state morphology. CSLI Publi-
cations, Stanford, Calif., 2003. ISBN 1-57586-433-9. 5, 8, 72

Mathias Creutz and Krista Lagus. Unsupervised models for morpheme segmen-
tation and morphology learning. ACM Transactions on Speech and Language
Processing (TSLP), 4(1):3, 2007. URL http://dl.acm.org/citation.cfm?

id=1187418. 54

Jason Eisner. Parameter estimation for probabilistic finite-state transducers. In
Proceedings of the 40th Annual Meeting on Association for Computational Lin-
guistics, pages 1–8. Association for Computational Linguistics, 2002. URL
http://dl.acm.org/citation.cfm?id=1073085. 28

106

http://link.springer.com/chapter/10.1007/978-3-540-76336-9_3
http://link.springer.com/chapter/10.1007/978-3-540-76336-9_3
http://link.springer.com/content/pdf/10.1007/BFb0031372.pdf
http://link.springer.com/content/pdf/10.1007/BFb0031372.pdf
http://dl.acm.org/citation.cfm?id=1187418
http://dl.acm.org/citation.cfm?id=1187418
http://dl.acm.org/citation.cfm?id=1073085

REFERENCES

Gülşen Eryiğit. Itu validation set for metu-sabancı turkish treebank. URL:
http://www3. itu. edu. tr/ gulsenc/papers/validationset. pdf, 2007. 63, 87,
90

Gülşen Eryiğit. The impact of automatic morphological analysis & disambigua-
tion on dependency parsing of turkish. In LREC, pages 1960–1965, 2012. 63,
96

Gülşen Eryiğit and Eref Adali. An affix stripping morphological analyzer for
turkish. In Proceedings of the IASTED International Conference on Artificial
Intelligence and Applications, Innsbruck, Austria, pages 299–304, 2004. URL
http://www.actapress.com/PaperInfo.aspx?paperId=15800. 22, 23

Gülşen Eryiğit, Joakim Nivre, and Kemal Oflazer. Dependency parsing of
turkish. Computational Linguistics, 34(3):357–389, 2008. URL http://www.

mitpressjournals.org/doi/abs/10.1162/coli.2008.07-017-R1-06-83. 9,
31, 43

Gülşen Eryiğit, Tugay Ilbay, and Ozan Arkan Can. Multiword expressions in
statistical dependency parsing. In Proceedings of the Second Workshop on Sta-
tistical Parsing of Morphologically Rich Languages, pages 45–55. Association
for Computational Linguistics, 2011. URL http://dl.acm.org/citation.

cfm?id=2206365. 48, 60, 90, 95

Tunga Güngör. Lexical and morphological statistics for turkish. Proceedings of
TAINN, pages 409–412, 2003. 25

Tunga Güngör and Selahattin Kuru. Representation of turkish morphology in atn.
In Proceedings of Second Symposium on Artificial Intelligence and Artificial
Neural Networks, pages 92–104, 1993. 25

Dilek Z Hakkani-Tür, Kemal Oflazer, and Gökhan Tür. Statistical morphological
disambiguation for agglutinative languages. Computers and the Humanities, 36
(4):381–410, 2002. URL http://link.springer.com/article/10.1023/A:

1020271707826. 26, 27, 96, 97

Jorge Hankamer. Turkish generative morphology and morphological parsing.
In Second International Conference on Turkish Linguistics. Istanbul, Turkey,
1984. 21

Jorge Hankamer. Finite state morphology and left to right phonology. In Pro-
ceedings of the West Coast Conference on Formal Linguistics, volume 5, pages
41–52, 1986. 21

107

http://www.actapress.com/PaperInfo.aspx?paperId=15800
http://www.mitpressjournals.org/doi/abs/10.1162/coli.2008.07-017-R1-06-83
http://www.mitpressjournals.org/doi/abs/10.1162/coli.2008.07-017-R1-06-83
http://dl.acm.org/citation.cfm?id=2206365
http://dl.acm.org/citation.cfm?id=2206365
http://link.springer.com/article/10.1023/A:1020271707826
http://link.springer.com/article/10.1023/A:1020271707826

REFERENCES

Mehmet Hengirmen. Türkçe Dilbilgisi. Engin Yayınevi / Eğitim Dizisi, 2005. 10

Mans Hulden. Foma: a finite-state compiler and library. In Proceedings of the
Demonstrations Session at EACL 2009, pages 29–32, Athens, Greece, April
2009. Association for Computational Linguistics. URL http://www.aclweb.

org/anthology/E09-2008. 29

Dan Jurafsky, James H Martin, Andrew Kehler, Keith Vander Linden, and Nigel
Ward. Speech and language processing: An introduction to natural language
processing, computational linguistics, and speech recognition, volume 2. MIT
Press, 2000. 4

Ronald M Kaplan and Martin Kay. Regular models of phonological rule systems.
Computational linguistics, 20(3):331–378, 1994. URL http://dl.acm.org/

citation.cfm?id=204917. 12, 13

Lauri Karttunen. Kimmo: a general morphological processor. In Texas Linguistic
Forum, volume 22, pages 163–186, 1983. 21

Lauri Karttunen. Finite-state constraints. In Proceedings International Con-
ference on Current Issues in Computational Linguistics, Universiti Sains
Malaysia, Penang, 1991. 8

Lauri Karttunen and Kenneth R Beesley. Twenty-five years of finite-state mor-
phology. Inquiries Into Words, a Festschrift for Kimmo Koskenniemi on his
60th Birthday, pages 71–83, 2005. 21

Celia Kerslake and Asli Göksel. Turkish: A Comprehensive Grammar. Com-
prehensive Grammars. Routledge (Taylor and Francis), New York, 2005. 10,
11

Kimmo Koskenniemi. A general computational model for word-form recognition
and production. In Proceedings of the 10th international conference on Compu-
tational linguistics, pages 178–181. Association for Computational Linguistics,
1984. URL http://dl.acm.org/citation.cfm?id=980529. 21, 27

Mikko Kurimo, Sami Virpioja, Ville Turunen, and Krista Lagus. Morpho chal-
lenge competition 2005–2010: evaluations and results. In Proceedings of the
11th Meeting of the ACL Special Interest Group on Computational Morphology
and Phonology, pages 87–95. Association for Computational Linguistics, 2010a.
URL http://dl.acm.org/citation.cfm?id=1870489. 37, 50, 56

Mikko Kurimo, Sami Virpioja, Ville T Turunen, et al. Proceedings of the morpho
challenge 2010 workshop. In Morpho Challenge Workshop; 2010; Espoo. Aalto

108

http://www.aclweb.org/anthology/E09-2008
http://www.aclweb.org/anthology/E09-2008
http://dl.acm.org/citation.cfm?id=204917
http://dl.acm.org/citation.cfm?id=204917
http://dl.acm.org/citation.cfm?id=980529
http://dl.acm.org/citation.cfm?id=1870489

REFERENCES

University School of Science and Technology, 2010b. URL https://aaltodoc.

aalto.fi/handle/123456789/827. 38

Krister Lindén, Erik Axelson, Senka Drobac, Sam Hardwick, Miikka Silfverberg,
and Tommi A Pirinen. Using hfst for creating computational linguistic ap-
plications. In Computational Linguistics, pages 3–25. Springer, 2013. URL
http://link.springer.com/chapter/10.1007/978-3-642-34399-5_1. 29

Martin Majlǐs. W2c–web to corpus–corpora. 2011. 38, 41

Martin Majlǐs and Zdeněk Žabokrtský. Language richness of the web. In Proceed-
ings of the Eight International Conference on Language Resources and Evalu-
ation (LREC 2012), 2012. 38, 41

Christopher D Manning and Hinrich Schütze. Foundations of statistical natural
language processing, volume 999. MIT Press, 1999. 54

Jens Nilsson, Sebastian Riedel, and Deniz Yuret. The conll 2007 shared task
on dependency parsing. In Proceedings of the CoNLL Shared Task Session of
EMNLP-CoNLL, pages 915–932. sn, 2007. 38, 43

Kemal Oflazer. Two-level description of turkish morphology. Literary and lin-
guistic computing, 9(2):137–148, 1994. URL http://llc.oxfordjournals.

org/content/9/2/137.short. 21, 22, 26, 27, 28, 96, 97, 99

Kemal Oflazer, Elvan Göçmen, Elvan Gocmen, and Cem Bozsahin. An outline of
turkish morphology. 1994. URL http://citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.57.6951. 21

Kemal Oflazer, Bilge Say, Dilek Zeynep Hakkani-Tür, and Gökhan Tür. Building
a turkish treebank. In Treebanks, pages 261–277. Springer, 2003. URL http:

//link.springer.com/chapter/10.1007/978-94-010-0201-1_15. 37, 38

Kemal Oflazer, Bilge Say, et al. Integrating morphology with multi-word expres-
sion processing in turkish. In Proceedings of the Workshop on Multiword Ex-
pressions: Integrating Processing, pages 64–71. Association for Computational
Linguistics, 2004. URL http://dl.acm.org/citation.cfm?id=1613195. 60,
62, 72

Uwe Quasthoff, Matthias Richter, and Chris Biemann. Corpus portal for search
in monolingual corpora. In Proceedings of the fifth international conference on
language resources and evaluation, pages 1799–1802, 2006. 51

109

https://aaltodoc.aalto.fi/handle/123456789/827
https://aaltodoc.aalto.fi/handle/123456789/827
http://link.springer.com/chapter/10.1007/978-3-642-34399-5_1
http://llc.oxfordjournals.org/content/9/2/137.short
http://llc.oxfordjournals.org/content/9/2/137.short
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.6951
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.6951
http://link.springer.com/chapter/10.1007/978-94-010-0201-1_15
http://link.springer.com/chapter/10.1007/978-94-010-0201-1_15
http://dl.acm.org/citation.cfm?id=1613195

REFERENCES

Haşim Sak, Tunga Güngör, and Murat Saraçlar. Morphological disambiguation
of turkish text with perceptron algorithm. In Computational Linguistics and
Intelligent Text Processing, pages 107–118. Springer, 2007. URL http://link.

springer.com/chapter/10.1007/978-3-540-70939-8_10. 27, 28, 96, 97, 99

Haşim Sak, Tunga Güngör, and Murat Saraçlar. A stochastic finite-state morpho-
logical parser for turkish. In Proceedings of the ACL-IJCNLP 2009 Conference
short papers, pages 273–276. Association for Computational Linguistics, 2009.
URL http://dl.acm.org/citation.cfm?id=1667667. 27, 28

Bilge Say, Deniz Zeyrek, Kemal Oflazer, and Umut Özge. Development of a
corpus and a treebank for present-day written turkish. In Proceedings of the
eleventh international conference of Turkish linguistics, pages 183–192, 2002.
38

Helmut Schmid. A programming language for finite state transducers. In
FSMNLP, volume 4002, pages 308–309, 2005. 29

Stuart C Shapiro. Generalized augmented transition network grammars for gen-
eration from semantic networks. Computational Linguistics, 8(1):12–25, 1982.
URL http://dl.acm.org/citation.cfm?id=972925. 25

Max Silberztein, Tamás Váradi, and Marko Tadić. Open source multi-platform
nooj for nlp. In COLING (Demos), pages 401–408, 2012. 24

William A Woods. Transition network grammars for natural language analysis.
Communications of the ACM, 13(10):591–606, 1970. URL http://dl.acm.

org/citation.cfm?id=362773. 25

Deniz Yüret and Ferhan Türe. Learning morphological disambiguation rules for
turkish. In Proceedings of the main conference on Human Language Technology
Conference of the North American Chapter of the Association of Computational
Linguistics, pages 328–334. Association for Computational Linguistics, 2006.
URL http://dl.acm.org/citation.cfm?id=1220877. 26, 27

Daniel Zeman. Hard problems of tagset conversion. In Proceedings of the Second
International Conference on Global Interoperability for Language Resources,
pages 181–185, 2010. 97

Çağrı Çöltekin. A freely available morphological analyzer for turkish. In LREC,
2010. 2, 19, 28, 31, 49

110

http://link.springer.com/chapter/10.1007/978-3-540-70939-8_10
http://link.springer.com/chapter/10.1007/978-3-540-70939-8_10
http://dl.acm.org/citation.cfm?id=1667667
http://dl.acm.org/citation.cfm?id=972925
http://dl.acm.org/citation.cfm?id=362773
http://dl.acm.org/citation.cfm?id=362773
http://dl.acm.org/citation.cfm?id=1220877

	Contents
	1 Introduction
	2 Motivation
	2.1 Morphological Processing
	2.2 Turkish Morphology
	2.2.1 Word Formation in Turkish
	2.2.2 Morphophonology (sound alternations) in Turkish
	2.2.3 Vowel Harmony
	2.2.4 Consonant Alternations

	3 Overview of Previous Work and Existing Tools in Processing of Turkish
	3.1 Rule-Based Methods in Morphological Processing
	3.2 Statistical Methods in Morphological Processing
	3.3 TRmorph: A Turkish morphological analyzer
	3.3.1 Lexicon in TRmorph Baseline.
	3.3.2 Processing of Nominal Word Formations
	3.3.3 Processing of Verbal Word Formation
	3.3.4 Additional Utilities in TRmorph-Extended Version

	4 Evaluation of TRmorph
	4.1 Newspaper Data Coverage
	4.2 Web-To-Corpus (W2C) Data Coverage
	4.3 METU–Sabanci TreeBank, CoNLL Data Coverage
	4.3.1 METU Turkish Corpus Data Coverage

	4.4 Morpho Challenge Shared Task Data Coverage
	4.4.1 Morpho Challenge Shared Task Data Evaluation

	4.5 Results of TRmorph Evaluation

	5 Methods for Expanding & Improving the Lexicon
	5.1 Method 1: Extraction of New Lexical Tokens for the Expansion of Lexicons
	5.1.1 Abbreviations
	5.1.2 Parsing of Numbers & Digits in Dates
	5.1.3 Multi-word Expressions
	5.1.4 Proper Noun and Named Entity Lexicons

	5.2 Method 2: Tokenization of Multi-word Expressions
	5.2.1 Preprocessing Step: Preparation of the FSA Dictionary
	5.2.2 Tokenization Step: Construction of the Finite-State Recognizer

	5.3 Method 3: Finite-State Guesser for Proper Nouns
	5.4 General Outline and Workflow of Methods

	6 Evaluation of Methods in TRmorph+
	6.1 Evaluation of TDK Sentence Data Set with TRmorph+
	6.2 Evaluation of CoNLL Test Set using ITU-Validation Gold Standard

	7 Conclusion
	7.1 Future Work

	Appendix A
	List of Tables
	References

